Implements the super learner prediction method and contains a library of prediction algorithms to be used in the super learner.
| Version: | 2.0-29 | 
| Depends: | R (≥ 2.14.0), nnls, gam (≥ 1.15) | 
| Imports: | cvAUC, methods | 
| Suggests: | arm, bartMachine, biglasso, bigmemory, caret, class, devtools, e1071, earth, gbm, genefilter, ggplot2, glmnet, ipred, KernelKnn, kernlab, knitr, lattice, LogicReg, MASS, mlbench, nloptr, nnet, party, polspline, prettydoc, quadprog, randomForest, ranger, RhpcBLASctl, ROCR, rmarkdown, rpart, SIS, speedglm, spls, sva, testthat, xgboost (≥ 0.6) | 
| Published: | 2024-02-20 | 
| DOI: | 10.32614/CRAN.package.SuperLearner | 
| Author: | Eric Polley [aut, cre], Erin LeDell [aut], Chris Kennedy [aut], Sam Lendle [ctb], Mark van der Laan [aut, ths] | 
| Maintainer: | Eric Polley <epolley at uchicago.edu> | 
| License: | GPL-3 | 
| URL: | https://github.com/ecpolley/SuperLearner | 
| NeedsCompilation: | no | 
| Materials: | NEWS, ChangeLog | 
| In views: | Bayesian, MachineLearning | 
| CRAN checks: | SuperLearner results | 
| Reference manual: | SuperLearner.html , SuperLearner.pdf | 
| Vignettes: | Guide to SuperLearner (source, R code) | 
| Package source: | SuperLearner_2.0-29.tar.gz | 
| Windows binaries: | r-devel: SuperLearner_2.0-29.zip, r-release: SuperLearner_2.0-29.zip, r-oldrel: SuperLearner_2.0-29.zip | 
| macOS binaries: | r-release (arm64): SuperLearner_2.0-29.tgz, r-oldrel (arm64): SuperLearner_2.0-29.tgz, r-release (x86_64): SuperLearner_2.0-29.tgz, r-oldrel (x86_64): SuperLearner_2.0-29.tgz | 
| Old sources: | SuperLearner archive | 
| Reverse depends: | bartXViz, ctmle, EScvtmle, polle, subsemble, survML, tmle, tradeoffaucdim | 
| Reverse imports: | AIPW, amp, CausalGPS, CausalMetaR, causalweight, CIMTx, CompMix, CRE, crossurr, DeepLearningCausal, DRDRtest, drpop, drtmle, evalITR, flevr, GPCERF, lmtp, nlpred, PND.heter.cluster, PSweight, Ricrt, RISCA, RobinCar, superMICE, tehtuner, tidyhte, vaccine, vimp | 
| Reverse suggests: | biotmle, gKRLS, hal9001, ltmle, medflex, MRTAnalysis, nestedcv, riskRegression, targeted, vglmer, WeightIt | 
Please use the canonical form https://CRAN.R-project.org/package=SuperLearner to link to this page.