kdensity: Kernel Density Estimation with Parametric Starts and Asymmetric
Kernels
Handles univariate non-parametric density estimation with 
    parametric starts and asymmetric kernels in a simple and flexible way. 
    Kernel density estimation with parametric starts involves fitting a
    parametric density to the data before making a correction with kernel 
    density estimation, see Hjort & Glad (1995) <doi:10.1214/aos/1176324627>.
    Asymmetric kernels make kernel density estimation more efficient on bounded
    intervals such as (0, 1) and the positive half-line. Supported asymmetric 
    kernels are the gamma kernel of Chen (2000) <doi:10.1023/A:1004165218295>,
    the beta kernel of Chen (1999) <doi:10.1016/S0167-9473(99)00010-9>, and the
    copula kernel of Jones & Henderson (2007) <doi:10.1093/biomet/asm068>.
    User-supplied kernels, parametric starts, and bandwidths are supported.
| Version: | 1.1.1 | 
| Imports: | assertthat, univariateML, EQL | 
| Suggests: | extraDistr, SkewHyperbolic, testthat, covr, knitr, rmarkdown | 
| Published: | 2025-03-04 | 
| DOI: | 10.32614/CRAN.package.kdensity | 
| Author: | Jonas Moss  [aut,
    cre],
  Martin Tveten [ctb] | 
| Maintainer: | Jonas Moss  <jonas.gjertsen at gmail.com> | 
| BugReports: | https://github.com/JonasMoss/kdensity/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/JonasMoss/kdensity | 
| NeedsCompilation: | no | 
| Materials: | README, NEWS | 
| CRAN checks: | kdensity results | 
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=kdensity
to link to this page.