STOPES: Selection Threshold Optimized Empirically via Splitting
A variable selection procedure for low to moderate size linear regressions models. This method repeatedly splits the data into two sets, one for estimation and one for validation, to obtain an empirically optimized threshold which is then used to screen for variables to include in the final model.
Version: |
0.1 |
Imports: |
changepoint, glmnet, MASS |
Published: |
2019-06-14 |
Author: |
Marinela Capanu, Mihai Giurcanu, Colin Begg, and Mithat Gonen |
Maintainer: |
Marinela Capanu <capanum at mskcc.org> |
License: |
GPL-2 |
NeedsCompilation: |
no |
CRAN checks: |
STOPES results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=STOPES
to link to this page.