RobustPrediction: Robust Tuning and Training for Cross-Source Prediction

Provides robust parameter tuning and model training for predictive models applied across data sources where the data distribution varies slightly from source to source. This package implements three primary tuning methods: cross-validation-based internal tuning, external tuning, and the 'RobustTuneC' method. External tuning includes a conservative option where parameters are tuned internally on the training data and validating on an external dataset, providing a slightly pessimistic estimate. It supports Lasso, Ridge, Random Forest, Boosting, and Support Vector Machine classifiers. Currently, only binary classification is supported. The response variable must be the first column of the dataset and a factor with exactly two levels. The tuning methods are based on the paper by Nicole Ellenbach, Anne-Laure Boulesteix, Bernd Bischl, Kristian Unger, and Roman Hornung (2021) "Improved Outcome Prediction Across Data Sources Through Robust Parameter Tuning" <doi:10.1007/s00357-020-09368-z>.

Version: 0.1.7
Depends: R (≥ 3.5.0)
Imports: glmnet, mboost, mlr, ranger, e1071, pROC
Published: 2024-12-16
DOI: 10.32614/CRAN.package.RobustPrediction
Author: Yuting He [aut, cre], Nicole Ellenbach [ctb], Roman Hornung [ctb]
Maintainer: Yuting He <yutingh19 at gmail.com>
License: GPL-3
URL: https://github.com/Yuting-He/RobustPrediction
NeedsCompilation: no
CRAN checks: RobustPrediction results

Documentation:

Reference manual: RobustPrediction.pdf

Downloads:

Package source: RobustPrediction_0.1.7.tar.gz
Windows binaries: r-devel: RobustPrediction_0.1.7.zip, r-release: RobustPrediction_0.1.7.zip, r-oldrel: RobustPrediction_0.1.7.zip
macOS binaries: r-release (arm64): RobustPrediction_0.1.7.tgz, r-oldrel (arm64): RobustPrediction_0.1.7.tgz, r-release (x86_64): RobustPrediction_0.1.7.tgz, r-oldrel (x86_64): RobustPrediction_0.1.7.tgz
Old sources: RobustPrediction archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=RobustPrediction to link to this page.