-- tkz_elements_triangles.lua -- date 2025/05/25 -- version 4.00c -- Copyright 2025 Alain Matthes -- This work may be distributed and/or modified under the -- conditions of the LaTeX Project Public License, either version 1.3 -- of this license or (at your option) any later version. -- The latest version of this license is in -- http://www.latex-project.org/lppl.txt -- and version 1.3 or later is part of all distributions of LaTeX -- version 2005/12/01 or later. -- This work has the LPPL maintenance status “maintained”. -- The Current Maintainer of this work is Alain Matthes. triangle = {} triangle.__index = triangle function triangle:new(za, zb, zc) local type = "triangle" local circumcenter = circum_center_(za, zb, zc) local centroid = barycenter_({ za, 1 }, { zb, 1 }, { zc, 1 }) local incenter = in_center_(za, zb, zc) local orthocenter = ortho_center_(za, zb, zc) local eulercenter = euler_center_(za, zb, zc) local spiekercenter = spieker_center_(za, zb, zc) local c = point.abs(zb - za) local a = point.abs(zc - zb) local b = point.abs(za - zc) local alpha = angle_normalize_(point.arg((zc - za) / (zb - za))) local beta = angle_normalize_(point.arg((za - zb) / (zc - zb))) local gamma = angle_normalize_(point.arg((zb - zc) / (za - zc))) local ab = line:new(za, zb) local ca = line:new(zc, za) local bc = line:new(zb, zc) local semiperimeter = (a + b + c) / 2 local area = math.sqrt(semiperimeter * (semiperimeter - a) * (semiperimeter - b) * (semiperimeter - c)) local inradius = area / semiperimeter local circumradius = (a * b * c) / (4 * area) local tr = { pa = za, pb = zb, pc = zc, type = type, circumcenter = circumcenter, centroid = centroid, incenter = incenter, eulercenter = eulercenter, orthocenter = orthocenter, spiekercenter = spiekercenter, a = a, b = b, c = c, ab = ab, ca = ca, bc = bc, alpha = alpha, beta = beta, gamma = gamma, semiperimeter = semiperimeter, area = area, inradius = inradius, circumradius = circumradius, } setmetatable(tr, self) return tr end setmetatable(triangle, { __call = function(cls, ...) return cls:new(...) end }) function triangle:get(i) if i == 1 then return self.pa elseif i == 2 then return self.pb elseif i == 3 then return self.pc else return self.pa, self.pb, self.pc end end ----------------------- ---- boolean --------- ----------------------- function triangle:in_out(pt) return in_out_(self.pa, self.pb, self.pc, pt) end function triangle:check_equilateral() return check_equilateral_(self.pa, self.pb, self.pc) end triangle.is_equilateral = triangle.check_equilateral function triangle:check_acutangle() local asq = self.a * self.a local bsq = self.b * self.b local csq = self.c * self.c if asq + bsq > csq and bsq + csq > asq and csq + asq > bsq then return true else return false end end triangle.is_acute = triangle.check_acutangle ----------------------- -- reals coordinates -- ----------------------- function triangle:area() -- obsolete return area_(self.pa, self.pb, self.pc) end function triangle:barycentric_coordinates(pt) local xA,yA = self.pa:get() local xB,yB = self.pb:get() local xC,yC = self.pc:get() local xP,yP = pt:get() local det_ABC = det_(xA, yA, xB, yB, xC, yC) local l_A = det_(xP, yP, xB, yB, xC, yC) / det_ABC local l_B = det_(xA, yA, xP, yP, xC, yC) / det_ABC local l_C = det_(xA, yA, xB, yB, xP, yP) / det_ABC return l_A, l_B, l_C end function triangle:trilinear_coordinates(pt) local la, lb, lc = self: barycentric_coordinates(pt) local ta, tb, tc = la / self.a, lb / self.b, lc / self.c -- normalize local N = ta + tb + tc return ta / N, tb / N, tc / N end function triangle:trilinear_to_d(x,y,z) return trilinear_to_d_(x,y,z,self.a,self.b,self.c) end function triangle:get_angle(n) local a, b, c a = self.pa b = self.pb c = self.pc if n == 1 then return point.arg((a - b) / (c - b)) elseif n == 2 then return point.arg((b - c) / (a - c)) else return point.arg((c - a) / (b - a)) end end function triangle:parameter(p) local a, b, c = self.a, self.b, self.c -- a=BC, b=CA, c=AB local A, B, C = self.pa, self.pb, self.pc local AB, BC, CA = self.ab, self.bc, self.ca local ptotal = a + b + c if AB:in_out_segment(p) then return length(A, p) / ptotal elseif BC:in_out_segment(p) then return (c + length(B, p)) / ptotal elseif CA:in_out_segment(p) then return (c + a + length(C, p)) / ptotal else tex.error("The point is not on the boundary of the triangle.") end end ----------------------- -- points -- ----------------------- function triangle:barycenter(ka, kb, kc) return barycenter_({ self.pa, ka }, { self.pb, kb }, { self.pc, kc }) end triangle.barycentric = triangle.barycenter function triangle:base(u, v) -- (ab,ac) base coord u,v return barycenter_({ self.pa, (1 - u - v) }, { self.pb, u }, { self.pc, v }) end function triangle:point(t) local p = self.a + self.b + self.c -- périmètre local t1 = self.c / p -- fin de AB local t2 = (self.c + self.a) / p -- fin de AB + BC if t <= t1 then return self.ab:point(t / t1) elseif t <= t2 then return self.bc:point((t - t1) / (t2 - t1)) else return self.ca:point((t - t2) / (1 - t2)) end end function triangle:random(inside) inside = (inside == "inside") math.randomseed(os.time()) if inside then local x = self.bc:random() local L = line:new(self.pa,x) return L:random() else return self:point(math.random()) end end function triangle:trilinear(a, b, c) return barycenter_({ self.pa, a * self.a }, { self.pb, b * self.b }, { self.pc, c * self.c }) end function triangle:kimberling(n) local cos, sin, tan, pi = math.cos, math.sin, math.tan, math.pi local A, B, C = self.alpha, self.beta, self.gamma local a, b, c = self.a, self.b, self.c local pi = math.pi if n == 1 then return self:trilinear(1, 1, 1) -- incenter elseif n == 2 then return self:barycentric(1, 1, 1) -- centroid elseif n == 3 then return self:trilinear(cos(A), cos(B), cos(C)) --circumcenter elseif n == 4 then return self:barycentric(tan(A), tan(B), tan(C)) -- orthocenter elseif n == 5 then return self:trilinear(cos(B - C), cos(C - A), cos(A - B)) --nine elseif n == 6 then return self:trilinear(a, b, c) -- lemoine elseif n == 7 then return self:barycentric(1 / (b + c - a), 1 / (a + c - b), 1 / (a + b - c)) -- gergonne elseif n == 8 then return self:barycentric(b + c - a, a + c - b, a + b - c) -- nagel elseif n == 9 then return self:barycentric(a * (b + c - a), b * (a + c - b), c * (a + b - c)) -- mittenpunkt elseif n == 10 then return self:barycentric(b + c, a + c, a + b) -- spieker elseif n == 11 then return self:trilinear(1 - cos(B - C), 1 - cos(C - A), 1 - cos(A - B)) -- feuerbach elseif n == 13 then return self:trilinear(1 / sin(A + pi / 3), 1 / sin(B + pi / 3), 1 / sin(C + pi / 3)) -- first fermat elseif n == 14 then return self:trilinear(1 / sin(A - pi / 3), 1 / sin(B - pi / 3), 1 / sin(C - pi / 3)) -- second fermat elseif n == 19 then return self:trilinear(tan(A), tan(B), tan(C)) -- clawson elseif n == 20 then return self:barycentric(tan(B) + tan(C) - tan(A), tan(A) + tan(C) - tan(B), tan(A) + tan(B) - tan(C)) --de Longchamps elseif n == 39 then return self:trilinear(a * (b^2 + c^2), b * (c^2 + a^2), c * (a^2 + b^2)) --brocard midpoint elseif n == 55 then return self:trilinear(a * (b + c - a) , b * (c + a - b) , c * (a + b - c)) elseif n == 56 then return self:trilinear( a / (b + c - a) , b / (c + a - b) , c / (a + b - c)) elseif n == 110 then return self:trilinear(a / (b ^ 2 - c ^ 2), b / (c ^ 2 - a ^ 2), c / (a ^ 2 - b ^ 2)) -- kiepert parabola elseif n == 115 then return self:barycentric((b ^ 2 - c ^ 2) ^ 2, (c ^ 2 - a ^ 2) ^ 2, (a ^ 2 - b ^ 2) ^ 2) -- kiepert hyperbola elseif n == 175 then ra, rb, rc = radius_excircle_ (self.pa, self.pb, self.pc) return self:barycentric(a - ra, b - rb, c - rc) elseif n == 176 then ra, rb, rc = radius_excircle_ (self.pa, self.pb, self.pc) return self:barycentric(a + ra, b + rb, c + rc) elseif n== 213 then return self:trilinear( (b + c) * a^2 , (c + a) * b^2 , (a + b) * c^2) elseif n== 264 then return self:barycentric(1 / sin(2 * A), 1 / sin(2 * B), 1 / sin(2 * C)) elseif n == 371 then return self:trilinear( cos(A - pi / 4), cos(B - pi / 4), cos(C - pi / 4)) elseif n == 598 then return self:trilinear( b * c / (a^2 - 2 * b^2 - 2 * c^2), c * a / (b^2 - 2 * c^2 - 2 * a^2), a * b / (c^2 - 2 * a^2 - 2 * b^2) ) -- to get lemoine triangle else tex.error{" Your number is not yet in the list"} end end function triangle:isogonal(pt) local pa = self.bc:reflection(pt) local pb = self.ca:reflection(pt) local pc = self.ab:reflection(pt) return circum_center_(pa, pb, pc) end function triangle:excenter(pt) if pt == self.pa then return self:trilinear(-1, 1, 1) elseif pt == self.pb then return self:trilinear(1, -1, 1) elseif pt == self.pc then return self:trilinear(1, 1, -1) else tex.error("The argument must be a vertex of the triangle") end end function triangle:projection(p) local p1 = projection_(self.pb, self.pc, p) local p2 = projection_(self.pa, self.pc, p) local p3 = projection_(self.pa, self.pb, p) return p1, p2, p3 end function triangle:parallelogram() local x = self.pc + self.pa - self.pb return x end function triangle:bevan_point() return circum_center_(excentral_tr_(self.pa, self.pb, self.pc)) end function triangle:mittenpunkt_point() return lemoine_point_(excentral_tr_(self.pa, self.pb, self.pc)) end function triangle:gergonne_point() return gergonne_point_(self.pa, self.pb, self.pc) end function triangle:nagel_point() return nagel_point_(self.pa, self.pb, self.pc) end function triangle:feuerbach_point() return feuerbach_point_(self.pa, self.pb, self.pc) end function triangle:symmedian_point() return lemoine_point_(self.pa, self.pb, self.pc) end triangle.lemoine_point = triangle.symmedian_point triangle.grebe_point = triangle.symmedian_point function triangle:spieker_center() return spieker_center_(self.pa, self.pb, self.pc) end function triangle:euler_points() H = self.orthocenter return midpoint_(H, self.pa), midpoint_(H, self.pb), midpoint_(H, self.pc) end function triangle:nine_points() local ma, mb, mc, ha, hb, hc -- Calculate the medial triangle ma, mb, mc = medial_tr_(self.pa, self.pb, self.pc) -- Calculate the orthic triangle ha, hb, hc = orthic_tr_(self.pa, self.pb, self.pc) -- Calculate the orthocenter H = self.orthocenter -- Return the points of the nine-point circle return ma, mb, mc, ha, hb, hc, midpoint_(H, self.pa), midpoint_(H, self.pb), midpoint_(H, self.pc) end function triangle:first_lemoine_points() local lc = self:lemoine_point() local p1 = intersection_ll_(lc, ll_from_(lc, self.pa, self.pb), self.pa, self.pc) local p2 = intersection_ll_(lc, ll_from_(lc, self.pb, self.pc), self.pb, self.pa) local p3 = intersection_ll_(lc, ll_from_(lc, self.pc, self.pa), self.pc, self.pb) local p5 = intersection_ll_(lc, ll_from_(lc, self.pa, self.pb), self.pb, self.pc) local p6 = intersection_ll_(lc, ll_from_(lc, self.pb, self.pc), self.pa, self.pc) local p4 = intersection_ll_(lc, ll_from_(lc, self.pc, self.pa), self.pa, self.pb) return p1, p2, p3, p4, p5, p6 end function triangle:second_lemoine_points() local lc = self:lemoine_point() local ha, hb, hc = orthic_tr_(self.pa, self.pb, self.pc) local p1 = intersection_ll_(lc, ll_from_(lc, ha, hb), self.pa, self.pc) local p2 = intersection_ll_(lc, ll_from_(lc, hb, hc), self.pb, self.pa) local p3 = intersection_ll_(lc, ll_from_(lc, hc, ha), self.pc, self.pb) local p5 = intersection_ll_(lc, ll_from_(lc, ha, hb), self.pb, self.pc) local p6 = intersection_ll_(lc, ll_from_(lc, hb, hc), self.pa, self.pc) local p4 = intersection_ll_(lc, ll_from_(lc, hc, ha), self.pa, self.pb) return p1, p2, p3, p4, p5, p6 end function triangle:soddy_points() return soddy_center_(self.pa, self.pb, self.pc) end -- soddy centers function triangle:soddy_center(outer) outer = (outer == "outer") local index = outer and 175 or 176 return self:kimberling(index) end function triangle:conway_points() local a1 = report_(self.pb, self.pa, length(self.pb, self.pc), self.pa) local a2 = report_(self.pc, self.pa, length(self.pb, self.pc), self.pa) local b1 = report_(self.pa, self.pb, length(self.pa, self.pc), self.pb) local b2 = report_(self.pc, self.pb, length(self.pa, self.pc), self.pb) local c1 = report_(self.pb, self.pc, length(self.pb, self.pa), self.pc) local c2 = report_(self.pa, self.pc, length(self.pb, self.pa), self.pc) return a1, a2, b1, b2, c1, c2 end function triangle:conway_center() return self.incenter end function triangle:first_fermat_point() local x = equilateral_tr_(self.pb, self.pa) local y = equilateral_tr_(self.pa, self.pc) return intersection_ll_(x, self.pc, y, self.pb) end function triangle:second_fermat_point() local x = equilateral_tr_(self.pa, self.pb) local y = equilateral_tr_(self.pc, self.pa) return intersection_ll_(x, self.pc, y, self.pb) end function triangle:orthic_axis_points() return orthic_axis_(self.pa, self.pb, self.pc) end function triangle:kenmotu_point() return self:kimberling(371) end function triangle:kenmotu_points() local ck = self:kenmotu_circle() local p1, p2 = intersection_lc_(self.pa,self.pb,ck.center,ck.through) local p3, p4 = intersection_lc_(self.pb,self.pc,ck.center,ck.through) local p5, p6 = intersection_lc_(self.pc,self.pa,ck.center,ck.through) return p1,p2,p3,p4,p5,p6 end function triangle:taylor_points() local a, b, c = orthic_tr_(self.pa, self.pb, self.pc) return projection_(self.pa, self.pc, a), projection_(self.pa, self.pb, a), projection_(self.pb, self.pa, b), projection_(self.pb, self.pc, b), projection_(self.pc, self.pb, c), projection_(self.pc, self.pa, c) end function triangle:adams_points() local i = self:kimberling(1) local g = self:kimberling(7) local l = projection_(self.pa, self.pc, i) local n = projection_(self.pa, self.pb, i) local m = projection_(self.pb, self.pc, i) local x = ll_from_(g, m, n) local y = ll_from_(g, n, l) local z = ll_from_(g, m, l) local t1 = intersection_ll_(x, g, self.pa, self.pb) local t4 = intersection_ll_(x, g, self.pb, self.pc) local t2 = intersection_ll_(y, g, self.pa, self.pb) local t5 = intersection_ll_(y, g, self.pa, self.pc) local t3 = intersection_ll_(z, g, self.pb, self.pc) local t6 = intersection_ll_(z, g, self.pa, self.pc) return t1,t2,t3,t4,t5,t6 end function triangle:lamoen_points() local ma,mb,mc = medial_tr_(self.pa, self.pb, self.pc) local g = centroid_(self.pa, self.pb, self.pc) local p1 = circum_center_(self.pa, mc, g) local p2 = circum_center_(self.pb, ma, g) local p3 = circum_center_(self.pb, mc, g) local p4 = circum_center_(self.pc, mb, g) local p5 = circum_center_(self.pc, ma, g) local p6 = circum_center_(self.pa, mb, g) return p1, p2, p3, p4, p5, p6 end function triangle:yiu_centers() local ap = symmetry_axial_(self.pb, self.pc, self.pa) local bp = symmetry_axial_(self.pa, self.pc, self.pb) local cp = symmetry_axial_(self.pa, self.pb, self.pc) local oa = circum_center_(self.pa, bp, cp) local ob = circum_center_(self.pb, ap, cp) local oc = circum_center_(self.pc, bp, ap) return oa, ob, oc end function triangle:first_brocard_point() return self:trilinear(self.c/self.b, self.a/self.c, self.b/self.a) end function triangle:second_brocard_point() return self:trilinear(self.b/self.c, self.c/self.a, self.a/self.b) end function triangle:brocard_midpoint() return self:kimberling(39) end function triangle:macbeath_point() return self:kimberling(264) end ------------------- -- Result -> line ------------------- function triangle:symmedian_line(n) local a = self.pa local b = self.pb local c = self.pc local l = self:lemoine_point() if n == 1 then return line:new(b, intersection_ll_(b, l, a, c)) elseif n == 2 then return line:new(c, intersection_ll_(c, l, a, b)) else return line:new(a, intersection_ll_(a, l, b, c)) end end function triangle:altitude(n) local a, b, c, o, p a = self.pa b = self.pb c = self.pc o = self.orthocenter if n == 1 then p = projection_(a, c, b) return line:new(b, p) elseif n == 2 then p = projection_(a, b, c) return line:new(c, p) else p = projection_(b, c, a) return line:new(a, p) end end function triangle:bisector(n) local a = self.pa local b = self.pb local c = self.pc local i = self.incenter if n == 1 then return line:new(b, intersection_ll_(b, i, a, c)) elseif n == 2 then return line:new(c, intersection_ll_(c, i, a, b)) else return line:new(a, intersection_ll_(a, i, b, c)) end end function triangle:bisector_ext(n) -- n =1 swap n=2 2 swap local a = self.pa local b = self.pb local c = self.pc if n == 1 then -- ac return line:new(b, bisector_ext_(b, c, a)) elseif n == 2 then -- ab return line:new(c, bisector_ext_(c, a, b)) else -- bc return line:new(a, bisector_ext_(a, b, c)) end end function triangle:antiparallel(pt, n) -- n = 1 swap ; n= 2 2 swap local u, v, w local a = self.pa local b = self.pb local c = self.pc local i = self.incenter if n == 1 then u = symmetry_axial_(b, i, a) v = symmetry_axial_(b, i, c) w = ll_from_(pt, u, v) intersection_ll_(pt, w, a, b) return line:new(intersection_ll_(pt, w, c, b), intersection_ll_(pt, w, a, b)) elseif n == 2 then u = symmetry_axial_(c, i, a) v = symmetry_axial_(c, i, b) w = ll_from_(pt, u, v) intersection_ll_(pt, w, a, c) return line:new(intersection_ll_(pt, w, b, c), intersection_ll_(pt, w, a, c)) else u = symmetry_axial_(a, i, b) v = symmetry_axial_(a, i, c) w = ll_from_(pt, u, v) intersection_ll_(pt, w, b, c) return line:new(intersection_ll_(pt, w, c, a), intersection_ll_(pt, w, b, a)) end end function triangle:orthic_axis() local x, y, z = orthic_axis_(self.pa, self.pb, self.pc) return line:new(x, z) end -- N,H,G,O -- check_equilateral_ (a,b,c) function triangle:euler_line() if check_equilateral_(self.pa, self.pb, self.pc) then tex.error("An error has occurred", { "No euler line with equilateral triangle" }) else local a, b, c = orthic_axis_(self.pa, self.pb, self.pc) local x = projection_(a, c, self.eulercenter) return line:new(self.eulercenter, x) end end -- with pt on the circumcircle function triangle:steiner_line(pt) local u = symmetry_axial_(self.pa, self.pb, pt) local v = symmetry_axial_(self.pa, self.pc, pt) return line:new(u, v) end function triangle:lemoine_axis() -- revoir car problème local C = self:circum_circle() local pl = self:lemoine_point() return C:polar(pl) end function triangle:fermat_axis() local x = self:first_fermat_point() local y = self:second_fermat_point() return line:new(x, y) end function triangle:brocard_axis() return line:new(self.circumcenter, self:lemoine_point()) end function triangle:simson_line(pt) -- pt on circumcircle local x = self.ab:projection(pt) local y = self.bc:projection(pt) return line:new(x, y) end ----------------------- --- Result -> circles -- ----------------------- function triangle:euler_circle() return circle:new(euler_center_(self.pa, self.pb, self.pc), midpoint_(self.pb, self.pc)) end function triangle:circum_circle() return circle:new(circum_circle_(self.pa, self.pb, self.pc), self.pa) end function triangle:in_circle() return circle:new(self.incenter, projection_(self.pb, self.pc, self.incenter)) end -- see excenter ?? function triangle:ex_circle(n) -- n =1 swap n=2 2 swap local a, b, c, o a = self.pa b = self.pb c = self.pc if n == 1 then o = ex_center_(b, c, a) return circle:new(o, projection_(c, a, o)) elseif n == 2 then o = ex_center_(c, a, b) return circle:new(o, projection_(a, b, o)) else o = ex_center_(a, b, c) return circle:new(o, projection_(b, c, o)) end end function triangle:spieker_circle() local ma, mb, mc, sp ma, mb, mc = medial_tr_(self.pa, self.pb, self.pc) sp = in_center_(ma, mb, mc) return circle:new(sp, projection_(ma, mb, sp)) end function triangle:cevian_circle(p) local pta, ptb, ptc = cevian_(self.pa, self.pb, self.pc, p) return circle:new(circum_circle_(pta, ptb, ptc), pta) end function triangle:symmedial_circle() local pta, ptb, ptc, p p = lemoine_point_(self.pa, self.pb, self.pc) pta, ptb, ptc = cevian_(self.pa, self.pb, self.pc, p) return circle:new(circum_circle_(pta, ptb, ptc), pta) end function triangle:conway_circle() local t t = report_(self.pb, self.pa, length(self.pb, self.pc), self.pa) return circle:new(self.incenter, t) end function triangle:pedal_circle(pt) local x, y, z, c x = projection_(self.pb, self.pc, pt) y = projection_(self.pa, self.pc, pt) z = projection_(self.pa, self.pb, pt) c = circum_center_(x, y, z) return circle:new(c, x) end function triangle:first_lemoine_circle() local lc, oc lc = self:lemoine_point() oc = self.circumcenter return circle:new(midpoint_(lc, oc), intersection_ll_(lc, ll_from_(lc, self.pa, self.pb), self.pa, self.pc)) end function triangle:second_lemoine_circle() local lc, a, b, c, r, th lc = self:lemoine_point() a = point.abs(self.pc - self.pb) b = point.abs(self.pa - self.pc) c = point.abs(self.pb - self.pa) r = (a * b * c) / (a * a + b * b + c * c) th = lc + point(r, 0) return circle:new(lc, th) end function triangle:bevan_circle() local o, r, s, t o = circum_center_(excentral_tr_(self.pa, self.pb, self.pc)) r, s, t = excentral_tr_(self.pa, self.pb, self.pc) return circle:new(o, r) end function triangle:taylor_circle() local a, b, c = orthic_tr_(self.pa, self.pb, self.pc) local d = projection_(self.pa, self.pb, a) local e = projection_(self.pb, self.pc, b) local f = projection_(self.pc, self.pa, c) return circle:new(circum_circle_(d, e, f), d) end function triangle:adams_circle() local i = self:kimberling(1) local g = self:kimberling(7) local m = projection_(self.pb, self.pc, i) local n = projection_(self.pa, self.pb, i) local x = ll_from_(g, m, n) local t = intersection_ll_(x, g, self.pa, self.pb) return circle:new(i, t) end function triangle:lamoen_circle() local ma,mb,mc = medial_tr_(self.pa, self.pb, self.pc) local g = centroid_(self.pa, self.pb, self.pc) local p1 = circum_center_(self.pa, mb, g) local p2 = circum_center_(self.pb, ma, g) local p3 = circum_center_(self.pc, ma, g) local c = circum_center_(p1, p2, p3) return circle:new(c,p1) end -- soddy circles function triangle:soddy_circle(outer) outer = (outer == "outer") local index = outer and 175 or 176 local c = self:kimberling(index) local ra = (self.b + self.c - self.a) / 2 local ta = report_(self.pa, self.pb, ra, self.pa) local x, y = intersection_lc_(self.pa, c, self.pa, ta) local t if outer then t = (length(x, c) > length(y, c)) and x or y else t = (length(x, c) < length(y, c)) and x or y end return circle:new(c, t) end function triangle:yiu_circles() local x,y,z = self:yiu_centers() return circle:new(x,self.pa), circle:new(y,self.pb), circle:new(z,self.pc) end function triangle:kenmotu_circle() local a, b, c = self.a, self.b, self.c local area = self.area local rho = (math.sqrt(2) * a * b * c) / (4 * area + (a^2 + b^2 + c^2)) local center = self:kimberling(371) return circle:new(through(center, rho)) end -- Circle tangent to two straight lines passing through a given point function triangle:c_ll_p(p) -- Compute the bisector of the triangle local lbi = bisector(self.pa, self.pb, self.pc) if lbi:in_out(p) then -- Orthogonal projection of p onto the bisector local lp = lbi:ortho_from(p) -- Intersection of line from p to its projection with self.pa and self.pb local i = intersection_ll_(p, lp.pb, self.pa, self.pb) -- Intersection points of the line with the circle defined by (i, p) local t1, t2 = intersection_lc_(self.pa, self.pb, i, p) -- Create the main line and find orthogonal projections from t1 and t2 local lab = line:new(self.pa, self.pb) local x = lab:ortho_from(t1).pb local y = lab:ortho_from(t2).pb -- Return two circles based on the orthogonal projections and points t1, t2 return circle:new(intersection_ll_(x, t1, self.pa, p), t1), circle:new(intersection_ll_(y, t2, self.pa, p), t2) else local lab = line:new(self.pa, self.pb) -- Reflection of p across the bisector local q = lbi:reflection(p) -- Compute circles from the Wallis construction local c1, c2 = lab:c_l_pp(p, q) -- Return two circles with centers and points on their circumference return c1, c2 end end ------------------- -- Result -> triangle ------------------- function triangle:orthic() return triangle:new(orthic_tr_(self.pa, self.pb, self.pc)) end function triangle:medial() return triangle:new(medial_tr_(self.pa, self.pb, self.pc)) end function triangle:incentral() return triangle:new(incentral_tr_(self.pa, self.pb, self.pc)) end function triangle:excentral() return triangle:new(excentral_tr_(self.pa, self.pb, self.pc)) end function triangle:intouch() return triangle:new(intouch_tr_(self.pa, self.pb, self.pc)) end function triangle:contact() return triangle:new(intouch_tr_(self.pa, self.pb, self.pc)) end triangle.contact = triangle.intouch triangle.gergonne = triangle.intouch function triangle:extouch() return triangle:new(extouch_tr_(self.pa, self.pb, self.pc)) end triangle.nagel = triangle.extouch function triangle:feuerbach() return triangle:new(feuerbach_tr_(self.pa, self.pb, self.pc)) end function triangle:anti() return triangle:new(anti_tr_(self.pa, self.pb, self.pc)) end triangle.anticomplementary = triangle.anti triangle.similar = triangle.anti function triangle:tangential() return triangle:new(tangential_tr_(self.pa, self.pb, self.pc)) end function triangle:cevian(p) return triangle:new(cevian_(self.pa, self.pb, self.pc, p)) end function triangle:symmedian() local p = lemoine_point_(self.pa, self.pb, self.pc) return triangle:new(cevian_(self.pa, self.pb, self.pc, p)) end triangle.symmedial = triangle.symmedian function triangle:lemoine() local X = self:kimberling(598) return triangle:new(cevian_(self.pa, self.pb, self.pc, X)) end function triangle:macbeath() local X = self:kimberling(264) return triangle:new(cevian_(self.pa, self.pb, self.pc, X)) end function triangle:euler() return triangle:new(euler_points_(self.pa, self.pb, self.pc)) end function triangle:pedal(pt) return triangle:new(self:projection(pt)) end function triangle:yiu() return triangle:new(self:yiu_centers()) end function triangle:reflection() return symmetry_axial_(self.pb, self.pc, self.pa), symmetry_axial_(self.pa, self.pc, self.pb), symmetry_axial_(self.pa, self.pb, self.pc) end function triangle:circumcevian(pt) local circum = self:circum_circle () local x = intersection_lc_(self.pa,pt,circum.center,circum.through) local y = intersection_lc_(self.pb,pt,circum.center,circum.through) local z = intersection_lc_(self.pc,pt,circum.center,circum.through) return triangle:new(x, y, z) end ------------------- -- Result -> square ------------------- -- Method for inscribing a square in a triangle with vertex rotation function triangle:square_inscribed(permutation) -- Set a default value for rotation if not supplied permutation = permutation or 0 permutation = permutation + 1 local vertices = {self.pa, self.pb, self.pc} local i = (permutation - 1) % 3 + 1 local j = i % 3 + 1 local k = j % 3 + 1 local a = vertices[i] local b = vertices[j] local c = vertices[k] return square:new(square_inscribed_(a,b,c)) end ------------------- -- Result -> conic ------------------- function triangle:steiner_inellipse() return steiner_(self.pa, self.pb, self.pc) end function triangle:steiner_circumellipse() local e = steiner_(self.pa, self.pb, self.pc) local v = report_(e.center, e.vertex, e.a, e.vertex) local cv = report_(e.center, e.covertex, e.b, e.covertex) return conic:new(EL_points(e.center, v, cv)) end function triangle:euler_ellipse() if self:check_acutangle() then local x, y = intersection_lc_(self.orthocenter, self.circumcenter, self.eulercenter, self.ab.mid) local a = 0.5 * length(x, y) return conic:new(EL_bifocal(self.orthocenter, self.circumcenter, a)) end end -- kiepert hyperbola function triangle:kiepert_hyperbola() -- center local center = self:kimberling(115) local O = self.circumcenter local G = self.centroid -- Brocard axis local L = self:brocard_axis() local M, N = intersection_lc_(L.pa, L.pb, O, self.pa) -- simson lines local Lsa = self:simson_line(M) local Lsb = self:simson_line(N) local axis = bisector(center, Lsa.pa, Lsb.pa) -- new frame system local minor = axis:ortho_from(center) local sys = occs:new(minor, center) local x, y = sys:coordinates(self.pa) local a = math.sqrt(x ^ 2 - y ^ 2) local c = math.sqrt(2) * a local Fa = report_(center, axis.pb, -c, center) local Fb = report_(center, axis.pb, c, center) local K = report_(center, axis.pb, -a ^ 2 / c, center) local directrix = axis:ortho_from(K) return conic:new(Fa, directrix, math.sqrt(2)) end -- kiepert parabola function triangle:kiepert_parabola() if (self.a == self.b) or (self.a == self.c) or (self.c == self.b) then tex.error("An error has occurred", { "No X(110)" }) else L = self:euler_line() F = self:kimberling(110) return conic:new(F, L, 1) end end --lemoine inellipse -- bifocal a besoin des deux foyers et d'un point sur l'ellipse ou bien de a function triangle:lemoine_inellipse() local G = self.centroid local L = self:lemoine_point() local Xa = self:lemoine().pa return conic:new(EL_bifocal(G,L,Xa)) end --brocard inellipse function triangle:brocard_inellipse() local B1 = self:first_brocard_point() local B2 = self:second_brocard_point() local Ka = self:symmedian().pa return conic:new(EL_bifocal(B2,B1,Ka)) end -- orthic inellipse function triangle:macbeath_inellipse() if self:check_acutangle() then local O = self.circumcenter local H = self.orthocenter local Xa = self:macbeath().pa return conic:new(EL_bifocal(O,H,Xa)) else tex.error("This function is only valid if none of the angles is obtuse.") end end function triangle:mandart_inellipse() local T = self local M = T:mittenpunkt_point() local Xa, Yb, Zc = T:extouch():get() local X, Y = M:symmetry(Xa, Yb) local coefficients = search_ellipse_(X, Y, Xa, Yb, Zc) local center, ra, rb, angle = ellipse_axes_angle(coefficients) return conic:new(EL_radii(center, ra, rb, angle)) end function triangle:orthic_inellipse() if self:check_acutangle() then local T = self local K = T:symmedian_point() local Ha, Hb, Hc = T:orthic():get() local Sa, Sb = K:symmetry(Ha, Hb) local coefficients = search_ellipse_(Ha, Hb, Hc, Sa, Sb) local center, ra, rb, angle = ellipse_axes_angle(coefficients) return conic:new(EL_radii(center, ra, rb, angle)) else tex.error("This function is only valid if none of the angles is obtuse.") end end function triangle:path(p1, p2) local list = {} -- Liste des côtés et sommets local sides = { {seg = self.ab, A = self.pa, B = self.pb}, {seg = self.bc, A = self.pb, B = self.pc}, {seg = self.ca, A = self.pc, B = self.pa} } -- Trouver les indices des segments contenant p1 et p2 local function locate(p) for i, s in ipairs(sides) do if s.seg:in_out_segment(p) then return i end end tex.error("Point not on triangle boundary.") end local i1 = locate(p1) local i2 = locate(p2) -- Cas simple : même segment if i1 == i2 then table.insert(list, "(" .. checknumber(p1.re) .. "," .. checknumber(p1.im) .. ")") table.insert(list, "(" .. checknumber(p2.re) .. "," .. checknumber(p2.im) .. ")") return path:new(list) end -- Sinon, commencer par p1 table.insert(list, "(" .. checknumber(p1.re) .. "," .. checknumber(p1.im) .. ")") -- Parcourir les sommets intermédiaires dans l’ordre trigonométrique local i = i1 repeat local s = sides[i] table.insert(list, "(" .. checknumber(s.B.re) .. "," .. checknumber(s.B.im) .. ")") i = i % 3 + 1 until i == i2 -- Terminer par p2 table.insert(list, "(" .. checknumber(p2.re) .. "," .. checknumber(p2.im) .. ")") return path:new(list) end return triangle