-- tkz_elements_functions_maths.lua -- date 2025/05/25 -- version 4.00c -- Copyright 2025 Alain Matthes -- This work may be distributed and/or modified under the -- conditions of the LaTeX Project Public License, either version 1.3 -- of this license or (at your option) any later version. -- The latest version of this license is in -- http://www.latex-project.org/lppl.txt -- and version 1.3 or later is part of all distributions of LaTeX -- version 2005/12/01 or later. -- This work has the LPPL maintenance status “maintained”. -- The Current Maintainer of this work is Alain Matthes. --------------------------------------------------------------------------- function tkz_round_str(num, idp) return topoint(string.format("%." .. (idp or 0) .. "f", num)) end function tkz_round(num, idp) idp = idp or 0 local mult = 10 ^ idp return math.floor(num * mult + 0.5) / mult end function format_coord(x, decimals) decimals = decimals or 5 local fmt = "%." .. tostring(decimals) .. "f" return string.format(fmt, checknumber(x)) end function dot_product(a, b, c) return (b - a) .. (c - a) end function Cramer33(a1, a2, a3, b1, b2, b3, c1, c2, c3) return a1 * b2 * c3 + a3 * b1 * c2 + a2 * b3 * c1 - a3 * b2 * c1 - a1 * b3 * c2 - a2 * b1 * c3 end function Cramer22(a1, a2, b1, b2) return a1 * b2 - a2 * b1 end function det_(x1, y1, x2, y2, x3, y3) return (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1) end function aligned(m, a, b) local z z = (b - a) / (m - b) if math.abs(z.im) < tkz_epsilon then return true else return false end end function islinear(z1, z2, z3) local dp dp = (z2 - z1) ^ (z3 - z1) if math.abs(dp) < tkz_epsilon then return true else return false end end is_linear = islinear function isortho(z1, z2, z3) --modif local dp = (z2 - z1) .. (z3 - z1) if math.abs(dp) < tkz_epsilon then return true else return false end end is_ortho = isortho function parabola(a, b, c) --bug local local xa, xb, xc, ya, yb, yc xa = a.re ya = a.im xb = b.re yb = b.im xc = c.re yc = c.im local D = (xa - xb) * (xa - xc) * (xb - xc) local A = (xc * (yb - ya) + xb * (ya - yc) + xa * (yc - yb)) / D local B = (xc * xc * (ya - yb) + xb * xb * (yc - ya) + xa * xa * (yb - yc)) / D local C = (xb * xc * (xb - xc) * ya + xc * xa * (xc - xa) * yb + xa * xb * (xa - xb) * yc) / D return A, B, C end function parabola_(xa, ya, xb, yb, xc, yc) -- added local D = (xa - xb) * (xa - xc) * (xb - xc) local A = (xc * (yb - ya) + xb * (ya - yc) + xa * (yc - yb)) / D local B = (xc * xc * (ya - yb) + xb * xb * (yc - ya) + xa * xa * (yb - yc)) / D local C = (xb * xc * (xb - xc) * ya + xc * xa * (xc - xa) * yb + xa * xb * (xa - xb) * yc) / D return A, B, C end function get_angle(a, b, c) return angle_normalize_(get_angle_(a, b, c)) end function get_angle_(a, b, c) if (b == a) or (c == a) then tex.error("Points confondus dans get_angle_") end return point.arg((c - a) / (b - a)) end function angle_normalize(a) return angle_normalize_(a) end function angle_normalize_(a) while a < 0 do a = a + 2 * math.pi end while a >= 2 * math.pi do a = a - 2 * math.pi end return a end function barycenter(...) return barycenter_(...) end -- real func function is_integer(x) if type(x) ~= "number" then return false -- Not a number, so not an integer end if not math.isfinite(x) then return false -- NaN or infinity, not an integer end local rounded = tkz_round(x) return math.abs(x - rounded) < tkz_epsilon -- Use a small tolerance end function near_integer(x) local _, r = math.modf(x) if is_zero(r) then return true end return false end function residue(x) local _, frac = math.modf(x) return frac end function is_zero(x) return math.abs(x) < tkz_epsilon end function set_zero(x) return is_zero(x) and 0 or x end function checknumber(x) if type(x) == "number" then return string.format("%.12f", x) elseif type(x) == "string" and tonumber(x) then return string.format("%.12f", tonumber(x)) else return x -- table ou invalide end end local safety_margin = 2 function format_number(number, dcpl) if type(number) == "table" then return number else local num_dcpl if dcpl ~= nil then num_dcpl = dcpl else num_dcpl = tkz_nb_dec + safety_margin -- Default value end local format_string = string.format("%%.%df", num_dcpl) return string.format(format_string, number) end end function get_sign(number) local sgn if math.abs(number) < tkz_epsilon then sgn = "" elseif number > 0 then sgn = "+" else sgn = "-" end return sgn end function solve_cx_quadratic(a, b, c) local d = b * b - 4 * a * c local dcx = point.sqrt(d) local root1 = (-b + dcx) / (2 * a) local root2 = (-b - dcx) / (2 * a) return root1, root2 end function solve(...) local params = {...} local np = #params if np == 2 then local a = params[1] local b = params[2] return -b / a elseif np == 3 then return solve_quadratic(table.unpack(params)) elseif np == 4 then return solve_cubic(table.unpack(params)) else tex.error("solve: Invalid number of parameters (" .. np .. "). Expected 2, 3, or 4.") end end function solve_quadratic(a, b, c) local root1, root2, delta, sqrtdelta if (type(a) == "number") and (type(b) == "number") and (type(c) == "number") then delta = b * b - 4 * a * c if math.abs(delta) < tkz_epsilon then delta = 0 end if delta < 0 then root1, root2 = false, false --solve_cx_quadratic(a, b, c) elseif delta == 0 then root1 = -b / (2 * a) root2 = -b / (2 * a) else sqrtdelta = math.sqrt(delta) root1 = (-b + sqrtdelta) / (2 * a) root2 = (-b - sqrtdelta) / (2 * a) end else root1, root2 = solve_cx_quadratic(a, b, c) end return root1, root2 -- Two real roots end function solve_cubic(a, b, c, d) local p = (3 * a * c - b * b) / (3 * a * a) local q = (2 * b * b * b - 9 * a * b * c + 27 * a * a * d) / (27 * a * a * a) local delta = q * q / 4 + p * p * p / 27 local epsilon = 1e-10 -- Tolérance pour les comparaisons de nombres flottants local function cubert(x) return x >= 0 and x ^ (1 / 3) or -(-x) ^ (1 / 3) end if delta > epsilon then local u = cubert((-q + math.sqrt(delta)) / 2) local v = cubert((-q - math.sqrt(delta)) / 2) local x1 = u + v - b / (3 * a) return x1, nil, nil elseif math.abs(delta) <= epsilon then local u = cubert(-q / 2) local x1 = 2 * u - b / (3 * a) local x2 = -u - b / (3 * a) return x1, x2, x2 else local r = math.sqrt(-p * p * p / 27) local t = -q / (2 * r) if t > 1 then t = 1 end if t < -1 then t = -1 end local theta = math.acos(t) local x1 = 2 * cubert(r) * math.cos(theta / 3) - b / (3 * a) local x2 = 2 * cubert(r) * math.cos((theta + 2 * math.pi) / 3) - b / (3 * a) local x3 = 2 * cubert(r) * math.cos((theta + 4 * math.pi) / 3) - b / (3 * a) return x1, x2, x3 end end function display_real(r) local format_string, format_string if r == nil then return "" else if near_integer(r) then r = math.round(r) format_string = string.format("%%.%df", 0) else format_string = string.format("%%.%df", tkz_dc) end local st = string.format(format_string, r) return st end end function display_imag(r) local sgn sgn = get_sign(r) r = math.abs(r) if math.abs(r - 1) < tkz_epsilon then r = nil elseif near_integer(r) then r = math.abs(math.round(r)) end st = display_real(r) return sgn, st end function display(z) if type(z) == "number" then return display_real(z) else local real, imag real = z.re imag = z.im if is_zero(imag) then return display_real(real) else str = display_real(real) sgni, sti = display_imag(imag) if str == "0" then str = "" sgni = "" end local st = str .. sgni .. sti .. "i" return st end end end function get_v(L, p) --bug return report_(L.pa, L.pb, 1, p) end -- straight line from a through b function param_line(xa, ya, xb, yb) return (yb - ya) / (xb - xa), (xb * ya - xa * yb) / (xb - xa) end -- intersection line / parabola good OCCS !! p paramètre de la parabole -- y= x^{2} /2p with occs S,i,j j same direction KF -- m and n parameters of the line function solve_para_line(p, m, n) return solve_quadratic(1, -2 * p * m, -2 * p * n) end function solve_hyper_line(a, b, m, p) local A = a ^ 2 / b ^ 2 - m ^ 2 local B = -2 * m * p local C = a ^ 2 - p ^ 2 return solve_quadratic(A, B, C) end function angle_between_vectors(a, b, c, d) -- Calcul des vecteurs local zab = b - a local zcd = d - c -- Angle entre les vecteurs en utilisant argument du rapport local theta = math.atan2(zab.im * zcd.re - zab.re * zcd.im, zab.re * zcd.re + zab.im * zcd.im) return theta -- L'angle en radians end table.getn = function(t) return #t end function get_nb_elements(t) return table.getn(t) end function get_elements(t) return table.unpack(t) end function reverse(t) local n = #t for i = 1, math.floor(n / 2) do t[i], t[n - i + 1] = t[n - i + 1], t[i] end return t end