User Manual for glossaries.sty v4.54

Nicola L.C. Talbot
dickimaw—-books.com/contact

2024-04-03

This document is also available as HTML (glossaries—user.html).
Abstract

The glossaries package provides a means to define terms or acronyms or symbols
that can be referenced within your document. Sorted lists with collated locations
can be generated either using TgX or using a supplementary indexing application.
Sample documents are provided with the glossaries package. These are listed in
§18.

[glossaries—extra

Additional features not provided here may be available through the extension package
glossaries—extra which, if required, needs to be installed separately. New features will
be added to glossaries—extra. Versions of the glossaries package after v4.21 will mostly
be just bug fixes or minor maintenance. The most significant update to the glossaries
package since then is version 4.50, which involved the integration of mfirstuc v2.08 and
the phasing out the use of the now deprecated textcase package.

Note that glossaries—extra provides an extra indexing option (bib2gls) which isn’t
available with just the base glossaries package.

7

If you require multilingual support you must also install the relevant language module. Each
language module is called glossaries—(language), where (language) is the root language
name. For example, glossaries—frenchorglossaries—german. If alanguage
module is required, the glossaries package will automatically try to load it and will give a warning
if the module isn’t found. See §1.5 for further details. If there isn’t any support available for your
language, use the no 1 angwa rn package option to suppress the warning and provide your own
translations. (For example, use the t it 1e key in \printglossary.)

http://www.dickimaw-books.com/contact
glossaries-user.html

[i
=
Documents have wide-ranging styles when it comes to presenting glossaries or lists of

terms or notation. People have their own preferences and to a large extent this is deter-
mined by the kind of information that needs to go in the glossary. They may just have
symbols with terse descriptions or they may have long technical words with complicated
descriptions. The glossaries package is flexible enough to accommodate such varied re-
quirements, but this flexibility comes at a price: a big manual.

« If you're freaking out at the size of this manual, start with “The glossaries package:
a guide for beginners” (glossariesbegin.pdf). You should find it in the same
directory as this document or try

texdoc glossariesbegin \

Once you've got to grips with the basics, then come back to this manual to find out how
to adjust the settings.

The glossaries bundle includes the following documentation:

The glossaries package: a guide for beginners (glossariesbegin.pdf)
If you want some brief information and examples to get you going, start with the guide for
beginners.

User Manual for glossaries.sty (Jlossaries—-user.pdf)

This document is the main user guide for the glossaries package.

Documented Code for glossaries (glossaries—code.pdf)

Advanced users wishing to know more about the inner workings of all the packages pro-
vided in the glossaries bundle should read “Documented Code for glossaries v4.54”.

CHANGES
Change log.

README .md

Package summary.

Depends.txt

List of all packages unconditionally required by glossaries. Other unlisted packages may
be required under certain circumstances. For help on installing packages see, for example,
How do I update my TgX distribution?' or (for Linux users) Updating TigX on Linux.?

Related resources:

'tex.stackexchange.com/questions/55437
’tex.stackexchange.com/questions/14925

https://www.tug.org/texdoc/
glossaries-code.pdf
CHANGES
README.md
Depends.txt
https://tex.stackexchange.com/questions/55437
https://tex.stackexchange.com/questions/14925
http://tex.stackexchange.com/questions/55437
http://tex.stackexchange.com/questions/14925

* glossaries-extra and bib2gls: An Introductory Guide.?

* glossaries FAQ*

* glossaries gallery®

« a summary of all glossary styles provided by glossaries and glossaries-extra®

* glossaries performance’ (comparing document build times for the different options pro-
vided by glossaries and glossaries-extra).

* Using LaTeX to Write a PhD Thesis® (chapter 6).

* Incorporating makeglossaries ormakeglossaries—-liteorbib2gls
into the document build®

* The glossaries-extra package'”

e bib2gls!!

[i
=
If you use hyperref and glossaries, you must load hyperref first (although, in general,

hyperref should be loaded after other packages).

‘mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
*dickimaw-books.com/faq.php?category=glossaries
’dickimaw-books.com/gallery/#glossaries
®dickimaw-books.com/gallery/glossaries—styles/
’dickimaw-books.com/gallery/glossaries—performance.shtml
8dickimaw-books.com/latex/thesis/
dickimaw-books.com/latex/buildglossaries/
Uctan.org/pkg/glossaries—-extra

ctan.org/pkg/bib2gls

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/faq.php?category=glossaries
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
https://www.dickimaw-books.com/latex/thesis/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/bib2gls
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/faq.php?category=glossaries
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
https://www.dickimaw-books.com/latex/thesis/
https://www.dickimaw-books.com/latex/buildglossaries/
https://ctan.org/pkg/glossaries-extra
https://ctan.org/pkg/bib2gls

Contents

List of Tables

List of Examples

l. User Guide

1. Introduction

I1.1.
1.2.
1.3.

1.4.
L.5.

1.6.

1.7.

2.1.
2.2.
2.3.
24.
2.5.

Rollback
Integrating Other Packages and Known Issues
Indexing Options e
1.3.1. Option 1 (“noidx™)
1.3.2. Option2 (makeindex)
1.33. Option3 (x1indy) v v vt e
1.3.4. Option4 (bib2gls)
1.3.5. Option 5 (“unsrt™)
1.3.6. Option 6 (“standalone™)
Dummy Entries for Testing,
Multi-Lingual Support L
1.5.1. Changing the Fixed Names
1.5.2. Creating a New Language Module
Generating the Associated Glossary Files
1.6.1. Using the makeglossariesPerlScript.
1.6.2. Using the makeglossaries—1lite LuaScript
1.6.3. Using xindy explicitly (Option3)
1.6.4. Using makeindex explicitly (Option2)
Note to Front-End and Script Developers
1.7.1. Makelndexand Xindy
1.7.2. EntryLabels
1.73. Bib2Gls

Package Options

General Options e
Sectioning, Headings and TOC Options
Glossary Appearance Options
Indexing Options L
Sorting Options

Vi

Vii

—h

NN

4.1.

Contents

2.6. Glossary Type Options v i
2.7. Acronym and Abbreviation Options
2.8. Deprecated Acronym Style Options
2.9. OtherOptions e
2.10. Setting Options After the Package is Loaded
Setting Up
3.1, Option1o e
32. Options2and3
Defining Glossary Entries

Plurals
4.2. Other Grammatical Constructs
4.3. Additional Keys

4.4.
45.

4.6.
4.7.
4.8.

43.1. DocumentKeys
43.2. Storage Keys
Expansion
Sub-Entries L
45.1. Hierarchy
4.5.2. Homographs
Loading Entries FromaFile
Moving Entries to Another Glossary
Drawbacks With Defining Entries in the Document Environment
4.8.1. Technical Issues
4.8.2. GoodPractice Issues

Referencing Entries in the Document

5.1.

5.2.

6.1.
6.2.

6.3.
6.4.

Links to Glossary Entries
5.1 Options L e
5.1.2. The \gls-Like Commands (First Use Flag Queried)
5.1.3. The \glstext-Like Commands (First Use Flag Not Queried) . . .
5.1.4. Changing the Format of the \gls-like Link Text
5.1.5. Hooks oo
5.1.6. Enabling and Disabling Hyperlinks to Glossary Entries

Using Glossary Terms Without Indexing

. Acronyms and Other Abbreviations

Displaying the Long, Short and Full Forms (Independent of First Use)
Changing the Acronym Style,
6.2.1. Predefined Acronym Styles,
6.2.2. Defining A Custom Acronym Style
Displaying the List of Acronyms
Upgrading From the glossary Package

i

122
122
122

126
136
138
139
139
141
147
149
150
151
152
155
156
156
157

158
158
161
163
167
173
178
179
182

10.

11.

12.

13.

14.

Contents

Unsetting and Resetting Entry Flags 226
7.1. Counting the Number of Times an Entry has been Used (First Use Flag Unset) 230
Displaying a Glossary 237
8.1. \print(..)glossaryOptions. 239
82. GlossaryMarkup 243
Defining New Glossaries 250
Adding an Entry to the Glossary Without Generating Text 253
Cross-Referencing Entries 258
11.1. Customising Cross-Reference Text 261
Number Lists 264
12.1. Encap Values (Location Formats) 265
12.2. Range Formations 270
1230 Locations o i e e e e e e e e e 272
12.4. PagePrecedence 275
12.5. Problematic Locations 275
12.6. TIterating Over Locations 288
Glossary Styles 291
13.1. Predefined Styles 293
13.1.1. ListStyles e 296
13.1.2. Longtable Styles 299
13.1.3. Longtable Styles (Ragged Right) 302
13.1.4. Longtable Styles (booktabs) 305
13.1.5. Supertabular Styles 307
13.1.6. Supertabular Styles (Ragged Right) 310
13.1.7. Tree-Like Styles 313
13.1.8. Multicols Style 318
13.19. In-Line Style 319
13.2. Defining your own glossary style 322
13.2.1. Commands For Use in Glossary Styles 324
13.2.2. Hyper Group Navigation 327
13.2.3. Glossary Style Commands 329
Xindy (Option 3) 336
14.1. Required Styles 337
14.2. Language and Encodings. 338
14.3. Locations and Number lists 339
14.4. Glossary Groups v 0 i vt e e e e e e 349

1l

Contents

15. Utilities
15.1. hyperref e
15.2. Case-Changing e
1530 LOoOpS . . o o o e e
15.4. Conditionals
15.5. Measuring e e
15.6. Fetching and Updating the Valueof aField

16. Prefixes or Determiners

17. Accessibility Support
17.1. Accessibility Keys
17.2. Incorporating Accessibility Support
17.3. Incorporating the Access Field Values
17.4. Obtaining the Access Field Values
17.5. Developer’'s Note i e

18. Sample Documents
18.1. Basic e
18.2. Acronymsand FirstUse
18.3. Non-Page Locations
18.4. Multiple Glossaries L
18.5. Sorting e
18.6. ChildEntries
18.7. Cross-Referencing
188. CustomKeys.
189. Xindy (Option3).
18.10. No Indexing Application (Option 1)
18.11. Other e

19. Troubleshooting

Il. Summaries and Index

Symbols

Terms

Glossary Entry Keys Summary

\Gls-Like and \Glstext-Like Options Summary

\print(...)glossary Options Summary

iv

351
351
353
356
357
364
365

368

376
376
379
381
384
386

387
387
394
412
423
436
443
458
461
466
477
479

496

497
498
499
506
514

517

Contents

Acronym Style Summary

Glossary Styles Summary

Command Summary

Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:
Command Summary:

Environment Summary

Index

Package Option Summary

521

524

538
538
539
546
547
548
551
551
553
553
556
617
630
631
636
637
638
641
641
644
645
649
650
650

651

652

662

List of Tables

1.1. Glossary Options: Prosand Cons 11
1.2, Customised Text 47
1.3. Commands and package options that have no effect when using xindy or
makeindexexplicitly o 58
4.1. KeytoField Mappings 148
6.1. Synonyms provided by the shortcuts package option 197
6.2. The effect of using xspace with \oldacronym 225
12.1. Predefined Hyperlinked Location Formats 266
13.1. Glossary Styles e 294
13.2. Multicolumn Styles L 319

Vi

List of Examples

If an example shows the icon Q® then the source code is embedded in the PDF as an attachment.
If your PDF viewer supports attachments, you can extract the self-contained example file to
try it out for yourself. Alternatively, you can click on the download icon &= which will try
downloading the example source code from your closest CTAN mirror, but make sure that this
user manual matches the version on CTAN first. You can also try using:

texdoc -1 glossaries-user-example(nnn) \

where (nnn) is the example number zero-padded to three digits to find out if the example files
are installed on your device.

XA R D=

[\ T NS T NG T NG T NG T N T S e S e Y T W S SN
CREORNRES0xNanEBRES,

Simple document withno glossary 3
Simple document with unsorted glossaries 5
Simple document that uses TgX to sort entries 12
Simple document that uses makeindex tosortentries 15
Simple document that uses x1ndy tosortentries 19
Simple document that uses b1b2gls tosortentries 24
Simple document with an unsorted list of all defined entries 28
Simple document with standalone entries 31
Mixing Alphabetical and Order of Definition Sorting 99
Customizing Standard Sort (Options2o0r3) 100
Defining Custom Keyso 140
Defining Custom Storage Key (Acronyms and Initialisms) 141
Defining Custom Storage Key (Acronyms and Non-Acronyms with Descriptions) 145
Hierarchical Divisions — Greek and Roman Mathematical Symbols 150
Loading Entries from AnotherFile 153
Custom Entry Display in Text 177
Custom Format for Particular Glossary 178
First Use With Hyperlinked Footnote Description 179
Suppressing Hyperlinks on First Use Just For Acronyms 180
Only Hyperlink in Text Mode Not MathMode 181
One Hyper Link Per Entry Per Chapter 181
Simple document with acronyms 189
Defining and Usingan Acronym 192
Defining and Using an Acronym (Rollback) 200
Small-Caps Acronym L 201

vii

https://www.tug.org/texdoc/

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

List of Examples

Adapting a Predefined Acronym Style L. 204
Defining a Custom Acronym Style 210
Italic and Upright Abbreviations 218
Abbreviations with Full Stops (Periods) 221
Don’t index entries that are onlyusedonce 236
Switch to Two Column Mode for Glossary 247
Dual Entries 256
Changing the Font Used to Display Entry Names in the Glossary 292
Creating a completelynewstyle 331
Creating a new glossary style based on an existing style 333
Example: creating a glossary style that uses the user1, ...,user6 keys .. 333
Custom Font for Displaying a Location 341
Custom Numbering System for Locations 342
LocationsasDice 343
Locations as Wordsnot Digits, 345
Defining Determiners o 368
Using Prefixes 372
Adding Determiner to Glossary Style 373

viil

Part I.

User Guide

1. Introduction

\usepackage [(options)] {glossaries}

The glossaries package is provided to assist generating lists of terms, symbols or acronyms.
For convenience, these lists are all referred to as glossaries in this manual. The terms, symbols
and acronyms are collectively referred to as glossary entries.

The package has a certain amount of flexibility, allowing the user to customize the format
of the glossary and define multiple glossaries. It also supports glossary styles that include an
associated symbol (in addition to a name and description) for each glossary entry.

There is provision for loading a database of glossary entries. Only those entries indexed in
the document will be displayed in the glossary. (Unless you use Option 5, which doesn’t use any
indexing but will instead list all defined entries in order of definition.)

It’s not necessary to actually have a glossary in the document. You may be interested in using
this package just as means to consistently format certain types of terms, such as acronyms, or
you may prefer to have descriptions scattered about the document and be able to easily link to
the relevant description (Option 6).

Example 1 on the following page demonstrates a simple document without a glossary:

,

\documentclass{article}
\usepackage [

o

sort=none % no sorting or indexing required

]

{glossaries}

\newglossaryentry
{cafe}s label
{%$ definition:
name={café},
description=
{small restaurant selling refreshments}

}

\setacronymstyle{long-short}
\newacronym

En

1. Introduction

{html}% label
{HTML}% short form
{hypertext markup language}% long form

\newglossaryentry
{pi}% label
{% definition:
name={\ensuremath{\pi}},
description={Archimedes' Constant}

}

\newglossaryentry
{distance}% label
{% definition:
name={distance},
description={the length between two points},
symbol={m}
t

\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}.
Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} (\glsentrydesc{distance}
) is measured in

\glssymbol{distance}.

\end{document}

(This is a trivial example. For a real document I recommend you use siunitx for units.)

4 Example 1: Simple document with no glossary \EFIE

First use: café, hypertext markup language (HTML), 7. Next use: café,
HTML, .
Distance (the length between two points) is measured in m.

The glossaries—extra package, which is distributed as a separate bundle, extends the capa- glossaries
bilities of the glossaries package. The simplest document with a glossary can be created with ~ —€xtra
glossaries—extra (which internally loads the glossaries package). Example 2 on page 5 demon- [22
strates this:

% This file is embedded in glossaries-user.pdf
% Example 1 Simple document with no glossary
% Label: "ex:simplenogloss"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[
 sort=none % no sorting or indexing required
] {glossaries}

\newglossaryentry
{cafe}% label
 {% definition:
 name={café},
 description={small restaurant selling refreshments}
}

\setacronymstyle{long-short} \newacronym
{html}% label
 {HTML}% short form
 {hypertext markup language}% long form

\newglossaryentry
{pi}% label
 {% definition:
 name={\ensuremath{\pi}},
 description={Archimedes' Constant}
}

% This is a trivial example. For a real document I recommend you use siunitx for units
 \newglossaryentry
 {distance}% label
 {% definition:
 name={distance},
 description={the length between two points},
 symbol={m}
 }
\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}. Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} (\glsentrydesc{distance}) is measured in \glssymbol{distance}.
\end{document}

Nicola Talbot
Simple document with no glossary (source code)
Example document that defines some glossary entries and references them in the text. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example001.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example001.pdf

1. Introduction

\documentclass{article}
\usepackage [
sort=none, $ no sorting or indexing required
abbreviations, % create list of abbreviations
symbols, $ create list of symbols
postdot, % append a full stop after the descriptions
stylemods, style=
index % set the default glossary style
]{glossaries—-extra}
\newglossaryentry % glossaries.sty
{cafe}% label
{% definition:
name={café},
description=
{small restaurant selling refreshments}

}

\setabbreviationstyle{long—-short}

(¢}

% glossaries—-extra.sty

\newabbreviation % glossaries-extra.sty
{html}% label

{HTML}% short form

{hypertext markup language}% long form

% requires glossaries-extra.sty 'symbols' option
\glsxtrnewsymbol
[description={Archimedes' constant}]$%$ options
{pi}% label
{\ensuremath{\pi}}% symbol
\newglossaryentry % glossaries.sty
{distance}% label
{%$ definition:
name={distance},
description={the length between two points},
symbol={m}
}

\begin{document}

1. Introduction

First use: \gls{cafe}, \gls{html}, \gls{pi}.
Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} is measured in \glssymbol{distance}.

\printunsrtglossaries % list all defined entries
\end{document}

4 Example 2: Simple document with unsorted glossaries \ERE

First use: café, hypertext markup language (HTML), 7. Next use: café,
HTML, .

Distance is measured in m.

Glossary

café small restaurant selling refreshments.

distance (m) the length between two points.

Symbols

7 Archimedes’ constant.

Abbreviations

HTML hypertext markup language.

Note the difference in the way the abbreviation (HTML) and symbol (7) are defined in the
two above examples. The abbreviations, postdot and stylemods options are
specific to glossaries—extra. Other options are passed to the base glossaries package.

[glossaries—extra

In this user manual, commands and options displayed in tan, such as \new-—
abbreviation and stylemods, are only available with the glossaries—extra
package. There are also some commands and options (such as \makeglossaries
and symbols) that are provided by the base glossaries package but are redefined by
the glossaries—extra package. See the glossaries—extra user manual for further details of
those commands.

J

One of the strengths of the glossaries package is its flexibility, however the drawback of

% This file is embedded in glossaries-user.pdf
% Example 2 Simple document with unsorted glossaries
% Label: "ex:simpleunsrt"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[sort=none,% no sorting or indexing required
 abbreviations,% create list of abbreviations
 symbols,% create list of symbols
 postdot, % append a full stop after the descriptions
 stylemods,style=index % set the default glossary style
]{glossaries-extra}

\newglossaryentry % glossaries.sty
\par {cafe}% label
 {% definition:
 name={café},
 description={small restaurant selling refreshments}
}

\setabbreviationstyle{long-short}% glossaries-extra.sty
\par \newabbreviation % glossaries-extra.sty
\par {html}% label
 {HTML}% short form
 {hypertext markup language}% long form
 % requires glossaries-extra.sty 'symbols' option
\par \glsxtrnewsymbol [description={Archimedes' constant}]% options
 {pi}% label
 {\ensuremath{\pi}}% symbol
 % This is a trivial example. For a real document I recommend you use siunitx for units
 \newglossaryentry % glossaries.sty
\par {distance}% label
 {% definition:
 name={distance}, description={the length between two points}, symbol={m} }
\begin{document}
First use: \gls{cafe}, \gls{html}, \gls{pi}. Next use: \gls{cafe}, \gls{html}, \gls{pi}.

\Gls{distance} is measured in \glssymbol{distance}.
\printunsrtglossaries % list all defined entries

\end{document}

Nicola Talbot
Simple document with unsorted glossaries (source code)
Example document that defines some glossary entries, references them in the text, and displays three simple unsorted glossaries. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example002.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example002.pdf

1. Introduction

this is the necessity of having a large manual that covers all the various settings. If you are
daunted by the size of the manual, try starting off with the much shorter guide for beginners
(glossariesbegin.pdf).

[i

=
There’s a common misconception that you have to have Perl installed in order to use the
glossaries package. Perl is not a requirement (as demonstrated by the above examples) but

it does increase the available options, particularly if you use an extended Latin alphabet
or a non-Latin alphabet.

7

This document uses the glossaries—extra package with bib2gls (Option 4). For example,
when viewing the PDF version of this document in a hyperlinked-enabled PDF viewer (such as
Adobe Reader or Okular) if you click on the word “indexing” you’ll be taken to the entry in
the main glossary where there’s a brief description of the term. This is the way the glossaries
mechanism works. An indexing application (bib2gls in this case) is used to generate the
sorted list of terms. The indexing applications are CLI tools, which means they can be run directly
from a command prompt or terminal, or can be integrated into some text editors, or you can use
a build tool such as arara to run them.

In addition to standard glossaries, this document has “standalone” definitions (Option 6). For
example, if you click on the command \ g1l s, the hyperlink will take you to main part of the
document where the command is described. The index and summaries are also glossaries. The
technique used is too complicated to describe in this manual, but an example can be found in
“bib2gls: Standalone entries and repeated lists (a little book of poisons)” TUGboat, Vol-
ume 43 (2022), No. 1.

Neither of the above two examples require an indexing application. The first is just using the
glossaries package for consistent formatting, and there is no list. The second has lists but they
are unsorted (see Option 5).

The remainder of this introductory section covers the following:

* §1.3 lists the available indexing options.

§1.4 lists the files provided that contain dummy glossary entries which may be used for
testing.

§1.5 provides information for users who wish to write in a language other than English.

§1.6 describes how to use an indexing application to create the sorted glossaries for your
document (Options 2 or 3).

In addition to the examples provided in this document, there are some sample documents
provided with the glossaries package. They are described in §18.

The glossaries package comes with a number of sample documents that illustrate the various
functions. These are listed in §18.

https://tug.org/TUGboat/tb2022-1/tb133talbot-bib2gls-reorder.pdf
https://tug.org/TUGboat/tb2022-1/tb133talbot-bib2gls-reorder.pdf

1. Introduction

1.1. Rollback

The following rollback releases are available:
* Version 4.52 (2022-11-03):
=

[\usepackage{glossaries} [=v4.52]

This is the last version that uses an internal comma-separated list for the hyper group
information in glossary—hypernav. Version 4.53 has switched to using a sequence.

e Version 4.49 (2021-11-01):

Ei

[\usepackage{glossaries} [=v4.49]

Note that this should also rollback mfirstuc to version 2.07 if you have a later version
installed.

* Version 4.46 (2020-03-19):

[\usepackage{glossaries} [=v4.46]

If you rollback using latexrelease to an earlier date, then you will need to specify v4.46 for
glossaries as there are no earlier rollback versions available. You may want to consider using one
of the historic TEX Live Docker images instead. See, for example, Legacy Documents and TeX
Live Docker Images.!

1.2. Integrating Other Packages and Known Issues

If you use hyperref and glossaries, you must load hyperref first (although, in general, hyperref
should be loaded after other packages).

Occasionally you may find that certain packages need to be loaded affer packages that are
required by glossaries but need to also be loaded before glossaries. For example, a package
(X) might need to be loaded after amsgen but before hyperref (which needs to be loaded before
glossaries). In which case, load the required package first (for example, amsgen), then (X), and
finally load glossaries.

'dickimaw-books.com/blog/legacy—documents—and-tex-live—-docker—images

https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

1. Introduction

\usepackage{amsgen}% load before (X)
\usepackage{(X)}% must be loaded after amsgen
\usepackage{hyperref}% load after (X)
\usepackage{glossaries}% load after hyperref

Some packages don’t work with some glossary styles. For example, classicthesis doesn’t work
with the styles that use the description environment, such as the list style. Since this is the default
style, the glossaries package checks for classicthesis and will change the default to the index
style if it has been loaded.

Some packages conflict with a package that’s required by a glossary style style package. For
example, xtab conflicts with supertabular, which is required by glossary—super. In this case, en-
sure the problematic glossary style package isn’t loaded. For example, use the nosupe r option
and (with glossaries—extra) don’t use sty lemods=super or stylemods=all. The
glossaries package now (v4.50+) checks for xtab and will automatically implement nosuper
if it has been loaded.

The language-support is implemented using tracklang. This needs to know the document
languages that have to be supported. It currently (version 1.6 at the time of writing) can’t detect
the use of \babelprovide. The tracklang package is able to pick up known language labels
from the document class options, for example:

=

\documentclass [german] {article}
\usepackage[translate=true] {glossaries}

The above doesn’t load babel or polyglossia or translator, but the t ranslate=t rue setting
will ensure that tracklang is loaded and the language-sensitive command provided by glossaries
will use the definitions in glossaries—german. 1df (which needs to be installed sepa-
rately, see §1.5) because tracklang can pick up the german document class option.

The tracklang package is also able to pick up languages passed as package options to babel or
translator, provided they were loaded before tracklang. For example,

Ei

\usepackage [french] {babel}
\usepackage [translate=babel] {glossaries}

The tracklang package used to be able to detect languages identified by polyglossia’s \ set-
mainlanguage and \setotherlanguage, but tracklang v1.5 can’t with newer ver-
sions of polyglossia. You will need to upgrade to tracklang v1.6+ to allow this to work again.

In the event that tracklang can’t pick up the required languages, it’s also possible to identify
them with the 1 anguages option. For example:

1. Introduction

\usepackage[nil] {babel}
\babelprovide{french}
\usepackage [languages=french] {glossaries}

1.3. Indexing Options

The basic idea behind the glossaries package is that you first define your entries (terms, sym-
bols or acronyms). Then you can reference these within your document (analogous to \cite
or \ref). You can also, optionally, display a list of the entries you have referenced in your
document (the glossary). This last part, displaying the glossary, is the part that most new users
find difficult. There are three options available with the base glossaries package (Options 1 -3).
The glossaries—extra extension package provides two extra options for lists (Options 4 and 5)
as well as an option for standalone descriptions within the document body (Option 6).

An overview of Options 1-35 is given in Table 1.1 on page 11. Option 6 is omitted from the
table as it doesn’t produce a list. For a more detailed comparison of the various methods, see the
glossaries performance page.? If, for some reason, you want to know what indexing option is in
effect, you can test the value of:

X

\glsindexingsetting

This is initialised to:

\ifglsxindy xindy\else makeindex\fi

If the sort=none or sort=clear options are used, \glsindexingsetting will
be redefined to none. If \makeglossariesisused \glsindexingsetting will
be updated to either makeindex or xindy as appropriate (that is, the conditional will
no longer be part of the definition). If \makenoidxglossaries is used then \gls-
indexingsetting will be updated to noidx. This means that \glsindexing-
setting can’t be fully relied on until the start of the document environment. (If you are using
glossaries—extra v1.49+, then this command will also be updated to take the record setting
into account.)

[i

=
If you are developing a class or package that loads glossaries, I recommend that you don’t
force the user into a particular indexing method by adding an unconditional \make—
glossaries into your class or package code. Aside from forcing the user into a
particular indexing method, it means that they’re unable to use any commands that must

’dickimaw-books.com/gallery/glossaries—performance.shtml

https://www.dickimaw-books.com/gallery/glossaries-performance.shtml
https://www.dickimaw-books.com/gallery/glossaries-performance.shtml

1. Introduction

come before \makeglossaries (suchas \newglossary)and they can’t switch
off the indexing whilst working on a draft document. (If you are using a class or package
that has done this, pass the disablemakegloss option to glossaries. For example,
via the document class options.)

Strictly speaking, Options 5 and 6 aren’t actually indexing options as no indexing is performed.
In the case of Option 5, all defined entries are listed in order of definition. In the case of Option 6,
the entry hypertargets and descriptions are manually inserted at appropriate points in the docu-
ment. These two options are included here for completeness and for comparison with the actual
indexing options.

1.3.1. Option 1 (“noidx”)

This option isn’t generally recommended for reasons given below. It’s best used with sort=
use (order of use) or sort=def (order of definition). Example 3 on page 12 demonstrates

this method:

\documentclass{article}
\usepackage [style=indexgroup] {glossaries}
\makenoidxglossaries % use TeX to sort
\newglossaryentry{parrot}{name={parrot},
description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
description=
{a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}
}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alphal},
sort={alpha},description={a variable}}
% an acronym:
\setacronymstyle{short-long}
\newacronym{arpanet } { ARPANET}
{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.

10

(=3

1. Introduction

Table 1.1.: Glossary Options: Pros and Cons

Option 1 2 3
Requires glossaries—extra?

Requires an external application? v v
Requires Perl? v
Requires Java?

Can sort extended Latin alphabets X b 4 N/A
or non-Latin alphabets?

Efficient sort algorithm? b 4 N/A
Can use a different sort method for xt xt N/A
each glossary?

Any problematic sort values? (4 v v ¥
Are entries with identical sort values X3

treated as separate unique entries?

Can automatically form ranges in X X
the location lists?

Can have non-standard locations in X
the location lists?

Maximum hierarchical depth 00 3 00 00 00
(style-dependent)

\glsdisplaynumberlist b 4 X X
reliable?

\newglossaryentry X v 4 xX* v
allowed in document environment?

(Not recommended.)

Requires additional write registers? v v
Default value of false true true true¥true
sanitizesort package option

SNxKSS =+

*

kS

*Strips standard ISTEX accents (that is, accents generated by core ISIEX commands) so, for
example, \ AA is treated the same as A.

fOnly with the hybrid method provided with glossaries—extra.

#Provided sort=none is used.

SEntries with the same sort value are merged.

ORequires some setting up.

IThe locations must be set explicitly through the custom 1ocat ion field provided by
glossaries—extra.

#Unlimited but unreliable.

*Entries are defined in bib format. \newglossaryentry should not be used
explicitly.

*Provided docde f=true or docdef=restricted but not recommended.
*Provided docdef=false ordocdef=restricted.

*Irrelevant with sort=none. (The record=only option automatically switches this
on.)

11

1. Introduction

\printnoidxglossary
\end{document}

You can place all your entry definitions in a separate file and load it in the document preamble
with \loadglsentries (after \makenoidxglossaries). Note that six entries
have been defined but only five are referenced (indexed) in the document so only those five appear
in the glossary.

kN Example 3: Simple document that uses TgX to sort entries PE L2 A

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and a. Next use: ARPANET.

Glossary

A

« a variable. 1
ARPANET Advanced Research Projects Agency Network. 1

D
duck a waterbird. 1
P

parrot a brightly coloured tropical bird. 1
puffin a seabird with a brightly coloured bill. 1

This uses the indexgroup style, which puts a heading at the start of each letter group. The letter
group is determined by the first character of the sort value. For a preview of all available styles,
see Gallery: Predefined Styles.> The number 1 after each description is the number list (or
location list). This is the list of locations (page numbers, in this case) where the entry was indexed.
In this example, all entries were indexed on page 1.

This option doesn’t require an external indexing application but, with the default alphabetic
sorting, it’s very slow with severe limitations. If you want a sorted list, it doesn’t work well for
extended Latin alphabets or non-Latin alphabets. However, if you use the sanitizesort
=false package option (the default for Option 1) then the standard I£TEX accent commands
will be ignored, so if an entry’s name is set to \ 'elite then the sort value will default to
eliteif sanitizesort=false isused and will default to the literal string \ 'elite
if sanitizesort=true isused.

3dickimaw-books.com/gallery/index.php?label=glossaries—styles

12

% This file is embedded in glossaries-user.pdf
% Example 3 Simple document that uses TeX\ to sort entries
% Label: "ex:noidx"
% arara: pdflatex
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[style=indexgroup]{glossaries}
\makenoidxglossaries % use TeX to sort
 \newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an acronym:
 \setacronymstyle{short-long}
 \newacronym{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printnoidxglossary
\end{document}

Nicola Talbot
Simple document that uses TeX to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are three letter groups, headed A, D and P (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example003.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example003.pdf
https://www.dickimaw-books.com/gallery/index.php?label=glossaries-styles
https://www.dickimaw-books.com/gallery/index.php?label=glossaries-styles

1. Introduction

A
Previously, it was also possible to strip accents from UTF-8 characters, but that’s not possi-
ble following updates to the ISIEX kernel. The kernel updates are beneficial as they make
it possible to use UTF-8 characters in labels, but the trick of stripping accents was a hack
that no longer works.

If you have any other kinds of commands that don’t expand to ASCI characters, such as
\alpha, then you must use sanitizesort=true or change the sort method (sort=
use or sort=def) in the package options or explicitly set the sort key when you define
the relevant entries, as shown in the above example which has:

\newglossaryentry{alpha}{name={\ensuremath{\alphatl},
sort={alpha},description={a variable}

}

[glossaries—extra

The glossaries—extra package has a modified symbols package option that provides
\glsxtrnewsymbol, which automatically sets the sort key to the entry label (in-
stead of the name).

This option works best with the sort=def or sort=use setting. For any other setting,
be prepared for a long document build time, especially if you have a lot of entries defined. This
option is intended as a last resort for alphabetical sorting. This option allows a mixture of
sort methods. (For example, sorting by word order for one glossary and order of use for another.)
This option is not suitable for hierarchical glossaries and does not form ranges in the location lists.
If you really can’t use an indexing application consider using Option 5 instead.

Summary:

1. Add

[\makenoidxglossaries

to your preamble (before you start defining your entries, as described in §4).

2. Put

=

\printnoidxglossary

where you want your list of entries to appear (described in §8). Alternatively, to display
all glossaries use the iterative command:

13

1. Introduction

\printnoidxglossaries

3. Run ETEX twice on your document. (As you would do to make a table of contents appear.)
For example, click twice on the “typeset” or “build” or “pdfI&IEX” button in your editor.

1.3.2. Option 2 (makeindex)

Example 4 on the following page demonstrates a simple document that requires makeindex: [Z4

\documentclass{article}
\usepackage [style=indexgroup] {glossaries}
\makeglossaries % open indexing files
\newglossaryentry{parrot }{name={parrot},
description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
description=
{a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}
}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alphatl},
sort={alpha},description={a variable}}
% an acronym:
\setacronymstyle{short-long}
\newacronym{arpanet } { ARPANET}
{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printglossary
\end{document}

You can place all your entry definitions in a separate file and load it in the preamble with \ 1 oad-
glsentries (after \makeglossaries). The result is the same as for Example 3 on
page 12.

14

1. Introduction

N Example 4: Simple document that uses make index to sort entries \EEE

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and «. Next use: ARPANET.

Glossary
A

« a variable. 1
ARPANET Advanced Research Projects Agency Network. 1

D
duck a waterbird. 1
P

parrot a brightly coloured tropical bird. 1
puffin a seabird with a brightly coloured bill. 1

This option uses a CLI application called makeindex to sort the entries. This application

comes with all modern TgX distributions, but it’s hard-coded for the non-extended Latin alphabet.
It can’t correctly sort accent commands (such as \ ' or \c) and fails with UTF-8 characters,
especially for any sort values that start with a UTF-8 character (as it separates the octets resulting
in an invalid file encoding). This process involves making IfTEX write the glossary information to
a temporary file which makeindex reads. Then makeindex writes a new file containing
the code to typeset the glossary. Then \printglossary reads this file in on the next run.
| (o
There are other applications that can read makeindex files, such as texindy and
xindex, but the glossaries package uses a customized ist style file (created by
\makeglossaries) that adjusts the special characters and input keyword and also
ensures that the resulting file (which is input by \printglossary) adheres to the
glossary style. If you want to use an alternative, you will need to ensure that it can honour
the settings in the 1 st file.

. 7

This option works best if you want to sort entries according to the English alphabet and you
don’t want to install Perl or Java. This method can also work with the restricted shell escape
since makeindex is considered a trusted application, which means you should be able to use
the automake=immediate or automake=t rue package option provided the shell
escape hasn’t been completely disabled.

This method can form ranges in the number list but only accepts limited number formats:

15

% This file is embedded in glossaries-user.pdf
% Example 4 Simple document that uses makeindex to sort entries
% Label: "ex:mkidx"
% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[style=indexgroup]{glossaries}
\makeglossaries % open \dglspl {indexingfile}
 \newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an acronym:
 \setacronymstyle{short-long}
 \newacronym{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printglossary
\end{document}

Nicola Talbot
Simple document that uses makeindex to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are three letter groups, headed A, D and P (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example004.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example004.pdf

1. Introduction

\arabic, \roman, \Roman, \alph and \Alph.

This option does not allow a mixture of sort methods. All glossaries must be sorted according
to the same method: word/letter ordering or order of use or order of definition. If you need word
ordering for one glossary and letter ordering for another you’ll have to explicitly call make-
index for each glossary type.

[glossaries—extra

The glossaries—extra package allows a hybrid mix of Options 1 and 2 to provide word/
letter ordering with Option 2 and order of use/definition with Option 1. See the glossaries
—extra documentation for further details. See also the glossaries—extra alternative to
sampleSort.texin §18.5.

Summary:

1. If you want to use makeindex’s —g option you must change the quote character using
\GlsSetQuote. For example:

\GlsSetQuote{+}

B

This must be used before \makeglossaries. Note that if you are using babel, the
shorthands aren’t enabled until the start of the document, so you won’t be able to use the
shorthands in definitions that occur in the preamble.

2. Add

B

[\makeglossaries

to your preamble (before you start defining your entries, as described in §4).

3. Put

B

[\printglossary

where you want your list of entries to appear (described in §8). Alternatively, to display
all glossaries use the iterative command:

B

[\printglossaries

16

1. Introduction

4. Run I4TEX on your document. This creates files with the extensions g1lo and 1 st (for
example, if your ISTEX document is called myDoc . tex, then you'll have two extra files
called myDoc.glo and myDoc.ist). If you look at your document at this point,
you won't see the glossary as it hasn’t been created yet. (If you use glossaries—extra you’ll
see the section heading and some boilerplate text.)

If you have used package options such as symbo 1 s there will also be other sets of files
corresponding to the extra glossaries that were created by those options.

5. Runmakeindex with the gl o file as the input file and the 1 st file as the style so that
it creates an output file with the extension gl s:

makeindex —-s myDoc.ist -o myDoc.gls myDoc.glo \

(Replace myDoc with the base name of your IKIEX document file. Avoid spaces in the
file name if possible.)

[i
=
The file extensions vary according to the glossary type. See §1.6.4 for further

details. makeindex must be called for each set of files.

If you don’t know how to use the command prompt, then you can probably access make-
index via your text editor, but each editor has a different method of doing this. See
Incorporating makeglossaries or makeglossaries-lite or bib2gls into the document build*
for some examples.

Alternatively, run make1ndex indirectly via the makeglossaries script:

makeglossaries myDoc \

Note that the file extension isn’t supplied in this case. (Replace makeglossaries
with makeglossaries—1lite if you don’t have Perl installed.) This will pick up
all the file extensions from the aux file and run makeindex the appropriate number
of times with all the necessary switches.

The simplest approach is to use arara and add the following comment lines to the start
of your document:

=

o\

arara: pdflatex
arara: makeglossaries
arara: pdflatex

o\°

o\°

*dickimaw-books.com/latex/buildglossaries/

17

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

(Replace makeglossaries with makeglossarieslite in the second line
above if you don’t have Perl installed. Note that there’s no hyphen in this case.)

The default sort is word order (“sea lion” comes before “seal”). If you want letter ordering
you need to add the —1 switch:

makeindex -1 -s myDoc.ist -o myDoc.gls myDoc.glo \

(See §1.6.4 for further details on using makeindex explicitly.) If you use make-
glossariesormakeglossaries—litethenusethe order=1etter pack-
age option and the —1 option will be added automatically.

. Once you have successfully completed the previous step, you can now run I£TEX on your

document again.

You’'ll need to repeat the last step if you have used the t o c option (unless you’re using glossaries
—extra) to ensure the section heading is added to the table of contents. You'll also need to repeat
steps 5 and 6 if you have any cross-references which can’t be indexed until the indexing file has

been created.

1.3.3. Option 3 (xindy)

Example 5 on the following page demonstrates a simple document that requires xindy:

\documentclass{article}
\usepackage [xindy, style=indexgroup] {glossaries}
\makeglossaries % open indexing files
\newglossaryentry{parrot}{name={parrot},
description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
description=
{a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}
}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alpha}},
sort={alpha},description={a variable}}
% an acronym:
\setacronymstyle{short-long}

18

E5

1. Introduction

\newacronym{arpanet } {ARPANET}

{Advanced Research Projects Agency Network}
\begin{document}

\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.

Next use: \gls{arpanet}.

\printglossary

\end{document }

You can place all your entry definitions in a separate file and load it in the preamble with \ 1 oad-
glsentries (after \makeglossaries). The result is the same as for Example 3 on
page 12 and Example 4 on page 15.

‘4 Example 5: Simple document that uses x indy to sort entries N\EXIE

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and «. Next use: ARPANET.

Glossary
A

« a variable. 1
ARPANET Advanced Research Projects Agency Network. 1

D
duck a waterbird. 1
P

parrot a brightly coloured tropical bird. 1
puffin a seabird with a brightly coloured bill. 1

This option uses a CLI application called x1ndy to sort the entries. This application is more
flexible than makeindex and is able to sort extended Latin alphabets or non-Latin alphabets,
however it does still have some limitations.

The xindy application comes with both TEX Live and MikTEX, but since xindy is a
Perl script, you will also need to install Perl, if you don’t already have it. In a similar way to
Option 2, this option involves making ITEX write the glossary information to a temporary file
which xindy reads. Then xindy writes a new file containing the code to typeset the glossary.
Then \printglossary reads this file in on the next run.

This is the best option with just the base glossaries package if you want to sort according to

19

% This file is embedded in glossaries-user.pdf
% Example 5 Simple document that uses xindy to sort entries
% Label: "ex:xdy"
% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[xindy,style=indexgroup]{glossaries}
\makeglossaries % open \dglspl {indexingfile}
 \newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an acronym:
 \setacronymstyle{short-long}
 \newacronym{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printglossary
\end{document}

Nicola Talbot
Simple document that uses xindy to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are three letter groups, headed A, D and P (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example005.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example005.pdf

1. Introduction

a language other than English or if you want non-standard location lists, but it can require some
setting up (see §14). There are some problems with certain sort values:

* entries with the same sort value are merged by xindy into a single glossary line so you
must make sure that each entry has a unique sort value;

* xindy forbids empty sort values;

* x1ndy automatically strips control sequences, the math-shift character $ and braces { }
from the sort value, which is usually desired but this can cause the sort value to collapse
to an empty string which xindy forbids.

In these problematic cases, you must set the s o rt field explicitly, as in the above example which

has:

\newglossaryentry{alpha}{name={\ensuremath{\alphatl},
sort={alpha},description={a variable}

}

glossaries—extra

The glossaries—extra package has a modified symbols package option that provides
\glsxtrnewsymbol, which automatically sets the sort key to the entry label (in-
stead of the name).

All glossaries must be sorted according to the same method (word/letter ordering, order of
use, or order of definition).

[glossaries—extra

The glossaries—extra package allows a hybrid mix of Options 1 and 3 to provide word/
letter ordering with Option 3 and order of use/definition with Option 2. See the glossaries
—extra documentation for further details.

Summary:

1. Add the xindy option to the glossaries package option list:

=

[\usepackage[xindy] {glossaries}

If you are using a non-Latin script you'll also need to either switch off the creation of the
number group:

20

1. Introduction

\usepackage [xindy={glsnumbers=false}]
{glossaries}

oruse either \GlsSetXdyFirstLetterAfterDigits{ (letter)} (toindicate
the first letter group to follow the digits) or \G1sSetXdyNumberGroupOrder
{(spec) } to indicate where the number group should be placed (see §14).

. Add \makeglossaries to your preamble (before you start defining your entries, as
described in §4).

. Run I£TEX on your document. This creates files with the extensions g1 o and xdy (for
example, if your IS[EX document is called myDoc . tex, then you’'ll have two extra files
calledmyDoc.gloandmyDoc . xdy). If you look at your document at this point, you
won’t see the glossary as it hasn’t been created yet. (If you're using the glossaries—extra
extension package, you’'ll see the section header and some boilerplate text.)

If you have used package options such as symbo 1 s there will also be other sets of files
corresponding to the extra glossaries that were created by those options.

. Run x1ndy with the glo file as the input file and the xdy file as a module so that it
creates an output file with the extension g1s. You also need to set the language name and
input encoding, as follows (all on one line):

xindy -L english -C utf8 -I xindy -M myDoc -t
myDoc.glg —o myDoc.gls myDoc.glo

(Replace myDoc with the base name of your ISIEX document file. Avoid spaces in the file
name. If necessary, also replace engli sh with the name of your language and ut £8
with your input encoding, for example, —-L. german —-C din5007-utf8.)

[i
=
The file extensions vary according to the glossary t ype. See §1.6.3 for further

details. x1ndy must be called for each set of files.

It’s much simpler to use makeglossaries instead:

makeglossaries myDoc \

Note that the file extension isn’t supplied in this case. This will pick up all the file extensions
from the aux file and run x 1 ndy the appropriate number of times with all the necessary
switches.

21

1. Introduction

There’s no benefit in using makeglossaries—1lite with xindy. (Remember
that xindy is a Perl script so if you can use xindy then you can also use make-
glossaries, and if you don’t want to use makeglossaries because you don’t
want to install Perl, then you can’t use xindy either.)

If you don’t know how to use the command prompt, then you can probably access x indy
or makeglossaries via your text editor, but each editor has a different method of
doing this. See Incorporating makeglossaries or makeglossaries-lite or bib2gls into the
document build® for some examples.

Again, a convenient method is to use arara and add the follow comment lines to the
start of your document:

=

o\°

arara: pdflatex
arara: makeglossaries
arara: pdflatex

o°

o\

The default sort is word order (“sea lion” comes before “seal”). If you want letter ordering
you need to add the order=1etter package option:

=

\usepackage[xindy, order=letter] {glossaries}

(and return to the previous step). This option is picked up by makeglossaries. If
you are explicitly using xindy then you'll need to add -M ord/letorder to the
options list. See §1.6.3 for further details on using xindy explicitly.

5. Once you have successfully completed the previous step, you can now run I£IEX on your
document again. As with makeindex (Option 2), you may need to repeat the previous
step and this step to ensure the table of contents and cross-references are resolved.

1.3.4. Option 4 (bib2gls)

This option is only available with the glossaries—extra extension package. This method uses glossaries
bib2gls to both fetch entry definitions from b ib files and to hierarchically sort and collate. ——€xtra
Example 6 on page 24 demonstrates a simple document that requires bib2gls: 26

=

\documentclass{article}
\usepackage [record, style=indexgroup] {glossaries—
extra}

dickimaw-books.com/latex/buildglossaries/

22

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

\setabbreviationstyle{short-long}

% data in sample-entries.bib:
\GlsXtrLoadResources |[src={sample—-entries}]
\begin{document }

\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.

Next use: \gls{arpanet}.
\printunsrtglossary

\end{document}

Note that the abbreviation style must be set before \G1 sXt rLLoadResources. The file
sample—entries.bib contains:

@dentry{parrot,
name={parrot},
description={a brightly coloured tropical bird}
}
@entry{duck,
name={duck},
description={a waterbird}
}
@entry{puffin,
name={puffin},
description=
{a seabird with a brightly coloured bill}
}
@entry{penguin,
name={penguin},
description={a flightless black and white seabird}
}
@symbol{alpha,
name={\ensuremath{\alpha}},
description={a variable}
}
@abbreviation{arpanet,
short={ARPANET},
long={Advanced Research Projects Agency Network}

}

The result is slightly different from the previous examples. Letter groups aren’t created by de-
fault with bib2gls so, even though the glossary style supports letter groups, there’s no group
information.

23

1. Introduction

N Example 6: Simple document that uses bib2gls to sort entries \EEE

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and «. Next use: ARPANET.

Glossary

a a variable 1

ARPANET Advanced Research Projects Agency Network 1
duck a waterbird 1

parrot a brightly coloured tropical bird 1

puffin a seabird with a brightly coloured bill 1

All entries must be provided in one or more b 1D files. (See the bib2gls user manual for
the required format.) In this example, the terms “parrot”, “duck”, “puffin” and “penguin” are de-
fined using @atent ry, the symbol alpha («) is defined using @ symbo1 and the abbreviation
“ARPANET” is defined using @abbreviation.

[i
|
Note that the sort key should not be used. Each entry type (dentry, @symbol,

@abbreviation) has a particular field that’s used for the sort value by default
(name, the label, short). You will break this mechanism if you explicitly use the
sort key. See bib2gls gallery: sorting” for examples.

“dickimaw-books.com/gallery/index.php?label=1label=
bib2gls-sorting

The glossaries—extra package needs to be loaded with the record package option:

[\usepackage[record] {glossaries—extra}

or (equivalently)

[\usepackage[record=only] {glossaries—extra}

or (with glossaries—extra vl.37+ and bib2gls v1.8+):

[\usepackage [record=nameref] {glossaries—-extra}

The record=nameref option is the best method if you are using hyperref.

24

% This file is embedded in glossaries-user.pdf
% Example 6 Simple document that uses bib2gls to sort entries
% Label: "ex:b2g"
% arara: pdflatex
% arara: bib2gls
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{filecontents*}{sample-entries.bib}
@entry{parrot,
 name={parrot},
 description={a brightly coloured tropical bird}
}
@entry{duck,
 name={duck},
 description={a waterbird}
}
@entry{puffin,
 name={puffin},
 description={a seabird with a brightly coloured bill}
}
@entry{penguin,
 name={penguin},
 description={a flightless black and white seabird}
}
@symbol{alpha,
 name={\ensuremath{\alpha}},
 description={a variable}
}
@abbreviation{arpanet,
 short={ARPANET},
 long={Advanced Research Projects Agency Network}
}
\end{filecontents*}
\usepackage[record,style=indexgroup]{glossaries-extra}
\setabbreviationstyle{short-long}
\GlsXtrLoadResources[src={sample-entries}]% data in sample-entries.bib

\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printunsrtglossary
\end{document}

Nicola Talbot
Simple document that uses bib2gls to sort entries (source code)
Example document that defines some entries, references a subset of them in the document and displays a sorted list of the referenced entries: alpha, ARPANET, duck, parrot and puffin. There are no letter groups (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example006.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example006.pdf
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

1. Introduction

Each resource set is loaded with \G1 sXt rLLoadResources. For example:

,

\GlsXtrLoadResources

[$ definitions in entriesl.bib and entries?2.bib:
src={entriesl,entries?},

sort={de-CH-1996}% sort according to this locale

]

The b1ib files are identified as a comma-separated list in the value of the s rc key. The sort
option identifies the sorting method. This may be a locale identifier for alphabetic sorting, but
there are other sort methods available, such as character code or numeric. One resource set
may cover multiple glossaries or one glossary may be split across multiple resource sets, forming
logical sub-blocks.

If you want to ensure that all entries are selected, even if they haven’t been referenced in
the document, then add the option selection=all. (There are also ways of filtering the
selection or you can even have a random selection by shuffling and truncating the list. See the
bib2gls user manual for further details.)

The glossary is displayed using:

\printunsrtglossary

Alternatively all glossaries can be displayed using the iterative command:

\printunsrtglossaries

The document is built using:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc

If letter groups are required, you need the ——group switch:

bib2gls —-—-group myDoc

or with arara:

(e

% arara: bib2gls: { group: on }

B0 (8L B0 LB

25

1. Introduction

(You will also need an appropriate glossary style.)

Unlike Options 2 and 3, this method doesn’t create a file containing the typeset glossary but
simply determines which entries are needed for the document, their associated locations and
(if required) their associated letter group. This option allows a mixture of sort methods. For
example, sorting by word order for one glossary and order of use for another or even sorting one
block of the glossary differently to another block in the same glossary. See bib2gls gallery:
sorting.®

This method supports Unicode and uses the Common Locale Data Repository, which provides
more extensive language support than xindy. (Except for Klingon, which is supported by
xindy, but not by the CLDR.) The locations in the number list may be in any format. If
bib2gls can deduce a numerical value it will attempt to form ranges otherwise it will simply
list the locations.

Summary:

1. Use glossaries—extra with the record package option:

\usepackage[record] {glossaries—extra}

B

2. Use \GlsXtrLoadResources toidentify the bib file(s)and bib2gl s options.
The bib extension may be omitted:

\GlsXtrLoadResources[src=
{terms.bib, abbreviations.bib}, sort=en]

_ B

3. Put

B

[\printunsrtglossary

where you want your list of entries to appear. Alternatively to display all glossaries use the
iterative command:

B

[\printunsrtglossaries

4. Run I5TEX on your document.

5. Runbib2gls with just the document base name.

®dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

26

https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

1. Introduction

6. Run IATEX on your document.

See glossaries-extraand bib2gls: An Introductory Guide’ or the bib2gl s user manual
for further details of this method, and also Incorporating makeglossaries or makeglossaries-lite
or bib2gls into the document build.®

1.3.5. Option 5 (“unsrt”)

This option is only available with the extension package glossaries—extra. No indexing applica- glossaries
tion is required. —extra
Example 7 on the following page demonstrates this method: 27

\documentclass{article}
\usepackage[style=indexgroup] {glossaries—-extra}
\newglossaryentry{parrot}{name={parrot},
description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
description=
{a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
description={a flightless black and white seabird}
}
% a symbol:
\newglossaryentry{alpha}{name={\ensuremath{\alphatl},
description={a variable}}
% an abbreviation:
\setabbreviationstyle{short-long}
\newabbreviation{arpanet } {ARPANET}
{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
\printunsrtglossary
\end{document}

You can place all your entry definitions in a separate file and load it in the preamble with \ 1 oad-
glsentries. There’s no “activation” command (such as \makeglossaries for Op-
tions 2 and 3).

'mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

8dickimaw-books.com/latex/buildglossaries/

27

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

The result is different from the previous examples. Now all entries are listed in the glossary,
including “penguin” which hasn’t been referenced in the document, and the list is in the order
that the entries were defined. There are no number lists.

4 Example 7: Simple document with an unsorted list of all defined entries N\ERE

Puffin, duck and parrot. ARPANET (Advanced Research Projects Agency
Network) and a. Next use: ARPANET.

Glossary

P

parrot a brightly coloured tropical bird
D

duck a waterbird

P

puffin a seabird with a brightly coloured bill
penguin a flightless black and white seabird

A

« a variable
ARPANET Advanced Research Projects Agency Network

Note that the letter groups are fragmented because the list isn’t in alphabetical order, so there are
two “P” letter groups.

The \printunsrtglossary command simply iterates over the set of all defined en-
tries associated with the given glossary and lists them in the order of definition. This means that
child entries must be defined immediately after their parent entry if they must be kept together
in the glossary. Some glossary styles indent entries that have a parent but it’s the indexing appli-
cation that ensures the child entries are listed immediately after the parent. If you’re opting to
use this manual approach then it’s your responsibility to define the entries in the correct order.

The glossaries—extra package requires entries to be defined in the preamble by default. It’s
possible to remove this restriction, but bear in mind that any entries defined after \print-
unsrtglossary won’t be listed.

The glossary is displayed using:

28

% This file is embedded in glossaries-user.pdf
% Example 7 Simple document with an unsorted list of all defined entries
% Label: "ex:unsrt"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[style=indexgroup]{glossaries-extra}
\newglossaryentry{parrot}{name={parrot},
 description={a brightly coloured tropical bird}}
\newglossaryentry{duck}{name={duck},
 description={a waterbird}}
\newglossaryentry{puffin}{name={puffin},
 description={a seabird with a brightly coloured bill}}
\newglossaryentry{penguin}{name={penguin},
 description={a flightless black and white seabird}}
% a symbol:
 \newglossaryentry{alpha}{name={\ensuremath{\alpha}},
 sort={alpha},description={a variable}}
% an abbreviation:
 \setabbreviationstyle{short-long}
\newabbreviation{arpanet}{ARPANET}{Advanced Research Projects Agency Network}
\begin{document}
\Gls{puffin}, \gls{duck} and \gls{parrot}.
\gls{arpanet} and \gls{alpha}.
Next use: \gls{arpanet}.
% entries are listed in order of definition
 \printunsrtglossary
\end{document}

Nicola Talbot
Simple document with an unsorted list of all defined entries (source code)
Example document that defines some entries, references a subset of them in the document and displays an unsorted list of the defined entries: parrot, duck, puffin, penguin, alpha and ARPANET. There are four letter groups with a repeated letter: P, D, P, A (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example007.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example007.pdf

1. Introduction

[\printunsrtglossary

Alternatively all glossaries can be displayed using the iterative command:

=

\printunsrtglossaries

This method will display all defined entries, regardless of whether or not they have been used
in the document. Note that this uses the same command for displaying the glossary as Option 4.
This is because bib2gls takes advantage of this method by defining the wanted entries in
the required order and setting the locations (and letter group information, if required). See the
glossaries—extra manual for further details.

Therefore, the above example document has a glossary containing the entries: parrot, duck,
puffin, penguin, o and ARPANET (in that order). Note that the “penguin” entry has been in-
cluded even though it wasn’t referenced in the document.

This just requires a single IZTEX call:

pdflatex myDoc \

unless the glossary needs to appear in the table of contents, in which case a second run is required:

pdflatex myDoc
pdflatex myDoc

(Naturally if the document also contains citations, and so on, then additional steps are required.
Similarly for all the other options above.)
See the glossaries—extra documentation for further details of this method.

1.3.6. Option 6 (“standalone”)

This option is only available with the glossaries—extra extension package. (You can just use
the base glossaries package for the first case, but it’s less convenient. You’d have to manually
insert the entry target before the sectioning command and use \glsentryname { (label)}
or \Glsentryname{ (label)} to display the entry name.) Instead of creating a list, this has
standalone definitions throughout the document. The entry name may or may not be in a section
heading.

You can either define entries in the preamble (or in an external file loaded with \ loadgls-
entries), as with Option 5. Example 8 on page 31 demonstrates standalone definitions:

29

glossaries
—extra

=8

1. Introduction

\documentclass{article}

\usepackage[colorlinks] {hyperref}
\usepackage [sort=none,
nostyles% <- no glossary styles are required
]{glossaries—-extra}

\newglossaryentry{set}{name={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

}

\newglossaryentry{function}{name={function},
description=
{a rule that assigns every element in the
domain \gls{set} to an element in the range \gls
{set}},
symbol={\ensuremath{f (x) }}
}
\newcommand*{\termdef} [1]{%
\section{\glsxtrglossentry{#1} \glsentrysymbol{#1}

o\°

}
\begin{quote}\em\Glsentrydesc{#1}.\end{quote}%

}

\begin{document}

\tableofcontents

\section{Introduction}

Sample document about \glspl{function} and \glspl
{set}.

\termdef {set}

More detailed information about \glspl{set}
with examples.

\termdef{function}

More detailed information about \glspl{function}
with examples.

30

1. Introduction

l \end{document}

This allows the references to hyperlink to the standalone definitions rather than to a glossary.

4 Example 8: Simple document with standalone entries P X2 A
Contents
1 Introduction 1
2 setS 1
3 function f(x) 1

1 Introduction

Sample document about functions and sets.

2 set S

A collection of any kind of objects.

More detailed information about sets with examples.

3 function f(x)

A rule that assigns every element in the domain set to an element
in the range set.

More detailed information about functions with examples.

Or you can use bib2gls if you want to manage a large database of terms. For example:

\documentclass{article}

\usepackage [colorlinks] {hyperref}

\usepackage [record,
nostyles% <- no glossary styles are required
]{glossaries—-extra}

31

% This file is embedded in glossaries-user.pdf
% Example 8 Simple document with standalone entries
% Label: "ex:standalone"
% arara: pdflatex
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[colorlinks]{hyperref}
\usepackage[sort=none,
 nostyles% <- no glossary styles are required
]{glossaries-extra}

\newglossaryentry{set}{name={set},
 description={a collection of any kind of objects},
 symbol={\ensuremath{\mathcal{S}}}
}

\newglossaryentry{function}{name={function},
 description={a rule that assigns every element in the
 domain \gls{set} to an element in the range \gls{set}},
 symbol={\ensuremath{f(x)}} }
\newcommand*{\termdef}[1]{%
 \section{\glsxtrglossentry{#1} \glsentrysymbol{#1}}%
 \begin{quote}\em\Glsentrydesc{#1}.\end{quote}%
}
\begin{document}
\tableofcontents

\section{Introduction}
Sample document about \glspl{function} and \glspl{set}.

\termdef{set}

More detailed information about \glspl{set} with examples.

\termdef{function}

More detailed information about \glspl{function} with examples.
\end{document}

Nicola Talbot
Simple document with standalone entries (source code)
Example document that defines entries and displays them in the document. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example008.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example008.pdf

1. Introduction

\GlsXtrLoadResources[src={terms}, sort=none, save
—locations=false]

\newcommand*{\termdef}[1]{%
\section{\glsxtrglossentry{#1} \glossentrysymbol

{#1}1}1%
\glsadd{#1}% <- index this entry
\begin{quote}\em\Glsentrydesc{#1}.\end{quote}%

}

\begin{document}

\tableofcontents

\section{Introduction}

Sample document about \glspl{function} and \glspl
{set}.

\termdef {set}

More detailed information about \glspl{set}
with examples.

\termdef{function}
More detailed information about \glspl{function}

with examples.
\end{document}

Where the file terms . bib contains:

@entry{set,
name={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

}

@entry{function,
name={function},
description=

{a rule that assigns every element in the domain
\gls{set} to an element in the range \gls{set}},
symbol={\ensuremath{f (x) }}

}

32

1. Introduction

The advantage in this approach (with \loadglsentries orbib2gls) is that you can
use an existing database of entries shared across multiple documents, ensuring consistent notation
for all of them.

In both cases, there’s no need to load all the glossary styles packages, as they’re not required,
so I've used the nostyles package option to prevent them from being loaded.

In the first case, you just need to define the terms (preferably in the preamble or in a file that’s
input in the preamble). No external tool is required. Just run IZTEX as normal. (Twice to ensure
that the table of contents is up to date.)

pdflatex myDoc
pdflatex myDoc

In the second case, you need the record package option (as in Option 4) since bib2gls
is needed to select the required entries, but you don’t need a sorted list:

=

\GlsXtrLoadResources[src={terms}, sort=none]

This will ensure that any entries indexed in the document (through commands like \gls or
\glsadd) will be selected by bib2gls, but it will skip the sorting step. (The chances
are you probably also won’t need location lists either. If so, you can add the option save
—locations=false.)

Remember that for this second case you need to run bib2gls as per Option 4:

pdflatex myDoc
bib2gls myDoc
pdflatex myDoc
pdflatex myDoc

For both cases (with or without bib2g1ls), instead of listing all the entries using \print-
unsrtglossary,youuse \glsxtrglossentry{ (label)} where you want the name
(and anchor with hyperref) to appear in the document. This will allow the link text created by
commands like \g1ls to link to that point in the document. The description can simply be
displayed with \glsentrydesc{(label)} or \Glsentrydesc{label}, as in the
above examples. In both examples, I've defined a custom command \termdef to simplify
the code and ensure consistency. Extra styling, such as placing the description in a coloured
frame, can be added to this custom definition as required.

(Instead of using \glsentrydesc or \Glsentrydesc, you can use \gloss-
entrydesc{(label)}, which will obey category attributes suchas glossdescand gloss-
descfont. See the glossaries—extra manual for further details.)

The symbol (if required) can be displayed with either \glsentrysymbol {(label)} or
\glossentrysymbol{(label)}. Inthe first example, 've used \glsentrysymbol.

33

1. Introduction

In the second I've used \glossentrysymbol. The latter is necessary with bib2gls if
the symbol needs to go in a section title as the entries aren’t defined on the first ISIEX run.

In normal document text, \glsentrysymbol will silently do nothing if the entry hasn’t
been defined, but when used in a section heading it will expand to an undefined internal command
when written to the aux file, which triggers an error.

The \glossentrysymbol command performs an existence check, which triggers a
warning if the entry is undefined. (All entries will be undefined before the first bib2gls call.)
You need at least glossaries—extra v1.42 to use this command in a section title. (\gloss-
entrysymbol is defined by the base glossaries package but is redefined by glossaries—extra.)
If hyperref has been loaded, this will use \texorpdfstring to allow a simple expansion
for the PDF bookmarks (see the glossaries—extra user manual for further details).

If you want to test if the s ymbo 1 field has been set, youneed touse \ 1 fglshassymbol
outside of the section title. For example:

\ifglshassymbol{#1}%
{\section{\glsxtrglossentry{#1} \glossentrysymbol

{#1}}}
{\section{\glsxtrglossentry{#1}}}

B

In both of the above examples, the section titles start with a lowercase character (because the
name value is all lowercase in entry definitions). You can apply automatic case change with the
glossname category attribute. For example:

\glssetcategoryattribute{general}{glossname}
{firstuc}

or (for title-case)

\glssetcategoryattribute{general}{glossname}{title}

8 LB

However, this won’t apply the case change in the table of contents or bookmarks. Instead you can
use helper commands provided by glossaries—extra v1.49+ but make sure you have up-to-date
versions of glossaries and mfirstuc.

In the second example, you can instead use bib2gls to apply a case change. For example,
to apply sentence case to the name field:

\GlsXtrLoadResources[src={terms},
sort=none, save—-locations=false,
replicate-fields={name=text},

_ B

34

1. Introduction

name—case—-change=firstuc

]

(Or name—-case—-change=title for title case.) This copies the name value to the
text field and then applies a case change to the name field (leaving the text field un-
changed). The name in the section titles now starts with a capital but the link text produced
by commands like \ g1 s is still lowercase.

In the first example (without bib2g1ls) you can do this manually. For example:

=

\newglossaryentry{set}{name={Set}, text={set},
description={a collection of any kind of objects},
symbol={\ensuremath{\mathcal{S}}}

}

A more automated solution can be obtained with the standalone helper commands for the PDF
bookmark and heading text (glossaries—extra v1.49+).

Note that if you use the default save—locations=true withbib2gls,it’s possible
to combine Options 4 and 6 to have both standalone definitions and an index. In this case, a
glossary style is required. In the example below, I've use bookindex, which is provided in the
glossary—bookindex package (bundled with glossaries—extra). I don’t need any of the other style
packages, so I can still keep the nost y1es option and just load glossary—bookindex:

\usepackage [record=nameref, $ <- using bib2gls
nostyles,% <- don't load default style packages
stylemods=

bookindex, % <- load glossary-bookindex.sty
style=book-

index% <- set the default style to 'bookindex'

]{glossaries—-extra}

I also need to sort the entries, so the resource command iS now:

\GlsXtrLoadResources[src={terms}
,% definitions in terms.bib
sort=en-GB, $ sort by this locale
replicate-fields={name=text},
name—-case-change=firstuc

]

At the end of the document, I can add the glossary:

35

1. Introduction

B

[\printunsrtglossary[title=Index, target=false]

Note that I've had to switch off the hypertargets with t arget=false (otherwise there would
be duplicate targets). If you want letter group headings you need to use the ——group switch:

bib2gls —-—-group myDoc

or if you are using arara:

B (L0

[% arara: bib2gls: { group: on }

The bookindex style doesn’t show the description, so only the name and location is displayed.
Remember that the name has had a case change so it now starts with an initial capital. If you feel
this is inappropriate for the index, you can adjust the bookindex style so that it uses the text
field instead. For example:

\renewcommand*{\glsxtrbookindexname} [1]{%
\glossentrynameother{#1}{text}}

_ B

See the glossaries—extra user manual for further details about this style.

Note that on the first I5TEX run none of the entries will be defined. Once they are defined, the
page numbers may shift due to the increased amount of document text. You may therefore need
to repeat the document build to ensure the page numbers are correct.

If there are extra terms that need to be included in the index that don’t have a description, you
can define them with @index in the bib file. For example:

@index{element}
@index{member, alias={element}}

They can be used in the document as usual:

The objects that make up a set are the \glspl
{element}
or \glspl{member}.

See glossaries-extra and bib2gls: An Introductory Guide® or the bib2gls user manual
for further details.

‘mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

36

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

1. Introduction

1.4. Dummy Entries for Testing

In addition to the sample files described in §18, glossaries also provides some files containing
lorum ipsum dummy entries. These are provided for testing purposes and are on TgX’s path (in
tex/latex/glossaries/test—entries) so they can be included via \ input
or \loadglsentries. The glossaries—extra package provides il versions of all these
files for use with bib2gls. The files are as follows:

Nexample-glossaries-brief.tex

These entries all have brief descriptions. For example:

Ei

\newglossaryentry{lorem}{name={lorem},description=
{ipsum} }

Nexample-glossaries—-utf8.tex

This file is based on example—-glossaries—brief.tex but random characters
have been converted to accented characters to test UTF-8 support.

(N example—-glossaries—long.tex

These entries all have long descriptions. For example:

\newglossaryentry{loremipsum}{name={lorem ipsum},
description={dolor sit amet, consectetuer adipiscing
elit. Ut purus elit, vestibulum ut, placerat ac,
adipiscing vitae, felis. Curabitur dictum gravida
mauris.}}

Nexample-glossaries—-multipar.tex

These entries all have multi-paragraph descriptions. For example:

\longnewglossaryentry{loremi—-ii}{name={lorem 1--2}}

e

%
{%

Lorem ipsum

Nam dui ligula...

}

(Nexample—-glossaries—-symbols.tex

37

1. Introduction

These entries all use the symbo 1 key. For example:

\newglossaryentry{alpha}{name={alpha},
symbol={\ensuremath{\alphatl},
description={Quisque ullamcorper placerat ipsum.}}

(Nexample-glossaries—symbolnames.tex

Similar to the previous file but the symbo 1 key isn’t used. Instead the symbol is stored in
the name key. For example:

=

\newglossaryentry{sym.alpha}{sort={alpha},
name={\ensuremath{\alpha}},
description={Quisque ullamcorper placerat ipsum.}}

Nexample—-glossaries—user.tex

The top level (level 0) entries have the symbol key and all userl, ..., user6 keys set.

For example:

\newglossaryentry{sample-a}
{name={a name},
description={a description},
symbol={\ensuremath{\alphal},
userl={A},

userz2={1},

user3={i},

userd={A-1},
userb={25.2020788573521},
user6={1585-11-06}}

There are also some level 1 entries, which may or may not have the symbo 1 and user keys set.

For example:

\newglossaryentry{sample-b-0}
{parent={sample-b},

name={b/0 name},
description={child 0 of b},
symbol={\ensuremath{\sigma}l},
user2={0},

38

1. Introduction

userd={a-1i}}

There are no deeper hierarchical entries. Where set, the user 1 key is an uppercase letter (A—
Z), the user?2 key is an integer, the user 3 key is a lowercase Roman numeral, the user4
key is in the form (alpha)-(roman) where (alpha) is either an upper or lowercase letter (a—z or
A-Z) and (roman) is either an upper or lowercase Roman numeral. The use r 5 key is a random
number (in the range (—50, +50) for top level (level 0) entries and (—1,+1) for child entries).
The user 6 key is a random date between 1000-01-01 and 2099-12-31.

Nexample-glossaries—images.tex

These entries use the use r 1 key to store the name of an image file. (The images are provided
by the mwe package and should be on TEX’s path.) One entry doesn’t have an associated image
to help test for a missing key. The descriptions are long to allow for tests with the text wrapping

around the image. For example:

\longnewglossaryentry{sedfeugiat}{name={sed feugiat}

userl={example-image}}%
{%

Cum sociis natoque...

Etiam...

}

Nexample-glossaries—acronym.tex

These entries are all acronyms. For example:

\newacronym[type={\glsdefaulttype}]{1id}{LID}
{lorem ipsum
dolor}

glossaries—extra

If you use the glossaries—extra extension package, then \newacronym is redefined
to use \newabbreviation with the category key set to acronym (rather than
the default abbreviation). This means that you need to set the abbreviation style for the
acronym category. For example:

=

\setabbreviationstyle[acronym] {long-short}

39

1. Introduction

(Mexample—-glossaries—acronym—desc.tex

ple:

This file contains entries that are all acronyms that use the descript ion key. For exam-

\newacronym[type={\glsdefaulttype},

description={fringilla a, euismod sodales,
sollicitudin vel, wisi}]{ndl}{NDL}{nam dui ligula}

If you use the glossaries—extra extension package, then \newacronym is redefined
to use \newabbreviation with the category key set to acronym (rather than
the default abbreviation). This means that you need to set the abbreviation style for the

acronym category. For example:

glossaries—extra

=

\setabbreviationstyle[acronym] {long-short-desc}

(Nexample-glossaries—acronyms—-lang.tex

key. For example:

These entries are all acronyms, where some of them have a translation supplied in the user1

\newacronym[type={\glsdefaulttype}, userl=
{love itself}]
{li}{LI}{lorem ipsum}

\.

If you use the glossaries—extra extension package, then \newacronym is redefined
to use \newabbreviation with the category key set to acronym (rather than
the default abbreviation). This means that you need to set the abbreviation style for the

acronym category. For example:

glossaries—extra

=

\setabbreviationstyle[acronym] {long-short-user}

(Nexample-glossaries—parent.tex

These are hierarchical entries where the child entries use the name key. For example:

40

1. Introduction

\newglossaryentry{sedmattis}{name={sed mattis},
description={erat sit amet}}

\newglossaryentry{gravida}{parent={sedmattis},
name={gravida},description={malesuada}}

[(Nexample-glossaries—childnoname.tex

These are hierarchical entries where the child entries don’t use the name key. For example:

\newglossaryentry{scelerisque}{name={scelerisque},
description={at}}

\newglossaryentry{vestibulum}{parent={scelerisque},
description={eu, nulla}}

Nexample—-glossaries—longchild.tex

These entries all have long descriptions and there are some child entries. For example:

\newglossaryentry{longsedmattis}{name={sed mattis},
description=

{erat sit amet dolor sit amet, consectetuer adipiscing
Ut purus elit, vestibulum ut, placerat ac, adipiscing
Curabitur dictum gravida mauris.}}

\newglossaryentry{longgravida}{parent=
{longsedmattis}, name={gravida},
description=

magna. Donec vehicula augue eu neque. Pellentesque hal
senectus et netus et malesuada fames ac turpis egestas
leo.}}

(Nexample—-glossaries—childmultipar.tex

This consists of parent entries with single paragraph descriptions and child entries with multi-

paragraph descriptions. Some entries have the user1 key set to the name of an image file

provided by the mwe package. For example:

41

elit.
vitae, fe

{malesuada libero, nonummy eget, consectetuer id, vulputate a,

itant mor
Mauris u

1. Introduction

,

\newglossaryentry{hiersedmattis}{name={sed mattis}
,userl={example-image},

description=
{Erat sit amet dolor sit amet, consectetuer adipiscing|elit.

Ut purus elit, vestibulum ut, placerat ac, adipiscing|vitae, fe
dictum gravida mauris. Ut pellentesque augue sed urna. |Vestibulu
diam eros, fringilla et, consectetuer eu, nonummy id, $apien. Nu
at lectus. In sagittis ultrices mauris. Curabitur malegsuada erat
amet massa. Fusce blandit. Aliquam erat volutpat.}}

\longnewglossaryentry{hierloremi-ii}
{name={lorem 1--2},parent={hiersedmattis}}%

{%

Lorem ipsum

Nam dui ligula...

}

Nexample-glossaries—-cite.tex

These entries use the user 1 key to store a citation key (or comma-separated list of citation
keys). The citations are defined in xamp 1 . bib, which should be available on all modern TgX
distributions. One entry doesn’t have an associated citation to help test for a missing key. For
example:

=

\newglossaryentry{fusce}{name={fusce},
description={suscipit cursus sem},userl={article-
minimal}}

(N example—-glossaries-url.tex

These entries use the user 1 key to store an URL associated with the entry. For example:

=

\newglossaryentry{aenean-url}{name={aenean}t,
description={adipiscing auctor est},
userl={http://uk.tug.org/}}

Thesamplefileglossary—-lipsum—examples.texinthedoc/latex/glossaries/sar
directory uses all these files. See also glossaries gallery.!”

The glossaries—extra package provides the additional test file: glossaries
—extra

9dickimaw-books.com/gallery/#glossaries

42

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//glossary-lipsum-examples.tex
https://www.dickimaw-books.com/gallery/#glossaries
https://www.dickimaw-books.com/gallery/#glossaries

1. Introduction

Nexample-glossaries-xr.tex

These entries use the see key provided by the base glossaries package and alsothe a1ias
and seeal so keys that require glossaries—extra. For example:

\newglossaryentry{alias—-lorem}{name={alias—-lorem},
description={ipsum},alias={lorem}}

\newglossaryentry{amet }{name={amet}, description=
{consectetuer},
see={dolor}}

\newglossaryentry{arcu}name={arcu},description=
{libero},
seealso={placerat,vitae, curabitur}

1.5. Multi-Lingual Support
(i]

=
The glossaries package uses the tracklang package to determine the document lan-

guages. Unfortunately, because there isn’t a standard language identification framework
provided with I&TEX, tracklang isn’t always able to detect the selected languages ei-
ther as a result of using an unknown interface or where the interface doesn’t provide a
way of detecting the language. In particular, tracklang can’t pick up languages spec-
ified using babel’s \babelprovide. In the event that tracklang can’t detect the
language, use the 1 anguages package option. See §1.2 and also Localisation with
tracklang. tex for further details.

dickimaw-books.com/latex/tracklang/

As from version 1.17, the glossaries package can be used with xindy as well as make-
index. If you are writing in a language that uses an extended Latin alphabet or non-Latin al-
phabet it’s best to use Option 3 (x1indy)or Option4 (bib2gls)asmakeindex (Option 2)
is hard-coded for the non-extended Latin alphabet and Option 1 can only perform limited ASCII
comparisons.

This means that with Options 3 or 4 you are not restricted to the A, ..., Z letter groups. If you
want to use x1ndy, remember to use the x1ndy package option. For example:

43

https://www.dickimaw-books.com/latex/tracklang/
https://www.dickimaw-books.com/latex/tracklang/
https://www.dickimaw-books.com/latex/tracklang/

1. Introduction

\documentclass[french]{article}
\usepackage [utf8] {inputenc}
\usepackage [T1l]{fontenc}
\usepackage{babel}
\usepackage[xindy] {glossaries}

If you are using a non-Latin script, you may need the xindynoglsnumbers=option or
use \GlsSetXdyFirstLetterAfterDigits to indicate the first letter group that
should follow the number group.

If you want to use bib2gls, you need to use the record option with glossaries—extra
and supply the definitions in b 1D files. (See the b1b2gls user manual for further details.)
[i
=
Note that although a non-Latin character, such as €, looks like a plain character in your

tex file, with standard IZTEX it’s actually a macro and can therefore cause problems.
(This issue doesn’t occur with XgI4TEX or LualfTEX which both natively support UTF-8.)
Recent versions of the IZTEX kernel have made significant improvements in handling UTF-
8. To ensure you have the best UTF-8 support, use at least mfirstuc v2.08+ with glossaries
v4.50+ (and, if required, glossaries—extra v1.49+).

With old versions of mfirstuc (pre v2.08), if you use a UTF-8 character at the start of an entry
name, you must place it in a group, or it will cause a problem for sentence case commands (e.g.
\G1s). For example:

=

¢

% mfirstuc v2.07:
\newglossaryentry{elite}{name={{é}lite},
description={select group or class}}

This isn’t necessary with glossaries v4.50+ and mfirstuc v2.08+.

% mfirstuc v2.08:
\newglossaryentry{elite}{name={élite},
description={select group or class}}

If you are using xindy or bib2gls, the application needs to know the encoding of the
tex file. This information is added to the aux file and can be picked up by makeglos-
sariesandbib2gls. If youuse x i ndy explicitly instead of via \makeglossaries,
you may need to specify the encoding using the —C option. Read the x i ndy manual for further
details of this option.

If you have the double-quote character (") as an active character (for example, a babel short-

44

1. Introduction

hand) and you want to use makeindex’s —g option, you'll need to change makeindex’s
quote character using:

X

[\GlsSetQuote({ (character)}

J

Note that (character) may not be one of ? (question mark), | (pipe) or ! (exclamation mark).
For example:

=

[\GlsSetQuote{+}

This must be done before \makeglossaries and any entry definitions. It’s only applicable
for makeindex. This option in conjunction with ngerman will also cause makeglos-
saries to use the —g switch when invoking makeindex.

[i
=
Be careful of babel’s shorthands. These aren’t switched on until the start of the document,

so any entries defined in the preamble won’t be able to use those shorthands. However, if
you define the entries in the document and any of those shorthands happen to be special
characters formakeindex or xindy (such as the double-quote) then this will interfere
with code that tries to escape any of those characters that occur in the sort key.

In general, it’s best not to use babel’s shorthands in entry definitions. For example:

\documentclass{article}

\usepackage [ngerman] {babel}
\usepackage{glossaries}

\GlsSetQuote{+}

\makeglossaries

\newglossaryentry{rna}{name=ribonukleins&dure,
sort={ribonukleins"aure},

description={eine Nukleinsdure}}

\begin{document}
\gls{rna}

\printglossaries

45

1. Introduction

l \end{document} J

1.5.1. Changing the Fixed Names

The fixed names are produced using the commands listed in Table 1.2 on the following page.
If you aren’t using a language package such as babel or polyglossia that uses caption hooks,
you can just redefine these commands as appropriate. If you are using babel or polyglossia,
you need to use their caption hooks to change the defaults. See changing the words babel
uses or read the babel or polyglossia documentation. If you have loaded babel, then glossaries
will attempt to load translator, unless you have used the notranslate, translate=
falseor translate=babel package options. If the translator package is loaded, the
translations are provided by dictionary files (for example, glossaries—dictionary-
English.dict). See the translator package for advice on changing translations provided
by translator dictionaries. If you can’t work out how to modify these dictionary definitions, try
switching to babel’s interface using t ranslate=babel:

=

\documentclass[english, french] {article}
\usepackage{babel}
\usepackage [translate=babel] {glossaries}

and then use babel’s caption hook mechanism. Note that if you pass the language options directly
to babel rather that using the document class options or otherwise passing the same options to
translator, then translator won’t pick up the language and no dictionaries will be loaded and
babel’s caption hooks will be used instead.

As from version 4.12, multilingual support is provided by separate language modules that
need to be installed in addition to installing the glossaries package. You only need to install
the modules for the languages that you require. If the language module has an unmaintained
status, you can volunteer to take over the maintenance by contacting me at http://www.
dickimaw-books.com/contact .html. Thetranslator dictionary files for glossaries
are now provided by the appropriate language module. For further details about information spe-
cific to a given language, please see the documentation for that language module.

Examples of use:

* Using babel and translator:

\documentclass[english, french]{article}
\usepackage{babel}
\usepackage{glossaries}

(translator is automatically loaded).

46

https://texfaq.org/FAQ-latexwords
https://texfaq.org/FAQ-latexwords
http://www.dickimaw-books.com/contact.html
http://www.dickimaw-books.com/contact.html

Command Name
\glossaryname
\acronymname

\entryname

\descriptionname

\symbolname

\pagelistname

1. Introduction

Table 1.2.: Customised Text

Translator Key Word
Glossary
Acronyms

Notation
(glossaries)

Description
(glossaries)

Symbol
(glossaries)

Page List
(glossaries)

\glssymbolsgroupname Symbols

(glossaries)

\glsnumbersgroupname Numbers

(glossaries)

47

Purpose

Title of the main glossary.

Title of the list of acronyms (when
used with package option
acronym).

Header for first column in the
glossary (for 2, 3 or 4 column
glossaries that support headers).
Header for second column in the
glossary (for 2, 3 or 4 column
glossaries that support headers).
Header for symbol column in the
glossary for glossary styles that
support this option.

Header for the page list column in the
glossary for glossaries that support
this option.

Header for symbols section of the
glossary for glossary styles that
support this option.

Header for numbers section of the
glossary for glossary styles that
support this option.

1. Introduction

 Using babel:

\documentclass[english, french]{article}
\usepackage{babel}
\usepackage[translate=babel] {glossaries}

(translator isn’t loaded). The glossaries—extra package has t ranslate=babel as
the default if babel has been loaded.

» Using polyglossia:

\documentclass{article}
\usepackage{polyglossia}
\setmainlanguage{english}
\usepackage{glossaries}

Due to the varied nature of glossaries, it’s likely that the predefined translations may not be
appropriate. If you are using the babel package and the glossaries package optiont ranslate
=babel, you need to be familiar with the advice given in changing the words babel uses. If you
are using the translator package, then you can provide your own dictionary with the necessary
modifications (using \deftranslation)andloaditusing \usedictionary. If you
simply want to change the title of a glossary, you can use the £ it 1 e key in commands like
\printglossary (but not the iterative commands like \printglossaries).

[i
=
Note that the translator dictionaries are loaded at the beginning of the document, so it

won’t have any effect if you put \deftranslation in the preamble. It should be
put in your personal dictionary instead (as in the example below). See the translator doc-
umentation for further details.

Your custom dictionary doesn’t have to be just a translation from English to another lan-
guage. You may prefer to have a dictionary for a particular type of document. For example,
suppose your institution’s in-house reports have to have the glossary labelled as “Nomencla-
ture” and the location list should be labelled “Location”, then you can create a file called, say,
myinstitute—glossaries—dictionary—-English.dict that contains the
following:

=

\ProvidesDictionary{myinstitute-glossaries—
dictionary}{English}
\deftranslation{Glossary}{Nomenclature}

48

https://texfaq.org/FAQ-latexwords

1. Introduction

\deftranslation{Page List (glossaries) }{Location}

You can now load it using:

=

\usedictionary{myinstitute-glossaries—-dictionary}

(Make surethatmyinstitute—-glossaries—-dictionary—-English.dict can
be found by TgX.) If you want to share your custom dictionary, you can upload it to CTAN.

If you are using babel and don’t want to use the translator interface, you can use the package
option translate=babel. For example:

\documentclass [british]{article}

\usepackage{babel}
\usepackage [translate=babel] {glossaries}

\addto\captionsbritish{$%
\renewcommand*{\glossaryname}{List of Terms}$%
\renewcommand*{\acronymname}{List of Acronyms}%

}

Note that x1ndy and bib2gls provide much better multi-lingual support than make-
index, solrecommend that you use Options 2 or 3 if you have glossary entries that contain non-
Latin characters. See §14 for further details on xindy, and see the bib2gls user manual
for further details of that application.

1.5.2. Creating a New Language Module

The glossaries package now uses the tracklang package to determine which language modules
need to be loaded. If you want to create a new language module, you should first read the track-
lang documentation.

To create a new language module, you need to at least create two files called: glossaries
—(lang) . 1dfandglossaries—dictionary—(Lang).dict where (lang) is the root
language name (for example, english) and (Lang) is the language name used by translator
(for example, English).

Here’s an example of glossaries—dictionary-English.dict:

=

\ProvidesDictionary{glossaries—-dictionary}{English}

49

http://www.ctan.org/

1. Introduction

\providetranslation{Glossary}{Glossary}
\providetranslation{Acronyms}{Acronyms}
\providetranslation{Notation (glossaries) }{Notation}
\providetranslation{Description (glossaries) }
{Description}

\providetranslation{Symbol (glossaries) }{Symbol}
\providetranslation{Page List (glossaries)}

{Page List}

\providetranslation{Symbols (glossaries) }{Symbols}
\providetranslation{Numbers (glossaries) }{Numbers}

You can use this as a template for your dictionary file. Change English to the translator
name for your language (so that it matches the file name glossaries—-dictionary—
(Lang) .dict) and, for each \providetranslation, change the second argument to
the appropriate translation.

Here’s an example of glossaries—english.1df:

\ProvidesGlossariesLang{english}

\glsifusedtranslatordict{English}

{%
\addglossarytocaptions{\CurrentTrackedLanguage}%
\addglossarytocaptions{\CurrentTrackedDialect}%

o\

}
{
\@ifpackageloaded{polyglossia}l%
{%
\newcommand*{\glossariescaptionsenglish}{%
\renewcommand*{\glossaryname}{\textenglish
{Glossary}}5%s
\renewcommand*{\acronymname } { \textenglish
{Acronyms}}%
\renewcommand*{\entryname}{\textenglish
{Notation}}%
\renewcommand*{\descriptionname}{\textenglish
{Description}}%
\renewcommand*{\symbolname}{\textenglish
{Symbol}}%
\renewcommand*{\pagelistname}{\textenglish
{Page List}}%
\renewcommand*{\glssymbolsgroupname}

50

1. Introduction

{\textenglish{Symbols}}%
\renewcommand* {\glsnumbersgroupname }
{\textenglish{Numbers}}%
1S

o\°

o\°

}

{

\newcommand*{\glossariescaptionsenglish}{%
\renewcommand*{\glossaryname}{Glossary}%
\renewcommand*{\acronymname} {Acronyms }%
\renewcommand*{\entryname}{Notation}$%
\renewcommand*{\descriptionname}{Description}

o\

\renewcommand*{\symbolname}{Symbol}%
\renewcommand*{\pagelistname}{Page List}%
\renewcommand*{\glssymbolsgroupname}{Symbols}

o\

\renewcommand* {\glsnumbersgroupname } {Numbers}

o\

o\°

}
s
\ifcsdef{captions\CurrentTrackedDialect}

{%

\csappto{captions\CurrentTrackedDialect}%

{%

\glossariescaptionsenglish

o\

}

o\°

o\°

}
{
\ifcsdef{captions\CurrentTrackedLanguage}
{%

\csappto{captions\CurrentTrackedLanguage}%

\glossariescaptionsenglish

}%
\glossariescaptionsenglish

}
\renewcommand*{\glspluralsuffix}{s}
\renewcommand*{\glsacrpluralsuffix}{\glsplural-

51

1. Introduction

suffix}
\renewcommand*{\glsupacrpluralsuffix}{\glstextup
{\glspluralsuffix}}

This is a somewhat longer file, but again you can use it as a template. Replace English with
the translator language label (Lang) used for the dictionary file and replace english with
the root language name (lang). Within the definition of \glossariescaptions(lang),
replace the English text (such as “Glossaries”) with the appropriate translation.

The suffixes used to generate the plural forms when the plural hasn’t been specified are given
by \glspluralsuffix (for general entries). For acronyms defined with the base \new-
acronym, \glsupacrpluralsuffixisused for the small caps acronym styles where
the suffix needs to be set using \glstextup to counteract the effects of \textsc and
\glsacrpluralsuf fix forother acronym styles. There’s no guarantee when these com-
mands will be expanded. They may be expanded on definition or they may be expanded on use,
depending on the glossaries configuration.

(i]
f =

Therefore these plural suffix command definitions aren’t included in the \captions—

(language) hook as that’s typically not switched used until the start of the document. This

means that the suffix in effect will be for the last loaded language that redefined these

commands. It’s best to initialise these commands to the most common suffix required in
your document and use the plural, longplural, shortplural etc keys to
override exceptions.

If you want to add a regional variation, create a file called glossaries—(iso-lang)— (iso-
region) . 1A £, where (iso-lang) is the ISO language code and (iso-region) is the ISO country
code. For example, glossaries—en—GB.1df. This file can load the root language file
and make the appropriate changes, for example:

\ProvidesGlossariesLang{en—-GB}
\RequireGlossariesLang{english}
\glsifusedtranslatordict{British}

{%
\addglossarytocaptions{\CurrentTrackedLanguage}%
\addglossarytocaptions{\CurrentTrackedDialect}%

t
{

o\

\@ifpackageloaded{polyglossia}%
{%

% polyglossia

52

% Modify \glossariescaptionsenglish as appropriatg

for

1. Introduction

o\°

o\

}

{
% Modify \glossariescaptionsenglish as appropriatsg
% non-polyglossia
}%

}

174

If the translations includes non-Latin characters, it’s a good idea to provide code that’s inde-
pendent of the input encoding. Remember that while some users may use UTF-8 (and it’s now
the default encoding with modern ISTEX kernels), others may use Latin-1 or any other supported
encoding, but while users won’t appreciate you enforcing your preference on them, it’s useful to
provide a UTF-8 version.

The glossaries—irish. 1df file provides this as follows:

\ProvidesGlossariesLang{irish}

\glsifusedtranslatordict{Irish}

{%
\addglossarytocaptions{\CurrentTrackedLanguage}%
\addglossarytocaptions{\CurrentTrackedDialect}%

o\

}
{
\ifdefstring{\inputencodingname}{utf8}
{\input{glossaries—irish-utf8.1df}}%
{%
\ifdef\XeTeXinputencoding% XeTeX defaults to UTF-8
{\input{glossaries—irish-utf8.1df}}%
{\input{glossaries—-irish-noenc.1df}}

t

\ifcsdef{captions\CurrentTrackedDialect}

{%
\csappto{captions\CurrentTrackedDialect}%
{%

\glossariescaptionsirish
%
%
{%

\ifcsdef{captions\CurrentTrackedLanguage}
{
\csappto{captions\CurrentTrackedLanguage}%

{%

53

for

1. Introduction

\glossariescaptionsirish

—~
o\

o\°

o\

b
{
s

o\

}%
\glossariescaptionsirish

}

(Again you can use this as a template. Replace 1r1sh with your root language label and
Irish with the translator dictionary label.)

There are now two extra files: glossaries—irish—noenc.1ldf (no encoding in-
formation) and glossaries—irish-utf£8.1df (UTF-8).

These both define \glossariescaptionsirishbutthe *~noenc. 1df file uses

IATEX accent commands:

\@ifpackageloaded{polyglossia}l%
{%
\newcommand*{\glossariescaptionsirish}{%
\renewcommand*{\glossaryname}{\textirish{Gluais}

o\

}
\renewcommand*{\acronymname }{\textirish
{Acrainmneachal}}%
\renewcommand*{\entryname}{\textirish{Ciall}}%
\renewcommand*{\descriptionname}{\textirish
{Tuairisc}}%
\renewcommand* { \symbolname}{\textirish
{Comhartha}l}%
\renewcommand*{\glssymbolsgroupname}{\textirish
{Comhartha\'\1}}%
\renewcommand* { \pagelistname}{\textirish
{Leathanaigh}}%
\renewcommand* {\glsnumbersgroupname}{\textirish
{Uimhreachal}}%

}%

o\°

}
{

o\

\newcommand*{\glossariescaptionsirish}{%
\renewcommand*{\glossaryname}{Gluais}$%
\renewcommand*{\acronymname} {Acrainmneacha}%
\renewcommand*{\entryname}{Ciall}$%

54

1. Introduction

\renewcommand*{\descriptionname}{Tuairisc}%
\renewcommand* {\symbolname}{Comhartha}%
\renewcommand* {\glssymbolsgroupname}
{Comhartha\'\1}%
\renewcommand*{\pagelistname}{Leathanaigh}%
\renewcommand*{\glsnumbersgroupname } {Uimhreacha}

o\

—~
o\°

}

whereas the *—ut £8 . 1df file replaces the accent commands with the appropriate UTF-8 char-
acters.

1.6. Generating the Associated Glossary Files
(i)

=
This section is only applicable if you have chosen Options 2 or 4. You can ignore this

section if you have chosen any of the other options. If you want to alphabetically sort your
entries always remember to use the sort key if the name contains any I£[[EX commands
(except if you're using bib2gls).

J

If this section seriously confuses you, and you can’t work out how to run external tools like
makeglossaries or makeindex, you can try using the aut omake package option,
described in §2.5, but you will need TgX’s shell escape enabled. See also Incorporating makeglos-
saries or makeglossaries-lite or bib2gls into the document build.!!

In order to generate a sorted glossary with compact number lists, it is necessary to use an
external indexing application as an intermediate step (unless you have chosen Option 1, which
uses TEX to do the sorting or Option 5, which doesn’t perform any sorting). It is this applica-
tion that creates the file containing the code required to typeset the glossary. If this step is
omitted, the glossaries will not appear in your document. The two indexing applications
that are most commonly used with ISIEX are makeindex and xindy. As from version
1.17, the glossaries package can be used with either of these applications. Previous versions
were designed to be used with makeindex only. With the glossaries—extra package, you can
alsouse bib2gls as the indexing application. (See the glossaries—extraand bib2g1ls user
manuals for further details.) Note that xindy and bib2g1ls have much better multi-lingual
support than makeindex, so xindy or bib2gls are recommended if you're not writing
in English. Commands that only have an effect when x1ndy is used are described in §14.

ldickimaw-books.com/latex/buildglossaries/

55

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

(i]

This is a multi-stage process, but there are methods of automating document compila-
tion using applications such as 1atexmk and arara. With arara you can just add
special comments to your document source:

| —

Bl

o\°

arara: pdflatex
arara: makeglossaries
arara: pdflatex

o\

o\°

With 1atexmk you need to set up the required dependencies.

The glossaries package comes with the Perl script makeglossaries which will run
makeindex or xindy on all the indexing files using a customized style file (which is cre-
ated by \makeglossaries). See §1.6.1 for further details. Perl is stable, cross-platform,
open source software that is used by a number of TgX-related applications (including xindy
and latexmk). Most Unix-like operating systems come with a Perl interpreter. TgX Live
also comes with a Perl interpreter. As far as I know, MikTgX doesn’t come with a Perl in-
terpreter so if you are a Windows MikTgX user you will need to install Perl if you want to
use makeglossaries or xindy. Further information is available at http://www.
perl.org/about .html and MikTeX and Perl scripts (and one Python script).'?

The advantages of using makeglossaries:

It automatically detects whether to use makeindex or x1ndy and sets the relevant
application switches.

One call of makeglossaries will run makeindex/xindy for each glossary
type.

If things go wrong, makeglossaries will scan the messages from makeindex
or x1ndy and attempt to diagnose the problem in relation to the glossaries package.
This will hopefully provide more helpful messages in some cases. If it can’t diagnose the
problem, you will have to read the relevant transcript file and see if you can work it out
from the makeindex or xindy messages.

If makeindex warns about multiple encap values, makeglossaries v2.18+ will
detect this and attempt to correct the problem. This correction is only provided by make-
glossarieswhenmakeindexisusedsince x indy uses the order of the attributes
list to determine which format should take precedence. (see §14.3.) This correction can
be switched off with the —e switch.

If makeindex warns about invalid or empty locations, makeglossaries v4.50+
will detect this and attempt to alter the location to fit makeindex’s syntax. This may

2tex.stackexchange.com/questions/158796

56

http://www.perl.org/about.html
http://www.perl.org/about.html
https://tex.stackexchange.com/questions/158796
http://tex.stackexchange.com/questions/158796

1. Introduction

or may not cause unexpected results in the location list, but it’s useful if the nonumber-
11 st option is used.

* If makeindex hasawarning that could be the result of a command occurring within the
location, makeglossaries v4.50+ will attempt to repair it by moving the command
out of the location and into the encap.

The first two items also apply to makeglossaries—lite.

As from version 4.16, the glossaries package also comes with a Lua script called makeglos-
saries—1ite. Thisisarimmed-down alternative to the makeglossaries Perl script.
It doesn’t have some of the options that the Perl version has and it doesn’t attempt to diagnose
any problems, but since modern TgX distributions come with LuaTgX (and therefore have a Lua
interpreter) you don’t need to install anything else in order touse makeglossaries—1lite
so it’s an alternative to makeglossaries if you want to use Option 2 (makeindex).

If things go wrong and you can’t work out why your glossaries aren’t being generated correctly,
you can use makeglossariesguil as a diagnostic tool. Once you’ve fixed the problem,
you can then go back to using makeglossaries ormakeglossaries—lite.

Whilst I strongly recommended that you use the makeglossaries Perl script or the
makeglossaries—1ite Lua script, it is possible to use the glossaries package without
using those applications. However, note that some commands and package options have no effect
if you explicitly run makeindex/xindy. These are listed in Table 1.3 on the next page.
(i]
If you are choosing not to use makeglossaries because you don’t want to install

Perl, you will only be able to use makeindex as xindy also requires Perl. (Other
useful Perl scripts include epstopdf and 1atexmk, so it’s well-worth the effort to
install Perl.)

Below, references to makeglossaries can usually be substituted with makeglos-
saries—11ite, except where noted otherwise.

If any of your entries use an entry that is not referenced outside the glossary (for example, the
entry is only referenced in the description of another entry), you will need to do an additional
makeglossaries, makeindex or xindy run, as appropriate. For example, suppose
you have defined the following entries:

,

\newglossaryentry{citrusfruit}{name={citrus fruit},
description={fruit of any citrus tree. (See also
\gls{orange}) }}

\newglossaryentry{orange}{name={orange},
description={an orange coloured fruit.}}

and suppose you have \gls{citrusfruit} in your document but don’t reference the
“orange” entry, then the orange entry won’t appear in your glossary until you first create the

57

1. Introduction

glossary and then do another run of makeglossaries, makeindex or xindy. For
example, if the document is called myDoc . t ex, then you must do:

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

(In the case of Option 4, b1b2gls will scan the description for instances of commands like
\ g1ls to ensure they are selected but an extralbilb2gl s call is required to ensure the locations
are included, if location lists are required. See the and bib2gls manual for further details.)

Likewise, an additional makeglossaries and ISEX run may be required if the docu-
ment pages shift with re-runs. For example, if the page numbering is not reset after the table of
contents, the insertion of the table of contents on the second IIEX run may push glossary entries
across page boundaries, which means that the number lists in the glossary may need updating.

The examples in this document assume that you are accessingmakeglossaries, xindy
or makeindex via a terminal. Windows users can use the command prompt which is usu-
ally accessed via the Start =¥ All Programs menu or Start =» All Programs =» Accessories menu or
Start =» Windows System.

Alternatively, your text editor may have the facility to create a function that will call the re-
quired application. See Incorporating makeglossaries or makeglossaries-lite or bib2gls into the
document build."

If any problems occur, remember to check the transcript files (e.g. g1 g or a 1 g) for messages.

Table 1.3.: Commands and package options that have no effect when using xindy or make-
1ndex explicitly

Command or Package Option makeindex xindy
order=letter use —1 use -M ord/letorder
order=word default default
xindy=language={lang}, codepage={code} N/A use —L (lang) —C (code)
\GlsSetXdyLanguage{ (lang)} N/A use —L (lang)
\GlsSetXdyCodePage{{code)} N/A use —C (code)

1.6.1. Using the makeglossaries Perl Script

makeglossaries (options) (aux-file) \

Bdickimaw-books.com/latex/buildglossaries/

58

https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/
https://www.dickimaw-books.com/latex/buildglossaries/

1. Introduction

The makeglossaries script picks up the relevant information from the auxiliary (aux)
file and will either call x i ndy or makeindex, depending on the supplied information. There-
fore, you only need to pass the document’s name without the extensiontomakeglossaries.
For example, if your document is called myDoc . tex, type the following in your terminal:

pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

If you only want one glossary processed (for example, if you are working on a draft of a large
document and want to concentrate on one specific glossary) then include the (our-ext) extension
supplied to \newglossary,suchas glo for the ma in glossary. Note that if you do specify
the extension and your document has multiple glossaries defined, then makeglossaries
will tell you how many glossaries have been ignored unless the —q has been used.

Windows users: TgX Live on Windows has its own internal Perl interpreter and provides
makeglossaries.exe asaconvenient wrapper forthe makeglossaries Perlscript.
MikTgX also provides a wrapper makeglossaries.exe but doesn’t provide a Perl inter-
preter (as far as I know), which is still required even if you run MikTgX’smakeglossaries.exe,
so with MikTEX you’ll need to install Perl. There’s more information about this at MikTeX and
Perl scripts (and one Python script).'*

[i
=
When upgrading the glossaries package, make sure you also upgrade your version of

makeglossaries. The current version is 4.53.

7

Some of the options are only applicable to makeindex and some are only applicable to

xindy.
I E
=
——help
Shows a summary of all available options.
I E
=
——version
Shows the version details.
I E
=
-n

Dry run mode. This doesn’t actually run makeindex/xindy but just prints the command it
would execute based on the information given in the aux file and the supplied options.

“tex.stackexchange.com/questions/158796

59

https://tex.stackexchange.com/questions/158796
https://tex.stackexchange.com/questions/158796
http://tex.stackexchange.com/questions/158796

1. Introduction

—d (directory)

Instructs makeglossaries to change to the given directory, which should be where the
aux, glo etc files are located. For example:

pdflatex -output-directory myTmpDir myDoc
makeglossaries —-d myTmpDir myDoc

B E

Don’t check for multiple encaps (only applicable with makeindex). By default, if you are us-
ingmakeindex,makeglossaries will check the makeindex transcript for multiple
encap warnings.

The multiple encap warning is where different location encap values (location formats) are
used on the same location for the same entry. For example:

\documentclass{article}

\usepackage{glossaries}
\makeglossaries

\newglossaryentry{sample}{name={sample},description=
{an example}}

\begin{document}

\gls{sample}, \gls[format=textbf]{sample}.
\printglossaries

\end{document}

If you explicitly use makeindex, this will cause a warning and the location list will be “1,
17. That is, the page number will be repeated with each format. As from v2.18, makeglos-
saries will check for this warning and, if found, will attempt to correct the problem by re-
moving duplicate locations and retrying. If you actually want the duplicate location, you can
prevent makeglossaries from checking and correcting the duplicates with —e.
There’s no similar check for xindy as xindy won’t produce any warning and will simply
discard duplicates.
=

|

g

Suppresses messages. The makeglossaries script attempts to fork the makeindex/

60

1. Introduction

xindy process using open () on the piped redirection 2>&1 | and parses the processor
output to help diagnose problems. If this method fails makeglossaries will print an “Un-
able to fork” warning and will retry without redirection. Without this redirection, the —q switch
doesn’t work as well. Some operating systems don’t support redirection.

[=
=
-Q
Suppresses the “Unable to fork” warning.
I E
=

-k

Don’t attempt redirection.

—m (application)

The makeindex application. Only the name is required if it’s on the operating system’s path,
otherwise the full path name will be needed.

If you want to use an application that is capable of reading makeindex files (including
support for makeindex style files via —s), then you can use —m to specify the alternative
application to use instead of makeindex. Note that both xindex and texindy can read
makeindex files using the default makeindex syntax but, as of the time of writing this,
they don’t support makeindex style files.

==

—x (application)

The xindy application. Only the name is required if it’s on the operating system’s path, other-
wise the full path name will be needed.
I —_—

|

e

Compress intermediate blanks. This will pass —c to make index. (Ignored if xindy should

be called.)
([=

|

—-r

Disable implicit page range formation. This will pass —r tomakeindex. (Ignoredif x1ndy
should be called.)
[=

==

—p (num)

Set the starting page number. This will pass —p (num) to makeindex. (Ignored if xindy
should be called.)
The following switches may be used to override settings written to the aux file.

61

1. Introduction

I E
=
-1
Use letter ordering. This will pass —1 tomakeindexor-M ord/letorder toxindy.
[=
=
—L (language)
The language to pass to xindy. (Ignored if makeindex should be called.)
l E
=

-9

Employ German word ordering. This will pass —g tomake index. (Ignored if xindy should

be called.)
=

==

—s (filename)

Set the style file. This will pass —s (filename) tomakeindexor —M (basename) to xindy
(where (basename) is (filename) with the xdy extension removed). This will generate an error
if the extension is xdy when make i ndex should be called, or if the extension isn’t xdy when
xindy should be called.

==

—o (filename)

Sets the output file name. Note that this should only be used when only one glossary should be
processed. The default is to set the output filename to the basename supplied to makeglos-
saries with the extension associated with the glossary (the (in-ext) argument of \new-

glossary).
lit

==

—t (filename)

Sets the transcript file name. Note that this should only be used when only one glossary should be
processed. The default is to set the transcript filename to the basename supplied tomakeglos-
saries with the extension associated with the glossary (the (log-ext) argument of \new-
glossary).

1.6.2. Using the makeglossaries—1lite Lua Script

makeglossaries-1lite (options) (aux-file) \

The Lua alternative to the makeglossaries Perl script requires a Lua interpreter, which
should already be available if you have a modern TgX distribution that includes LuaTgX. Lua is
a light-weight, cross-platform scripting language, but because it’s light-weight it doesn’t have the

62

1. Introduction

full-functionality of heavy-weight scripting languages, such as Perl. The makeglossaries
—11te scriptis therefore limited by this and some of the options available to the makeglos-
saries Perl script aren’t available here. (In particular the —d option.) Whilst it may be
possible to implement those features by requiring Lua packages, this would defeat the purpose of
providing this script for those don’t want the inconvenience of learning how to install interpreters
or their associated packages.

[@
=
The script is actually supplied as makeglossaries—1lite.lua but TgX dis-
tributions on Windows convert this to an executable wrapper makeglossaries—
lite.exe and TgX Live on Unix-like systems provide a symbolic link without the
extension.

7

The makeglossaries—1ite script can be invoked in the same way as makeglos-
saries. For example, if your document is called myDoc . tex, then do

makeglossaries—lite myDoc

Note that the arara rule doesn’t contain the hyphen:

o)

% arara: makeglossarieslite

B L0

Some of the options are only applicable to makeindex and some are only applicable to
xindy.

[=
L=
——help
Shows a summary of all available options.
[=
L=
——version
Shows the version details.
[=
L=
-n

Dry run mode. This doesn’t actually run makeindex/xindy but just prints the command it
would execute based on the information given in the aux file and the supplied options.

0

-d

Quiet mode. This suppresses some but not all messages.

63

1. Introduction

s

—m (application)

The makeindex application. Only the name is required if it’s on the operating system’s path,
otherwise the full path name will be needed.
=

==

—x (application)

The x1ndy application. Only the name is required if it’s on the operating system’s path, other-
wise the full path name will be needed.
I —_—

|

e

Compress intermediate blanks. This will pass —c to makeindex. (Ignored if xindy should

be called.)
I —

—

-r

Disable implicit page range formation. This will pass —r tomakeindex. (Ignoredif x1ndy
should be called.)
I =

==

—p (num)

Set the starting page number. This will pass —p (num) to makeindex. (Ignored if xindy
should be called.)
The following switches may be used to override settings written to the aux file.

[=
L=
-1
Use letter ordering. This will pass —1 tomakeindexor-M ord/letordertoxindy.
[=
L=
—L (language)
The language to pass to x1ndy. (Ignored if makeindex should be called.)
[=
L=

-9

Employ German word ordering. This will pass —g tomake index. (Ignored if xindy should
be called.)

[=
|l
—s (filename)
Set the style file.

64

1. Introduction

=3

s

—o (filename)

Sets the output file name. Note that this should only be used when only one glossary should be
processed. The default is to set the output filename to the basename supplied to makeglos-
saries with the extension associated with the glossary (the (in-ext) argument of \new-

glossary).
=

=

—t (filename)

Sets the transcript file name. Note that this should only be used when only one glossary should be
processed. The default is to set the transcript filename to the basename supplied tomakeglos-
saries with the extension associated with the glossary (the (log-ext) argument of \new-
glossary).

1.6.3. Using xindy explicitly (Option 3)

xindy comes with TEX Live. It has also been added to MikTgX, but if you don’t have it
installed, see How to use Xindy with MikTeX.!?

If you want to use xindy to process the glossary files, you must make sure you have used
the xindy package option:

B

[\usepackage[xindy] {glossaries}

This is required regardless of whether you use xindy explicitly or whether it’s called implicitly
via applications such as makeglossaries. This causes the glossary entries to be written in
raw xindy format, so youneed touse —I xindy not -1 tex.

To run x1ndy type the following in your terminal (all on one line):

xindy -L (language) —C (encoding) -1 xindy -M (style) —t
(base) .glg —o (base).gls (base).glo

where (language) is the required language name, (encoding) is the encoding, (base) is the name
of the document without the t ex extension and (style) is the name of the xindy style file
without the xdy extension. The default name for this style file is (base)xdy but can be changed
via \setStyleFile. Youmay need to specify the full path name depending on the current
working directory. If any of the file names contain spaces, you must delimit them using double-
quotes.

For example, if your document is called myDoc . t ex and you are using UTF-8 encoding in
English, then type the following in your terminal:

Btex.stackexchange.com/questions/71167

65

https://tex.stackexchange.com/questions/71167
http://tex.stackexchange.com/questions/71167

1. Introduction

xindy -L english -C utf8 -I xindy -M myDoc -t
myDoc.glg —o myDoc.gls myDoc.glo

Note that this just creates the main glossary. You need to do the same for each of the
other glossaries (including the list of acronyms if you have used the a c r onym package option),
substituting g1g, gls and glo with the relevant extensions. For example, if you have used
the acronym package option, then you would need to do:

xindy -L english -C utf8 -I xindy -M myDoc -t
myDoc.alg —-o myDoc.acr myDoc.acn

For additional glossaries, the extensions are those supplied when you created the glossary with
\newglossary.

Note that if you use makeglossaries instead, you can replace all those calls to x indy
with just one call to makeglossaries:

makeglossaries myDoc \

Note also that some commands and package options have no effect if you use x1ndy explicitly
instead of using makeglossaries. These are listed in Table 1.3 on page 58.

1.6.4. Using makeindex explicitly (Option 2)

If you want to use makeindex explicitly, you must make sure that you haven’t used the
xindy package option or the glossary entries will be written in the wrong format. To run
makeilndex, type the following in your terminal:

makeindex -s (style).ist —t (base).glg —o (base).gls
(base) .glo

where (base) is the name of your document without the t ex extension and (style)ist is the
name of the makeindex style file. By default, this is (base)1st, but may be changed via
\setStyleFile. Note that there are other options, such as —1 (letter ordering). See the
makelndex manual for further details.

For example, if your document is called myDoc . tex, then type the following at the termi-
nal:

makeindex -s myDoc.ist -t myDoc.glg —-o myDoc.gls
myDoc.glo

66

1. Introduction

Note that this only creates the main glossary. If you have additional glossaries (for example,
if you have used the acronym package option) then you must call makeindex for each
glossary, substituting g1g, gls and glo with the relevant extensions. For example, if you
have used the a c ronym package option, then you need to type the following in your terminal:

makeindex —-s myDoc.ist -t myDoc.alg —-o myDoc.acr
myDoc.acn

For additional glossaries, the extensions are those supplied when you created the glossary with
\newglossary.

Note that if you use makeglossaries instead, you can replace all those calls to make-
index with just one call to makeglossaries:

makeglossaries myDoc \

Note also that some commands and package options have no effect if you use makeindex
explicitly instead of using makeglossaries. These are listed in Table 1.3 on page 58.

1.7. Note to Front-End and Script Developers

The information needed to determine whether to use xindy, makeindex or bib2gls
is stored in the aux file. This information can be gathered by a front-end, editor or script to
make the glossaries where appropriate. This section describes how the information is stored in
the auxiliary file.

1.7.1. Makelndex and Xindy

The file extension of the indexing files used for each defined glossary (not including any ignored
glossaries) are given by:

X

\@newglossary{(glossary-label) } { (log) } { {(out-ext) } { (in-ext) }

where (in-ext) is the extension of the indexing application’s input file (the output file from the
glossaries package’s point of view), such as glo, (out-ext) is the extension of the indexing
application’s output file (the input file from the glossaries package’s point of view), suchas gls,
and (log) is the extension of the indexing application’s transcript file, such as g1 g. The label for
the glossary is also given. This isn’t required with makeindex, but with x1ndy it’s needed
to pick up the associated language and encoding (see below). For example, the information for
the default ma i n glossary is written as:

67

1. Introduction

=

[\@newglossary{main}{glg}{gls}{glo}

If glossaries—extra’s hybrid method has been used (with \makeglossaries[(sub-list)]),
then the sub-list of glossaries that need to be processed will be identified with:

X

\glsxtr@makeglossaries/{ (label-list)}

The indexing application’s style file is specified by:

\@ist filename/ (filename)}

The file extension indicates whether to use makeindex (ist) or xindy (xdy). Note
that the glossary information has a different syntax depending on which indexing application is
supposed to be used, so it’s important to call the correct one.

For example, with arara you can easily determine whether to run makeglossaries:

[e)

% arara:
makeglossaries if found("aux", "@istfilename")

It’s more complicated if you want to explicitly run makeindex or xindy.

[i
=
Note that if you choose to explicitly call make index or x i ndy then the user will miss

out on the diagnostic information and the encap-clash fix thatmakeglossaries also
provides.

Word or letter ordering is specified by:

\@glsorder{(order)}

where (order) can be either word or 1etter (obtained from the o rder package option).
If xindy should be used, the language for each glossary is specified by:

X

\@xdylanguage { (glossary-label) } { (language) }

where (glossary-label) identifies the glossary and (language) is the root language (for example,
english).
The codepage (file encoding) for all glossaries is specified by:

68

1. Introduction

\@gls@codepage{(code-page) }

where (code) is the encoding (for example, ut £8). The above two commands are omitted if
makeindex should be used.
If Option 1 has been used, the aux file will contain

\@gls@reference{(rype)} { (label)} { (location) }

for every time an entry has been referenced.

1.7.2. Entry Labels

If you need to gather labels for auto-completion, the writeglslabels package option will
create a file containing the labels of all defined entries (regardless of whether or not the entry
has been used in the document). As from v4.47, there is a similar option writeglslabel-
names that writes both the label and name (separated by a tab).

[glossaries—extra]

The glossaries—extra package also provides docdef=atom, which will create the
glsdefs file but will act like docdef=restricted.

1.7.3. Bib2Gls

If Option 4 has been used, the aux file will contain one or more instances of:

\glsxtr@resource/ (options)} { (basename) }

where (basename) is the basename of the g1 st ex file that needs to be created by bib2gls.
If src={(bib list)} isn’t present in (options) then (basename) also indicates the name of the
associated b 1D file.

For example, with arara you can easily determine whether or not torun bib2gls:

Ei

o

% arara: bib2gls if found("aux", "glsxtr@resource")

(Tt gets more complicated if both \glsxtr@resourceand \@ist filename are present
as that indicates the hybrid record=hybrid option.)

Remember that with bib2gls, the glossary entries will never be defined on the first ISTEX
call (because their definitions are contained in the g1l stex file created by bib2gls). You
can also pick up labels from the records in aux file, which will be in the form:

69

bib2gls

1. Introduction

X
\glsxtr@record{ (label)} { (h-prefix) } { (counter) } { (format) } { (loc) }
or (with record=nameref):
X

\glsxtr@record@nameref {(label)} { (href
prefix) } { (counter) } { (format) } { (location) } { (title) } { {(href anchor) } { (href value) }

or (with \glssee):

\glsxtr@recordsee{ (label)} { (xrlist) }

{label } {xr list} You can also pick up the commands defined with \glsxtrnewglslike,
which are added to the aux file for bib2gls’s benefit:

b §
\Q@glsxtr@newglslike({ (label-prefix)} { {(cs)}
If \GlsXtrSetAltModifier is used, then the modifier is identified with:
) §
\Q@glsxtr@altmodifier{(character)}
Label prefixes (for the \ dg 1 s set of commands) are identified with:
X

\@glsxtr@prefixlabellist{ (list)}

70

2. Package Options

This section describes the available glossaries package options. You may omit the =t rue for
boolean options. (For example, acronym is equivalent to acronym=t rue).

[glossaries—extra

The glossaries—extra package has additional options described in the glossaries—extra
manual. The extension package also has some different default settings to the base pack-
age. Those that are available at the time of writing are included here. Future versions of
glossaries—extra may have additional package options or new values for existing settings
that aren’t listed here.

(i]
=
Note that (key)=(value) package options can’t be passed via the document class options.
(This includes options where the (value) part may be omitted, such as acronym.) This

is a general limitation not restricted to the glossaries package. Options that aren’t (key)=
(value) (such as make index) may be passed via the document class options.

2.1. General Options
=)

|

nowarn

This suppresses all warnings generated by the glossaries package. Don’t use this option if you're
new to using glossaries as the warnings are designed to help detect common mistakes (such as
forgetting to use \makeglossaries). Note that if you use debug with any value other
than £alse it will override this option.

l E
=
nolangwarn
This suppresses the warning generated by a missing language module.
[=
=
noredefwarn

If you load glossaries with a class or another package that already defines glossary related com-
mands, by default glossaries will warn you that it’s redefining those commands. If you are aware
of the consequences of using glossaries with that class or package and you don’t want to be

71

2. Package Options

warned about it, use this option to suppress those warnings. Other warnings will still be issued
unless you use the nowa rn option described above. (This option is automatically switched on

by glossaries—extra.)
=

=
debug=(value) initial: false

Debugging mode may write information to the transcript file or add markers to the document.
The following values are available:
E
(A

debug=false

Switches off debugging mode.

3

debug=true

This will write the following line to the transcript file if any attempt at indexing occurs before
the associated files have been opened by \makeglossaries:

wrglossary ((glossary-type)) ((indexing info))

Note that this setting will also cancel nowa rn.

3

debug=showtargets

As debug=true but also adds a marker where the glossary-related hyperlinks and targets
occur in the document.
The debug=showtarget s option will additionally use:

\glsshowtarget { (target name)}

to show the hypertarget or hyperlink name when \glsdohypertarget is used by com-
mands like \glstarget andwhen \gl sdohyperlink isused by commandslike \gls.
In math mode or inner mode, this uses:

X

\glsshowtargetinner{(rarget name)}

which typesets the target name as:

~

[\glsshowtarget fonttext {(target name)}]

just before the link or anchor. This uses the text-block command:

72

2. Package Options

\glsshowtargetfonttext {(text)}

which checks for math-mode before applying the font change. In outer mode \glsshow-
target uses:

b §
\glsshowtargetouter{ (rarget name)}
which by default places the target name in the margin with a symbol produced with:
b §
\glsshowtargetsymbol { (target name) }

which defaults to a small right facing triangle.
The fontused by both \glsshowtarget fonttext and \glsshowtargetouter
is given by the declaration:

X
\glsshowtargetfont initial: \tt family\footnotesize

B

| S

debug=showaccsupp

As debug=t rue but also adds a marker where the glossary-related accessibility information
occurs (see glossaries—accsupp) using:

X

\glsshowaccsupp/{ (options) } { (PDF element) } { (value) }

[glossaries—extra

The glossaries—extra package provides extra values debug=showwrgloss, that
may be used to show where the indexing is occurring, and debug=all, which switches
on all debugging options. See the glossaries—extra manual for further details.

J

The purpose of the debug mode can be demonstrated with the following example document:

Ej

\documentclass{article}
\usepackage{glossaries}
\newglossaryentry{samplel}{name={samplel}
,description={example}}

73

2. Package Options

\newglossaryentry{sample2}{name={sample2}
,description={example}}

\glsadd{sample2}% <- does nothing here
\makeglossaries

\begin{document}

\gls{samplel}.

\printglossaries

\end{document }

In this case, only the “samplel” entry has been indexed, even though \glsadd{sample?2}
appears in the source code. This is because \ gl sadd{sample?2 } has been used before the
associated file is opened by \makeglossaries. Since the file isn’t open yet, the informa-
tion can’t be written to it, which is why the “sample2” entry doesn’t appear in the glossary.

Without \makeglossaries the indexing is suppressed with Options 2 and 3 but, other
than that, commands like \ g1 s behave as usual.

This situation doesn’t cause any errors or warnings as it’s perfectly legitimate for a user to want
to use glossaries to format the entries (for example, to show a different form on first use) but
not display any glossaries (or the user may prefer to use the unsorted Options 5 or 6). It’s also
possible that the user may want to temporarily comment out \makeglossaries in order
to suppress the indexing while working on a draft version to speed compilation, or the user may
prefer to use Options 1 or 4 for indexing, which don’t use \makeglossaries.

Therefore \makeglossaries can’t be used to enable \newglossaryentry and
commands like \gls and \glsadd. These commands must be enabled by default. (It does,
however, enable the see key as that’s a more common problem. See below.)

The debug mode, enabled with the debug option,

=

\usepackage [debug] {glossaries}

will write information to the log file when the indexing can’t occur because the associated file
isn’t open. The message is written in the form

Package glossaries Info: wrglossary ({(type)) ({text)) on
input line (line number) .

where (type) is the glossary label and (zext) is the line of text that would’ve been written to the
associated file if it had been open. So if any entries haven’t appeared in the glossary but you're
sure you used commands like \glsadd or \glsaddall, try switching on the debug
option and see if any information has been written to the log file.

74

2. Package Options

[

=
savewrites=(boolean) default: true;initial: false

This is a boolean option to minimise the number of write registers used by the glossaries package.
The defaultis savewrites=false. With Options 2 and 3, one write register is required
per (non-ignored) glossary and one for the style file.

o

[In general, this package option is best avoided.

With all options except Options 1 and 414, another write register is required if the g1 sdefs
file is needed to save document definitions. With both Options 1 and 4, no write registers are
required (document definitions aren’t permitted and indexing information is written to the aux
file). If you really need document definitions but you want to minimise the number of write
registers then consider using docde f=restricted with glossaries—extra.

There are only a limited number of write registers, and if you have a large number of glossaries
or if you are using a class or other packages that create a lot of external files, you may exceed
the maximum number of available registers. If savewrites is set, the glossary information
will be stored in token registers until the end of the document when they will be written to the
external files.

(i]
=
This option can significantly slow document compilation and may cause the indexing to

fail. Page numbers in the number list will be incorrect on page boundaries due to TgX’s
asynchronous output routine. As an alternative, you can use the scrwfile package (part of
the KOMA-Script bundle) and not use this option.

By way of comparison, sample—-multiZ2.tex provided with bib2gls has a total of
15 glossaries. With Options 2 or 3, this would require 46 associated files and 16 write registers.
(These figures don’t include standard files and registers provided by the kernel or hyperref, such
as aux and out.) With bib2gls, no write registers are required and there are only 10
associated files for that particular document (9 resource files and 1 transcript file).

[i
=
If you want to use TgX’s shell escape to call makeindex or xindy from your docu-

ment and use savewrites, then use automake=immediate or automake
=makegloss orautomake=1lite.

=
translate=(value) default: txrue; initial: varies

This can take one of the values listed below. If no supported language package has been loaded
the default is translate=false otherwise the default is t ranslate=true for the

75

2. Package Options

base glossaries package and t ranslate=babel for glossaries—extra.

B

| S

translate=true

If babel has been loaded and the translator package is installed, translator will be loaded and the
translations will be provided by the translator package interface. You can modify the trans-
lations by providing your own dictionary. If the translator package isn’t installed and babel
is loaded, the glossaries—babel package will be loaded and the translations will be provided
using babel’s \addto\capt ions(language) mechanism. If polyglossia has been loaded,
glossaries—polyglossia will be loaded.

(o]

| S

translate=false

Don’t provide translations, even if babel or polyglossia has been loaded. (Note that babel provides
the command \glossaryname so that will still be translated if you have loaded babel.)

(&
(A
translate=babel
Don’t load the translator package. Instead load glossaries—babel.
i

=
I recommend you use translate=babel if you have any problems with the trans-

lations or with PDF bookmarks, but to maintain backward compatibility, if babel has been
loaded the defaultis t ranslate=true.

See §1.5.1 for further details.
l —

| S

notranslate

This is equivalent to t rans 1 at e=fal se and may be passed via the document class options.

| —

| S

languages

This automatically implements t ranslate=babel (which means that translator won’t au-
tomatically be loaded) but will also add the list of languages to tracklang’s list of tracked lan-
guages. Each element in the (list) may be an ISO language tag (such as pt —BR) or one of
tracklang’s known language labels (such as british).

[©

=
hyperfirst=(boolean) default: true; initial: true

If true, terms on first use will have a hyperlink, if supported, unless the hyperlink is explicitly
suppressed using starred versions of commands such as \ g1 s*. If false, only subsequent use
instances will have a hyperlink (if supported).

76

2. Package Options

Note that nohypertypes overrides hyperfirst=true. This option only affects
commands that check the first use flag, such as the \ g1 s-like commands (for example, \g1ls or
\glsdisp), but not the \ gl stext-like commands (for example, \glslink or \gls-
text).

The hyperfirst setting applies to all glossary types (unless identified by nohyper-
types or defined with \newignoredglossary). It can be overridden on an individual
basis by explicitly setting the hyper key when referencing an entry (or by using the plus or
starred version of the referencing command).

It may be that you only want to suppress hyperlinks for just the acronyms (where the first use
explains the meaning of the acronym) but not for ordinary glossary entries (where the first use
is identical to subsequent use). In this case, you can use hyperfirst=false and apply
\glsunsetall to all the regular (non-acronym) glossaries. For example:

,

\usepackage [acronym, hyperfirst=false] {glossaries}

(¢}

% acronym and glossary entry definitions

(e}

% at the end of the preamble
\glsunsetall [main]

Alternatively you can redefine the hook

\glslinkcheckfirsthyperhook

which is used by the commands that check the first use flag, such as \ g1 s. Within the definition
of this command, you can use \glslabel to reference the entry label and \glstype to
reference the glossary type. You can also use \ifglsused to determine if the entry has
been used. You can test if an entry is an acronym by checking if it has the 1 ong key set using
\ifglshaslong (or if the short key has been set using \ifglshasshort). For
example, to switch off the hyperlink on first use just for acronyms:

\renewcommand*{\glslinkcheckfirsthyperhook}{%
\ifglsused{\glslabel}{}%
{%
\ifglshaslong{\glslabel}{\setkeys{glslink}{hyper=
false}}%
%
}

Note that this hook isn’t used by the commands that don’t check the first use flag, such as
\glstext. (You can, instead, redefine \glslinkpostsetkeys, which is used by
both the \ g1 s-like and \ gl stext-like commands.)

77

2. Package Options

[glossaries—extra

The glossaries—extra package provides a method of disabling the first use hyperlink ac-
cording to the entry’s associated cat egory. For example, if you only want to switch
off the first use hyperlink for abbreviations then you simply need to set the nohyper—
f1rst attribute for the abbreviation and, if appropriate, acronym categories. (Instead of
using the hyper first package option.) See the glossaries—extra manual for further
details.

I —

|

writeglslabels

This option will create a file called \ jobname.glslabels at the end of the document.
This file simply contains a list of all defined entry labels (including those in any ignored glos-
saries). It’s provided for the benefit of text editors that need to know labels for auto-completion.
If you also want the name, use writeglslabelnames. (See also glossaries—extra’s
docde f=at om package option.)

[bib2gls |
Note that with bib2g1ls the file will only contain the entries that bib2gls has se-
lected from the b 1D files.

writeglslabelnames

Similar to writeglslabels but writes both the label and name (separated by a tab).

undefaction=(value) initial: exrror

Only available with glossaries—extra, the value for this option may be one of:

3

undefaction=error

Generates an error if a referenced entry is undefined (default, and the only available setting with
just the base glossaries package).
[
(A

undefaction=warn

Only warns if a referenced entry is undefined (automatically activated with Option 4).

=
docde f=(value) default: true; initial: false

Only available with glossaries—extra, this option governs the use of \newglossary-

78

2. Package Options

entry. Available values:

B

| S

docdef=false

This setting means that \newglossaryentry is not permitted in the document environ-
ment (default with glossaries—extra and for Option 1 with just the base glossaries package).

B

| S

docdef=restricted

This setting means that \newglossaryent ry is only permitted in the document environ-
ment if it occurs before \printglossary (not available for some indexing options, such

as Option 4).
[&

| S

docdef=atom

This setting is as docdef=restricted but creates the gl sde f s file for use by at om
(without the limitations of docde f=t rue).
[&

| S

docdef=true

This setting means that \newglossaryentry is permitted in the document environment
where it would normally be permitted by the base glossaries package. This will create the
glsdefsfileif \newglossaryentry is found in the document environment.

2.2. Sectioning, Headings and TOC Options

=
toc=(boolean) default: £ rue; initial: varies

Adds the glossaries to the table of contents (t oc file). Note that an extra ISIgX run is required
with this option. Alternatively, you can switch this function on and off using

X
\glstoctrue
and
X
\glstocfalse
You can test whether or not this option is set using:
X
\ifglstoc (rrue)\else (false)\fi initial: \1ffalse

79

2. Package Options

The default value is t oc=f a1 se for the base glossaries package and t oc=t rue for glossaries

—extra.
(@
numberline=(boolean) default: true;initial: false

When used with t oc=t rue option, this will add \number1line{ } in the final argument
of \addcontentsline. This will align the table of contents entry with the numbered
section titles. Note that this option has no effect with toc=false. If toc=true is used
without numberline, the glossary title will be aligned with the section numbers rather than
the section titles.

section=(name) default: section

This option indicates the sectional unit to use for the glossary. The value (name) should be
the control sequence name without the leading backslash or following star (for example, just
chapter not \chapter or chapter*).

The default behaviour is for the glossary heading to use \ chapter, if that command exists,
or \section otherwise. The starred or unstarred form is determined by the numbered-
section option.

Example:

[\usepackage [section=subsection] {glossaries}

You can omit the value if you want to use \ section:

[\usepackage[section] {glossaries}

is equivalent to

D (B LD

\usepackage [section=section] {glossaries}

You can change this value later in the document using

\setglossarysection(name)

where (name) is the sectional unit.
The start of each glossary adds information to the page header via \glsglossarymark
(see §8.2).

80

2. Package Options

=
ucmark=(boolean) default: € rue; initial: varies

If ucmark=true, this will make \glsglossarymark use all caps in the header, oth-
erwise no case change will be applied. The default is ucmark=false, unless memoir has
been loaded, in which case the default is ucmark=t rue.

You can test if this option has been set using:

X

\ifglsucmark (true)\else (false)\fi initial: varies

For example:

\renewcommand{\glsglossarymark}[1]{%
\ifglsucmark
\markright{\glsuppercase{#1}}%
\else
\markright {#1}%
\fi}

—

--—
—

=
numberedsection=(value) default: nolabel; initial: false

The glossaries are placed in unnumbered sectional units by default, but this can be changed using
numberedsect ion. This option can take one of the following values:
[&

| A

numberedsection=false

No number, that is, use the starred form of sectioning command (for example, \chapter*

or \section*).
S

| S

numberedsection=nolabel

Use a numbered section, that is, the unstarred form of sectioning command (for example, \chapter
or \section), but no label is automatically added.
[

| A

numberedsection=autolabel

Use numbered sections with automatic labelling. Each glossary uses the unstarred form of a
sectioning command (for example, \chapter or \section) and is assigned a label (via
\label). The label is formed from the glossary’s label prefixed with:

81

2. Package Options

\glsautoprefix

The default value of \glsautoprefixisempty. For example, if you load glossaries using:

\usepackage [section, numberedsection=autolabel]
{glossaries}

_ B

then each glossary will appear in a numbered section, and can be referenced using something
like:

The main glossary is in section~\ref{main} and
the list of acronyms is in section~\ref{acronym}.

_ B

If you can’t decide whether to have the acronyms in the main glossary or a separate list of
acronyms, you can use \acronymtype which is set to main if the acronym option is
not used and is set to acronym if the acronym option is used. For example:

The list of acronyms is in section~\ref{\acronym-
type}.

_ B

You can redefine the prefix if the default label clashes with another label in your document. For
example:

\renewcommand*{\glsautoprefix}{glo:}

B

will add glo: to the automatically generated label, so you can then, for example, refer to the
list of acronyms as follows:

The list of acronyms is in
section~\ref{glo:\acronymtype}.

Or, if you are undecided on a prefix:

The list of acronyms is in
section~\ref{\glsautoprefix\acronymtype}.

_ 0 LB

82

2. Package Options

g

numberedsection=nameref

This setting is like numberedsect ion=autolabel butuses an unnumbered sectioning
command (for example, \chapter* or \section*). It’s designed for use with the name-
ref package. For example:

\usepackage{nameref}

Ei
\usepackage [numberedsection=nameref] {glossaries}

Alternatively, since nameref is automatically loaded by hyperref:

\usepackage{hyperref}
\usepackage [numberedsection=nameref] {glossaries}

Now \nameref{main} will display the (table of contents) section title associated with the
main glossary. As above, you can redefine \glsautoprefix to provide a prefix for the
label.

2.3. Glossary Appearance Options

)

=

savenumberlist=(boolean) default: true; initial: false
Options 2 and 3 only

This is a boolean option that specifies whether or not to gather and store the number list for
each entry. The defaultis savenumberlist=false with Options 2 and 3. (See \gls-
entrynumberlistand \glsdisplaynumberlist in§5.2.) Thissettingisalways
true if you use Option 1 as a by-product of the way that indexing method works.

, bib2gls ‘
If you use the record option (with either no value or record=only or record
=nameref) then this package option has no effect. With bib2gls, the number
lists are automatically saved with the default save—locations=true and save
—loclist=true resource settings.

83

2. Package Options

[@
= |
entrycounter=(boolean) default: true; initial: false
If set, this will create the counter:
[Ne
Sy
glossaryentry

Each top level (level 0) entry will increment and display that counter at the start of the entry
line when using glossary styles that support this setting. Note that if you also use subent ry-
counter the option order makes a difference. If ent rycounter is specified first, the
sub-entry counter will be dependent on the glossaryentry counter.

If you use this option (and are using a glossary style that supports this option) then you can
reference the entry number within the document using:

X

\glsrefentry{(label)}

where (label) is the label associated with that glossary entry. This will use \ref if either
entrycounter=trueor subentrycounter=true, with the label (prefix)(label),
where (label) is the entry’s label and (prefix) is given by:

X

\GlsEntryCounterLabelPrefix initial: glsentry-—

If bothentrycounter=falseand subentrycounter=false, \gls{(label)}
will be used instead.

[i
=
If youuse \glsrefentry, you must run IS[EX twice after creating the indexing files

usingmakeglossaries,makeindex or xindy (or after creating the glstex
file with bib2g1ls) to ensure the cross-references are up-to-date. This is because the
counter can’t be incremented and labelled until the glossary is typeset.

The glossaryentry counter can be reset back to zero with:

\glsresetentrycounter

This does nothing if ent rycounter=false. The glossaryentry counter can be simulta-
neously incremented and labelled (using \refstepcounter and \ 1abel) with:

X

\glsstepentry{ (label)}

This command is within the definition of \glsent ryitem, whichis typically used in glossary
styles at the start of top level (level 0) entries. The argument is the entry label.

84

2. Package Options

The value of the glossaryentry counter can be displayed with:

\theglossaryentry

This command is defined when the glossaryentry counter is defined, so won’t be available other-
wise. The formatted value is more usually displayed with:

X

\glsentrycounterlabel

This willdo \theglossaryentry.\space if entrycounter=true, otherwise
does nothing. This is therefore more generally useful in glossary styles as it will silently do nothing
if the setting isn’t on. This command is used within the definition of \glsentryitem.

If you want to test whether or not this option is currently enabled, use the conditional:

X
\ifglsentrycounter (rue)\else (false)\fi initial: \1ffalse
You can later switch it off using:
X
\glsentrycounterfalse
and switch it back on with:
X
\glsentrycountertrue

but note that this won’t define glossaryentry if ent rycounter=t rue wasn’t used initially.
You can also locally enable or disable this option for a specific glossary using the entry-
counter \print(..)glossary option.

counterwithin=(parent-counter)

If used, this option will automatically set ent rycountertrue and the glossaryentry counter
will be reset every time (parent-counter) is incremented. An empty value indicates that glossary-
entry has no parent counter (but glossaryentry will still be defined).

(i]

&
The glossaryentry counter isn’t automatically reset at the start of each glossary, except

when glossary section numbering is on and the counter used by counterwithin is
the same as the counter used in the glossary’s sectioning command.

J

If you want the counter reset at the start of each glossary, you can modify the glossary preamble
(\glossarypreamble)touse \glsresetentrycounter. For example:

85

2. Package Options

\renewcommand{\glossarypreamble}{%
\glsresetentrycounter

}

or if you are using \setglossarypreamble, add it to each glossary preamble, as re-
quired. For example:

©

\setglossarypreamble [acronym] {%
\glsresetentrycounter
The preamble text here for the list of acronyms.
}
\setglossarypreamble{$%
\glsresetentrycounter
The preamble text here for the main glossary.

}

(@

subentrycounter=(boolean) default: true; initial: £alse

If set, each level 1 glossary entry will be numbered at the start of its entry line when using glossary
styles that support this option. This option creates the counter

g

glossarysubentry

If the entrycounter option is used before subentrycounter, then glossarysub-
entry will be added to the reset list for glossaryentry. If subent rycounter is used without
ent rycounter then the glossarysubentry counter will be resetby \glsentryitem. If
subentrycounter isused before ent rycounter then the two counters are indepen-
dent.

o

There’s no support for deeper hierarchical levels. Some styles, such as those that don’t
support any hierarchy, may not support this setting or, for those that only support level 0
and level 1, may use this setting for all child entries.

As with the ent rycounter option, you can reference the number within the document
using \glsrefentry. There are analogous commands to those for ent rycounter.
The glossarysubentry counter can be reset back to zero with:

X

\glsresetsubentrycounter

86

2. Package Options

This does nothing if subentrycounter=false. This command is used within the def-
inition of \glsentryitemif entrycounter=false.

The glossarysubentry counter can be simultaneously incremented and labelled (using \ re f-
stepcounter and \ 1abel) with:

X

\glsstepsubentry{(label)}

This command is used in \glssubentryitemif subentrycounter=true, oth-
erwise it does nothing. The argument is the entry label and is passed to \ label is as for
\glsrefentry.

The value of the glossarysubentry counter can be displayed with:

\theglossarysubentry

This command is defined when the glossarysubentry counter is defined, so won’t be available
otherwise. The formatted value is more usually displayed with:

X

\glssubentrycounterlabel

This willdo \theglossarysubentry) \space if subentrycounter=true,
otherwise does nothing. This is therefore more generally useful in glossary styles as it will silently
do nothing if the setting isn’t on. This command is used in \glssubentryitem.

If you want to test whether or not this option is currently enabled, use the conditional:

X

\ifglssubentrycounter (true)\else (false)\fi initial: \iffalse

You can later switch it off using:

\glssubentrycounterfalse

and switch it back on with:

\glssubentrycountertrue

but note that this won’t define glossarysubentry if subentrycounter=true wasn’t used
initially. You can also locally enable or disable this option for a specific glossary using the sub-
entrycounter \print(...\glossary option.

87

2. Package Options

=

=
style={(style-name) initial: varies

This option sets the default glossary style to (style-name). This is initialised to sty le=list

unless classicthesis has been loaded, in which case the default is st y1e=index. (The styles

that use the description environment, such as the list style, are incompatible with classicthesis.)
This setting may only be used for styles that are defined when the glossaries package is loaded.

This will usually be the styles in the packages glossary—list, glossary—long, glossary—super or

glossary—tree, unless they have been suppressed through options such as nostyles. Style

packages can also be loaded by the sty 1emods option provided by glossaries—extra.
Alternatively, you can set the style later using:

b §
\setglossarystyle{ (style-name)}
oruse the style \print(...)glossary option. (See §13 for further details.)
[=
=
nolong

This prevents the glossaries package from automatically loading glossary—long (which means
that the longtable package also won’t be loaded). This reduces overhead by not defining unwanted
styles and commands. Note that if you use this option, you won’t be able to use any of the glossary
styles defined in the glossary—long package (unless you explicitly load glossary—long).

(@]

Some style packages implicitly load glossary—long, so this package may still end up being
loaded even if you use nolong.

I —

|

nosuper

This prevents the glossaries package from automatically loading glossary—super (which means
that the supertabular package also won’t be loaded). This reduces overhead by not defining
unwanted styles and commands. Note that if you use this option, you won’t be able to use any
of the glossary styles defined in the glossary—super package (unless you explicitly load glossary
—super).

o

This option is automatically implemented if xtab has been loaded as it’s incompatible with
supertabular. This option is also automatically implemented if supertabular isn’t installed.

88

2. Package Options

I —

|

nolist

This prevents the glossaries package from automatically loading glossary—list. This reduces
overhead by not defining unwanted styles. Note that if you use this option, you won’t be able
to use any of the glossary styles defined in the glossary—list package (unless you explicitly load
glossary—list). Note that since the default style is list (unless classicthesis has been loaded), you
will also need to use the st y 1 e option to set the style to something else. —=

| S

notree

This prevents the glossaries package from automatically loading glossary—tree. This reduces
overhead by not defining unwanted styles. Note that if you use this option, you won’t be able
to use any of the glossary styles defined in the glossary—tree package (unless you explicitly load
glossary—tree). Note that if classicthesis has been loaded, the default style is index, which is
provided by glossary—tree.

G
Some style packages implicitly load glossary—tree, so this package may still end up being
loaded even if you use notree.

I —

|

nostyles

This prevents all the predefined styles from being loaded. If you use this option, you need to
load a glossary style package (such as glossary—mcols). Also if you use this option, you can’t use
the st y 1 e package option (unless you use sty 1l emods with glossaries—extra). Instead you
must either use \setglossarystyleorthe style \print(...\glossary option.
Example:

=

\usepackage [nostyles] {glossaries}
\usepackage{glossary-mcols}
\setglossarystyle{mcoltree}

Alternatively:

=

\usepackage[nostyles, stylemods=mcols, style=mcoltree]
{glossaries—-extra}

&9

2. Package Options

I —

|

nonumberlist

This option will suppress the associated number lists in the glossaries (see also §12). This op-
tion can also be locally switched on or off for a specific glossary with the nonumberlist
\print(...)glossary options.

A
Note that if you use Options 2 or 3 (makelndex or xindy) then the locations must
still be valid even if this setting is on. This package option merely prevents the number
list from being displayed, but both makeindex and xindy still require a location or
cross-reference for each term that’s indexed.

Remember that number list includes any cross-references, so suppressing the number list will
also hide the cross-references (in which case, you may want to use seeautonumberlist).

[bibzgls
With bib2gls, it’s more efficient to use save—locations=false in the re-
source options if no locations are required.

| —

| S

seeautonumberlist

If you suppress the number lists with nonumber 11 st, described above, this will also suppress
any cross-referencing information supplied by the see key in \newglossaryentry or
\glssee. Ifyouuse seeautonumberlist, the see key will automatically implement
nonumberlist=false for that entry. (Note this doesn’t affect \gl ssee.) For further
details see §11.

=
counter=(counter-name) initial: page

This setting indicates that (counter-name) should be the default counter to use in the number lists
(see §12). This option can be overridden for a specific glossary by the (counter) optional argu-
ment of \newglossary orthe counter key when defining an entry or by the counter
option when referencing an entry.

This option will redefine:

X

\glscounter initial: page

to (counter-name).

90

2. Package Options

[©

(=
nopostdot=(boolean) default: true; initial: true

If true, this option suppresses the default terminating full stop in glossary styles that use the
post-description hook:

X

\glspostdescription

The default settingis nopost dot=false for the base glossaries package and nopostdot
=t rue for glossaries—extra.

[glossaries—extra

The glossaries—extra package provides po st dot, whichis equivalent to nopostdot
=false, and also postpunc, which allows you to choose a different punctuation

character.
(@
nogroupskip=(boolean) default: true; initial: false

If true, this option suppresses the default vertical gap between letter groups used by some of
the predefined glossary styles. This option can also be locally switched on or off for a specific
glossary with the nogroupskip \print(...)glossary options.

This option is only relevant for glossary styles that use the conditional:

X
\ifglsnogroupskip (true)\else (false)\fi initial: \1ffalse

to test for this setting.

[bib2 gls ‘
If you are using bib2gls without the ——group (or —g) switch then this option is
irrelevant as there won’t be any letter groups.

7

-—
—

Sa—
stylemods={list) default: default

Loads the glossaries—extra—stylemods package, which patches the predefined glossary styles.
The (list) argument is optional. If present, this will also load glossary-(element).sty for each
(element) in the comma-separated (list). See the glossaries—extra manual for further details.

91

2. Package Options

2.4. Indexing Options

seenoindex=(value) initial: error

(This option is only relevant with makeindex and xindy.) The see key automatically
indexes the cross-referenced entry using \glssee. This means that if this key is used in an
entry definition before the relevant indexing file has been opened, the indexing can’t be per-
formed. Since this is easy to miss, the glossaries package by default issues an error message if
the see key is used before \makeglossaries.

This option may take one of the following values:

]

seenoindex=error

This is the default setting that issues an error message.

<]

seenoindex=warn

This setting will trigger a warning rather than an error.

3

seenoindex=ignore

This setting will do nothing.

For example, if you want to temporarily comment out \makeglossaries to speed up
the compilation of a draft document by omitting the indexing, you can use seenoindex=
warn or seenoindex=ignore.

g

esclocations=(boolean) default: true; initial: false

Only applicable to makeindex and xindy. As from v4.50, the initial setting is now
esclocations=false. Previously it was esclocations=true.

Both makeindex and xindy are fussy about the location syntax (makeindex more
so than x1ndy) so, if esclocations=true, the glossaries package will try to ensure
that special characters are escaped, which allows for the location to be substituted for a format
that’s more acceptable to the indexing application. This requires a bit of trickery to circumvent
the problem posed by TgX’s asynchronous output routine, which can go wrong and also adds to
the complexity of the document build.

If you’re sure that your locations will always expand to an acceptable format (or you’re prepared
to post-process the glossary file before passing it to the relevant indexing application) then use
esclocations=false toavoid the complex escaping of location values. This is now the
default.

If, however, your locations (for example, \thepage with the default count e r=page)

92

2. Package Options

expand to a robust command then you may need to use esclocations=true. You may
additionally need to set the following conditional to true:

X

\ifglswrallowprimitivemods (true)\else (false)\fi initial:
\iffalse

which will locally redefine some primitives in order to escape special characters without prema-
turely expanding \thepage. Since this hack may cause some issues and isn’t necessary for
the majority of documents, this is off by default.

This conditional can be switched on with:

\glswrallowprimitivemodstrue

but remember that it will have no effect with esclocations=false. If can be switched
off with:

X

\glswrallowprimitivemodsfalse

If you are using mak e 1 nde x and your location expands to content in the form (cs) { (num) }
, where (cs) is a command (optionally preceded by \protect)and (num) is a location accept-
able to makeindex, then you can use makeglossaries to make a suitable adjustment
without esclocations=true. See §12.5 for furthe details.
This isn’t an issue for Options 1 or 4 as the locations are written to the aux file and both
methods use ITEX syntax, so no conversion is required.
[©

=
indexonlyfirst=(boolean) default: true; initial: £alse

If true, this setting will only index on first use. The default setting indexonlyfirst=
false, will index the entry every time one of the \ g1 s-like or \ gl stext-like commands
are used. Note that \gl sadd will always add information to the external glossary file (since
that’s the purpose of that command).

You can test if this setting is on using the conditional:

X
\ifglsindexonlyfirst (frue)\else (false)\fi initial: \1ffalse

This setting can also be switched on with:

\glsindexonlyfirsttrue

and off with:

93

2. Package Options

\glsindexonlyfirstfalse

(i]
=
Resetting the first use flag with commands like \glsreset after an entry has been
indexed will cause that entry to be indexed multiple times if it’s used again after the reset.
Likewise unsetting the first use flag before an entry has been indexed will prevent it from
being indexed (unless specifically indexed with \glsadd).

You can customise the default behaviour by redefining

\glswriteentry{(label)} { (indexing code) }

where (label) is the entry’s label and (indexing code) is the code that writes the entry’s information
to the external file. The default definition of \glswriteentry is:

\newcommand*{\glswriteentry}[2]{%
\ifglsindexonlyfirst
\ifglsused{#1}{}{#2}%
\else
#25%
\fi
}
This does (indexing code) unless indexonlyfirst=true and the entry identified by (la-
bel) has been marked as used
For example, suppose you only want to index the first use for entries in the a c ronym glossary
and not in the ma in (or any other) glossary:

,

\renewcommand*{\glswriteentry} [2]{%
\ifthenelse\equal{\glsentrytype{#1l}}{acronym}
{\ifglsused{#1}{}{#2}}%

{#2}5%

}

Here I've used \ 1 fthenel se to ensure the arguments of \equal are fully expanded before
the comparison is made. There are other methods of performing an expanded string comparison,
which you may prefer to use.

With the glossaries—extra package it’s possible to only index first use for particular categories.

For example, if you only want this enabled for abbreviations then you can set the indexonl1y-

94

2. Package Options

f£1rst attribute for the abbreviation and, if appropriate, acronym categories. (Instead of using
the indexonlyfirst package option.) See the glossaries—extra manual for further details.

[©
(=
indexcrossrefs=(boolean) default: true; initial: true

This option is only available with glossaries—extra. If true, this will automatically index
(\glsadd) any cross-referenced entries that haven’t been marked as used at the end of the
document. Note that this increases the document build time. See glossaries—extra manual for
further details.

, bib2gls ‘

Note that bib2gls can automatically find dependent entries when it parses the bib
file. Use the se lect ion option to determine the selection of dependencies.

[©
=
autoseeindex=(boolean) default: £ rue; initial: true

This option is only available with glossaries—extra. The base glossaries package always im-
plements aut oseeindex=true.

If true, this makes the see and seeal so keys automatically index the entry (with \gls-
see) when the entry is defined. This means that any entry with the see (or seealso) key
will automatically be added to the glossary. See the glossaries—extra manual for further details.

[bib2gls |

With bib2gls, use the se lect ion resource option to determine the selection of
dependencies.

\.

-—
—

=
record=(value) default: only; initial: of £

This option is only available with glossaries—extra. See glossaries—extra manual for further
details. A brief summary of available values:
S
(A

record=off

This default setting indicates that bib2gls isn’t being used.

3

record=only

This setting indicates that bib2gls is being used to fetch entries from one or more bib files,
to sort the entries and collate the number lists, where the location information is the same as for
Options 1, 2 and 3.

95

2. Package Options

B

|
record=nameref

This setting 1s like record=only but provides extra information that allows the associated
title to be used instead of the location number and provides better support for hyperlinked loca-

tions.
S

| A

record=hybrid

This setting indicates a hybrid approach where bib2gls is used to fetch entries from one or
more bib files but makeindex or xindy are used for the indexing. This requires a more
complicated document build and isn’t recommended.

[®

=
equations=(boolean) default: true; initial: false

This option is only available with glossaries—extra. If true, this option will cause the default
location counter to automatically switch to equation when inside a numbered equation environ-

ment.
(@
floats=(boolean) default: true; initial: £alse

This option is only available with glossaries—extra. If true, this option will cause the de-
fault location counter to automatically switch to the corresponding counter when inside a float.
(Remember that with floats it’s the \capt ion command that increments the counter so the
location will be incorrect if an entry is indexed within the float before the caption.) —=

|

indexcounter

This option is only available with glossaries—extra. This valueless option is primarily intended
for use with b1b2gls and hyperref allowing the page location hyperlink target to be set to the
relevant point within the page (rather than the top of the page). Unexpected results will occur
with other indexing methods. See glossaries—extra manual for further details.

2.5. Sorting Options

This section is mostly for Options 2 and 3. Only the sort and order options are applicable
for Option 1.

[glossaries—extra]

With Options 4, 5 and 6, only sort=none is applicable (and this is automatically
implemented by record=only and record=nameref). Withbib2gls, the
sort method is provided in the optional argument of \G1 sXt rLoadResources not

96

2. Package Options

with the sort package option. There’s no sorting with Options 5 and 6.

sanitizesort=(boolean) default: € rue; initial: varies

This option determines whether or not to sanitize the sort value when writing to the external
indexing file. For example, suppose you define an entry as follows:

Ei

\newglossaryentry{hash}{name={\#}, sort={},
description={hash symbol}}

The sort value () must be sanitized before writing it to the indexing file, otherwise IKTgX will try
to interpret it as a parameter reference. If, on the other hand, you want the sort value expanded,
you need to switch off the sanitization. For example, suppose you do:

\newcommand{ \mysortvalue} {AAA}

\newglossaryentry{sample}{%
name={sample},
sort={\mysortvalue},
description={an example}}

and you actually want \mysortvalue expanded, so that the entry is sorted according to
AAA, then use the package option sanitizesortfalse.

The default for Options 2 and 3is sanitizesort=true, and the default for Option 1
Issanitizesort=false.

--—
—

jer
sort=(value) initial: standard

If you use Options 2 or 3, this package option is the only way of specifying how to sort the
glossaries. Only Option 1 allows you to specify sort methods for individual glossaries via the
sort key in the optional argument of \printnoidxglossary. If you have multiple
glossaries in your document and you are using Option 1, only use the package options sort=
def or sort=use if you want to set this sort method for all your glossaries.

(&]

| A

sort=none

This setting is only for documents that don’t use \makeglossaries (Options 2 or 3) or
\makenoidxglossaries (Option 1). It omits the code used to sanitize or escape the
sort value, since it’s not required. This can help to improve the document build speed, especially
if there are a large number of entries. This setting may be used if no glossary is required or
if \printunsrtglossary is used (Option 5). If you want an unsorted glossary with

97

2. Package Options

bib2gls, use the resource option sort=none instead. This option will redefine \g1ls-
indexingsettingtonone.

[©

r =
This option will still assign the sort key to its default value. It simply doesn’t process it.
If you want the sort key set to an empty value instead, use sort=clear instead.

(>

sort=clear

As sort=none but sets the sort key to an empty value. This will affect letter group for-
mations in \printunsrtglossary with Option 5. See the glossaries—extra manual for
further details. This option will redefine \glsindexingsettingtonone. The remain-
ing sort options listed below don’t change \glsindexingsetting.

ad
sort=def

Entries are sorted in the order in which they were defined. With Option 1, this is implemented
by simply iterating over all defined entries so there’s no actual sorting. With Options 2 and
3, sorting is always performed (since that’s the purpose of makeindex and xindy). This
means that to obtain a list in order of definition, the sort key is assigned a numeric value that’s
incremented whenever a new entry is defined. <
%

| A

sort=use

Entries are sorted according to the order in which they are used in the document. With Option 1,
this order is obtained by iterating over a list that’s formed with the aux file is input at the start
of the document. With Options 2 and 3, again the sort key is assigned a numeric value, but
in this case the value is incremented, and the sort key is assigned, the first time an entry is
indexed.

Both sort=def and sort=use zero-pad the sort key to a six digit number using:

\glssortnumberfmt { (number)}

This can be redefined, if required, before the entries are defined (in the case of sort=def) or
before the entries are used (in the case of sort=use).
Note that the group styles (such as listgroup) are incompatible with the sort=use and

sort=def options.
l' %

sort=standard

Entries are sorted according to the value of the sort key used in \newglossaryentry
(if present) or the name key (if sort key is missing).

98

2. Package Options

When the standard sort option is in use, you can hook into the sort mechanism by redefining:

X

\glsprestandardsort{(sortcs)} { (type) } { (entry-label) }

where (sort cs) is a temporary control sequence that stores the sort value (which was either ex-
plicitly set via the sort key or implicitly set via the name key) before any escaping of the
makeindex/xindy special characters is performed. By default \glsprestandard-
sort just does:

X

\glsdosanitizesort

which sanitizes (sort cs) if sanitizesort=true (or does nothingif sanitizesort
=false).

The other arguments, (type) and (entry-label), are the glossary type and the entry label for the
current entry. Note that (fype) will always be a control sequence, but (label) will be in the form
used in the first argument of \newglossaryentry.

[i
=
Redefining \glsprestandardsort won'taffect any entries that have already been

defined and will have no effect at all if you use another sort setting.

Example 9: Mixing Alphabetical and Order of Definition Sorting

Suppose I have three glossaries: main, acronym and notation, and let’s suppose |
want the main and acronym glossaries to be sorted alphabetically, but the notation
type should be sorted in order of definition.

For Option 1, the sort option can be used in \printnoidxglossary:

\printnoidxglossary[sort=word]
\printnoidxglossary[type=acronym, sort=word]
\printnoidxglossary[type=notation, sort=def]

For Options 2 or 3, [can set sort =standard (which is the default), and I can either define
all my ma in and acronym entries, then redefine \glsprestandardsort to set (sort
cs) to an incremented integer, and then define all my not at i on entries. Alternatively, I can
redefine \glsprestandardsort to check for the glossary type and only modify (sort cs)
if (type) is notation.

The first method can be achieved as follows:

99

2. Package Options

\newcounter{sortcount}

\renewcommand{\glsprestandardsort}[3]{%
\stepcounter{sortcount}%
\edef#l1{\glssortnumberfmt{\arabic{sortcount}}}%

}

The second method can be achieved as follows:

\newcounter{sortcount}

\renewcommand{\glsprestandardsort}[3]14{%
\ifdefstring{#2}{notation}$%
{%
\stepcounter{sortcount}%
\edef#l1{\glssortnumberfmt{\arabic{sortcount}}}

o\
PN
o\°

o\°

\glsdosanitizesort

—~
o\°

}

(\1ifdefstringisdefined by the etoolbox package, which is automatically loaded by glossaries.)
For a complete document, see the sample file sampleSort.tex.

Example 10: Customizing Standard Sort (Options 2 or 3)

Suppose you want a glossary of people and you want the names listed as (first-name) (surname)
in the glossary, but you want the names sorted by (surname), (first-name). You can do this by
defining a command called, say, \ name {first-name} {surname} that you can use in the name
key when you define the entry, but hook into the standard sort mechanism to temporarily redefine
\name while the sort value is being set.

First, define two commands to set the person’s name:

\newcommand{\sortname} [2] {#2, #1}
\newcommand{\textname} [2] {#1 #2}

and \name needs to be initialised to \textname:

100

2. Package Options

=

[\let\name\textname

Now redefine \gl sprestandardsort sothatittemporarily sets \name to \ sort name
and expands the sort value, then sets \name to \ t ext name so that the person’s name appears

as (first-name) (surname) in the text:

\renewcommand{\glsprestandardsort} [3]{%
\let\name\sortname
\edef#l{\expandafter\expandonce\expandafter{#1}}%
\let\name\textname
\glsdosanitizesort

}

(The somewhat complicate use of \expandafter etc helps to protect fragile commands,
but care is still needed.)
Now the entries can be defined:

\newglossaryentry{joebloggs}name={\name{Joe}{Bloggs}
o

description={some information about Joe Bloggs}

\newglossaryentry{johnsmith}{name={\name{John}
{Smith}},
description={some information about John Smith}}

For a complete document, see the sample file samplePeople.tex

0

order

This may take two values:

]

order=word

Word order (“sea lion” before “seal”).

<]

order=1letter

Letter order (“seal” before “sea lion”).

101

2. Package Options

[i
=
Note that with Options 2 and 3, the order option has no effect if you explicitly call

makeindex or xindy.

If you use Option 1, this setting will be used if you use sort=standard in the optional
argument of \printnoidxglossary:

=

\printnoidxglossary[sort=standard]

Alternatively, you can specify the order for individual glossaries:

\printnoidxglossary[sort=word]
\printnoidxglossary[type=acronym, sort=letter]

, bib2gls ‘

With bib2gls, use the break—at option in \GlsXtrLoadResources in-
stead of order.

I —

| S

makeindex
Option 2

The glossary information and indexing style file will be written in make index format. If you
use makeglossaries ormakeglossaries—1ite, it will automatically detect that
it needs to call makeindex. If you don’t use makeglossaries, you need to remember
to use makeindex not xindy. The indexing style file will been given a 1 st extension.

You may omit this package option if you are using Option 2 as this is the default. It’s available
in case you need to override the effect of an earlier occurrence of x1indy in the package option
list.

=
xindy={ (options) }
Option 3

The glossary information and indexing style file will be written in x1ndy format. If you use
makeglossaries, it will automatically detect that it needs to call xindy. If you don’t
use makeglossaries, you need to remember to use xindy not makeindex. The
indexing style file will been given a xdy extension.

This package option may additionally have a value that is a (key)=(value) comma-separated
list to override some default options. Note that these options are irrelevant if you explicitly call
xindy. See §14 for further details on using x1ndy with the glossaries package.

102

2. Package Options

You can test if this option has been set using the conditional:

I
\ifglsxindy (true)\else (false)\fi initial: \1ffalse

Note that this conditional should not be changed after \makeglossaries otherwise the
syntax in the glossary files will be incorrect. If this conditional is false, it means that any option
other than Option 3 is in effect. (If you need to know which indexing option is in effect, check
the definition of \glsindexingsetting instead.)
The (options) value may be omitted. If set, it should be a (key)=(value) list, where the fol-
lowing three options may be used:
[=

==

language={ (value) }

The language module to use, which is passed to xindy with the —L switch. The default is
obtained from \ languagename but note that this may not be correct as xindy has a
different labelling system to babel and polyglossia.

The makeglossaries script has a set of mappings of known babel language names to
xindy language names, but new babel dialect names may not be included. The makeglos-
saries—1ite script doesn’t have this feature (but there’s no benefit in use makeglos-
saries—lite instead of makeglossaries when using xindy). The automake
=option that calls x1ndy explicitly also doesn’t use any mapping.

However, even if the appropriate mapping is available, \ 1 anguagename may still not
expand to the language required for the glossary. In which case, you need to specify the correct
xindy language. For example:

Bl

\usepackage [brazilian,english] {babel}
\usepackage [xindy=language=portuguese] {glossaries}

If you have multiple glossaries in different languages, use \G1lsSetXdyLanguage to set
the language for each glossary.
[=

| S

codepage={ (value) }

The codepage is the file encoding for the xindy files and is passed to xindy with the —C
switch. The default codepage is obtained from \ inputencodingname. As from v4.50,
if \inputencodingname isn’t defined, UTF-8 is assumed (which is identified by the la-
bel ut £8). If this is incorrect, you will need to use the codepage option but make sure
you use the xindy codepage label (for example, cp1252 or 1atin9). See the xindy
documentation for further details.

103

2. Package Options

[i
=
The codepage may not simply be the encoding but may include a sorting rule, such as
ij-—as-y-utf8ordin5007-ut£8. See §14.2.

For example:

,

\usepackage [xindy=language=english, codepage=cpl252]
{glossaries}

—

-—
—a

a—
glsnumbers={ (boolean)} default: true; initial: true

If true, this option will define the number group in the xindy style file, which by default will
be placed before the “A” letter group. If you don’t want this letter group, set this option to false.
Note that the “A” letter group is only available with Latin alphabets, so if you are using a non-
Latin alphabet, you will either need to switch off the number group or identify the letter group
that it should come before with \G1sSet XdyNumberGroupOrder. =

|

xindygloss
Option 3

This is equivalent to x1ndy without any value supplied and may be used as a document class
option. The language and code page can be set via \GlsSetXdyLanguage and \G1s-
SetXdyCodePage if the defaults are inappropriate (see §14.2.)

I —_—

| S

xindynoglsnumbers
Option 3

This is equivalent to xindy={glsnumbers=false} and may be used as a document
class option.

automake=(value) default: immediate; initial: false

This option will attempt to use the shell escape to run the appropriate indexing application. You
will still need to run ETEX twice. For example, if the document in the file myDoc . tex con-
tains:

=

\usepackage [automake] {glossaries}
\makeglossaries
\newglossaryentry{sample}{name={sample},description=

104

2. Package Options

{an example}}
\begin{document}
\gls{sample}
\printglossaries
\end{document}

Then the document build is now:

pdflatex myDoc
pdflatex myDoc

This will run makeindex on every KIEX run. If you have a large glossary with a complex
document build, this can end up being more time-consuming that simply running makeindex
(either explicitly or via makeglossaries) the minimum number of required times.

[i
L=
Note that you will need to have the shell escape enabled (restricted mode for a direct call

tomakeindex and unrestricted mode for xindy,makeglossariesormake—
glossaries—1ite). If you switch this option on and you are using Lual&TEX, then
the shellesc package will be loaded.

If this option doesn’t seem to work, open the 10og file in your text editor and search for
“runsystem”. For example, if the document is in a file called myDoc . tex and it has:

=

\usepackage [automake] {glossaries}

and you run IKTEX in restricted mode, then if call was successful, you should find the following
line in the file myDoc. 1og:

runsystem (makeindex —-s myDoc.ist -t myDoc.glg -o
myDoc.gls myDoc.glo) ...executed safely (allowed).

The parentheses immediately after “ runsystem” show how the command was called. The

bit after the three dots . . . indicates whether or not the command was run and, if so, whether

it was successful. In the above case, it has “executed safely (allowed)”. This means that it was

allowed to run in restricted mode because makeindex is on the list of trusted applications.
If you change the package option to:

=

[\usepackage [automake=makegloss] {glossaries}

105

2. Package Options

and rerun I£TEX in restricted mode, then the line in myDoc . 1 og will now be:

runsystem (makeglossaries myDoc) ...disabled
(restricted) .

This indicates that an attempt was made to run makeglossaries (rather than a direct call

to makeilndex), which isn’t permitted in restricted mode. There will be a similar message

with automake=11te orif the x1indy option is used. These cases require the unrestricted

shell escape.

[i
k_‘

Think carefully before enabling unrestricted mode. Do you trust all the packages your

document is loading (either explicitly or implicitly via another package)? Do you trust
any code that you have copied and pasted from some third party? First compile your
document in restricted mode (or with the shell escape disabled) and search the 1 og file
for “runsystem?” to find out exactly what system calls are being attempted.

. 7

If the document is compiled in unrestricted mode, the corresponding line in the 1og file
should now be:

runsystem (makeglossaries myDoc) ...executed. \

This means that makeglossaries was run. If it has “failed” instead of “executed”, then it
means there was a fatal error. Note that just because the 1 og file has “executed” doesn’t mean
that the application ran without a problem as there may have been some warnings or non-fatal
errors. If you get any unexpected results, check the indexing application’s transcript file (for
example, the g1g file, myDoc . glg in the above, for the main glossary). <
%

| S

automake=false

No attempt is made to use the shell escape.
e
;.

automake=true alias: delayed

This is now a deprecated synonym for aut omake=delayed. This used to be the default
if the value to aut omake wasn’t supplied, but the default switched to the less problematic
automake=1immediate in version 4.50.
(&]
(A

automake=delayed

A direct call to makeindex or xindy (as appropriate) for each non-empty glossary will
be made at the end of the document using a delayed write to ensure that the glossary files are

106

2. Package Options

complete. (It’s necessary to delay writing to the indexing files in order to ensure that \the-
page is correct.) Unfortunately, there are situations where the delayed write never occurs, for
example, if there are floats on the final page. In those cases, it’s better to use an immediate write

(any of the following options).
[

| A

automake=immediate

A direct call to makeindex or xindy (as appropriate) for each non-empty glossary will be
made at the start of \makeglossaries using an immediate write. This ensures that the
indexing files are read by the indexing application before they are opened (which will clear their
content).

If you are using xindy, then automake=makegloss is a better option that this one.
Either way, you will need Perl and the unrestricted mode, but with makeglossaries you
get the benefit of the language mappings and diagnostics.

(&]

| S

[automake=makegloss

A call to makeglossaries will be made at the start of \makeglossaries using

an immediate write if the aux file exists. On the one hand, it’s better to use makeglos-

saries as it has some extra diagnostic functions, but on the other hand it both requires Perl

and the unrestricted shell escape. <
2

| S

automake=lite

A call to makeglossaries—1ite will be made at the start of \makeglossaries
using an immediate write if the aux file exists. There’s little benefit in this option over aut oma ke
=immediate and it has the added disadvantage of requiring the unrestricted mode.

I E
=
automakegloss alias: makegloss
This valueless option is equivalent to aut omake=makegloss.
I E
=
automakeglosslite alias: 1ite
This valueless option is equivalent to aut omake=1ite.
[=
=
disablemakegloss

This valueless option indicates that \makeglossariesand \makenoidxglossaries
should be disabled. This option is provided in the event that you have to use a class or package that
disregards the advice in §1.3 and automatically performs \makeglossaries or \make-
noidxglossaries but you don’t want this. (For example, you want to use a different
indexing method or you want to disable indexing while working on a draft document.)

107

2. Package Options

Naturally, if there’s a particular reason why the class or package insists on a specific indexing
method, for example, it’s an editorial requirement, then you will need to abide by that decision.

This option may be passed in the standard document class option list or passed using \Pass-
OptionsToPackage before glossaries is loaded. Note that this does nothing if \make-
glossaries or \makenoidxglossaries has already been used whilst enabled.

| —

| S

restoremakegloss

Cancels the effect of disablemakegloss. This option may be used in \ setupglos-
saries. Itissues a warning if \makeglossaries or \makenoidxglossaries
has already been used whilst enabled. Note that this option removes the check for \nofiles,
as this option is an indication that the output files are actually required.

For example, suppose the class customclass.cls automatically loads glossaries and does \make-
glossaries butyouneed an extra glossary, which has to be defined before \makeglossaries,
then you can do:

=

\documentclass[disablemakegloss] {customclass}
\newglossary*{functions}{Functions}
\setupglossaries{restoremakegloss}
\makeglossaries

or

\PassOptionsToPackage{disablemakegloss}{glossaries}
\documentclass{customclass}
\newglossary*{functions}{Functions}
\setupglossaries{restoremakegloss}

\makeglossaries

Note that restoring these commands doesn’t necessarily mean that they can be used. It just
means that their normal behaviour given the current settings will apply. For example, if you use
the record=only or record=nameref options with glossaries—extra then you can’t
use \makeglossaries or \makenoidxglossaries regardless of restore-
makegloss.

2.6. Glossary Type Options

nohypertypes={ (list) }

Use this option if you have multiple glossaries and you want to suppress the entry hyperlinks for

108

2. Package Options

a particular glossary or glossaries. The value of this option should be a comma-separated list of
glossary types where \ g1 s etc shouldn’t have hyperlinks by default. Make sure you enclose the
value in braces if it contains any commas. Example:

=

\usepackage [acronym, nohypertypes={acronym, notation}]
{glossaries}
\newglossary[nlg]{notation}{not}{ntn}{Notation}

As illustrated above, the glossary doesn’t need to exist when you identify it in nohyper-
Ltypes.

[i
|
The values must be fully expanded, so don’t try, for example, nohypertypes=
\acronymtype.

You may also use:

\GlsDeclareNoHyperList {(list)}

instead or additionally. See §5.1 for further details.

[glossaries—extra

The glossaries—extra package has the nohyper category attribute which will suppress
the hyperlink for entries with the given category, which can be used as an alternative to
suppressing the hyperlink on a per-glossary basis.

I —

|

nomain

This suppresses the creation of the ma in glossary and associated g1 o file, if unrequired. Note
that if you use this option, you must create another glossary in which to put all your entries (either
via the acronym (or acronyms) package option described in §2.7 or via the symbols,
numbers or index options described in §2.9 or via \newglossary described in §9).
Even if you don’t intend to display the glossary, a default glossary is still required.

If you don’t use the main glossary and you don’t use this option to suppress its creation,
makeglossaries will produce a warning:

109

2. Package Options

Warning: File '(filename).glo' 1is empty.

Have you used any entries defined in glossary
'main'?

Remember to use package option 'nomain' if
you don't want to use the main glossary.

\

If you did actually want to use the ma in glossary and you see this warning, check that you have
referenced the entries in that glossary via commands such as \g1ls.
I —_—

| S

symbols

This valueless option defines a new glossary type with the label symbo 1 s via

\newglossary[slg] {symbols}{sls}{slo}{\glssymbols-
groupname }

It also defines

\printsymbols [(options)]

which is a synonym for

\printglossary[type=symbols, (options)]

If you use Option 1, you need to use:

\printnoidxglossary|[type=symbols, (options)]

to display the list of symbols.
A
L=

Remember to use the nomain package option if you're only interested in using this
symbols glossary and don’t intend to use the ma in glossary.

[glossaries—extra

The glossaries—extra package has a slightly modified version of this option which addi-
tionally provides \ gl sxtrnewsymbol as a convenient shortcut method for defining
symbols. See the glossaries—extra manual for further details.

110

2. Package Options

numbers

This valueless option defines a new glossary type with the label numbers via

\newglossary[nlg] {numbers}{nls}{nlo}{\glsnumbers-
groupname}

It also defines

\printnumbers [(options)]

which is a synonym for

\printglossary[type=numbers, (options)]

If you use Option 1, you need to use:

\printnoidxglossary [type=numbers, (options)]

to display the list of numbers.

[i
-
Remember to use the nomain package option if you're only interested in using this
numbers glossary and don’t intend to use the ma i n glossary.

[glossaries—extra

The glossaries—extra package has a slightly modified version of this option which addi-
tionally provides \ g1 sxt rnewnumbe r as a convenient shortcut method for defining
numbers. See the glossaries—extra manual for further details.

(=
L=
index
This valueless option defines a new glossary type with the label 1 ndex via
\newglossary[ilg]{index}{ind}{idx}{\indexname}
It also defines
b §

\newterm [(key=value list)] { (entry-label) }

111

2. Package Options

which is a synonym for

\newglossaryentry{(entry-label)} {t ype={index}, name={entry-
label},
description={\nopostdesc}, (options)}

and

\printindex [(options)] v4.02+

which is a synonym for

~

\printglossary[type=index, (options)]

If you use Option 1, you need to use:

\printnoidxglossary [type=index, (options)]

to display this glossary.
(1
Remember to use the noma in package option if you're only interested in using this
index glossary and don’t intend to use the ma in glossary. Note that you can’t mix this
option with \ index. Either use glossaries for the indexing or use a custom indexing

package, such as makeidx, imakeidx. (You can, of course, load one of those packages and
load glossaries without the 1 ndex package option.)

Since the index isn’t designed for terms with descriptions, you might also want to disable
the hyperlinks for this glossary using the package option nohypertypes=index or the
command

\GlsDeclareNoHyperList{index}

However, it can also be useful to link to the index in order to look up the term’s location list to
find other parts of the document where it might be used. For example, this manual will have a
hyperlink to the index for general terms, such as “table of contents”, or general commands, such
as \ index, that aren’t defined anywhere in the document.

The example file sample—-index . tex illustrates the use of the 1 ndex package option.

|l

noglossaryindex

This valueless option switches off index if i ndex has been passed implicitly (for example,
through global document options). This option can’t be used in \ setupglossaries.

112

2. Package Options
2.7. Acronym and Abbreviation Options

[

=
acronym=(boolean) default: true; initial: false

If true, this creates a new glossary with the label a c ronym. This is equivalent to:

\newglossary[alg] {acronym}{acr}{acn}{\acronymname }

\.

It will also provide (if not already defined)

\printacronyms [{options)]

that’s equivalent to

\printglossary|[type=acronym, {(options)]

If you are using Option 1, you need to use

[\printnoidxglossary|[type=acronym, (options)]

to display the list of acronyms.
If the acronym package option is used, \acronymt ype is set to acronym otherwise
it is set to \glsdefaulttype (which is normally the main glossary.) Entries that are
defined using \newacronym are placed in the glossary whose label is given by \acronym-
type, unless another glossary is explicitly specified with the t ype key.
[i
L=
Remember to use the nomain package option if you're only interested in using this

acronym glossary. (That is, you don’t intend to use the ma 1n glossary.)

[glossaries—extra

The glossaries—extra extension package comes with an analogous abbreviations
option, which creates a new glossary with the label abbreviations and sets the
command \glsxtrabbrvtype to this. If the acronym option hasn’t also been
used, then \acronymtype will be set to \glsxtrabbrvtype. This enables
both \newacronymand \newabbreviation to use the same glossary.

Make sure you have at least v1.42 of glossaries—extra if you use the acronym (or
acronyms) package option with the extension package to avoid a bug that interferes
with the abbreviation style.

113

2. Package Options

I —

acronyms

This is equivalent to acronym=t rue and may be used in the document class option list.

| —

|

abbreviations

This valueless option provided by glossaries—extra creates a new glossary type with the label
abbreviations using:

\newglossary[glg—abr] {abbreviations}{gls—-abr}{glo-
abr}{\abbreviationsname}

The label can be accessed with \ g1 sxt rabbrvt ype, which is analogous to \acronym-
type. See glossaries—extra manual for further details.

=
acronymlists={ (label-list) }

This option is used to identify the glossaries that contain acronyms so that they can have their
entry format adjusted by \setacronymstyle. (It also enables \forallacronyms
to work.)

By default, if the list is empty when \ setacronymstyle is used then it will automati-
cally add \acronymtype to the list.

If you have other lists of acronyms, you can specify them as a comma-separated list in the
value of acronymlists. For example, if you use the acronym package option but you
also want the ma i n glossary to also contain a list of acronyms, you can do:

=

[\usepackage[acronym, acronymlists=main] {glossaries}

No check is performed to determine if the listed glossaries exist, so you can add glossaries you
haven’t defined yet. For example:

\usepackage[acronym, acronymlists={main, acronym?2 }]
{glossaries}

\newglossaryl[alg2]{acronym2}{acr2}{acn2}%
{Statistical Acronyms}

\.

You can use

\DeclareAcronymList {(list)}

114

2. Package Options

instead of or in addition to the acronymlists option. This will add the glossaries given
in (list) to the list of glossaries that are identified as lists of acronyms. To replace the list of
acronym lists with a new list use:

X

\SetAcronymLists{(list)}

If the list is changed after \ set acronymstyle then it will result in inconsistencies in the
formatting. If this does happen, and is for some reason unavoidable (such as \ setacronym-
style occurring in a package that loads glossaries), you will need to set the entry format to
match the style:

\DeclareAcronymLi st {(glossary-label) }
\defglsentryfmt [(glossary-label)] {\GlsUseAcrEntryDispStyle}
{ (style-name) }

You can determine if a glossary has been identified as being a list of acronyms using:

\glsIfListOfAcronyms {(glossary-label)} { (true)} { (false) }

[glossaries—extra

This option and associated commands are incompatible with glossaries—extra’s
abbreviation mechanism. Lists of abbreviations don’t need identifying.

shortcuts={ (boolean) } default: £alse;initial: false

This option provides shortcut commands for acronyms. See §6 for further details. Alternatively
you can use:

I

\DefineAcronymSynonyms

[glossaries—extra

The glossaries—extra package provides additional shortcuts.

115

2. Package Options

2.8. Deprecated Acronym Style Options

The package options listed in this section were deprecated in version 4.02 (2013-12-05) and have
now been removed. You will need to use rollback with them (see §1.1). These options started
generating warnings in version 4.47 (2021-09-20) and as from version 4.50 will now generate an
error unless you use rollback.

If you want to change the acronym style, use \ setacronymstyle instead. See §6 for
further details.

=y

description Deprecated

This option changed the definition of \newacronym to allow a description. This option may
be replaced by:

Ei

\setacronymstyle{long-short—-desc}

or (with smallcaps)

\setacronymstyle{long-sc-short-desc}

or (with smaller)

\setacronymstyle{long-sm-short-desc}

or (with footnote)

\setacronymstyle{footnote-desc}

or (with footnote and smallcaps)

\setacronymstyle{footnote-sc-desc}

or (with footnote and smaller)

\setacronymstyle{footnote-sm-desc}

8 10 (B L0 LB

or (with dua)

116

2. Package Options

\setacronymstyle{dua-desc}

ON-

smallcaps

Deprecated

This option changed the definition of \ newacronym and the way that acronyms are displayed.

This option may be replaced by:

\setacronymstyle{long—-sc—-short}

or (with description)

\setacronymstyle{long—-sc—-short-desc}

or (with descriptionand footnote)

\setacronymstyle{footnote-sc-desc}

o-Q-RN-

‘IEIL

smaller

Deprecated

This option changed the definition of \newacronymand the way that acronyms are displayed.

This option may be replaced by:

\setacronymstyle{long-sm-short}

or (with description)

\setacronymstyle{long-sm-short-desc}

or (with descriptionand footnote)

\setacronymstyle{footnote-sm-desc}

8 L0 LB

117

2. Package Options

0

footnote Deprecated

This option changed the definition of \ newacronym and the way that acronyms are displayed.
This option may be replaced by:

\setacronymstyle{footnote}

or (with smallcaps)

\setacronymstyle{footnote-sc}

or (with smaller)

\setacronymstyle{footnote-sm}

or (with description)

\setacronymstyle{footnote-desc}

or (with smallcaps and description)

\setacronymstyle{footnote—-sc-desc}

or (with smaller and description)

\setacronymstyle{footnote-sm-desc}

H-RE-RE-RE-RE-RE-

‘IEIL

dua Deprecated

This option changed the definition of \newacronym so that acronyms are always expanded.
This option may be replaced by:

=

\setacronymstyle{dua}

or (with description)

118

2. Package Options

[\setacronymstyle{dua-desc}

2.9. Other Options

Other available options that don’t fit any of the above categories are described below.

l —

|l

accsupp

Only available with glossaries—extra, this option loads the glossaries—accsupp package, which
needs to be loaded either before glossaries—extra or while glossaries—extra is loaded to ensure
both packages are properly integrated.

I —

prefix

Only available with glossaries—extra, this option loads the glossaries—prefix package.

(@

nomissingglstext=(boolean) default: true; initial: false

This option may be used to suppress the boilerplate text generated by \printglossary
if the indexing file is missing.
[=

mfirstuc=(value) initial: unexpanded

The value may be either expanded or unexpanded and performs the same function
as mfirstuc’s expanded and unexpanded package options. Note that there’s no value
corresponding to mfirstuc’s other package option.

The defaultismf i rst uc=unexpanded to safeguard against glossary styles that convert
the description to sentence case. With older versions of mfirstuc (pre v2.08), fragile commands
in the description would not have been affected by the case change, but now, if the entire de-
scription is passed to \MFUsentencecase, it will be expanded, which could break existing
documents.

=
compatible-2.07 Deprecated

Compatibility mode for old documents created using version 2.07 or below. This option is
now only available with rollback (see §1.1).

=i
compatible-3.07 Deprecated

Compatibility mode for old documents created using version 3.07 or below. This option is now

119

2. Package Options

only available with rollback (see §1.1).
[=

=

kernelglossredefs=(value) default: true; initial: false

As a legacy from the precursor glossary package, the standard glossary commands provided
by the KTEX kernel (\makeglossary and \glossary) are redefined in terms of the
glossaries package’s commands. However, they were never documented in this user manual,
and the conversion guide (“Upgrading from the glossary package to the glossaries package”
(glossary2glossaries.pdf)) explicitly discourages their use.

The redefinitions of these commands was removed in v4.10, but unfortunately it turned out
that some packages had hacked the internal commands provided by glossaries and no longer
worked when they were removed, so they were restored in v4.41 with this option to undo the
effect with kernelglossredefs=true as the default. As from v4.50, the default is
now kernelglossredefs=false.

(&]
(A

kernelglossredefs=false

Don’t redefine \glossary and \makeglossary. If they have been previously redefined
by kernelglossredefs their original definitions (at the time glossaries was loaded) will

be restored.
[&

| S

kernelglossredefs=true

Redefine \glossary and \makeglossary, but their use will trigger warnings.

3

kernelglossredefs=nowarn

Redefine \glossary and \makeglossary without any warnings.

The only glossary-related commands provided by the ISTEX kernel are \makeglossary
and \glossary. Other packages or classes may provide additional glossary-related com-
mands or environments that conflict with glossaries (such as \printglossary and the-
glossary). These non-kernel commands aren’t affected by this package option, and you will have
to find some way to resolve the conflict if you require both glossary mechanisms. (The glossaries
package will override the existing definitions of \printglossary and theglossary.)

In general, if possible, it’s best to stick with just one package that provides a glossary mecha-
nism. (The glossaries package does check for the doc package and patches \PrintChanges.)

2.10. Setting Options After the Package is Loaded

Some of the options described above may also be set after the glossaries package has been loaded
using

120

2. Package Options

\setupglossaries{(options)}

The following package options can’t be used in \ setupglossaries: xindy, xindy-
gloss,xindynoglsnumbers,makeindex,nolong,nosuper,nolist,notree,
nostyles,nomain,compatible-2.07,translate,notranslate, languages,
acronym. These options have to be set while the package is loading, except for the xindy
sub-options which can be set using commands like \G1sSetXdyLanguage (see §14 for

further details).

(i]
=
If you need to use this command, use it as soon as possible after loading glossaries other-
wise you might end up using it too late for the change to take effect. If you try changing
the sort option after you have started to define entries, you may get unexpected results.

[glossaries—extra

With glossaries—extra, use \glossariesextrasetup instead.

121

3. Setting Up

In the preamble you need to indicate which method you want to use to generate the glossary (or
glossaries). The available options with both glossaries and glossaries—extra are summarized in
§1.3. This chapter documents Options 1, 2 and 3, which are provided by the base package. See
the glossaries—extra and bib2gl s manuals for the full documentation of the other options.

If you don’t need to display any glossaries, for example, if you are just using the glossaries
package to enable consistent formatting, then skip ahead to §4.

3.1. Option 1

The command

\makenoidxglossaries

must be placed in the document preamble. This sets up the internal commands required to make
Option 1 work. If you omit \makenoidxglossaries none of the glossaries will be
displayed.

3.2. Options 2 and 3

The command

\makeglossaries

must be placed in the document preamble in order to create the customised makeindex
(1st)or xindy (xdy) style file (for Options 2 or 3, respectively) and to ensure that glossary
entries are written to the appropriate output files. If you omit \makeglossaries none of
the indexing files will be created.

[glossaries—extra]

If you are using glossaries—extra, \makeglossaries has an optional argument that
allows you to have a hybrid of Options 1 or 2 or Options 1 or 3. See glossaries—extra
manual for further details.

122

3. Setting Up

[i
=
Note that some of the commands provided by the glossaries package must not be used

after \makeglossaries asthey are required when creating the customised style file.
If you attempt to use those commands after \makeglossaries you will generate
an error. Similarly, there are some commands that must not be used before \make—
glossaries because they require the associated indexing files to be open, if those files
should be created. These may not necessarily generate an error or warning as a different
indexing option may be chosen that doesn’t require those files (such as Options 5 or 6).

The \makeglossaries command internally uses:

\writeist

to create the custom makeindex/xindy style file. This command disables itself by setting
itself to \relax so that it can only be used once. In general, there should be no reason to use
or alter this command.

The default name for the customised style file is given by \ jobname . ist (Option 2) or
\ jobname . xdy (Option 3). This name may be changed using:

b §
\setStyleFile{(name)}
where (name) is the name of the style file without the extension.
There is a hook near the end of \writeist that can be set with:
b §

\GlsSetWriteIstHook{(code)}

The (code) will be performed while the style file is still open, which allows additional content to
be added to it. The associated write register is:

X

\glswrite

Note that this register is defined by \writeist to prevent an unnecessary write register from
being created in the event that neither makeindex nor xindy is required.

If youuse the \G1lsSetWriteIstHook hook to write extra information to the style file,
make sure you use the appropriate syntax for the desired indexing application. For example, with
makeindex:

B

\GlsSetWriteIstHook{$%
\write\glswrite{page_precedence "arnAR"}%
\write\glswrite{line_max 80}%

123

3. Setting Up

}

This changes the page precedence and the maximum line length used by makeindex.
Remember that if you switch to xindy, this will no longer be valid code.
You can suppress the creation of the customised xindy or makeindex style file using:

X

\noist

This is provided in the event that you want to supply your own customized style file that can’t
be replicated with the available options and commands provided by the glossaries package.
This command sets \writeist to \relax (making it do nothing) but will also update
the xindy attribute list if applicable.

If you have a custom xdy file created when using glossaries version 2.07 (2010-0710) or
below, you will need to use rollback and the compatible—2.07 package option with it.
However, that is now so dated and the ITEX kernel has changed significantly since that time
that you may need to use a legacy distribution (see Legacy Documents and TeX Live Docker
Images').

Each glossary entry is assigned a number list that lists all the locations in the document where
that entry was used. By default, the location refers to the page number but this may be overridden
using the counter package option. The default form of the location number assumes a full
stop compositor (for example, 1.2), but if your location numbers use a different compositor (for
example, 1-2) you need to set this using

X

\glsSetCompositor{{character)}

{symbol} For example:

B

\glsSetCompositor{-}

This command must not be used after \makeglossaries. Note that withmakeindex,
any locations with the wrong compositor (or one that hasn’t been correctly identified with \g1 s-
SetCompositor) will cause makeindex to reject the location with an invalid number/
digit message. As from v4.50, makeglossaries will check for this message and attempt
a correction, but this can result in an incorrectly formatted location in the number list. See the
information about makeglossaries’s —e switch in §1.6.1 for further details.

An invalid page number will also cause xindy to fail with a “did not match any location-
class” warning. This is also something that makeglossaries will check for and will pro-
vided diagnostic information, but it won’t attempt to make any correction.

If you use Option 3, you can have a different compositor for page numbers starting with an
upper case alphabetical character using:

'dickimaw-books.com/blog/legacy—documents—and-tex-live-docker—images

124

https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images
https://www.dickimaw-books.com/blog/legacy-documents-and-tex-live-docker-images

3. Setting Up

\glsSetAlphaCompositor/{(character)}

This command is only available with xindy. For example, if you want number lists containing
a mixture of A-1 and 2.3 style formats, then do:

=

\glsSetCompositor{.}\glsSetAlphaCompositor{-}

See §12 for further information about number lists.

125

4. Defining Glossary Entries

[bib2gls]
If you want to use bib2gls, entries must be defined in bib files using the syntax
described in the bib2gls user manual.

Acronyms are covered in §6 but they use the same underlying mechanism as all the other
glossary entries, so it’s a good idea to read this chapter first. The keys provided for \new-
glossaryentry can also be used in the optional argument of \newacronym, although
some of them, such as £i1rst and plural, interfere with the acronym styles.

All glossary entries must be defined before they are used, so it is better to define them in the
document preamble to ensure this. In fact, some commands such as \ longnewglossary-
entry may only be used in the preamble. See §4.8 for a discussion of the problems with
defining entries within the document instead of in the preamble. (The glossaries—extra package
has an option that provides a restricted form of document definitions that avoids some of the
issues discussed in §4.8.)

(]
=
Option 1 enforces the preamble-only restrictionon \newglossaryentry. Option4

requires that definitions are provided in bilb format. Options 5 and 6 work best with ei-
ther preamble-only definitions or the use of the glossaries—extra package option docde £
=restricted.

J

Bear in mind that with docdef=restricted, the entries must be defined before any
entries are used, including when they are displayed in the glossary (for example, with \print-
unsrtglossary) or where they appear in the table of contents or list of floats. This is
essentially the same problem as defining a robust command mid-document and using it in a
section title or caption.

Only those entries that are indexed in the document (using any of the commands described in
§5.1, §10 or §11) will appear in the glossary. See §8 to find out how to display the glossary.

New glossary entries are defined using the command:

X

\newglossaryentry/{ (entry-label) } { (key=value list) }

This is a short command, so values in (key=value list) can’t contain any paragraph breaks. Take
care to enclose values containing any commas (,) or equal signs (=) with braces to hide them
from the (key)=(value) list parser.

If you have a long description that needs to span multiple paragraphs, use the following instead:

126

4. Defining Glossary Entries

\longnewglossaryentry/{(entry-label)} { (key=value list) } { (description) }

Note that this command may only be used in the preamble (regardless of docdef).

A

[Be careful of unwanted spaces.

J

\longnewglossaryentry will remove trailing spaces in the description (via \un-
skip) but won’t remove leading spaces. This command also appends \nopostdesc to
the end of the description, which suppresses the post-description hook (since the terminating
punctuation is more likely to be included in a multi-paragraph description). The glossaries—extra
package provides a starred version of \longnewglossaryentry that doesn’t append
either \unskipor \nopostdesc.

There are also commands that will only define the entry if it hasn’t already been defined:

X
\provideglossaryentry{(entry-label)} { (key=value list) }
and
X
\longprovideglossaryentry{(entry-label)} { (key=value
list) } { (description) }

(These are both preamble-only commands.)

For all the above commands, the first argument, (entry-label), must be a unique label with
which to identify this entry. This can’t contain any non-expandable or fragile commands.
The reason for this restriction is that the label is used to construct internal commands that store
the associated information (similarly to commands like \ 1 albe 1) and therefore must be able to
expand to a valid control sequence name. With modern I5IgX kernels, you should now be able
to use UTF-8 characters in the label.

Be careful of babel’s options that change certain punctuation characters, such as colon (:)
or double-quote ("), to active characters.

The second argument, (key=value list), is a (key)=(value) list that supplies the relevant infor-
mation about this entry. There are two required fields: descript ion and either name or
parent. The description is set in the third argument of \ longnewglossaryentry
and \ longprovideglossaryentry. Withthe other commandsit’ssetviathe description
key.

As is typical with (key)=(value) lists, values that contain a comma (,) or equal sign (=)
must be enclosed in braces. Available fields are listed below. Additional fields are provided by

127

4. Defining Glossary Entries

the supplementary packages glossaries—prefix (§16) and glossaries—accsupp (§17) and also by
glossaries—extra. You can also define your own custom keys (see §4.3).
[=

s

name-= { (fext) }

The name of the entry (as it will appear in the glossary). If this key is omitted and the parent
key is supplied, this value will be the same as the parent’s name.

[i
=
If the name key contains any commands, you must also use the sort key (described

below) if you intend sorting the entries alphabetically with Options 1, 2 or 3, otherwise
the entries can’t be sorted correctly.

description={(fext)}

A brief description of this term (to appear in the glossary). Within this value, you can use:

7

\nopostdesc

to suppress the description terminator for this entry. For example, if this entry is a parent entry
that doesn’t require a description, you can do description={\nopostdesc}. If you
want a paragraph break in the description use:

X

\glspar

or, better, use \longnewglossaryentry. However, note that not all glossary styles
support multi-line descriptions. If you are using one of the tabular-like glossary styles that permit
multi-line descriptions and you really need an explicit line break, use \newline not \ \ (but
in general, avoid \ \ outside of tabular contexts anyway and use a ragged style if you are having
problems with line breaks in a narrow column).

[glossaries—extra

With glossaries—extra, use \glsxtrnopostpunc instead of \nopostdesc to
suppress the post-description punctuation.

parent=(parent-label)

This key establishes the entry’s hierarchical level. The value must be the label of the parent
entry (not the name, although they may be the same). The (parent-label) value must match the
(entry-label) used when the parent entry was defined. See §4.5 for further details.

128

4. Defining Glossary Entries

[i
=
The parent entry must be defined before it’s referenced in the parent key of another
entry.

(=]

==

descriptionplural={ (fext)}

The plural form of the description, if required. If omitted, the value is set to the same as the
description key.

text={(text)}

How this entry will appear in the document text when using \g1s on subsequent use. If this
field is omitted, the value of the name key is used.

This key is automatically set by \newacronym. Although it is possible to override it by
using t ext in the optional argument of \newacronym, it will interfere with the acronym
style and cause unexpected results.

[(=]

s

first={(first) }

How the entry will appear in the document text on first use with \gls. If this field is omitted,
the value of the text key is used. Note that if you use \glspl, \Glspl, \GLSpl,
\glsdisp before using \gls, the first value won’t be used with \gls.

You may prefer to use acronyms (§6) or the abbreviations or the category post-link hook
(\glsdefpostlink) provided by glossaries—extra if you would like to automatically ap-
pend content on first use in a consistent manner. See, for example, Gallery: Units (glossaries-
extra.sty).!

Although it is possible to use £irst in the optional argument of \newacronym, it can
interfere with the acronym style and cause unexpected results. =

==

plural={(text)}

How the entry will appear in the document text when using \ g1 spl on subsequent use. If this
field is omitted, the value is obtained by appending \glspluralsuffix to the value of
the text field.

Although it is possible to use plural in the optional argument of \newacronym, it can
interfere with the acronym style and cause unexpected results. Use shortplural instead,
if the default value is inappropriate.

'dickimaw-books.com/gallery/index.php?label=sample-units

129

https://www.dickimaw-books.com/gallery/index.php?label=sample-units
https://www.dickimaw-books.com/gallery/index.php?label=sample-units
https://www.dickimaw-books.com/gallery/index.php?label=sample-units

4. Defining Glossary Entries

firstplural={(text)}

How the entry will appear in the document text on first use with \ g1 sp1. If this field is omitted,
the value is obtained from the plural key, if the £i1irst key is omitted, or by appending
\glspluralsuffix to the value of the first field, if the first field is present.
Note that if youuse \gls, \G1ls, \GLS, \glsdisp before using \glspl,the first-
plural value won’t be used with \glspl.

Although itis possibletouse £ i rstplural inthe optional argument of \newacronym,
it can interfere with the acronym style and cause unexpected results. Use shortplural and
longplural instead, if the default value is inappropriate.

(@]

=
Prior to version 1.13, the default value of firstplural was always taken by ap-

(1P

pending “s” to the £1rst key, which meant that you had to specify both plural and
firstplural, evenif you hadn’t used the £1rst key.

symbol={ (symbol) } initial: \relax

This field is provided to allow the user to specify an associated symbol. If omitted, the value is
set to \ relax. Note that not all glossary styles display the symbol.

symbolplural=/{ (symbol plural) }

This is the plural form of the symbol. If omitted, the value is set to the same as the symbol
key.

=
sort=(value) initial: (entry name)

This value indicates the text to be used by the sort comparator when ordering all the glossary
entries. If omitted, the value is given by the name field unless one of the package options sort
=def and sort=use have been used. With Option 2 it’s best to use the sort key if the
name contains commands (for example, \ensuremath{\alpha}) and with Options 2
and 3, it’s strongly recommended as the indexing may fail if you don’t (see below).

You can also override the sort key by redefining \gl sprestandardsort (see §2.5).

[bib2gls |

The sort key shouldn’t be used with b1b2gls. It has a system of fallbacks that allow
different types of entries to obtain the sort value from the most relevant field. See the
bib2gls manual for further details, and see also bib2g1ls gallery: sorting.

130

https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

4. Defining Glossary Entries

“dickimaw-books.com/gallery/index.php?label=1label=
bib2gls-sorting

Option 1 by default strips the standard I£TEX accents (that is, accents generated by core ISTEX
commands) from the name key when it sets the sort key. So with Option 1:

=

\newglossaryentry{elite}{
name={\"'elite},
description={select group of people}

}

This is equivalent to:

\newglossaryentry{elite}{
name={\"'elite},
description={select group of people}
sort={elite}

}

Unless you use the package option sanitizesort=true,in which case it’s equivalent to:

\newglossaryentry{elite}{
name={\'elite},
description={select group of people}
sort={\'elite},

}

This will place the entry before the “A” letter group since the sort value starts with a symbol (a
literal backslash \). Note that Option 1 shouldn’t be used with UTF-8 characters. With old XX
kernels, it was able to convert a UTF-8 character, such as &, to an ASCII equivalent but this is no
longer possible.

With Options 2 and 3, the default value of sort will either be set to the name key (if
sanitizesort=true)oritwill setitto the expansion of the name key (if sanitize-
sort=false).

(i]
r =
Take care with xindy (Option 3): if you have entries with the same sort value they
will be treated as the same entry. If you use xindy and aren’t using the de f or use sort
methods, always use the sort key for entries where the name just consists of commands

(for example name={\alpha}l).

131

https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

4. Defining Glossary Entries

Take care if you use Option 1 and the name contains fragile commands. You will
either need to explicitly set the sort keyoruse the sanitizesort=true package
option (unless you use the de f or use sort methods).

[=
=
type=(glossary-label) initial: \glsdefaulttype

This specifies the label of the glossary in which this entry belongs. If omitted, the default glossary
identified by \glsdefaulttype is assumed unless \newacronym is used (see §6).
Six keys are provided for any additional information the user may want to specify. (For ex-
ample, an associated dimension or an alternative plural or some other grammatical construct.)
Alternatively, you can add new keys using \glsaddkey or \glsaddstoragekey (see

§4.3).
[=
Ul
userl={(text)}
The first user key.
[=
L=
user2={(text) }
The second user key.
=
user3={ (text) }
The third user key.
ULl
userd={(text)}
The fourth user key.
[=
Ul
user5={(text) }
The fifth user key.
[=
Ul
user6={(text) }
The sixth user key.
[=
L=
nonumberlist={(boolean) } default: true; initial: false

If the value is missing or is € rue, this will suppress the number list just for this entry. Con-

132

4. Defining Glossary Entries

versely, if you have used the package option nonumberlist=true, you can activate the
number list just for this entry with nonumberlist={false}. (See §12.)

This key works by adding \gl snonextpages (nonumberlist={true})or\gls-
nextpages (nonumberlist={false}) to the indexing information for Options 2
and 3. Note that this means that if the entry is added to the glossary simply because it has an
indexed descendent (and has not been indexed itself) then the first indexed sub-entry that follows
will have its number list suppressed instead.

With Option 1, this key saves the appropriate command in the prenumber 11 st internal
field, which is used by \glsnoidxprenumberlist.

=
see={ [(tag)] (xr-list) }

This key essentially provides a convenient shortcut that performs

\glssee [(tag)] { (entry-label) } { (xr-list) }

after the entry has been defined. (See §11.) It was originally designed for synonyms that may
not occur in the document text but needed to be included in the glossary in order to redirect the
reader. Note that it doesn’t index the cross-referenced entry (or entries) as that would interfere
with their number lists.

[i
=
Using the see key will automatically add this entry to the glossary, but will not automat-

ically add the cross-referenced entry.

For example:

\newglossaryentry{courgette}{name={courgette},
description={variety of small marrow}}

\newglossaryentry{zucchini}{name={zucchini},
description={ (North American)},
see={courgette}}

This defines two entries (courgette and zucchini) and automatically adds a cross-reference from
zucchini to courgette. (That is, it adds “see courgette” to zucchini’s number list.) This doesn’t
automatically index courgette since this would create an unwanted location in courgette’s number
list. (Page 1, if the definitions occur in the preamble.)

Note that while it’s possible to put the cross-reference in the description instead, for example:

133

4. Defining Glossary Entries

=

\newglossaryentry{zucchini}{name={zucchini},
description={ (North American) see \gls{courgette}}

}

this won’t index the zucchini entry, so if zucchini isn’t indexed elsewhere (with commands like
\gls or \glsadd) then it won’t appear in the glossary even if courgette does.

The referenced entry should be supplied as the value to this key. If you want to override the
“see” tag, you can supply the new tag in square brackets before the label. For example see=
{[see also]{anotherlabel}}.

A

If you have suppressed the number list, the cross-referencing information won’t appear in
the glossary, as it forms part of the number list.

You can override this for individual glossary entries using nonumberlist={false}.
Alternatively, you can use the seeautonumber1ist package option. For further details,
see §11.

[i
=
For Options 2 and 3, \makeglossaries must be used before any occurrence of

\newglossaryentry that contains the see key.

Since it’s useful to suppress the indexing while working on a draft document, consider us-
ing the seenoindex package option to warn about or ignore the see key while \make-
glossaries is commented out.

If you use the see key, you may want to consider using the glossaries—extra package which
additionally providesa seealsoand a 11ias key. If you want to avoid the automatic indexing
triggered by the see key, consider using Option 4. See also the FAQ item Why does the see
key automatically index the entry??

[bib2 gls]
The analogous bib2gls see, seealsoand alias fields have a slightly different
meaning. The se 1l ect ion resource option determines the behaviour.

seealso={ (xr-list) }

This key is only available with glossaries—extra and is similar to see but it doesn’t allow for
the optional tag. The glossaries—extra package provides \seealsoname and seealso
={xr—-1ist} isessentially like see={ [\seealsoname] (xr-list)} (Options 3 and 4

’dickimaw-books.com/faqg.php?itemlabel=whyseekeyautoindex

134

https://www.dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex
https://www.dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex
https://www.dickimaw-books.com/faq.php?itemlabel=whyseekeyautoindex

4. Defining Glossary Entries

may treat these differently).

alias={ (xr-label)}

This key is only available with glossaries—extra and is another form of cross-referencing. An en-
try can be aliased to another entry with a1 ias={other—1label }. This behaves like sce
={other—-1label} butalso alters the behaviour of commands like \ g1 s so that they index
the entry given by (label) instead of the original entry. (See, for example, Gallery: Aliases.?)

[bib2gls |

More variations with the a 1 i a s key are available with bib2gls.

counter={(counter-name) }

This key will set the default location counter for the given entry. This will override the counter
assigned to the entry’s glossary in the final optional argument of \newglossary (if pro-
vided) and the counter identified by the counter package option. The location counter can
be overridden by the count e r option when using the \ g1 s-like and \ gl stext-like com-
mands.

-—
—a

Sa—
category=(category-label) initial: general

This key is only available with glossaries—extra and is used to assign a category to the entry. The
value should be a label that can be used to identify the category. See glossaries—extra manual
for further details.

The following keys are reserved for \newacronym (see §6) and also for \newabbreviation
(see the glossaries—extra manual): 1ong, longplural, short and shortplural.
Youcanuse longplural and shortplural inthe optional argument of \newacronym
(or \newabbreviation) to override the defaults, but don’t explicitly use the 1ong or
short keys as that may interfere with acronym style (or abbreviation style).

[bib2gls |

There are also special internal field names used by bib2gls. See the bib2gls man-
ual for further details.

The supplementary packages glossaries—prefix (§16) and glossaries—accsupp (§17) provide
additional keys.

3dickimaw-books.com/gallery/index.php?label=aliases

135

https://www.dickimaw-books.com/gallery/index.php?label=aliases
https://www.dickimaw-books.com/gallery/index.php?label=aliases

4. Defining Glossary Entries

(i]
=
Avoid using any of the \gls-like or \glstext-like commands within the text,
first, short or long keys (or their plural equivalent) or any other key that you
plan to access through those commands. (For example, the symbo 1 key if you intend to
use \glssymbol.) Otherwise you can up with nested links, which can cause compli-
cations. You can use them within the value of keys that won’t be accessed through those
commands. For example, the description key if you don’t use \glsdesc. Ad-
ditionally, they’ll confuse the formatting placeholder commands, such as \glslabel.
The glossaries—extra package provides \ g1 sxt rp for this type of situation.

With older XTEX kernels and pre-2.08 versions of mfirstuc, if the name starts with non-Latin
character, you need to group the character, otherwise it will cause a problem for commands like
\Gls and \G1lspl. For example:

=

o

% mfirstuc v2.07
\newglossaryentry{elite}{name={{\'e}lite},
description={select group or class}}

Note that the same applies with inputenc:

(¢}

% mfirstuc v2.07
\newglossaryentry{elite}{name={{é}lite},
description={select group or class}}

This doesn’t apply for XgIATEX or LualfTEX documents or with mfirstuc v2.08+.

(e}

% mfirstuc v2.08
\newglossaryentry{elite}{name={élite},
description={select group or class}}

See the mfirstuc manual for further details.

Note that in the above UTF-8 examples, you will also need to supply the sort key if you
are using Options 1 or 2 whereas x 1 ndy (Option 3) is usually able to sort non-Latin characters
correctly.

4.1. Plurals

You may have noticed from above that you can specify the plural form when you define an entry.
If you omit this, the plural will be obtained by appending:

136

4. Defining Glossary Entries

X

\glspluralsuffix initial: s

to the singular form. This command may expand when the entry is defined, if expansion is on
for the relevant keys, or may not expand until the entry is referenced, if expansion is off or if the
suffix has been hidden inside non-expanding context (which can happen when defining acronyms
or abbreviations).

For example:

\newglossaryentry{cow}{name={cow},description=
{a fully grown
female of any bovine animal}}

defines a new entry whose singular form is “cow” and plural form is “cows”. However, if you
are writing in archaic English, you may want to use “kine” as the plural form, in which case you
would have to do:

=

\newglossaryentry{cow}{name={cow},plural={kine},
description=
{a fully grown female of any bovine animal}}

If you are writing in a language that supports multiple plurals (for a given term) then use the
plural key for one of them and one of the user keys to specify the other plural form. For
example:

,

\newglossaryentry{cow}{
name={cow},
description=
{a fully grown female of any bovine animal
(plural cows, archaic plural kine)},
userl={kine}}

You can then use \glspl{cow} to produce “cows” and \gl suseri{cow} to produce
“kine”. You can, of course, define an easy to remember synonym. For example:

Ei

\let\glsaltpl\glsuseri

Then you don’t have to remember which key you used to store the second plural. (Be careful
with using \ 1let as it doesn’t check if the command already exists.)

137

4. Defining Glossary Entries

Alternatively, you can define your own keys using \glsaddkey, described in §4.3 (or
simply use \glsdisp or \glslink with the appropriate text).

If you are using a language that usually forms plurals by appending a different letter, or se-
quence of letters, you can redefine \glspluralsuffix as required. However, this must
be done before the entries are defined and is unreliable for multilingual documents. For languages
that don’t form plurals by simply appending a suffix, all the plural forms must be specified using
the plural key (and the firstplural key where necessary).

4.2. Other Grammatical Constructs

You can use the six user keys to provide alternatives, such as participles. For example:

\let\glsing\glsuseri
\let\glsd\glsuserii

\newcommand*{\ingkey}{userl}
\newcommand*{\edkey}{user2}

\newcommand* {\newword} [3][]1{%
\newglossaryentry{#2}{%
name={#2},%
description={#3},%
\edkey={#2ed}, %
\ingkey={#2ing}, #1%
H}

With the above definitions, I can now define terms like this:

\newword{play}

{to take part in activities for enjoyment}
\newword[\edkey={ran}, \ingkey={running}] {run}
{to move fast using

the legs}

.

and use them in the text:

Peter is \glsing{play} in the park today.

Jane \glsd{play} in the park yesterday.

138

4. Defining Glossary Entries

Peter and Jane \glsd{run} in the park last week.

Alternatively, you can define your own keys using \ gl saddkey, described below in §4.3.
It may, however, be simpler just to use \glslink or \glsdisp with the appropriate link
text.

4.3. Additional Keys

You can define your own custom keys using the commands described in this section. There are
two types of keys: those for use within the document and those to store information used behind
the scenes by other commands.

For example, if you want to add a key that indicates the associated unit for a term, you might
want to reference this unit in your document. In this case use \glsaddkey described in
§4.3.1. If, on the other hand, you want to add a key to indicate to a glossary style or acronym
style that this entry should be formatted differently to other entries, then you can use \gls-
addstoragekey described in §4.3.2.

In both cases, a new command (no link cs) will be defined that can be used to access the value
of this key (analogous to commands such as \glsentrytext). This can be used in an
expandable context (provided any fragile commands stored in the key have been protected). The
new keys must be added using \glsaddkey or \glsaddstoragekey before glossary
entries are defined.

4.3.1. Document Keys

A custom key that can be used in the document is defined using:

\glsaddkey/{ (key) } { (default value) } { (no link cs) } { (no link ucfirst cs) } { (link
cs) } { (link ucfirst cs) } { (link allcaps cs) }

where the arguments are as follows:

(key) isthe new key tousein \newglossaryentry (orsimilar commands suchas \ 1ong-
newglossaryentry);

(default value) is the default value to use if this key isn’t used in an entry definition (this may ref-
erence the current entry label via \glslabel, but you will have to switch on expansion
via the starred version of \ gl saddkey and protect fragile commands);

(no link cs) is the control sequence to use analogous to commands like \glsentrytext;

(no link ucfirst cs) is the control sequence to use analogous to commands like \Glsentry-
text;

(link cs) is the control sequence to use analogous to commands like \glstext;

139

4. Defining Glossary Entries

(link ucfirst cs) is the control sequence to use analogous to commands like \Glstext;

(link allcaps cs) is the control sequence to use analogous to commands like \GLStext.

The starred version of \ g1 saddkey switches on expansion for this key. The unstarred version

doesn’t override the current expansion setting.

Example 11: Defining Custom Keys

Suppose I want to define two new keys, ed and ing, that default to the entry text followed
by “ed” and “ing”, respectively. The default value will need expanding in both cases, so I need

to use the starred form:

% Define "ed" key:

\glsaddkey*
{ed}% key
{\glsentrytext{\glslabel}ed}% default value
{\glsentryed}% command analogous to \glsentrytext
{\Glsentryed}% command analogous to \Glsentrytext
{\glsed}% command analogous to \glstext
{\Glsed}% command analogous to \Glstext
{\GLSed}% command analogous to \GLStext

% Define "ing" key:

\glsaddkey*
{ing}% key
{\glsentrytext{\glslabel}ing}% default wvalue
{\glsentrying}% command analogous to \glsentrytext
{\Glsentrying}% command analogous to \Glsentrytext
{\glsing}% command analogous to \glstext
{\Glsing}% command analogous to \Glstext
{\GLSing}% command analogous to \GLStext

Now I can define some entries:

% No need to override defaults for this entry:
\newglossaryentry{jump}{name={jump},description={}}

% Need to override defaults on these entries:
\newglossaryentry{run}{name={run},

ed={ran},

ing={running},

140

4. Defining Glossary Entries

description={}}

\newglossaryentry{waddle}{name={waddle},
ed={waddled},
ing={waddling},
description={}}

These entries can later be used in the document:

The dog \glsed{jump} over the duck.
The duck was \glsing{waddle} round the dog.

The dog \glsed{run} away from the duck.

For a complete document, see the sample file sample—newkeys.tex.

4.3.2. Storage Keys

A custom key that can be used for simply storing information is defined using:

\glsaddstoragekey{ (key)} { (default value) } { (no link cs) }

where the arguments are as the first three arguments of \glsaddkey, described above in
§4.3.1.

This is essentially the same as \glsaddkey except that it doesn’t define the additional
commands. You can access or update the value of your new field using the commands described
in §15.6.

Example 12: Defining Custom Storage Key (Acronyms and Initialisms)

Suppose I want to define acronyms (an abbreviation that is pronounced as a word) and other
forms of abbreviations, such as initialisms, but I want them all in the same glossary and I want the
acronyms on first use to be displayed with the short form followed by the long form in parentheses,
but the opposite way round for other forms of abbreviations. (The glossaries—extra package
provides a simpler way of achieving this.)

Here I can define a new key that determines whether the term is actually an acronym rather
than some other form of abbreviation. I'm going to call this key abbrtype (since type
already exists):

141

4. Defining Glossary Entries

\glsaddstoragekey
{abbrtype}% key/field name
{word}% default value if not explicitly set
{\abbrtype}

[e)

% custom command to access the value if required

Now I can define a style that looks up the value of this new key to determine how to display

the full form:

\newacronymstyle
{mystyle}% style name
{% Use the generic display
\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgen—
entryfmt}%
}%
{% Put the long form in the description
\renewcommand*{\GenericAcronymFields}{%
description={\the\glslongtok}}%
For the full format, test the value of the "abbrtj
If it's set to "word" put the short form first wit
% the long form in brackets.
\renewcommand*{\genacrfullformat}[2]{%
\ifglsfieldeg{##1}{abbrtype}{word}
{% is a proper acronym
\protect\firstacronymfont{\glsentryshort{##1}}
##2\space
(\glsentrylong{##1})%

o\°

o\°

% 1s another form of abbreviation
\glsentrylong{##1}##2\space
(\protect\firstacronymfont{\glsentryshort{##1}

-
-
o\°

o\° —~~
o\

t
% sentence case version:
\renewcommand*{\Genacrfullformat}[2]{%
\ifglsfieldeg{##1}{abbrtype}{word}
{% 1is a proper acronym
\protect\firstacronymfont{\Glsentryshort {##1}}
##2\space

zpe "
h

142

key.

4. Defining Glossary Entries

(\glsentrylong{##1})%

t

{% is another form of abbreviation

\Glsentrylong{##1}##2\space
(\protect\firstacronymfont{\glsentryshort {##1}

—
-
o\°

o\

o0 v~

}
% plural
\renewcommand*{\genplacrfullformat} [2]{%
\ifglsfieldeqg{##1}{abbrtype}{word}%
{% is a proper acronym
\protect\firstacronymfont{\glsentryshortpl
{##1} }##2\space
(\glsentrylong{##1})%

o\

}
{% is another form of abbreviation
\glsentrylongpl{##1}##2\space
(\protect\firstacronymfont{\glsentryshortpl
{##1}}1) %
}%

o\°

t
% plural and sentence case
\renewcommand*{\Genplacrfullformat} [2]{%
\ifglsfieldeqg{##1}{abbrtype}{word}%
{% 1is a proper acronym
\protect\firstacronymfont{\Glsentryshortpl
{##1} }##2\space
(\glsentrylong{##1})%

o\

t
{% is another form of abbreviation
\Glsentrylongpl{##1}##2\space
(\protect\firstacronymfont{\glsentryshortpl
{##1}1}) %
%
s
% Just use the short form as the name part in the gl
\renewcommand*{\acronymentry}[1]{%
\acronymfont{\glsentryshort{##1}}}%
Sort by the short form:
renewcommand*{\acronymsort} [2] {##1}%
% Just use the surrounding font for the short form:

~ oP°

143

ssary:

4. Defining Glossary Entries

\renewcommand*{\acronymfont} [1]{##1}%
% Same for first use:
\renewcommand*{\firstacronymfont}[1] {\acronymfont
{##1}}%
% Default plural suffix if the plural isn't explicitly set

\renewcommand*{\acrpluralsuffix}{\glspluralsuffix}

o\

}

Remember that the new style needs to be set before defining any terms:

=

\setacronymstyle{mystyle}

Since it may be a bit confusing to use \newacronym for something that’s not technically
an acronym, let’s define a new command for initialisms:

=

\newcommand*{\newinitialism}[4][]{%
\newacronym[abbrtype=initialism, #1]{#2}{#3}{#4}%
}

Now the entries can all be defined:

\newacronym{radar}{radar}

{radio detecting and ranging}
\newacronym{laser}{laser}

{light amplification by stimulated

emission of radiation}
\newacronym{scuba}{scuba}{self-

contained underwater breathing

apparatus}

\newinitialism{dsp}{DSP}{digital signal processing}
\newinitialism{atm}{ATM}{automated teller machine}

On first use, \gls{radar} will produce “radar (radio detecting and ranging)” but \gls
{dsp} will produce “DSP (digital signal processing)”.
For a complete document, see the sample file sample—storage—abbr.tex

In the above example, if \newglossaryentry is explicitly used (instead of through
\newacronym) the abbrtype key will be set to its default value of “word” but the \ i f-
glshaslong testin the custom acronym style will be false (since the 1 ong key hasn’t been

144

4. Defining Glossary Entries

set) so the display style will switch to that given by \glsgenentryfmt and they’ll be no
test performed on the abbrtype field.

Example 13: Defining Custom Storage Key (Acronyms and Non-
Acronyms with Descriptions)

The previous example can be modified if the description also needs to be provided.
Here I've changed “word” to “acronym”:

\glsaddstoragekey
{abbrtype}% key/field name
{acronym}% default value 1f not explicitly set
{\abbrtype}

[e)

% custom command to access the value if required

This may seem a little odd for non-abbreviated entries that are defined using \newglossary-
entry directly, but \ 1 fglshaslong can be used to determine whether or not to reference
the value of this new abbrtype field.

The new acronym style has a minor modification that forces the user to specify a description.
In the previous example, the line:

\renewcommand*{\GenericAcronymFields}{$%
description={\the\glslongtok}}%

needs to be changed to:

\renewcommand*{\GenericAcronymFields}{}%

- R

Additionally, to accommodate the change in the default value of the abbrtype key, all in-
stances of

\ifglsfieldeg{##1}{abbrtype}{word}

need to be changed to:

\ifglsfieldeg{##1}{abbrtype}{acronym}

8 LB

Once this new style has been set, the new acronyms can be defined using the optional argument
to set the description:

145

4. Defining Glossary Entries

\newacronym|[description=

{system for detecting the position and

speed of aircraft, ships, etc}l{radar}{radar}
{radio detecting

and ranging}

No change is required for the definition of \newinitiali sm but again the optional ar-
gument is required to set the description:

\newinitialism[description=
{mathematical manipulation of an
information signal}]{dsp}{DSP}
{digital signal processing}

‘We can also accommodate contractions in a similar manner to the initialisms:

\newcommand* {\newcontraction}[4][]{%
\newacronym[abbrtype=contraction, #1]{#2} {#3}{#4}%
t

The contractions can similarly been defined using this new command:

\newcontraction[description=
{front part of a ship below the
deck}]{focsle}{fo'c's'le}{forecastle}

Bl Bl B

Since the custom acronym style just checks if abbrtype is “acronym”, the contractions
will be treated the same as the initialisms, but the style could be modified by a further test of the
abbrtype value if required.

To test regular non-abbreviated entries, I've also defined a simple word:

\newglossaryentry{apple}{name={apple},description=
{a fruit}}

_ B

Now for a new glossary style that provides information about the abbreviation (in addition to
the description):

146

4. Defining Glossary Entries

\newglossarystyle
{mystyle}% style name
{% base it on the "list" style
\setglossarystyle{list}%
\renewcommand*{\glossentry} [2]{%
\item[\glsentryitem{##1}%
\glstarget{##1}{\glossentryname{##1}}]
\ifglshaslong{##1}%
{ (\abbrtype{##1}: \glsentrylong{##1}) \space}
{1%
\glossentrydesc{##1}\glspostdescrip—
tion\space ##2}%
}

This uses \ifglshaslong to determine whether or not the term is an abbreviation. (An
alternative is to use \ifglshasshort. The long and short keys are only set for
acronyms/abbreviations.)

If the entry has an short/1 ong value, the full form is supplied in parentheses and \ abbrtype
(defined by \glsaddstoragekey earlier) is used to indicate the type of abbreviation.

With this style set, the “apple” entry is simply displayed in the glossary as:

apple a fruit.
but the abbreviations are displayed in the form

laser (acronym: light amplification by stimulated emission of radiation) device that creates a
narrow beam of intense light.

(for acronyms) or

DSP (initialism: digital signal processing) mathematical manipulation of an information signal.
(for initalisms) or

fo’c’s’le (contraction: forecastle) front part of a ship below the deck.

(for contractions).
For a complete document, see sample—-storage—abbr—-desc.tex.

4.4. Expansion
When you define new glossary entries expansion is performed by default, except for the name,

description,descriptionplural,symbol, symbolplural and sort keys
(these keys all have expansion suppressed via \glssetnoexpandfield).

147

4. Defining Glossary Entries

You can switch expansion on or off for individual keys using:

\glssetexpandfield{ (field)}

or

\glssetnoexpandfield{ (field)}

respectively, where (field) is the internal field label corresponding to the key. In most cases, this
is the same as the name of the key except for those listed in Table 4.1.

Table 4.1.: Key to Field Mappings

Key Field

sort sortvalue
firstplural firstpl
description desc
descriptionplural descplural
userl useri
user?2 userii
user3 useriii
user4 useriv
userb userv
usero6 uservi
longplural longpl
shortplural shortpl

Any keys that haven’t had the expansion explicitly set using \glssetexpandfieldor
\glssetnoexpandfield are governed by

X

\glsexpandfields

and

\glsnoexpandfields

If your entries contain any fragile commands, I recommend you switch off expansion via
\glsnoexpandfields. (This should be used before you define the entries.)

148

4. Defining Glossary Entries

o

Both \newacronym and \newabbreviation partially suppress expansion of
some keys regardless of the above expansion settings.

4.5. Sub-Entries

A sub-entry is created by setting the parent key. These will normally be sorted so that they are
placed immediately after their parent entry. However, some sort methods aren’t suitable when
there are sub-entries. In particular, sub-entries are problematic with Option 1, and with Option 5
the sub-entries must be defined immediately after their parent entry (rather than at any point after
the parent entry has been defined).

The hierarchical level indicates the sub-entry level. An entry with no parent (a top level entry)
is a hierarchical level O entry. An entry with a parent has a hierarchical level that’s one more than
its parent’s level. The level is calculated when an entry is defined.

(@]

=
The hierarchical level is stored in the 1 eve 1 internal field. It can be accessed using com-

mands like \glsfieldfetch or (with glossaries—extra) \glsxtrusefield,
but neither the level nor the parent values should be altered as it can cause in-
consistencies in the sorting and glossary formatting. The indexing syntax for Options 2
and 3 is generated when the entry is first defined, so it’s too late to change the hierarchy
after that, and bilb2gls obtains the hierarchical information from the bib files and
the resource options. Note, however, that glossaries—extra does allow the ability to lo-
cally alter the level with the 1 eve 1 o f £ set option, which is mainly intended for nested
glossary. See the glossaries—extra manual for further details and also Gallery: Inner or
Nested Glossaries.”

“dickimaw-books.com/gallery/index.php?label=bib2gls-inner

7

There are two different types of sub-entries: those that have the same name as their parent
(homographs, see §4.5.2) and those that establish a hierarchy (see §4.5.1). Both types are con-
sidered hierarchical entries from the point of view of the glossaries package and the indexing
applications, but typically homographs will have the name key obtained from the parent, rather
than have it explicitly set, and have a maximum hierarchical level of 1.

Not all glossary styles support hierarchical entries and may display all the entries in a flat
format. Of the styles that support sub-entries, some display the sub-entry’s name whilst others
don’t. Therefore you need to ensure that you use a suitable style. (See §13 for a list of predefined
glossary styles.) If you want level 1 sub-entries automatically numbered (in glossary styles that
support it) use the subent rycounter package option (see §2.3 for further details).

Note that the parent entry will automatically be added to the glossary if any of its child entries
are used in the document. If the parent entry is not referenced in the document, it will not have a
number list. Note also that make index has a restriction on the maximum hierarchical depth.

149

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner

4. Defining Glossary Entries

4.5.1. Hierarchy

To create a glossary with hierarchical divisions, you need to first define the division, which will be
a top level (level 0) entry, and then define the sub-entries using the relevant higher level entry as
the value of the parent key. (In a hierarchical context, a higher level indicates a numerically
smaller level number, so level O is one level higher than level 1.) The top level entry may represent,
for example, a topic or classification. A level 1 entry may represent, for example, a sub-topic or
sub-classification.

Example 14: Hierarchical Divisions — Greek and Roman Mathematical
Symbols

Suppose I want a glossary of mathematical symbols that are divided into Greek letters and
Roman letters. Then I can define the divisions as follows:

\newglossaryentry{greekletter}{name={Greek letters},
description={\nopostdesc}}

\newglossaryentryromanletter{name={Roman letters},
description={\nopostdesc}}

Note that in this example, the top level entries don’t need a description so I have set the de-
scriptions to \nopostdesc. This gives a blank description and suppresses the description
terminator.

I can now define my sub-entries as follows:

,

\newglossaryentry{pi}tname={\ensuremath{\pi}}, sort=
{pi},

description=

{ratio of the circumference of a circle to

the diameter},

parent={greekletter}

\newglossaryentry{C}{name={\ensuremath{C}}, sort={C},
description={Euler's constant},
parent={romanletter}}

For a complete document, see the sample file sampletree.tex.

150

4. Defining Glossary Entries

[glossaries—extra]

If you want to switch to Option 5, you will need to move the definitions of the sub-entries
to immediately after the definition of their parent entry. So, in this case, “pi” needs to be
defined after “greekletter” and before “romanletter”.

4.5.2. Homographs

Sub-entries that have the same name as the parent entry don’t need to have the name key ex-
plicitly set. For example, the word “glossary” can mean a list of technical words or a collection
of glosses. In both cases the plural is “glossaries”. So first define the parent entry:

=

\newglossaryentry{glossary}{name={glossary},
description={\nopostdesc},
plural={glossaries}}

As in the previous example, the parent entry has no description, so the description terminator
needs to be suppressed using \nopostdesc.
Now define the two different meanings of the word with the parent key set to the above

parent entry label:

\newglossaryentry{glossarylist}{
description={list of technical words},
sort={1},

parent={glossary}}

\newglossaryentry{glossarycol }{
description={collection of glosses},
sort={2},

parent={glossary}}

Note that if I reference the parent entry (for example, \gls{glossary}), the location will
be added to the parent’s number list, whereas if I reference any of the child entries (for example,
\gls{glossarylist}), the location will be added to the child entry’s number list. Note
also that since the sub-entries have the same name, the sort key is required with Option 3
(xindy) and recommended with Option 2 (makeindex). You can use the subentry-
counter package option to automatically number the level 1 child entries in the glossary (if
you use a glossary style that supports it). See §2.3 for further details.

151

4. Defining Glossary Entries

In the above example, the plural form for both of the child entries is the same as the parent
entry, so the plural key was not required for the child entries. However, if the sub-entries
have different plurals, they will need to be specified. For example:

\newglossaryentry{bravo}{name={bravo},
description={\nopostdesc}}

\newglossaryentry{bravocry}{description=
{cry of approval

(pl. bravos)},

sort={1},

plural={bravos},

parent={bravo}}

\newglossaryentry{bravoruffian}{description={hired
ruffian or killer (pl. bravoes)},

sort={2},

plural={bravoes},

parent={bravo}}

For a complete document, see the sample file sample.tex.

4.6. Loading Entries From a File

You can store all your glossary entry definitions in another file and use:

\loadglsentries [(type)] { (filename) }

where (filename) is the name of the file containing all the \newglossaryentry, \long-
newglossaryentry, \newacronym etc commands. The optional argument (rype)
is the name of the glossary to which those entries should belong, for those entries where the
type key has been omitted (or, more specifically, for those entries whose t ype has been set
to \glsdefaulttype, which is what \newglossaryentry uses by default). See
sampleDB. tex for a complete example document.

(o]

=
Commands like \newacronym, \newabbreviation, \newterm, \gls—

xtrnewsymbol and \glsxtrnewnumber all set the t ype key to the appropri-
ate glossary. This means that the (fype) optional argument won’t apply to those commands,
unless they have t ype={\glsdefaulttype}.

152

4. Defining Glossary Entries

This is a preamble-only command. You may also use \input to load the file but don’t
use \include. If you find that your file is becoming unmanageably large, you may want to
consider switching to bilb2gls and use an application such as JabRef to manage the entry
definitions.

(i]
=
If you want to use \AtBeginDocument to \ input all your entries automatically

at the start of the document, add the \At BeginDocument command before you load
the glossaries package (and babel, if you are also loading that) to avoid the creation of the
glsdefs file and any associated problems that are caused by defining commands in the
document environment. (See §4.8.) Alternatively, if you are using glossaries—extra, use
the docdef=restricted package option.

Example 15: Loading Entries from Another File

Suppose I have a file called myent ries . tex which contains:

\newglossaryentry{perl}{type={main},
name={Perl},
description={A scripting language}}

\newglossaryentry{tex}{name={\TeX},
description={A typesetting language},sort={TeX}}

\newglossaryentry{html}{type={\glsdefaulttype},
name=<{html},
description={A mark up language}}

and suppose in my preamble I use the command:

=

\loadglsentries[languages] {myentries}

then this will add the entries “tex” and “html” to the glossary whose type is given by 1l anguages,
but the entry “perl” will be added to the ma in glossary, since it explicitly sets the tLype to
main.

Now suppose I have a file myacronyms . t ex that contains:

[\newacronym{acalt{acal{a contrived acronym}

153

4. Defining Glossary Entries

then (supposing I have defined a new glossary type called altacronym)

=

\loadglsentries[altacronym] {myacronyms}

will add “aca” to the glossary type acronym, if the package option acronym has been spec-
ified, or will add “aca” to the glossary type altacronym, if the package option acronym
is not specified. This is because \acronymtype is set to \glsdefaulttype if the
acronym package option is not used so the optional argument of \loadglsentries
will work in that case, but if the acronym option is used then \acronymtype will be
redefined to acronym.

If you want to use \loadglsentries with the acronym package option set, there
are two possible solutions to this problem:

1. Change myacronyms . tex so that entries are defined in the form:

=

\newacronym[type={\glsdefaulttype}]{aca}l{acalt{a
contrived acronym}

and do:

\loadglsentries[altacronym] {myacronyms}

2. Temporarily change \acronymtype to the target glossary:

\let\orgacronymtype\acronymtype
\renewcommand{ \acronymtype}l{altacronym}
\loadglsentriesmyacronyms
\let\acronymtype\orgacronymtype

Note that only those entries that have been indexed in the text will appear in the relevant
glossaries. Note also that \ 1oadglsentries may only be used in the preamble.

A

Don’t use the see key in a large file of entries that may or may not be indexed in the
document. Similarly for seealso and alias with glossaries—extra. If you need
them and you need a large database of entries, consider switching to bib2gls.

154

4. Defining Glossary Entries

Remember that youcanuse \provideglossaryentry ratherthan \newglossary-
entry. Suppose you want to maintain a large database of acronyms or terms that you're likely
to use in your documents, but you may want to use a modified version of some of those entries.
(Suppose, for example, one document may require a more detailed description.) Then if you de-
fine the entries using \provideglossaryentry in your database file, you can override
the definition by simply using \newglossaryent ry before loading the file. For example,
suppose your file (called, say, terms . t ex) contains:

=

\provideglossaryentry{mallard}{name={mallard},
description={a type of duck}}

but suppose your document requires a more detailed description, you can do:

\usepackage{glossaries}
\makeglossaries

\newglossaryentry{mallard}{name={mallard},
description=

{a dabbling duck where the male has a green head}}

\loadglsentries{terms}

Now the “mallard” definition in the terms . tex file will be ignored.

4.7. Moving Entries to Another Glossary

You can move an entry from one glossary to another using:

\glsmoveentry {(entry-label)} { (target glossary label) }

where (entry-label) is the unique label identifying the required entry and (target glossary label) is
the unique label identifying the glossary in which to put the entry. If you are using Options 2 or 3,
entries shouldn’t be moved after the indexing files have been opened by \makeglossaries.

A
Simply changing the value of the t ype field using a command like \glsfield-
def won'’t correctly move the entry, since the label needs to be removed from the old
glossary’s internal list and added to the new glossary’s internal list to allow commands
suchas \glsaddall and \glsunsetall to work.

155

4. Defining Glossary Entries

Note that no check is performed to determine the existence of the target glossary. If you
want to move an entry to a glossary that’s skipped by \printglossaries, then define an
ignored glossary with \newignoredglossary. (See §9.) With Options 4 and 5, it’s also
possible to copy an entry to another glossary with \glsxtrcopytoglossary. See the
glossaries—extra manual for further details.

[i
=
Unpredictable results may occur if you move an entry to a different glossary from its parent

or children.

4.8. Drawbacks With Defining Entries in the Document
Environment

Originally, \newglossaryentry (and \newacronym) could only be used in the preamble.
I reluctantly removed this restriction in version 1.13, but there are issues with defining commands

in the document environment instead of the preamble, which is why the restriction is main-
tained for newer commands. This restriction is also reimposed for \newglossaryentry

by Option 1 because in that case the entries must be defined before the aux file is input. (The
glossaries—extra package automatically reimposes the preamble-only restriction but provides the
docde £ package option to allow document definitions for Options 2 and 3 if necessary.)

[bib2gls |
With Option 4, all entry data should be supplied in bib files. From bib2gls’s point
of view, the entries are defined in the bib files. From TgX’s point of view, the entries are
defined in the gl stex files that are input by \G1lsXtrLoadResources, which
is a preamble-only command.

4.8.1. Technical Issues

1. If you define an entry mid-way through your document, but subsequently shuffle sections
around, you could end up using an entry before it has been defined. This is essentially
the same problem as defining a command with \newcommand in the middle of the
document and then moving things around so that the command is used before it has been
defined.

2. Entry information is required when displaying the glossary. If this occurs at the start of
the document, but the entries aren’t defined until later, then the entry details are being
looked up before the entry has been defined. This means that it’s not possible to display
the content of the glossary unless the entry definitions are saved on the previous I5I[EX run
and can be picked up at the start of the document environment on the next run (in a similar
way that \ 1abel and \ ref work).

156

4. Defining Glossary Entries

3. If you use a package, such as babel, that makes certain characters active at the start of
the document environment, there can be a problem if those characters have a special sig-
nificance when defining glossary entries. These characters include " (double-quote), !
(exclamation mark), ? (question mark), and | (pipe). They must not be active when
defining a glossary entry where they occur in the sort key (and they should be avoided
in the label if they may be active at any point in the document). Additionally, the comma
(,) character and the equals (=) character should not be active when using commands that
have (key)=(value) arguments.

To overcome the first two problems, as from version 4.0 the glossaries package modifies the
definition of \newglossaryent ry at the beginning of the document environment so that
the definitions are written to an external file (\ jobname . gl sdefs) which is then read in
at the start of the document on the next run. This means that the entry can now be looked up in
the glossary, even if the glossary occurs at the beginning of the document.

There are drawbacks to this mechanism: if you modify an entry definition, you need a second
run to see the effect of your modification in \printglossary (if it occurs at the start of the
document); this method requires an extra \newwrite, which may exceed TgX’s maximum
allocation; unexpected expansion issues could occur.

Version 4.47 has introduced changes that have removed some of the issues involved, and there
are now warning messages if there is an attempt to multiply define the same entry label.

The glossaries—extra package provides a setting (but not for Options 1 or 4) that allows \new-
glossaryentry to occur in the document environment but doesn’t create the glsdefs
file. This circumvents some problems but it means that you can’t display any of the glossaries
before all the entries have been defined (so it’s all right if all the glossaries are at the end of the
document but not if any occur in the front matter).

4.8.2. Good Practice Issues

§4.8.1 above covers technical issues that can cause your document to have compilation errors or
produce incorrect output. This section focuses on good writing practice. The main reason cited
by users wanting to define entries within the document environment rather than in the preamble
is that they want to write the definition as they type in their document text. This suggests a
“stream of consciousness” style of writing that may be acceptable in certain literary genres but
is inappropriate for factual documents.

When you write technical documents, regardless of whether it’s a PhD thesis or an article for
a journal or proceedings, you must plan what you write in advance. If you plan in advance, you
should have a fairly good idea of the type of terminology that your document will contain, so
while you are planning, create a new file with all your entry definitions. If, while you're writing
your document, you remember another term you need, then you can switch over to your definition
file and add it. Most text editors have the ability to have more than one file open at a time. The
other advantage to this approach is that if you forget the label, you can look it up in the definition
file rather than searching through your document text to find the definition.

157

5. Referencing Entries in the Document

Once you have defined a glossary entry using a command such as \newglossaryentry
(§4) or \newacronym (§6), you can refer to that entry in the document with one of the
provided commands that are describe in this manual. (There are some additional commands
provided by glossaries—extra.) The text produced at that point in the document (the link text)
is determined by the command and can also be governed by whether or not the entry has been
marked as used.

Some of these commands are more complicated than others. Many of them are robust and
can’t be used in fully expandable contexts, such as in PDF bookmarks.

The commands are broadly divided into:

1. Those that display text in the document (where the formatting can be adjusted by a style
or hook) and also index the entry (so that it’s added to the glossary) are described in §5.1.
This set of commands can be further sub-divided into those that mark the entry as having
been used (the \ g1 s-like commands, §5.1.2) and those that don’t (the \ gl stext-like
commands, §5.1.3).

2. Those that display text in the document without indexing or applying any additional for-
matting (§5.2). These typically aren’t robust or can partially expand so that they can be
used in PDF bookmarks (with a few exceptions).

There are additional commands specific to entries defined with \newacronym that are de-
scribed in §6.1.

5.1. Links to Glossary Entries

The text which appears at the point in the document when using any of the commands described in
§5.1.2 or §5.1.3 is referred to as the link text (even if there are no hyperlinks). These commands
also add content to an external indexing file that is used to generate the relevant entry line in
the glossary. This information includes an associated location that is added to the number list
for that entry. By default, the location refers to the page number. For further information on
number lists, see §12. These external indexing file need to be post-processed by makeindex
or xindy if you have chosen Options 2 or 3. If you don’t use \makeglossaries these
external files won’t be created. (Options 1 and 4 write the information to the aux file instead.)
(i]
=
The link text isn’t scoped by default as grouping can interfere with spacing in math mode.

Any unscoped declarations in the link text may affect subsequent text.

158

5. Referencing Entries in the Document

Note that repeated use of these commands for the same entry can cause the number list to
become quite long, which may not be particular helpful to the reader. In this case, you can use the
non-indexing commands described in §5.2 or you can use the glossaries—extra package, which
provides a means to suppress the automated indexing of the commands listed in this chapter.
(For example, in this manual, common terms such as glossary have too many references in the
document to list them all in their number list in the index. They have a custom key created with
\glsaddstoragekey that’s used to set their default indexing option.)

(]
I strongly recommend that you don’t use the commands defined in this chapter in the

arguments of sectioning or caption commands, such as \chapter or \caption.

Aside from problems with expansion issues, PDF bookmarks and possible nested
hyperlinks in the table of contents (or list of whatever) any use of the commands described
in §5.1.2 will have their first use flag unset when they appear in the table of contents (or
list of whatever) which is usually too soon and will not match the actual heading or caption
in the document if there is a different first/subsequent use.

The above warning is particularly important if you are using the glossaries package in con-
junction with the hyperref package. Instead, use one of the expandable commands listed in §5.2
(such as \glsentrytext). Alternatively, provide an alternative via the optional argument
to the sectioning/caption command or use hyperref's \texorpdf st ring. Examples:

\chapterAn overview of \glsentrytext{perl}
\chapter [An overview of Perl]An overview of \gls
{perl}

\chapter{An overview of \texorpdfstring{\gls{perl}}
{Perl}}

(You can use \glstexorpdfstring instead of \texorpdfstring if you don’t
know whether or not hyperref will be needed.)

[glossaries—extra]

The glossaries—extra package provides commands for use in captions and section head-
ings, such as \glsfmttext, that overcome some of the problems.

If you want the link text to produce a hyperlink to the corresponding entry line in the glossary,
you should load the hyperref package before the glossaries package. That’s what I've done in
this manual, so if you encounter a hyperlinked term, such as link text, you can click on the word
or phrase and it will take you to a brief description in this document’s glossary or you can click
on a command name, such as \g1ls, and it will take you to the relevant part of the document
where the command is described or you can click on a general word or phrase, such as table of
contents, and it will take you to the relevant line in the index where you can find the number list
to navigate to other parts of the document that are pertinent. If, however, you click on “number

159

5. Referencing Entries in the Document

list”, you'll find it leads you to the location list entry in the index instead. This is because number
list has been aliased to location list using the a 1 i as key. Whereas if you click on “page list”
it will take you to the corresponding page list entry in the glossary that has a cross-reference to
location list, because the see key was used instead.

[i
=
If you use the hyperref package, I strongly recommend you use pd f 1 at ex rather than

latex to compile your document, if possible. The DVI format of ITEX has limitations
with the hyperlinks that can cause a problem when used with the glossaries package.
Firstly, the DVI format can’t break a hyperlink across a line whereas pdfI&TEX can. This
means that long glossary entries (for example, the full form of an acronym) won’t be able
to break across a line with the DVI format. Secondly, the DVI format doesn’t correctly size
hyperlinks in subscripts or superscripts. This means that if you define a term that may be
used as a subscript or superscript, if you use the DVI format, it won’t come out the correct
size.
These are limitations of the DVI format not of the glossaries package.

J

It may be that you only want terms in certain glossaries to have hyperlinks, but not for other
glossaries. In this case, you can use the package option nohypertypes to identify the
glossary lists that shouldn’t have hyperlinked link text. See §2.1 for further details.

The way the link text is displayed depends on

\glstextformat {(text)}

For example, to make all link text appear in a sans-serif font, do:

Bl

\renewcommand*{\glstextformat} [1]{\textsf{#1}}

Further customisation can be done via \de fgl sent ryfmt or by redefining \glsentry-
fmt. See §5.1.4 for further details.

Each entry has an associated conditional referred to as the first use flag. Some of the commands
described in this chapter automatically unset this flag and can also use it to determine what text
should be displayed. These types of commands are the \ g1 s-like commands and are described
in §5.1.2. The commands that don’t reference or change the first use flag are \ g1l stext-like
commands and are described in §5.1.3. See §7 for commands that unset (mark the entry as
having been used) or reset (mark the entry as not used) the first use flag without referencing the
entries.

The \gls-like and \glstext-like commands all take a first optional argument that is a
comma-separated list of (key)=(value) options, described below. They also have a star-variant,
which inserts hyper=false at the start of the list of options and a plus-variant, which in-
serts hyper=true at the start of the list of options. For example \gl s* {sample} is
thesame as \gls [hyper=false] {sample} and \gls+{sample} is the same as

160

5. Referencing Entries in the Document

\gls[hyper=true] {sample}, whereas just \gls{sample} will use the default
hyperlink setting which depends on a number of factors (such as whether the entry is in a glossary
that has been identified in the nohypertypes list). You can override the hyper key in
the variant’s optional argument, for example, \gls* [hyper=true] {sample} but this
creates redundancy and is best avoided. The glossaries—extra package provides the option to add
a third custom variant and commands to override the behaviour of the star and plus variants.

(i]

=
Avoid nesting these commands. For example don’t do \gls1link{(label)}{\gls

{(label2) } } as this is likely to cause problems. By implication, this means that you
should avoid using any of these commands within the text, first, short or long
keys (or their plural equivalent) or any other key that you plan to access through these
commands. (For example, the symbo 1 key if you intend to use \glssymbol.) The
glossaries—extra package provides \ g1l sxt rp to use instead, which helps to mitigate
against nesting problems.

5.1.1. Options

The keys listed below are available for the optional first argument of the \ g1 s-likeand \glstext-
like commands. The glossaries—extra package provides additional keys. (See the glossaries
—extra manual for further details.)

[©

=
hyper=(boolean) default: true; initial: true

If true, this option can be used to enable/disable the hyperlink to the relevant entry line in the
glossary. If this key is omitted, the value is determined by the current settings. For example,
when used with a \ g1 s-like command, if this is the first use and the hyperfirst=false
package option has been used, then the default value is hyper=false. The hyperlink can
be forced on using hyper=t rue unless the hyperlinks have been suppressed using \ g1 s-
disablehyper. Youmustload the hyperref package before the glossaries package to ensure
the hyperlinks work.

format={(cs-name)

This specifies how to format the associated location number within the location list (see §12.1).

o

There is a special format g1 s1gnore which simply ignores its argument to create an
invisible location.

161

5. Referencing Entries in the Document

counter=(counter-name)

This specifies which counter to use for this location. This overrides the default counter used
by the entry, the default counter associated with the glossary (supplied in the final optional ar-
gument of \newglossary) and the default counter identified by the counter package
option. See also §12. The glossaries—extra package has additional options that affect the counter
used, suchas f loat s and equat ions. This manual uses the £ 1 oat s option to automat-
ically switch the counter to table for any entries indexed in tables (such as those in Table 12.1 on

page 266).
[O®

=
local=(boolean) default: true; initial: £alse

This is a boolean key that only makes a difference when used with \ g1 s-like commands that
change the entry’s first use flag. If 1local=true, the change to the first use flag will be
localised to the current scope.

[O®

=
noindex=(boolean) default: true; initial: false

If true, this option will suppress the indexing. Only available with glossaries—extra. This manual
doesn’t use noindex for common entries. Instead it uses format=glsignore, which
is preferable with bib2gls.

[©

(=
hyperout side=(boolean) default: true; initial: true

If true, this will put the hyperlink outside of \glstext format. Onlyavailable with glossaries

—extra.
[=
wrgloss=(position) initial: before

This key determines whether to index before (wrgloss=before) or after (wrgloss=
after) the link text, which alters where the whatsit occurs. Only available with glossaries

—extra.
I -

|

text format={(csname)

The value is the name of the control sequence (without the leading backslash) to encapsulate the
link text instead of the default \glstext format. Only available with glossaries—extra.

162

5. Referencing Entries in the Document

prefix=(link-prefix)

This key locally redefines \glolinkpre fix tothe given value. Only available with glossaries

—extra.
| =

| S

thevalue=(location)

This key explicitly sets the location value instead of obtaining it from the location counter. Only
available with glossaries—extra.

theHvalue=(the-H-value)

This key explicitly sets the hyperlink location value instead of obtaining it from the location
counter. Only available with glossaries—extra.
=

=
prereset=(value) default: 1ocal,; initial: none

Determines whether or not to reset the first use flag before the link text. Only available with
glossaries—extra.

=
preunset=(value) default: 1ocal; initial: none

Determines whether or not to unset the first use flag before the link text. Only available with
glossaries—extra.

=
postunset=(value) default: global; initial: global

Determines whether or not to unset the first use flag after the link text. Only available with
glossaries—extra.

5.1.2. The \gls-Like Commands (First Use Flag Queried)

This section describes the \ g1 s-like commands that unset (mark as used) the first use flag after
the link text, and in most cases they use the current state of the flag to determine the text to be
displayed. As described above, these commands all have a star-variant (hyper=false) and
a plus-variant (hype r=t rue) and have an optional first argument that is a (key)=(value) list.
These commands use \glsentryfmt or the equivalent definition provided by \defgls-
entryfmt to determine the automatically generated text and its format (see §5.1.4).

Apart from \glsdisp, the commands described in this section also have a final optional
argument (insert) which may be used to insert material into the automatically generated text.

163

5. Referencing Entries in the Document

(i]
=
Since the commands have a final optional argument, take care if you actually want to
display an open square bracket after the command when the final optional argument is
absent. Insert an empty optional argument or \relax or an empty set of braces { }
immediately before the opening square bracket to prevent it from being interpreted as the
final argument. For example:

B

\gls{sample}[] [Editor's comment]
\gls{sample}{} [Editor's comment]
\gls{sample} \relax[Editor's comment]

Use of a semantic command can also help avoid this problem. For example:

\newcommand{\edcom} [1] [#1]

% later:
\gls{sample} \edcom{Editor's comment}

Don’t use any of the \ gls-like or \glstext-like commands in the (insert) argu-
ment.

Take care using these commands within commands or environments that are processed multi-
ple times as this can confuse the first use flag query and state change. This includes frames with
overlays in beamer and the tabularx environment provided by tabularx. The glossaries package
automatically deals with this issue in amsmath’s align environment. You can apply a patch to
tabularx by placing the command \ gl spatchtabularx in the preamble. This does noth-
ing if tabularx hasn’t been loaded. There’s no patch available for beamer. See §7 for more details
and also §15.5.

Most of the commands below have case-changing variants to convert the link text to sentence
case or all caps. The sentence case conversion is performed by \glssentencecase and
the all caps is performed by \glsuppercase. Ensure you have at least version 2.08 of
mfirstuc to use the modern IATEX3 case-changing commands instead of the now deprecated text-
case package. See the mfirstuc manual for further details.

X
\gls [(options)] { (entry-label) } [(insert)] modifiers: * +

This command typically determines the link text from the values of the text or first
keys supplied when the entry was defined using \newglossaryentry. However, if the
entry was defined using \newacronym and \setacronymstyle was used, then the
link text will usually be determined from the 1 ong or short keys (similarly for \new-
abbreviation).

The case-changing variants:

164

5. Referencing Entries in the Document

X
\G1s [(options)] { (entry-label) } [(insert)] modifiers: * +
(sentence case) and
X
\GLS [(options)] { (entry-label) } [(insert)] modifiers: * +
(all caps).
There are plural forms that are analogous to \g1s:
X
\glspl [(options)] { (entry-label) } [(insert)] modifiers: * +
Sentence case:
X
\Glspl [(options)] { (entry-label) } [(insert)] modifiers: * +
All caps:
X
\GLSpl [(options)] { {entry-label) } [(insert)] modifiers: * +

These typically determine the link text from the plural or firstplural keys supplied
when the entry was defined using \newglossaryentry or, if the entry was defined with
\newacronymand \setacronymstyle wasused, fromthe longpluralorshort-
plural keys. (Similarly for \newabbreviation.)

(i]
1 =
Be careful when you use glossary entries in math mode especially if you are using hyper-
ref as it can affect the spacing of subscripts and superscripts in math mode. For example,

suppose you have defined the following entry:

Ej

\newglossaryentry{Falpha}{name={F\alpha},
description={sample}}

and later you use it in math mode:

Bl

$\gls{Falpha}2$

This will result in F,,? instead of F2. In this situation it’s best to bring the superscript into
the hyperlink using the final (insert) optional argument:

165

5. Referencing Entries in the Document

[$\gls{Falpha}["2]5S

X
\glsdisp [(options)] { (entry-label) } { (text) } modifiers: * +

This behaves in the same way as \gls, except that the (link fext) is explicitly set. There’s no
final optional argument as any inserted material can be added to the (link fext) argument. Even
though the first use flag doesn’t influence the link text, it’s still unset after the link text and so may
influence the post-link hook.

For example:

,

\newglossaryentry{locationcounter}{
name={location counter},
description={...}

}
% later in the document:

The \glsdisp{locationcounter}{counter}
identifying the location.

This ensures that the entry is indexed and, if enabled, creates a hyperlink to the entry line in the
glossary. It will also follow the display style and have the link text encapsulated with \g1ls-
textformat.

Since the actual text is being supplied, any case-changing can be placed in the argument. For

example:

\glsdisp{locationcounter}{Counters}
associated with locations

However, a sentence case variant is provided:

X
\G1lsdisp [(options)] { (entry-label) } { (text) } modifiers: * +

This essentially does:

7~

\glsdisp [{options)] { (entry-label) } { \glssentencecase{(text)} }

The main reason for providing this command is to set up a mapping for \makefirstuc.
See the mfirstuc manual for further details about mappings.

166

5. Referencing Entries in the Document

Don’t use any of the \ gls-like or \glstext-like commands in the (link text) argu-
ment of \glsdisp.

5.1.3. The \glstext-Like Commands (First Use Flag Not Queried)

This section describes the commands that don’t change or reference the first use flag. As de-
scribed above, these commands all have a star-variant (hyper=false) and a plus-variant
(hyper=true) and have an optional first argument that is a (key)=(value) list. These com-
mands also don’t use \glsentryfmt or the equivalent definition provided by \defgls-
entryfmt (see §5.1.4). They do, however, have their link text encapsulated with \ g1 s-
textformat.

Additional commands for acronyms are described in §6. (Additional commands for abbreviations
are described in the glossaries—extra manual.)

Apart from \gls1ink, the commands described in this section also have a final optional
argument (insert) which may be used to insert material into the automatically generated text.
See the caveat above in §5.1.2. As with the \ g1 s-like commands described in §5.1.2, these
commands also have case-changing variants.

X
\glslink [(options)] { (entry-label) } { (text) } modifiers: * +

This command explicitly sets the link text as given in the final argument. As with \glsdisp,
there’s a sentence case variant to allow a sentence case mapping to be established:

b §
\G1lslink [(options)] { (entry-label) } { (text) } modifiers: * +
See the mfirstuc package for further details.
[i
=

Don’t use any of the \gls-like or \glstext-like commands in the argument of
\glslink. By extension, this means that you can’t use them in the value of fields
that are used to form link text.

) §
\glstext [(options)] { (entry-label) } [(insert)] modifiers: * +
This command always uses the value of the t ext key as the link text.
The case-changing variants are:
b §
\Glstext [(options)] { (entry-label) } | (insert)] modifiers: * +

167

5. Referencing Entries in the Document

(sentence case) and

X
\GLStext [(options)] { (entry-label) } [(insert)] modifiers: * +

(all caps).
There’s no equivalent command for title case, but you can use the more generic command
\glsentrytitlecase in combination with \gls1link. For example:

\glslink{sample}{\glsentrytitlecase{sample}{text}}

(See §5.2.)
b §
\glsfirst [(options)] { (entry-label) } [(insert)] modifiers: * +
This command always uses the value of the £i rst key as the link text.
The case-changing variants are:
b §
\Glsfirst [(options)] { (entry-label) } [(insert)] modifiers: * +
(sentence case) and
b §
\GLSfirst [(options)] { (entry-label) } | (insert)] modifiers: * +
(all caps).
[i
k—d

The value of the f1irst key (and firstplural key) doesn’t necessarily match the
link text produced by \gls (or \glspl) on first use as the link text used by \ g1 s may
be modified through entry formatting commands like \defglsentryfmt. (Simi-
larly, the value of the text and plural keys don’t necessarily match the link text
used by \gls or \glspl on subsequent use.)

X
\glsplural [{options)] { (entry-label) } [(insert)] modifiers: * +
This command always uses the value of the plural key as the link text.
The case-changing variants are:
X
\Glsplural [(options)] { {entry-label) } [(insert)] modifiers: * +

168

5. Referencing Entries in the Document

(sentence case) and

I
\GLSplural [{options)] { (entry-label) } [(insert)] modifiers: * +
(all caps).
X
\glsfirstplural [(options)] { (entry-label) } [(insert)] modifiers: * +
This command always uses the value of the firstplural key as the link text.
The case-changing variants are:
I
\Glsfirstplural [(options)] { (entry-label) } [(insert)] modifiers: * +
(sentence case) and
X
\GLSfirstplural [(options)] { (entry-label) } [(insert)] modifiers: * +
(all caps).
X
\glsname [(options)] { (entry-label) } [(insert)] modifiers: * +

This command always uses the value of the name key as the link text. Note that this may be
different from the values of the t ext or £irst keys. In general it’s better touse \glstext
or \glsfirst instead of \glsname, unless you have a particular need for the actual name.

(@]

=
The name is displayed in the glossary using \glossentryname not \glsname.

J

The case-changing variants are:

X
\Glsname [(options)] { (entry-label) } [(insert)] modifiers: * +
(sentence case) and
X
\GLSname [(options)] { (entry-label) } | (insert)] modifiers: * +

(all caps).

169

5. Referencing Entries in the Document

[i
=
In general it’s best to avoid \ g1 sname with acronyms. Instead, consider using \acr—

long, \acrshort or \acrfull. Alternatively, for abbreviations defined with
glossaries—extra, use \glsxtrlong, \glsxtrshort or \glsxtrfull.

X
\glssymbol [{options)] { (entry-label) } [(insert)] modifiers: * +

This command always uses the value of the symbol key as the link text.

(@]

The symbol is displayed in the glossary using \glossentrysymbol not \gls—
symbol.

The case-changing variants are:

X
\Glssymbol [{options)] { (entry-label) } [(insert)] modifiers: * +
(sentence case) and
X
\GLSsymbol [{options)] { (entry-label) } [(insert)] modifiers: * +
(all caps).
X
\glsdesc [(options)] { (entry-label) } [(insert)] modifiers: * +

This command always uses the value of the description key as the link text.

(@]

= |
The description is displayed in the glossary using \glossentrydesc not \gls—

desc.

The case-changing variants are:

X
\Glsdesc [(options)] { (entry-label) } | (insert)] modifiers: * +
(sentence case) and
X
\GLSdesc [(options)] { (entry-label) } | (insert)] modifiers: * +

(all caps).

170

5. Referencing Entries in the Document

\glsuseri [(options)] { (entry-label) } [(insert)] modifiers:

This command always uses the value of the user1 key as the link text.
The case-changing variants are:

\Glsuseri [(options)] { (entry-label) } | (insert)] modifiers:

(sentence case) and

\GLSuseri [(options)] { (entry-label) } [(insert)] modifiers:
(all caps).
\glsuserii [(options)] { (entry-label) } [(insert)] modifiers:

This command always uses the value of the user?2 key as the link text.
The case-changing variants are:

\Glsuserii [(options)] { {(entry-label) } [(insert)] modifiers:

(sentence case) and

\GLSuserii [(options)] { (entry-label) } [(insert)] modifiers:
(all caps).
\glsuseriii [(options)] {{entry-label)} [(insert)] modifiers:

This command always uses the value of the user 3 key as the link text.
The case-changing variants are:

\Glsuseriii [(options)] { (entry-label)} [(insert)] modifiers:

(sentence case) and

\GLSuseriii [(options)] {{entry-label)} [(insert)] modifiers:

(all caps).

171

5. Referencing Entries in the Document

\glsuseriv [(options)] { (entry-label) } [(insert)] modifiers:

This command always uses the value of the user4 key as the link text.
The case-changing variants are:

\Glsuseriv [(options)] { (entry-label) } [(insert)] modifiers:

(sentence case) and

\GLSuseriv [(options)] { (entry-label) } [(insert)] modifiers:
(all caps).
\glsuserv [(options)] { (entry-label) } | (insert)] modifiers:

This command always uses the value of the user?5 key as the link text.
The case-changing variants are:

\Glsuserv [(options)] { (entry-label) } | (insert)] modifiers:

(sentence case) and

\GLSuservV [(options)] { (entry-label) } | (insert)] modifiers:
(all caps).
\glsuservi [(options)] { (entry-label) } [(insert)] modifiers:

This command always uses the value of the user 6 key as the link text.
The case-changing variants are:

\Glsuservi [(options)] { (entry-label) } [(insert)] modifiers:

(sentence case) and

\GLSuservi [(options)] { (entry-label) } [(insert)] modifiers:

(all caps).

172

5. Referencing Entries in the Document

5.1.4. Changing the Format of the \ gls-like Link Text

[glossaries—extra]

The glossaries—extra package provides ways of altering the display style according to the
category. See the glossaries—extra manual for further details.

The default entry format (display style) of the link text for the \ g1 s-like commands is gov-
erned by:

X

\glsentryfmt

The glossaries package defines this to simply use \glsgenentryfmt. The glossaries
—extra package redefines \glsentryfmt to allow it to integrated with the abbreviation
styles.

o

The entry format is only applicable to the \ g1 s-like commands, not the \glstext-
like commands. However, both sets of commands use \glstext format for the
font.

You can redefine \glsentryfmt (but beware of breaking abbreviations with glossaries
—extra), but if you only want the change the display style for a given glossary, use:

X

\defglsentryfmt [(glossary-type)] { (definition) }

instead of redefining \glsentryfmt. The optional first argument (glossary-type) is the
glossary type. This defaults to \glsdefaulttype if omitted. The second argument is the
entry format definition, which needs to use the placeholder commands described in this section.
In the remainder of this section, (definition) refers to the argument of \defglsentry-
fmt or to the definition of \glsentryfmt.
[i
=
Note that \glsentryfmt is the default display style for glossary entries. Once the

display style has been changed for an individual glossary using \defglsentryfmt,
redefining \glsent ryfmt won’t have an effect on that glossary, you must instead use
\defglsentryfmt again. Note that glossaries that have been identified as lists of
acronyms (via the package option acronymlists or the command \Declare—
AcronymList,see §2.7)use \defglsentryfmt to set their display style. (The
glossaries—extra package provides abbreviation support within its redefinition of \gls—
entryfmt.)

Within (definition) you may use the following commands:

173

5. Referencing Entries in the Document

b §
\glslabel
This expands to the label of the entry being referenced.
You can also access the entry’s glossary type using:
b §

\glstype

This is defined using \protected@edef so the replacement text is the actual glossary type
rather than \glsentrytype{\glslabel}.

X

\glsinsert

Expands to the final (insert) optional argument to \gls, \glspl and their case-changing
variants (or empty if (insert) was omitted).

X

\glsifplural{(true)} { (false)}

If the plural commands \glspl, \Glspl or \GLSpl was used, this command expands to
(true) otherwise it expands to (false).

X

\glscapscase{(no change)} { (sentence) } { (all caps) }

If \gls,\glsplor\glsdisp wereused, this expands to (no change). If the sentence case
commands \G1s or \G1lspl were used, this expands to (sentence). If the all caps commands
\GLS or \GLSp1 were used, this expands to {(all caps).

X

\glscustomtext

Expands to the custom text supplied in \glsdisp. It’s always empty for \gls, \glspl
and their case-changing variants. (You can use etoolbox’s \ i fdefempty to determine if
\glscustomtext is empty.)

(]
Sl
If \Glsdisp is used, \glscustomtext will include the sentence case com-

mand (\glssentencecase), but \glscapscase will expand to (no change)
(since \G1lsdisp simply uses \glsdisp without modifying the placeholder com-
mands). However, the generic \glsgenentryfmt doesn't use \glscapscase
(or \glsifplural)if \glscustomtext isn’t empty.

174

5. Referencing Entries in the Document

\glsifhyperon{ (true)} { (false)}

This will do (true) if the hyperlinks are on for the current reference, otherwise it will do (false).
The hyperlink may be off even if it wasn’t explicitly switched off with hyper=false key or
the use of a starred (*) command. It may be off because the hyperref package hasn’t been loaded
or because \glsdisablehyper has been used or because the entry is in a glossary type
that’s had the hyperlinks switched off (using nohypertypes) or because it’s the first use and
the hyperlinks have been suppressed on first use.

If you want to know if the calling command used to reference the entry was used with the star
(*) or plus (+) variant, you can use:

X

\glslinkvar/{(unmodified)} { (star case)} { {plus case) }

This will do (unmodified) if the unmodified version was used, or will do (star case) if the starred
version was used, or will do (plus case) if the plus version was used. The custom modifier
provided by glossaries—extra’s \G1 sXtrSetAltModifier willmake \glslinkvar
expand to (unmodified).

Note that this doesn’t take into account if the hyper key was used to override the default
setting, so this command shouldn’t be used to guess whether or not the hyperlink is on for this
reference. This command is therefore of limited use. If you want to make the star or plus
behave differently, you can try \GlsXtrSetStarModifier or \GlsXtrSetPlus-
Modifier instead, if you are using glossaries—extra.

Note that you can also use commands such as \ 1 fglsused within (definition) (see §7),
but don’t use \ i fglsused in the post-link hook.

[glossaries—extra]

The glossaries—extra package has additional commands that may be used within (defini-
tion) to obtain information about the calling command.

The commands \glslabel,\glstype, \glsifplural,\glscapscase, \gls-
insert and \glscustomtext are typically updated at the start of the \ g1 s-like and
\glstext-like commands so they can usually be accessed in the hook user commands, such
as \glspostlinkhookand \glslinkpostsetkeys.

A

This means that using commands like \gls within the fields that are accessed using
the \gls-like or \glstext-like commands (such as the first, text, longor
short keys) will cause a problem. The definitions of the placeholder commands can’t
be scoped otherwise they won’t be available for the post-link hook, and grouping can also
cause unwanted spacing issues in math mode.

175

5. Referencing Entries in the Document

If you only want to make minor modifications to \glsent ryfmt, you can use the generic
entry formatting command:

X

\glsgenentryfmt

This uses the above commands to display just the first, text, plural or first-
plural keys (or the custom text) with the insert text appended. For example, to make the
symbol appear in parentheses for the symbols glossary:

=

\defglsentryfmt [symbols] {\glsgenentryfmt (\glsentry-—
symbol{\glslabel})}

The acronym styles use a similar method to adjust the formatting. For example, the long—short
style implements:

=

\defglsentryfmt [{sype)] {\1fglshaslong{\glslabel}{\gls-—
genacfmt } {\glsgenentryfmt}}

For each glossary that has been identified as a list of acronyms. This uses the generic entry
format command \glsgenentryfmt for general entries (that don’t have the 1 ong key
set), otherwise it uses the generic acronym format:

X

\glsgenacfmt

This uses the values from the 1ong, short, longplural and shortplural keys,
rather than using the text, plural, first and firstplural keys. The first use
singular text is obtained via:

X
\genacrfullformat {(label)} { (insert) }
instead of from the £1i rst key, and the first use plural text is obtained via:
X
\genplacrfullformat { (label)} { (insert) }

instead of from the £irstplural key. In both cases, (label) is the entry’s label and (insert)
is the insert text provided in the final optional argument of commands like \gls. The default
behaviour is to do the long form (or plural long form) followed by (insert) and a space and the
short form (or plural short form) in parentheses, where the short form is in the argument of
\firstacronymfont. There are also sentence case versions:

176

5. Referencing Entries in the Document

X
\Genacrfullformat {(label)} { (insert)}
and
X
\Genplacrfullformat {(label)} { (insert) }
See §6 for details on changing the style of acronyms.
[i
=
Note that \glsentryfmt (or the formatting given by \defglsentryfmt) is
not used by the \glstext-like commands.

Example 16: Custom Entry Display in Text

Suppose you want a glossary of measurements and units, you can use the symbol key to
store the unit:

Ei

\newglossaryentry{distance}{name={distance},
description={The length between two points},
symbol={km} }

and now suppose you want \gl s{distance} to produce “distance (km)” on first use, then
you can redefine \glsentryfmt as follows:

=

\renewcommand*{\glsentryfmt}%

\glsgenentryfmt

\ifglsused{\glslabel}{}{\space (\glsentrysymbol
{\glslabel}) }%

(Note that I've used \glsentrysymbol rather than \glssymbol to avoid nested
hyperlinks.)

All of the link text will be formatted according to \gl stext format (described earlier).
So if you do, say:

Ei

\renewcommand{\glstextformat}[1]{\textbf{#1}}
\renewcommand*{\glsentryfmt }{%
\glsgenentryfmt
\ifglsused{\glslabel}{}{\space(\glsentrysymbol

177

5. Referencing Entries in the Document

{\glslabel}) }%
}

then \gls{distance} will produce “distance (km)”. This is different from using the
post-link hook which is outside of \glstext format.
For a complete document, see the sample file sample—entryfmt.tex.

Example 17: Custom Format for Particular Glossary

Suppose you have created a new glossary called not at i on and you want to change the way
the entry is displayed on first use so that it includes the symbol, you can do:

Ei

\defglsentryfmt [notation] {\glsgenentryfmt
\ifglsused{\glslabel}{}{\space
(denoted \glsentrysymbol{\glslabel}) }}

Now suppose you have defined an entry as follows:

\newglossaryentry{set}{type={notation},
name={set},
description={A collection of objects},
symbol={\ensuremathS}

}

The first time you reference this entry it will be displayed as: “set (denoted S)” (assuming \gls
was used).

Remember that if you use the symbo 1 key, you need to use a glossary style that displays the
symbol, as many of the styles ignore it.

5.1.5. Hooks
Both the \ g1s-like and \ g1 stext-like commands use:

\glslinkpostsetkeys

after the (options) are set. This macro does nothing by default but can be redefined. (For example,
to switch off the hyperlink under certain conditions.) The glossaries—extra package additionally
provides \glslinkpresetkeys.

178

5. Referencing Entries in the Document

There is also a hook (the post-link hook) that’s implemented at the end:

\glspostlinkhook

This is done after the link text has been displayed and also after the first use flag has been unset
(see example 29). This means that it’s too late to use \ 1 g1 sused in the definition of \g1s-
postlinkhook. The glossaries—extra package provides \glsxtrifwasfirstuse
for use in the post-link hook.

[glossaries—extra

The glossaries—extra package redefines \glspost1linkhook to allow for additional
hooks that can vary according to the entry’s cat egory. If you migrate over from only
using the base glossaries package to glossaries—extra and you have redefined \gls—
postlinkhook, consider moving your modifications to the category post-link hook
to avoid breaking the extended post-link hook features. See the glossaries—extra manual
for further details.

5.1.6. Enabling and Disabling Hyperlinks to Glossary Entries

If you load hyperref prior to loading the glossaries package, the \ gl s-like and \glstext-
like commands will automatically have hyperlinks to the relevant glossary entry, unless the hyper
option has been switched off (either explicitly or through implicit means, such as via the no-
hypertypes package option).

You can disable or enable hyperlinks using:

\glsdisablehyper

and

\glsenablehyper

respectively. The effect can be localised by placing the commands within a group. Note that
you should only use \glsenablehyper if the commands \hyperlinkand \hyper-
target have been defined, otherwise you will get undefined control sequence errors. If the
hyperref package is loaded before glossaries, \gl senablehyper will be use automatically.
You can disable just the first use links using the package option hyperfirst=false.
Note that this option only affects the \ g1 s-like commands that recognise the first use flag.

Example 18: First Use With Hyperlinked Footnote Description

Suppose I want the first use to have a hyperlink to the description in a footnote instead of
hyperlinking to the relevant place in the glossary. First I need to disable the hyperlinks on first
use via the package option hyperfirst=false:

179

5. Referencing Entries in the Document

[\usepackage [hyperfirst=false] {glossaries}

Now I need to redefine \glsentryfmt (see §5.1.4):

\renewcommand*{\glsentryfmt } {%
\glsgenentryfmt
\ifglsused{\glslabel}{}{\footnote{\glsentrydesc
{\glslabel}}}%
}

Now the first use won’t have hyperlinked text, but will be followed by a footnote. See the
sample file sample—-FnDesc.tex for a complete document.

Note that the hyperfirst option applies to all defined glossaries. It may be that you
only want to disable the hyperlinks on first use for glossaries that have a different form on first
use (such as list of acronyms). This can be achieved by noting that since the entries that require
hyperlinking for all instances have identical first and subsequent text, they can be unset via \g1s-
unsetall (see §7) so that the hyperfirst option doesn’t get applied.

Example 19: Suppressing Hyperlinks on First Use Just For Acronyms

Suppose 1 want to suppress the hyperlink on first use for acronyms but not for entries in the
ma in glossary. I can load the glossaries package using:

=

[\usepackage [hyperfirst=false,acronym] {glossaries}

Once all glossary entries have been defined I then do:

\glsunsetall [main]

(Alternatively use the nohyperfirst category attribute with glossaries—extra.)

For more complex requirements, you might find it easier to switch off all hyperlinks via \g1 s-
disablehyper and put the hyperlinks (where required) within the definition of \gls-
entryfmt (see §5.1.4) via \glshyperlink (see §5.2).

180

5. Referencing Entries in the Document

Example 20: Only Hyperlink in Text Mode Not Math Mode

This is a bit of a contrived example, but suppose, for some reason, I only want the \ g1 s-like
commands to have hyperlinks when used in text mode, but not in math mode. I can do this by
adding the glossary to the list of nohypertypes and redefining \glsentryfmt:

,

\GlsDeclareNoHyperList{main}

\renewcommand*{\glsentryfmt }{%
\ifmmode
\glsgenentryfmt
\else
\glsifhyperon
{\glsgenentryfmt}% hyperlink already on
{\glshyperlink[\glsgenentryfmt] {\glslabel}}%
\fi
}

Note that this doesn’t affect the \ g1 st ext-like commands, which will have the hyperlinks off
unless they’re forced on using the plus variant or with an explicit use of hype rtrue.
See the sample file sample—nomathhyper. tex for a complete document.

Example 21: One Hyper Link Per Entry Per Chapter

Here’s a more complicated example that will only have the hyperlink on the first time an entry
is used per chapter. This doesn’t involve resetting the first use flag. Instead it adds a new key
using \glsaddstoragekey (see §4.3.2) that keeps track of the chapter number that the
entry was last used in:

B
[\glsaddstoragekey{chapter}{0}{\glschapnum}

This creates a new user command called \ gl schapnum that’s analogous to \glsentry-
text. The default value for this key is 0. I then define my glossary entries as usual.

Next I redefine the hook \glslinkpostsetkeys (see §5.1.4) so that it determines
the current chapter number (which is stored in \currentchap using \ede f). This value
is then compared with the value of the entry’s chapter key that I defined earlier. If theyre
the same, this entry has already been used in this chapter so the hyperlink is switched off using
xkeyval's \setkeys command. If the chapter number isn’t the same, then this entry hasn’t
been used in the current chapter. The chapter field is updated using \glsfieldxdef
(§15.6) provided the user hasn’t switched off the hyperlink. (This test is performed using \ g1 s-
ifhyperon.)

181

5. Referencing Entries in the Document

\renewcommand*{\glslinkpostsetkeys}{%
\edef\currentchap{\arabic{chapter}}%
\ifnum\currentchap=\glschapnum{\glslabel}\relax

\setkeys{glslink}{hyper=false}%
\else
\glsifhyperon{\glsfieldxdef{\glslabel}{chapter}
{\currentchap}}%
\fi
}

Note that this will be confused if you use \gls etc when the chapter counter is 0. (That is,
before the first \chapter.)
See the sample file sample—-chap-hyperfirst.tex for a complete document.

5.2. Using Glossary Terms Without Indexing

The commands described in this section display entry details without adding any information to
the glossary. They don’t use \glstext format or the entry format, they don’t have any
optional arguments, they don’t affect the first use flag and, apart from \glshyperlink and
the number list commands, they don’t produce hyperlinks.

(i]
=
If you want to use the sentence case commands in PDF bookmarks, such as \Gls—
entrytext, ensure you have at least version 2.08 of mfirstuc. Inside PDF bookmarks,
those commands will expand with the sentence case applied using the expandable \MFU—
sentencecase. Outside of PDF bookmarks those commands will expand to an inter-

nal robust command that applies the sentence case with \gl ssentencecase (which
defaults to \makefirstuc).

If you want to title case a field, you can use:

\glsentrytitlecase{ {entry-label)} { {field)}

where (entry-label) is the label identifying the glossary entry, (field) is the internal field label (see
Table 4.1 on page 148). This internally uses \glscapitalisewords. Within PDF book-
marks, this command will expand to sentence case using the expandable \MFUsentence-
case. (The title case command \capitalisewords isn’t expandable.)

182

5. Referencing Entries in the Document

(A]
If your field contains formatting commands, you will need to redefine \gls-—
capitalisewords to wuse \capitalisefmtwords instead of
\capitalisewords. See the mfirstuc manual for further details.

For example, to convert the description to title case for the entry identified by the label “sam-

2,

ple”:

=

\glsentrytitlecase{sample}{desc}

(If you want title-casing in your glossary style, you might want to investigate the glossaries—extra
package.) This command will trigger an error if the entry is undefined.

If you want a hyperlink to an entry’s line in the glossary but don’t want the indexing or for-
matting associated with the \ g1 s-like and \ gl stext-like commands, you can use:

X

\glshyperlink [(text)] { (entry-label) }

This command provides a hyperlink but does not add any information to the glossary file.
The hyperlink text is given by the optional argument, which defaults to \glsentrytext
{(label) }. Note that the hyperlink will be suppressed if you have used \glsdisable-
hyper or if you haven’t loaded the hyperref package.

(i]
=
If youuse \glshyperlink, youneed to ensure that the relevant entry has been added

to the glossary using any of the commands described in §5.1 or §10 otherwise you will
end up with an undefined hyperlink target.

The following commands in form form \glsent ry(field) expand to the associated field
value for the entry identified by (entry-label) for the non-case-changing versions. Those com-
mands don’t check if the entry has been defined. The sentence case versions \Glsentry-
(field) only expand in PDF bookmarks. In both cases, any fragile commands within the field
values will need to be protected or made robust if the field values are required in a moving argu-
ment.

There are also commands in the form \glossent ry(field) forthe name,description
and symbo 1 that are used by the glossary styles. Those commands will issue a warning if the
entry hasn’t been defined. See §13 for further information.

X

\glsentryname { (entry-label) }

Expands to the value of the name field. Note that within glossary styles, the name is displayed
using \glossentryname. The corresponding sentence case command is:

183

5. Referencing Entries in the Document

\Glsentryname { (entry-label) }

[i
=
In general it’s best to avoid \ G1 sent ryname with acronyms or abbreviations. Instead,
consider using \Glsentrylong, \Glsentryshort or \Glsentryfull.

b §
\glsentrytext {(entry-label) }
Expands to the value of the t ext field. The corresponding sentence case command is:
X
\Glsentrytext {(entry-label) }
b §
\glsentryplural {{entry-label) }

Expands to the value of the plural field. The corresponding sentence case command is:

X
\Glsentryplural {{entry-label) }

b §
\glsentryfirst{(entry-label)}

Expands to the value of the £ i rst field. The corresponding sentence case command is:

X
\Glsentryfirst{(entry-label)}

b §

\glsentryfirstplural {{entry-label)}

Expands to the value of the £ i rstplural field. The corresponding sentence case command
1s:

X

\Glsentryfirstplural{(entry-label)}

184

5. Referencing Entries in the Document

\glsentrydesc/{ (entry-label) }

Expands to the value of the description field. Note that within glossary styles, the descrip-
tion is displayed using \glossentrydesc. The corresponding sentence case command is:

7

\Glsentrydesc{ (entry-label) }

\glsentrydescplural {{enry-label) }

Expands to the value of the descriptionplural field. The corresponding sentence case
command is:

X
\Glsentrydescplural { (entry-label) }

I
\glsentrysymbol {{entry-label) }

Expands to the value of the symbol field. Note that within glossary styles, the description is
displayed using \glossentrysymbol. The corresponding sentence case command is:

X

\Glsentrysymbol {{entry-label) }

\glsentrysymbolplural{{entry-label) }

Expands to the value of the symbolplural field. The corresponding sentence case com-
mand is:

X

\Glsentrysymbolplural{(entry-label)}

\glsentryuseri{(entry-label) }

Expands to the value of the user1 field. The corresponding sentence case command is:

185

5. Referencing Entries in the Document

\Glsentryuseri {(entry-label)}

\glsentryuserii {(entry-label)}

Expands to the value of the user?2 field. The corresponding sentence case command is:

\Glsentryuserii{(entry-label)}

\glsentryuseriii {({entry-label)}

Expands to the value of the user 3 field. The corresponding sentence case command is:

\Glsentryuseriii {(entry-label)}

\glsentryuseriv{ (entry-label)}

Expands to the value of the user4 field. The corresponding sentence case command is:

\Glsentryuseriv{ (entry-label)}

\glsentryuserv{ (entry-label) }

Expands to the value of the user?5 field. The corresponding sentence case command is:

\Glsentryuserv{ (entry-label)}

\glsentryuservi {(entry-label)}

Expands to the value of the user6 field. The corresponding sentence case command is:

186

5. Referencing Entries in the Document

\Glsentryuservi{(entry-label)}

The next two commands, \glsentrynumberlist and \glsdisplaynumber-
11st, display the entry’s number list. This information is readily available with Options 1 and
4 (where the number list is stored in the 1oc1ist or locat ion internal fields) but not for
Options 2 and 3 (where the number list is simply part of the code to typeset the glossary written
in the glossary file).

If you need to parse the number list, split it into groups based on the location counter, or
extract a primary location then Option 4 (bib2gls) is your best option.

X

\glsentrynumberlist {(entry-label) }

Displays the number list for the given entry in the same format as it’s shown by default in the
glossary. The locations will have hyperlinks if supported.

This command is at its simplest with Option 4, where it just displays the value of the Locat ion
internal field that’s set by bib2gls inthe glstex file. This will use the delimiters supplied
bybib2gls (\bibglsdelimNand \bibglslastDelimN) forindividual locations
as well as \de 1 imR for ranges, as used in the glossary.

With Option 1, \glsentrynumberlist passes the value of the entry’s loclist
internal field (that’s created when the aux file is input) to \glsnoidxloclist (which is
alsoused by \printnoidxglossary). This will result in a simple list with each location
separated with \de 1 imN, as used in the glossary. Note that this doesn’t allow for ranges (as
with \printnoidxglossary).

With Options 2 and 3, you will need the savenumberlist package option, which
will attempt to gather the number list information when the glossary file is input by \print-
glossary. Since glossaries often occur at the end of the document, this means that the
information has to be saved in the aux file for the next ISTEX run. Therefore an extra IXTEX call
is required if \glsentrynumberlist is needed with makeindex or xindy. This
will use the same \de1limN and \delimR as used in the glossary.

b §
\glsdisplaynumberlist {(entry-label)}
This attempts to display the number list with the separators:
b §
\glsnumlistsep initial: ,
between each location except for the last pair and
X
\glsnumlistlastsep initial: _\&_

187

5. Referencing Entries in the Document

between the last pair.

Aswith \glsentrynumberlist, thisis again at its simplest with Option 4. This works
by locally setting \bibglsdelimNto \glsnumlistsepand \bibglslastDelimN
to \glsnumlistlastsep and then displaying the value of the 1ocat ion field. You
can instead simply redefine \bibglsdelimN and \bibglslastDelimN as desired
and use \glsentrynumberlist.

With Option 1, the number list information is stored in the 1 oc 11 st internal field, which is
in the format of an etoolbox internal list. So with Option 1, \glsdisplaynumberlist
uses etoolbox’s \forlistloop to iterate over the field value using the handler macro:

X

\glsnoidxdisplayloclisthandlexr{(location)}

Note that this doesn’t allow for ranges.

If hyperref has been loaded, \glsdisplaynumberlist doesn’t work with Options 2
and 3. In which case, a warning will be triggered and \glsentrynumberlist will be
used instead. Without hyperref, the savenumber 11 st package option is still required, and
an attempt will be made to parse the formatted number list created by makeindex/xindy
in order to obtain the desired result.

A
\glsdisplaynumberlist is fairly experimental. It works best with Option 4,
works with limited results with Option 1, but for Options 2 or 3 it only works when the
default location format is used (that is, with the default £ o rma t glsnumberformat). This
command will only work with hyperref if you choose Options 1 or 4.

188

6. Acronyms and Other Abbreviations

(@]

r = |
The term “acronyms” is used here to describe the base glossary package’s mechanism
for dealing with acronyms, initialisms, contractions and anything else that may have a
shortened form for brevity. The term “abbreviations” is used to describe the enhanced
mechanism provided by the glossaries—extra package, which is incompatible with the
base acronym mechanism.

J

Acronyms internally use \newglossaryentry, so you can reference them with \gls
and \glspl as with other entries. Whilst it is possible to simply use \newglossary-
entry explicitly with the £i1rst and text keys set to provide a full form on first use and
a shortened form on subsequent use, using \newacronym establishes a consistent format. It
also makes it possible to shift the (insert) optional argument of the \ g1 s-like commands inside
the full form, so that it is placed before the parentheses.

The way the acronym is displayed on first use is governed by the acronym style that’s identified
with \setacronymstyle. This should be set before you define your acronyms. Exam-
ple 22 demonstrates the use of \newacronym:

\documentclass{article}

\usepackage{glossaries}
\setacronymstyle{long-short}
\newacronym{html}{HTML}{hypertext markup language}
\newacronym{xml} {XML}{extensible markup language}
\begin{document }

First use: \gls{html} and \gls{xml}.

Next use: \gls{html} and \gls{xml}.
\end{document}

N Example 22: Simple document with acronyms \EFERE 2

First use: hypertext markup language (HTML) and extensible markup
language (XML).
Next use: HTML and XML.

189

222

% This file is embedded in glossaries-user.pdf
% Example 22 Simple document with acronyms
% Label: "ex:simpleacronyms"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{glossaries}
\setacronymstyle{long-short}
\newacronym{html}{HTML}{hypertext markup language}
\newacronym{xml}{XML}{extensible markup language}
\begin{document}
First use: \gls{html} and \gls{xml}.

Next use: \gls{html} and \gls{xml}.
\end{document}

Nicola Talbot
Simple document with acronyms (source code)
Example document that defines some acronym entries and references them in the text. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example022.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example022.pdf

6. Acronyms and Other Abbreviations

Acronyms are defined using:

\newacronym [(key=value list)] { (entry-label) } { (short) } { (long) }

This creates a glossary entry with the given label. This automatically sets t ype={ \acronym-
type } butif the acronym should go in another glossary you can set the € ype in the optional ar-
gument (key=value list), which is added to the end of the (key=value list) in \newglossary-
entry.

The \newacronymcommand alsousesthe 1 ong, longplural, short and short-
pluralkeysin \newglossaryentry to store the long and short forms and their plurals.

[glossaries—extra

If you use \newacronym with glossaries—extra, you need to first set the abbreviation
style for the acronym category with:

\setabbreviationstyle[acronym] {{style-name)}

7

Note that the same restrictions on (entry-label) in \newglossaryentry also apply to
\newacronym (see §4). Since \newacronymisdefining the entry with \newglossary-
entry,youcanuse \glsreset to reset the first use flag.

)

A

Remember to declare the specified glossary type as a list of acronyms (via the package
option acronymlists orthe command \DeclareAcronymList) if you have
multiple lists of acronyms. See §2.7. Alternatively, use glossaries—extra to have better
support for a mixed glossaries.

The optional argument (key=value list) allows you to specify additional information. Any key
that can be used in the second argument of \newglossaryent ry can also be used here in
(key=value list), but be careful about overriding any keys that are set by the acronym style, such
as name, short and 1ong.

For example, you may need to supply description (when used with one of the styles
that require a description, described in §6.2) or you can override plural forms of (short) or (long)
using the shortplural or Llongplural keys. For example:

=

\newacronym[longplural={diagonal matrices}]
{dm}{DM}{diagonal matrix}

If the first use uses the plural form, \glspl {dm} will display: diagonal matrices (DMs).
Aswithplural,if longplural ismissing, it’s obtained by appending \glsplural-
suf fix to the singular form. The short plural shortplural is obtained (if not explicitly

190

set in (key=value list)) by appending:

6. Acronyms and Other Abbreviations

X

\glsacrpluralsuffix initial: \glspluralsuffix

to the short form. These commands may be changed by the associated language files, but they
can’t be added to the usual caption hooks as there’s no guarantee when they’ll be expanded (as

discussed earlier in §1.5.2).

[glossaries—extra

A different approach is used by glossaries—extra, which has category attributes to de-
termine whether or not to append a suffix when forming the default value of short—

plural.

(i]

Since \newacronym implicitly sets t ype={\acronymtype}, if you want to
load a file containing acronym definitions using \ loadglsentries, the optional
argument that specifies the glossary will not have an effect unless you explicitly set t ype
={\glsdefaulttype} in the optional argument to \newacronym. See §4.6.

Example 23 on the following page defines the acronym IDN and then uses it in the document

text. It then resets the first use flag and uses it again.

\setacronymstyle{long—-short}
\newacronym{idn}{IDN}{identification number}

\begin{document}
First use: \gls{idn}. Next use: \gls{idn}.

\glsreset{idn}% reset first use
The \gls{idn}['s] prefix is a capital letter.

Next use:
the \gls{idn}['s] prefix is a capital letter.

\end{document}

The reset (\glsreset) makes the next instance of \ gl s behave as first use. Note also the
way the final (insert) optional argument is treated.

191

(203

6. Acronyms and Other Abbreviations

£ Example 23: Defining and Using an Acronym \EEE

First use: identification number (IDN). Next use: IDN.
The identification number’s (IDN) prefix is a capital letter. Next use: the
IDN’s prefix is a capital letter.

If the acronym had simply been defined with:

\newglossaryentry{idn}{
nameIDN,
firstidentification number (IDN),
descriptionidentification number

}

then the firstuse of \gls{idn} ['s] would have placed in the (insert) after the parentheses:

The identification number (IDN)’s prefix is a capital letter.

If you want to use one of the small caps acronym styles, described in §6.2, you need to use
lowercase characters for the shortened form:

\setacronymstyle{long-sc-short}
\newacronym{idn}{idn}{identification number}

G

Avoid nested definitions.

Recall from the warning in §4 that you should avoid using the \ g1 s-like and \glstext-
like commands within the value of keys like text and £1rst due to complications arising
from nested links. The same applies to acronyms defined using \newacronym.

For example, suppose you have defined:

\newacronym{ssi}{SSI}{server side includes}
\newacronym{html}{HTML}{hypertext markup language}

you may be tempted to do:

192

% This file is embedded in glossaries-user.pdf
% Example 23 Defining and Using an Acronym
% Label: "ex:newacronym"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{glossaries}
\setacronymstyle{long-short}
\newacronym{idn}{IDN}{identification number}
\begin{document}
First use: \gls{idn}. Next use: \gls{idn}.

\glsreset{idn}% reset first use
 The \gls{idn}['s] prefix is a capital letter.
Next use: the \gls{idn}['s] prefix is a capital letter.
\end{document}

Nicola Talbot
Defining and Using an Acronym (source code)
Example document that defines an acronym and references it in the text. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example023.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example023.pdf

6. Acronyms and Other Abbreviations

\newacronym{shtml}{S\gls{html}}{\gls{ssi}
enabled \gls{html}}

_ B

Don’t! This will break the case-changing commands, such as \ G1 s, it will cause inconsistencies

on first use, and, if hyperlinks are enabled, will cause nested hyperlinks, and it will index the

nested entries every time the dependent entry is indexed, which creates unnecessary locations. It

will also confuse the commands used by the entry formatting (such as \glslabel).
Instead, consider doing:

\newacronym
[description={\gls{ssi} enabled \gls{html}}]
{shtml}{SHTML}{SSI enabled HTML}

or if the font needs to match the style:

\newacronym
[description={\gls{ssi} enabled \gls{html}}]
{shtml}{SHTML}{\acronymfont{SSI} enabled \acronym-
font {HTML} }

Alternatively:

DL 8L B

\newacronym
[description={\gls{ssi} enabled \gls{html}}]
{shtml}{SHTML}

{server side includes enabled hypertext markup language¢}

Similarly for the \ gl stext-like commands.

[glossaries—extra

Other approaches are available with glossaries—extra. See the sections “Nested Links”
and “Multi (or Compound) Entries” in the glossaries—extra user manual.

193

6. Acronyms and Other Abbreviations

6.1. Displaying the Long, Short and Full Forms
(Independent of First Use)

It may be that you want the long, short or full form regardless of whether or not the acronym has
already been used in the document. You can do so with the commands described in this section.

The \acr...commands described below are part of the set of \ gl stext-like commands.
That is, they index and can form hyperlinks, and they don’t modify or test the first use flag.
However, unlike the other \glstext-like commands, their display is governed by \de f-
glsentryfmt with \glscustomtext set to the appropriate link text. So, for example,

\acrshort{(label)} [(insert)]

is similar to:

\glsdisp{%
\acronymfont{\glsentryshort {{label)} } (insert)}

except that the first use flag isn’t unset.
All caveats that apply to the \glstext-like commands also apply to the following com-
mands. (Including the above warning about nested links.)

[glossaries—extra

If you are using glossaries—extra, don’t use the commands described in this section. The
glossaries—extra package provides analogous \glsxtr.. or \glsfmt... commands.
For example, \glsxtrshort instead of \acrshort or, if needed in a heading,
\glsfmtshort. (Similarly for the case-changing variants.)

J

The optional arguments are the same as those for the \ g1 st ext-like commands, and there
are similar star (*) and plus (+) variants that switch off or on the hyperlinks. As with the
\glstext-like commands, the link text is placed in the argument of \glstext format.

X

\acrshort [(options)] { (entry-label) } [(insert)] modifiers: * +

This sets the link text to the short form (within the argument of \acronymfont) for the
acronym given by (entry-label). The short form is as supplied by the short key, which \new-
acronym implicitly sets.

There are also analogous case-changing variants:

X

\Acrshort [(options)] { (entry-label) } [(insert)] modifiers: * +

(sentence case) and

194

6. Acronyms and Other Abbreviations

I
\ACRshort [(options)] { (entry-label) } [(insert)] modifiers: * +
(all caps).
There are also plural versions:
X
\acrshortpl [(options)] { {entry-label) } [(insert)] modifiers: * +
As \acrshort butuses the shortplural value.
X
\Acrshortpl [(options)] { (entry-label) } [(insert)] modifiers: * +
(sentence case) and
X
\ACRshortpl [(options)] { {entry-label) } [(insert)] modifiers: * +
(all caps).
X
\acrlong [(options)] { (entry-label) } [(insert)] modifiers: * +

This sets the link text to the long form for the acronym given by (entry-label). The long form is
as supplied by the 1 ong key, which \newacronym implicitly sets.
There are also analogous case-changing variants:

I
\Acrlong [(options)] { (entry-label) } [(insert)] modifiers: * +
(sentence case) and
X
\ACR1ong [(options)] { (entry-label) } [(insert)] modifiers: * +
(all caps).
Again there are also plural versions:
I
\acrlongpl [{options)] { (entry-label) } [(insert)] modifiers: * +
As \acrlong butuses the longplural value.
X
\Acrlongpl [{options)] { (entry-label) } [(insert)] modifiers: * +

(sentence case) and

195

6. Acronyms and Other Abbreviations

X
\ACRlongpl [(options)] { (entry-label) } [(insert)] modifiers: * +
(all caps).
X
\acrfull [(options)] { (entry-label) } [(insert)] modifiers: * +

This sets the link text to show the full form according to the format governed by the acronym
style. This may not necessarily be the same format as that produced on the first use of \gls.
For example, the footnote style has the long form in a footnote on the first use of \gls but
\acrfull has the long form in parentheses instead.

There are also analogous case-changing variants:

X
\Acrfull [(options)] { (entry-label) } | (insert)] modifiers: * +
(sentence case) and
I
\ACRfull [(options)] { (entry-label) } [(insert)] modifiers: * +
(all caps).
The plural version is:
X
\acrfullpl [(options)] { (entry-label) } [(insert)] modifiers: * +
with case-changing variants:
I
\Acrfullpl [{options)] { (entry-label) } [(insert)] modifiers: * +
(sentence case) and
X
\ACRfullpl [(options)] { (entry-label) } [(insert)] modifiers: * +

(all caps).

If you find the above commands too cumbersome to write, you can use the shortcuts
package option to activate the shorter command names listed in Table 6.1 on the next page.

It is also possible to access the long and short forms without indexing using commands anal-
ogous to \glsentrytext (described in §5.2). These don’t include the acronym font com-
mands, such as \acronymfont.

X

\glsentrylong{ (entry-label) }

196

6. Acronyms and Other Abbreviations

Table 6.1.: Synonyms provided by the short cut s package option

Shortcut Command Equivalent Command

\acs \acrshort
\Acs \Acrshort
\acsp \acrshortpl
\Acsp \Acrshortpl
\acl \acrlong
\Acl \Acrlong
\aclp \acrlongpl
\Aclp \Acrlongpl
\acft \acrfull
\Acf \Acrfull
\acfp \acrfullpl
\Acfp \Acrfullpl
\ac \gls

\Ac \Gls

\acp \glspl

\Acp \Glspl

Expands to the long form (that is, the value of the 1 ong key, which is internally set by \new-
acronym). The corresponding sentence case command is:

X

\Glsentrylongf{ (entry-label) }

\glsentrylongpl { {entry-label)}

Expands to the long plural form (that is, the value of the 1ongplural). The corresponding
sentence case command is:

X

\Glsentrylongpl/{ {entry-label)}

\glsentryshort { (entry-label) }

Expands to the short form (that is, the value of the short key, which is internally set by \new-
acronym). The corresponding sentence case command is:

197

6. Acronyms and Other Abbreviations

\Glsentryshort {(entry-label)}

An similar command is available for the full form:

\glsentryfull{(entry-label)}

This command is redefined by the acronym style. Unlike \glsentrylong and \gls-
entryshort, this does include \acronymfont, so if you need to use it in a section
heading, you may need to disable it in PDF bookmarks:

\pdfstringdefDisableCommands{% provided by hyperref
\let\acronymfont\@firstofone
\let\firstacronymfont\@firstofone

}

(%]

\Glsentryfull/{ (entry-label)}

This is like \glsentryfull but applies sentence case.
The analogous plural commands are:

\glsentryfullpl/{{entry-label)}

(no case change) and

\Glsentryfullpl {{entry-label)}

(sentence case).

6.2. Changing the Acronym Style

[glossaries—extra

If you are using glossaries—extra, don’t use the commands described in this section. Use
\setabbreviationstyle tosetthe abbreviation style. This uses a different (but
more consistent) naming scheme. For example, long—noshort instead of dua. See the
“Abbreviations” chapter in the glossaries—extra manual for further details.

The acronym style is set using:

198

6. Acronyms and Other Abbreviations

\setacronymstyle{(style-name)}

where (style name) is the name of the required style. The style must be set before the acronyms
are defined otherwise you will end up with inconsistencies.
For example:

,

\usepackage [acronym] {glossaries}

\makeglossaries
\setacronymstyle{long—sc—short}

\newacronym{html}{html}{hypertext markup language}
\newacronym{xml}{xml}{extensible markup language}

Unpredictable results will occur if you try to use multiple styles since each acronym style
redefines commands like \glsentryfull and \genacrfullformat that govern the
way the full form is displayed. The closest you can get to different styles if you only want to use
the base glossaries package is to adjust the entry format (see §5.1.4) or to provide a custom
acronym style such as in Example 12 on page 141.

[i
=
If you need multiple styles, then use the glossaries—extra package, which has better

abbreviation management. See, for example, Gallery: Mixing Styles.?

4dickimaw-books.com/gallery/index.php?label=sample-name-font

The \setacronymstyle command will redefine \newacronym to use the newer
acronym mechanism introduced in version 4.02 (2013-12-05). The older mechanism was avail-
able, but deprecated, for backward-compatibility until version 4.50 when it was removed. If
the pre-4.02 acronym styles are required, you will need to use rollback. As from v4.50, if you
don’t use \setacronymstyle, the first instance of \newacronym will automatically
implement:

=

[\setacronymstyle{long—-short}

which is the closest match to the old default. Example 24 on the next page is a modification of [E24
the earlier Example 23 on page 192 so that it uses rollback in order to demonstrate the difference:

199

https://www.dickimaw-books.com/gallery/index.php?label=sample-name-font
https://www.dickimaw-books.com/gallery/index.php?label=sample-name-font

6. Acronyms and Other Abbreviations

,

\usepackage{glossaries} [=v4.46]% rollback to v4.46
% no \setacronymstyle so old style used
\newacronym{idn}{IDN}{identification number}
\begin{document}

First use: \gls{idn}. Next use: \gls{idn}.

\glsreset{idn}% reset first use

The \gls{idn}['s] prefix is a capital letter.
Next use:

the \gls{idn}['s] prefix is a capital letter.
\end{document}

This produces:

4 Example 24: Defining and Using an Acronym (Rollback) \ER R AL

First use: identification number (IDN). Next use: IDN.
The identification number (IDN)’s prefix is a capital letter. Next use: the
IDN’s prefix is a capital letter.

The most noticeable difference is the way the (insert) optional argument is treated with \g1s on
firstuse (\gls{idn} ['s]). Withtheold way, \newacronymsimplyset f i r s tidentification
number (IDN) when it internally used \newglossaryentry to define the acronym. The
default entry format simply appends the (insert) after the value of the £irst key.

Unlike the original pre-4.02 behaviour of \newacronym, the styles set via \ setacronym-
styledon’tusethe first key, butinstead they use \defglsentryfmt tosetacustom
display style that uses the 1 ong and short keys (or their plural equivalents). This means that
these styles cope better with plurals that aren’t formed by simply appending the singular form
with the letter “s”. In fact, most of the predefined styles use \glsgenacfmt and modify
the definitions of commands like \genacrfullformat. If the original behaviour is still
required for some reason, use rollback.

In both the old and new implementation, the t ext key is set to the short form. Since the
first isn’t set with the new form, it will default to the value of the t ext key. This means
that with the new implementation, \g1ls first will produce the same resultas \glstext.
This is why you need to use \acrlongor \acrfull instead. Alternatively, reset the first
use flag and use \g1ls.

When you use \ setacronymstyle the name key is set to:

\acronymentry { (entry-label) }

and the sort key is set to

200

% This file is embedded in glossaries-user.pdf
% Example 24 Defining and Using an Acronym (Rollback)
% Label: "ex:newacronymrollback"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{glossaries}[=v4.46]% rollback to v4.46
 % no \setacronymstyle so old style used
 \newacronym{idn}{IDN}{identification number}
\begin{document}
First use: \gls{idn}. Next use: \gls{idn}.

\glsreset{idn}% reset first use
 The \gls{idn}['s] prefix is a capital letter.
Next use: the \gls{idn}['s] prefix is a capital letter.
\end{document}

Nicola Talbot
Defining and Using an Acronym (Rollback) (source code)
Example document that defines an acronym and references it in the text using deprecated style with rollback. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example024.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example024.pdf

6. Acronyms and Other Abbreviations

\acronymsort {(short) } { (long) }

These commands are redefined by the acronym styles. However, you can redefine them again
after the style has been set but before you use \newacronym. Protected expansion is per-
formed on \acronymsort when the acronym is defined.

6.2.1. Predefined Acronym Styles

The glossaries package provides a number of predefined acronym styles. These styles apply:

X
\firstacronymfont {(text)}
to the short form on first use and
) §
\acronymfont { (fext) }

on subsequent use. The styles modify the definition of \acronymfont and \first-
acronymfont asrequired. Usually, \firstacronymfont {(text)} simplydoes \acronym-
font {(text) }. If you want the short form displayed differently on first use, you can redefine
\firstacronymfont after the acronym style is set.

The predefined small caps styles that contain “sc” in their name (for example long—sc—short)
redefine \acronymfont to use \textsc, which means that the short form needs to be
specified in lowercase if it should be rendered in small caps. This is because small caps has small
capital glyphs for lowercase letters but normal sized capital glyphs for uppercase letters, which
means there’s no visual difference between a normal upright font and a small caps font if the text

is in all caps. This is demonstrated in Example 25: (=25
\setacronymstyle{long-sc 1 Example 25: Small-Caps Acronym
—-short} QL XE I
\newacronym{mathml }

{mathematical markup language}

\begin{document }
\acrshort{mathml}
\end{document}

201

% This file is embedded in glossaries-user.pdf
% Example 25 Small-Caps Acronym
% Label: "ex:longscshort"
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage{glossaries}
\setacronymstyle{long-sc-short}
\newacronym{mathml}{MathML}{mathematical markup language}
\begin{document}
\acrshort{mathml}
\end{document}

Nicola Talbot
Small-Caps Acronym (source code)
Example document that uses the long-sc-short acronym style, which renders the short form in a small-capital font. (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example025.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example025.pdf

6. Acronyms and Other Abbreviations

[i
=
Some fonts don’t support bold small caps, so you may need to redefine \glsnamefont

(see §8) to switch to medium weight if you are using a glossary style that displays entry
names in bold and you have chosen an acronym style that uses \t ext sc. (Alternatively,
switch to a font that does support bold small caps.)

The predefined glossary styles that contain “sm” in their name (for example long—sm—short)
redefine \acronymfont touse \textsmaller.
[i
=
Note that the glossaries package doesn’t define or load any package that defines \t ext —

smaller. If you use one of the acronym styles that set \acronymfont to
\textsmaller you must explicitly load the relsize package or otherwise define
\textsmaller.

The remaining predefined styles redefine \acronymfont to simply do its argument with-
out any font change.
[i
|
The predefined styles adjust \acrfull and \glsentryfull (and their plural and

case-changing variants) to reflect the style.

When acronyms are defined, \newacronymwill setthe sort keyto \acronymsort.
The acronym styles redefine this to suit the style. This command must fully expand in order for
the indexing application to pick up the correct sort value. If the sort key is set in the optional
argument of \newacronym, it will override this.

The name key is set to \acronyment ry. Again, the acronym styles redefine this to suit
the style. If the name key is set in the optional argument of \newacronym, it will override
this.

The t ype keyisset to \acronymtype. If the t ype key is set in the optional argument
of \newacronym, it will override this.

The shortplural is set to the short form appended by:

X

\acrpluralsuffix initial: \glsacrpluralsuffix

This is redefined by the acronym styles to the appropriate suffix. In most cases, it will simply be
defined to \glspluralsuffix, butthe small caps styles define it to:

X

\glsupacrpluralsuffix

This uses:

202

6. Acronyms and Other Abbreviations

\glstextup{ (text)}

to cancel the effect of the small caps font command \textsc.

If the shortplural key is set in the optional argument of \newacronym, it will
override this default.

The longplural is set to the long form appended by \glspluralsuffix. If the
longplural key is set in the optional argument of \newacronym, it will override this
default.

Some styles set the description key to the long form, but others don’t. If you use a
style that doesn’t set it, you will have to supply the description in the optional argument
of \newacronym.

6.2.1.1. Long (Short)

With the “long (short)” styles, acronyms are displayed in the form:

(long) (\firstacronymfont{(short)})

on first use and

\acronymfont {(short) }

on subsequent use.
They also set \acronymsort so that it just expands to its first argument (short). This
means that the acronyms are sorted according to their short form. In addition, \acronym-
ent ry{label} is set to just the short form (enclosedin \acronymfont)andthedescription
key is set to the long form.
=N

|l

long—short

This is the default style that will be implemented if \ setacronymstyle isn’t used (as from
v4.50, which has removed the default deprecated style). This shows the long form followed by the
short form in parentheses on first use and also with \acrfull. This redefines \acronym-
font to simply do its argument.

=

|

long—sc—short

This is like long—short but uses small caps for the short form, so it redefines \acronymfont
touse \textscand \acrpluralsuffixto\glsacrpluralsuffix.

203

6. Acronyms and Other Abbreviations

I —

|

long—sm-—short

This is like long—short but uses \ t ext smal 1 er for the short form, so it redefines \acronym-
font touse \textsmaller. This style will require relsize to be loaded.
| —

| S

long—sp—short

This is like long—short but instead of simply using a space between the long and short form, it
uses:

X

\glsacspace{ (label)}

This measures the short form for the given entry and, if the width is smaller than 3em, it will use
non-breaking space (~). Otherwise it will use \ space.

[glossaries—extra

Although the glossaries—extra package doesn’t support the base acronym styles, it does
redefine \glsacspacetouse \gl sacspacemax instead of the hard-coded 3em,
as \glsacspace may also be useful in abbreviation styles.

Example 26: Adapting a Predefined Acronym Style

Suppose I want to use the footnote—sc—desc style, but I want the name key set to the short
form followed by the long form in parentheses and the sort key set to the short form. Then I
need to specify the footnote—sc—desc style:

=

\setacronymstyle{footnote-sc—-desc}

and then redefine \acronymsort and \acronymentry:

,

\renewcommand*{\acronymsort} [2] {#1}

% sort by short form

\renewcommand*{\acronymentry}[1]{% short (long) name
\acronymfont{\glsentryshort{#1}}\space (\glsentry-

long{#1})}%

(I've used \ space for extra clarity, but you can just use an actual space instead.)
Note that the default Computer Modern fonts don’t support bold small caps, so another font
is required. For example:

204

6. Acronyms and Other Abbreviations

=

[\usepackage [T1l]{fontenc}

The alternative is to redefine \acronymfont so that it always switches to medium weight to
ensure the small caps setting is used. For example:

=

\renewcommand*{\acronymfont} [1]{\textmd{\scshape #1}

}

The sample file sampleFnAcrDesc. tex illustrates this example.

6.2.1.2. Short (Long)

With the “short (long)” styles, acronyms are displayed in the form:

\firstacronymfont{(short)} ({long))

on first use and

\acronymfont {(short) }

\. 4

on subsequent use.

They also set \acronymsort {short}{long} to just (short). This means that the acronyms
are sorted according to their short form. In addition, \acronyment ry{label} is set to just
the short form (enclosed in \acronymfont)and the description key is set to the long

form.
| —

| S

short—long

This shows the short form followed by the long form in parentheses on first use and also with
\acrfull. This redefines \acronymfont to simply do its argument.
I p—l

|l

sc—short—long

This is like short—long but uses small caps for the short form, so it redefines \acronymfont
touse \textscand \acrpluralsuffixto\glsacrpluralsuffix.
l —l

|

sm—short—long

This is like short—long but uses \ t ext sma 1l 1 er for the short form, so it redefines \acronym-
font touse \textsmaller. This style will require relsize to be loaded.

205

6. Acronyms and Other Abbreviations

6.2.1.3. Long (Short) User Supplied Description
I —

|

long—short—desc

This is like long—short but the de script i on key must be provided in the optional argument
of \newacronym. The sort value command \acronymsort is redefined to expand to its
second argument ({long)), and \acronyment ry is redefined to show the long form followed
by the short form in parentheses.

l E
L=
long—sc—short—desc
This is like long—short—desc except that it uses small caps, as long—sc—short.
I =
L=

long—sm—short—desc

This is like long—short—desc except that it uses \text smaller, as long—sm-—short.

I E
=
long—sp—short—desc
This is like long—short—desc except that it uses \glsacspace, as long—sp—short.
6.2.1.4. Short (Long) User Supplied Description
I E
L=

short—long—desc

This is like short—long but the de script i on key must be provided in the optional argument
of \newacronym. The sort value command \acronymsort is redefined to expand to its
second argument ((long)), and \acronyment ry is redefined to show the long form followed
by the short form in parentheses.

| E
L=
sc—short—long—desc
This is like short—long—desc except that it uses small caps, as long—sc—short.
I E
L=
sm—short—long—desc

This is like short—long—desc except that it uses \text smaller, as long—sm-short.

6.2.1.5. Do Not Use Acronym (DUA)

With these styles, the \ g1 s-like commands always display the long form regardless of whether
the entry has been first useused or not. However, \acrfull and \glsentryfull will

206

6. Acronyms and Other Abbreviations

display the long form followed by the short form, as per the long—short style.
I —_—

| S

dua

The sort value command \acronymsort expands to just its second argument (the long
form), and \acronyment ry shows just the long form.
[=

| S

dua—desc

The sort value command \acronymsort expands to just its second argument (the long
form), and \acronyment ry shows just the long form.

6.2.1.6. Footnote

With these styles, the \ g1 s-like commands show the short form followed by the long form in
a footnote on first use. The footnote is simply added with \ footnote. The \acrfull
set of commands show the short form followed by the long form in parentheses (as per styles
like short—long). The definitions of \acronymsort and \acronymentry are as for
the “short (long)” styles described in §6.2.1.2.

(o]

The footnote styles automatically set hyperfirst=false to prevent nested
hyperlinks.

| —

|

footnote

This defines \acronymentry, \acronymsort and \acronymfont in the same
way as the short—long style
I —

|

footnote—sc

This defines \acronymentry, \acronymsort, \acronymfont and \acrplural-
suf fix in the same way as the sc—short—long style
[=

|

footnote—sm

This defines \acronymentry, \acronymsort and \acronymfont in the same
way as the sm—short—long style
I p—

|l

footnote—desc

This defines \acronymentry, \acronymsort and \acronymfont in the same
way as the short—long—desc style

207

6. Acronyms and Other Abbreviations

I —

|

footnote—sc—desc

This defines \acronymentry, \acronymsort and \acronymfont in the same
way as the sc—short—long—desc style
I —_—

|

footnote—sm—desc

This defines \acronymentry, \acronymsort and \acronymfont in the same
way as the sm—short—long—desc style

6.2.2. Defining A Custom Acronym Style

You may find that the predefined acronym styles that come with the glossaries package don’t suit
your requirements. In this case you can define your own style using:

X

\newacronymstyle{ (name)} { (format def) } { (style defs) }

where (style name) is the name of the new style (avoid active characters). The second argument,
(format def), is equivalent to the (definition) argument of \defglsentryfmt. You can
simply use \glsgenacfmt or you can customize the display using commands like \ i f-
glsused, \glsifplural and \glscapscase. (See §5.1.4 for further details.)

If the style is likely to be used with a mixed glossary (that is, entries in that glossary are defined
both with \newacronymand \newglossaryentry) then you can test if the entry is an
acronym and use \glsgenacfmt ifitisor \glsgenent ryfmt if itisn’t. For example,
the long—short style sets (format def) as

\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentry-
fmt}

(You can use \1fglshasshort instead of \1fglshaslong to test if the entry is an
acronym if you prefer.)

The third argument, (style defs), can be used to redefine the commands that affect the display
style, such as \acronymfont and \genacrfullformat.

(@]

=
Bear in mind that you will need to use # # rather than to reference parameters in command

definitions within (style defs).

J

Note that \setacronymstyle redefines \glsentryfull and \acrfullfmt
to use \genacrfullformat (and similarly for the plural and case-changing variants).
If this isn’t appropriate for the style (as in the case of styles like footnote and dua) \new-
acronymstyle should redefine these commands within (style defs).

208

6. Acronyms and Other Abbreviations

Within \newacronymstyle’s (style defs) argument you can also redefine:

\GenericAcronymFields

This should expand to the list of additional fields to be set in \newglossaryentry, when
it’s internally called by \newacronym. You can use the following token registers to access
information passed to the arguments of \newacronym.

I
[\glskeylisttok
Contains the (key=value list) options.
I
\glslabeltok
Contains the (entry-label).
I
\glsshorttok
Contains the (short) form argument.
I
\glslongtok

Contains the (long) form argument.
As with all token registers, you can obtain the value of the register with \ t he (register). For
example, the long—short style does:

\renewcommand*{\GenericAcronymFields}{%
description={\the\glslongtok}}

which sets the description field to the long form of the acronym whereas the long—short
—desc style does:

[\renewcommand*{\GenericAcronymFields}{}

since the description needs to be specified by the user.
It may be that you want to define a new acronym style that’s based on an existing style. Within
(format def’) of the new style, you can use

X

\GlsUseAcrEntryDispStyle({ (style-name)}

209

6. Acronyms and Other Abbreviations

to use the (format def) definition from the style given by (style name).
Within (display defs) of the new style, you can use

\GlsUseAcrStyleDefs{ (style-name)}

to use the (display defs) from the style given by (style name).
For example, the long—sc—short acronym style is based on the long—short style with minor
modifications:

\newacronymstyle{long-sc—-short}%
{%$ use the same display as long-short
\GlsUseAcrEntryDispStyle{long—-short}%

o\

}
{% use the same definitions as long-short
\GlsUseAcrStyleDefs{long-short}%

% Minor modifications:
\renewcommand{\acronymfont} [1] {\textsc{##1}}%
\renewcommand*{\acrpluralsuffix}{\glstextup{\gls—-
pluralsuffix}}%

}

Example 27: Defining a Custom Acronym Style

Suppose I want my acronym on first use to have the short form in the text and the long form
with the description in a footnote. Suppose also that I want the short form to be put in small caps
in the main body of the document, but I want it in normal capitals in the list of acronyms. In my
list of acronyms, I want the long form as the name with the short form in brackets followed by
the description. That is, in the text I want \ g1 s on first use to display:

\textsc{(short)}\footnote{(long): (description)}

on subsequent use:

~

\textsc{(short)}

and in the list of acronyms, each entry will be displayed in the form:

(long) ((short)) (description)

Let’s suppose it’s possible that I may have a mixed glossary. 1 can check this in the second
argument ({format def)) of \newacronymstyle using:

210

6. Acronyms and Other Abbreviations

=

\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgenentry-
fmt }

This will use \gl sgenent ryfmt if the entry isn’t an acronym, otherwise it will use \ g1 s-
genacfmt. The third argument ({display defs)) of \newacronymstyle needs to rede-
fine \genacrfullformat etc so that the first use displays the short form in the text with
the long form in a footnote followed by the description. This is done as follows:

o

% No case change, singular first use:
\renewcommand*{\genacrfullformat}[2]4{%
\firstacronymfont{\glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%
1%
% Sentence case, singular first use:
\renewcommand*{\Genacrfullformat}[2]{%
\firstacronymfont{\Glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%
1%
% No case change, plural first use:
\renewcommand*{\genplacrfullformat} [2]{%
\firstacronymfont{\glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}
1%
% Sentence case, plural first use:
\renewcommand*{\Genplacrfullformat} [2]{%
\firstacronymfont{\Glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}

—~ o

If you think it inappropriate for the short form to be capitalised at the start of a sentence you can

change the above to:

% No case change, singular first use:
\renewcommand*{\genacrfullformat} [2]{%
\firstacronymfont{\glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}%

%

No case change, plural first use:

211

6. Acronyms and Other Abbreviations

\renewcommand*{\genplacrfullformat}[2]{%
\firstacronymfont{\glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}}

}s
\let\Genacrfullformat\genacrfullformat
\let\Genplacrfullformat\genplacrfullformat

Another variation is to use \Glsentrylongand \Glsentrylongpl in the footnote
instead of \glsentrylongand \glsentrylongpl.

Now let’s suppose that commands such as \glsentryfull and \acrfull shouldn’t
use a footnote, but instead use the format: (long) ((short)). This means that the style needs to
redefine \glsentryfull, \acrfullfmt and their plural and case-changing variants.

First, the non-linking commands:

\renewcommand*{\glsentryfull} [1]{%
\glsentrylong{##1}\space
(\acronymfont{\glsentryshort {##1}})$%
+ %
\renewcommand*{\Glsentryfull}[1]{%
\Glsentrylong{##1}\space
(\acronymfont{\glsentryshort{##1}})%
%
\renewcommand*{\glsentryfullpl}[1]{%
\glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})

o\

1%
\renewcommand*{\Glsentryfullpl}[1]{%
\Glsentrylongpl{##1}\space
(\acronymfont {\glsentryshortpl{##1}})

(e}

o\

}

Now for the linking commands:

\renewcommand*{\acrfullfmt}[3]{%
\glslink [##1]{##2}%
\glsentrylong{##2}##3\space
(\acronymfont {\glsentryshort {##2}})%

212

6. Acronyms and Other Abbreviations

\renewcommand*{\Acrfullfmt}[3]{%
\glslink [##1] {##2}%
\Glsentrylong{##2}##3\space
(\acronymfont {\glsentryshort {##2}})%

o\°

1%
\renewcommand* {\ACRfullfmt}[3]{%
\glslink [##1]1{##2}%
\glsuppercase{%
\glsentrylong{##2}##3\space
(\acronymfont {\glsentryshort{##2}})%

o\

}
%
\renewcommand*{\acrfullplfmt} [3]{%
\glslink [##1]{##2}%
\glsentrylongpl{##2}##3\space
(\acronymfont{\glsentryshortpl{##2}})

o\

o\°

%
\renewcommand*{\Acrfullplfmt} [3]{%
\glslink [##1]{##2}5%
\Glsentrylongpl{##2}##3\space
(\acronymfont{\glsentryshortpl{##2}})%

o\°

}%s
\renewcommand* {\ACRfullplfmt}[3]{%
\glslink [##1]##2%
\glsuppercase{%
\glsentrylongpl{##2}##3
(\acronymfont{\glsentryshortpl{##2}})%

-~
o\°

o\°

}

(This may cause problems with long hyperlinks, in which case adjust the definitions so that, for
example, only the short form is inside the argument of \glslink.)

The style also needs to redefine \acronymsort so that the acronyms are sorted according
to the long form:

=

\renewcommand*{\acronymsort} [2] {##2}

213

6. Acronyms and Other Abbreviations

If you prefer them to be sorted according to the short form you can change the above to:

\renewcommand*{\acronymsort} [2] {##1}

B

The acronym font needs to be set to \text sc and the plural suffix adjusted so that the “s”
suffix in the plural short form doesn’t get converted to small caps:

\renewcommand*{\acronymfont} [1]{\textsc{##1}}%
\renewcommand*{\acrpluralsuffix}{\glsupacrplural-
suffix}%

__ B

There are a number of ways of dealing with the format in the list of acronyms. The simplest way
is to redefine \acronymentry to the long form followed by the upper case short form in
parentheses:

\renewcommand*{\acronymentry} [1]{%
\Glsentrylong{##1}\space
(\glsuppercase\glsentryshort {##1}) }

__ B

(I've used \Glsentrylong instead of \glsentrylong to capitalise the name in the
glossary.)

An alternative approach is to set \acronymentry to just the long form and redefine
\GenericAcronymFields tosetthe symbol key to the short form and use a glossary
style that displays the symbol in parentheses after the name (such as the tree style) like this:

\renewcommand* {\acronymentry}[1]{\Glsentrylong{##1}}

o

o

\renewcommand*{\GenericAcronymFields}{$%
symbol={\protect\glsuppercase{\the\glsshorttok}}}

o\

I'm going to use the first approach and set \GenericAcronymFields to do nothing:

=

\renewcommand*{\GenericAcronymFields}{}%

Finally, this style needs to switch off hyperlinks on first use to avoid nested links:

214

6. Acronyms and Other Abbreviations

\glshyperfirstfalse

Putting this all together:

\newacronymstyle{custom-fn}% new style name
{% entry format
\ifglshaslong{\glslabel}{\glsgenacfmt}{\glsgen-
entryfmt}%
%
{%
\renewcommand*{\GenericAcronymFields}{}%
\glshyperfirstfalse
% No case change, singular first use:
\renewcommand*{\genacrfullformat}[2]{%
\firstacronymfont{\glsentryshort {##1}}##2%

\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}

o\°

1%
% Sentence case, singular first use:
\renewcommand*{\Genacrfullformat}[2]{%
\firstacronymfont{\Glsentryshort{##1}}##2%
\footnote{\glsentrylong{##1}: \glsentrydesc{##1}}

[}
°

o\°

}
% No case change, plural first use:
\renewcommand*{\genplacrfullformat} [2]{%
\firstacronymfont{\glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}
}%
}%
% Sentence case, plural first use:
\renewcommand*{\Genplacrfullformat} [2]{%
\firstacronymfont{\Glsentryshortpl{##1}}##2%
\footnote{\glsentrylongpl{##1}: \glsentrydesc{##1}
}

o0 —~ o©
o\°

non—-linking commands

\renewcommand*{\glsentryfull}[1]{%

\glsentrylong{##1}\space
(\acronymfont{\glsentryshort{##1}})%

215

&

6. Acronyms and Other Abbreviations

1%
\renewcommand*{\Glsentryfull}[1]{%
\Glsentrylong{##1}\space
(\acronymfont{\glsentryshort {##1}})

o\

1%
\renewcommand*{\glsentryfullpl}[1]{%
\glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})

o\°

%
\renewcommand*{\Glsentryfullpl}[1]{%
\Glsentrylongpl{##1}\space
(\acronymfont{\glsentryshortpl{##1}})

o\°

o\°

}
% linking commands
\renewcommand*{\acrfullfmt}[3]{%
\glslink [##1]{##2}%
\glsentrylong{##2}##3\space
(\acronymfont {\glsentryshort{##2}})%

o\°

+%
\renewcommand*{\Acrfullfmt}[3]{%
\glslink [##1]{##2}5%
\Glsentrylong{##2}##3\space
(\acronymfont {\glsentryshort{##2}})%

o\°

1%
\renewcommand* {\ACRfullfmt}[3]1{%
\glslink [##1]{##2}%
\glsuppercase{%
\glsentrylong{##2}##3\space
(\acronymfont {\glsentryshort{##2}})%

o\

t
1%
\renewcommand*{\acrfullplfmt} [3]{%
\glslink [##1] {##2}%
\glsentrylongpl{##2}##3\space
(\acronymfont{\glsentryshortpl{##2}})

o\°

o\°

+%
\renewcommand*{\Acrfullplfmt} [3]{%
\glslink [##1]{##2}%

216

6. Acronyms and Other Abbreviations

\Glsentrylongpl{##2}##3\space
(\acronymfont{\glsentryshortpl{##2}})

o\°

o\°

}%
\renewcommand*{\ACRfullplfmt} [3]{%
\glslink [##1]##2%
\glsuppercase{%
\glsentrylongpl{##2}##3
(\acronymfont{\glsentryshortpl{##2}})

o\°
-
o\
o\°

o\°

t
% font

\renewcommand* {\acronymfont} [1] {\textsc{##1}}%
\renewcommand*{\acrpluralsuffix}{\glsupacrplural-
suffix}%

% sort
\renewcommand*{\acronymsort} [2] {##2}%
% name

\renewcommand*{\acronymentry} [1]{%
\Glsentrylong{##1}\space
(\glsuppercase\glsentryshort{##1}) }%
}

Now I need to specify that I want to use this new style:

\setacronymstyle{custom—fn}

I also need to use a glossary style that suits this acronym style, for example altlist:

\setglossarystyle{altlist}

Once the acronym style has been set, I can define my acronyms:

\newacronym|[description={set of tags for use in
developing hypertext documents}]{html}{html}{Hyper
Text Markup Language}

\newacronym[description=

217

6. Acronyms and Other Abbreviations

{language used to describe the

layout of a document written in a markup language}]
{css}

{css}{Cascading Style Sheet}

The sample file sample—custom—acronym. tex illustrates this example.

Example 28: Italic and Upright Abbreviations

Suppose I want to have some acronyms in italic and some that just use the surrounding font.
Hard-coding this into the (short) argument of \newacronym can cause complications.

This example uses \glsaddstoragekey to add an extra field that can be used to store
the formatting declaration (such as \ em).

Ei

\glsaddstoragekey{font}{}{\entryfont}

This defines a new field/key called font, which defaults to nothing if it’s not explicitly set.
This also defines a command called \ent ryfont that’s analogous to \glsentrytext.
A new style is then created to format acronyms that access this field.

There are two ways to do this. The first is to create a style that doesn’t use \glsgenacfmt
but instead provides a modified version that doesn’t use \acronymfont but instead uses

[{\entryfont{\glslabel}(short)} .

The full format given by commands such as \genacrfullformat need to be similarly
adjusted. For example:

=

\renewcommand*{\genacrfullformat}[2]{%
\glsentrylong{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})%

o\°

}

This will deal with commands like \gls but not commands like \acrshort which still
use \acronymfont. Another approach is to redefine \acronymfont to look up the
required font declaration. Since \acronymfont doesn’t take the entry label as an argument,
the following will only work if \acronymfont isused in a context where the label is provided
by \glslabel. Thisis truein \gls, \acrshort and \acrfull. The redefinition is
now:

218

6. Acronyms and Other Abbreviations

=

\renewcommand*{\acronymfont}[1]{{\entryfont{\gls—
label}##1}}%

So the new style can be defined as:

\newacronymstyle{long-font-short}

{%
\GlsUseAcrEntryDispStyle{long-short}%

%

{%

\GlsUseAcrStyleDefs{long-short}$%

\renewcommand*{\genacrfullformat}[2]{%
\glsentrylong{##1}##2\space
({\entryfont {##1}\glsentryshort{##1}})

1%

\renewcommand*{\Genacrfullformat}[2]{%
\Glsentrylong{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})%

+%

\renewcommand*{\genplacrfullformat} [2]{
\glsentrylongpl{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})%

+%

\renewcommand*{\Genplacrfullformat} [2]{%
\Glsentrylongpl{##1}##2\space
({\entryfont{##1}\glsentryshort{##1}})%

1%

\renewcommand*{\acronymfont}[1]{{\entryfont{\gls—

label}##1}}%

\renewcommand*{\acronymentry} [1]{{\entryfont {##1}

\glsentryshort{##1}}}%
}

\

(e}
(¢}

o\

Remember the style needs to be set before defining the entries:

=

\setacronymstyle{long-font-short}

The complete document is contained in the sample file sample—-font—-abbr.tex.

219

6. Acronyms and Other Abbreviations

Some writers and publishing houses have started to drop full stops (periods) from uppercase
initials but may still retain them for lowercase abbreviations, while others may still use them
for both upper and lowercase. This can cause complications. Chapter 12 of The TgXbook dis-
cusses the spacing between words but, briefly, the default behaviour of TgX is to assume that an
uppercase character followed by a full stop and space is an abbreviation, so the space is the de-
fault inter-word space whereas a lowercase character followed by a full stop and space is a word
occurring at the end of a sentence, which requires an inter-sentence space (which may or may
not be the same as an inter-word space). In the event that this isn’t true, you need to make a man-
ual adjustment using \ . (backslash space) in place of just a space character for an inter-word
mid-sentence space and use \ @ before the full stop to indicate the end of the sentence.

For example:

=

[I was awarded a B.Sc. and a Ph.D. (From the same place})

is typeset as

I was awarded a B.Sc. and a Ph.D. (From the same place.)

The spacing is more noticeable with the typewriter font:

\ttfamily

I was awarded a B.Sc. and a Ph.D. (From the same place}l)

is typeset as

I was awarded a B.Sc. and a Ph.D. (From the same
place.)

The lowercase letter at the end of “B.Sc.” is confusing TEX into thinking that the full stop after it
marks the end of the sentence. Whereas the uppercase letter at the end of “Ph.D.” has confused
TeX into thinking that the following full stop is just part of the abbreviation. These can be
corrected:

=

I was awarded a B.Sc.\and a Ph.D\@. (From the same plage.)

This situation is a bit problematic for glossaries. The full stops can form part of the (short)
argument of \newacronym and the B. Sc. \._. part can be dealt with by remembering to
add \ _ (for example, \g1ls{bsc} \._ butthe end of sentence case is more troublesome as you
need to omit the sentence terminating full stop (to avoid two dots) which can make the source

220

6. Acronyms and Other Abbreviations

code look a little strange but you also need to adjust the space factor, which is usually done by
inserting \ @ before the full stop.
The next example shows one way of achieving this.

[glossaries—extra

The glossaries—extra package provides a much simpler way of doing this, which you may
prefer to use. See sample-initialisms.shtml“Gallery: Initialisms.

“dickimaw—books.com/gallery

Example 29: Abbreviations with Full Stops (Periods)

The post-link hook (\glspostlinkhook) is called at the very end of the \ g1 s-like
and \ gl stext-like commands. This can be redefined to check if the following character is a
full stop. The amsgen package (which is automatically loaded by glossaries) provides an internal
command called \new@i fnextchar that can be used to determine if the given character
appears next. (For more information see the amsgen documentation. Alternatively, ISIiEX3 may
provide a better way of doing this.)

It’s possible that I may also want acronyms or contractions (without full stops) in my document,
so I need some way to differentiate between them. Here I'm going to use the same method as in
Example 12 on page 141 where a new field is defined to indicate the type of abbreviation:

=

\glsaddstoragekey{abbrtype}{word}{\abbrtype}

\newcommand* { \newabbr}

[1]1 []1{\newacronym
[abbrtype=initials, #1]}

Now I just use \newacronym for the acronyms, for example,

\newacronym{laser}{laser}
{light amplification by stimulated
emission of radiation}

and my new command \newabbr for initials, for example,

\newabbr{eg}{e.g.}{exempli gratia}
\newabbr{ie}{i.e.}{id est}
\newabbr{bsc}{B.Sc.}{Bachelor of Science}
\newabbr{ba}{B.A.}{Bachelor of Arts}
\newabbr{agm}{A.G.M. }{annual general meeting}

221

https://www.dickimaw-books.com/gallery
https://www.dickimaw-books.com/gallery

6. Acronyms and Other Abbreviations

Within \glspostlinkhook the entry’s label can be accessed using \glslabel and
\ifglsfieldeq can be used to determine if the current entry has the new abbrtype
field set to “initials”. If it doesn’t, then nothing needs to happen, but if it does, a check is per-
formed to see if the next character is a full stop. If it is, this signals the end of a sentence otherwise
it’s mid-sentence.

Remember that internal commands within the document file (rather than in a class or package)
need to be placed between \makeatletter and \makeatother:

\makeatletter

\renewcommand{\glspostlinkhook}{%
\ifglsfieldeg{\glslabel}{abbrtype}{initials}$%
{\new@ifnextchar.\doendsentence\doendword}
{}%

}

\makeatother

In the event that a full stop is found then \doendsentence is performed, but it will be
followed by the full stop, which needs to be discarded. Otherwise \ doendword will be done,
but it won’t be followed by a full stop so there’s nothing to discard. The definitions for these
commands are:

=

\newcommand{ \doendsentence} [1] {\spacefactor=10000 }
\newcommand{\doendword}{\spacefactor=1000 }

Now, I can justdo \gls{bsc} mid-sentence and \ g1 s {phd} . atthe end of the sentence.
The terminating full stop will be discarded in the latter case, but it won’t be discarded in, say,
\gls{laser} . asthat doesn’t have the abbrt ype ficld set to “initials”.

This also works on first use when the style is set to one of the (long) ({short)) styles but it
will fail with the (short) ((long)) styles as in this case the terminating full stop shouldn’t be
discarded. Since \glspostlinkhook is used after the first use flag has been unset for the
entry, this can’t be fixed by simply checking with \ 1 fgl sused. One possible solution to this
is to redefine \glslinkpostsetkeys to check for the first use flag and define a macro
that can then be used in \glspostlinkhook

The other thing to consider is what to do with plurals. One possibility is to check for plural
use within \doendsentence (using \glsifplural) and put the full stop back if the
plural has been used.

The complete document is contained in the sample file sample—dot—-abbr.tex.

222

6. Acronyms and Other Abbreviations

6.3. Displaying the List of Acronyms

The list of acronyms is just like any other type of glossary and can be displayed on its own using
the appropriate \print(...)glossary command, according to the indexing method.
For example, Option 1:

\printnoidxglossary|[type=\acronymtype]

Options 2 or 3:

\printglossary[type=\acronymtype]

Or if you have used the acronym or acronyms package option:

\printacronyms

8 L0 LB

See §2.7.)

Alternatively, the list of acronyms can be displayed with all the other glossaries using \print-
noidxglossaries (Option 1) or \printglossaries (Options 2 or 3).

The remaining indexing methods require glossaries—extra, which has its own abbreviation
commands that are incompatible with the base acronym commands.

A
Care must be taken to choose a glossary style that’s appropriate to your acronym style.
Alternatively, you can define your own custom style (see §13.2 for further details).

6.4. Upgrading From the glossary Package

(@
= |
The old glossary package was made obsolete in 2007, when the first version of glossaries
was released, so this section is largely redundant but is retained in the event that someone
may happen to have an old document that needs to be converted to work with a modern
TeX distribution. See also the accompanying document “Upgrading from the glossary
package to the glossaries package” (glossary2glossaries.pdf).

J

Users of the obsolete glossary package may recall that the syntax used to define new acronyms
has changed with the replacement glossaries package. In addition, the old glossary package
created the command \ (acr-name) when defining the acronym (acr-name).

223

6. Acronyms and Other Abbreviations

In order to facilitate migrating from the old glossary package to the new one, the glossaries
package provides the command:

X

[\oldacronym/[(label)] { (short) } { (long) } { (key=value list) }

J

This uses the same syntax as the glossary package’s method of defining acronyms. It is equivalent
to:

\newacronym [(key=value list)] { (label) } { (short) } { (long) }

In addition, \ o 1dacronymalso defines the commands \ (label), which is equivalent to \ g1 s
{(label) }, and \ (label)*, which is equivalent to the sentence case \G1s { (label) }. If (label)
is omitted, (short) is used. Since commands names must consist only of alphabetical characters,
(label) must also only consist of alphabetical characters. Note that \ (label) doesn’t allow you to
use the first optional argument of \gls or \G1s —you will need to explicitly use \gls or
\G1s to change the settings.

(i]
L=
Recall that, in general, IfTEX ignores spaces following command names consisting of al-

phabetical characters. This is also true for \ (label) unless you additionally load the xspace
package, but be aware that there are some issues with using xspace. (See David Carlisle’s
explanation in Drawbacks of xspace.)

The glossaries package doesn’t load the xspace package since there are both advantages and
disadvantages to using \xspace in \(label). If you don’t use the xspace package, then you
need to explicitly force a space using \ _. (backslash space). On the other hand, you can follow the
\ (label) command with the optional (insert) text in square brackets (the final optional argument
to \gls). If you use the xspace package you don’t need to escape the spaces but you can’t use
the optional argument to insert text (you will have to explicitly use \g1ls to achieve that).

To illustrate this, suppose I define the acronym “abc” as follows:

=

\oldacronym{abc}{example acronym}{}

This will create the command \abc and its starred version \abc*. Table 6.2 on the next
page illustrates the effect of \ albc (on subsequent use) according to whether or not the xspace
package has been loaded. As can be seen from the final row in the table, the xspace package
prevents the optional argument from being recognised.

224

http://tex.stackexchange.com/questions/86565/drawbacks-of-xspace

6. Acronyms and Other Abbreviations

Table 6.2.: The effect of using xspace with \oldacronym

Code
\abc.
\abc xyz
\abc\xyz
\abc* xyz
\abc['s]

XY Z

With xspace Without xspace

abc.

abc xyz
abc xyz
Abc xyz
abc [’s] xyz

225

abc.
abcxyz
abc xyz
Abc xyz
abc’s xyz

7. Unsetting and Resetting Entry Flags

When using the \ g1 s-like commands it is possible that you may want to use the value given

by the £ i rst key, even though you have already used the glossary entry. Conversely, you may

want to use the value given by the t ext key, even though you haven’t used the glossary entry.
The former can be achieved by one of the following commands:

b §
\glsreset { (entry-label) }
which globally resets the first use flag and
X
\glslocalreset {(entry-label) }
which locally resets the first use flag.
The latter can be achieved by one of the following commands:
X
\glsunset { (entry-label) }
which globally unsets the first use flag and
X

\glslocalunset {{entry-label) }

which locally unsets the first use flag.
The above commands are for the specific entry identified by the argument (entry-label). You
can also reset or unset all entries for a given glossary or multiple glossaries using:

) §
\glsresetall [(glossary labels list)]
which globally resets the first use flags and
X
\glslocalresetall [{glossary labels list)]
which locally resets the first use flags or
X

\glsunsetall [(glossary labels list)]

226

7. Unsetting and Resetting Entry Flags

which globally unsets the first use flags and

\glslocalunsetall [(glossary labels list)]

which locally unsets the first use flags.

The optional argument (glossary labels list) should be a comma-separated list of glossary la-
bels. If omitted, the list of all non-ignored glossaries is assumed.

For example, to reset all entries in the ma in glossary and the acronym list:

,

\glsresetall [main,acronym]

[glossaries—extra

The glossaries—extra package additional provides the options preunset and pre—
reset for the \gls-like commands, that will unset or reset the first use flag before
the link text, which will make the \gls-like command behave as though it was the
subsequent use or first use, irrespective of whether or not the entry has actually been used.

J

You can determine whether an entry’s first use flagis set with \ 1 fglsused. Withbib2gls,
you may need to use \GlsXtrIfUnusedOrUndefined instead.
[i
=
Be careful when using \ g1 s-like commands within an environment or command argu-

ment that gets processed multiple times as it can cause unwanted side-effects when the
first use displayed text is different from subsequent use.

For example, the frame environment in beamer processes its argument for each overlay. This
means that the first use flag will be unset on the first overlay and subsequent overlays will use the
subsequent use form.

Consider the following example:

\documentclass{beamer}
\usepackage{glossaries}
\newacronym{svm}{SVM}{support vector machine}
\begin{document}

\begin{frame}

227

7. Unsetting and Resetting Entry Flags

\frametitle{Frame 1}

\begin{itemize}
\item<+-> \gls{svm}
\item<+—-> Stuff.

\end{itemize}

\end{frame}

\end{document}

On the first overlay, \ g1 s { svm} produces “support vector machine (SVM)” and then unsets
the first use flag. When the second overlay is processed, \ g1 s {svm} now produces “SVM”,
which is unlikely to be the desired effect. I don’t know anyway around this and I can only offer
the following suggestions.

1. Unset all acronyms at the start of the document and explicitly use \acrfull when you
want the full version to be displayed:

,

\documentclass{beamer}

\usepackage{glossaries}

\newacronym{svm}{SVM} {support vector machine}
\glsunsetall

\begin{document}

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \acrfull{svm}
\item<+-> Stuff.

\end{itemize}

\end{frame}

\end{document}

2. Explicitly reset each acronym on first use:

228

7. Unsetting and Resetting Entry Flags

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \glsreset{svm}\gls{svm}
\item<+-> Stuff.

\end{itemize}

\end{frame}

Alternatively, with glossaries—extra:

\documentclass{beamer}
\usepackage{glossaries—-extra}

\newabbreviation{svm}{SVM}
{support vector machine}

\begin{document}

\begin{frame}
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \gls|[prereset]{svm}
\item<+-> Stuff.
\end{itemize}
\end{frame}

\end{document}

3. Use the glossaries—extra package’s unset buffering mechanism:

\documentclass{beamer}
\usepackage{glossaries—extra}

\newabbreviation{svm}{SVM}

229

7. Unsetting and Resetting Entry Flags

{support vector machine}
\begin{document }

\GlsXtrStartUnsetBuffering
\GlsXtrUnsetBufferEnableRepeatLocal
\begin{frame}
\GlsXtrResetLocalBuffer
\frametitle{Frame 1}

\begin{itemize}
\item<+-> \gls{svm}
\item<+-> Stuff.

\end{itemize}

\end{frame}
\GlsXtrStopUnsetBuffering

\end{document}

See the glossaries—extra manual for further details.

These are non-optimal, but the beamer class is too complex for me to provide a programmatic
solution. Other potentially problematic environments are some tabular-like environments (but
not tabular itself) that process the contents in order to work out the column widths and then
reprocess the contents to do the actual typesetting.

The amsmath environments, such as align, also process their contents multiple times, but the
glossaries package now checks for this. For tabularx, you need to explicitly patch it by placing
\glspatchtabularx in the preamble (or anywhere before the problematic use of tabu-
larx).

7.1. Counting the Number of Times an Entry has been Used
(First Use Flag Unset)

It’s possible to keep track of how many times an entry is used. That is, how many times the first
use flag is unset. Note that the supplemental glossaries—extra package improves this function
and also provides per-unit counting, which isn’t available with the glossaries package.

i

This function is disabled by default as it adds extra overhead to the document build time
and also switches \newglossaryentry (and therefore \newacronym) into
a preamble-only command.

230

7. Unsetting and Resetting Entry Flags

To enable this function, use:

\glsenableentrycount

before defining your entries. This adds two extra (internal) fields to entries: currcount and
prevcount.

The currcount field keeps track of how many times \glsunset is used within the
document. A local unset (using \glslocalunset) performs a local rather than global
increment to currcount. Remember that not all commands use \glsunset. Only the
\ g1 s-like commands do this.

The behaviour of the reset commands depend on the conditional:

X

\ifglsresetcurrcount (frue)\else (false)\fi initial: \1ffalse

If true, the reset commands \glsreset and \glslocalreset will reset the value of
the currcount field back to 0. This conditional can be set to true with:

X

\glsresetcurrcounttrue

and to false with:

\glsresetcurrcountfalse

The default is false, as from version 4.50.

The prevcount field stores the final value of the currcount field from the previous
run. This value is read from the aux file at the beginning of the document environment.

You can access these fields using

X
\glsentrycurrcount { (entry-label) }
for the currcount field, and
X
[\glsentryprevcount { (entry-label) }
for the prevcount field.
[i
=

[These commands are only defined if you have used \glsenableentrycount.

\.

For example:

231

7. Unsetting and Resetting Entry Flags

\documentclass{article}
\usepackage{glossaries}
\makeglossaries

\glsenableentrycount

\newglossaryentry{apple}{name={apple},description=
{a fruit}}

\begin{document}
Total usage on previous run: \glsentryprevcount

{apple}.

\gls{apple}. \gls{apple}. \glsadd{apple}\glsentry-

text{apple}.

\glslink{apple}{apple}. \glsdisp{apple}{apple}
\Gls{apple}.

Number of times apple has been used: \glsentrycurr-
count{apple}.
\end{document}

On the first ISTEX run, \glsentryprevcount {apple} produces 0. At the end of
the document, \glsentryprevcount {apple} produces 4. This is because the only
commands that have incremented the entry count are those that use \glsunset. That is:
\gls,\glsdispand \G1s. The other commands used in the above example, \g1l sadd,
\glsentrytext and \glslink, don’tuse \glsunset so they don’t increment the
entry count. On the next ISTEX run, \glsentryprevcount {apple} now produces 4
as that was the value of the currcount field for the “apple” entry at the end of the document
on the previous run.

When you enable the entry count using \glsenableentrycount, you also enable the
following commands:

X
\cqgls [(options)] { (entry-label)} [(insert)] modifiers: * +
(no case-change, singular, analogous to \gls)
X
\cglspl [(options)] { (entry-label) } [(insert)] modifiers: * +

(no case-change, plural, analogous to \glspl)

232

7. Unsetting and Resetting Entry Flags

I
\cG1ls [(options)] { (entry-label) } [(insert)] modifiers: * +
(first letter uppercase, singular, analogous to \G1s), and
X
\cG1lspl [(options)] { (entry-label) } [(insert)] modifiers: * +

(first letter uppercase, plural, analogous to \G1spl).

[glossaries—extra

All caps versions are only available with glossaries—extra.

J

If you don’t use \glsenableentrycount, these commands behave like their coun-
terparts \gls, \glspl, \G1ls and \G1spl, respectively, but there will be a warning that
you haven’t enabled entry counting.

If you have enabled entry counting with \glsenableentrycount then these com-
mands testif \glsentryprevcount { (entry-label) } equals 1. If it doesn’t then the anal-
ogous \gls etc will be used. If it is 1, then the first optional argument will be ignored and

(cs format) { (entry-label) } { (insert) } \glsunset { (entry-label) }

will be performed, where (cs format) is a command that takes two arguments. The command
used depends whether you have used \cgls, \cglspl, \cGlsor \cGlspl.
The formatting command (cs format) will be one of the following:

X
\cglsformat { (entry-label)} { (insert) }
This command is used by \ cgl s and defaults to
\glsentrylong{ (entry-label) } (insert)
if the entry given by (entry-label) has a long form or
\glsentryfirst{(entry-label)} (insert)
otherwise.
X
[\cglsplformat { (entry-label) } { (insert) }

233

7. Unsetting and Resetting Entry Flags

This command is used by \cglspl and defaults to

\glsentrylongpl {{entry-label) } {insert)

if the entry given by (entry-label) has a long form or

\glsentryfirstplural {{label)} (insert)

otherwise.

\cGlsformat { (entry-label) } { (insert) }

This command is used by \ cG1s and defaults to

\Glsentrylong({ (entry-label)} (insert)

if the entry given by (entry-label) has a long form or

\Glsentryfirst{(entry-label)} (insert)

otherwise.

\cGlsplformat {(entry-label)} { (insert) }

This command is used by \cG1spl and defaults to

\Glsentrylongpl {{entry-label)}

{ (entry-label) } (insert)

if the entry given by (entry-label) has a long form or

[\Glsentryfirstplural {{entry-label) } {insert)

otherwise.

This means that if the previous count for the given entry was 1, the entry won’t be hyperlinked
with the \ cg1 s-like commands and those commands won’t index (that is, they won’t add a line
to the external glossary file). If you haven’t used any of the other commands that index (such as
\glsadd orthe \glstext-like commands) then the entry won’t appear in the glossary.

234

7. Unsetting and Resetting Entry Flags

Remember that since these commands use \glsentryprevcount you need to run
IATEX twice to ensure they work correctly. The document build requires a second I£TEX call be-
fore running the indexing application. For example, if the documentis in afile calledmyDoc . tex,
then the document build needs to be:

pdflatex myDoc
pdflatex myDoc
makeglossaries myDoc
pdflatex myDoc

In Example 30 on the following page, the acronyms that have only been used once (on the [£30
previous run) only have their long form shown with \cgls:

,

\documentclass{article}

\usepackage [colorlinks] {hyperref}
\usepackage [acronym] {glossaries}
\makeglossaries

\glsenableentrycount
\setacronymstyle{long—-short}

\newacronym{html}{HTML}{hypertext markup language}
\newacronym{css}{CSS}{cascading style sheets}
\newacronym{xml}{XML}{extensible markup language}
\newacronym{sgl}{SQL}{structured query language}
\newacronym{rdbms} {RDBMS }

{relational database management system}
\newacronym{rdsms} {RDSMS}

{relational data stream management system}

\begin{document}

These entries are only used once: \cgls{sqgl}, \cgls
{rdbms},

\cgls{xml}. These entries are used multiple times:
\cgls{html}, \cgls{html}, \cgls{css}, \cgls{css}

, \cgls{css},

\cgls{rdsms}, \cgls{rdsms}.

\printglossaries

235

7. Unsetting and Resetting Entry Flags

l \end{document} J

After a complete document build the list of acronyms only includes the entries HTML, CSS and
RDSMS. The entries SQL, RDBMS and XML only have their long forms displayed and don’t
have a hyperlink.

N Example 30: Don’t index entries that are only used once \EFE

These entries are only used once: structured query language, relational
database management system, extensible markup language. These entries are
used multiple times: hypertext markup language (HTML), HTML, cascading
style sheets (CSS), CSS, CSS, relational data stream management system
(RDSMS), RDSMS.

Acronyms

CSS cascading style sheets. 1
HTML hypertext markup language. 1

RDSMS relational data stream management system. 1

[bib2gls |
With bib2gls there’s an analogous record counting set of commands. See glossaries
—extra and bib2gls manuals for further details.

236

% This file is embedded in glossaries-user.pdf
% Example 30 Don't index entries that are only used once
% Label: "sec:entrycount"
% arara: pdflatex
% arara: pdflatex
% arara: makeglossaries
% arara: pdflatex
% arara: pdfcrop
\documentclass[12pt]{article}
\pagestyle{empty}
\usepackage[colorlinks]{hyperref}
\usepackage[acronym]{glossaries}
\makeglossaries

\glsenableentrycount

\setacronymstyle{long-short}

\newacronym{html}{HTML}{hypertext markup language}
\newacronym{css}{CSS}{cascading style sheets}
\newacronym{xml}{XML}{extensible markup language}
\newacronym{sql}{SQL}{structured query language}
\newacronym{rdbms}{RDBMS}{relational database management system}
\newacronym{rdsms}{RDSMS}{relational data stream management system}
\begin{document}
These entries are only used once: \cgls{sql}, \cgls{rdbms},
\cgls{xml}. These entries are used multiple times:
\cgls{html}, \cgls{html}, \cgls{css}, \cgls{css}, \cgls{css},
\cgls{rdsms}, \cgls{rdsms}.

\printglossaries
\end{document}

Nicola Talbot
Don't index entries that are only used once (source code)
Example document that only includes the entries that have been used more than once in the document (source code)

http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example030.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/glossaries-user-examples/glossaries-user-example030.pdf

8. Displaying a Glossary

All defined glossaries may be displayed using the appropriate command, such as \print-
glossary, that matches the indexing method. These commands are collectively referred to
as the \print(...)glossary set of commands.

(@]

=
With Options 2, 3 or 4, if the glossary does not appear after you re-I&IEX your document,

check themakeindex, xindyorbib2gls logfiles (g1g or the (log-ext) argument
of \newglossary), as applicable, to see if there is a problem. With Option 1, you
just need two IATEX runs to make the glossaries appear, but you may need further runs to
make the number lists up-to-date. If you have used the aut omake option, check the
1og file for “runsystem” lines (see the information about the aut omake option in §2.5
for further details).

7

Option 1 (must be used with \makenoidxglossaries in the document preamble):

X

\printnoidxglossary [(options)]

This displays the glossary identified by the t ype option in (options) or, if omitted, the glossary
identified by \glsdefaulttype. This command iterates over a list of entry labels, which
it will have to first sort with sort=standard. The list will only include those entries that
have been indexed and the appropriate glossary markup is added within the loop. This makes it
unsuitable for the tabular-like glossary styles, such as long and super.

The following is an iterative command:

b §
\printnoidxglossaries
which internally uses \printnoidxglossary for each non-ignored glossary.
Options 2 and 3 (must be used with \makeglossaries in the document preamble):
b §
\printglossary [{options)]

This displays the glossary identified by the t ype option in (options) or, if omitted, the glossary
identified by \glsdefaulttype. This command internally inputs the associated glossary
file (created by the relevant indexing application) if it exists. The glossary file contains the markup
to typeset the glossary. See §1.6 for information on how to create the glossary file.

237

8. Displaying a Glossary

The following is an iterative command:

b §
\printglossaries
which internally uses \printglossary for each non-ignored glossary.
[i
=

While the external glossary files are missing, \printglossary will justdo \null
for each missing glossary to assist dictionary style documents that just use \glsadd-
all without inserting any text. This use of \nul1 ensures that all indexing information
1s written before the final page is shipped out. Once the external glossary files are present
\null will no longer be used. This can cause a spurious blank page on the first IAEX
run before the glossary files have been created. Once these files are present, \null
will no longer be used and so shouldn’t cause interference for the final document. With
glossaries—extra, placeholder text is used instead.

Options 4 and 5 (glossaries—extra only):

\printunsrtglossary [{options)]

This displays the glossary identified by the t ype option in (options) or, if omitted, the glossary
identified by \glsdefaulttype. Thiscommandissimilarto \printnoidxglossary,
in that it iterates over a list of entry labels, but in this case all defined entries within the given
glossary are included and the list is in the order in which they were defined (that is, the order in
which they were added to the glossary’s internal label list).

The reason this command works withbib2gl s is because bilb2gl s writes the entry defi-
nitions in the g1 st ex file in the order obtained by the sort resource option, and bib2gls
will only include the entries that match the required selection criteria.

With Option 5 (that is, without bib2gls) the result will be in the order the entries were
defined in the tex file. There’s no attempt to gather child entries (see §4.5). This means that
if you don’t define child entries immediately after their parent, you will have a strange result
(depending on the glossary style).

Aswith \printnoidxglossary, the glossary markup is inserted during the loop but,
unlike that command, \printunsrtglossary performs the loop outside of the glossary
style, which means that there are no issues with the tabular-like styles. See the glossaries—extra
manual for further details.

The following is an iterative command:

\printunsrtglossaries

which internally uses \printunsrtglossary for each non-ignored glossary.
The glossaries—extra package also provides

238

8. Displaying a Glossary

\printunsrtinnerglossary [(options)] { (pre-code) } { {post-code) }

which is designed for inner or nested glossaries. It allows many, but not all, of the options
listed below. There’s an example available in the gallery: Inner or Nested Glossaries.! See the
glossaries—extra package for further details.

All the individual glossary commands \print(...)glossary have an optional argument.
Available options are listed in §8.1.

After the options have been set, the following command will be defined:

\currentglossary

This expands to the label of the current glossary (identified by the t ype option). It may be used
within glossary style hooks, if required.

8.1. \print(...)glossary Options

These options may be used in the optional argument of the \print(...)glossary set of
commands. Some options are available for all those commands, but those that aren’t are noted.
Before the options are set, the following commands are defined to their defaults for the given
glossary. They may then be redefined by applicable options. =

=
type=(glossary-label) default: \glsdefaulttype

Identifies the glossary to display. The value should be the glossary label. Note that you can only
display an ignored glossary with \printunsrtglossaryor \printunsrtinner-
glossary, otherwise (glossary-label) should correspond to a glossary that was defined with
\newglossaryor \altnewglossary.

title=(text)

Sets the glossary’s title (\glossarytitle). This option isn’t available with \print-
unsrtinnerglossary.
==

o=

toctitle=(text)

Sets the glossary’s table of contents title (\glossarytoctitle). This option isn’t avail-
able with \printunsrtinnerglossary.

'dickimaw-books.com/gallery/index.php?label=bib2gls—-inner

239

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner

8. Displaying a Glossary

style={(style-name)

The glossary style to use with this glossary (overriding the current style that was either set with
the st yle package option or with \setglossarystyle). This option isn’t available
with \printunsrtinnerglossary.

[=

=
numberedsection=(value) default: nolabel; initial: false

This may be used to override the numberedsect ion package option, and has the same
syntax as that option (see §2.2). This option isn’t available with \printunsrtinner-
glossary.

(@
nonumberlist=(boolean) default: true;initial: false

This may be used to override the nonumber1ist package option. Note that, unlike the
valueless package option, this option is boolean.

(@

nogroupskip=(boolean) default: true;initial: £alse

This may be used to override the nogroupsk1p package option. Only relevant if the glossary
style uses the conditional \ i fglsnogroupskip to test for this option.

(@

nopostdot=(boolean) default: true;initial: false

This may be used to override the nopostdot package option. This option is only applicable
if the glossary style uses \glspostdescription.
[O®

=
entrycounter=(boolean) default: true; initial: false

This may be used to override the ent rycounter package option. Note that one of the
package options ent rycounter=true or subentrycounter=t rue must be used
tomake \glsrefent ry work correctly. The setting can then be switched off with this option
for individual glossaries where the setting shouldn’t apply.

[@

=
subentrycounter=(boolean) default: true; initial: false

This may be used to override the subentrycounter package option. Note that one of
the package options entrycounter=true or subentrycounter=true must be
used to make \glsrefentry work correctly. The setting can then be switched off with this
option for individual glossaries where the setting shouldn’t apply.

240

8. Displaying a Glossary

hH
If you want to set both the ent rycounter and subentrycounter settings,
and you haven’t already enabled them with the ent rycounter and subentry—
counter package options, make sure you specify ent rycounter first (but bear in
mind \glsrefentry won’t work). In general, it’s best to enable these settings via the
package options and switch them off for the glossaries where they don’t apply.

=
sort=(method)
This key is only available with \printnoidxglossary.
i

If you use the sort=use or sort=def values make sure that you select a glossary
style that doesn’t have a visual indicator between groups, as the grouping no longer makes
sense. Consider using the nogroupskip option.

If you don’t get an error with sort=use and sort=def but you do get an error with one
of the other sort options, then you probably need to use the sanitizesort=true package
option or make sure none of the entries have fragile commands in their sort field.

B

| S

sort=use

Order of use. There’s no actual sorting in this case. The order is obtained from the indexing
information in the aux file.
[

|

sort=def

Order of definition. There’s no actual sorting in this case. The order is obtained from the
glossary’s internal list of labels.

(@]

=
The above two settings don’t perform any actual sorting. The following settings sort using

simple character code comparisons and are therefore unsuitable for non-ASCII documents.
For a locale-sensitive sort, you must use either xindy (Option 3) or bib2gls
(Option 4). Note that b1b2gls provides many other sort options.

J

B

| S

sort=nocase

Case-insensitive order.

241

8. Displaying a Glossary

a

sort=case

Case-sensitive order.

<]

sort=word

Word order.

<]

sort=letter

Letter order.

<]

sort=standard

Word or letter order according to the o rder package option.

The word and letter order sort methods use datatool’s \dt l1wordindexcompare and
\dtlletterindexcompare handlers. The case-insensitive sort method uses datatool’s
\dt licompare handler. The case-sensitive sort method uses datatool’s \dt 1lcompare
handler. See the datatool documentation for further details. =

| S

label=(label)

This key is only available with glossaries—extra and labels the glossary with \ 1 abe 1 { (label) }
. This is an alternative to the package option numberedsection=autolabel. This
option isn’t available with \printunsrtinnerglossary.

[©

=
target=(boolean) default: true; initial: true

This key is only available with glossaries—extra and can be used to switch off the automatic
hypertarget for each entry. (This refers to the target used by commands like \gls and \gls-
link.)

This option is useful with \printunsrtglossary asitallows the same list (or sub-list)
of entries to be displayed multiple times without causing duplicate hypertarget names. =

==

prefix=(prefix)

This key is only available with glossaries—extra and provides another way of avoiding duplicate
hypertarget names. In this case it uses a different prefix for those names. This locally redefines
\glolinkprefix but note this will also affect the target for any entry referenced within
the glossary with commands like \gls, \glslink or \glshyperlink.

242

8. Displaying a Glossary

targetnameprefix=(prefix)

This key is only available with glossaries—extra. This is similar to the pre £ 1 x option, but it
alters the prefix of the hypertarget anchors without changing \glolinkprefix (soit won't
change the hyperlinks for any entries referenced in the glossary).

[©

(=
groups=(boolean) default: true; initial: true

This key is only available with \printunsrtglossaryand \printunsrtinner-
glossary. If true, the “unsrt” function that creates the code for typesetting the glossary will
insert letter group headers whenever a change is detected in the letter group label between entries
of the same hierarchical level. See the glossaries—extra manual for further details. =

=
leveloffset=(offset) initial: 0

This key is only available with \printunsrtglossaryand \printunsrtinner-
glossary. Itcan be used to locally adjust the hierarchical level used by the glossary style. See
the glossaries—extra manual for further details and also Gallery: Inner or Nested Glossaries.>

[
=
flatten=(boolean) default: true; initial: false

This key is only available with \printunsrtglossaryand \printunsrtinner-
glossary. It can be used to locally remove the hierarchical level used by the glossary style.
See the glossaries—extra manual for further details.

8.2. Glossary Markup

This section describes the commands that are used to display the glossary. If you want to suppress
the number lists you can use the nonumber1 i st option. If you want to save the number lists
for some other purpose outside of the glossary, you can use the savenumberlist option.
If you want information about an entry’s parent then you can use \1fglshasparent (to
determine if the entry has a parent) or \gl sent ryparent (to expand to the parent’s label).
The hierarchical level is provided in \ subglossentry (and is O with \glossentry)
but it’s also stored in the 1 evel internal field.

If you're trying to work out how to parse the glossary in order to gather indexing information,
consider using b1b2gls instead, which stores all the indexing information, such as location
lists and letter group labels, in internal fields. It can also store lists of sibling entries or child
entries. If you really want to input the glossary file in order to gather information obtained
by makeindex or xindy without actually displaying anything (by redefining the markup
commands to not produce any text), use \ input rather than \printglossary.

’dickimaw-books.com/gallery/index.php?label=bib2gls—inner

243

https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner
https://www.dickimaw-books.com/gallery/index.php?label=bib2gls-inner

8. Displaying a Glossary

The glossary is always started with:

\glossarysection[\glossarytoctitle]{\glossarytitle}

This creates the heading. This command sets the page header with:

\glsglossarymark{\glossarytoctitle}

If this is unsuitable for your chosen class file or page style package, you will need to redefine
\glsglossarymark. If \phantomsect ion isdefined (hyperref) then \glossary-
sect ion will start with:

\glsclearpage
\phantomsection

(3

\glossarysection [(toctitle)] { (title) }

By default, this command uses either \chapter* or \section*, depending on whether
ornot \chapter is defined. This can be overridden by the sect i on package option or the
\setglossarysection command. Numbered sectional units can be obtained using the
numberedsect ion package option. If the default unnumbered section setting is on, then
the (toc-title) will only be added to the table of contents if the t oc option is set. If numbered-
section is on, the addition to the table of contents is left to the sectional command.

(@]

Further information about these options and commands is given in §2.2.

\glsglossarymark/(glossary title)

This sets the page header, if supported by the current page style. Originally the command
\glossarymark was provided for this purpose, but this command is also provided by other
packages and classes, notably memoir which has a different syntax. Therefore the command
\glossarymark will only be defined if it doesn’t already exist. In which case, \gls-
glossarymark will simply use \glossarymark.

If memoir has been loaded, \glsglossarymark will be defined to use \markboth
otherwise, if some other class or package has defined \glossarymark,\glsglossary-
mark will be defined to use \ @mklboth (using the same definition as the glossaries package’s
version of \glossarymark).

If ucmark=true, the case change will be applied using \memUChead if memoir has
been loaded, otherwise it will use \gl suppercase.

244

8. Displaying a Glossary

So if you want to redefine the way the header mark is set for the glossaries, you need to
redefine \glsglossarymark not \glossarymark. For example, to only change the
right header:

=

[\renewcommand{\glsglossarymark} [1]{\markright{#1}}

or to prevent it from changing the headers:

=

[\renewcommand{\glsglossarymark}[1]{}

If you want \glsglossarymark to use all caps in the header, use the ucmark option
described below.

With hyperref and unnumbered section headings, \phant omsect ion is need to create an
appropriate anchor (see the hyperref manual). This will need the page cleared for \chapter*,
which is done with:

X

\glsclearpage

If the section=chapter setting is on then \glsclearpage will use \clear-
doublepage, if it’s defined and if the \ 1 f @openright conditional (provided by classes
with an openright option such as book and report) isn’t defined or is defined and is true,
otherwise \clearpage is used.

Occasionally you may find that another package defines \cleardoublepage when it is
not required. This may cause an unwanted blank page to appear before each glossary If you only
want a single page cleared, you can redefine \glsclearpage. For example:

\renewcommand*{\glsclearpage}{\clearpage}

Note that this will no longer take the sect i on package option into account.

X

\glossarytitle

This expands to the title that should be used by the glossary section header. It’s initialised to the
title provided in \newglossary when the glossary was defined. The t it 1e option will
redefined this command.

X

\glossarytoctitle

This expands to the table of contents title that’s supplied in the optional argument of the glossary
section command. It will only be added to the table of contents is the t oc package option is on,

245

8. Displaying a Glossary

but it may also be used in the page header (depending on the definition of \glsglossary-
mark and the current page style).

The \glossarytoctitle commandisinitialisedto \glossarytitle. Thetoc-
£ 1t le option will redefine this command. If neither the tit le nor toct it le are used,
\glossarytoctitle will be defined via:

X

\glssettoctitle{(glossary-type)}

By default, this will redefine \glossarytoctitle to the title provided in \newglos-
sary when the glossary was defined.

This means that if neither L 1t 1 e nor toct 1t 1e are set, the glossary’s associated title will
be used for both. If only £ 1t 1e is used, then it will also apply to the table of contents title, and
if only toctitleisused, then \glossarytoctitle will be defined to that value but
\glossarytitle will be the glossary’s associated title.

After the heading, but before the main body of the glossary, is the glossary preamble which is
given by:

7

\glossarypreamble

You can redefine this before the glossary is shown. For example:

=

\renewcommand{\glossarypreamble}{Numbers in italic
indicate primary definitions.}

A glossary may have its own specific preamble. If it has one defined, then the \print-
(...\glossary set of commands will locally redefine \glossarypreamble to that
preamble instead. Since this change is scoped, the previous definition will be restored after
the \print(...)glossary command.

You can globally assign a preamble to a specific glossary with:

\setglossarypreamble [(type)] { (text) }

If (type) is omitted, \glsdefaulttype is used. For example:

\setglossarypreamble{Numbers in italic
indicate primary definitions.}

This will set the given preamble text for just the ma in glossary, not for any other glossary. The
glossaries—extra package additionally provides:

246

8. Displaying a Glossary

b §
\apptoglossarypreamble [(type)] { (text) }
which locally appends (fext) to the preamble for the specific glossary and
b §
\pretoglossarypreamble [(type)] { (text) }
which locally prepends (fext) to the preamble for the specific glossary.
There is also a postamble at the end of each glossary which is given by:
b §

\glossarypostamble

This is less useful than a preamble and so there’s no analogous command to \ setglossary-
preamble.

o

The preamble and postamble occur outside of theglossary and so shouldn’t be influenced
by the glossary style.

Example 31: Switch to Two Column Mode for Glossary

Suppose you are using the superheaderborder style, and you want the glossary to be in two
columns (you can’t use the longheaderborder style for this example as you can’t use the longtable
environment in two column mode), but after the glossary you want to switch back to one column

mode, you could do:

\renewcommand*{\glossarysection}[2][]{%
\twocolumn[{\chapter*{#2}}1%
\setlength\glsdescwidth{0.6\1linewidth}%
\glsglossarymark{\glossarytoctitle}$%

}

\renewcommand* {\glossarypostamble}{\onecolumn}

(You may prefer to use the mcolalttree style if you’re not interested in the column headers or
borders.)

The actual glossary content is contained within the theglossary environment, which will typi-
cally be in the form:

247

8. Displaying a Glossary

\begin{theglossary}\glossaryheader
\glsgroupheading{(group-label) } \relax\glsresetentrylist
\glossentry{{entry-label) } { (number-list) }
\subglossentry{(level)} { (entry-label) } { (number-list) }
\glsgroupskip
\glsgroupheading{ (group-label) } \relax\glsresetentrylist
\glossentry{{entry-label) } { (number-list) }
\subglossentry{(level)} { (entry-label) } { (number-list) }

o

\end{theglossary}

The entire number list for each entry is encapsulated with:

\glossaryentrynumbers {(locations) }

This command allows \glsnonextpages, \glsnextpages, and the nonumber-
list and savenumberlist options to work. The \glossaryentrynumbers
command is reset by:

X

\glsresetentrylist

With Option 1, this command is preceded by:

\glsnoidxprenumberlist {(entry-label)}

The default behaviour is to use the value of the prenumber1ist internal field. This com-
mand is not used with Options 2 and 3.

If you want to suppress the number list for a particular entry, you can add the following to the
entry’s description:

X

\glsnonextpages

Within the glossary, this will redefine \glossaryentrynumbers to ignore its argument
and then reset itself. This means that the next number list will be suppressed. Note that if the
entry doesn’t have a number list (for example, it’s a parent entry that only appears in the glossary
because it has an indexed descendent entry) then the next number list will be for the first child
entry that’s been indexed. This command does nothing outside of the glossary.

Similarly, if you want to override the nonumberlist option to ensure that the next
number list is shown, then use:

248

8. Displaying a Glossary

\glsnextpages

This command does nothing outside of the glossary.

(@]

= |
The nonumberlist key that may be used when defining an entry, works by auto-

matically adding \glsnonextpages or \glsnextpages to the indexing in-
formation before \glossentry or \subglossentry with Options 2 and 3.
With Option 1, the relevant command is put in the prenumber1i st internal field,
but since \printnoidxglossaryonlyuses \glsnoidxprenumberlist
and \glossaryentrynumbers when the 1oclist field is set, it won’t affect
sub-entries.

7

The theglossary environment, and the other commands (\glossaryheader, \gls-
groupskip,\glsgroupheading, \glossentryand \subglossentry)are
all redefined by glossary styles and are described in §13.2.

249

9. Defining New Glossaries

A new glossary can be defined using:

\newglossary [(log-ext)] { (glossary-label) } { (in-ext) } { (out-ext) } { (title) }
[(counter)]

where (glossary-label) is the label to assign to this glossary. This label is used to reference the
glossary in the value of the € ype key when defining entries or, the similarly named, type
option in the \print(...)glossary commands.

[As with labels in general, (glossary-label) must not contain any active characters.

The arguments (in-ext) and (out-ext) specify the extensions of the input and output (from
TEX’s point of view) files for that glossary, (fifle) is the default title for this new glossary, and
the final optional argument (counter) specifies which location counter to use for the associated
number lists (see also §12). If not specified, the default location counter will be the one identified
in the counter option, if that option is used, otherwise it will be the page counter.

The first optional argument (log-ext) specifies the extension for the indexing application’s tran-
script file (this information is used by makeglossaries which picks up the information
from the aux file and also by the aut omake option). If omitted, g1g is used.

The file extensions only apply to Options 2 and 3. For the other options, the indexing infor-
mation is written to the aux file for Options 1 and 4. No input file is required for Option 1 and
Option 4 always has the g1 stex file extension. Since the file extensions are only relevant for
Options 2 and 3, there is a starred version that omits those arguments:

X

\newglossary* {(glossary-label) } { (title) } [(counter)]

This is equivalent to

\newglossary [(glossary-label)—glqg] { (glossary-label) } { (glossary-label)—
gls}{(glossary-label)—glo} {(title) } [(counter)]

Or you can use:

250

9. Defining New Glossaries

\altnewglossary{ (glossary-label)} { (tag) } { (title) } [(counter)]

which is equivalent to

\newglossary [(tag)—glqg] { (glossary-label) } { (tag)—gls} {(tag)—glo}
{ (title) } [(counter)]

Note that in both cases distinct file extensions are defined so these commands are still useful with
Options 2 and 3.

It may be that you have some terms that are so common that they don’t need to be listed.
In this case, you can define a special type of glossary that doesn’t create any associated files.
This is referred to as an “ignored glossary” and it’s ignored by commands that iterate over all
the glossaries, such as \printglossaries. To define an ignored glossary, use \new-
ignoredglossary where (glossary-label) is the glossary label (as above). This glossary
type will automatically be added to the nohypertypes list, since there are no hypertargets
for the entries in an ignored glossary. (The sample file sample—entryfmt . tex defines
an ignored glossary.)

An ignored glossary can’t be displayed with \printnoidxglossary or \print-
glossary butcan be displayed with \printunsrtglossaryand \printunsrt-
innerglossary.

[glossaries—extra

The glossaries—extra package provides a starred version \newignoredglos-—
sary* that doesn’t suppress hyperlinks (since ignored glossaries can be useful with
bib2gls). There is also an analogous \provideignoredglossary com-
mand.

You can test if a glossary is an ignored one using:

X
\ifignoredglossary/{(glossary-label)} { (true) } { (false) } modifier: *

This does (true) if (glossary-label) was defined as an ignored glossary, otherwise it does (false).
Note that the ma in (default) glossary is automatically created as:

[\newglossary{main}{gls}{glo}{\glossaryname}

so it can be identified by the label ma in (unless the nomain package option is used). If the
doc package has been loaded (which uses the g1 s and g1 o extensions for the change log) then
the ma in glossary will instead be defined as:

\newglossary[glg2] {main}{gls2}{glo2}{\glossaryname}

251

9. Defining New Glossaries

If you are using a class or package that similarly requires g1 s and glo as file extensions, you
will need to use the noma 1 n option and define your own custom glossary, but be aware of other
possible conflicts, such as different definitions of commands and environments like \print-
glossary or theglossary.

The acronym (or acronyms) package option is equivalent to:

[\newglossary[alg] {acronym}{acr}{acn}{\acronymname}

so it can be 1dentified by the label a c ronym. If you are not sure whether the a cronym option
has been used, you can identify the list of acronyms by the command:

X
\acronymtype initial: \glsdefaulttype

The default definition is simply \glsdefaulttype. The acronymor acronyms op-
tion will redefine \acronymtype to acronym. If you want additional glossaries for use
with acronyms, remember to declare them with acronymlists.

The symbols package option creates a new glossary with the label symbo 1 s using:

\newglossary[slg] {symbols}{sls}{slo}{\glssymbols-
groupname }

The numbers package option creates a new glossary with the label numbers using:

\newglossary[nlg] {numbers}{nls}{nlo}{\glsnumbers-
groupname }

The 1ndex package option creates a new glossary with the label 1 ndex using:

\newglossary[ilg]{index}{ind}{idx}{\indexname}

(i]
=
With Options 2 and 3 all glossaries must be defined before \makeglossaries to
ensure that the relevant output files are opened.

See §1.5.1 if you want to redefine \glossaryname, especially if you are us-
ing a language package. (Similarly for \glssymbolsgroupname and \gls—
numbersgroupname.) If you want to redefine \ indexname, just follow the
advice in How to change LaTeX’s “fixed names”.

252

https://texfaq.org/FAQ-fixnam

10. Adding an Entry to the Glossary
Without Generating Text

It is possible to \ i ndexindexing an entry without

\glsadd [(options)] { (entry-label) }

This is similar to the \ g1l st ext-like commands, only it doesn’t produce any text. Therefore,
there is no hyper key available in (options) but all the other base options that can be used with
the \glstext-like commands can be passed to \glsadd. The glossaries—extra package
provides addition options, such as text format, that aren’t applicable when there’s no link
text, so they are also not available. This ensures that the given entry is listed in the glossary and
that the current location is included in the entry’s number list.

This command is particularly useful to create an explicit range that covers an entire section or
block of text that might otherwise end up with a long, ragged number list. For example, suppose
I have defined an entry with the label “set™:

=

\newglossaryentry{set}{name={set},
description={a collection}}

Suppose I have a section about sets spanning from page 3 to page 8 with repeated use of \g1ls
{set} on pages 3, 5, 7 and 8. This will result in the number list “3, 5, 7, 8” which is a bit
untidy. It would look far more compact, and better emphasize that the section of the document
from page 3 to 8 covers sets, if the number list was simply “3-8”.

This can be done with an explicit range:

\glsadd[format=(]{set}
Lots of text about sets spanning page 3 to page 8.
\glsadd[format=)]{set}

See §12.1 for more information about the location encap.

253

10. Adding an Entry to the Glossary Without Generating Text

[glossaries—extra

Explicit ranges can also be created using \glsstartrangeand \glsendrange
with glossaries—extra. You can also add a subset of entries with \glsaddeach.

To add all entries that have been defined, use:

[\glsaddall [{options)]

J

The optional argument is the same as for \ g1 sadd, except there is also a key t ype s which
can be used to specify which glossaries to use. This should be a comma-separated list. For
example, if you only want to add all the entries belonging to the list of acronyms (specified
by the glossary type \acronymtype) and a list of notation (specified by the glossary type

notation) then you can do:

\glsaddall [types={\acronymtype, notation}]

[bib2gls |
If you are using bib2gls with glossaries—extra, you can’t use \glsaddall. In-

stead use the se Lect ion=all resource option to select all entries in the given bib
files. (You can use \glsaddeach withbib2gls.)

(i]
Note that \glsadd and \glsaddall add the current location to the number list. In
the case of \glsaddall, all entries in the listed glossaries will have the same location
in the number list (the location at the point in the document where \glsaddall was
used, which will be page 1 if it occurs in the preamble). If you want to use \gl sadd—
all, it’s best to suppress the number list with the nonumber1ist package option.
(See sections 2.3 and 12.)

If you want to ensure that all entry are added to the glossary, but only want the locations of
entries that have actually been used in the document, then you can use:

X

\glsaddallunused [(glossary types)]

Note that in this case, the optional argument is simply a list of glossary labels. The options
available to \glsadd and \glsaddall aren’t available here. If the optional argument is
omitted, the list of all non-ignored glossaries is assumed.

This command implements:

254

10. Adding an Entry to the Glossary Without Generating Text

\glsadd[format=glsignore] {{entry-label)}

for each entry in each glossary listed in the optional argument if the entry has been marked as
used. Since \glsignore discards its argument, this effectively creates an invisible location.
This is necessary because makeindex and xindy require an associated location for each
line in the indexing file. (They are indexing applications not glossary applications, so they expect
page numbers.)

This means that \gl saddallunusedadds \glsignore{(location)} to the number
list of all the unused entries. If any of those number lists have other locations (for example, the
first use flags was reset before \glsaddallunused or only the \glstext-like com-
mands were used or if any indexing occurs after \glsaddallunused) then this will cause
spurious commas or en-dashes in the number list that have been placed before or after the invisible
location.

(i]
=
If you want to use \glsaddallunused, it’s best to place the command at the end

of the document to ensure that all the commands you intend to use have already been used
and make sure to use the \ g1 s-like commands and don’t issue any resets (\glsreset
etc).

[bib2gls |
You can’t use \glsaddallunused with bib2gls. However, since bib2gls
was designed specifically for glossaries—extra, it recognises g1 signore as a special
format that indicates the location shouldn’t be added to the location list but the entry should
be selected. So you can index an entry with format=glsignore to ensure that the
entry is selected without adding a location to the number list.

Alternatively, the se lect ion=all resource option can be used, which will ensure
all entries are selected but only those indexed with one or more non-ignored locations will
have a location list.

Base glossaries package only:

\documentclass{article}
\usepackage{glossaries}

\makeglossaries
\newglossaryentry{cat}{name={cat},description=
{feline}}
\newglossaryentry{dog}{name={dog},description=
{canine}}

\begin{document}

\gls{cat}.

255

10. Adding an Entry to the Glossary Without Generating Text

\printglossaries
\glsaddallunused % <- make sure dog is also listed
\end{document}

Corresponding glossaries—extra and bib2gls document code:

\documentclass{article}
\usepackage [record] {glossaries—-extra}
\GlsXtrLoadResources |[src=entries, selection=all]
\begin{document }

\gls{cat}.

\printunsrtglossaries

\end{document}

With the file entries.bib:

@entry{cat, name={cat},description={feline}}
@entry{dog, name={dog}, description={canine}}

Example 32: Dual Entries

The example file sample—dual . t ex makes use of \glsadd to allow for an entry that
should appear both in the ma in glossary and in the list of acronyms. This example sets up the
list of acronyms using the acronym package option:

Ei

\usepackage[acronym] {glossaries}

A new command (\newdualentry) is then defined to make it easier to define dual entries:

\newcommand*{\newdualentry} [5][]{%
\newglossaryentry{main—-#2}{name={#4}, %
text={#3\glsadd{#2}}, %
description={#5},%

#1

%

\newacronym{#2}{#3\glsadd{main—-#2}}{#4}%
}

This has the following syntax:

256

10. Adding an Entry to the Glossary Without Generating Text

\newdualentry [(options)] { (label) } { (abbrv) } { (long) } { (description) }

You can then define a new dual entry:

\newdualentry{svm}% label
{SVM}% abbreviation
{support vector machine}% long form
{Statistical pattern recognition technique}
% description

Now you can reference the acronym with \g1ls{svm} or you can reference the entry in the
main glossary with \gls{main—-svm}.

This is just an example. In general, think twice before you add this kind of duplication. If all
information (short, long and description) can be provided in a single list, it’s redundant to provide
a second list unless any of the short forms start with a different letter to the associated long form,
which may make it harder to lookup.

bib2gls
Note that with bib2gls, there are special dual entry types that implement this be-
haviour. That is, if an entry is referenced then its corresponding dual entry will automati-
cally be selected as well. So there is less need for \glsadd withbib2gls. (Although
it can still be useful, for example with Option 6.)

257

11. Cross-Referencing Entries

(]
=
You must use \makeglossaries (Options 2 or 3) or \makenoidx-—
glossaries (Option 1) before defining any entries that cross-reference other entries.
If any of the entries that you have cross-referenced don’t appear in the glossary, check that
you have put \makeglossaries/\makenoidxglossaries before all entry
definitions. The glossaries—extra package provides better cross-reference handling.

There are several ways of cross-referencing entry in the glossaries:

1. You can use commands such as \ g1 s in the entries description. For example:

\newglossaryentry{apple}{name={apple},
description={firm, round fruit. See also \gls

{pear}}}

Note that with this method, if you don’t use the cross-referenced term in the main part of
the document, you will need two runs of makeglossaries

pdflatex filename
makeglossaries filename
pdflatex filename
makeglossaries filename
pdflatex filename

This is because the \ g1 s in the description won’t be detected until the glossary has been
created (unless the description is used elsewhere in the document with \glsentry-
desc). Take care not to use \glsdesc (or \Glsdesc) in this case as it will cause
a nested link.

2. After you have defined the entry, use

\glssee [(tag)] { (entry-label) } { (xr-list) }

258

11. Cross-Referencing Entries

where (xr-list) is a comma-separated list of entry labels to be cross-referenced, (entry-
label) is the label of the entry doing the cross-referencing and (fag) is the “see” tag. (The
default value of (fag) is \ seename.)

This command is essentially performing:

[\glsadd[format=(cross-ref-encap)] { (entry-label) }

where (cross-ref-encap) is a special form of location encap that includes (tag) and (xr-
list). Remember from §10 that makeindex always requires a location. This special
location encap discards the provided location (which \glssee sets to “Z” to push the
cross-reference to the end of the number list) and replaces it with the cross-reference in
the form “see (name(s))”.

This means that \glssee indexes (entry-label) so that (entry-label) appears in the
glossary but it doesn’t index any of the entries listed in (xr-list).

For example:

\glssee[see also]{series}
{FourierSeries, TaylorsTheorem}

This indexes the entry identified by the label “series” and adds a location to the “series”
number list that looks something like:

see also \glsentryname{FourierSeries} \&
\glsentryname{TaylorsTheorem}

(The actual format is performed with \glsseeformat.)

. As described in §4, you can use the see key when you define the entry. For example:

=

\newglossaryentry{MaclaurinSeries}{name=
{Maclaurin series},

description={Series expansion},
see={TaylorsTheorem} }

This key was provided as a simple shortcut that does:

\newglossaryentry{MaclaurinSeries}{name=
{Maclaurin series},

259

11. Cross-Referencing Entries

description={Series expansion}}
\glssee{MaclaurinSeries}{TaylorsTheorem}

This means that “MaclaurinSeries” will automatically be added to the glossary with some-
thing like

[\emph{see} \glsentryname{TaylorsTheorem}

in its number list, but “TaylorsTheorem” will need to be indexed elsewhere to ensure that it
also appears in the glossary otherwise, it would end up with the preamble location (page 1)
in its number list, assuming that the entry was defined in the preamble.

You therefore need to ensure that you use the cross-referenced term with the commands
described in §5.1 or §10.

The “see” tag is produce using \ seename, but can be overridden in specific instances
using square brackets at the start of the see value. For example:

Ei

\newglossaryentry{MaclaurinSeries}{name=
{Maclaurin series},

description={Series expansion},

see=[see also]{TaylorsTheorem}}

Take care if you want to use the optional argument of commands suchas \newacronym
or \newterm as the value will need to be grouped. For example:

Ei

\newterm{seal}
\newterm|[see={[see also]seal}]{sea lion}

Similarly if the value contains a list. For example:

,

\glossaryentry{lemon}
{
name={lemon},
description={Yellow citrus fruit}
t
\glossaryentry{lime}
{
name={lime},
description={Green citrus fruit}

260

11. Cross-Referencing Entries

t

\glossaryentry{citrus}

{
name={citrus},
description={Plant in the Rutaceae family},
see={lemon, lime}

In both cases 2 and 3 above, the cross-referenced information appears in the number list,
whereas in case 1, the cross-referenced information appears in the description. (See the sample
—crossref.tex example file that comes with this package.) This means that in cases 2
and 3, the cross-referencing information won’t appear if you have suppressed the number list.
In this case, you will need to activate the number list for the given entries using nonumber-
11 stfalse. Alternatively, if you just use the see key instead of \glssee, you can automat-
ically activate the number list using the seeautonumberlist package option.

[bib2gls |
bib2gls provides much better support for cross-references, including the ability to
only show the cross-reference in the location list (save—locations={see}) with-

out the actual locations. See, for example, index.php?label=bib2gls-xr“Gallery: Cross-
References (bib2gls).

dickimaw—-books.com/gallery

11.1. Customising Cross-Reference Text

When you use either the see key or the \ g1 ssee command, the cross-referencing informa-
tion will be typeset in the glossary (within the number list) according to:

X

\glsseeformat [(tag)] { (xr-list) } { (location) }

The default definition:

\emph{(tag)} \glsseelist{ (xrlist)}

Note that the (location) argument is always ignored. (make i ndex will always assign a location
number, even if it’s not needed, so it needs to be discarded.) For example, if you want the tag to
appear in bold, you can do:

261

https://www.dickimaw-books.com/gallery
https://www.dickimaw-books.com/gallery

11. Cross-Referencing Entries

\renewcommand*{\glsseeformat} [3] [\seename] {\textbf
{#1}
\glsseelist{#2}}

The list of labels is formatted by:

\glsseelist {(label-list) }

This iterates through the comma-separated list of entry labels (label-list) and formats each entry
in the list. The entries are separated by:

X
\glsseesep initial: , _
between all but the last pair, and
X
\glsseelastsep initial: , _
between the last pair.
Each entry item in the list is formatted with:
X

\glsseeitem{ (entry-label)}

This does:

\glshyperlink[\glsseeitemformat{#1}]{#1}

which creates a hyperlink, if enabled, to the cross-referenced entry. The hyperlink text is given
by:

X

\glsseeitemformat { (entry-label)}

This does:

\ifglshasshort {{entry-label) }
{\glsentrytext{(entry-label)} }% acronym
{\glsentryname/{ (entry-label)} }$ non-acronym

which uses the t e xt field for acronyms and the name field otherwise.

262

11. Cross-Referencing Entries

(o]

=
When \ g1l ssee was first introduced in v1.17, the cross-referenced entry was displayed

with just \glsentryname, but this caused problems because back then the name
field had to be sanitized because it was written to the glossary file, which caused strange re-
sults if the name contained any commands. So in v3.0, the default definition was switched
tousing \glsentrytext toavoid the issue. In v3.08a, the information written to the
glossary file was changed and the name was no longer sanitized, but the new definition
was retained for backward-compatibility.

However, the original definition is more appropriate in some ways, as it makes more
sense for the cross-reference to show the name as it appears in the glossary, except
for acronyms which could have wide names if the long form is included. So in v4.50,
which had major compatibility-breaking changes to remove the unconditional dependency
on the now deprecated textcase package, the original use of name was restored for
non-acronyms, which brings it into line with glossaries—extra.

For example, to make the cross-referenced list use small caps with the text (not name)

field:

\renewcommand{\glsseeitemformat} [1]{%
\textsc{\glsentrytext{#1}}}

[glossaries—extra

The glossaries—extra package redefines \glsseeitemformat touse \glsfmt—
text for abbreviations and \glsfmtname otherwise. Additionally, it provides
\glsxtrhiername which can be used as an alternative for hierarchical entries. See
the glossaries—extra manual for further details.

[i
I
You can use \glsseeformat and \glsseelist in the main body of the text,

but they won’t automatically add the cross-referenced entries to the glossary. If you want
them added with that location, you can do:

=

Some information (see also
\glsseelist{FourierSeries, TaylorsTheorem}%
\glsadd{FourierSeries}\glsadd{TaylorsTheorem}) .

263

12. Number Lists

Each entry in the glossary has an associated number list (or location list). By default, these
numbers (the entry locations) refer to the pages on which that entry has been indexed (using any
of the commands described in §5.1 and §10) and will also include any cross-references obtained
with \glssee (or the see key).

The locations in the number list are separated with:

\delimN

The number list can be suppressed using the nonumber 11 st package option, or an alter-
native counter can be set as the default using the counter package option. The glossaries
—extra package additionally provides the equations and £ 1oat s options that can be used
to automatically switch the location counter in certain environments.

[bib2gls |

With b1b2gls you can prevent the number list from being created with the save
—locations=false resource option, or only include the cross-references with the
save—locations=see option.

Number lists are more common with indexes rather than glossaries (although you can use the
glossaries package for indexes as well). However, Options 2 and 3 makes use of makeindex
or x1ndy to hierarchically sort and collate the entries. These applications are readily available
with most modern TgX distributions, but because they are both designed as indexing applications
they both require that terms either have a valid location or a cross-reference.

[i
|
Even if you use nonumber11ist, the locations must still be provided and acceptable

to the indexing application or they will cause an error during the indexing stage, which
will interrupt the document build. Empty locations are not permitted with Options 2 and
3. See §12.5.

If you’re not interested in the locations, each entry only needs to be indexed once, so consider
using indexonlyfirst, which can improve the document build time by only indexing the
first use of each term.

The \glsaddall command (see §10), which is used to automatically index all entries,
iterates over all defined entries (in non-ignored glossaries) and does \ g1 sadd { (entry-label) }

264

12. Number Lists

for each entry (where (entry-label) is that entry’s label). This means that \glsaddall auto-
matically adds the same location to every entry’s number list, which looks weird if the number
list hasn’t been suppressed.

With Option 4, the indexing is performed by bib2gl s, which was specifically designed for
the glossaries—extra package. So it will allow empty or unusual locations. (As frombib2gls
v3.0, empty locations will be converted to ignored locations.) Additionally, the se lection
=a 11 resource option option will select all entries without adding an unwanted location to the
number list. If bilb2gls can deduce a numerical value for a location, it will attempt to form a
range over consecutive locations, otherwise it won’t try to form a range and the location will just
form an individual item in the list.

Option 1 also allows any location but it doesn’t form ranges. Any empty locations or location
with the g1 signore format will result in an invisible location in the number list.

12.1. Encap Values (Location Formats)

The location encap or format is the encapsulating command used to format an entry location.
That is, it’s a command that takes an argument that will be the location.

o

If you aren’t using hyperref then you can use the control sequence name of any text-block
command that takes a single argument. For example, format=emph. If you require
hyperlinks then it’s more complicated.

The “encap” usually refers to the control sequence name without the leading backslash (such
as textbf)and is essentially the same as the makeindex encap value that can be provided
within the standard \ index command.

A

Be careful not to use a declaration (such as \bfseries) instead of a text-block com-
mand (such as \textbf) as the effect is not guaranteed to be localised, either within
the number list or throughout the glossary.

There is a special format:

\glsignore((text)}

which simply ignores its argument. With Options 1, 2 and 3 this creates an empty (invisible) lo-
cation which can lead to spurious commas or en-dashes if the number list contains other locations.
However, with bib2gl s, this format identifies the location as a special ignored location which
won’t be added to the location list but will influence selection.

If you want to apply more than one style to a given location (for example, bold and italic) you
will need to create a command that applies both formats. For example:

265

12. Number Lists

[\newcommand* {\textbfem} [1]{\textbf{\emph{#1}}}

and use that command.
In this document, standard location format refer to the standard text block commands such as

\textbf or \emph or any of the commands listed in Table 12.1.

(]

S

If you use xindy instead of makeindex, you must use \GlsAddXdy-

Attribute to identify any non-standard formats that you want to use with the
format key. So if you use x 1 ndy with the above example \ t extb fem, you would
need to add:

=

\GlsAddXdyAttribute{textbfem}

See §14 for further details.

If you are using hyperlinks and you want to change the font of the hyperlinked location don’t
use \hyperpage (provided by the hyperref package) as the locations may not refer to a page
number and the location argument may contain the range delimiter \de 1l imR. Instead, the
glossaries package provides hyperlink-supported encaps listed in Table 12.1. These commands
all use \glshypernumber (described below) and so shouldn’t be used in other contexts.

The \hyper(xx) can also be used without hyperref, since \glshypernumber will
simply do its argument if \hyperlink hasn’t been defined. In which case, only the font
change will be applied.

Table 12.1.: Predefined Hyperlinked Location Formats

hyperrm serif (\ text rm) hyperlink
hypersf sans-serif (\text sf) hyperlink
hypertt monospaced (\texttt) hyperlink
hyperbf bold (\textbf) hyperlink
hypermd medium weight (\ t extmd) hyperlink
hyperit italic (\text it) hyperlink
hypersl slanted (\text s 1) hyperlink
hyperup upright (\ textup) hyperlink
hypersc small caps (\text sc) hyperlink
hyperemph emphasized (\emph) hyperlink

If you want to make a new location format that supports hyperlinks, you will need to de-

fine a command which takes one argument and use that with the location encapsulated with
\glshypernumber or the appropriate \hyper (xx) command. For example, if you want

266

12. Number Lists

the location number to be in a bold sans-serif font, you can define a command called, say,

\hyperbsf:

\newcommand{ \hyperbsf}[1]{\textbf{\hypersf{#1}}}

and then use hyperbsf as the value for the format key.

[i
=
When defining a custom location format command that uses one of the \hyper (xx)

commands, make sure that the argument of \hyper (xx) is just the location. Any for-
matting must be outside of \hyper(xx) (as in the above \hyperbfsf example).

Remember that if you use xindy, you will need to add this to the list of location xindy
attributes:

=

\GlsAddXdyAttribute{hyperbsf}

Complications can arise if you use different encap values for the same location. For example,
suppose on page 10 you have both the default g 1 snumberformat and hyperbf encaps.
While it may seem apparent that hyperbf should override gl snumberformat in this
situation, the indexing application may not know it. This is therefore something you need to be
careful about if you use the format key or if you use a command that implicitly sets it.

In the case of xindy, it only accepts one encap (according to the order of precedence given
in the x1 ndy module) and discards the others for identical locations (for the same entry). This
can cause a problem if a discarded location forms the start or end of a range.

In the case of makeindex, itaccepts different encaps for the same location, but warns about
it (“multiple encaps”). This leads to a number list with the same location repeated in different
formats. If you use the makeglossaries Perl script with Option 2 it will detect make-
index’s warning and attempt to fix the problem, ensuring that the g1l snumberformat
encap always has the least precedence unless it includes a range identifier. Other conflicting
encaps will have the last one override earlier ones for the same location with range identifiers
taking priority. If you actually want the repeat, you can disable this feature with the —e switch.

No discard occurs with Option 1 so again you get the same location repeated in different for-
mats. With Option 4, bib2gls will discard according to order of precedence, giving priority
to start and end ranges. (See the bib2gls manual for further details.)

The default location format is:

\glsnumberformat { (location(s)) }

This will simply do its argument (location(s)) if hyperref hasn’t been loaded, otherwise it will
use:

267

12. Number Lists

\glshypernumber { (location(s)) }

This will create a hyperlink to the location or will simply do its argument if hyperref hasn’t been
loaded. The (location(s)) argument may contain multiple locations. If so, they must be separated
with \delimR or \delimN. (Usually \delimN won’t occur. The \delimR separator
may occur with ranges and makeindex.) Any other markup is likely to cause a problem (see
§12.5).

Each location within \ g1l shypernumber will have a hyperlink created with:

\hyperlink{{anchor)} { (text)}

where the (fext) is the location encapsulated with:

\glswrglosslocationtext fmt { (location)}

This just does its argument by default.
The (anchor) is constructed from the location but requires the prefix and location counter,
which first have to be set with:

X

\setentrycounter [(prefix)] { (counter) }

This command will be automatically inserted before the location in the number list by the ap-
propriate indexing method. In the case of makeindex, this will be inserted at the start of
the encap information, but with x i ndy the counter will form part of the attribute and a helper
command has to be provided that uses \ setent rycounter. With Option 1 the command
occurs inside the definition of \glsnoidxdisplayloc.

The (counter) will be stored in:

X

\glsentrycounter initial: \glscounter

and may be used in the hooks described below. Note that the prefix can’t be referenced as \ g1 s-
wrglossdisableanchorcmds is also used when obtaining the prefix during indexing.
The (anchor) is then constructed as follows:

1. Usethe \glswrglossdisableanchorcmds hook to disable problematic com-
mands (scoped).

2. Expand (protected)

(counter)(prefix)\glswrglosslocationtarget { (location) }

268

12. Number Lists

3. Sanitize the result.

For example:

\setentrycounter|[] {page}

% page counter and empty prefix
\glshypernumber{1l}

will essentially do:

\hyperlink{page.1l}1

whereas

\setentrycounter[1l] {equation}%
\glshypernumber{2}

will essentially do:

\hyperlink{equation.1.2}2

The initial hook to disable the problematic commands is:

\glswrglossdisableanchorcmds

By default, this is defined to:

\let\glstexorpdfstring\@secondoftwo

If hyperref is loaded the definition will also include:

\let\texorpdfstring\@secondoftwo
\pdfstringdefPreHook

The location is encapsulated with:

\glswrglosslocationtarget {(location)}

This must expand but may be used to make adjustments. The default definition is to simply
expand to its argument. The \glswrglossdisableanchorcmds hook may be used
to alter the definition if some condition is required, but bear in mind that \glswrgloss-
locationtarget won’t be used when the prefix is obtained during indexing.

Any leftover robust or protected commands will end up sanitized to prevent an obscure error
from occurring, but an invalid target name is likely to result. See §12.5 for an example.

269

12. Number Lists

The use of \setentrycounter to set the prefix and counter is necessary because the
hypertarget can’t be included in the indexing information supplied to makeindex or xindy,
because neither the makeindex nor xindy syntax supports it. Unfortunately, not all defi-
nitions of \ t heH(counter) can be split into a prefix and location that can be recombined in this
way. This problem can occur, for example, with count e r=equation when it depends on the
chapter counter. This can result in warnings in the form:

name { (target-name) } has been referenced but does not
exist, replaced by a fixed one

The sampleEq. tex sample file deals with this issue by redefining \t heHequation as

follows:

\renewcommand*\theHequation{\theHchapter.\arabic
{equation}}

[bib2 gls ‘
This issue is avoided with bib2gls and record=nameref as that syntax allows
the hyperlink target to be supplied with the indexing information.

12.2. Range Formations

There are two types of ranges: explicit and implicit. Neither are supported with Option 1. Both
are supported by Options 2, 3 and 4. Implicit ranges can be switched off using the appropriate
option for the required indexing application. The start and end of a range is separated with:

X

\delimR

Options 2 and 3 can merge implicit and explicit ranges that overlap. With Option 4, individual
locations can be merged into an explicit range, but an individual location on either side of the
explicit range won’t be merged into the explicit range.

As with \ 1ndex, the characters (and) can be used at the start of the format value to
specify the beginning and ending of a number range. They must be in matching pairs with the
same encap. For example,

Ei

\gls[format=(emph] {sample}

on one page to start the range and later:

270

12. Number Lists

=

[\gls[format=)emph] {sample}

to close the range. This will create an explicit range in the number list that’s encapsulated with
\emph. If the default g1 snumber format should be used, you can omit it and just have
the (and) characters.

[glossaries—extra]

Explicit ranges can also be created using \glsstartrange and \glsendrange
with glossaries—extra.

Implicit ranges are formed by concatenating a sequence of three or more consecutive locations.
For example, if an entry is indexed on pages 3, 4, 5, and 6, this will be compacted into “3-6”.

With Option 3, you can vary the minimum sequence length using \G1lsSetXdyMin-
RangeLength where the argument is either the minimum number or the keyword none,
which indicates that no implicit ranges should be formed. See §14.3 for further details.

[glossaries—extra

With Option 4, the minimum number for form implicit ranges is given by the min—1oc
—range resource option. Again, the value is either the minimum number or the keyword
none, which indicates that no implicit ranges should be formed. It’s also possible to
compact a ragged sequence into a range with max—loc—diff. For example, with
max—loc—diff=2, the sequence “2, 4, 5, 6, 8” can be compressed into the range
“2-8”. Another range-related option is compact —range s which allows ranges to be
more compact by omitting matching initial digits at the end of the range. For example,
“184-189” can be compacted into “184-9”.

J

With both makeindex and xindy (Options 2 and 3), you can replace the separator and
the closing number at the end of the range using:

b §
\glsSetSuffixF{ (suffix)}
to set the suffix for two consecutive locations and
b §
\glsSetSuffixFF { (suffix)}

to set the suffix for three or more consecutive locations. Option 4 provides a similar feature with
the suffixF and suf fixFF resource options.
For example:

271

12. Number Lists

\glsSetSuffixF{f.}
\glsSetSuffixFF{ff.}

_ B

Note that if you use xindy (Option 3), you will also need to set the minimum range length to
1 if you want to change these suffixes:

B

[\GlsSetXdyMinRangeLength{1}

If you use the hyperref package, you will need to use \nohyperpage in the suffix to ensure
that the hyperlinks work correctly. For example:

o

\glsSetSuffixF{\nohyperpage{f.}}
\glsSetSuffixFF{\nohyperpage{ff.}}

B

Note that \glsSetSuffixF and \glsSetSuffixFF must be used before
\makeglossaries and have no effect if \noist is used.

12.3. Locations

Each location in an entry’s number list is the result of indexing the entry at the point in the
document that corresponds to the location (typically where a command such as \ g1 s occurred).
By default, this is the page number, but can be changed with the count e r package option, the
(counter) optional argument in \newglossary,the counterkeyin \newglossary-
entry or the counter option in the \gls-like and \glstext-like commands (or in
\glsadd).

The syntax of the location must be valid for the given indexing application if you use Options 2
or 3. In the case of makeindex, the syntax is quite restricted. The location may be a digit
(\arabic), upper or lowercase Roman numerals (\Roman or \ roman) or upper or low-
ercase ASCII letters (\A1lph or \alph). The syntax also allows composite locations formed
by combining the allowed digits, numerals and letters with a compositor (which can be identified
with \glsSetCompositor).

The following locations are valid, assuming the default full stop compositor:

e “325”: a numeric location (\arabic);
e “IV”: a Roman numeral location (\Roman);

» “B”: an alphabetic location (\A1ph);

272

12. Number Lists

e “12.3.4”: a composite location.
The following are invalid:
* “I-3.2”: mixed compositors not permitted;
e “X7”: a separator must be used in composite locations;
* “()”: letters must be ASCIL;
 “\textsc{iv}”: commands not permitted in locations;

* “”:]locations can’t be empty.

S

A

Invalid locations will be rejected by makeindex, which will result in the entry being
dropped from the glossary if it has no valid locations.

In the case of xindy, the location syntax must be declared in the xdy style file. This covers
both the way that the location appears in the indexing file as a result of protected expansion but
also the counter used to obtain the location, and is described in more detail in §14.3. The standard
digit (\aralbic), upper or lowercase Roman numerals (\Roman or \ roman) or upper or
lowercase ASCII letters (\A1lph or \ alph) are automatically added for the page counter.

If a location doesn’t match any declared syntax, a warning will be written to xindy’s tran-
script file (g1g):

WARNING: location-reference "{(prefix)}{(location)}" did not
match any location-class! (ignored)

As with makeindex when it encounters an invalid location, x 1 ndy will drop that location,
which will result in the entry being dropped from the glossary if it has no valid locations.

Additional problems can occur with xindy if any of xindy’s special characters occur in
the location. This includes the backslash \ character, which is particularly problematic if any
robust or protected commands are written in the location as \ (csname) will have to be written to
the file as \ \ (csname). This is quite difficult to do without prematurely expanding \ thepage.

If esclocat ionstrue, an attempt will be made to hack commands like \ @aralbic and
\ @roman to enable this, but, like all hacks, this is problematic and liable to break in awkward
situations or with future releases of the I£TEX kernel or other packages. This setting is now off
by default and it’s better to use the hooks below to ensure that the content written to the file is
valid.

A

Any commands that end up in the location can interfere with \gl sdohypertarget
when it tries to create hyperlinks.

273

12. Number Lists

The following hook is used during the protected write:

\glswrglossdisablelocationcmds

This does nothing by default but may be used to disable problematic commands that could lead to
an invalid location. Note that this can lead to unexpected results in the number list, but you may
be able to correct this with a custom encap or (if \glshypernumber creates a hyperlink)
a custom definition of \glswrglosslocationtextfmt. See §12.5 for an example.

[i
=
The \glswrglossdisablelocationcmds hook occurs after

\protected@write sets \thepage to \relax. By the time \the-
page actually gets expanded when it’s written to the indexing file, any changes made
within the hook will be lost.

7

Both Options 1 and 4 write the indexing information in the aux file and will accept any
location syntax (that’s valid in a ISTEX document). In the case of Option 4, bib2gls will try
parsing the location and if it fits a common pattern that allows it to obtain a numeric value, then
it will be able to form an implicit range (if required), otherwise it will accept the location but not
form any implicit ranges.

With Options 1 -4 (except with record=nameref) the location anchor isn’t included in
the indexing information. If a hyperlink is required for the location, the target (anchor name) has
to be constructed from the location. The hyperref package provides \hyperpage for normal
indexes (with \ index), but this forms the anchor from page . (location) which isn’t suitable
with glossaries as the location counter may not be the default page. Therefore the counter is saved
within the encap. A prefix is also necessary if \theH(counter) is defined and isn’t equivalent
to \ the counter).

The assumption here is that \ theH/(counter) expands to the equivalent of (prefix)\the-
(counter). If \theH(counter) and \ t he (counter) are equivalent then (prefix) will be empty.

The prefix is found as follows:

1. Usethe \glswrglossdisableanchorcmds hook to disable problematic com-
mands (scoped).

2. Perform a protected expansion on \ t heH({counter) ((Hloc)) and \ t he (counter) ({loc)).
If (Hloc) ends with (loc), so that (Hloc) is {(prefix)(loc), then the prefix is the (prefix)
substring.

In this step, \thepage may be incorrect, due to TgX’s asynchronous output routine,
but it will be incorrect in both (Hloc) and (loc) and shouldn’t occur in the prefix (unless
you have an unusual numbering system that’s reset on every page, in which case you may
have other problems), so it shouldn’t affect the prefix formation. When the actual write
operation occurs, \thepage should then expand correctly.

Unfortunately, not all definitions of \ t heH(counter) will expand in the form (prefix) \ t he-
(counter). In which case a warning will occur:

274

12. Number Lists

]
Hyper target “(Hloc)' can't be formed by prefixing
location “(loc)'. You need to modify the definition of
\ theH/(counter)
otherwise you will get the warning:
" name{ (counter) . (loc)}' has been
referenced but does not exist"

If you need the location hyperlink, you will either have to redefine \ theH({counter) or switch
to Option 4 and record=nameref.

12.4. Page Precedence

The page precedence indicates the location ordering within the number list based on the location
syntax. For example, if an entry has been indexed on pages 5, 7, i and ii, then the number list
will be “q, ii, 5, 7” with the default order of precedence.

With makeindex, the default precedence is rnaRA, which indicates: lowercase Ro-
man (\roman), numeric (\arabic), lowercase alphabetic (\alph), uppercase Roman
(\Roman), and uppercase alphabetic (\Alph). This order can be changed by adding the
page_precedence parameter to the 1 st file. There’s no specific command provided for
this, so you will need to use the \G1lsSetWriteIstHook toadd this. For example:

B

\GlsSetWriteIstHook{$%
\write\glswrite{page_precedence "arnAR"}%

}

With xindy, the precedence is given by the order the location classes are listedindefine—
location-class—order within the xdy style file. This order can either be changed in
a custom xdy file or can be set with \GlsSetXdyLocationClassOrder.

Since neither Options 1 and 4 recognise specific location classes, they have no concept of page
precedence. They will both create location lists that are in the same order as the locations were
indexed, which means they will match the order those locations occur in the document. However,
with bib2gls, it’s possible to gather the locations into sub-groups according to the associated
counter or split off locations with identified primary formats. See the bib2gls manual for
further details.

12.5. Problematic Locations

The default location counter is the page counter, the value of which is obtained with \the-
page. Due to TgX’s asynchronous output routine, \ t hepage may be incorrect at the start of
a new page. To ensure that the page number is correct, a delayed write is needed, which is what
is usually done when writing information to the aux and t oc files (and to indexing files).

275

12. Number Lists

This works fine with Options 1 and 4 since neither of those options have any restrictions
on the location syntax (provided that it’s valid IfIEX code). With bib2gls, if it can’t work
out a numeric value for the location then it simply won’t be able to form a range. Additionally,
bib2gls v3.0+, converts an empty location into an ignored location, which means the entry
will still be selected so that it can be included in the glossary, but it won’t cause a spurious comma
or en-dash as there won’t be an invisible location in the number list.

The only problematic locations with Options 1 and 4 are where hyperlinks are required but
the target name can’t be formed from the prefix, counter and location information (see §12.3).
The best solution with bib2gl s in this case is to use record=namere f, which saves the
actual target name in the indexing record. With Option 1 you will have to redefine \theH-
(counter) as appropriate.

With Options 2 and 3, the location must expand to content that is compatible with the indexing
application’s syntax. The syntax for makeindex is quite restrictive and is described in §12.3.

For example, \thepart is normally formatted as an uppercase Roman numeral. There’s
no Roman numeral for 0 so if the part counter is O (that is, before the first \part) then \the-
part will expand to nothing. This can be demonstrated in the following document:

\documentclass{article}

\usepackage [counter=part] {glossaries}
\makeglossaries
\newglossaryentry{sample}{name={sample},description=
{}}

\begin{document}

\gls{sample}% part = 0

\part{Sample Part}

\section{Sample Section}
\gls{sample}.

\printglossaries

\end{document}

In the above, the first instance of \ g1 s { sample } will have an empty location. This will cause
makeilndex to reject the location with the following message in the transcript (assuming the
document file is called myDoc . tex):

' Input index error (file = myDoc.glo, line = 1):
—— Illegal page number or page_precedence rnaRA.

If makeglossaries encounters this warning, it will replace the empty location with “0” and
change the location encap to g 1 signore. In the above example, this will lead to an invisible
location in the number list, but that’s exactly what an empty location would do if makeindex
allowed it.

Similarly, if the page compositor hasn’t been correctly identified, then it can also result in an

276

12. Number Lists

invalid location. For example:

,

\documentclass{article}

\usepackage [counter=section] {glossaries}
\makeglossaries
\newglossaryentry{sample}{name={sample},description=

{1}

(e

% default compositor is '.' not '-
\renewcommand{\thesection}{\thepart-\arabic{section}
}

\begin{document}

\part{Sample Part}

\section{Sample Section}

\gls{sample}.

\printglossaries

\end{document}

This will cause make i ndex to reject the location with the following message in the transcript:

' Input index error (file = myDoc.glo, line = 1):
—— Illegal Roman number: position 2 in I-1.

If makeglossaries encounters this warning, it will replace any invalid content (the hy-
phen, in this case) with the page compositor specified in the i st file.

In both of the above examples, using makeglossaries will help the document build to
complete without the entries disappearing from the glossary, however the resulting number list
may look strange. If you are using nonumber11st then this isn’t a problem

If youdon'tuse makeglossaries butexplicitly call make i ndex then you won’t have
those corrections, and some or all of your entries may be omitted from the glossary. In which
case, you will have to adjust the location so that it fits makeindex’s syntax even if you have
nonumberlist. In the case of the invalid page compositor problem, you can simply use
\glsSetCompositor to set the correct compositor. In the case of empty locations you
will need to chose a different location counter.

Other problems occur with commands that don’t fully expand, which results in IS[EX markup
in the location in the indexing file. For example, if babel is used with spanish, lowercase
Roman numerals (which may occur in the front matter) will expand to the internal command
\es@scroman, as in the following:

Ei

\documentclass{book}
\usepackage [T1l]{fontenc}

277

12. Number Lists

\usepackage [spanish] {babel}
\usepackage{glossaries}
\makeglossaries
\newglossaryentry{sample}{name={sample},description=
{un ejemplo}}

\begin{document}

\frontmatter
\chapter{Foreword}
\gls{sample}% problem location
\mainmatter

\chapter{Sample}

\gls{sample}

\printglossaries
\end{document}

The first instance of \ g1 s occurs in the front matter on page i, which in this case is formatted
in faked small caps with \es@scroman. This can be found in the g1 o file, which contains:

\glossaryentry{sample?\glossentry{sample}

| setentrycounter[] {page}"\glsnumberformat}
{\es@scroman {i}}
\glossaryentry{sample?\glossentry{sample}

| setentrycounter[] {page}"\glsnumberformat}{1}

Each line in the g1 o file corresponds to a single indexing instance (created with \ g1 s in this
case).

The double-quote (") is make i ndex’s escape character (which can be changed with \G1 s-
SetQuote). I’s not necessary in the above but was added as a by-product of the internal
escaping of special characters (the backslash isn’t a special character for makeindex, except
in the i st file, but is for xindy).

The indexing data is contained in the arguments of:

\glossaryentry{(data)} { (location) }

This isn’t a defined command but is simply used as a keyword in the indexing file. By default,
makeindex expects \indexentry. The custom ist style file created by \make-
glossaries identifies \glossaryentry as the keyword:

keyword "\\glossaryentry"

The syntax for the second argument (location) is as described in §12.3. The syntax for the
first argument (data) is in the form:

278

12. Number Lists

(sort) 2 (text) | (encap)

or for sub-entries:

(parent sort) ? (parent text) ! (sort) ? (text) | (encap)

The question mark (?) is the “actual character” and separates the sort value from the actual text
that’s written to the g1 s file (which is input by \printglossary).

By default, makeindex uses @ as the actual character but this caused a problem for early
versions of glossaries where there was a greater chance of internal commands occurring in the
glo file. The custom i st file identifies ? as the actual character:

[actual '?'

You may remember from §12.1 that the £ ormat option specifies the encap, which I claimed
was essentially the same as the encap with \ 1ndex, but as can be seen from the above example,
that’s not strictly speaking true. The real encap has to include \ setent rycounter so that
(if hyperlinks are supported) the appropriate target name can be constructed.

The way that make index works is that it will write

\ (encap) { (location) }

in the g1 s (or equivalent) file. What glossaries actually needs for the hyperlinks to work is:

\setentrycounter [(prefix)] { (counter) } \ (cs) { (location) }

where (cs) is the real formatting command name (identified in the format option).
So from makeindex’s point of view, the real encap in the above example is the literal string:

setentrycounter[] {page}\glsnumberformat

In the above example, the location has ended up as \es@scroman {1} which is invalid,
as makeindex requires the location to consist solely of digits, Roman numerals or alphabetic,
optionally separated by a compositors.

That means that this example will trigger a message from make i ndex which will be written
to the g1 g transcript file:

279

12. Number Lists

Scanning input file myDoc.glo...

' Input index error (file = myDoc.glo, line = 1):
—— Illegal space within numerals in second argument.
.done (1 entries accepted, 1 rejected).

Sorting entries...done (0 comparisons).

Generating output file myDoc.gls....done (6 lines
written, 0 warnings).

Note that 1 entry has been rejected, but it also shows 0 warnings and it has a 0 exit code, which
means that it won’t interrupt the overall document build.

If you run makeglossaries instead of running make index explicitly, then make-
glossaries will search the glg transcript for the “({n) entries accepted, (m) rejected)”
line, and if (m) is greater than 0 it will attempt to diagnose and fix the problem.

Messages about the “second argument” (as in “Illegal space within numerals in second argu-
ment”) indicate that the problem is with the location, so makeglossaries will search the
locations for content that matches \ (csname) { (num)} (with any or no spaces after the com-
mand name and optionally preceded by \protect). If it finds a match, it will shift (csname)
into the encap with the following message:

L]

Encap/location issue: potential LaTeX commands in
location detected. Attempting to remedy.

Reading myDoc.glo...

Invalid location '\es@scroman {i}' detected for
entry 'sample'. Replaced with 'i'

Writing myDoc.glo...

Retrying

The altered g1 o file now contains:

\glossaryentry{sample?\glossentry{sample}

| setentrycounter[] {page}"\glslocationcstoencap
{glsnumberformat}{es@scroman}}{i}
\glossaryentry{sample?\glossentry{sample}

| setentrycounter[] {page}"\glsnumberformat}{1}

and makeglossaries will re-run makeindex.
Following this correction, the number list for the “sample” entry now contains:

\setentrycounter[] {page}\glslocationcstoencap{gls—
numberformat}{es@scroman}{i}\delimN
\setentrycounter[] {page}\glsnumberformat{1}

280

12. Number Lists

The corrected location needs to be encapsulated with both the designated encap (g 1L snumber-
format in this case) and the formatting command that needs to be applied to the location. This
is done via:

X

\glslocationcstoencap/{ (encap-csname) } { (location-csname) }

This is simply defined to do:

\ csuse {(location-csname) } { \ csuse { (encap-csname) } { (location) } }

.

This puts the intended encap (gl snumberformat in this case) closer to the location to
enable it to work better with hyperlinks, although this may not always work, particularly if the
command with the name (location-csname) expects a numerical argument.

In the above example, the location command is \ e s @ scroman which is provided by babel-
spanish and performs fake small caps. Internal commands provided by other packages for their
own private use can’t be relied upon. So the glossaries package can’t assume they will stay the
same, and the above example document may produce a different result with different versions
of babel. However, in this case (provided you use makeglossaries), the document will
correctly end up with the number list “1, 1” for the “sample” entry in the glossary, which matches
the document page numbering. If you use makeindex explicitly, the number list will simply
be “17.

This become more complicated if hyperref is added to the document (before glossaries). Now
\glsnumberformat uses \glshypernumber, which needs to take into account that
its argument may contain a range with the start and end location separated by \de 1 imR (the
range delimiter), and it needs to create a separate hyperlink for each location component.

Here’s a modified example that has an implicit range in the front matter and an explicit range

in the main matter.

\documentclass{book}

\usepackage [T1]{fontenc}
\usepackage [spanish] {babel}
\usepackage|[colorlinks] {hyperref}
\usepackage{glossaries}
\makeglossaries
\newglossaryentry{sample}{name={sample},description=
{un ejemplo}}

\begin{document}

\frontmatter

\chapter{Foreword}

\gls{sample}

\newpage

281

12. Number Lists

\gls{sample}

\newpage

\gls{sample}

\mainmatter

\chapter{Sample}
\gls[format=(hyperbf] {sample}
\newpage

Some text

\newpage

\gls[format=) hhyperbf] {sample}
\printglossaries
\end{document}

.

This again has problematic locations, butmakeglossaries canshiftthe \es@scroman
into the encap as before. The resulting g1 s file has the following number list for the “sample”
entry:

\setentrycounter[] {page}% prefix and counter
\glslocationcstoencap{glsnumberformat}{es@scroman}
{i\delimR iii}\delimN

\setentrycounter[] {page}% prefix and counter
\hyperbf{1\delimR 3}

Both ranges have been compacted so that the range, including the \de1imR separator, is in
the argument of the encap command.

The default definition of \glslocationcstoencap means that the first range is for-
matted according to:

\es@scroman{\glshypernumber{i\delimR 1ii}}

This allows \glshypernumber to detect the delimiter and split up the range so that it can
apply a separate hyperlink to the start and end locations, so that it effectively becomes:

\es@scroman{\hyperlink{{margetl)}{i}\delimR
\hyperlink{(targe2)}{iii}}

In this type of situation, the most problematic document is one where the (location-csname) can’t
handle \hyperlink in its argument and needs to be shifted into the hyperlink text. In the
above example document, no actual error occurs, but there are warnings from pdf TgX:

282

12. Number Lists

pdfTeX warning (dest): name{page.iii} has been
referenced but does not exist, replaced by a fixed
one

[...]

pdfTeX warning (dest): name{page.i} has been
referenced but does not exist, replaced by a fixed
one

This is due to the way that \glshypernumber forms the target name. Since the actual
target name isn’t saved in the indexing data, it has to be reconstituted from available information:
the prefix, the counter and the location. So the targets become page . i for location “i” and
page.iii for location “iii”. This usually works for common page formats, but it doesn’t in
this case. Adding debug to hyperref’s package options reveals the following information in the
transcript:

Package hyperref Info: Anchor "page.Il'

[...]
Package hyperref Info: Anchor “page.IIl'

So the correct anchors are “page.I” and “page.I1”.

The case change occurs as a result of the fake small caps, but since \ e s@scroman is outside
of \glshypernumber, the case change isn’t part of the location and so doesn’t affect the
anchor name.

I can redefine \glslocationcstoencap to swap them around:

=

\renewcommand{\glslocationcstoencap} [3]{\csuse{#1}

{\csuse{#2}{#3}}}

However, now the transcript shows:

pdfTeX warning (dest):
name{page.\\protect\040\\es@scroman\040\040{i——1i1i}}
has been referenced but does not exist, replaced by
a fixed one

This is because \es@scroman doesn’t fully expand.
The \glswrglossdisableanchorcmds hook provides a workaround for the prob-
lematic command:

283

12. Number Lists

\appto\glswrglossdisableanchorcmds{\csletcs
{es@scroman}{text_uppercase:n}}

This will cause \ e s@scroman to be locally redefined to just convert its argument to uppercase
while the anchor is being constructed. Unfortunately this patch is only partially successful as the
transcript now has:

pdfTeX warning (dest): name{page.I-—-III1} has been
referenced but does not exist, replaced by a fixed
one

The problem now is that \gl shypernumber can’t split on the range delimiter, so the loca-
tion is now “I--11I".

If the number list doesn’t contain any ranges, then the above redefinition of \glslocation-
cstoencap and the addition to \glswrglossdisableanchorcmds will fix the
hyperlink.

Instead of redefining \glslocationcstoencapandaltering \glswrglossdisable-
anchorcmds, a solution that works with ranges can be achieved by redefining \glswzr-
glosslocationtarget to convert its argument to uppercase. You can do this with:

Ei

\renewcommand{\glswrglosslocationtarget} [1]{\gls—
uppercase{#1}}

This will successfully construct the anchor names page . I and page.IITI.Itwon't affect
the anchors for the main matter as digits aren’t affected by the case-changing command.

If you’re not using makeglossaries and are either calling makeindex explicitly or
viamakeglossaries—1lite or with the aut omake option, then you will need to find
another way of converting problematic location into a form that won’t be discarded by make-
index. This is quite difficult if the problematic content is inside \ t hepage since its delayed
expansion means that any attempt at locally changing the problematic within \glswrgloss-
disablelocationcmds will be lost.

The earlier example can be rewritten to (sort of!) work without makeglossaries:

\documentclass{book}

\usepackage [T1l]{fontenc}
\usepackage [spanish] {babel}
\usepackage[colorlinks] {hyperref}
\usepackage{glossaries}
\makeglossaries

284

12. Number Lists

\newglossaryentry{sample}{name={sample},description=
{un ejemplo}}

\newcommand{\locthepage}{\Roman{page}}
\newcommand{\delayedlocthepage}{\expandonce
{\locthepage}}
\appto\glswrglossdisablelocationcmds{\let\the-
page\delayedlocthepage}

\begin{document}

\frontmatter
\chapter{Foreword}
\gls{sample}

\newpage

\gls{sample}

\newpage

\gls{sample}

\mainmatter
\renewcommand{\locthepage}{\arabic{page}}
\chapter{Sample}
\gls[format=(hyperbf] {sample}
\newpage

Some text

\newpage
\gls[format=)hyperbf]{sample}
\printglossaries
\end{document}

\.

Note that the custom \ 1oct hepage command needs to be redefined after the page number-
ing changes at the start of the main matter.

This ensures that the locations are valid in the glo file, so makeindex will process it
without losing any rejecting any entry lines. The hyperlink targets will also be correct. The only
problem now is that the front matter locations will be in uppercase in the glossary.

The above problems are all due to makeindex having a restrictive location syntax. With
x1ndy, you can define location classes for custom locations. Unfortunately, the backslash \ is
a special character for x 1 ndy that indicates an escape sequence that indicates the next character
should be interpreted literally, which means that any IfTEX commands that end up in the x indy
indexing file must have their initial backslash escaped. This is quite tricky to do given the delayed
expansion of \thepage. If it’s expanded early in order to pre-process it then the page number
could end up being incorrect.

The sample file samplexdy . tex provides a custom page format that uses a robust com-
mand called \ t a1 1ynum, which ends up in the g1 o file. Withthedefaultesclocations
=fal se setting, the location for the first page is written to the file as:

285

12. Number Lists

:locref "{}{\tallynum {1}}"

This results in the following message from xindy:

WARNING: location-reference "{}{tallynum {1}}" did
not match any location-class! (ignored)

Note that the backslash has gone from the start of tallynum. As withmakeindex, invalid
locations are dropped.

If youusemakeglossaries rather than running x i ndy directly, mnakeglossaries
will detect the warning and provide some diagnostic information:

You may have forgotten to add a location
class with \GlsAddXdyLocation or you may have
the format incorrect or you may need

the package option esclocations=true.

In this case, you need to use the package option esclocations=true. This will use a
hack to provide a way to escape the backslash without prematurely expanding the actual value of
the page counter. As this is a hack, it may not work and can result in obscure error messages.
Returning to the earlier babel-spanish example, if it’s converted to use xindy instead of
makeindex, a similar problem arises. For example, simply adding the xindy package

option:

\documentclass{book}

\usepackage [T1l]{fontenc}
\usepackage [spanish] {babel}
\usepackage[colorlinks] {hyperref}
\usepackage [xindy] {glossaries}
\makeglossaries
\newglossaryentry{sample}{name={sample}, description=
{un ejemplo}}

\begin{document}

\frontmatter

\chapter{Foreword}

\gls{sample}

\newpage

\gls{sample}

\newpage

\gls{sample}

286

12. Number Lists

\mainmatter

\chapter{Sample}

\gls[format= (hyperbf] {sample}
\newpage

Some text

\newpage
\gls[format=)hyperbf] {sample}
\printglossaries
\end{document }

The glo file now contains locations with \es@scroman, but as with the \tallynum
example, the leading backslash hasn’t been escaped:

:locref "{}{\es@scroman {i}}"

This needs esclocations=true to escape the backslash.

\usepackage [xindy, esclocations] {glossaries}

Note that this produces a different result in the g1o file:

[:locref "{}{\\protect \\es@scroman {i}}"

This results from the partial protected expansion used on \thepage before the special char-
acters are escaped. If you inspect the xdy file created by \makeglossaries, you should
find the following:

(define-location-class "roman-page-numbers"
(:sep "{}{" :sep "\protect \es@scroman

{" "roman—numbers—-lowercase" :sep "}" :sep "}")
:min-range—-length 2

)

This is because the non-default behaviour of \ roman has been detected and a custom location
class has automatically been supplied. (Whereas with the samplexdy.tex sample file,
it was necessary to provide the custom class to support \tallynum with \G1sAddXdy-
Location.)

287

12. Number Lists

12.6. Iterating Over Locations

L2

Not available with Options 2 and 3. The commands described here rely on the locations
being stored in the 1 oc 11 st internal field in an etoolbox internal list format, which is
what happens with Option 1.

The \printnoidxglossary command displays the location list using:

\glsnoidxloclist{(listcs)}

where (list ¢s) is a temporary command that contains the value of the 1oc1list field. This
uses \forlistloop toiterate over all the locations in the list with the handler macro:

X

\glsnoidxloclisthandler{ (location)}

This keeps track of the previous element in the list to determine whether or not to insert the
\delimN separator. Note that it doesn’t attempt to determine whether or not any of the loca-
tions are ranges.

[glossaries—extra

The \printunsrtglossary command will also use \glsnoidxloclist
if the Loc1list field has been set but the L ocat ion field hasn’t, but in general it’s
better to instruct bib2g1ls to save the formatted location list (which is the default).

You can iterate over an entry’s Loc 11 st field using:

\glsnumberlistloop/{ (entry-label)} { (handler)} { (xr handler cs) }

where (entry-label) is the entry’s label and (handler cs) is a handler control sequence with the
syntax:

(handler cs) { (prefix) } { (counter) } { (format) } { (location) }

where (prefix) is the hypertarget prefix, (counter) is the name of the location counter, (format)
is the location encap (for example, t extbf) and (location) is the location.

The third argument (xr handler cs) is the control sequence that will be applied to any cross-
references in the list. This handler should have the syntax:

(xr handler cs) [(tag) 1 { (xr list) } { (empty) }

288

12. Number Lists

where (fag) is the cross-referenced textual tag (for example, “see”) and (xr list) is a comma-
separated list of entry labels. The final argument (empty) will always be empty, but it allows for
\glsseeformat to be used as the handler.

bingls‘
This method is designed for Option 1, but bib2gls also saves individual locations
inthe 1oclist field (in addition to the formatted location list which is stored in the
location field). However, the format for each item in the internal list varies depend-
ing on whether record=onlyor record=nameref wasused. See the glossaries
—extra manual for further details.

For example, if on page 12 I have:

\gls[format=textbf] {apple}

and on page 18 I have:

\gls[format=emph] {apple}

then

\glsnumberlistloop{apple}{\myhandler}

will be equivalent to:

D (B LB LB

\myhandler{}{page}{textbf}{12}%
\myhandler{}{page}{emph}{18}%

There is a predefined handler that’s used to display the number listin \printnoidxglossary:

X

\glsnoidxdisplayloc{(prefix)} { (counter)} { (format) } { (location) }

This simply does:

\setentrycounter [(prefix)] { {counter) } %
\csuse{ (format) } { (location) }

which sets up the hyperlink information needed for \gl shypernumber (in case it’s required
by the encap) and encapsulates the location, with the provided formatting command.

289

12. Number Lists

Internally, \glsnumberlistloop uses etoolbox’s \forlistloop with the han-
dler:

X

\glsnoidxnumberlistloophandler{(location item)}

The default behaviour is simply to do its argument, which (for Option 1) will be in the form:

[\glsnoidxdisplayloc{/(prefix)} {(counter)} { (format)} { (location) }

The \glsnumberlistloop works by temporarily redefining \glsnoidxdisplay-
loc to (handler) and \glsseeformat to (xr handler cs).

[glossaries—extra]

With glossaries—extra, you can use the more general purpose \glsxtrfieldfor—
listloop and provide your own handler that can be customized to suit record=
onlyor record=nameretf.

290

13. Glossary Styles

The markup used in the glossary is described in §8.2. §13.2 describes how to define a new
glossary style. Commands that may be used in styles, but should not be redefined by styles, are
described in §§13.2.1 & 13.2.2. The commands that should be redefined by the glossary style
are described in §13.2.3.

Glossary styles typically use \glossent ryname to display the entry’s name, but some
may use the sentence case version \Glossentryname instead. Both encapsulate the name
with:

X

\glsnamefont {(text)}

which takes one argument: the entry name (obtained with \glsentryname or \Gls-
entryname).

By default, \glsnamefont simply displays its argument in whatever the surrounding font
happens to be, but bear in mind that the glossary style may switch the font.

[glossaries—extra]

With glossaries—extra the gl ossnamefont and glossname category attributes
can be used to adjust font and, for \glossent ryname only, case-changing.

For example, the tree style displays the name as follows:

\glstreenamefmt{\glstarget {{entry-label)} { \glossentryname
{ (entry-label) } } }

which is essentially (ignoring the hyperlink target):

\glstreenamefmt {\glsnamefont{\glsentryname {{entry-label)} }
}

Since \glstreenamefmt is defined to display its argument in bold, the name will end up
in bold unless \glsnamefont is redefined to change it.
The list style displays the name in the option argument of \ item:

\item[\glsentryitem{{entry-label) } \glstarget {{entry-label)}
{\glossentryname {{entry-label)} }]

291

13. Glossary Styles

which is essentially (ignoring the entry counter and hyperlink target):

\item[\glsnamefont{\glsentryname/ (entry-label)} }]

This occurs within the description environment, which by default uses bold for the item text.
However, this may be changed by various classes or packages. So the name may end up in bold
or may be in some other font, such as sans-serif.

The long style displays the name in the first column of a longtable:

\glsentryitem{{enmry-label)} \glstarget {{(entry-label)} { \gloss—
entryname{ (entry-label)} } &

So the only font change will come from \ g1l sname font, which doesn’t apply any change by
default.

Glossary styles will typically display the description with \glossentrydesc but may
not show the symbol. If the symbol is shown, it should be displayed with \glossentry-
symbol.

There’s no analogous font command for the description or symbol, but the glossaries—extra
package provides the glossdescfont and glosssymbolfont attributes to change
the font according to the entry’s category.

Some styles may supply their own helper commands (such as \glstreenamefmt) to
make it easier to adjust the formatting without having to define a new glossary style.

Example 33: Changing the Font Used to Display Entry Names in the
Glossary

Suppose you want all the entry names to appear in medium weight small caps in your glossaries,
then you can do:

=

\renewcommand{\glsnamefont}[1] {\textsc{\mdseries #1}

}

[glossaries—extra

The glossaries—extra—stylemods package provides additional hooks that can be used to
make other minor adjustments.

7

Some styles support groups. These may simply insert a vertical gap between groups, but some
may also include a heading with the group title. The base glossaries package only has a simple
mechanism for obtaining the title from the group label via \glsgetgrouptitle, which

292

13. Glossary Styles

will test if \ (group-label)groupname exists where the (group-label) is glssymbols,
glsnumbers or a single character.

[glossaries—extra]

The glossaries—extra package has commands \glsxtrsetgrouptitle and
\glsxtrlocalsetgrouptitle to set the group title, which take precedence
over \ (group-label)groupname.

13.1. Predefined Styles

The predefined styles can accommodate numbered top level (level 0) and level 1 entries. See

the package options entrycounter, counterwithin and subentrycounter
described in §2.3. There is a summary of available styles in Table 13.1 on the next page. You

can view samples of all the predefined styles at dickimaw-books.com/gallery/
glossaries—styles/. Note that glossaries—extra provides additional styles in the sup-
plementary packages glossary—bookindex, glossary—topic and glossary—longextra. See the glossaries
—extra manual for further details.

(i]
=
Note that the group styles (such as listgroup) will have unexpected results if used with the

sort=def or sort=use options. If you don’t sort your entries alphabetically, it’s
best to set the nogroupskip package option to prevent odd vertical gaps appearing.

The group title is obtained using \gl sgetgroupt it le{label}, which is described in
§13.2.
The tabular-like styles that allow multi-line descriptions and number lists use the length:

X
\glsdescwidth
to set the width of the description column and the length
X
\glspagelistwidth
to set the width of the number list column.
o

These lengths will not be available if you use both the nolong and nosuper pack-
age options or if you use the nost yles package option unless you explicitly load the
relevant package.

These will need to be changed using \ set length if the glossary is too wide. Note that
the long4col and super4col styles (and their header and border variations) don’t use these lengths

293

https://www.dickimaw-books.com/gallery/glossaries-styles/
https://www.dickimaw-books.com/gallery/glossaries-styles/

13. Glossary Styles

Table 13.1.: Glossary Styles. An asterisk in the style name indicates anything that matches
that doesn’t match any previously listed style (for example, 1 ong3col * matches
long3col, long3colheader, long3colborder and long3colheaderborder). A maximum
level of 0 indicates a flat glossary (sub-entries are displayed in the same way as main
entries). Where the maximum level is given as oo there is no limit, but note that
makeindex (Option 2) imposes a limit of 2 sub-levels. If the homograph column
is checked, then the name is not displayed for sub-entries. If the symbol column is
checked, then the symbol will be displayed.

Style Maximum Level Homograph Symbol
listdotted
sublistdotted
list*

altlist™
long*3col~*
long4col*
altlong*4col™*
long*
super*3col*
super4dcol™*
altsuper*4col*
super*

index
treenoname*
alttree
tree¥

inline

S SSXSXSKXSXSKSKKL«K~X
AN

S KX

AN

294

13. Glossary Styles

as they are designed for single line entries. Instead you should use the analogous altlong4col and
altsuper4col styles. If you need to explicitly create a line-break within a multi-line description
in a tabular-like style it’s better to use \newl ine instead of \ \ (but consider using a ragged
style with narrow columns).

[i
=
Remember that a cell within a tabular-like environment can’t be broken across a page, so

even if a tabular-like style, such as long, allows multilined descriptions, you’ll probably
encounter page-breaking problems if you have entries with long descriptions. You may
want to consider using the alttree style instead.

Note that if you use the st v 1 e key in the optional argument to \print(...)glossary,
it will override any previous style settings for the given glossary, so if, for example, you do

Ei

\renewcommand*{\glsgroupskip}{}% no effect
\printglossary[style=long]

then the new definition of \glsgroupskip will not have an affect for this glossary, as
\glsgroupskip is redefined by st yle=long. Likewise, \setglossarystyle
will also override any previous style definitions, so, again

=

\renewcommand*{\glsgroupskip}% no effect
\setglossarystyle{long}

will reset \gl sgroupskip back to its default definition for the named glossary style (long
in this case). If you want to modify the styles, either use \newglossarystyle (described
in the next section) or make the modifications after \setglossarystyle. For example:

=

\setglossarystyle{long}
\renewcommand*{\glsgroupskip}{}

In this case, it’s better to use nogroup sk ip to suppress the gap between groups for the default
styles instead of redefining \glsgroupskip.

All the styles except for the three- and four-column styles and the listdotted style use the post-
description hook:

X

\glspostdescription

after the description. This simply displays a full stop by default. To eliminate this full stop (or
replace it with something else, say, a comma) you will need to redefine \glspostdescrip-

295

13. Glossary Styles

tion before the glossary is displayed. Alternatively, you can suppress it for a given entry
by placing \nopostdesc in the entry’s description. Note that \longnewglossary-
entry puts \nopostdesc at the end of the description. The glossaries—extra package
provides a starred version that doesn’t.

Alternatively, you can use the package option nopostdot to suppress this full stop. This
is implemented by default with glossaries—extra. You can switch it back on with nopostdot
=false or postdot=or youcan use postpunc for a different punctuation character.

[glossaries—extra]

The glossaries—extra—stylemods package provides some adjustments to some of the pre-
defined styles listed here, allowing for greater flexibility. See the glossaries—extra docu-
mentation for further details.

13.1.1. List Styles

X

\usepackage{glossary-list}
automatically loaded with \usepackage{glossaries}

The glossary styles described in this section are all defined in the package glossary—list. Since
they all use the description environment, they are governed by the same parameters as that envi-
ronment. These styles all ignore the entry’s symbo 1. Note that these styles will automatically
be available unless you use the nolist ornostyles package options.

[i
=
Note that, except for the listdotted style, these list styles are incompatible with classic-

thesis. They may also be incompatible with other classes or packages that modify the
description environment.

There is an initialisation hook that provides a patch if the gettitlestring package is loaded, since
this is used by hyperref.

7

\glslistinit

Note that this automatically implements:

=

\GetTitleStringSetup{expand}

This patch should ensure that the combination of hyperref and ent rycounter will correctly
expand the entry name to the aux file. The name is expanded using:

296

13. Glossary Styles

\glslistexpandedname { (entry-label)}

This uses \glsunexpandedfieldvalue. If you need the name to fully expand, you
can redefine this. For example:

B

\newcommand{\glslistexpandedname} [1]{\glsentryname

{#1}}

If nogroupskip=false, the \glsgroupskip command creates a vertical space
using:

X

\indexspace

This command is defined by some other packages, so it’s only defined by glossary—list if it hasn’t
already been defined.
For the styles that should group headings, the group title is encapsulated with:

\glslistgroupheaderfmt {(tte)}

This simply does its argument by default, but it occurs inside the optional argument of \ item
so may appear bold from the item font change.
For the styles that have a navigation line, the line is formatted according to:

\glslistnavigationitem{ (navigation items)}

This puts its argument inside the optional argument of \ it em, which can cause a problem if the
navigation line is too long, in which case you will need to redefine \glslistnavigation-

item. For example:

\renewcommand*{\glslistnavigationitem} [1]
{\item \textbf{#1}}

You may prefer to use the tree-like styles, such as treehypergroup instead.

I —

|

list

The list style uses the description environment. The entry name is placed in the optional argument
of the \ item command (so it will usually appear in bold by default). The description follows,
and then the associated number list for that entry. The symbol is ignored. If the entry has child

297

13. Glossary Styles

entries, the description and number list follows (but not the name) for each child entry. Groups
are separated using \ 1 ndexspace with the default nogroupskip=true.
The closest matching non-list style is the index style.

I —

—

listgroup

The listgroup style is like list but the groups have headings obtained using \glsgetgroup-
t it le, which is described in §13.2.
l —

—

listhypergroup

The listhypergroup style is like listgroup but has a navigation line at the start of the glossary with
links to each group that is present in the glossary, which is displayed in the glossary header with
\glslistnavigationitem. This requires an additional run through IATEX to ensure
the group information is up to date. Within the navigation line, each group item is separated by

\glshypernavsep.
I —

| S

altlist

The altlist style is like list but the description starts on the line following the name. (As with the
list style, the symbol is ignored.) Each child entry starts a new line, but as with the list style, the
name associated with each child entry is ignored.

The closest matching non-list style is the index style with the following adjustment:

,

\renewcommand{\glstreepredesc}{%
\glstreeitem\parindent\hangindent}

l E
L=
altlistgroup
The altlistgroup style is like altlist but the glossary groups have headings.
[=
L=

altlisthypergroup

The altlisthypergroup style is like altlistgroup but has a set of links to the glossary groups. The
navigation line is the same as that for listhypergroup, described above.
I —

|

listdotted

This style uses the description environment.! Each entry starts with \ i t em [], followed by the
name followed by a dotted line, followed by the description. Note that this style ignores both the

IThis style was supplied by Axel Menzel.

298

13. Glossary Styles

number list and the symbol. The length

\glslistdottedwidth

governs where the description should start. This is a flat style, so child entries are formatted in
the same way as the parent entries.
A non-list alternative is to use the index style with

\renewcommand{\glstreepredesc}{\dotfill}
\renewcommand{\glstreechildpredesc}{\dotfill}

Note that this doesn’t use \glslistdottedwidth and causes the description to be flush-
right and will display the symbol, if provided. (It also doesn’t suppress the number list, but that
can be achieved with the nonumber11ist option.)

=

—

sublistdotted

This is a variation on the listdotted style designed for hierarchical glossaries. The main entries
have just the name displayed. The sub entries are displayed in the same manner as listdotted.
Unlike the listdotted style, this style is incompatible with classicthesis.

13.1.2. Longtable Styles

X

\usepackage{glossary-long}
automatically loaded with \usepackage{glossaries}

The glossary styles described in this section are all defined in the package glossary—long. Since
they all use the longtable environment, they are governed by the same parameters as that envi-
ronment. Note that these styles will automatically be available unless you use the nolong or
nostyles package options. These styles fully justify the description and number list columns.
If you want ragged right formatting instead, use the analogous styles described in §13.1.3. If you
want to incorporate rules from the booktabs package, try the styles described in §13.1.4.

Groups are separated with a blank row unless nogroupskip is used before the style is set.
For example:

=

\usepackage [nogroupskip] {glossaries}
\setglossarystyle{long}

Both may be combined in the same option list. For example:

299

13. Glossary Styles

[\usepackage [nogroupskip, style=1long] {glossaries}

Or

\printglossary[nogroupskip, style=longragged]

The following doesn’t work:

\setglossarystyle{long}
\printglossary[nogroupskipl% too late

This is because the \ 1 fgl snogroupskip conditional needs to be outside of \gl sgroup-
sk ip with tabular-like styles, so the conditional is in the style definition to determine the ap-
propriate definition of \glsgroupskip.

[glossaries—extra

There are additional styles that use the longtable environment provided with the glossary
—longextra package, but that requires glossaries—extra.

I —

long

The long style uses the longtable environment (defined by the longtable package). It has two
columns: the first column contains the entry’s name and the second column contains the descrip-
tion followed by the number list. The entry’s symbol is ignored. The width of the first column
is governed by the widest entry in that column. The width of the second column is governed by
the length \ gl sdescwidth. Child entries have a similar format to the parent entries except
that their name is suppressed.

[=
L=
longborder
The longborder style is like long but has horizontal and vertical lines around it.
I E
=
longheader

The longheader style is like long but has a header row. You may prefer the long—booktabs

style instead.
[=
L=

longheaderborder

The longheaderborder style is like longheader but has horizontal and vertical lines around it.

300

13. Glossary Styles

The long—booktabs style is generally better.
I —_—

| S

long3col

The long3col style is like long but has three columns. The first column contains the entry’s
name, the second column contains the description and the third column contains the number list.
The entry’s symbol is ignored. The width of the first column is governed by the widest entry in
that column, the width of the second column is governed by the length \glsdescwidth,

and the width of the third column is governed by the length \glspagelistwidth.
I —_—

|

long3colborder

The long3colborder style is like the long3col style but has horizontal and vertical lines around

I —

it.

long3colheader

The long3colheader style is like long3col but has a header row. You may prefer the long3col
—booktabs style instead.
I —

| S

long3colheaderborder

The long3colheaderborder style is like long3colheader but has horizontal and vertical lines
around it. The long3col—booktabs style is generally better.
I p—l

|l

[longé4col

The long4col style is like long3col but has an additional column in which the entry’s associated
symbol appears. This style is used for brief single line descriptions. The column widths are
governed by the widest entry in the given column. Use altiong4col for multi-line descriptions.

I —

|

long4colborder

The long4colborder style is like the long4col style but has horizontal and vertical lines around

it.
[=

|l

long4colheader

The long4colheader style is like long4col but has a header row. You may prefer the long4col
—booktabs style instead.

301

13. Glossary Styles

I —

|

long4colheaderborder

The long4colheaderborder style is like long4colheader but has horizontal and vertical lines

around it.
I —

—

altlong4col

The altlong4col style is like long4col but allows multi-line descriptions and number lists. The
width of the description column is governed by the length \g1lsdescwidth and the width
of the number list column is governed by the length \ g1l spagelistwidth. The widths of
the name and symbol columns are governed by the widest entry in the given column. —

|

altlong4colborder

The altlong4colborder style is like the long4colborder but allows multi-line descriptions and

number lists.
I —

| S

altlong4colheader

The altlong4colheader style is like long4colheader but allows multi-line descriptions and number
lists. You may prefer the altiong4col—booktabs style instead.
I i

|

altlong4colheaderborder

The altiong4colheaderborder style is like long4colheaderborder but allows multi-line descrip-
tions and number lists.

13.1.3. Longtable Styles (Ragged Right)

X

\usepackage{glossary—-longragged}
load explicitly or with
\usepackage [stylemods=longragged] {glossaries—-extra}

The glossary styles described in this section are all defined in the package glossary—long-
ragged. These styles are analogous to those defined in glossary—long but the multiline columns
are left justified instead of fully justified. Since these styles all use the longtable environment,
they are governed by the same parameters as that environment. The glossary—longragged pack-
age additionally requires the array package. Note that these styles will only be available if you
explicitly load glossary—longragged:

302

13. Glossary Styles

\usepackage{glossaries}
\usepackage{glossary—-longragged}
\setglossarystyle{longragged3col}

[

Note that you can’t set these styles using the s € v 1 e package option since the styles aren’t defined
until after the glossaries package has been loaded. If you want to incorporate rules from the
booktabs package, try the styles described in §13.1.4.

With glossaries—extra, you can load both the package and style withthe st yle and st ylemods
options. For example:

\usepackage[style=longragged3col, stylemods=
longragged] {glossaries—extra}

_ B

As with the glossary—long styles, groups are separated with a blank row unless nogroup-
sk1ip is used before the style is set. For example:

\usepackage [nogroupskip] {glossaries}
\usepackage{glossary-longragged}
\setglossarystyle{longragged}

Or

\printglossary[nogroupskip, style=longragged]

o= Q-

longragged

The longragged style has two columns: the first column contains the entry’s name and the
second column contains the (left-justified) description followed by the number list. The entry’s
symbol is ignored. The width of the first column is governed by the widest entry in that column.
The width of the second column is governed by the length \g1lsdescwidth. Child entries
have a similar format to the parent entries except that their name is suppressed.

0

longraggedborder

The longraggedborder style is like longragged but has horizontal and vertical lines around it.

303

13. Glossary Styles

I —

|

longraggedheader

The longraggedheader style is like longragged but has a header row. You may prefer the
longragged—booktabs style instead.
[=

| S

longraggedheaderborder

The longraggedheaderborder style is like longraggedheader but has horizontal and vertical

lines around it.
[=
= |

longragged3col

The longragged3col style is like longragged but has three columns. The first column contains
the entry’s name, the second column contains the (left justified) description and the third column
contains the (left justified) number list. The entry’s symbol is ignored. The width of the first col-
umn is governed by the widest entry in that column, the width of the second column is governed
by the length \glsdescwidth, and the width of the third column is governed by the length
\glspagelistwidth.

(=)

|

longragged3colborder

The longragged3colborder style is like the longragged3col style but has horizontal and vertical

lines around it.
[=
= |

longragged3colheader

The longragged3colheader style is like longragged3col but has a header row. You may prefer
the longragged3col—booktabs style instead.
I —

|

longragged3colheaderborder

The longragged3colheaderborder style is like longragged3colheader but has horizontal and
vertical lines around it.
I —

—

altlongragged4col

The altlongragged4caol style is like longragged3col but has an additional column in which the
entry’s associated symbol appears. The width of the description column is governed by the length
\glsdescwidth and the width of the number list column is governed by the length \ g1 s-
pagelistwidth. The widths of the name and symbol columns are governed by the widest
entry in the given column.

304

13. Glossary Styles

I —

|

altlongragged4colborder

The altlongragged4colborder style is like the altlongragged4col but has horizontal and vertical

lines around it.
I —

—

altlongragged4colheader

The altlongragged4colheader style is like altlongragged4col but has a header row. You may
prefer the altlongragged4col—booktabs style instead.
| —_—

| S

altlongragged4colheaderborder

The altlongragged4colheaderborder style is like altlongragged4colheader but has horizontal
and vertical lines around it.

13.1.4. Longtable Styles (booktabs)

X

\usepackage{glossary—-longbooktabs}
load explicitly or with \usepackage [stylemods=longbooktabs]
{glossaries—-extra}

The glossary styles described in this section are all defined in the package glossary—longbook-
tabs.

Since these styles all use the longtable environment, they are governed by the same parameters
as that environment. The glossary—longbooktabs package automatically loads the glossary—long
(§13.1.2) and glossary—longragged (§13.1.3) packages. Note that these styles will only be avail-
able if you explicitly load glossary—longbooktabs:

Ej

\usepackage{glossaries}
\usepackage{glossary—-longbooktabs}

Note that you can’t set these styles using the st v 1 e package option since the styles aren’t defined
until after the glossaries package has been loaded.

With glossaries—extra, you can load both the package and style withthe st yle and st ylemods
options. For example:

Ej

\usepackage [style=long3col-booktabs, stylemods=
longbooktabs] {glossaries—extra}

305

13. Glossary Styles

As with the glossary—long styles, groups are separated with a blank row unless nogroup-
skip is used before the style is set. For example:

=

\usepackage [nogroupskip] {glossaries}
\usepackage{glossary-longbooktabs}
\setglossarystyle{long-booktabs}

Or
Ei

\printglossary[nogroupskip, style=long-booktabs]

These styles are similar to the “header” styles in the glossary—long and glossary—longragged
packages, but they add the rules provided by the booktabs package, \toprule, \midrule
and \bottomrule. Additionally these styles patch the longtable environment to check for
instances of the group skip occurring at a page break. If you don’t want this patch to affect any
other use of longtable in your document, you can scope the effect by only setting the style through
the sty 1e key in the optional argument of \print(...)glossary.

Alternatively, you can restore the original longtable behaviour with:

\glsrestoreLToutput

The penalty check is tested with:

\glsLTpenaltycheck

The default definition is:

\ifnum\outputpenalty=-
50\vskip—-\normalbaselineskip\relax\fi

With the default nogroupskip=false, \glsgroupskip will be defined to use:
X

\glspenaltygroupskip

to insert the vertical gap. This is defined as:

\noalign{\penalty-50\vskip\normalbaselineskip}

306

13. Glossary Styles

I —

|

long—booktabs

This style is similar to the longheader style but adds rules above and below the header (\ t op-
rule and \midrule) and inserts a rule at the bottom of the table (\bottomrule).

[=
L=
long3col—booktabs
This style is similar to the long3colheader style but adds rules as per long—booktabs.
I E
=
long4col—booktabs
This style is similar to the long4colheader style but adds rules as above.
I E
=
altlong4col—booktabs
This style is similar to the altiong4colheader style but adds rules as above.
I E
=
longragged—booktabs
This style is similar to the longraggedheader style but adds rules as above.
I E
L=
longragged3col—booktabs
This style is similar to the longragged3colheader style but adds rules as above.
I E
=
altlongragged4col—booktabs
This style is similar to the altlongragged4colheader style but adds rules as above.
13.1.5. Supertabular Styles
b §

\usepackage{glossary—-super}
automatically loaded with \usepackage{glossaries}

The glossary styles described in this section are all defined in the package glossary—super.
Since they all use the supertabular environment, they are governed by the same parameters as that
environment. Note that these styles will automatically be available unless you use the nosuper
or nostyles package options. In general, the longtable environment is better, but there are
some circumstances where it is better to use supertabular. (For example, with the flowfram
package.) These styles fully justify the description and number list columns. If you want ragged
right formatting instead, use the analogous styles described in §13.1.6.

307

13. Glossary Styles

As with the glossary—long styles, groups are separated with a blank row unless nogroup-
skip is used before the style is set. For example:

\usepackage [nogroupskip] {glossaries}
\setglossarystyle{super}

Or

[\usepackage [nogroupskip, style=super] {glossaries}

Or

D (B LB

\printglossary[nogroupskip, style=super]

A
Sometimes the supertabular style doesn’t put page breaks in the right place. If you have
unexpected output, try the glossary—long styles instead. Alternatively, try the alttree style.

0

super

The super style uses the supertabular environment (defined by the supertabular package). It
has two columns: the first column contains the entry’s name and the second column contains
the description followed by the number list. The entry’s symbol is ignored. The width of the
first column is governed by the widest entry in that column. The width of the second column is
governed by the length \glsdescwidth. Child entries have a similar format to the parent
entries except that their name is suppressed.

[=
L=
superborder
The superborder style is like super but has horizontal and vertical lines around it.
I E
=
superheader
The superheader style is like super but has a header row.
[=
=
superheaderborder

The superheaderborder style is like superheader but has horizontal and vertical lines around

308

13. Glossary Styles

it.
[=

| S

super3col

The super3col style is like super but has three columns. The first column contains the entry’s
name, the second column contains the description and the third column contains the number list.
The entry’s symbol is ignored. The width of the first column is governed by the widest entry in
that column. The width of the second column is governed by the length \glsdescwidth.
The width of the third column is governed by the length \glspagelistwidth. —

| S

super3colborder

The super3colborder style is like the super3col style but has horizontal and vertical lines around
it.

ll =
super3colheader
The super3colheader style is like super3col but has a header row.
I E
=

super3colheaderborder

The super3colheaderborder style is like the super3colheader style but has horizontal and ver-
tical lines around it.
I —

|

superé4col

The super4col style is like super3col but has an additional column in which the entry’s as-
sociated symbol appears. This style is designed for entries with brief single line descriptions.
The column widths are governed by the widest entry in the given column. Use altsuper4col for
multi-line descriptions.

=a

| S

super4colborder

The super4colborder style is like the super4col style but has horizontal and vertical lines around
it.

I =
L=
super4colheader
The super4colheader style is like super4col but has a header row.
I E
L=

super4colheaderborder

The super4colheaderborder style is like the super4colheader style but has horizontal and ver-
tical lines around it.

309

13. Glossary Styles

I —

|

altsuper4col

The altsuper4col style is like super4col but allows multi-line descriptions and number lists.
The width of the description column is governed by the length \glsdescwidth and the
width of the number list column is governed by the length \glspagelistwidth. The
width of the name and symbol columns is governed by the widest entry in the given column.

I —

| S

altsuper4colborder

The altsuper4colborder style is like the super4colborder style but allows multi-line descriptions
and number lists.
l p—l

|

altsuper4colheader

The altsuper4colheader style is like super4colheader but allows multi-line descriptions and

number lists.
I —

| S

altsuper4colheaderborder

The altsuper4dcolheaderborder style is like super4colheaderborder but allows multi-line de-
scriptions and number lists.

13.1.6. Supertabular Styles (Ragged Right)

P—

X

\usepackage{glossary—-superragged}
load explicitly or with
\usepackage [stylemods=superragged] {glossaries—-extra}

The glossary styles described in this section are all defined in the package glossary—super-
ragged. These styles are analogous to those defined in glossary—super but the multiline columns
are left justified instead of fully justified. Since these styles all use the supertabular environment,
they are governed by the same parameters as that environment. The glossary—superragged pack-
age additionally requires the array package. Note that these styles will only be available if you
explicitly load glossary—superragged:

B

\usepackage{glossaries}
\usepackage{glossary-superragged}

Note that you can’t set these styles using the st v 1 e package option since the styles aren’t defined
until after the glossaries package has been loaded.

310

13. Glossary Styles

With glossaries—extra, you can load both the package and style withthe st yle and st ylemods
options. For example:

\usepackage[style=superragged3col, stylemods=
superragged] {glossaries—extra}

_ B

As with the glossary—long styles, groups are separated with a blank row unless nogroup-
sk1p is used before the style is set. For example:

\usepackage [nogroupskip] {glossaries}
\usepackage{glossary—-superragged}
\setglossarystyle{superragged}

Or

\printglossary[nogroupskip, style=superragged]

o= QI

superragged

The superragged style uses the supertabular environment (defined by the supertabular pack-
age). It has two columns: the first column contains the entry’s name and the second column
contains the (left justified) description followed by the number list. The entry’s symbol is ig-
nored. The width of the first column is governed by the widest entry in that column. The width
of the second column is governed by the length \glsdescwidth. Child entries have a
similar format to the parent entries except that their name is suppressed.

0

superraggedborder

The superraggedborder style is like superragged but has horizontal and vertical lines around
it.

[=
=
superraggedheader
The superraggedheader style is like superragged but has a header row.
[=
L=
superraggedheaderborder

The superraggedheaderborder style is like superraggedheader but has horizontal and vertical
lines around it.

311

13. Glossary Styles

I —

|

superragged3col

The superragged3col style is like superragged but has three columns. The first column con-
tains the entry’s name, the second column contains the (left justified) description and the third
column contains the (left justified) number list. The entry’s symbol is ignored. The width of the
first column is governed by the widest entry in that column. The width of the second column is
governed by the length \ gl sdescwidth. The width of the third column is governed by the
length \glspagelistwidth.

(=)

—

superragged3colborder

The superragged3colborder style is like the superragged3col style but has horizontal and ver-
tical lines around it.

I E
L=
superragged3colheader
The superragged3colheader style is like superragged3col but has a header row.
| E
=

superragged3colheaderborder

The superragged3colheaderborder style is like the above but has horizontal and vertical lines

around it.
l —

—

altsuperragged4col

The altsuperragged4col style is like superragged3col but has an additional column in which
the entry’s associated symbol appears. The column widths for the name and symbol column are
governed by the widest entry in the given column.

=R

| S

altsuperragged4colborder

The altsuperragged4colborder style is like the altsuperragged4col style but has horizontal and
vertical lines around it.

I E
| ——
[altsuperragged4colheader
The altsuperragged4colheader style is like altsuperragged4col but has a header row.
I —
=

altsuperragged4colheaderborder

The altsuperragged4colheaderborder style is like the above but has horizontal and vertical
lines around it.

312

13. Glossary Styles

13.1.7. Tree-Like Styles

X

\usepackage{glossary—-tree}
automatically loaded with \usepackage{glossaries}

The glossary styles described in this section are all defined in the package glossary—tree. These
styles are designed for hierarchical glossaries but can also be used with glossaries that don’t have
sub-entries. These styles will display the entry’s symbol if it has been set. Note that these styles
will automatically be available unless you use the not ree or nostyles package options.

These styles all format the entry name using:

X

\glstreenamefmt { (text)}

This defaults to \ t extb f { (fext) }, but note that (fext) will include \glsnamefont so the
bold setting in \gl st reename fmt may be counteracted by another font change in \g1s-
namefont (orin \acronymfont). The tree-like styles that also display the header use

X

\glstreegroupheaderfmt { (text) }

to format the heading. This defaults to \glstreenamefmt { (text) }. The tree-like styles
that display navigation links to the groups (such as indexhypergroup), format the navigation line
using

X

\glstreenavigationfmt { (texr)}

which defaults to \gl st reenamefmt { (text) }.

Note that this is different from \glslistnavigationitem, provided with the styles
such as listhypergroup, as that also includes \ item.

With the exception of the alttree style (and those derived from it), the space before the de-
scription for top-level entries is produced with

X

\glstreepredesc

This defaults to \ space.
With the exception of the treenoname and alttree styles (and those derived from them), the
space before the description for child entries is produced with

X

\glstreechildpredesc

This defaults to \ space.

313

13. Glossary Styles

[i
-
Most of these styles are not designed for multi-paragraph descriptions. (The tree style

isn’t too bad for multi-paragraph top-level entry descriptions, or you can use the index
style with the adjustment shown below.)

I —

| S

index

The index style is similar to the way standard indices are usually formatted in that it has a
hierarchical structure up to three levels (the main level plus two sub-levels). If the symbol is
present it is set in parentheses after the name and before the description. Sub-entries are indented
and also include the name, the symbol in brackets (if present) and the description. Groups are
separated using \ indexspace.

Each main level item is started with

X
\glstreeitem
The level 1 entries are started with
X
\glstreesubitem
The level 2 entries are started with
X

\glstreesubsubitem

Note that the index style automatically sets

\let\item\glstreeitem
\let\subitem\glstreesubitem
\let\subsubitem\glstreesubsubitem

at the start of the theglossary environment for backward compatibility.
The index style isn’t suitable for multi-paragraph descriptions, but this limitation can be over-
come by redefining the above commands. For example:

=

\renewcommand{\glstreeitem}{%
\parindentOpt\par\hangindent40pt
\everypar{\parindent50pt\hangindent40pt}}

314

13. Glossary Styles

I —

|

indexgroup

The indexgroup style is similar to the index style except that each group has a heading obtained
using \glsgetgrouptitle.
[=

| S

indexhypergroup

The indexhypergroup style is like indexgroup but has a set of links to the glossary groups. The
navigation line is the same as that for listhypergroup, described above, but is formatted using
\glstreenavigationfmt.

(=)

| S

tree

The tree style is similar to the index style except that it can have arbitrary hierarchical levels.
(Note that makeindex is limited to three levels, so you will need to use another indexing
method if you want more than three levels.) Each sub-level is indented according to the length

I
\glstreeindent initial: 10pt

This value can be changed with \ set 1ength.

Note that the name, symbol (if present) and description are placed in the same paragraph
block. If you want the name to be apart from the description, use the alttree style instead. (See
below.)

I E
L=
treegroup
The treegroup style is similar to the tree style except that each group has a heading.
(=
L=
treehypergroup

The treehypergroup style is like treegroup but has a set of links to the glossary groups. The
navigation line is the same as that for listhypergroup, described above, but is formatted using
\glstreenavigationfmt.

=a

|

treenoname

The treenoname style is like the tree style except that the name for each sub-entry is ignored.

|

treenonamegroup

The treenonamegroup style is similar to the treenoname style except that each group has a
heading.

315

13. Glossary Styles

I —

|

treenonamehypergroup

The treenonamehypergroup style is like treenonamegroup but has a set of links to the glos-
sary groups. The navigation line is the same as that for listhypergroup, described above, but is
formatted using \glstreenavigationfmt.

=

| S

alttree

The alttree style is similar to the tree style except that the indentation for each level is deter-
mined by the width of the text specified by

X

\glssetwidest [(level)] { (name)}

The optional argument (level) indicates the hierarchical level, where O indicates the top-most
level, 1 indicates the first level sub-entries, etc. If \glssetwidest hasn’t been used for a
given sub-level, the level O widest text is used instead. If (level) is omitted, O is assumed.

A

If you use the alttree style without setting the widest top level (level 0) name, there will
be no room available for the name. If a name overlaps the description, then this is an
indication that there is a name wider than the one specified.

This requires keeping track of which entry has the widest name, which may not be practical
for large glossaries. Instead you can use:

X

\glsfindwidesttoplevelname [(glossary labels)]

This iterates over all entries in the glossaries identified by the comma-separated list (glossary
labels) and determines the widest top level (level 0) entry. If the optional argument is omitted,
all non-ignored glossaries are assumed.

For example, to have the same name width for all glossaries:

B

\glsfindwidesttoplevelname
\setglossarystyle{alttree}
\printglossaries

Alternatively, to compute the widest entry for each glossary before it’s displayed:

316

13. Glossary Styles

,

\renewcommand{\glossarypreamble}{%
\glsfindwidesttoplevelname [\currentglossary]}

\setglossarystyle{alttree}

\printglossaries

(@]

=
These commands only affects the alttree styles, including those listed below and the ones

in the glossary—mcols package.

[glossaries—extra

The \glssetwidest command also affects the styles provided by glossary
—topic. The glossaries—extra—stylemods package provides additional commands. With
bib2gls, you may prefer the set —widest resource option.

J

For each level, the name is placed to the left of the paragraph block containing the symbol
(optional) and the description. If the symbol is present, it is placed in parentheses before the
description.

The name is placed inside a left-aligned \makebox, created with:

\glstreenamebox{(width)} { (text) }

where (width) is the width of the box (calculated from the widest name) and (fext) is the contents
of the box. For example, to make the name right-aligned:

\renewcommand*{\glstreenamebox} [2]{%
\makebox [#1] [r]{#2}%
}
I E
=
alttreegroup
The alttreegroup is like the alttree style except that each group has a heading.
[=
L=

alttreehypergroup

The alttreehypergroup style is like alttreegroup but has a set of links to the glossary groups.

317

13. Glossary Styles

13.1.8. Multicols Style

X

\usepackage{glossary—-mcols}
load explicitly or with
\usepackage [stylemods=mcols] {glossaries—-extra}

The glossary—mcols package provides tree-like glossary styles that are in the multicols envi-
ronment (defined by the multicol package). The style names are as their analogous tree styles
(as defined in §13.1.7) but are prefixed with “mcol”. For example, the mcolindex style is es-
sentially the index style but put in a multicols environment. For the complete list, see Ta-
ble 13.2 on the following page. The glossary—tree package is automatically loaded by glossary
—mcols (even if the not ree package option is used when loading glossaries). The formatting
commands \glstreenamefmt, \glstreegroupheaderfmt and \glstree-
navigationfmt are all used by the corresponding glossary—mcols styles.

Note that these styles will only be available if you explicitly load glossary—mcols:

\usepackage{glossaries}
\usepackage{glossary-mcols}

Note that you can’t set these styles using the st v 1 e package option since the styles aren’t defined
until after the glossaries package has been loaded.
With glossaries—extra, you can load both the package and style withthe st yleand st ylemods

options. For example:

\usepackage[style=mcolindex, stylemods=mcols]
{glossaries—extra}

The default number of columns is 2, but can be changed by redefining:

\glsmcols initial: 2

For example, for a three column glossary:

\usepackage{glossary-mcols}
\renewcommand*{\glsmcols}{3}
\setglossarystyle{mcolindex}

The styles with a navigation line, such as mcoltreehypergroup, now have a variant (as from
v4.22) with “hypergroup” replaced with “spannav” in the style name. The original “hypergroup”

318

13. Glossary Styles

Table 13.2.: Multicolumn Styles

glossary—mcols Style Analogous Tree Style
mcolindex index

mcolindexgroup indexgroup
mcolindexhypergroup or mcolindexspannav indexhypergroup
mcoltree tree

mcoltreegroup treegroup
mcoltreehypergroup or mcoltreespannav treehypergroup
mcoltreenoname treenoname
mcoltreenonamegroup treenonamegroup
mcoltreenonamehypergroup or mcoltreenonamespannav treenonamehypergroup
mcolalttree alttree
mcolalttreegroup alttreegroup
mcolalttreehypergroup or mcolalttreespannav alttreehypergroup

styles place the navigation line at the start of the first column. The newer “spannav” styles put
the navigation line in the optional argument of the multicols environment so that it spans across
all the columns.

13.1.9. In-Line Style

X

\usepackage{glossary—inline}
load explicitly or with
\usepackage [stylemods=inline] {glossaries—extra}

This section covers the glossary—inline package that supplies the inline style. This is a glossary
style that is designed for in-line use (as opposed to block styles, such as lists or tables). This style
doesn’t display the number list.

Note that this style will only be available if you explicitly load glossary—inline:

\usepackage{glossaries}
\usepackage{glossary—-inline}

With glossaries—extra, you can load both the package and style withthe st yleand st ylemods
options. For example:

Ei

\usepackage[style=inline, stylemods=inline]
{glossaries—extra}

319

13. Glossary Styles

You will most likely need to redefine \glossarysect ion with this style. For example,
suppose you are required to have your glossaries and list of acronyms in a footnote, you can do:

\usepackage{glossary—-inline}
\renewcommand*{\glossarysection}[2] []{\textbf{#1}: }
\setglossarystyle{inline}

Then where you need to include your glossaries as a footnote you can do:

\footnote{\printglossaries}

oll- I~

inline

This is the only style provided by glossary—inline.

The group skip command \glsgroupskip is defined to do nothing, regardless of the
nogroupskip option. Likewise, \glsgroupheading is defined to do nothing. If you
want to create a custom style base on the inline style that shows a heading, then add \glsin-
linedopostchild to the definition of \glsgroupheading in case a group heading
follows a child entry.

[i

|
Don’t redefine \glsinlinedopostchild. It’s provided as a user command to
make it easier to add it to the start of a custom definition of \glossaryheader to

enable group headings. If you need to adjust the content between a sub-entry and the next
entry, redefine \glsinlinepostchild instead.

The inline style is governed by the following commands.

) §
\glsinlineseparator initial: ; \space
This is used between top level (level 0) entries.
b §
\glsinlinesubseparator initial: , \ space
This is used between sub-entries.
b §
\glsinlineparentchildseparator initial: : \space

This is used between a top level (level 0) parent entry and its first sub-entry.

320

13. Glossary Styles

X
\glspostinline
This is used at the end of the glossary. The default definition is:
\glspostdescription\space
This is the only place that the post-description hook is used in this style.
X
\glsinlinenameformat {(entry-label) } { (name)}

This is used to create the target, where (name) is provided in the form \glossentryname
{ (entry-label) } and (entry-label) is the entry’s label. The default definition is:

\glstarget { (entry-label) } { (name) }

For example, if you want the name to appear in small caps:

\renewcommand*{\glsinlinenameformat} [2] {\glstarget

{#1}{\textsc{#2}}}

This style needs to know if an entry has any children. This test is performed with:

\glsinlineifhaschildrenf{ (entry-label)} { (true)} { (false)}

The default definition simply uses \ifglshaschildren, which is inefficient as it has to
iterate through all entries (in the same glossary as (entry-label)) to determine which ones have
the given entry as a parent. This can be time-consuming for large glossaries, but the assump-
tion here is that an inline glossary is unlikely to be used with a large set of entries. However,
if you are using bib2gls with the save—child—-count resource option, it’s more ef-
ficient to use \GlsXtrIfHasNonZeroChildCount instead (particularly if you are
using \printunsrtglossary with a filtered subset). For example:

=

\renewcommand{\glsinlineifhaschildren}[3]{%
\GlsXtrIfHasNonZeroChildCount{{#I)}{#2}{#3}%
}

Sub-entry names are formatted according to:

321

13. Glossary Styles

\glsinlinesubnameformat { (entry-label)} { (name)}

which has the same syntax as \glsinlinenameformat but a different definition:

[\glstarget {(entry-label)} { }

which means that the sub-entry name is ignored.
If the description is empty or has been suppressed (according to \ifglshasdesc and
\ifglsdescsuppressed, respectively) then:

X

\glsinlineemptydescformat { (symbol)} { (location list) }

(which does nothing by default) is used, otherwise the description is formatted according to:

X

\glsinlinedescformat {(description) } { (symbol) } { (location list) }

This defaults to just \ space (description) so the symbol and location list are ignored.
For example, if you want a colon between the name and the description:

\renewcommand*{\glsinlinedescformat} [3]{: #1}

The sub-entry description is formatted according to:

\glsinlinesubdescformat {(description)} { (symbol) } { {location list) }

This defaults to just (description).

\glsinlinepostchild

This hook is used at the start of a top level (level 0) entry that immediate follows a sub-entry. It
does nothing by default.

13.2. Defining your own glossary style
The markup used in the glossary is described in §8.2. Commands that may be used by styles,

but should not be redefined by styles, are described in §§13.2.1 & 13.2.2. The commands that
should be redefined by the glossary style are described in §13.2.3.

322

13. Glossary Styles

[i
=
Commands like \printglossary are designed to produce content in the PDF. If

your intention is to design a style that doesn’t print any content (for example, to simply
capture information) then you are likely to experience unwanted side-effects. If you just
want to capture indexing information (such as locations) then a much better approach is
to use bib2gls, which automatically stores this information in dedicated fields when
the entry is defined. If you still really want to use a style to capture information obtained
from makeindex or xindy then simply \ input the indexing file instead of using
\printglossary.

If the predefined glossary styles don’t fit your requirements, you can define your own style
using:

X

\newglossarystyle{ (style-name) } { (definitions) }

where (style-name) is the name of the new glossary style (to be used in the sty 1le option or
\setglossarystyle). An existing style can be redefined with:

X

\renewglossarystyle{ (style-name)} { (definitions) }

In both cases, the second argument (definitions) needs to redefine all of the commands listed in
§13.2.3.

(i]

—

Bear in mind that parameters will need to be referenced with # # rather than .

A style may inherit from an existing style by starting (definitions) with \setglossary-
style and then just redefine the commands that are different from the inherited style.

For example, the indexgroup style is basically the same as the index style, except for the defi-
nition of \glsgroupheading, so the style is simply defined as:

\newglossarystyle{indexgroup}{%
\setglossarystyle{index}% inherit index
% alter the command that's different:
\renewcommand*{\glsgroupheading} [1]{%
\item\glstreegroupheaderfmt{\glsgetgrouptitle
{##1}1%

\indexspace

o\°

}
}

323

13. Glossary Styles

13.2.1. Commands For Use in Glossary Styles

These commands are typically used in style definitions but should not be modified by the style.
See §13.2.2 for hyperlinks to group headings.
In order to support the ent rycounter=option, a style needs to use:

\glsentryitem{ (label)}

at the place where the associated number should appear if the optionisset. If entrycounter
=true, \glsentryitem will do:

\glsstepentry{{label)}\glsentrycounterlabel

otherwise itwilldo \glsreset subent rycounter (which ensures the sub-entry counter
is reset if it has been enabled with subentrycounter).
For example, the list style defines \glossent ry as follows:

\renewcommand*{\glossentry} [2]{%
\item[\glsentryitem{##1}%
\glstarget {##1}{\glossentryname{##1}}]
\glossentrydesc{##1}\glspostdescrip-
tion\space ##2}

In order to support the subent rycounter=option, a style needs to use:

\glssubentryitem{ (label)}

at the place where the associated number should appear if the option is set. If subentry-
counter=true, this will do:

[\glsstepsubentry{{label)} \glssubentrycounterlabel

otherwise it does nothing. This will typically only be used with level 1 and omitted for deeper
hierarchical levels.
For example, the index style has:

324

13. Glossary Styles

\renewcommand{\subglossentry} [3]{%
\ifcase##1
% level O
\item
\or
% level 1
\subitem
\glssubentryitem{##2}%
\else
% all other levels
\subsubitem
\fi
\glstreenamefmt{\glstarget{##2}{\glossentryname
{##2}}115%
\ifglshassymbol{##2}{\space (\glossentrysymbol{##2}
) H{}5%
\glstreechildpredesc\glossentrydesc{##2}\glspost-—
description\space ##3%

}

The test for level O is redundant in this case as \glossentry will be used for top level
(level 0) entries, but is provided for completeness. Note that \glssubentryitem is only
used for level 1.
The style will typically also create the target to enable hyperlinks from an entry reference
within the document (created with commands like \ g1 s) to the entry line in the glossary.
The target is created with:

\glstarget {{entry-label) } { (text) }

If hyperlinks aren’t enabled, this simply does the second argument (zext), otherwise it will create
a target with the name (prefix) (entry-label), where the prefix is obtained by expanding:

X

\glolinkprefix initial: glo:

The glossaries—extra package has options, such as pre f 1 x, that can be used to override this.

X

\glossentryname { (entry-label) }

This is used in glossary styles to display the name encapsulated with \glsnamefont. Unlike
\glsentryname, this command will trigger a warning if the entry hasn’t been defined. The
sentence case version is:

325

13. Glossary Styles

\Glossentryname { (entry-label) }

Both commands internally use \glsnamefont so there’s no need to explicitly use that com-
mand in a style.

[glossaries—extra

With glossaries—extra, the gl ossnamefont and gl ossname category attributes
can be used to adjust font and, for \glossent ryname, case-changing. If you just
use \glsentryname, the style won't be influenced by those attributes.

\glossentrydesc{ (entry-label)}

This is used in glossary styles to display the description. Unlike \ g1l sent rydesc, this com-
mand will trigger a warning if the entry hasn’t been defined. The sentence case version is:

X

\Glossentrydesc{ (entry-label) }

[glossaries—extra

With glossaries—extra the glossdescfont and glossdesc category attributes
can be used to adjust font and, for \glossentrydesc, case-changing. If you just
use \glsentrydesc, the style won’t be influenced by those attributes.

\glossentrysymbol { (entry-label) }

This is used in glossary styles to display the symbol. Unlike \glsentrysymbol, this
command will trigger a warning if the entry hasn’t been defined. The sentence case version is:

X

\Glossentrysymbol { (entry-label) }

[glossaries—extra

With glossaries—extra you can use the gl osssymbol font category attribute to ad-
just font. If you just use \glsentrysymbol, the style won’t be influenced by that
attribute.

glossary styles that support groups can obtain the group title with:

326

13. Glossary Styles

\glsgetgrouptitle (group-label)}

This gets the title associated with the group identified by (group-label) and displays it. The title
is determined as follows:

o if (group-label) is a single character or either gl snumbers or gl ssymbols and the
command \ (group-label)groupname exists, then that command is used as the title.

* otherwise the title is the same as the group label.

[glossaries—extra

The glossaries—extra package provides improved support for group titles, but redefines
\glsgetgrouptitle toaccommodate the enhanced features.

13.2.2. Hyper Group Navigation

X

\usepackage{glossary—-hypernav}
automatically loaded with \usepackage{glossaries}

There is no need to load this package. It will automatically be loaded by glossaries. If hyperref
hasn’t been loaded, these commands will still be available but simply won’t form hyperlinks or
targets, so they can be used in glossary styles without any need to check for hyperlink support.
(However, the result might look a bit strange if the reader expects the navigation text to be
hyperlinks.)

X

\glsnavhypertarget [(glossary-label)] { (group-label) } { (group-title) }

Creates a hyper target for a group. The (glossary-label) argument is the label that identifies the
glossary. If omitted, \currentglossary is assumed. The (group-label) argument is the
label that identifies the group. This additionally writes information to the aux file so that on the
next ISTEX run, \glsnavigat ion will have a list of groups for the glossary.

For example, the indexhypergroup includes a group target in the header:

\renewcommand*{\glsgroupheading} [1]{%
\item\glstreegroupheaderfmt
{\glsnavhypertarget{#1}{\glsgetgrouptitle{#1}}}

o\°

\indexspace

}

327

13. Glossary Styles

X

\glsnavhypergroupdotarget { (glossary-label) } { (group-label) } { {group-
title) }

This is used by \glsnavhypertarget to create the actual hyperlink target. So if you
need to change the way that the target is created, redefine this command rather than \gl snav-
hypertarget.

X
\glsnavhyperlink [(glossary-label)] { (group-label) } { (group-title) }
Creates a hyperlink to the given group, where the target name is obtained from:
b §
\glsnavhyperlinkname [(glossary-label)] { (group-label) }

The (glossary-label) argument is the label that identifies the glossary. If omitted, \current-
glossary isassumed. Typically, styles don’t need to explicitly use this command as they can
use the following command instead.

(@]

=
Version 4.53 has switched from using an internal comma-separated list to a sequence

command. If you have hacked the internal commands you will need to either rollback to
v4.52 or switch to the newer commands.

\glsnavigation

Displays a simple navigation list, where each item in the list has a hyperlink created with \g1s-
navhyperlink to a group, where the group title is obtained with \glsgetgroup-
title. Eachitem in the list has the title and hyperlink set with:

X

\glsnavigationitem{ (group-label)}

This fetches the corresponding group title and creates a hyperlink with \glsnavhyper-
1link. The items are separated with:

X

\glshypernavsep

The default definition is \ space\textbar\space which creates a vertical bar with a
space on either side.

328

13. Glossary Styles

\glssymbolnav

Just produces a simple set of navigation links for the symbol and number groups and ends with
the \glshypernavsep separator. Unlike \glsnavigation, there’s no check to de-
termine if the glossary has those groups. This command is a historical artefact leftover from
early versions. There should be little need for it now as \glsnavigation should include
all the groups that are in the glossary.

13.2.3. Glossary Style Commands

The commands listed in this section should all be redefined by every glossary style. However, a
style may be based on another style, in which case the style definitions should start with \ set-
glossarystyle and then only redefine the commands that should differ from the inherited
style.

Note that \print(..)glossary sets \currentglossary to the current glossary
label, so it’s possible to create a glossary style that varies according to the glossary type, but this
will generally limit its usefulness.

X

\begin{theglossary}(content)\end{theglossary}

The actual content of the glossary is placed inside the theglossary environment. For example,
the list style redefines this to start and end the description environment:

\renewenvironment{theglossary}%
{\glslistinit\begin{description}}{\end
{description}}

Immediately after \begin{theglossary} comes the header:

\glossaryheader

For example, the longheader style has:

\renewcommand*{\glossaryheader}{$%
\bfseries \entryname & \bfseries \description-
name\tabularnewline\endhead}

(Note that this is not the same as the preamble which occurs before the start of the theglossary
environment and is not part of the style.)

The rest of the contents of the theglossary environment is divided into letter group blocks.
Each block starts with the group heading:

329

13. Glossary Styles

\glsgroupheading{ (group-label) }

Note that the argument is a label that identifies the group. Some glossary styles redefine this
command to do nothing, which means there’s no group title displayed. Others, such as glossary
styles, will obtain the group title from the (group-label) and format the title to fit the style.

o
The (group-label) is typically obtained by the indexing application, based on the sort value.

With Options 1, 2 and 3, groups only related to top level (level 0) entries.

[glossaries—extra

The glossaries—extra package additionally provides \glssubgroupheading to
support sub-groups, which are only available with Options 4 and 5. Glossary styles should
only include a redefinition of \ g1 ssubgroupheading if the style is specifically de-
signed for use with glossaries—extra as the command won’t be available with just the base
glossaries package. (A default definition will be provided if this command isn’t set with
glossaries—extra.)

J

After the group heading, each top level (level 0) entry line within the group is formatted with:

X

\glossentry{(entry-label) } { (number-list) }

The first argument is the entry’s label. The second is the number list that was collated by the
indexing application.

The (number-list) argument may be empty or \ re 1 ax, or may contain the number list encap-
sulated with \glossaryentrynumbers, possibly prefixed with a pre-number list hook.
If (number-list) is an unbraced \ re lax, that typically indicates that Options 2 or 3 were used
and the entry was a parent that wasn’t indexed but has been included because it has an indexed
child entry. An empty (number-list) argument is more likely to be a result of Options 1, 4 or 5,
in which case nothing can be inferred about whether or not the entry was actually indexed.

Each sub-entry line is formatted with:

\subglossentry{(level)} { (entry-label) } { (number-list) }

where (level) is the hierarchical level. The other arguments are the same as for \gloss-
ent ry. Some glossary styles redefine this command to simply use \glossentry, in which
case the glossary will have a flat (no-hierarchy) appearance, but the indexing application will still
take the hierarchy into account when ordering the entries.

330

13. Glossary Styles

[i
=
The glossary styles should redefine \glossentry and \subglossentry to fit

the style, but they should not redefine the markup in (number-list). If the style doesn’t
support number lists, then the (number-list) argument should simply be ignored.

The glossary styles will typically redefine \glossentry touse \glsentryitemto
support the ent rycounter option, \glstarget to create the hyperlink target, and will
use \glossentryname to format the name.

Similarly, \ subglossent ry will typically start with \glssubentryitem to sup-
portthe subent rycounter option. Again \glstarget isneeded to create the hyperlink
target. The entry name may be displayed with \glossent ryname or may be omitted to
support homographs.

Between each letter group block (that is, before all instances of \glsgroupheading
except for the first one) is the group skip:

X

\glsgroupskip

Some glossary styles redefine this to do nothing, but some may define it to create a vertical gap

in order to visually separate the letter groups. Most of the predefined styles use the \1 fgls-

nogroupskip conditional within this command to determine whether or not to add the gap.
For example, the list style defines \glsgroupskip as follows:

\renewcommand*{\glsgroupskip}{\ifglsnogroup—
skip\else\indexspace\fi}

This has the conditional inside the definition of \glsgroupskip which allows it to be
changed after the style has been set. This causes a problem for tabular-like styles, so those
need to have the conditional outside of the definition. For example, the long—booktabs style has:

\ifglsnogroupskip
\renewcommand* {\glsgroupskip}t{}%
\else
\renewcommand*{\glsgroupskip}{\glspenaltygroup-
skip}%
\fi

This requires the conditional to be set before the style definitions are performed.

Example 34: Creating a completely new style

If you want a completely new style, you will need to redefine all of the commands and the
environment listed above in this section.

331

13. Glossary Styles

For example, suppose you want each entry to start with a bullet point. This means that the
glossary should be placed in the itemize environment, so theglossary should start and end that
environment. Let’s also suppose that you don’t want anything between the glossary groups (so
\glsgroupheadingand \glsgroupskip should do nothing) and suppose you don’t

want anything to appear immediately after \begin{theglossary} (so\glossaryheader

should do nothing). In addition, let’s suppose the symbol should appear in brackets after the name,
followed by the description and last of all the number list should appear within square brackets
at the end. Then you can create this new glossary style, called, say, my 11ist, as follows:

\newglossarystyle{mylist}{%
% put the glossary in the itemize environment:
\renewenvironment {theglossary}%
{\begin{itemize}}{\end{itemize}}%

% no header after \begin{theglossary}
\renewcommand*{\glossaryheader}{}%
% no visual distinction between glossary groups:
\renewcommand*{\glsgroupheading}[1]{}%
\renewcommand* {\glsgroupskip}t{}%
% set how each entry should appear:
\renewcommand*{\glossentry}[2]4{%

\item % bullet point
\glstarget{##1}{\glossentryname{##1}}
% the entry name

\space (\glossentrysymbol{##1}

)% the symbol in brackets

\space \glossentrydesc{##1}% the description
\space [##2]% the number list in square brackets
+%

% set how sub-entries appear:
\renewcommand*{\subglossentry} [3]{%

\glossentry{##2}{##3}}%

}

Note that this style creates a flat glossary, where sub-entries are displayed in exactly the same way
as the top level entries. Italso hasn’tused \glsentryitemor \glssubentryitemso
itwon’tbe affected by theent rycounter, counterwithinorsubentrycounter
package options.
Variations:

* You might want the entry name to start with a capital, in which case use \Glossentry-
name instead of \glossentryname.

* You might want to check if the symbol hasn’t been set and omit the parentheses if the
symbol is absent. In this case you can use \1fglshassymbol (see §15):

332

13. Glossary Styles

\renewcommand*{\glossentry}[2]{%
\item % bullet point
\glstarget{##1}{\glossentryname{##1}}
% the entry name
\ifglshassymbol{##1}% check if symbol exists
{%
\space (\glossentrysymbol{##1}

)% the symbol in brackets

}S

{}% no symbol so do nothing

\space \glossentrydesc{##1}% the description
\space

[##2]% the number list in square brackets

}%

Example 35: Creating a new glossary style based on an existing style

If you want to define a new style that is a slightly modified version of an existing style, you can
use \setglossarystyle within the second argument of \newglossarystyle
followed by whatever alterations you require. For example, suppose you want a style like the list
style but you don’t want the extra vertical space created by \ indexspace between groups,
then you can create a new glossary style called, say, my 1 i st as follows:

\newglossarystyle{mylist}{%
\setglossarystyle{list}
% base this style on the list style

% make nothing happen between groups:
\renewcommand{\glsgroupskip}{}%

}

(In this case, you can actually achieve the same effect using the list style in combination with the
package option nogroupskip.)

Example 36: Example: creating a glossary style that uses the userl, ...,
userb6 keys

Suppose each entry not only has an associated symbol, but also units (stored in user 1) and

333

13. Glossary Styles

dimension (stored in user2). Then you can define a glossary style that displays each entry in a

longtable as follows:

\newglossarystyle{long6col}{%
% put the glossary in a longtable environment:
\renewenvironment {theglossary}%
{\begin{longtable}{lp{\glsdescwidth}cccp{\glspage-
listwidth}}}%
{\end{longtable}}%
% Set the table's header:
\renewcommand*{\glossaryheader}{$%
\bfseries Term & \bfseries Description & \bfseries Symbol &
\bfseries Units & \bfseries Dimensions & \bfseries Pgge List
\\\endhead}%
% No heading between groups:
\renewcommand*{\glsgroupheading}[1]1{}%
% top level (level 0) entries displayed in a row opti¢nally num
\renewcommand*{\glossentry} [2]{%
\glsentryitem{##1}% Entry number if required
\glstarget{##1}{\glossentryname{##1}}% Name
& \glossentrydesc{##1}% Description
& \glossentrysymbol{##1}% Symbol
& \glsentryuseri{##1}% Units
& \glsentryuserii{##1}% Dimensions
& ##2% Page list
\

o

tabularnewline % end of row
}
% Similarly for sub-entries (no sub-entry numbers)
\renewcommand*{\subglossentry} [3]{%

% ignoring first argument (sub-level)
\glstarget{##2}{\glossentryname{##2}}% Name
& \glossentrydesc{##2}% Description
& \glossentrysymbol{##2}% Symbol
& \glsentryuseri{##2}% Units
& \glsentryuserii{##2}% Dimensions
& ##3% Page list

o

\tabularnewline % end of row
}%
% Nothing between groups:
\renewcommand*{\glsgroupskip}{}%

}

334

13. Glossary Styles

335

14. Xindy (Option 3)

If you want to use x indy to sort the glossary, you must use the package option xindy:

B

[\usepackage[xindy] {glossaries}

This ensures that the information is written to the indexing files using xindy’s raw syntax.
§1.6 covers how to use the external indexing application, and §12.3 covers the issues involved
in the location syntax. This section covers the commands provided by the glossaries package
that allow you to adjust the x1ndy style file (xdy) and parameters.
To assist writing information to the x1ndy style file, the glossaries package provides the
following commands:

X

\glsopenbrace

which expands to (a literal open brace) and

\glsclosebrace

which expands to (a literal closing brace). This is needed because \ { and \ } don’t expand to
a simple brace character when written to a file.

7

\glspercentchar

Expands to (a literal percent).

\glstildechar

Expands to ~ (a literal tilde).
For example, a newline character is specified in a xindy style file using ~n so you can use
\glstildechar n towrite thiscorrectly (oryoucando \string~ (literal)n).

X

\glsbackslash

Expands to \ (a literal tilde).
In addition, if you are using a package that makes " (double-quote) active you can use:

336

14. Xindy (Option 3)

\glsquote((text)}

which will produce " (fext) ", where " is a literal character. Alternatively, youcanuse \string"

to write the double-quote character. This document assumes that the double quote character has
not been made active, so the examples just use " for clarity.

If you want greater control over the xindy style file than is available through the ISTEX
commands provided by the glossaries package, you will need to edit the xindy style file. In
which case, you must use \no1i st to prevent the style file from being overwritten by \make-
glossaries package. For additional information about xindy, read the x1ndy docu-
mentation. 'm sorry I can’t provide any assistance with writing xindy style files. If you need
help, I recommend you ask on the x i ndy mailing list.!

14.1. Required Styles

The xdy file created by \makeglossaries starts with identifying the required styles. By
default, the t e x style is automatically added, so the xdy file should contain:

; required styles
(require "tex.xdy")

Any additional styles can be identified in the preamble (before \makeglossaries) with:

X

\G1lsAddXdyStyle{ (style-name)}

The styles are all stored as a comma-separated list, so you can list multiple styles within the
argument, but avoid spurious spaces. You can reset the style list (for example, if a style needs to
be identified before tex . xdy) with:

X

\GlsSetXdyStyles/{ (style name list) }

The argument should be a comma-separated list where, again, you need to make sure there are
no spurious spaces.

'"http://xindy.sourceforge.net/mailing—list.html

337

http://xindy.sourceforge.net/mailing-list.html
http://xindy.sourceforge.net/mailing-list.html

14. Xindy (Option 3)

14.2. Language and Encodings

[©
=
The commands in this section are only relevant if you use makeglossaries or
automake. If you are calling x 1 ndy explicitly you need to set the —L and —C switches

appropriately.

7

When you use xindy, you need to specify the language and encoding used (unless you have
written your own custom x1indy style file that defines the relevant alphabet and sort rules).
If you use makeglossaries, this information is obtained from the document’s auxiliary
(aux)file. Themakeglossaries scriptattempts to find the x1 ndy language name given
your document settings, which may not match the babel or polyglossia name, using set of known
mappings.

o

Language mappings aren’t supported with makeglossaries—-lite or
automake.

The default is to use \ languagename. The information is written to the aux file at the
start of \printglossary, which means that it should match the language in the document
at that point.

In the event that makeglossaries gets the language name wrong or if xindy doesn’t
support that language, then you can specify the required language using:

X

\GlsSetXdyLanguage [(glossary-type)] { (language) }

where (language) is the name of the language. The optional argument can be used if you have
multiple glossaries in different languages. If (glossary type) is omitted, \glsdefaulttype
is assumed. If a language hasn’t been set for a particular glossary then the language will be as for
the default glossary.

(@]

=
The xindy codepage may not simply be the file encoding but may also include sorting

rules.

7

The default codepage will be obtained from the value of \inputencodingname. If
that command isn’t defined or is empty, ut £8 is assumed. As with \ languagename, the
input encoding name obtained with \ inputencodingname may not match the xindy
codepage name, which may include additional information, such as 1 j—as—1j (with Dutch)
or din5007 (with German).

Again, makeglossaries will try to adjust the codepage for known cases, but it may get
it wrong. Neither makeglossaries—1ite nor the aut omake option will make those
adjustments.

338

14. Xindy (Option 3)

If the default is incorrect, you can specify the correct codepage using:

\GlsSetXdyCodePage{ (codepage) }

where (code-page) is the name of the codepage. Note there’s only one codepage for all glossaries
as it’s rare to switch encoding mid-document. For example:

Ei

\GlsSetXdyLanguage{dutch}
\GlsSetXdyCodePage{ij—as-y-utf8}

This can also be implemented as a package option:

=

\usepackage [xindy=language=dutch, codepage=ij-as-y-
utf8] {glossaries}

In the event that you want one glossary sorted with 1 j—as—y and another with 1 j—as—17j
you will need to call xindy explicitly for each glossary.
[i
=
Some x 1 ndy modules only support one encoding for a particular language. For example,

the Latin language module only supports UTF-8

If you write your own custom xindy style file that includes the language settings, you need
to set the language to nothing:

=

[\GlsSetXdyLanguage({}

(and remember to use \noist to prevent the style file from being overwritten).

14.3. Locations and Number lists

If you use xindy, the glossaries package needs to know which counters you will be using
in the number list in order to correctly format the xindy style file. Counters specified using
the counter package option or the (counter) option of \newglossary are automatically
taken care of, but if you plan to use a different counter in the counter key for the \gls-
like or \glstext-like commands, then you need to identify these counters before \make-
glossaries using:

339

14. Xindy (Option 3)

\GlsAddXdyCounters/{ (counter list) }

where (counter list) is a comma-separated list of counter names.

Xindy attributes normally correspond to the encap when using the standard \ index com-
mand where the locations are all page numbers, but the glossaries package needs to incorporate
the location counter as well. For example, if the hyperbf encap is used with the section
counter, then the xindy attribute will be sectionhyperbf. This is in contrast to using
makeindex, where the counter is incorporated in the encap with \setentrycounter.

The most likely xindy attributes (such as pagehyperbf) are automatically added to the
xdy style file, but if you want to use another encap, you need to add it with:

X
\GlsAddXdyAttribute/{ (name)}
where (name) is the name of the encap, as used in the format key.
Note that \G1sAddXdyAttribute will define commands in the form:
) §

\ g1 sX({counter)X(format){ (H-prefix) } { (location) }

where (counter) is the location counter and (format) is the encap (identified by the (name) ar-
gument of \GlsAddXdyAttribute).

This command is provided for each counter that has been identified either by the counter
package option, the (counter) option for \newglossary or in the argument of \G1 sAdd-
XdyCounters. Each command has a definition in the form:

\setentrycounter [(H-prefix)] { {counter) } \ (format) { (location) }

This ensures that, if required, location hyperlinks can be supported.

e

A

The \ gl sX(counter)X(format) commands may need redefining for unusual locations
where the default definition won’t work with hyperlinks (see Example 39 on page 343).

Take care if you have multiple instances of the same location with different formats. The
duplicate locations will be discarded according to the order in which the attributes are listed.
Consider defining semantic commands to use for primary references. For example:

=

\newcommand*{\primary} [1]{\hyperbf{1}}
\GlsAddXdyAttribute{primary}

Then in the document:

340

14. Xindy (Option 3)

A \gls[format=primary]{duck} is an aquatic bird.
There are lots of different types of \gls{duck}.

This will give the format=primary instance preference over the next use that doesn’t use
the format key.

Example 37: Custom Font for Displaying a Location

Suppose I want a bold, italic, hyperlinked location. I first need to define a command that will
do this:

\newcommand* {\hyperbfit} [1]{\textit{\hyperbf{1}}}

but with xindy, [also need to add this as an allowed attribute:

\GlsAddXdyAttribute{hyperbfit}

Now I can use it in the optional argument of commands like \g1ls:

Here is a \gls[formathyperbfit]{sample} entry.

8 L0 LB

(where “sample” is the label of the required entry).

(]
=
Note that \GlsAddXdyAttribute has no effect if \noist is used or if
\makeglossaries is omitted. \GlsAddXdyAttribute must be used be-
fore \makeglossaries. Additionally, \GlsAddXdyCounters must come

before \G1lsAddXdyAttribute.

If the locations include robust or protected formatting commands, then you need to add a
location style using the appropriate x1ndy syntax using:

X

\GlsAddXdyLocation [(H-prefix)] { (name) } { (definition) }

where (name) is the name of the location style and (definition) is the x indy definition. The
optional argument (H-prefix) is needed if \theH(counter) either isn’t defined or is different
from \ the(counter). Be sure to also read §12.3 for some issues that you may encounter.

341

14. Xindy (Option 3)

[i
=
Note that \GlsAddXdyLocation has no effect if \noist is used or if
\makeglossaries is omitted. \GlsAddXdyLocat ion must be used before

\makeglossaries.

Example 38: Custom Numbering System for Locations

Suppose I decide to use a somewhat eccentric numbering system for sections where I redefine
\thesection as follows:

\renewcommand*{\thesection}{[\thechapter]\arabic
{section}}

_ B

If T haven’t used the package option counter=section, then I need to specify that the
section counter will be used as a location counter:

\GlsAddXdyCounters{section}

Next I need to add the location syntax:

\GlsAddXdyLocation{section}{:sep "[" "arabic-
numbers" :sep "]"
"arabic—numbers"

}

B LB

This assumes that \t hechapter is defined as \arabic{chapter}.
Note that if I have further decided to use the hyperref package and want to redefine \t heH-
section as:

\renewcommand*{\theHsection}{\thepart.\thesection}
\renewcommand*{\thepart}{\Roman{part}}

then I need to modify the \G1sAddXdyLocation code above to:

\GlsAddXdyLocation["roman—-numbers—-uppercase"]
{section}{:sep "["
"arabic-numbers" :sep "]" "arabic-numbers"

_ B LB

342

14. Xindy (Option 3)

|

Since \Roman will result in an empty string if the counter is zero, it’s a good idea to add an
extra location to catch this:

=

\GlsAddXdyLocation{zero.section}{:sep "["
"arabic—numbers" :sep "]" "arabic-numbers"

}

This example is illustrated in the sample file samplexdy?2.tex.

Example 39: Locations as Dice

This example will cause x1ndy special characters to appear in the location, which means
that location escaping will need to be enabled:

=

\usepackage [xindy,esclocations] {glossaries}
\glswrallowprimitivemodstrue

Suppose I want a rather eccentric page numbering system that’s represented by the number
of dots on dice. The stix package provides \dicei, ..., \dicevi that represent the six
sides of a die. I can define a command that takes a number as its argument. If the number is
less than seven, the appropriate \dice(n) command is used otherwise it does \dicevi the
required number of times with the leftover in a final \ dice(n). For example, the number 16 is
represented by \dicevi\dicevi\diceiv (6 + 6+ 4 = 16). I've called this command
\tallynum to match the example given earlier in §12.3:

,

\newrobustcmd{\tallynum} [1]{%

\1ifnum\numberl<7

S\csname dicel\romannumerall\endcsname$$%
\else

S\dicevi$%

\expandafter\tallynum\expandafter{\numexprl-6}%
\fi
}

Here’s the counter command:

343

14. Xindy (Option 3)

=

\newcommand{\tally}[1]{\tallynum{\arabic{1}}}

The page counter representation (\thepage) needs to be changed to use this command:

=

\renewcommand*{\thepage}{\tally{page}}

The \tally commandexpandsto \tallynum {number} so thisneeds a location class
that exactly matches this format:

\GlsAddXdyLocation{tally}{%
:sep "\string\tallynum\space\glsopenbrace"
"arabic-numbers"
:sep "\glsclosebrace"

}

The space between \tallynum and {number} is significant to xindy so \ space is re-
quired.

The sample file samplexdy.tex, which comes with the glossaries package, uses the
default page counter for locations, and it uses the default \ g1 snumberformat and a custom
\hyperbfit format. A new xindy location called “tallynum”, as illustrated above, is
defined to make the page numbers appear as dice. In order for the location numbers to hyperlink
to the relevant pages, I need to redefine the necessary \ g1 sX(counter)X(format) commands:

,

\renewcommand{\glsXpageXglsnumberformat} [2]{%
\linkpagenumber2%

}

\renewcommand{\glsXpageXhyperbfit} [2]{%
\textbf{\em\linkpagenumber2}%
}

\newcommand{\linkpagenumber} [2] {\hyperlink{page.2}{1
{211}

Note that the second argument of \gl sXpageXglsnumberformat isintheform \tallynum
{ (number) } so the line

=

\linkpagenumber2%

344

14. Xindy (Option 3)

does

=

\linkpagenumber\tallynum{ (number)}

so \tallynumis the first argument of \1inkpagenumber and (number) is the second
argument.

[i
|
This method is very sensitive to the internal definition of the location command. If you are

defining your own command, you control how it expands, but if you are using a command
provided by another package, be aware that it may stop working in a future version of that
package.

Example 40: Locations as Words not Digits

This example will cause x1ndy special characters to appear in the location, which means
that location escaping will need to be enabled:

=

\usepackage [xindy,esclocations] {glossaries}
\glswrallowprimitivemodstrue

Suppose I want the page numbers written as words rather than digits and I use the fmtcount
package to do this. I can redefine \ thepage as follows:

\renewcommand*{\thepage}{\Numberstring{page}}

This used to get expanded to

\protect \Numberstringnum {(n)}

where (n) is the Arabic page number. This means that I needed to define a new location with the
form:

=

\GlsAddXdyLocation{Numberstring}

{:sep "\string\protect\space
\string\Numberstringnum\space\glsopenbrace"
"arabic-numbers" :sep "\glsclosebrace"}

345

14. Xindy (Option 3)

and if I'd used the \ 1 inkpagenumber command from the previous example, it would need
three arguments (the first being \protect):

=

\newcommand{\linkpagenumber} [3] {\hyperlink{page.3}
{12{3}}}

The internal definition of \Numberst ring has since changed so that it now expands to

\Numberstringnum {(n)}

(no \protect). This means that the location class definition must be changed to:

Ei

\GlsAddXdyLocation{Numberstring}{% no \protect now!
:sep "\string\Numberstringnum\space\glsopenbrace"
"arabic-numbers" :sep "\glsclosebrace"}

and \ 1 inkpagenumber goes back to only two arguments:

\newcommand{\linkpagenumber} [2] {\hyperlink{page.2}{1
{2}}}

The other change is that \Numberstring uses

~

\the\value{(counter)}

instead of

\expandafter\the\csname c@(counter)\endcsname

so it hides \ c@page from the location escaping mechanism (see §12.3). This means that the
page number may be incorrect if the indexing occurs during the output routine.

A more recent change to fmtcount (v3.03) now puts three instances of \expandafter be-
fore \the \value which no longer hides \ c@page from the location escaping mechanism,
so the page numbers should once more be correct. Further changes to the fmtcount package may
cause a problem again.

(i]
=
When dealing with custom formats where the internal definitions are outside of your con-

trol and liable to change, it’s best to provide a wrapper command.

346

14. Xindy (Option 3)

Instead of directly using \Number st ring in the definition of \thepage, I can provide
a custom command in the same form as the earlier \tally command:

\newcommand{\customfmt} [1] {\customfmtnum{\arabic{1}}

}

\newrobustcmd{\customfmtnum} [1] { \Numberstringnum{1}}

This ensures that the location will always be written to the indexing file in the form:

:locref "\glsopenbracel\glsclosebrace\glsopen-
brace\string\\customfmtnum {(n)}\glsclosebrace"

So the location class can be defined as:

\GlsAddXdyLocation{customfmt } {
:sep "\string\customfmtnum\space\glsopenbrace"
"arabic-numbers"
:sep "\glsclosebrace"}

The sample file samplexdy3 . tex illustrates this.

In the number list, the locations are sorted according to the list of provided location classes.
The default ordering is:

1. roman—-page—numbers (i, ii, ...);
2. arabic-page—-numbers (1,2, ...);

3. arabic-section—numbers (for example, 1.1 if the compositor is a full stop or
1-1 if the compositor is a hyphen);

4. alpha-page—numbers (a, b, ...);
5. Roman—-page—numbers (L1, ...);
6. Alpha-page—numbers (A, B, ...);

7. Appendix-page—numbers (forexample, A.1 if the Alpha compositor, see \g1 s-
SetAlphaCompositor,isa full stop or A-1 if the Alpha compositor is a hyphen);

8. user defined location names (as specified by \G1lsAddXdyLocat ion in the order in
which they were defined);

9. see (cross-referenced entries).

347

14. Xindy (Option 3)

[glossaries—extra

With glossaries—extra seealso is appended to the end of the list.

This ordering can be changed using:

\GlsSetXdyLocationClassOxrder {(location names) }

where each location name is delimited by double quote marks and separated by white space. For

example:

\GlsSetXdyLocationClassOrder{
"arabic-page—-numbers"
"arabic-section—-numbers"
"roman—-page—numbers"
"Roman—-page—numbers"
"alpha-page—numbers"
"Alpha-page—numbers"
"Appendix-page—numbers"
"See"

}

(Remember to add "seealso" if you're using glossaries—extra.)

[i
A
Note that \GlsSetXdyLocationClassOrder has no effect if \noist is

used or if \makeglossaries is omitted. \GlsSetXdyLocationClass-
Order must be used before \makeglossaries.

If a number list consists of a sequence of consecutive numbers, the range will be concatenated.
The number of consecutive locations that causes a range formation defaults to 2, but can be
changed using:

X

\GlsSetXdyMinRangeLength{ (value)}

The (value) may be the keyword none, to indicate no range formation, or a number. For
example:

=

\GlsSetXdyMinRangeLength{3}

See the x1indy manual for further details on range formations.

348

14. Xindy (Option 3)

[i
A
Note that \G1lsSetXdyMinRangeLength has no effect if \noist is used or

if \makeglossaries isomitted. \GlsSetXdyMinRangeLength must be
used before \makeglossaries.

See also §12.2.

14.4. Glossary Groups

The glossary is divided into groups according to the first letter of the sort key. The glossaries
package also adds a number group by default, unless you suppress it in the x1ndy package
option. For example:

=

\usepackage [xindy=glsnumbers=false] {glossaries}

Any entry that doesn’t go in one of the letter groups or the number group is placed in the default
group. If you want xindy to sort the number group numerically (rather than by a string sort)
then you need to use xindy’s numeric—sort module:

=

\GlsAddXdyStyle{numeric—-sort}

With the default g1l snumbers=t rue, the number group will be placed before the “A”
letter group. This is done in the define—letter—group block in the xdy file:

(define-letter—-group "glsnumbers"
:prefixes ("0" "l" "2" "3" "4" "5" "6" "7" "8" "9")
:before "A")

If you are not using a Roman alphabet, you need to change this with:

X

\GlsSetXdyFirstLetterAfterDigits/{ (letter)} modifier: *

{letter} where (letter) is the first letter of your alphabet. This will change :before "A" to
:before "(letter)".

A starred version of this command was added to v4.33 which sanitized (letter) before writing
it to the xdy file to protect it from expansion with inputenc. This shouldn’t be necessary with
recent ISTEX kernels.

Alternatively you can use:

349

14. Xindy (Option 3)

X

\GlsSetXdyNumberGroupOrder { (relative location) } modifier: *

This will change :before "A" to (relative location). Again, a starred version was provided
to sanitize the argument, which should no longer be necessary unless " (double-quote) is active.
For example:

Ei

[\GlsSetXdyNumberGroupOrder{:after "Z"}

will put the number group after the “Z” letter group.

[i
=
Note that these commands have no effect if \noist is used or if \make-
glossaries isomitted. \GlsSetXdyFirstLetterAfterDigits must

be used before \makeglossaries.

350

15. Utilities

This section describes the utility commands provided with the base glossaries package.

[glossaries—extra]

The glossaries—extra package provides extra utility commands, suchas \ gl sxt ruse—
fieldand \glsxtrfieldformatlist. See the glossaries—extra manual for
further details.

15.1. hyperref

The hyperref package needs to be loaded before glossaries to ensure that the commands provided
by hyperref are only used if they have been defined.

X

\glsdisablehyper

This disables the creation of hyperlinks and targets by commands such as \glshyperlink,
the \gls-like and \glstext-like commands and \glstarget. This setting is the de-
fault if hyperref hasn’t been loaded.

The commands that normally create a hyperlink will use:

\glsdonohyperlink{ (target)} { (text)}

The internal command used by \gl st arget to create a targetis justsetto \@secondoftwo.

X

\glsenablehyper

This enables the creation of hyperlinks and targets, and is the default if hyperref has been loaded.
The internal command used by \glstarget to create a target is set to:

X

\glsdohypertarget {(target) } { (text)}

This will include the debugging information if debug=showtargets has been used, but
also measures the height of (text) so that it can place the actual target at the top of (fext) rather

351

15. Utilities

than along the baseline. This helps to prevent (zext) from scrolling off the top of the page out of
sight.
The corresponding command that’s used to link to this target is:

\glsdohyperlink{ (rarget) } { (text) }

This includes the debugging information, if applicable, and creates a link with \hyperlink.

Both the above target and link commands have a corresponding hook that does nothing by
default. These commands are not used if hyperlinks have been disabled (or if hyperref has not
been loaded).

X

| SR

\glsdohypertargethook{ (rarget) } { (text) }

This hook occurs after the height of the (fext) has been measured and before the target is inserted.

X

\glsdohyperlinkhook{ (target)} { (text) }

This hook occurs immediately before the link is created with \hyperlink.

\glslabelhypertarget {(target) } { (text) }

This command is provided for use in \gl sdohypertargethook and will simulate a label
corresponding to the target. It’s primarily intended for use with \pageref rather than \ref
as there is no corresponding counter to provide a numeric value. It is an alternative to using the
entrycounter option. The label is given by (prefix) (target), where the (prefix) is obtained
by expanding:

X
\glslabelhypertargetprefix initial: empty

The target (fext) will be the title corresponding to the label (which can be referenced with
\nameref). Since there is no numeric value, the text obtained with \ ref will either be
empty or the name of the most recent entry in the glossary list where the hypertarget occurs. For
example:

B

\renewcommand{\glsdohypertargethook} [2]{\glslabel-
hypertarget {#1}{#2}}

Certain commands that may occur in the (fext) argument, such as \glossentryname, are
locally redefined during the protected write to the aux file. These redefinitions are performed
by:

352

15. Utilities

\glslabelhypertargetdefs

You can append any additional redefinitions of problematic commands to this hook.
The “value” part of the label (that is, the text produced with \ re f) is obtained by expanding:

7

\glslabelhypertargetvalue

The default definition expands

[\glsentryname\glscurrententrylabel

if \glscurrententrylabel isdefined and not empty. Otherwise it expands to nothing.

X

\glstexorpdfstring{(TgX)}{(PDF)}

If you're not sure whether or not the hyperref package will be loaded, this command will use
\texorpdfstring if that command has been defined, otherwise it will simply expand to

(TEX).

15.2. Case-Changing

These commands may be used to perform a case change.

[i
=
Ensure you have at least mfirstuc v2.08 installed to take advantage of improved case-

changing. If you also use glossaries—extra, make sure you have at least v1.49. See the
mfirstuc manual for further details.

\glsuppercase(text)}

An expandable command that converts (text) to uppercase (all caps). This is used by com-
mands such as \GLS and \GLStext and is affected by \glsmfuexcl.

X

\glslowercase{ (text)}

353

15. Utilities

An expandable command that converts (fext) to lowercase. This isn’t used by the glossaries
package, but you may find it useful with acronym or abbreviation font commands for small caps
styles. This command is affected by \glsmfuexcl.

X

\MFUsentencecase{ (text) }

This command is used by sentence case commands, such as \Glsentrytext, when ex-
panding in a PDF bookmark.

This command is actually defined by mfirstuc v2.08+, but if an old version of mfirstuc is in-
stalled, the glossaries package will provide the same command. This command is affected by
\glsmfuexcl.

X

\glssentencecase (text)}

Converts (text) to sentence case. This is used by commands such as \G1s and \Glstext,
and also by commands like \Glsentrytext in the document text.

The default definition is to use the robust \makefirstuc provided by the mfirstuc pack-
age. If you need an expandable command, use \MFUsentencecase instead.

Note that \makefirstuc internally uses \glsmakefirstuc, which is provided by
mfirstuc. The default definition is:

\newcommand*{\glsmakefirstuc}[1]{\MFUsentencecase
{\unexpanded{1}}}

Themfirstuc=expanded package option will redefine this command without \unexpanded.

The reason for the use of \unexpanded is mostly a backward-compatibility feature, as
without it there is now the possibility for fragile commands to expand prematurely and cause an
error.

This is because the ISTEX3 kernel command used by \MFUsentencecase expands its
argument before applying the case change. With previous versions of mfirstuc, \glsmake-
firstuc would simply apply the case change to the first token.

Suppose a document created with mfirstuc v2.07 had something like:

\newglossaryentry{sample}{
name={sample},
description={an example with a \fragilecommand}

}

and a glossary style is used that performs automated sentence-casing for the description (for
example, with the topic style, provided by glossaries—extra), then this would essentially do:

354

15. Utilities

\makefirstuc{an example with a \fragilecommand}

With old versions of mfirstuc, this would simply end up as:

\MakeTextUppercasean example with a \fragilecommand

so the fragile command is unaffected.
However, with mfirstuc v2.08 and mf i rst uc=expanded this would end up as:

\MFUsentencecasean example with a \fragilecommand

and the underlying \text_titlecase_first : n will expand the entire argument, which
will break the fragile command.

The use of \unexpanded prevents this from happening, but if you don’t have fragile com-
mands and you want the content to be expanded, then use mf i rstuc=expanded.

X

\glscapitalisewords{ (content)}

Converts (fext) to title case. The default definition is to use the robust \capitalise-
words provided by mfirstuc. You may need to redefine this commandtouse \capitalise-
fmtwords instead.

X

\glsmfuexcl{{cs)}

This uses \MFUexc 1 with mfirstuc v2.08+, otherwise its defined in the same way (so it won’t
affect \make firstuc but will affect commands like \glsuppercase).

X

\glsmfublocker{{cs)}

This uses \MFUb 1 ocke r with mfirstuc v2.08+, otherwise it simply uses \gl smfuexcl.

X

\glsmfuaddmap{(csi)}{{cs2)}

This uses \MFUaddmap with mfirstuc v2.08+, otherwise it simply does

\glsmfuexcl{{cs)}
\glsmfublocker{(Cs)}

355

15. Utilities

This uses \MFUb1locker if defined, otherwise it simply uses \glsmfuexcl.

15.3. Loops

[i
=
Some of the commands described here take a comma-separated list as an argument. As
with ISEX’s \ @ f o r command, make sure your list doesn’t have any unwanted spaces in it
as they don’t get stripped. (Discussed in more detail in §2.7.2 of “I£[EX for Administrative
Work”.%)

ddickimaw—books.com/latex/admin/html/docsvlist.shtml#
spacesinlists

\forallglossaries [(types)] {{(cs)} {{(body)}

This iterates through (types), a comma-separated list of glossary labels (as supplied when the
glossary was defined). At each iteration the command (cs) is defined to the glossary label for the
current iteration and (body) is performed. If (types) is omitted, the default is to iterate over all
non-ignored glossaries.

X

\forallacronyms{{cs)} {(body)}

This is like \forallglossaries but only iterates over the lists of acronyms (that have
previously been declared using \DeclareAcronymList ortheacronymlists pack-
age option). This command doesn’t have an optional argument. If you want to explicitly say which
lists to iterate over, just use the optional argument of \forallglossaries.

[glossaries—extra

The glossaries—extra package provides an analogous command
\forallabbreviationlists.

\forglsentries[{(type)] {{cs)}{{(body)}

This iterates through all entries in the glossary given by (fype). At each iteration the command
(cs) is defined to the entry label for the current iteration and (body) is performed. If (rype) is
omitted, \glsdefaulttype is used.

X

\forallglsentries [(types)] {{(cs)} {{body)}

356

https://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml#spacesinlists
https://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml#spacesinlists
https://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml#spacesinlists
https://www.dickimaw-books.com/latex/admin/html/docsvlist.shtml#spacesinlists

15. Utilities

This is just a nested loop that essentially does:

\forallglossaries [(types)] { {type-cs)} { (% outer loop
\forglsentries[(type-cs)J{{cs) }{ {body)} % inner loop
)}

If (types) is omitted, the default is the list of all non-ignored glossaries. (The current glossary
label can be obtained using \glsentrytype{{(cs)} within (body).)

[glossaries—extra

The glossaries—extra package provides commands like \glsxtrforcsvfield to
iterate over any fields that contain comma-separated lists.

15.4. Conditionals

[glossaries—extra

The glossaries—extra package provides many more conditional commands.

X
\ifglossaryexists{(glossary-type)} { (true) } { (false) } modifier: *

This checks if the glossary given by (glossary-type) exists (that is, if it has been defined). If it
does exist (true part) is performed, otherwise (false part).

The unstarred form will treat ignored glossaries as non-existent. The starred form will con-
sider them as existing. So both forms will do (true) if (glossary-type) was defined by \new-
glossary, butonly the starred form will do (true) if (glossary-type) was defined with \new-
ignoredglossary.

For example, given:

\newignoredglossary{common}

then

\ifglossaryexists{common}{true}{false}
\ifglossaryexists*{common}{true}{false}

will produce “false true”.

357

15. Utilities

\ifglsentryexists{ (entry-label)} { (true)} { (false) }

This checks if the glossary entry given by (entry-label) exists. If it does exist then (true) is
performed, otherwise this does (false). Simply uses etoolbox’s \ 1 fcsunde £ so can expand.

X

\glsdoifexists{/(entry-label)} { (code) }

Does (code) if the entry given by (entry-label) exists. If it doesn’t exist, an undefined error is
generated.

X

\glsdoifnoexists{(entry-label)} { (code)}

Does (code) if the entry given by (entry-label) doesn’t exist. If it does exist, an already defined
error is generated.

X

\glsdoifexistsorwarn{ {entry-label)} { (code)}

As \glsdoifexists butissues a warning rather than an error if the entry doesn’t exist.

X

\glsdoifexistsordo{ (entry-label)} { (true)} { (false) }

Does (code) if the entry given by (entry-label) exists otherwise it generates an undefined error
and does (else code).

[glossaries—extra

The undefined/already defined errors can be converted to warnings with unde faction
=warn.

\1fglsused{ {(entry-label)} { (true) } { (false) }

Tests the entry’s first use flag. If the entry has been used, (zrue) will be done, otherwise (if the
entry has been defined) (false) will be done. If the entry isn’t defined, then an undefined error
will occur and neither (true) nor (false) will be done (see §7).

This means that \ 1 fglsused is unreliable with bib2gls as no entries are defined on
the first ISEX run, which means there’s no way of determining if it has been used, so glossaries
—extra provides a similar command:

358

15. Utilities

\GlsXtrIfUnusedOrUndefined{ (entry-label)} { (true)} { (false)}

In this case, (frue) will be done if the entry hasn’t been used or hasn’t been defined, which is
essentially the logical negation of \ 1 fglsused for defined entries.

(i]

=
Some of the following \1fglshas(xxx) commands use \glsdoifexists. In
those cases, the (true) or (false) parts are only performed if the entry exists. Neither are
done if the entry doesn’t exist.

\ifglshaschildren{ (entry-label)} { (true) } { (false) }

This does (frue) if any entries in the same glossary as (entry-label) had parent={ (entry-
label) } . This is inefficient and time-consuming if there are a large number of entries defined.
Uses \glsdoifexists.

[bib2gls |

If you use bib2gls, a more efficient method is to use the save—child-count
resource option and test the value of the childcount fieldwith \GlsXtrIfHas—
NonZeroChildCount.

\ifglshasparent {{entry-label)} { (true) } { (false) }

This does (frue) if the parent field is non-empty for the entry identified by (entry-label).
Uses \glsdoifexists.

X

\ifglshassymbol {{entry-label)} { (true) } { (false) }

A robust command that does (true) if the symbo1 field is non-empty and not \ relax for
the entry identified by (entry-label).

7

\ifglshaslong{ (entry-label)} { (true) } { (false) }

A robust command that does (frue) if the 1 ong field is non-empty and not \ re lax for the
entry identified by (entry-label).

359

15. Utilities

\ifglshasshort {(entry-label)} { (true) } { (false) }

A robust command that does (frue) if the short field is non-empty and not \relax for
the entry identified by (entry-label).

X

\ifglshasdesc{ (entry-label)} { (true) } { (false) }

Expands to (frue) if the description is empty for the entry identified by (entry-label),
otherwise expands to (false). Compare with:

X

\ifglsdescsuppressed{ (entry-label)} { (true) } { (false) }

This expands to (true) if description={\nopostdesc} for the entry identified by
(entry-label) otherwise expands to (false).

There are also commands available for arbitrary fields. Some may allow the field to be iden-
tified by its corresponding key (such as description) but some require the internal field
label (such as desc). See Table 4.1 on page 148 for the internal field labels that correspond
to each key. If you provide your own keys, for example with \ gl saddkey, then the internal
label will be the same as the key.

X

\ifglsfieldvoid{ (field-label)} { (entry-label)} { (true) } { (false)}

Expands to (true) if the field identified by its internal field label (field-label) is void for the entry
identified by (entry-label), otherwise it expands to (false). The void test is performed with etool-
box’s \ 1 fcsvoid. This means that an undefined field or an undefined entry will be considered
void. An empty field value or a field set to \ relax are also considered void.

X

\ifglshasfield{(field)} { (entry-label) } { (true) } { (false) }

This robust command tests the value of the field given by (field) for the entry identified by
(entry-label). The (field) argument may either be the key associated with the field or the internal
field label.

If the field value is empty or \relax, then (false) is performed, otherwise (true) is per-
formed. If the field supplied is unrecognised (false part) is performed and a warning is issued.
If the entry is undefined, an undefined error occurs.

Within (frue), you can access the field’s value with:

360

15. Utilities

\glscurrentfieldvalue

This command is initially defined to empty but has no relevance outside of the (frue) argument.
This saves re-accessing the field if the test is true. For example:

Ei

\ifglshasfield{useri}{sample}{, \glscurrentfield-
valuelt{}

will insert a comma, space and the field value if the user 1 key has been set for the entry whose
label is “sample”.

X

\ifglsfieldeqg{ (entry-label)} { (field-label) } { (string) } { (true) } { (false) }

This robust command does (frue) if the entry identified by (entry-label) has the field identified
by its internal field label (not the key) (field-label) defined and set to the given (string). The test
is performed by etoolbox’s \ 1 fcsstring. An error will occur if the field value is undefined
or if the entry hasn’t been defined.

The result may vary depending on whether or not expansion was on for the given field when

the entry was defined (see §4.4). For example:

\documentclass{article}
\usepackage{glossaries}
\newcommand*{\foo}{FOO}

\newglossaryentry{samplel}{name={samplel}
,description={an example},

userl={FOO}}
\newglossaryentry{sample2}{name={sample2}
ydescription={an example},

userl={\foo}}

\begin{document}
\ifglsfieldeg{samplel}{useri}{FOO}{TRUE}{FALSE}.

\ifglsfieldeg{sample2}{useri}{FOO}{TRUE}{FALSE}.
\end{document}

This will produce “TRUE” in both cases since expansion is on for the user1 key, so \ foo
was expanded to “FOQO” when “sample2” was defined. If the tests are changed to:

361

15. Utilities

\ifglsfieldeg{samplel}{useri}{\foo}{TRUE}{FALSE}.

\ifglsfieldeg{sample2}{useri}{\foo}{TRUE}{FALSE}.

then this will produce “FALSE” in both cases. Now suppose expansion is switched off for the

userl key:

\documentclass{article}
\usepackage{glossaries}
\newcommand*{\foo}{FOO}
\glssetnoexpandfield{useri}

\newglossaryentry{samplel}{name={samplel}
,description={an example},

userl={FOO}}
\newglossaryentry{sample2}{name={sample2}
,description={an example},

userl={\foo}}

\begin{document }
\ifglsfieldeg{samplel}{useri}{FOO}{TRUE}{FALSE}.

\ifglsfieldeg{sample2}{useri}{FOO}{TRUE}{FALSE}.
\end{document}

This now produces “TRUE” for the first case (comparing “FOO” with “FOO”) and “FALSE” for

the second case (comparing “\ foo” with “FOQ”).
The reverse happens in the following:

\documentclass{article}
\usepackage{glossaries}
\newcommand*{\foo}{FOO}

\glssetnoexpandfield{useri}

362

15. Utilities

\newglossaryentry{samplel}{name={samplel}
,description={an example},

userl={F00}}
\newglossaryentry{sample2}{name={sample?2}
,description={an example},

userl={\foo}}

\begin{document}
\ifglsfieldeqg{samplel}{useri}{\foo}{TRUE}{FALSE}.

\ifglsfieldeg{sample2}{useri}{\foo}{TRUE}{FALSE}.
\end{document}

This now produces “FALSE” for the first case (comparing “FOO” with “\ f00”) and “TRUE”

for the second case (comparing “\ foo” with “\ £00”).
You can test if the value of a field is equal to the replacement text of a command using:

\ifglsfielddefeq{ (entry-label)} { (field-label) } { (cs) } { (true) } { (false) }

This robust command is essentially like \ i fg1 s fieldeqbutinternally uses etoolbox’s \ i f-
defstrequal command to perform the comparison. The argument (cs) argument must be

a macro.
For example:

\documentclass{article}
\usepackage{glossaries}
\newcommand*{\foo}{FOO}
\glssetnoexpandfield{useri}

\newglossaryentry{samplel}{name={samplel}
,description={an example},

userl={FOO0O}}
\newglossaryentry{sample2}{name={sample2}
,description={an example},

userl={\foo}}

\begin{document}
\ifglsfielddefeqg{samplel}{useri}{\foo}{TRUE}{FALSE}.

363

15. Utilities

\ifglsfielddefeqg{sample2}{useri}{\foo}{TRUE}{FALSE}.
\end{document}

Here, the first case produces “TRUE” since the value of the useri field (“FOQO”) is the same
as the replacement text (definition) of \ foo (“FOO”). We have the result “FO0” is equal to
“FOO”.

The second case produces “FALSE” since the value of the useri field (“\ fo0”) is not the
same as the replacement text (definition) of \ foo (“FOQO”). No expansion has been performed
on the value of the useri field. We have the result “\ £00” is not equal to “F00”.

If we add:

Bl

\newcommand{\FOO}{\foo}
\ifglsfielddefeg{sample2}{useri}{\FOO}{TRUE}{FALSE}.

we now get “TRUE” since the value of the useri field (“\ f00”) is the same as the replacement
text (definition) of \FOO (“\ f00”). We have the result “\ foo0” is equal to “\ f00”.

There is a similar command that requires the control sequence name (without the leading
backslash) instead of the actual control sequence:

X

\ifglsfieldcseq{(entry-label)} { (field-label) } { (cs-name) } { (true) }
{ (false) }

This robust command is like ifglsfielddefeq but internally uses etoolbox’s \ifcsstrequal
command instead of \ifdefstrequal.

15.5. Measuring

Sometimes it’s necessary to measure the width or height of some text. For example, \ g1l sdo-
hypertarget measures the height of the supplied text to position the target at the top of the
line instead of at the baseline (where it can cause the line to scroll up out of view). Some styles
measure the width of text to assist with alignment.

Measuring can be performed using \settowidth, \settoheight and \setto-
depth, but if the content being measured contains any \ g1 s-like or \ gl stext-like com-
mands, or if it contains commands like \gl sent ryitem, it can cause duplication. (See also
§7 for the problems this can cause with unsetting and resetting the first use flag.)

The following measuring commands locally disable indexing, the unset/reset commands, and
\label, and adjust \refstepcounter to only locally update the counter value.

X

\glsmeasureheight { (length) } { (text) }

Measures the height of (text) and stores the result in the supplied (length) register.

364

15. Utilities

I
\glsmeasuredepth{ (length)} { (text) }
Measures the depth of (text) and stores the result in the supplied (length) register.
I
\glsmeasurewidth({ (length)} { (text)}
Measures the width of (fexr) and stores the result in the supplied (length) register.
You can test if content is inside an area that’s being measured with:
X

\glsifmeasuring{(true)} { (false) }

This will do (rrue) if it occurs inside either of the above commands and does (false) otherwise.
This will also take amsmath’s \ i fmeasuring(@ into account.
If tabularx is loaded, its \TX@t rial command can be patched with:

\glspatchtabularx

If you use tabularx and have any of the \ gl s-like commands inside a tabularx environment,
you will need to use \glspatchtabularx in the preamble to disable unset/reset while
the environment measures its content.

A

Patches made on other package’s internal commands may break if the other package re-
moves those commands or changes their definitions.

15.6. Fetching and Updating the Value of a Field

In addition to the commands described in §5.2, the commands described in this section may also
be used to fetch field information.

[glossaries—extra

The glossaries—extra package has additional commands, such as \glsxtruse—
field.

\glsentrytype{ (entry-label) }

Expands to the value of the entry’s t ype field, which is the label of the glossary the entry has
been assigned to. No existence check is performed.

365

15. Utilities

\glsentryparent {(eniry-label) }

Expands to the value of the entry’s parent field, which is the label identifying the entry’s
parent. No existence check is performed.

X

\glsentrysort { (entry-label) }

Expands to the entry’s sort value. No existence check is performed. This is not intended for
general use, but can be useful to display the value for debugging purposes. Note that there is also
an internal field sort va l ue which contains the escaped sort value, which may not necessarily
be the same as the sort value.

X

\glsfieldfetch{ (entry-label)} { (field-label) } { (cs)}

{label } {field } {cs}

This robust command fetches the value of the field identified by its internal field label(field-
label) for the entry identified by (entry-label) and stores it in the given command (cs). An error
will occur if the entry doesn’t exist or if the field hasn’t been defined.

X

\glsletentryfield{(cs)} { (entry-label) } { (field-label) }

This command simply assigns the supplied command (cs) to the value of the field identified
by its internal field label(field-label) for the entry identified by (entry-label). This differs from
\glsfieldfetch in that it doesn’t test for existence. If either the field or the entry haven’t
been defined, no error or warning will be trigger but (cs) will be undefined. You can then use
etoolbox’s \ifdef or \ifundef on (cs).

For example, to store the description for the entry whose label is “apple” in the control se-
quence \tmp:

Bl

\glsletentryfield{\tmp}{apple}{desc}
\ifdef{\tmp}tdescription: \tmp{no description}

An alternative is to use \1 fglshasfield or, with glossaries—extra, \gl sxtrifhas-
field.

X

\glsunexpandedfieldvalue({ (entry-label)} { (field-label) }

366

15. Utilities

This command is provided for use in expandable contexts where the field value is required but
the contents should not be expanded. The (field-label) argument must be the internal field label.
Does nothing if the field or entry isn’t defined.

You can change the value of a given field using one of the following commands. Note that
these commands only change the value of the given field. They have no affect on any related
field. For example, if you change the value of the t ext field, it won’t modify the value given
by the name, plural, £irst or any other related key.

A
There are some fields that should only be set when the entry is defined and will cause
unexpected results if changed later. For example, t ype (which additionally needs to add
the entry’s label to the corresponding glossary’s internal list), parent (which needs to
calculate the hierarchical level and setup the indexing syntax appropriately), and sort
(which may need pre-processing and is required to setup the indexing syntax).

7

In all the four related commands below, (entry-label) identifies the entry and (field-label) is
the internal field label. The (definition) argument is the new value of the field. Both the entry
and field must already be defined. If you want internal fields that don’t require a corresponding
key to be defined, you will need the supplementary commands provided by glossaries—extra.

X

\glsfielddef {(entry-label)} { (field) } { (value) }

This robust command uses \ de f to change the value of the field (so it will be localised by any
grouping).

I

\glsfieldedef{ (entry-label)} { (field) } { (value)}

This robust command uses \protected@csedef to change the value of the field (so it
will be localised by any grouping).

\glsfieldgdef This uses \gdef to change the value of the field (so it will have a
global effect).

I

\glsfieldxdef {(entry-label)} { (field) } { (value)}

This robust command uses \protected@csxdef to change the value of the field (so it
will be localised by any grouping).

367

16. Prefixes or Determiners

X

\usepackage [(options)] {glossaries—prefix}
automatically loaded with \usepackage [prefix] {glossaries—-extra}

The glossaries—prefix package that comes with the glossaries package provides additional keys
that can be used as prefixes. For example, if you want to specify determiners (such as “a”, “an”
or “the”). The glossaries—prefix package automatically loads the glossaries package and has the

same package options.

[glossaries—extra

The glossaries—prefix package can automatically be loaded with glossaries—extra via the
prefix package option.

The extra keys for \newglossaryentry are as follows:

(=
Gl
prefix={(text)}
The prefix associated with the t ext key. This defaults to nothing.
[=
|G
prefixplural={(fext)}
The prefix associated with the p1lural key. This defaults to nothing.
[=
U
prefixfirst={(text)}

The prefix associated with the £irst key. If omitted, this defaults to the value of the

prefixkey.
[=
=

prefixfirstplural={(fext)}

The prefix associated with the firstplural key. If omitted, this defaults to the value of
the prefixplural key.

Example 41: Defining Determiners

Here’s the start of my example document:

368

16. Prefixes or Determiners

\documentclass{article}

\usepackage[colorlinks] {hyperref}
\usepackage [toc, acronym] {glossaries—prefix}

Note that I've simply replaced glossaries from previous sample documents with glossaries—prefix.

Now for a sample definition:

\newglossaryentry{sample}{namesample,
description={an example},
prefix={a~},
prefixplural={the\space}

}

(Single letter words, such as “a” and “I” should typically not appear at the end of a line, hence
the non-breakable space ~ after “a” in the pre £1 x field.)

Note that I've had to explicitly insert a space after the prefix since there’s no designated sep-
arator between the prefix and the term being referenced. This not only means that you can vary
between a breaking space and non-breaking space, but also allows for the possibility of prefixes
that shouldn’t have a space, such as:

\newglossaryentry{oeil}{name={oeil},
plural={yeux},
description={eye},
prefix={1"'},
prefixplural={les\space}}

[i
=
Where a space is required at the end of the prefix, you must use a spacing command, such

as \ space, \ (backslash space) or ~ due to the automatic spacing trimming performed
in (key)=(value) options.

In the event that you always require a space between the prefix and the term, then you can
instead redefine \glsprefixsep todo a space. For example:

Ei

\renewcommand{\glsprefixsep}{\space}

The prefixes can also be used with acronyms. For example:

369

16. Prefixes or Determiners

\newacronym
[
prefix={an\space},prefixfirst={a~}
] {svm} {SVM} {support vector machine}

The glossaries—prefix package provides convenient commands to use these prefixes with com-
mands such as \gls. Note that the prefix is not considered part of the link text, so it’s not in-
cluded in the hyperlink (where hyperlinks are enabled). The options and any star or plus modifier
are passed on to the appropriate \ g1 s-like command. (See §5.1 for further details.)

X
[\glsprefixsep initial: empty

The separator used between the appropriate prefix and the corresponding \ g1 s-like command.

Each of the following commands \ p(gls) essentially does (prefix) \glsprefixsep(gls)
if the appropriate prefix field has been set, otherwise it simply does (gls), where (gls) is the
corresponding \ g1 s-like command.

The all caps commands \ P (GLS) will convert the prefix to all caps (using \glsupper-
case) and use the all caps \ g1 s-like counterpart.

The sentence case commands \ P (GIs) are slightly more complicated. If the appropriate prefix
field has been set, then the prefix will have the case change applied and the non-case \ g1 s-like
command will be used (\gls or \glspl). If the appropriate prefix field hasn’t been set, then
the sentence case \ gl s-like command is used (\G1ls or \G1lspl).

The usual \ g1 s-like optional argument and star (*) and plus (+) modifiers can be used with
these commands, in which case they will be applied to the applicable \ g1 s-like command.

X
\pgls [(options)] { (entry-label)} [(insert)] modifiers: * +

Does (prefix)\glsprefixsep\gls if (prefix) is non-empty otherwise just uses \gls.
The (prefix) will be the value of the prefixfirst key on first use or the prefix key
on subsequent use.

X
\pglspl [(options)] { (entry-label) } [(insert)] modifiers: * +

Does (prefix)\glsprefixsep\glspl if (prefix) is non-empty otherwise justuses \glspl.
The (prefix) will be the value of the prefixfirstplural key on first use or the
prefixplural key on subsequent use.

370

16. Prefixes or Determiners

X
\Pqgls [(options)] { (entry-label) } [(insert)] modifiers: * +

Does (prefix)\glsprefixsep\gls if (prefix) is non-empty otherwise just uses \G1s.

As \pgls, the prefix fields are pre £ i x £ 1 rst onfirst use or the pre f 1 x on subsequent
use, but the (prefix) will now be obtained from the sentence case commands \Glsentry-
prefixand \Glsentryprefixfirst.

X
\Pglspl [(options)] { (entry-label) } [(insert)] modifiers: * +

Does (prefix) \glsprefixsep\glspl if (prefix) is non-empty otherwise justuses \G1spl.

As \pglspl,the prefix fieldsare prefixfirstplural onfirstuseorthe prefix-
plural on subsequent use, but the (prefix) will now be obtained from the sentence case com-
mands \Glsentryprefixplural and \Glsentryprefixfirstplural.

X
\PGLS [(options)] { (entry-label) } [(insert)] modifiers: * +

Does:

~

\glsuppercase{{prefix)\glsprefixsep} \GLS

if (prefix) is non-empty otherwise just uses \GLS.
The (prefix) will be the value of the prefixfirst key on first use or the pre fix key
on subsequent use.

X
\PGLSpl [(options)] { (entry-label) } [(insert)] modifiers: * +

Does:

\glsuppercase{{prefix)\glsprefixsep}\GLSpl

if (prefix) is non-empty otherwise just uses \GLSpl.
The (prefix) will be the value of the prefixfirstplural key on first use or the
prefixplural key on subsequent use.

[glossaries—extra]

The glossaries—extra package provides additional commands, such as \pglsxtr—
short, for use in section headings.

371

16. Prefixes or Determiners

Example 42: Using Prefixes

Continuing from Example 41 on page 368, now that I've defined my entries, I can use them in
the text via the above commands:

First use: \pgls{svm}. Next use: \pgls{svm}.
Singular: \pgls{sample}, \pgls{oeil}.
Plural: \pglspl{sample}, \pglspl{oeil}.

which produces:

First use: a support vector machine (SVM). Next use: an SVM. Singular: a sample, I'oeil.
Plural: the samples, les yeux.

For a complete document, see sample—-prefix.tex.

This package also provides the commands described below, none of which perform any check
to determine the entry’s existence.

X
\ifglshasprefix{{entry-label)} { (true) } { (false) }
Expands to (true) if the pre f 1 x field is non-empty, otherwise expands to (false).
X
\ifglshasprefixplural {({entry-label)} { (true)} { (false) }

Expands to (true) if the prefixplural field is non-empty, otherwise expands to (false).

7

\ifglshasprefixfirst {(entry-label)} { (true) } { (false) }

Expands to (true) if the prefixfirst field is non-empty, otherwise expands to (false).

X

\ifglshasprefixfirstplural{(entry-label)} { (true)} { (false)}

Expands to (true) if the prefixfirstplural field is non-empty, otherwise expands to

(false).

X

\glsentryprefix{(entry-label)}

Expands to the value if the pre f i x field.

372

16. Prefixes or Determiners

X
\glsentryprefixplural{{entry-label)}
Expands to the value if the prefixplural field.
b §
\glsentryprefixfirst {(entry-label)}
Expands to the value if the prefixfirst field.
) §

\glsentryprefixfirstplural {{entry-label)}

Expands to the value if the prefixfirstplural field.

There are also variants that convert to sentence case. As with command like \Glsent ry-
text, these will use \MFUsentencecase to expand in PDF bookmarks, but will use

\glssentencecase in the document.

X
\Glsentryprefix{(entry-label)}
As \glsentryprefix with sentence case applied.
X
\Glsentryprefixplural{ (entry-label)}
As \glsentryprefixplural with sentence case applied.
X
\Glsentryprefixfirst {(entry-label)}
As \glsentryprefixfirst with sentence case applied.
X

\Glsentryprefixfirstplural {(entry-label)}

As \glsentryprefixfirstplural with sentence case applied.

Example 43: Adding Determiner to Glossary Style

You can use the above commands to define a new glossary style that uses the determiner. For
example, the following style is a slight modification of the list style that inserts the prefix before

the name:

373

16. Prefixes or Determiners

\newglossarystyle{plist}{%
\setglossarystyle{list}%
\renewcommand*{\glossentry} [2]{%

\item[\glsentryitem{1}%
\glsentryprefix{1}%
\glstarget{1l}{\glossentryname{1}}]
\glossentrydesc{1}\glspostdescription\space 2}%
}

If you want to change the prefix separator (\glsprefixsep) then the following is better:

\newglossarystyle{plist}{%

)
°

\renewcommand*{\glossentry} [2]{%
\item[\glsentryitem{1}%
\ifglshasprefix{1}{\glsentryprefix{1}\gls—
prefixsep}{}%
\glstarget{1l}{\glossentryname{1}}]
\glossentrydesc{l}\glspostdescription\space 2}

—~ o\

The conditional is also useful if you want the style to use an uppercase letter at the start of the

entry item:

\newglossarystyle{plist}{%
\setglossarystyle{list}%
\renewcommand*{\glossentry}[2]{%

\item[\glsentryitem{1}%
\glstarget{1}%
{%
\ifglshasprefix{1}%
{\Glsentryprefix{1}\glsprefixsep\gloss—
entryname{1}}%
{\Glossentryname{1}}%
H]
\glossentrydesc{l}\glspostdescription\space 2}

—~ o\

374

16. Prefixes or Determiners

375

17. Accessibility Support

X

\usepackage [(options)] {glossaries—accsupp}
automatically loaded with
\usepackage [accsupp] {glossaries—-extra}

Limited accessibility support is provided by the accompanying glossaries—accsupp package,
but note that this package is experimental. This package automatically loads the glossaries pack-
age. Any options are passed to glossaries (if it hasn’t already been loaded). For example:

=

\usepackage [acronym] {glossaries—accsupp}

This will load glossaries with the acronym package option as well as loading glossaries
—accsupp.

[glossaries—extra

If you are using the glossaries—extra extension package, you need to load glossaries—extra
with the accsupp package option. For example:

\usepackage [abbreviations, accsupp] {glossaries—-extra}

This will load glossaries—extra (with the abbreviations option), glossaries and
glossaries—accsupp and make appropriate patches to integrate the accessibility support
with the extension commands.

17.1. Accessibility Keys

The glossaries—accsupp package defines additional keys that may be used when defining glossary
entries. If a key isn’t set, then there will be not accessibility support for the corresponding field.

-—
—a

i

access={(text) }

The value of this key is the replacement text corresponding to the name key.

376

17. Accessibility Support

[=
=
textaccess={(text)}
The value of this key is the replacement text corresponding to the t e xt key.
[=
==
firstaccess={{(text)}
The value of this key is the replacement text corresponding to the £ 1 rst key.
[=
=
pluralaccess={(fext)}
The value of this key is the replacement text corresponding to the p1lural key.
[=
=

firstpluralaccess={(text)}

The value of this key is the replacement text corresponding to the firstplural key.

=

s

symbolaccess={ (text)}

The value of this key is the replacement text corresponding to the symbo 1 key.

=3

==

symbolpluralaccess={(fext) }

The value of this key is the replacement text corresponding to the symbolplural key.

=

==

descriptionaccess={ (fext)}

The value of this key is the replacement text corresponding to the descript ion key. The
corresponding internal field label is descaccess.
[=

==

descriptionpluralaccess={(text)}

The value of this key is the replacement text corresponding tothe descriptionplural
key. The corresponding internal field label is descpluralaccess.
l i

==

longaccess={(text)}

The value of this key is the replacement text corresponding to the 1 ong key.

377

17. Accessibility Support

=

e

longpluralaccess={(text)}

The value of this key is the replacement text corresponding to the 1longplural key.

=

==

shortaccess={(text) }

The value of this key is the replacement text corresponding to the short key.
If you define acronyms with \newacronym, the shortaccess field will automatically
be set to:
) §

\glsdefaultshortaccess{(long)} { (short)}

This just expands to (long). If redefined, this command must be fully expandable. It expands
when the acronym is defined.
[=

==

shortpluralaccess={(text)}

The value of this key is the replacement text corresponding to the shortplural key.

-—
—

==

userlaccess={(fext) }

The value of this key is the replacement text corresponding to the user1 key. The corre-
sponding internal field label is useriaccess.
[=

=

user2access={ (fext) }

The value of this key is the replacement text corresponding to the user2 key. The corre-
sponding internal field label is useriiaccess.
[=

==

user3access={(fext) }

The value of this key is the replacement text corresponding to the user 3 key. The corre-
sponding internal field label is useriiiaccess.
(=
L=

userdaccess={ (fext) }

The value of this key is the replacement text corresponding to the user4 key. The corre-
sponding internal field label is userivaccess.

378

17. Accessibility Support

userS5access={(fext) }

The value of this key is the replacement text corresponding to the user5 key. The corre-
sponding internal field label is uservaccess.

user6access={(fext) }

The value of this key is the replacement text corresponding to the user 6 key. The corre-
sponding internal field label is userviaccess.
For example:

\newglossaryentry{tex}{name={\TeX},description=
{Document
preparation language}, access={TeX}}

Now the link text produced by \gls{tex} will be:

Ei

[\BeginAccSupp{ActualText={TeX} }\TeX\EndAccSupp

which is produced via \glsaccessibility. If you want to use another accessibility
package, see §17.5.
The sample file sampleaccsupp . tex illustrates the glossaries—accsupp package.

17.2. Incorporating Accessibility Support
The \gls-like and \glstext-like commands have their link text adjusted to incorporate

the accessibility support, if provided. A helper command is used to identify the replacement text
that depends on the field name:

X

\glsfieldaccsupp{ (replacement)} { (content)} { (field-label) } { (entry-label) }

This will use

\gls(field-labelyaccsupp/ (replacement) } { {content) }

if it’s defined otherwise it will just use:

\glsaccsupp/ (replacement)} { {content) }

379

17. Accessibility Support

Note that (field-label) is the internal field label which may not match the corresponding key. For
example, the shortpl field label corresponds to the shortplural key.

[glossaries—extra

With glossaries—extra, there’s a prior test for the existence of the command \gls—
xt r{category)(field)accsupp.

There are two commands pre-defined:

X
\glsshortaccsupp/{ (replacement)} { (content) }
which is defined as:
\glsaccessibility{E} {(replacement)} { (content)}
and
X
\glsshortplaccsupp/{ (replacement)} { (content) }
which is simply defined to use \glsshortaccsupp.
These helper commands all internally use:
) §

\glsaccessibility [(options)] { (PDF element)} { (value)} { (content) }

The default definition uses commands provided by the accsupp package. If you want to experi-
ment with another accessibility package, see §17.5. The (options) are passed to the underlying
accessibility support command.

The (PDF element) argument is the appropriate PDF element tag. The PDF specification iden-
tifies three different types of replacement text:

Alt

Description of some content that’s non-textual (for example, an image). A word break is
assumed after the content.

ActualText

A character or sequence of characters that replaces textual content (for example, a dropped
capital, a ligature or a symbol). No word break is assumed after the content.

Expansion of an abbreviation to avoid ambiguity (for example, “St” could be short for
“saint” or “street”).

380

17. Accessibility Support

B

Many PDF viewers don’t actually support any type of replacement text. Some may support
“ActualText” but not “Alt” or “E”. PDFBox’s “PDFDebugger” tool can be used to inspect
the PDF content to make sure that the replacement text has been correctly set.

You can define your own custom helper commands for specific fields that require them. For
example:

B
\newcommand{\glssymbolaccsupp} [2]{%
\glsaccessibility[method=hex,unicode] {ActualText}

{1r{2}%
}

This definition requires the replacement text to be specified with the hexadecimal character code.

For example:

\newglossaryentry{int }{name={int},description=
{integral},

symbol={\ensuremath{\int}}, symbolaccess={222B}
}

[glossaries—extra

The glossaries—extra package provides additional support.

17.3. Incorporating the Access Field Values

These robust commands are all in the form

\gls(field)accessdisplay{ (text)} { (entry-label)}

They may be used to apply the supplied accessibility information to (zext). If the relevant access
field hasn’t been set, these simply do (fext).
The glossaries—extra package provides convenient wrapper commands such as:

\newcommand*{\glsaccessname} [1]4{%
\glsnameaccessdisplay{\glsentryname{1}}1%

}

See the glossaries—extra manual for further details.

381

glossaries
—extra

https://pdfbox.apache.org/

17. Accessibility Support

X
\glsnameaccessdisplay{ (text)} { (entry-label) }
Applies the accessibility information from the access field to (text).
X
\glstextaccessdisplay/{ (text)} { (entry-label) }
Applies the accessibility information from the t ext access field to (text).
X
\glspluralaccessdisplay/{/{text)} { (entry-label) }
Applies the accessibility information from the pluralaccess field to (fext).
X
\glsfirstpluralaccessdisplay/{/(text)} { (entry-label) }
Applies the accessibility information from the firstpluralaccess field to (fext).
X
\glssymbolaccessdisplay/{ (text)} { (entry-label) }
Applies the accessibility information from the symbolaccess field to (fext).
X
[\glssymbolpluralaccessdisplay{ (text)} { {entry-label) }

Applies the accessibility information from the symbolpluralaccess field to (fext).

X

\glsdescriptionaccessdisplay/{ (text)} { (entry-label) }

Applies the accessibility information from the descaccess field (which corresponds to the
descriptionaccess key) to (fext).

X

\glsdescriptionpluralaccessdisplay/{ (text)} { {(entry-label)}

Applies the accessibility information from the descpluralaccess field (which corre-
sponds to the descriptionpluralaccess key) to (fext).

X

\glsshortaccessdisplay/{(text)} { (entry-label) }

Applies the accessibility information from the shortaccess field to (text).

382

17. Accessibility Support

X
\glsshortpluralaccessdisplay/{/(text)} { (entry-label) }
Applies the accessibility information from the shortpluralaccess field to (text).
X
\glslongaccessdisplay/{ (text)} { (entry-label) }
Applies the accessibility information from the 1 ongaccess field to (text).
X
\glslongpluralaccessdisplay/{ (text)} { (entry-label) }
Applies the accessibility information from the 1ongpluralaccess field to (fext).
X
\glsuseriaccessdisplay/{ (text)} { (entry-label) }

Applies the accessibility information from the useriaccess field (which corresponds to the
userlaccess key) to (text).

X

\glsuseriiaccessdisplay{ (text)} { (entry-label) }

Applies the accessibility information from the useriiaccess field (which corresponds to
the user2access key) to (fext).

X

\glsuseriiiaccessdisplay{ (text)} { (entry-label)}

Applies the accessibility information from the useriiiaccess field (which corresponds to
the user3access key) to (fext).

X

\glsuserivaccessdisplay/{ (text)} { (entry-label) }

Applies the accessibility information from the userivaccess field (which corresponds to
the userdaccess key) to (fext).

X

\glsuservaccessdisplay{(text)}{ (entry-label) }

Applies the accessibility information from the uservaccess field (which corresponds to the
userbaccess key) to (text).

X

\glsuserviaccessdisplay/{ (text)} { (entry-label) }

383

17. Accessibility Support

Applies the accessibility information from the userviaccess field (which corresponds to

the user6access key) to (fext).

17.4. Obtaining the Access Field Values

There are commands analogous to \glsent rytext if you need to obtain the value of any of
the accessibility fields. Since the accessibility information isn’t intended to be typeset but should
be written as a PDF string, use the expandable \MFUsentencecase or \glsupper-

case if any case change is required.

X
\glsentryaccess{(entry-label)}
Expands to the value of the access field.
X
\glsentrytextaccess{ (entry-label)}
Expands to the value of the textaccess field.
X
\glsentryfirstaccess{ (entry-label)}
Expands to the value of the firstaccess field.
X
\glsentrypluralaccess{ (entry-label) }
Expands to the value of the pluralaccess field.
b §
\glsentryfirstpluralaccess {{entry-label)}
Expands to the value of the firstpluralaccess field.
X
\glsentrysymbolaccess/ (entry-label)}
Expands to the value of the symbolaccess field.
X
\glsentrysymbolpluralaccess/ (entry-label)}
Expands to the value of the symbolpluralaccess field.
b §

\glsentrydescaccess{ (entry-label) }

384

17. Accessibility Support

Expands to the value of the de scaccess field, which corresponds to the description-
access key.

X

[\glsentrydescpluralaccess{ {enmry-label)}

J

Expands to the value of the descpluralaccess field, which corresponds tothe description-
pluralaccess key.

b §
\glsentryshortaccess{ (entry-label) }
Expands to the value of the shortaccess field.
X
\glsentryshortpluralaccess/ {{entry-label)}
Expands to the value of the shortpluralaccess field.
X
\glsentrylongaccess/ (entry-label) }
Expands to the value of the 1 ongaccess field.
b §
\glsentrylongpluralaccess{(entry-label)}
Expands to the value of the longpluralaccess field.
X
\glsentryuseriaccess{ (entry-label) }

Expands to the value of the useriaccess field, which corresponds tothe userlaccess
key.

X

\glsentryuseriiaccess/{ (entry-label)}

Expands to the value of the useriiaccess field, which corresponds tothe user2access
key.

X

\glsentryuseriiiaccess/{ (entry-label)}

Expands to the value of the useriiiaccess field, which corresponds to the user3-
access key.

385

17. Accessibility Support

\glsentryuserivaccess/{ (entry-label)}

Expands to the value of the userivaccess field, which corresponds tothe user4access
key.

X

\glsentryuservaccess { (entry-label) }

Expands to the value of the uservaccess field, which corresponds to the userbaccess
key.

X

\glsentryuserviaccess{ (entry-label) }

Expands to the value of the userviaccess field, which corresponds tothe userbaccess
key.

17.5. Developer’s Note

Currently there’s only support for accsupp. If you want to experiment with another package
that provides accessibility support, define the following command before glossaries—accsupp is
loaded:

X

\gls@accsupp@engine initial: accsupp

If this command has its default definition of accsupp when glossaries—accsupp loads then
the accsupp package will automatically be loaded, otherwise it won’t and you’ll need to redefine
\gls@accessibility to use the appropriate accessibility commands.

X

\gls@accessibility{(options)} { (PDF element)} { (value) } { (content) }

This command is used internally by \gl saccessibility. The default definitionif \gls-
@accsuppl@engine is defined to accsupp does:

\BeginAccSupp/{ (options), (PDF element)={ (value) } } {content) \EndAcc—
Supp{ }

Otherwise it simply does (content).

386

18. Sample Documents

The glossaries package is provided with some sample documents that illustrate the various func-
tions. These should be located in the samples subdirectory (folder) of the glossaries docu-
mentation directory. This location varies according to your operating system and TgX distribu-
tion. You can use texdoc to locate the main glossaries documentation. For example:

texdoc -1 glossaries \

This should display a list of all the files in the glossaries documentation directory with their full
pathnames. (The GUI version of t exdoc may also provide you with the information.)

If you can’t find the sample files on your computer, they are also available from your near-
est CTAN mirror at http://mirror.ctan.org/macros/latex/contrib/
glossaries/samples/. Each sample file listed below has a hyperlink to the file’s loca-
tion on the CTAN mirror.

The glossaries—extra package and bib2gls provide some additional sample files. There
are also examples in the Dickimaw Books Gallery.'

If you prefer to use UTF-8 aware engines (xelatex or lualatex) remember that you'll
need to switch from fontenc & inputenc to fontspec where appropriate.

If you get any errors or unexpected results, check that you have up-to-date versions of all the
required packages. (Search the log file for lines starting with “Package: ”.) Where hyperref
is loaded you will get warnings about non-existent references that look something like:

pdfTeX warning (dest): name{glo:aca} has been
referenced but does not exist, replaced by a fixed
one

These warnings may be ignored on the first IS[iEX run. (The destinations won’t be defined until
the glossary has been created.)

18.1. Basic

(& minimalgls.tex

This document is a minimal working example. You can test your installation using this file.
To create the complete document you will need to do the following steps:

'dickimaw-books.com/gallery

387

https://www.tug.org/texdoc/
http://mirror.ctan.org/macros/latex/contrib/glossaries/samples/
http://mirror.ctan.org/macros/latex/contrib/glossaries/samples/
https://www.dickimaw-books.com/gallery
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/minimalgls.tex
https://www.dickimaw-books.com/gallery

18. Sample Documents

I. Runminimalgls. tex through ETEX either by typing

pdflatex minimalgls \

in a terminal or by using the relevant button or menu item in your text editor or front-
end. This will create the required associated files but you will not see the glossary in the
document.

2. If you have Perl installed, run makeglossaries on the document (§1.6). This can
be done on a terminal by typing:

makeglossaries minimalgls \

otherwise use makeglossaries-1lite:

makeglossaries—lite minimalgls \

If for some reason you want to call make i ndex explicitly, you can do this in a terminal
by typing (all on one line):

makeindex -s minimalgls.ist -t minimalgls.glg -o
minimalgls.gls minimalgls.glo

See §1.6.4 for further details on using makeindex explicitly.

Note that if the file name contains spaces, you will need to use the double-quote character
to delimit the name.

3. Runminimalgls. tex through ETEX again (as step 1)

You should now have a complete document. The number following each entry in the glossary is
the location number. By default, this is the page number where the entry was referenced.

The acronym package option creates a second glossary with the label acronym (which
can be referenced with \acronymt ype). If you decide to enable this option then there will
be a second set of indexing files that need to be processed by makeindex. If you use make-
glossaries ormakeglossaries—1ite youdon’t need to worry about it, as those
scripts automatically detect which files need to be processed and will run makeindex (or
x1indy) the appropriate number of times.

If for some reason you don’t want to use makeglossaries ormakeglossaries
—11ite and you want the ac ronym package option then the complete build process is:

388

18. Sample Documents

pdflatex minimalgls

makeindex -s minimalgls.ist -t minimalgls.glg -o
minimalgls.gls minimalgls.glo

makeindex —-s minimalgls.ist -t minimalgls.alg -o
minimalgls.acr minimalgls.acn

pdflatex minimalgls

There are three other files that can be used as minimal working examples: mwe—gls.tex,
mwe—acr.texand mwe—acr—-desc.tex.

If you want to try out the glossaries—extra extension package, you need to replace the package
loading line:

\usepackage [acronym] {glossaries}

with:

\usepackage [acronym, postdot, stylemods] {glossaries—
extra}

_ B LB

Note the different default package options. (You may omit the acronym package option in
both cases if you only want a single glossary.) The glossaries—extra package internally loads
the base glossaries package so you don’t need to explicitly load both (in fact, it’s better to let
glossaries—extra load glossaries).

Next, replace:

\setacronymstyle{long-short}

with:

\setabbreviationstyle[acronym] {long-short}

8 L B

The optional argument acronym identifies the category that this style should be applied to. The
\newacronym command provided by the base glossaries package is redefined by glossaries
—extra to use \newabbreviation with the category set to acronym.

If you prefer to replace \newacronym with \newabbreviation then the default
category is abbreviation so the style should instead be:

389

glossaries
—extra

http://www.dickimaw-books.com/latex/minexample/
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//mwe-gls.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//mwe-acr.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//mwe-acr-desc.tex

18. Sample Documents

=

[\setabbreviationstyle [abbreviation] {long-short}

This is actually the default category if the optional argument is omitted, so you can simply do:

=

\setabbreviationstyle{long-short}

The long—short style is the default for the abbreviation category so you can omit this line com-
pletely if you replace \newacronym. (The default style for the acronym category is short
—nolong, which only shows the short form on first use.)

As mentioned earlier, the acronym package option creates a new glossary with the label
acronym. This is independent of the acronym category. You can use the acronym package
option with either \newacronymor \newabbreviation.

You may instead prefer to use the abbreviations package option, which creates a new
glossary with the label abbreviations:

=

\usepackage [abbreviations, postdot, stylemods]
{glossaries—extra}

This can again be used with either \newacronymor \newabbreviation, but the file
extensions are different. This isn’t a problem if you are usingmakeglossaries ormake-
glossaries—1lite. If you are explicitly calling makeindex (or xindy) then you
need to modify the file extensions. See the glossaries—extra user manual for further details.

If youuse boththe acronymand abbreviat i ons package options then \newacronym
will default to the acronymglossary and \newabbreviation willdefaulttothe abbreviations
glossary.

If you want to try bib2gls, you first need to convert the document to use glossaries—extra bib2gls
as described above. Then add the re cord package option. For example:

=

\usepackage [record, postdot, stylemods] {glossaries-
extra}

Next you need to convert the entry definitions into the b 1l format required by bib2gls. This
can easily be done with convertgls2bib. For example:

convertgls2bib —--preamble-only minimalgls.tex
entries.bib

This will create a file called entries .bib. Next, replace:

390

18. Sample Documents

\makeglossaries

with:

\GlsXtrLoadResources[src={entries}]

8 LB

Now remove all the entry definitions in the document preamble (\ longnewglossary-
entry, \newglossaryentryand \newacronymor \newabbreviation).

The abbreviation style command must go before \G1sXtrLoadResources. For ex-
ample (if you are using \newacronym):

\setabbreviationstyle[acronym] {long—-short}
\GlsXtrLoadResources|[src={entries}]

Finally, replace:

\printglossaries

with:

\printunsrtglossaries

The document build is now:

pdflatex minimalgls
bib2gls minimalgls
pdflatex minimalgls

_ BB LB LB

sampleDB. tex This document illustrates how to load external files containing the glos-
sary entry definitions. It also illustrates how to define a new glossary type. This document has
the number list suppressed and uses \glsaddall toadd all the entries to the glossaries with-
out referencing each one explicitly. (Note that it’s more efficient to use glossaries—extra and
bib2gls if you have a large number of entries.) To create the document do:

391

18. Sample Documents

pdflatex sampleDB
makeglossaries sampleDB
pdflatex sampleDB

or

pdflatex sampleDB
makeglossaries—lite sampleDB
pdflatex sampleDB

_ B L B

The glossary definitions are stored in the accompanying files dat abasel .texanddatabase?2.
tex. If for some reason you want to call make index explicitly you must have a separate call
for each glossary:

1. Create the main glossary (all on one line):

makeindex -s sampleDB.ist -t sampleDB.glg -o
sampleDB.gls sampleDB.glo

2. Create the secondary glossary (all on one line):

makeindex —-s sampleDB.ist -t sampleDB.nlg -o
sampleDB.not sampleDB.ntn

@ LD

Note that both makeglossaries and makeglossaries—1ite do thisallin
one call, so they not only make it easier because you don’t need to supply all the switches
and remember all the extensions but they also call make 1ndex the appropriate number
of times.

If you want to switch to usingb1b2 gl s with glossaries—extra, you can convert dat abasel bib2gls
texand databaseZ.textobib filesusing convertgls2bib:

convertgls2bib databasel.tex databasel.bib
convertgls2bib database2.tex database2.bib

The document code then needs to be:

392

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database2.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database2.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database1.tex
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples//database2.tex

18. Sample Documents

,

\documentclass{article}

\usepackage[colorlinks,plainpages=false] {hyperref}
\usepackage [record,postdot] {glossaries—extra}

\newglossary*{punc}{Punctuation Characters}

\GlsXtrLoadResources |[src={databasel},
selection=all, sort=en]

\GlsXtrLoadResources [src={database2}, type=punc,
selection=all, sort=letter—-case]

\begin{document}
\printunsrtglossaries
\end{document}

Note that the nonumber1ist package option has been omitted. It’s not needed because
there are no locations in this amended document (whereas in the original sampleDB.tex
locations are created with \glsaddall). The starred \newglossary* is used since the
makeindex/xindy extensions are now irrelevant.

Instead of usingmakeglossaries youneedtouse bib2gls when you build the doc-
ument:

pdflatex sampleDB
bib2gls sampleDB
pdflatex sampleDB

Note that one bib2gls call processes all the indexing (rather than one call per glossary).
Unlike makeindex and xindy, bib2gls processes each resource set in turn, but the
resource sets aren’t linked to a specific glossary. Multiple glossaries may be processed in a single
resource set or sub-blocks of a single glossary may be processed by multiple resource sets. In
this example, there happens to be one resource set per glossary because each glossary requires a
different sort method. (A locale-sensitive alphabetical sort for the first and a character code sort
for the second.)
If you want letter groups, you need to use the ——group switch:

bib2gls —-—group sampleDB \

and use an appropriate glossary style.
See also bib2gls gallery: sorting,” glossaries-extra and bib2gls: An Introductory

’dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

393

https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

18. Sample Documents

Guide® and the bib2gls user manual.

18.2. Acronyms and First Use

sampleAcr.tex This document has some sample acronyms. It also adds the glossary to
the table of contents, so an extra run through ITEX is required to ensure the document is up to
date:

pdflatex sampleAcr
makeglossaries sampleAcr
pdflatex sampleAcr
pdflatex sampleAcr

(oruse makeglossaries—1lite).

Note that if the glossary is at the start of the document and spans across multiple pages, then
this can cause the locations to be shifted. In that case, an extramakeglossaries and ISIgX
call are required. In this particular example, the glossary is at the end of the document so it’s
not a problem. It’s also not a problem for a glossary at the start of the document if the page
numbering is reset at the end of the glossary. For example, if the glossary is at the end of the
front matter in a book-style document.

This document uses \ 1 fglsused to determine whether to use “a” or “an” in:

=

. 1s \ifglsused{svm}{an}{a} \gls{svm}

This clumsy bit of code can be tidied up with the glossaries—prefix package. Since that package
automatically loads glossaries and passes all its options to the base package it’s possible to do a
simple replacement of:

Ei

[\usepackage[style=long,toc]{glossaries}

with:

[\usepackage[style=long,toc] {glossaries—-prefix}

The definition of “svm” now needs an adjustment:

‘mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

394

http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

18. Sample Documents

\newacronym|[description=
{statistical pattern recognition
technique~\protect\cite{svm}},
prefixfirst={a~},prefix={an\space}
] {svm}{svm}{support vector machine}

The clumsy text can now simply be changed to:

. 1s \pgls{svm}

B

If you want to convert this sample document to use glossaries—extra, you may want the patched
version of the styles provided in glossary—long, in which case you can also add sty lemods:

\usepackage [stylemods, style=long] {glossaries—extra}

If you want to suppress all the other glossary style packages with nostyles, then you need
to specify exactly which package (or packages) that you do want:

\usepackage [nostyles, stylemods=long, style=1long]
{glossaries—-extra}

(Now that glossaries—extra is being used, there are more available “long” styles in the glossary
—longextra package, which you may prefer.)
If you want to use glossaries—prefix, you can simply add the pre £ 1 x package option.
Note that the t o c package option has been dropped. This is the default with glossaries—extra,
so it doesn’t need to be specified now. The document build is now shorter:

pdflatex sampleAcr
makeglossaries sampleAcr
pdflatex sampleAcr

__ [

The third IXTEX call is no longer required to make the table of contents up-to-date. This is
because glossaries—extra provides boilerplate text on the first IS[EX call when the indexing files
are missing. This means that the glossary header is added to the toc file on the first KTEX
call, whereas with just the base glossaries package, the header isn’t present until the second
IATEX call. (As with just the base glossaries package, if the glossary occurs at the start of the
document without a page reset after it then part of the build process needs repeating to ensure all
referenced page numbers are up-to-date. This problem isn’t specific to the glossaries package.)

The other different default setting is the post-description punctuation. The base package has

395

glossaries
—extra

18. Sample Documents

nopostdot=false as the default. This means that a full stop (period) is automatically
inserted after the description in the glossary. The extension package has nopostdottrue as
the default. If you want the original behaviour then you can use nopostdot=false or the
shorter synonym postdot.

The glossaries—extra package has different abbreviation handling that’s far more flexible than
that provided by the base glossaries package. The style now needs to be set with \set-
abbreviationstyle instead of \setacronymstyle:

=

\setabbreviationstyle[acronym] {long-short-sc}
\newacronym{svm}{svm}{support vector machine}

(Note the different style name long—short—sc instead of long—sc—short and the optional argu-
ment acronym.) If you prefer to replace \newacronymwith \newabbreviation then
omit the optional argument:

=

\setabbreviationstyle{long-short-sc}
\newabbreviation{svm}{svm}{support vector machine}

(The optional argument of \ setabbreviationstyle isthe category to which the style
should be applied. If it’s omitted, abbreviation is assumed. You can therefore have different
styles for different categories.)

Finally, you need to replace \acrshort, \acrlongand \acrfull and their variants
with \glsxtrshort, \glsxtrlongand \glsxtrfull etc.

(& sampleAcrDesc.tex

This is similar to the previous example, except that the acronyms have an associated descrip-
tion. As with the previous example, the glossary is added to the table of contents, so an extra run
through IKTEX is required:

pdflatex sampleAcrDesc
makeglossaries sampleAcrDesc
pdflatex sampleAcrDesc
pdflatex sampleAcrDesc

This document uses the a c r onym package option, which creates a new glossary used by \ new-
acronym. This leaves the default ma in glossary available for general terms. However, in
this case there are no general terms so the ma1n glossary is redundant. The nomain pack-
age option will prevent its creation. Obviously, if you decide to add some terms with \new-
glossaryentry you will need to remove the nomain option as the ma in glossary will
now be required.

As with the previous example, if you want to convert this document to use glossaries—extra

396

glossaries
—extra

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleAcrDesc.tex

18. Sample Documents

you need to make a few modifications. The most obvious one is to replace glossaries with
glossaries—extra in the \usepackage argument. Again you can omit t oc as this is the
default for glossaries—extra. As in the previous example, you may want to use the patched
styles. This document uses altlist which is provided by glossary—list, so the style can be patched
with stylemods.

\usepackage[acronym, nomain, style=altlist, stylemods]
{glossaries-extra}

_ B

You may prefer to replace the acronymoption with abbreviat ions, but this will change
the file extensions. If you use makeglossaries or makeglossaries—lite you
don’t need to worry about it.

Again the style command needs to be changed:

\setabbreviationstyle[acronym] {long-short-sc-desc}

B

(Note the change in style name long—short—sc—desc instead of long—sc—short—desc and the
optional argument acronym.)

As with the previous example, if you prefer to use \newabbreviation instead of
\newacronym then you need to omit the optional argument:

\setabbreviationstyle{long-short-sc—-desc}

The original document uses:

\renewcommand*{\glsseeitemformat}[1]{%
\acronymfont{\glsentrytext{#1}}}

B LB

to ensure that the cross-references (from the s ee key) use the acronym font. The new abbreviation
styles don’t use \acronymfont so this isn’t appropriate with glossaries—extra. If you're us-
ing at least version 1.42 of glossaries—extra, you don’t need to do anything as it automatically
redefines \glsseeitemformat to take the style formatting into account. If you have an
earlier version you can redefine this command as follows:

\renewcommand*{\glsseeitemformat}[1]{%
\ifglshasshort{#1}{\glsfmttext{#1}}{\glsfmtname{#1}

}%

}

_ B

397

18. Sample Documents

This will just show the short form in the cross-reference. If you prefer the name instead (which
includes the short and long form) you can use:

=

\renewcommand*{\glsseeitemformat}[1] {\glsfmtname{#1}

}

The glossaries—extra package provides two additional cross-referencing keys seea 1 so and
alias,sosee={[see also]{svm}} can be replaced with a more appropriate key

\newacronym|[description=

{Statistical pattern recognition

technique using the "~ "kernel trick''},
seealso={svm},

] {ksvm}{ksvm}{kernel support vector machine}

Finally, as with the previous example, you need to replace \acrshort, \acrlong and
\acrfull etcwith \glsxtrshort, \glsxtrlongand \glsxtrfull etc.

If you want to convert this document so that it uses bib2gls, you first need to convertitto bib2gls
use glossaries—extra, as above, but remember that you now need the record option:

Ei

\usepackage [acronym, nomain, style=
altlist, record, postdot, stylemods]
{glossaries-extra}

Now you need to convert the acronym definitions to the bib format required by bib2gls.
This can be done with:

convertgls2bib —-—-preamble-only sampleAcrDesc.tex
entries.bib

If you retained \ newacronym from the original example file, then thenew entries.bib
file will contain entries defined with @dacronym. For example:

@acronym{ksvm,

description=
{Statistical pattern recognition technique
using the "~ "kernel trick''},

seealso={svm},

398

18. Sample Documents

short={ksvm},
long={kernel support vector machine}

}

If you switched to \newabbreviat ion then the entries will instead be defined with @abbreviation.
Nextreplace \makeglossaries with the resource command, but note that the abbreviation
style must be set first:

Ei

\setabbreviationstyle[acronym] {long—-short-sc—-desc}
\GlsXtrLoadResources[src={entries}

, % terms defined in entries.bib
abbreviation-sort-fallback=long]

Another possibility is to make @ a cronym behave as though it was actually Gabbreviation:

Ei

\setabbreviationstyle{long-short-sc—-desc}
\GlsXtrLoadResources|[src={entries}, abbreviation-sort
—fallback=long,
entry—-type—-aliases={acronym=abbreviation}]

Note that the category is now abbreviation not acronym so the optional argument of \set-
abbreviationstyle needs to be removed.

If the sort field is missing (which should usually be the case), then both @acronym and
@abbreviation will fallback on the short field (not the name field, which is usually
set by the style and therefore not visible to bib2g1ls). For some styles, as in this example, it’s
more appropriate to sort by the long form so the fallback is changed. (Remember that you will
break this fallback mechanism if you explicitly set the sort value.) See the bib2gls manual
for further details and other examples.

Remember to delete any \newacronymor \newabbreviation inthe tex file. Fi-
nally replace \printglossary with \printunsrtglossary. The document build
is now:

pdflatex sampleAcrDesc
bib2gls sampleAcrDesc
pdflatex sampleAcrDesc

Note that it’s now much easier to revert back to the descriptionless style used in sampleAcr.tex:

399

18. Sample Documents

\setabbreviationstyle[acronym] {long-short-sc}
\GlsXtrLoadResources[src={entries},ignore—-fields=
{description}]

With the other options it would be necessary to delete all the description fields from
the abbreviation definitions in order to omit them, but with bib2gls you can simply instruct
bib2gls to ignore the description. This makes it much easier to have a large database of
abbreviations for use across multiple documents that may or may not require the description.

(&% sampleDesc.tex

This is similar to the previous example, except that it defines the acronyms as normal entries
using \newglossaryentry instead of \newacronym. As with the previous example,
the glossary is added to the table of contents, so an extra run through ISTEX is required:

pdflatex sampleDesc
makeglossaries sampleDesc
pdflatex sampleDesc
pdflatex sampleDesc

This sample file demonstrates the use of the £1rst and text keys but in general it’s better
to use \newacronym instead as it’s more flexible. For even greater flexibility use \new-
abbreviation provided by glossaries—extra. For other variations, such as showing the
symbol on first use, you may prefer to make use of the post-link category hook. For examples,
see the section “Changing the Formatting” in glossaries-extra and bib2gls: An Introductory
Guide.*

(& sampleFnAcrDesc.tex

This document has some sample acronyms that use the footnote—sc—desc acronym style. As
with the previous example, the glossary is added to the table of contents, so an extra run through
IATEX is required:

pdflatex sampleFnAcrDesc
makeglossaries sampleFnAcrDesc
pdflatex sampleFnAcrDesc
pdflatex sampleFnAcrDesc

If you want to convert this sample document to use glossaries—extra, then you just need to follow glossaries
the same steps as for sampleAcr . tex with a slight modification. This time the short—sc —extra
—footnote—desc abbreviation style is needed:

‘mirrors.ctan.org/support/bib2gls/bib2gls—begin.pdf

400

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleDesc.tex
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleFnAcrDesc.tex
http://mirrors.ctan.org/support/bib2gls/bib2gls-begin.pdf

18. Sample Documents

\setabbreviationstyle[acronym] {short-sc—-footnote
—desc}

_ B

The command redefinitions (performed with \ renewcommand) should now all be deleted as
they are no longer applicable.

You may prefer to use the short—sc—postfootnote—desc style instead. There are subtle differ-
ences between the postfootnote and footnote set of styles. Try changing the abbreviation style to
short—sc—footnote and compare the position of the footnote marker with the two styles.

This modified sample file now has a shorter build:

pdflatex sampleFnAcrDesc
makeglossaries sampleFnAcrDesc
pdflatex sampleFnAcrDesc

__ [

This is because the glossaries—extra package produces boilerplate text when the indexing file is
missing (on the first ISTEX run) which adds the glossary title to the table of contents (t oc) file.

[O& sampleCustomAcr.tex

This document has some sample acronyms with a custom acronym style. It also adds the
glossary to the table of contents, so an extra run through I£TEX is required:

pdflatex sampleCustomAcr
makeglossaries sampleCustomAcr
pdflatex sampleCustomAcr
pdflatex sampleCustomAcr

. i

This is a slight variation on the previous example where the name is in the form (long) ({short))
instead of (short) ({long)), and the sort key is set to the long form instead of the short form.
On first use, the footnote text is in the form (long): (description) (instead of just the long form).
This requires defining a \newacronym style that inherits from the footnote—sc—desc style.

The conversion to glossaries—extra starts in much the same way as the previous examples: glossaries
—extra

\usepackage [acronym, nomain, postdot, stylemods, style=
altlist]
{glossaries—extra}

__B

The abbreviation styles have associated helper commands that may be redefined to make minor
modifications. These redefinitions should be done before the abbreviations are defined.

The short—sc—footnote—desc abbreviation style is the closest match to the requirement, so
replace the \setacronymstyle command with:

401

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleCustomAcr.tex

18. Sample Documents

\setabbreviationstyle[acronym] {short-sc-footnote
—desc}

Again, you may prefer short—sc—postfootnote—desc. Both styles use the same helper commands.
Next some adjustments need to be made to fit the new requirements. The name needs to be

(long) ((short)):

\renewcommand*{\glsxtrfootnotedescname}{%
\protect\glslongfont {\the\glslongtok}$%
\protect\glsxtrfullsep{\the\glslabeltok}%
\protect\glsxtrparen{\protect\glsabbrvfont

{\the\glsshorttok}}%

}

This command expands when the abbreviations are defined so take care to \protect com-
mands that shouldn’t be expanded at that point, and make sure that the token registers that store
the label, long and short values are able to expand. Similarly the sort value needs adjusting:

=

\renewcommand*{\glsxtrfootnotedescsort}{\the\gls-
longtok}

The footnote for all the footnote abbreviation styles is produced with:

=

\glsxtrabbrvfootnote{(label)} { (text) }

where (text) is the singular or plural long form, depending on what command was used to refer-
ence the abbreviation (\gls, \glspl etc). This can simply be redefined as:

=

\renewcommand* {\glsxtrabbrvfootnote} [2] {\footnote{%
#2: \glsentrydesc{#1}}}

This will mimic the result from the original sample document. Note that newer versions of
glossaries—extra may have additional helper commands associated with certain abbreviation
styles.

You may prefer to replace #2 with a reference to a specific field (or fields). For example:

402

18. Sample Documents

=

\renewcommand*{\glsxtrabbrvfootnote} [2] {\footnote{%
\Glsfmtlong{#1} (\glsfmtshort{#1}): \glsentrydesc
{#1}.}}

As with the earlier sampleAcrDesc.tex, you need to remove or change the redefinition
of \glsseeitemformat since \acronymfont is no longer appropriate.
In the original sampleCustomAcr . tex source code, I started the description with a

capital:

\newacronym[description=

{Statistical pattern recognition

technique using the " "kernel trick''},
see={[see also]{svm}},

] {ksvm}{ksvm}{kernel support vector machine}

This leads to a capital letter after the colon in the footnote, which is undesirable, but I would like
to have the description start with a capital in the glossary. The solution to this problem is easy
with glossaries—extra. I start the description with a lowercase letter and set the gl ossdesc
category attribute to £i rstuc to convert the description to sentence case in the glossary:

=

\glssetcategoryattribute{acronym}{glossdesc}
{firstuc}

The abbreviation definitions are modified slightly:

\newacronym[description=

{statistical pattern recognition

technique using the "~ "kernel trick''},
seealso={svm},

] {ksvm}{ksvm}{kernel support vector machine}

Note the use of the seea lso key, which is only available with glossaries—extra.
If you prefer touse \newabbreviation instead of \newacronym, then the category
needs to be abbreviation rather than acronym:

=

\glssetcategoryattribute{abbreviation}{glossdesc}
{firstuc}

and the style command needs to be adjusted so that it omits the optional argument. For example:

403

18. Sample Documents

=

\setabbreviationstyle{short-sc-postfootnote-desc}

(& sample-FnDesc.tex

This example defines a custom entry formatdisplay format that puts the description in a foot-
note on first use.

pdflatex sample-FnDesc
makeglossaries sample-FnDesc
pdflatex sample-FnDesc

In order to prevent nested hyperlinks, this document uses the hyperfirst=fal se package
option (otherwise the footnote marker hyperlink would be inside the hyperlink around the link
text which would result in a nested hyperlink).

The glossaries—extra package has category post-link hooks that make it easier to adjust the glossaries
formatting. The post-link hook is placed after the hyperlink around the link text, so a hyperlink = —extra
created by \ footnote in the post-link hook won’t cause a nested link. This means that the

hyperfirst=false option isn’t required:

[i
|
Never use commands like \gls or \glsdesc in the post-link hook as you can end up

with infinite recursion. Use commands that don’t themselves have a post-link hook, such
as \glsentrydescor \glossentrydesc, instead.

\usepackage [postdot, stylemods] {glossaries—extra}

In the original sample—-FnDesc. tex file, the entry format was adjusted with:

\renewcommand*{\glsentryfmt }{%
\glsgenentryfmt
\ifglsused{\glslabel}{}{\footnote{\glsentrydesc
{\glslabel}}}}

This can be changed to:

\glsdefpostlink
{general}% category label

404

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-FnDesc.tex

18. Sample Documents

{\glsxtrifwasfirstuse{\footnote{\glsentrydesc{\gls—
label}}}{}}

This sets the post-link hook for the general category (which is the default category for entries
defined with \newglossaryentry). If Iadded some abbreviations (which have a different
category) then this change wouldn’t apply to them.

The first paragraph in the document is:

=

First use: \gls{sample}.

So the PDF will have the word “sample” (the link text created by \gls{sample}) as a
hyperlink to the entry in the glossary followed by the footnote marker, which is a hyperlink
to the footnote. This is then followed by the sentence terminator. “First use: sample’.”

It would look tidier if the footnote marker could be shifted after the full stop. “First use:
sample.!” This can easily be achieved with a minor modification:

\glsdefpostlink
{general}% category label
{\glsxtrifwasfirstuse
{\glsxtrdopostpunc{\footnote{\glsentrydesc{\gls-
label}}} 1%
{1%
}

You may prefer touse \glossentrydesc instead of \glsent rydesc. This will obey
the gl ossdesc category attribute. If you append \glspostdescription, you can
also pick up the post dot package option. For example:

\glssetcategoryattribute{general}{glossdesc}
{firstuc}

\glsdefpostlink

{general}% category label

{\glsxtrifwasfirstuse

{\glsxtrdopostpunc{\footnote{$%
\glossentrydesc{\glslabel}\glspostdescription}}}

o\

{1%
}

Alternatively, you could just use \G1lsent rydesc and explicitly append the full stop.

405

18. Sample Documents

(&% sample-custom-acronym.tex

This document illustrates how to define your own acronym style if the predefined styles don’t
suit your requirements.

pdflatex sample—-custom—acronym
makeglossaries sample-custom—-acronym
pdflatex sample-custom—acronym

In this case, a style is defined to show the short form in the text with the long form and description
in a footnote on first use. The long form is used for the sort value. The short form is displayed
in small caps in the main part of the document but in uppercase in the list of acronyms. (So it’s
a slight variation of some of the examples above.) The name is set to the long form (starting
with an initial capital) followed by the all caps short form in parentheses. The final requirement
is that the inline form should show the long form followed by the short form in parentheses.

Aswith sampleFnAcrDesc. tex,the short—sc—footnote—desc and short—sc—postfootnotgossaries
—desc abbreviation styles produce almost the required effect so one of those can be used as a —€xtra
starting point. However the final requirement doesn’t fit. It’'s now necessary to actually define a
custom abbreviation style, but it can mostly inherit from the short—sc—footnote—desc or short
—sc—postfootnote—desc style:

\newabbreviationstyle{custom-fn}$%
{%

\GlsXtrUseBAbbrStyleSetup{short-sc-footnote-desc}$%

o\

o\

}
{
\GlsXtrUseAbbrStyleFmts{short-sc-footnote-desc}%
\renewcommand*{\glsxtrinlinefullformat}[2]4{%
\glsfirstlongfootnotefont{\glsaccesslong{##1}%
\ifglsxtrinsertinside##2\fi}%
\ifglsxtrinsertinsidel\else##2\fi\glsxtrfullsep
{##11%
\glsxtrparen{\glsfirstabbrvscfont{\glsaccess-

short {##1}}1%
%

\renewcommand*{\glsxtrinlinefullplformat} [2]{%
\glsfirstlongfootnotefont{\glsaccesslongpl{##1}
\ifglsxtrinsertinside##2\fi} \ifglsxtr-
insertinsidel\else##2\fi\glsxtrfullsep{##1}%
\glsxtrparen{\glsfirstabbrvscfont{\glsaccess—
shortpl{##1}}}5%

406

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-custom-acronym.tex

18. Sample Documents

} \renewcommand*{\Glsxtrinlinefullformat}[2]{%
\glsfirstlongfootnotefont {\Glsaccesslong{##1}%
\ifglsxtrinsertinside##2\fi}$%
\ifglsxtrinsertinside\else##2\fi\glsxtrfullsep
{##1}%
\glsxtrparen{\glsfirstabbrvscfont{\glsaccess-
short {##1}} 1%
}%
\renewcommand*{\Glsxtrinlinefullplformat} [2]{%
\glsfirstlongfootnotefont{\Glsaccesslongpl{##1l}

o\

\ifglsxtrinsertinside##2\fi}$%
\ifglsxtrinsertinsidelelse##2\fi\glsxtrfullsep
{##1}%
\glsxtrparen{\glsfirstabbrvscfont{\glsaccess-
shortpl {##1}}}%
}s
t

(See the glossaries—extra user manual for further details.)
This new custom style now needs to be set:

=

\setabbreviationstyle[acronym] {custom-fn}

Remember that if you decide to use \newabbreviation instead of \newacronym
then the category will be abbreviation not acronym:

=

\setabbreviationstyle{custom-£fn}

This custom style simply adjusts the inline full form. There are other adjustments to be made that
apply to the inherited style. (The alternative is to design a new style from scratch.) The footnote
contains the long form followed by the description. This is the same as the modification to an
earlier example:

=

\renewcommand*{\glsxtrabbrvfootnote} [2] {\footnote
{#2:
\glsentrydesc{#1}.}}

Aswith sampleCustomAcr. tex, if you specifically want the singular long form then you
can ignore the second argument. For example:

407

18. Sample Documents

=

\renewcommand*{\glsxtrabbrvfootnote} [2] {\footnote
{\Glsfmtlong{#1}: \glsentrydesc{#1}.}}

The name now needs to be the long form followed by the short form in parentheses, but note
the new requirement that the short form should now be in all caps not small caps and the long
form should start with a capital letter.

\renewcommand*{\glsxtrfootnotedescname}{%
\protect\glsfirstlongfootnotefont
{\makefirstuc{\the\glslongtok}}
(\protect\glsuppercase{\the\glsshorttok})$%
}

The inherited abbreviation style uses the short form as the sort value by default. This needs
to be changed to the long form:

\renewcommand*{\glsxtrfootnotedescsort}{\the\gls—
longtok}

bib2gls

If you want to switch to using bib2gls, remember to set the abbreviation style be-
fore the resource command and change the default sort fallback field to 1 ong, as with
sampleAcrDesc.tex.

(& sample-dot—abbr.tex

This document illustrates how to use the base post-link hook to adjust the space factor after
acronyms.

pdflatex sample—-dot—-abbr
makeglossaries sampledot—-abbrf
pdflatex sample—-dot-—-abbr

This example creates a custom storage key that provides a similar function to glossaries—extra’s
category key.

This example is much simpler with glossaries—extra. The custom storage key, which is defined
using:

408

glossaries
—extra

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-dot-abbr.tex

18. Sample Documents

\glsaddstoragekey{abbrtype}{word}{\abbrtype}

can now be removed.
The category key is set to “initials” for the initialisms (which are defined with the custom
\newacr command). The abbreviation styles can be set with:

=

\setabbreviationstyle[acronym] {long-short}
\setabbreviationstyle[initials]{long—-short}

The discardperiod category attribute will discard any full stop (period) following com-
mands like \g1ls:

=

\glssetcategoryattribute{initials}{discardperiod}
{true}

(If youwant touse the noshortplural attribute then you will alsoneed tosetthe p Llural-
discardperiod attribute.)

The first use is governed by the retainfirstuseperiod category attribute. If set,
the period won’t be discarded if it follows the first use of commands like \ g1s. This is useful
for styles where the first use doesn’t end with the short form. In this case, the first use of the
long—short style ends with a closing parenthesis, so the end of sentence might be clearer if the
period is retained:

=

\glssetcategoryattribute{initials}{retainfirstuse-
period}{true}

The insertdot s category attribute can automatically insert dots into the short form with
a final space factor adjustment:

=

\glssetcategoryattribute{initials}{insertdots}{true}

The custom helper command defined in the example needs to be slightly modified:

\newcommand*{\newabbr} [1][]{%
\newabbreviation[category=initials, #1]}

The definitions need to be slightly modified to work with the insertdot s attribute:

409

18. Sample Documents

\newabbr{eg}{eg}{eg}

\newabbr{ie}{ie}{ie}
\newabbr{bsc}{B{Sc}}{Bachelor of Science}
\newabbr{ba}{BA}{BA}
\newabbr{agm}{AGM} { AGM}

(This makes it much easier to change your mind if you decide at a later date to omit the dots,
especially if you are storing all your definitions in a file that’s shared across multiple documents,
but note the need to group “Sc”.)

The “laser” definition remains unchanged:

\newacronym{laser}{laser}
{light amplification by stimulated
emission of radiation}

The remaining code in the document preamble must now be removed. (It will interfere with
glossaries—extra’s category post-link hooks.) No change is required in the document body.

See the glossaries—extra user manual for further details about category attributes and post-link
hooks.

(& sample—-font-abbr.tex

This document illustrates how to have different fonts for acronyms within the style. The doc-
ument build is:

pdflatex sample—-font—-abbr
makeglossaries sample—-font—-abbr
pdflatex sample—font—-abbr

The acronym mechanism provided by the base glossaries package isn’t well suited to having a
mixture of styles. This example provides a workaround that involves defining a new storage key
with \glsaddstoragekey that’s used to hold the font declaration (such as \ em).

=

[\glsaddstoragekey{font}{}{\entryfont}

A new custom acronym style is defined that fetches the font information from this new key so
that it can be applied to the acronym. Some helper commands are also provided to define the
different types of acronyms:

410

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-font-abbr.tex

18. Sample Documents

\newcommand* {\newitabbr} [1] []{\newacronym
[font=\em, #1] }
\newcommand* { \newupabbr}{\newacronym}

\newitabbr{eg}{e.qg.}{exempli gratia}
\newupabbr{bsc}{BSc}{Bachelor of Science}

This makes the first use of \gls{eg} appear as “exempli gratia (e.g.)” whereas the first use
of \gls{bsc} is “Bachelor of Science (BSc)”

This example document is much simpler with glossaries—extra. First the \usepackage
command needs adjusting:

Ei

\usepackage [postdot, stylemods] {glossaries—extra}

The custom storage key can now be removed and also the custom acronym style. Now replace
the \setacronymstyle line with:

Ei

\setabbreviationstyle[acronym] {long-short-em}

and change the definition of the helper commands:

\newcommand*{\newitabbr}{\newacronym}
\newcommand* { \newupabbr } { \newabbreviation}

Note that the font=\em, part has been removed from the definition of the first command and
the second command uses \newabbreviation instead of \newacronym. This means
that \newitabbr will defaultto cat egory={acronym} and \newupabbr will default
to category={abbreviation}. The default style for the abbreviation category is long—short,
which is the required style for this example. This just means that only the acronym category
needs to have the style set (with the above \setabbreviationstyle command).

Finally, the \acrshort, \acrlongand \acrfull commands need to be replaced
with \glsxtrshort, \glsxtrlongand \glsxtrfull.

You may notice that the spacing after “e.g.” and “i.e.” isn’t correct. This is similar to the
sample—dot—abbr.tex example where the space factor needs adjusting. In this case
I’'ve inserted the dots manually (rather than relying on the insertdot s attribute). You can
either remove the dots and use insertdots with discardperiod:

411

glossaries
—extra

18. Sample Documents

\glssetcategoryattribute{acronym}{insertdots}{true}
\glssetcategoryattribute{acronym}{discardperiod}
{true}

\newitabbr{eg}{eg}{exempli gratia}
\newitabbr{ie}{ie}{id est}

Or you can manually insert the space factor adjustment with \ @ and only use the discard-

period attribute:

\glssetcategoryattribute{acronym}{discardperiod}
{true}

\newitabbr{eglt{e.g.\@}{exempli gratia}
\newitabbr{ie}{i.e.\@}{id est}

You don’t have to use the acronym category. You may prefer a different label that fits better

semantically. For example:

\setabbreviationstyle[latinabbr] {long-short-em}
\newcommand* {\newlatinabbr}[1] []{\newabbreviation
[category={latinabbr}, #1]}
\glssetcategoryattribute{latinabbr}{insertdots}
{true}
\glssetcategoryattribute{latinabbr}{discardperiod}
{true}

\newlatinabbr{eg}l{e.g.\@}{exempli gratia}
\newlatinabbr{ie}{i.e.\@}{id est}

18.3. Non-Page Locations

(& sampleEqg.tex

This document illustrates how to change the entry location to something other than the page
number. In this case, the equation counter is used since all glossary entries appear inside an
equation environment. To create the document do:

412

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleEq.tex

18. Sample Documents

pdflatex sampleEqg
makeglossaries sampleEq
pdflatex sampleEqg

The glossaries package provides some location formats, such as hyperrm and hyperbf,
that allow the locations in the number list to hyperlink to the appropriate place in the document
(af hyperref has been used). Since it’s not possible to include the hyperlink name in the indexing
information with makeindex and x1ndy, the glossaries package has to reform the name
from a prefix and the location value.

Unfortunately it’s not always possible to split the link name into a prefix and location. That
happens with the equation counter in certain classes, such as the report class (which is used in
this example). This means that it’s necessary to redefine \theHequat ion so that it has a
format that fits the requirement:

Ei

\renewcommand*\theHequation{\theHchapter.\arabic
{equation}}

If you don’t do this, the equation locations in the glossary won’t form valid hyperlinks.
Each glossary entry represents a mathematical symbol. This means that with Options 1, 2 and
3 it’s necessary to use the sort key. For example:

=

\newglossaryentry{Gamma}{name={\ensuremath
{\Gamma (z) }},
description={Gamma function}, sort={Gamma}}

If you want to switch to using bib2gls, the first change you need to make is to switch
from explicitly loading glossaries to loading glossaries—extra with the record package op-
tion. If record=only (or record without a value) is used, then the above redefinition of
\theHequationisstill required. If record=nameref is used instead then the redefi-
nition of \theHequation isn’t required. You may also want to use the st yv1emods and
postdot options:

=

\usepackage [record=nameref, st ylemods, postdot,
ucmark, style=long3colheader, counter=equation]
{glossaries—-extra}

The entries now need to be converted into the bib format required by bib2gls, which can
be done with convertgls2bib:

413

bib2gls

18. Sample Documents

convertgls2bib —--preamble-only sampleEqg.tex
entries.bib

This will create a file called entries.bib that starts:

=

% Encoding: UTF-8

@entry{Gamma,
name={\ensuremath{\Gamma (z) }},
description={Gamma function}

}

You may prefer to change @entry to @symbol. (This should be easy to do with your text
editor’s search and replace function.)

Note that the sort key has been omitted. This is because it typically shouldn’t be used. The
difference between using @ent ry and @symbol is that with @ent ry the sort value will be
obtained from the name but with @symbo1l the sort value will be obtained from the label. If
you explicitly use the sort key then you will break this behaviour. (If you try this example out,
notice the difference in the ordering if you switch between @entry and @symbol. See also
bib2gls gallery: sorting.”)

Next replace \makeglossaries with:

=

\GlsXtrLoadResources[src={entries}]

If you have used record=nameref then you can remove the redefinition of \theH-
equation. Next remove all the lines defining the glossary entries (since they’re now defined
in the bib file).

Finally, replace \printglossary with \printunsrtglossary:

\printunsrtglossary[title=
{Index of Special Functions and Notations}]

The rest of the document remains unchanged (unless you want to use \glsxtrfmt as de-
scribed in the following example).

(& sampleEgPg.tex

This is similar to the previous example, but the number lists are a mixture of page numbers
and equation numbers. This example adds the glossary to the table of contents, so an extra ISTEX
run is required:

Sdickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

414

https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleEqPg.tex
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

18. Sample Documents

pdflatex sampleEgPg
makeglossaries sampleEgPg
pdflatex sampleEgPg
pdflatex sampleEgPg

As with the previous example, entries are defined like this:

=

\newglossaryentry{Gamma}name={\ensuremath{\Gamma (z) }

by

description={Gamma function}, sort={Gamma}

The count e r=equation package option is used to set the default indexing counter to equation.
This means that it has to be changed for indexing outside of any numbered equation. For example:

=

\glslink[format=hyperbf, counter=page] {Gamma }
{gamma function}

I've set the format to hyperbf to indicate that this is a primary reference. (Note that I'm
using hyperbf not textbf in order to include a hyperlink in the location.)
The link text here is almost identical to the description. The only difference is that the de-
scription starts with a capital (sentence case). If it started with a lowercase character instead, 1
could simply use \glsdesc instead of \glslink. If I change the entry descriptions so
that they all start with a lowercase letter then I would need to create a custom glossary style that
used \Glossentrydesc instead of \glossentrydesc.
If I switch to using glossaries—extra I wouldn’t need a new glossary style. Instead I could just glossaries
use the glossdesc category attribute to perform the case change. Remember that the first —éxtra
change to make is to replace glossaries with glossaries—extra:

=

\usepackage[style=long3colheader, postdot, stylemods,
counter=equation] {glossaries—extra}

The entries are now all defined so that the description starts with a lowercase letter (except for
the descriptions that start with a proper noun). For example:

=

\newglossaryentry{Gamma}{name={\ensuremath
{\Gamma (z) }},
description={gamma function},sort={Gamma}}

The gl ossdesc category attribute needs setting:

415

18. Sample Documents

\glssetcategoryattribute{general}{glossdesc}
{firstuc}

This means that I can now use \glsdesc instead of \glslink.

It’s a bit cumbersome typing [format=hyperbf, counter=page] for each pri-
mary reference, but glossaries—extra provides a convenient way of having a third modifier for
commands like \gls and \glstext. This needs to be a single punctuation character (but
not * or + which are already in use). For example:

=

\GlsXtrSetAltModifier{!}{format=hyperbf, counter=
page}

Now \glsdesc!{Gamma} is equivalent to:

\glsdesc[format=hyperbf, counter=page] { Gamma }

So the text at the start of the “Gamma Functions” chapter is now just:

=

The \glsdesc!{Gamma} is defined as

which is much more compact. Similar changes can be made for the other instance of \gls-
1ink where the link text is just the description:

The \glsdesc!{erf} is defined as

\glslink{Gamma}{\Gamma (x+1) }

There are three other instances of \gls1ink, such as:

If I just use \gls{Gamma} then I would get I'(z) as the link text. For entries like this that
represent functions with variable parameters it would be more convenient (and help with consis-
tency) if a command was available to easily replace the parameters.

With the base glossaries package, one simple solution that works for this example is to save
just the function symbol in the symbo 1 field, for example:

416

18. Sample Documents

\newglossaryentry{Gamma}{name={\ensuremath
{\Gamma (z) }},
symbol={\ensuremath{\Gamma}},
description={gamma function}, sort={Gamma}}

and then use:

\glssymbol{Gamma} [(\Gamma (x+1))]

(which includes the function parameter inside the link text) or just:

\glssymbol{Gamma} (\Gamma (x+1))

8L B0

(which has the function parameter after the link text). This is a convenient approach where the
extra material can simply follow the symbol, and it can also be used with glossaries—extra.

The glossaries—extra package provides another possibility. It requires a command that takes
a single argument, for example:

\newcommand{\Gammafunction}[1] {\Gamma (#1) }

The control sequence name (the command name without the leading backslash) is stored in the
field identified by the command \G1 sXt rEFmtFie1d (this should be the internal field name
not the key name, see Table 4.1 on page 148). The default is user i which corresponds to
the user1 key. This means that the “Gamma” entry would need to be defined with user1=
{Gammafunction}. With this approach, each function entry would need a separate asso-
ciated command.

Another approach is to store the parameterless function in the symbo 1 key (as earlier) and
have a more generic command that uses this symbol. This requires the entry label, which can be
obtained with \glslabel within the link text:

=

\newcommand{\entryfunc}[1]{\glsentrysymbol{\gls—
label} (#1)}

(Obviously, this command can’t be used outside of the link text or post-link hooks since it uses
\glslabel.)

So the entry now needs the parameterless function in s ymbo 1 and the control sequence name
of this generic command in user 1. For example:

417

18. Sample Documents

\newglossaryentry{Gamma}{name={\ensuremath
{\Gamma (z) }},

symbol={\ensuremath{\Gamma}}, userl={entryfunc},
description={gamma function}, sort={Gamma}}

(This doesn’t need to be done for the “C” and “G” entries since they’re constants not functions.)
You may want to consider providing helper commands to make the functions easier to define.
For example:

,
\newcommand{\func} [2] {#1 (#2) }
\newcommand{\entryfunc} [1]{\func{\glsentrysymbol
{\glslabel}}{#1}}
\newcommand{\newfunc} [5][]1{%
\newglossaryentry{#2}{name={\ensuremath{\func{#3}
{#4}}},

symbol={#3},

userl={entryfunc},

description={#5},

sort={#2}, #1

o\°

}
t

The entries can now be defined using this custom \newfunc command. For example:

\newfunc{Gamma}{\Gamma}{z}{gamma function}
\newfunc[sort={gammal}] {gamma}{\gamma}{\alpha, x}
{lower

incomplete gamma function}
\newfunc [sort={Gamma2}] {iGamma}{\Gamma}{\alpha, x}
{upper

incomplete gamma function}

Note that in \newfunc the symbol key doesn’t have its value encapsulated with \ en-
suremath so \glssymbol will need to explicitly be placed in math mode. If you switch
to a glossary style that displays the symbol, you will either need to adjust the definition of
\newfunc touse \ensuremath in the symbol field or you can add the encapsulation
with the gl osssymbol font category attribute.

Now \glslink{Znu}{Z_\nu} cansimply be replaced with \glssymbol{Znu}
(no parameter is required in this case). For the other cases, where the parameter is different from
that given in the t ext field (which is obtained from the name), you canuse \glsxtrfmt.

418

18. Sample Documents

For example, \glslink{Gamma}{\Gamma (x+1) } can now be replaced with:

=

\glsxtrfmt{Gamma}{x+1}

This effectively works like \ g1 s1 ink but omits the post-link hook. (See the glossaries—extra
user manual for further details.)

[i
|
Don’t use \glsxtrfmt within the argument of another \ gl sxtrfmt command

(or inside any other link text).

Similarly \gls1link{Gamma}{\Gamma (\alpha) } can now be replaced with:

=

\glsxtrfmt {Gamma}{\alpha}

Note that it’s still possible to use:

\glssymbol{Gamma} [(\alpha)]

B

You may prefer to define a helper command that makes it easier to switch between your preferred
method. For example:

\newcommand*{\Fn} [3] []{\glssymbol [#1]1{#2}[(#3)]1}

or:

\newcommand*{\Fn} [3] []{\glsxtrfmt [#1]{#2}{#3}}

If you want to convert this example so that it works with bib2gls, first convert it to use bib2gls
glossaries—extra (as described above), and then follow the instructions from sampleEqg. tex.
The convertgls2bib application recognises \newcommand so it will be able to parse
the custom \newfunc commands.
Note that bib2gls allows you to separate the locations in the number list into differ-
ent groups according to the counter used for the location. This can be done with the 1oc
—counters resource option. It’s also possible to identify primary formats (such as hyper-
b f used in this example) usingthe primary—location—format s option. The primary
locations can then be given a more prominent position in the number list. See the bib2gls
user manual for further details.

(& sampleSec.tex

419

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleSec.tex

18. Sample Documents

This document also illustrates how to change the location to something other than the page
number. In this case, the section counter is used. This example adds the glossary to the table of
contents, so an extra ISIEX run is required:

pdflatex sampleSec
makeglossaries sampleSec
pdflatex sampleSec
pdflatex sampleSec

Note that there are conflicting location formats, which trigger a warning from makeindex:

Warning (input = sampleSec.glo, line = 6; output
= sampleSec.gls, line = 9):

—— Conflicting entries: multiple encaps for the same
page under same key.

Warning (input = sampleSec.glo, line = 2; output
= sampleSec.gls, line = 10):

—— Conflicting entries: multiple encaps for the same
page under same key.

This is the result of indexing an entry multiple times for the same location with different values
of the format key (encaps). (makeindex assumes that the location is a page number)
In this case, it’s caused by three references to the “ident” entry in section 2.1:

Ei

\gls[format=hyperit] {ident}
\glspl{ident} % default format=glsnumberformat
\gls* [format=hyperbf]{ident}

If you use the makeglossaries Perl script it will detect the warnings in the make-
index transcript file and attempt to fix the conflict by removing entries from the g1 o file:

Multiple encaps detected. Attempting to remedy.
Reading sampleSec.glo...

Writing sampleSec.glo...

Retrying

(Range formats have highest precedence. The default g1 snumber format has the lowest
precedence.)

If you use makeglossaries—1ite or call makeindex directly then the problem
won’t be fixed and the glossary will end up with the rather odd number list for the identity matrix

420

18. Sample Documents

entry consisting of three references to section 2.1: the first in the default font, followed by bold
(hyperbf) and then italic (hyperit), which results in 2.1, 2.1, 2./. If you use make-
glossaries then only the bold entry (2.1) will be present. However, if you don’t want the
problem corrected, call makeglossaries with the —e switch.

If you switch to x1ndy:

Ei

\usepackage [xindy, style=altlist, toc,counter=section]
{glossaries}

then the conflict will be resolved using the number format attribute list order of priority. In this
case, gl snumberformat has the highest priority. This means that only the upright medium
weight entry (2.1) will be present. The simplest way of altering this is to provide your own custom
format. For example:

=

\newcommand*{\primary} [1]{\hyperit{#1}}
\GlsAddXdyAttribute{primary}

and change \gls [format=hyperit]to\gls[format=primary] etc. Thiswill
give format=primary the highest priority. (It’s also better practice to provide this kind of
semantic command.)

With bib2gls, you can supply rules to deal with location format conflicts, as illustrated
below.

In order to switch to bib2gls, first replace glossaries with glossaries—extra, and add the
record package option. Remember that glossaries—extra has a different set of defaults and
you may also want to patch the predefined base styles. For example:

=

\usepackage[style=altlist, postdot, stylemods, counter=
section]
{glossaries—extra}

The entry definitions now need to be converted into b1b2gls format and saved ina bib
file (say, entries.bib). Youcanuse convertgls2bib:

convertgls2bib —--preamble-only sampleSec.tex
entries.bib

Next replace \makeglossaries with:

421

bib2gls

18. Sample Documents

O

[\GlsXtrLoadResources|[src={entries}]

and remove all the \newglossaryent ry commands.
Finally, replace \printglossarieswith \printunsrtglossaries. Thedoc-
ument build is now:

pdflatex sampleSec
bib2gls sampleSec
pdflatex sampleSec

__ [

As with the original example, there’s still a location format conflict, which bib2gls warns
about:

Warning: Entry location conflict for formats:
hyperbf and hyperit

Discarding: {ident}{}{section}{hyperbf}{2.1}
Conflicts with: {ident}{}{section} {hyperit}{2.1}

_ B

This means that it has discarded the bold location and kept the italic one. (As with make-
glossaries, range formats have the highest priority and g1l snumber format has the
lowest.)

It would be better if the conflict could be merged into a single location that was both bold and
italic. To achieve this, it’s first necessary to define a command that produces this effect:

\newcommand* {\hyperbfit} [1]{\textbf{\hyperit{#1}}}

B

Now bib2gls needs to be invoked with the appropriate mapping with the ——map—-format
or —m switch:

bib2gls —-m "hyperbf:hyperbfit,hyperit:hyperbfit"
sampleSec

If you are using arara the directive should be:

(e}

% arara:
bib2gls: { mapformats: [[hyperbf, hyperbfit],
% arara: ——> [hyperit, hyperbfit] 1 }

_ B LB

422

18. Sample Documents

If you try out this example, notice the difference between record=only and record
=nameref. If you use the latter, the locations will now be the section titles rather than the
section numbers. If you use the record=nameref setting you can customize the location
by defining the command:

=

\glsxtr(counter)l octmt { {location) } { (title) }

In this case the counter is section, so the command should be \glsxtrsectionloc-
fmt. It takes two arguments: the first is the location and the second is the title. For example:

Ei

\newcommand*{\glsxtrsectionlocfmt} [2]{\S#1 #2}

(The only command of this type that is defined by default is the one for the equation counter,
\glsxtrequationlocfmt.) Make sure that you have at least version 1.42 of glossaries
—extra.

18.4. Multiple Glossaries

See also sampleSort.texin §18.5, which has three glossaries.
(& sampleNtn.tex

This document illustrates how to create an additional glossary type. This example adds the
glossary to the table of contents, so an extra IA[EX run is required:

pdflatex sampleNtn
makeglossaries sampleNtn
pdflatex sampleNtn
pdflatex sampleNtn

Note that if you want to call mak e i ndex explicitly instead of usingthemakeglossaries
ormakeglossaries—1lite scripts then you need to call makeindex twice:

1. Create the main glossary (all on one line):

makeindex -s sampleNtn.ist -t sampleNtn.glg -o
sampleNtn.gls sampleNtn.glo

2. Create the secondary glossary (all on one line):

423

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleNtn.tex

18. Sample Documents

makeindex —-s sampleNtn.ist -t sampleNtn.nlg -o
sampleNtn.not sampleNtn.ntn

This document creates a new glossary using:

=

\newglossary[nlg]{notation}{not}{ntn}{Notation}

This defines a glossary that can be identified with the label “notation” with the default title “No-
tation”. The other arguments are the file extensions required with Options 2 and 3. For those
two options, the glossaries package needs to know the input and output files required by make-
index or xindy.

(The optional argument is the file extension of the indexing transcript file, which glossaries
doesn’t need to know about (unless aut omake is used), but it writes the information to the
aux file for the benefit of makeglossaries and makeglossaries—1lite.)

If you switch to a different indexing option then these file extensions aren’t required, in which
case it’s simpler to use the starred form:

=

\newglossary*{notation}{Notation}

This example uses a label prefixing system to differentiate between the different types of en-
tries. (If you use babel with a language that makes : (colon) active you will need to change the
prefix.) For example, the term “set” is defined as:

=

\newglossaryentry{gls:set}{name={set},
description={A collection of distinct objects}}

and the set notation is defined as:

\newglossaryentry{not:set}{type={notation},
name={\ensuremath{\mathcal{S}}},
description={A \gls{gls:set}},sort={S}}

Notice that the latter description contains \g1s. This means you shouldn’t use \glsdesc
with this entry otherwise you will end up with nested links.

The glossaries—extra package provides a command for use in within field values to prevent
nested link text:

424

glossaries
—extra

18. Sample Documents

=

[\glsxtrp{(field)} { (label)}

There are convenient shortcuts for common fields: \g1sps{ (label)} (for the short field)
and \glspt {(label)} (for the t ext field). So the set notation definition can be modified:

=

\newglossaryentry{not:set}{type={notation},
name={\ensuremath{\mathcal{S}}},
description={A \glspt{gls:set}},sort={S}}

This will stop the inner reference from causing interference if you use \glsdesc. It will also
suppress indexing within the glossary but will have a hyperlink (if hyperref is used).

The glossaries—extra package provides a way of defining commands like \ g1 s that automat-
ically insert a prefix. For example:

=

\glsxtrnewgls{not:}{\sym}
\glsxtrnewglslike{gls:}{\term}{\termpl}{\Term}
{\Termpl}

(there’s no point providing commands for plural or case-changing with symbols). Now \ g1 s
{not :set?} can be replaced with \sym{set} and \gls{gls:set} can be replaced
with \term{set }.

These two commands are primarily provided for the benefit of bib2gl s as the information
is written to the aux file. This allows bi1b2 gl s to recognise the custom commands if they have
been used in the bib files. When combined with 1abel-prefixand ext-prefixes
(see below) this makes it much simpler to change the prefixes if necessary.

If you want to convert this document to use bib2gl s, remember that youneed the record
or record=nameref option. For example:

=

\usepackage [record, postdot, stylemods] {glossaries—
extra}l

As with earlier examples, convertgls2bib can be used to convert the entry definitions
into the required bilb format. You may prefer to split the entries into separate files according
to type. (Requires at least bilbb2gls v2.0.) This is useful if you want to reuse a large database
of entries across multiple documents as it doesn’t lock you into using a specific glossary. For
example:

425

bib2gls

18. Sample Documents

convertgls2bib —--split-on-type —-—-preamble-only
sampleNtn.tex entries.bib

This will create a file called ent ries . bib that contains the entries that didn’t have a t ype
assigned in the original file, such as:

Ej
@entry{gls:set,
name={set},
description={A collection of distinct objects}

}

It will also create a file called notation.bib that contains the entries that had the t ype
set to “notation” in the original file, such as:

B
@entry{not:set,
name={\ensuremath{\mathcal{S}}},
description={A \glspt{gls:set}}

}

Note that the t ype field has been removed. The above entry in the notation.bib file
references a term in the entries.bib file. It’s possible to strip all the prefixes from the
bib files and get bib2gls to automatically insert them. In which case, this cross-reference
needs adjusting to indicate that it’s referring to an entry in another file. This can be done with
one of the special ext (n) . prefixes:

dentry{set,
name={\ensuremath{\mathcal{S}}},

B
description={A \glspt{extl.set}}
}

[3}

The corresponding term in the entries.bib file is now:

@entry{set,
name={set},
description={A collection of distinct objects}

}

Now you can replace \makeglossaries with:

426

18. Sample Documents

\GlsXtrLoadResources |[src={entries}, label-prefix=
{gls:}]

\GlsXtrLoadResources|[src={notation}, type=notation,
label-prefix={not:}, ext-prefixes={gls:}]

Remove all the \newglossaryentry definitions and replace \printglossaries
with \printunsrtglossaries.

Regardless of how many resource sets the document contains, only one bib2gls call is
required:

pdflatex sampleNtn
bib2gls sampleNtn
pdflatex sampleNtn

You may notice that the ordering in the notations list has changed from the original. This is
because the sort field was automatically removed by convert gl s2bib, so the entries are
now sorted according to the name field (since they are defined with @ent ry). You can use your
text editor’s search and replace function to replace all instances of @entry with @symbol
inthe notations.bib file so that, for example, the “set” definition becomes:

=

@symbol{set,
name={\ensuremath{\mathcal{S}}},
description={A \glspt{extl.set}}

}

Now these @symbo1l entries will be sorted according to their label. (The original label in the
bib file, not the prefixed label.) This will put them in the same order as the original document.
(See the “Examples” chapter of the b1b2gl s user manual for examples of varying the sorting
and also bib2gls gallery: sorting.®)

(& sample—-dual .tex

This document illustrates how to define an entry that both appears in the list of acronyms and
in the ma in glossary. To create the document do:

pdflatex sample—-dual
makeglossaries sample—dual
pdflatex sample—dual

®dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

427

https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-dual.tex
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

18. Sample Documents

This defines a custom command \newdualentry that defines two entries at once (a nor-
mal entry and an acronym). It uses \glsadd to ensure that if one is used then the other is

automatically indexed:

\newcommand* {\newdualentry}[5] []{%
% main entry:
\newglossaryentry{main—-#2}{name={#4},%
text={#3\glsadd{#2}}, %
description={#5}, %
#1% additional options for main entry
%
% acronym:
\newacronym{#2}{#3\glsadd{main-#2}}{#4}%

}

A sample dual entry is defined with this command:

\newdualentry{svm}% label
{SVM}% short form
{support vector machine}% long form
{Statistical pattern recognition technique}
% description

This defines an acronym with the label “svm” that can be referenced with \g1s{svm} but it
also defines an entry with the label “main-svm”. This isn’t used in the document with \ g1 s but
it’s automatically added from the \ gl sadd{main—-svm} code in the short form of “svm”.

For this trivial document, this kind of dual entry is redundant and unnecessarily leads the
reader down a trail, first to the list of acronyms and from there the reader then has to go to the
ma 1n glossary to look up the description. It’s better to simply include the description in the list
of acronyms.

There are, however, uses for repeating entries across multiple lists. For example, this user
manual defines all described commands (such as \ g1 s) as glossary entries. They appear in the
command summary (where the syntax is given with a brief description and the principle location
in the document where the command is described) and they also appear in the index (where just
the name and location list is shown).

If you want to switch over to bib2gls, first change to glossaries—extra:

\usepackage [record, postdot, stylemods, acronym]
{glossaries—-extra}

Next, the definition needs to be converted to the bib format required by bib2gls. If you

428

bib2gls

18. Sample Documents

do:

convertgls2bib —--preamble-only sample-dual.tex
entries.bib

then convertgls2bib will report the following:

Overriding default definition of \newdualentry with
custom

definition. (Change \newcommand to \providecommand
if you want
\newdualentry[options]{label}{short}{long}
{description}

converted to @dualabbreviationentry.)

This is because convertgls2bib has its own internal definition of \newdualentry,
but if it encounters a new definition that will override its default. If you want to retain convert-
gl s2bib’sdefinition (recommended) then just replace \newcommand with \providecommand
in the document source and rerun convertgls2bib.

With \providecommand,thenewentries.bibfilecreated by convertgls2bib
contains:

,
@dualabbreviationentry{svm,
short={SVM},
description=
{Statistical pattern recognition technique},
long={support vector machine}

}

If \newcommand is retained, it will instead contain:

@entry{main-svm,
name={support vector machine},
description=

{Statistical pattern recognition technique},
text={SVM\glsadd{svm}}

}

@acronym{svm,
short={SVM\glsadd{main-svm}},

429

18. Sample Documents

long={support vector machine}

}

In the first case, bib2gls creates two linked entries using its primary-dual mechanism. In the
second case, bib2gls creates two entries that simply reference each other.

Assuming that your ent ries . bibfile justcontains @dualabbreviationentry,
now replace \makeglossaries with:

\GlsXtrLoadResources[src={entries}, % entries.bib
type=acronym, dual-type=main,dual-prefix={main-1}]

_ B

Then remove the definition of \newdualentry and the entry definition. Finally, replace
\printglossaries with \printunsrtglossaries. The document build is:

pdflatex sample—dual
bib2gls sample-—-dual
pdflatex sample—-dual

__ [

If, instead, your entries.bib file contains separate @entry and @acronym, then
you need:

\setabbreviationstyle[acronym] {long-short}
\GlsXtrLoadResources|[src={entries}]

If you need number lists, the document build is now

i B

pdflatex sample—dual
bib2gls sample-dual
pdflatex sample—dual
bib2gls sample-dual
pdflatex sample—-dual

and this time bib2gls complains about the use of \ g1l sadd within the short and text
fields as this can be problematic. (The extrabib2gl s and ISIEX calls are to ensure the number
list is up to date for the “main-svm” entry, which can only be indexed with \ g1 sadd after “svm”
has been defined.)

Dual entries make much more sense when one entry is for a glossary with the description dis-
played but no number list (or just a primary location), and the other is for the index without the de-
scription but with a number list. This can be created by replacing @dualabbreviationentry
with @dualindexabbreviation:

430

18. Sample Documents

@dualindexabbreviation{svm,
description=

{Statistical pattern recognition technique},
short={SVM},
long={support vector machine}

}

This can be mixed with @ index terms for example:

@index{machlearn,
name={machine learning}

}

The document needs modifying:

\documentclass{article}

\usepackage [record, postdot,

nostyles, stylemods=

bookindex, list, % only want bookindex and list styles
acronym] {glossaries—extra}

\setabbreviationstyle{long-short—-desc}
\GlsXtrLoadResources[src={entries}, % entries.bib
dual-type=acronym,
label-prefix={idx.},dual-prefix={},
combine-dual-locations={primary}]

\glsxtrnewglslike{idx.}{\idx}{\idxpl}{\Idx}{\Idxpl}

\begin{document}
\gls{svm} and \idx{machlearn}.

\printunsrtglossary|[type=\acronymtype, style=altlist]
\printunsrtglossary[style=bookindex,title={Index}]
\end{document}

See the bib2gls manual for further details.
(&% sample-langdict.tex

This document illustrates how to use the glossaries package to create English to French and

431

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-langdict.tex

18. Sample Documents

French to English dictionaries. To create the document do:

pdflatex sample-langdict
makeglossaries sample-langdict
pdflatex sample-langdict

This example uses the noma in package option to prevent the creation of the ma in glossary.
This means that the document must provide its own glossaries:

=

\newglossary|[glg]{english}{gls}{glo}
{English to French}
\newglossary[flg]l{french}{flx}{flo}
{French to English}

This means that if you want to call mak e i nde x explicitly you need to take these new extensions

into account:

makeindex -s sample-langdict.ist -t
sample-langdict.glg -o sample-langdict.gls
sample—-langdict.glo

makeindex -s sample-langdict.ist -t
sample-langdict.flg -o sample-langdict.flx
sample—langdict.flo

As with the previous example, this document provides a custom command that defines two related

entries:

\newcommand* {\newword} [4]{%
\newglossaryentry{en—-#1}{type={english}, name={#2}
,description={#3 #4}}%
\newglossaryentry{fr—-#1}{type={french}, name=
{#3 #4},text={#4},sort={#4},
description={#2}}%
}

This has the syntax:

[\newword{ (label) } { (english) } { (determiner) } { (french) }

432

18. Sample Documents

(Note that this trivial example doesn’t take plurals into account.) This custom command will
define two terms with labels en—(label) (for the English term) and f r—(label) (for the French
term). So

=

\newword{cat}{cat}{le}{chat}

is equivalent to:

,

\newglossaryentry{en-cat}{type={english}, name={cat}
ydescription={le chat}}
\newglossaryentry{fr-cat}{type={french}, name={1le
chat}, sort={chat},

description={cat}}

Unlike the previous example (sample—dual . tex), there’s no link between these two
entries. If the document only uses \gls{en—cat }, then the “en-cat” entry will appear in
the english glossary but the “fr-cat” entry won’t appear in the £rench one.
If you want to switch to bib2gls then you first need to convert the document so that it bib2gls
uses glossaries—extra, but include the pre £ 1 x option to ensure that glossaries—prefix is also
loaded:

Ei

\usepackage [record, prefix, postdot, stylemods, nomain]
{glossaries-extra}

You don’t need to worry about file extensions now, so it’s simpler to use the starred \newglos-
sary¥*:

=

\newglossary*{english}{English to French}
\newglossary*{french}{French to English}

Next the entries need to be converted to the bib format required by bib2gls:

convertgls2bib —--preamble-only —--ignore-type
sample—-langdict.tex entries.bib

This creates the file ent ries.bib that contains entries defined like:

433

18. Sample Documents

@entry{en-cat,
name={cat},
description={le chat}

}

@entry{fr-cat,
name={le chat},
description={cat},
text={chat}

}

(Note that the sort and t ype fields have been omitted.)
This would be more flexible, and much briefer, if these entries were defined usingbib2gls’s

dual entry system combined with the glossaries—prefix package:

@dualentry{cat,
name={chat},
description={cat},
prefix={le},
prefixplural={les}

}

Similarly for the “chair” entry:

@dualentry{chair,
name={chaise},
description={chair},
prefix={la},
prefixplural={les}

}

With @dualent ry, the English and French terms are now automatically linked frombib2gls’s
point of view. If only one is referenced in the document, the other will also be added by default.

Now that the determiner has been moved out of the description, it won’t show in the glossary.
However, it’s possible to include it by providing a command to encapsulate the description (which
can also apply the language change as well).

434

18. Sample Documents

\GlsXtrLoadResources[src={entries}, % entries.bib
append-prefix—field={space},

category={same as type},dual-category=

{same as type},
label-prefix={en-},dual-prefix={fr-},
type=english,dual-type=french,

sort=en, dual-sort=fr]

\newcommand{\FrEncap}[1]1{%
\foreignlanguage{french}{\glsentryprefix{\gls—

currententrylabel }#1}}

\newcommand{ \EnEncap}[1]{\foreignlanguage{english}
{#11}}

\glssetcategoryattribute{english}{glossnamefont}
{EnEncap}
\glssetcategoryattribute{english}{glossdescfont}
{FrEncap}
\glssetcategoryattribute{french}{glossnamefont}
{FrEncap}
\glssetcategoryattribute{french}{glossdescfont}
{EnEncap}

Remember to remove \makeglossaries, the definition of \newword and the entry
definitions from the document preamble, and replace \printglossary with:

=

\printunsrtglossary

Other refinements that you might like to make include using \glsxtrnewglslike so
you don’t have to worry about the label prefix (“en-” and “fr-”). See the glossaries—extra manual
for further details.

(& sample—-index.tex

This document uses the glossaries package to create both a glossary and an index. This re-
quires two makeglossaries (ormakeglossaries—1ite) calls to ensure the doc-
ument is up to date:

435

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample-index.tex

18. Sample Documents

pdflatex sample-index
makeglossaries sample—-index
pdflatex sample—-index
makeglossaries sample—-index
pdflatex sample—-index

18.5. Sorting

(& samplePeople.tex

This document illustrates how you can hook into the standard sort mechanism to adjust the way
the sort key is set. This requires an additional run to ensure the table of contents is up-to-date:

pdflatex samplePeople
makeglossaries samplePeople
pdflatex samplePeople
pdflatex samplePeople

This provides two commands for typesetting a name:

\newcommand{\sortname} [2] {#2, #1}
\newcommand{\textname} [2]{#1 #2}

B L B

where the first argument contains the forenames and the second is the surname. The first com-
mand is the one required for sorting the name and the second is the one required for displaying
the name in the document. A synonym is then defined:

\let\name\textname

_B

This command defaults to the display name command (\ t ext name) but is temporarily rede-
fined to the sort name command (\ sortname) within the sort field assignment hook:

©

\renewcommand{\glsprestandardsort}[3]14{%
\let\name\sortname
\edef#l{\expandafter\expandonce\expandafter{#1}}%
\let \name\textname
\glsdosanitizesort

436

http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/samplePeople.tex

18. Sample Documents

|

The people are defined using the custom \name command:

\newglossaryentry{joebloggs} {name={\name{Joe}

{Bloggs}},
description={\nopostdesc}}

Since \name is temporarily changed while the sort key is being assigned, the sort value for
this entry ends up as “Bloggs, Joe”, but the name appears in the document as “Joe Bloggs”.

If you want to use bib2gls, you first need to convert the document to use glossaries—extra bib2gls
but make sure you include the record option:

\usepackage [record, stylemods, style=listgroup]
{glossaries—extra}

_ B

Next it’s necessary to convert the entry definitions to the bib format required by bib2gls.
You can simply do:

convertgls2bib —--preamble-only samplePeople
people.bib

which will create a file called people .bib that contains definitions like:

@dentry{joebloggs,
name={\name{Joe}{Bloggs}},
description={\nopostdesc}

}

However, you may prefer to use the ——index—conversion (—1i) switch:

convertgls2bib -i —--preamble-only samplePeople
people.bib

B B8 L0

This will discard the description field and use @index instead of @entry if the
description is either empty or simply set to \nopostdescor \glsxtrnopost-
punc. The people.bib file now contains definitions like:

437

18. Sample Documents

@index{joebloggs,
name={\name{Joe}{Bloggs}}
}

_ B

Regardless of which approach you used to create the b1ib file, you now need to edit it to provide
a definition of the custom \name command for bib2gls’s use:

@preamble{"\providecommand{\name} [2]{#2, #1}"}

B

Note the use of \providecommand instead of \newcommand.

In the document (samplePeople . tex)younow need todelete \makeglossaries,
the definitions of \sortname, \textname, \name, \glsprestandardsort,
and all the entry definitions. Then add the following to the document preamble:

\newcommand{\name} [2]{#1 #2}
\GlsXtrLoadResources [src={people}]

_ B

Next, use your text editor’s search and replace function to substitute all instances of \gls-
entrytext in the chapter headings with \ g1 s fmt text. For example:

[\chapter{\glsfmttext{joebloggs}}

Finally, replace \printglossaries with:

\printunsrtglossaries

The document build is now:

pdflatex samplePeople
bib2gls samplePeople
pdflatex samplePeople
pdflatex samplePeople

__ B LB LB

The third IXTEX call is required to ensure that the PDF bookmarks are up to date, as the entries
aren’t defined until after the bib2gls run (which is why you have to use \glsfmttext
instead of \glsentrytext).

This again leads to a list sorted by surname. The reason this works is because bib2gls only
sees the definition of \name provided in @preamble, but the document uses the definition

438

18. Sample Documents

of \name provided before \G1sXtrLoadResources. The use of \providecom-
mand in @preamble prevents \name from being redefined within the document.

See also the “Examples” chapter of the bilb2 gl s user manual, which provides another “peo-
ple” example and Aliases.’

(& sampleSort.tex

This is another document that illustrates how to hook into the standard sort mechanism. An
additional run is required to ensure the table of contents is up-to-date:

pdflatex sampleSort
makeglossaries sampleSort
pdflatex sampleSort
pdflatex sampleSort

This document has three glossaries (ma in, acronym and a custom notat ion), so if you
want to use makeindex explicitly you will need to have three makeindex calls with the

appropriate file extensions:

pdflatex sampleSort

makeindex —-s sampleSort.ist -t sampleSort.alg -o
sampleSort.acr sampleSort.acn

makeindex -s sampleSort.ist -t sampleSort.glg -o
sampleSort.gls sampleSort.glo

makeindex -s sampleSort.ist -t sampleSort.nlg -o
sampleSort.not sampleSort.ntn

pdflatex sampleSort

pdflatex sampleSort

It’s much simpler to just use makeglossaries ormakeglossaries—lite
In this example, the sort hook is adjusted to ensure the list of notation is sorted according to
the order of definition. A new counter is defined to keep track of the entry number:

=

\newcounter{sortcount}

The sort hook is then redefined to increment this counter and assign the sort key to that numerical
value, but only for the notat ion glossary. The other two glossaries have their sort keys
assigned as normal:

’dickimaw-books.com/gallery/index.php?label=aliases

439

https://www.dickimaw-books.com/gallery/index.php?label=aliases
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sampleSort.tex
https://www.dickimaw-books.com/gallery/index.php?label=aliases

18. Sample Documents

\renewcommand{\glsprestandardsort} [3]%
\ifdefstring{#2}{notation}$%
{%
\stepcounter{sortcount}%
\edef#l1{\glssortnumberfmt{\arabic{sortcount}}}
}%
{%
\glsdosanitizesort
}S

This means that makeindex will sort the notation in numerical order.
If you want to convert this document to use glossaries—extra, a much simpler approach is glossaries
available with its hybrid method. First change the package loading line to: —extra

\usepackage [postdot, stylemods, acronym] {glossaries-
extra}

_ B

Either remove \ setacronymstyle and replace all instances of \newacronym with
\newabbreviation or replace:

\setacronymstyle{long-short}

with:

\setabbreviationstyle[acronym] {long—-short}

8 [B

The custom counter and redefinition of \glsprestandardsort can now be removed.
The file extensions for the custom notation glossary are no longer relevant so the glossary defini-
tion can be changed to:

B

\newglossary*{notation}{Notation}

The \makeglossaries command now needs to be adjusted to indicate which glossaries
need to be processed by makeindex:

B

[\makeglossaries[main, acronym]

440

18. Sample Documents

Finally, \printglossaries needs to be replaced with:

\printglossary
\printacronyms
\printnoidxglossary|[type=notation, sort=def]

Note that the notation glossary, which hasn’t been listed in the optional argument of \make-
glossaries, must be displayed with \printnoidxglossary

This means that makeindex only needs to process the main and acronym glossaries.
No actual sorting is performed for the not at ion glossary because, when used with sort
=def, \printnoidxglossary simply iterates over the list of entries that have been
indexed.

The document build doesn’t need the third ISTEX call now (since none of the glossaries extend
beyond a page break):

pdflatex sampleSort
makeglossaries sampleSort
pdflatex sampleSort

This time makeglossaries will include the message:

only processing subset 'main,acronym' \

This means that although makeglossaries has noticed the notat ion glossary, it will
be skipped.
If you are explicitly calling make index then you need to drop the call for the notation

glossary:

pdflatex sampleSort

makeindex -s sampleSort.ist -t sampleSort.alg -o
sampleSort.acr sampleSort.acn

makeindex —-s sampleSort.ist -t sampleSort.glg -o
sampleSort.gls sampleSort.glo

pdflatex sampleSort

If you prefer to use bib2gls, the package loading line needs to be changed to:

\usepackage [record, postdot, stylemods, acronym]
{glossaries-extra}

441

bib2gls

18. Sample Documents

Next the entry definitions need to be convert to the bib format required by bib2gls.
For this example, it’s simpler to split the entries into different files according to the glossary
type. This can be done with the ——split—-on—-type or —t switch:

convertgls2bib -t —-—-preamble-only sampleSort.tex
entries.bib

This will create three files:

entries.bib

This contains the entries that were defined with \newglossaryentry. For exam-

ple:
B
@entry{gls:set,
name={set},
description={A collection of distinct objects}

}

abbreviations.bib

This contains the entries that were defined with \newacronym. For example:

B
@acronym{zfc,
short={ZFC},
long={Zermelo-Fraenkel set theory}
t

If you changed \newacronymto \newabbreviationthen @abbreviation
will be used instead:

B
@Qabbreviation{zfc,
short={ZFC},
long={Zermelo-Fraenkel set theory}
t

notation.bib

This contains the entries that were defined with t ype={notation}. For example:

442

18. Sample Documents

@entry{not:set,
name={\mathcal{S}},
description={A set},
text={\mathcal{S}}

\

You may prefer to replace @ent ry with @symbol in this file.

After the definition of the notat ion glossary (\newglossary), add:

% abbreviation style must be set first:
\setabbreviationstyle[acronym] {long—-short}
\GlsXtrLoadResources[src={entries, abbreviations}]
\GlsXtrLoadResources[src={notation}, % notation.bib
type=notation, sort=unsrt]

Delete the remainder of the document preamble (\makeglossaries and entry definitions).
Finally, replace the lines that display the glossaries with:

=

\printunsrtglossaries

The build process is now:

pdflatex sampleSort
bib2gls sampleSort
pdflatex sampleSort

In this case, I have one resource command that processes two glossaries (ma inand acronym)
at the same time. The entries in these glossaries are ordered alphabetically. The second resource
command processes the not at 1 on glossary but the entries in this glossary aren’t sorted (and
so will appear in the order of definition within the b1ib file).

See also sampleNtn.tex,bib2gls gallery: sorting® and the bib2gls user manual
for more examples.

18.6. Child Entries

(& sample.tex

8dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

443

https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting
http://mirrors.ctan.org/macros/latex/contrib/glossaries/samples/sample.tex
https://www.dickimaw-books.com/gallery/index.php?label=label=bib2gls-sorting

18. Sample Documents

This document illustrates some of the basics, including how to create child entries that use the
same name as the parent entry. This example adds the glossary to the table of contents and it
alsouses \glsrefentry, so an extra KIEX run is required:

pdflatex sample
makeglossaries sample
pdflatex sample
pdflatex sample

You can see the difference between word and letter ordering if you add the package option
order=letter. (Note that this will only have an effect if you use makeglossaries
or makeglossaries—1lite. If you use makeindex explicitly, you will need to use
the —1 switch to indicate letter ordering.)

One of the entries has its name encapsulated with a semantic command:

\newcommand{\scriptlang} [1]{\textsf{#1}}

\newglossaryentry{Perl}{name={\scriptlang{Perl}}
, sort={Perl},
description={A scripting language}}

This means that this entry needs to have the sort key set otherwise make1ndex will assign
it to the “symbol” group, since it starts with a backslash (which makeindex simply treats as
punctuation).

The homograph entries “glossary” and “bravo” are defined as sub-entries that inherit the name
from the parent entry. The parent entry doesn’t have a description, but with the default nopostdot
=false setting this will lead to a spurious dot. This can be removed by adding \nopost-
desc to the description, which suppresses the post-description hook for that entry.

Since the child entries have the same name as the parent, this means that the child entries will
have duplicate sort values unless the default is changed with the sort key:

\newglossaryentry{glossary}{name={glossary},
description={\nopostdesc},plural={glossaries}}

\newglossaryentry{glossarycol }{
description={collection of glosses},
sort={2},
parent={glossary}% parent label

}

444

18. Sample Documents

\newglossaryentry{glossarylist}{
description={list of technical words},
sort={1},
parent={glossary}% parent label

}

(Remember that the entries are sorted hierarchically.) This will place “glossarylist” before “glos-
sarycol”, but both will come immediately after their parent “glossary” entry.

If you switch to using glossaries—extra, remember that the default package options are differ-
ent:

=

\usepackage [postdot, stylemods, style=treenoname-
group, order=word,
subentrycounter] {glossaries—-extra}

You may now want to consider replacing \nopostdesc in the descriptions with \ g1