The \LaTeX3 Sources

The \LaTeX Project*

Released 2023-12-08

Abstract

This is the typset sources for the expl3 programming environment; see the matching \texttt{interface3} PDF for the API reference manual. The expl3 modules set up a naming scheme for \LaTeX commands, which allow the \LaTeX programmer to systematically name functions and variables, and specify the argument types of functions.

The \TeX and \texttt{\epsilon-}\TeX primitives are all given a new name according to these conventions. However, in the main direct use of the primitives is not required or encouraged: the \texttt{expl3} modules define an independent low-level \LaTeX3 programming language.

The \texttt{expl3} modules are designed to be loaded on top of \LaTeX2. With an up-to-date \LaTeX2 kernel, this material is loaded as part of the format. The fundamental programming code can also be loaded with other \TeX formats, subject to restrictions on the full range of functionality.

*E-mail: latex-team@latex-project.org
Contents

I Introduction

1 Introduction to expl3 and this document
 1.1 Naming functions and variables
 1.1.1 Scratch variables
 1.1.2 Terminological inexactitude
 1.2 Documentation conventions
 1.3 Formal language conventions which apply generally
 1.4 \TeX{} concepts not supported by \LaTeX{}3

II Bootstrapping

2 The \texttt{l3bootstrap} package: Bootstrap code
 2.1 Using the \LaTeX{}3 modules

3 The \texttt{l3names} package: Namespace for primitives
 3.1 Setting up the \LaTeX{}3 programming language

III Programming Flow

4 The \texttt{l3basics} package: Basic definitions
 4.1 No operation functions
 4.2 Grouping material
 4.3 Control sequences and functions
 4.3.1 Defining functions
 4.3.2 Defining new functions using parameter text
 4.3.3 Defining new functions using the signature
 4.3.4 Copying control sequences
 4.3.5 Deleting control sequences
 4.3.6 Showing control sequences
 4.3.7 Converting to and from control sequences
 4.4 Analysing control sequences
 4.5 Using or removing tokens and arguments
 4.5.1 Selecting tokens from delimited arguments
 4.6 Predicates and conditionals
 4.6.1 Tests on control sequences
 4.6.2 Primitive conditionals
 4.7 Starting a paragraph
 4.8 Debugging support
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>The \texttt{b3expan} package: Argument expansion</td>
<td>31</td>
</tr>
<tr>
<td>5.1</td>
<td>Defining new variants</td>
<td>31</td>
</tr>
<tr>
<td>5.2</td>
<td>Methods for defining variants</td>
<td>32</td>
</tr>
<tr>
<td>5.3</td>
<td>Introducing the variants</td>
<td>34</td>
</tr>
<tr>
<td>5.4</td>
<td>Manipulating the first argument</td>
<td>35</td>
</tr>
<tr>
<td>5.5</td>
<td>Manipulating two arguments</td>
<td>37</td>
</tr>
<tr>
<td>5.6</td>
<td>Manipulating three arguments</td>
<td>37</td>
</tr>
<tr>
<td>5.7</td>
<td>Unbraced expansion</td>
<td>38</td>
</tr>
<tr>
<td>5.8</td>
<td>Preventing expansion</td>
<td>39</td>
</tr>
<tr>
<td>5.9</td>
<td>Controlled expansion</td>
<td>40</td>
</tr>
<tr>
<td>5.10</td>
<td>Internal functions</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>The \texttt{b3sort} package: Sorting functions</td>
<td>44</td>
</tr>
<tr>
<td>6.1</td>
<td>Controlling sorting</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>The \texttt{b3tl-analysis} package: Analysing token lists</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>The \texttt{b3regex} package: Regular expressions in \TeX</td>
<td>47</td>
</tr>
<tr>
<td>8.1</td>
<td>Syntax of regular expressions</td>
<td>48</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Regular expression examples</td>
<td>48</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Characters in regular expressions</td>
<td>49</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Characters classes</td>
<td>49</td>
</tr>
<tr>
<td>8.1.4</td>
<td>Structure: alternatives, groups, repetitions</td>
<td>50</td>
</tr>
<tr>
<td>8.1.5</td>
<td>Matching exact tokens</td>
<td>51</td>
</tr>
<tr>
<td>8.1.6</td>
<td>Miscellaneous</td>
<td>53</td>
</tr>
<tr>
<td>8.2</td>
<td>Syntax of the replacement text</td>
<td>53</td>
</tr>
<tr>
<td>8.3</td>
<td>Pre-compiling regular expressions</td>
<td>55</td>
</tr>
<tr>
<td>8.4</td>
<td>Matching</td>
<td>56</td>
</tr>
<tr>
<td>8.5</td>
<td>Submatch extraction</td>
<td>57</td>
</tr>
<tr>
<td>8.6</td>
<td>Replacement</td>
<td>58</td>
</tr>
<tr>
<td>8.7</td>
<td>Scratch regular expressions</td>
<td>60</td>
</tr>
<tr>
<td>8.8</td>
<td>Bugs, misfeatures, future work, and other possibilities</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>The \texttt{b3prg} package: Control structures</td>
<td>63</td>
</tr>
<tr>
<td>9.1</td>
<td>Defining a set of conditional functions</td>
<td>63</td>
</tr>
<tr>
<td>9.2</td>
<td>The boolean data type</td>
<td>65</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Constant and scratch booleans</td>
<td>67</td>
</tr>
<tr>
<td>9.3</td>
<td>Boolean expressions</td>
<td>68</td>
</tr>
<tr>
<td>9.4</td>
<td>Logical loops</td>
<td>70</td>
</tr>
<tr>
<td>9.5</td>
<td>Producing multiple copies</td>
<td>71</td>
</tr>
<tr>
<td>9.6</td>
<td>Detecting \TeX's mode</td>
<td>71</td>
</tr>
<tr>
<td>9.7</td>
<td>Primitive conditionals</td>
<td>72</td>
</tr>
<tr>
<td>9.8</td>
<td>Nestable recursions and mappings</td>
<td>72</td>
</tr>
<tr>
<td>9.8.1</td>
<td>Simple mappings</td>
<td>73</td>
</tr>
<tr>
<td>9.9</td>
<td>Internal programming functions</td>
<td>73</td>
</tr>
</tbody>
</table>
15 The `l3tl` package: Token lists

15.1 Creating and initialising token list variables 109
15.2 Adding data to token list variables .. 110
15.3 Token list conditionals ... 111
 15.3.1 Testing the first token ... 113
15.4 Working with token lists as a whole .. 114
 15.4.1 Using token lists .. 114
 15.4.2 Counting and reversing token lists 115
 15.4.3 Viewing token lists .. 116
15.5 Manipulating items in token lists ... 117
 15.5.1 Mapping over token lists ... 117
 15.5.2 Head and tail of token lists ... 118
 15.5.3 Items and ranges in token lists .. 120
 15.5.4 Sorting token lists .. 122
15.6 Manipulating tokens in token lists ... 122
 15.6.1 Replacing tokens .. 122
 15.6.2 Reassigning category codes .. 123
15.7 Constant token lists ... 124
15.8 Scratch token lists .. 125

16 The `l3tl-build` package: Piecewise `tl` constructions

16.1 Constructing \langle tl var \rangle by accumulation 126

17 The `l3str` package: Strings

17.1 Creating and initialising string variables ... 128
17.2 Adding data to string variables ... 129
17.3 String conditionals .. 129
17.4 Mapping over strings .. 131
17.5 Working with the content of strings .. 133
17.6 Modifying string variables ... 136
17.7 String manipulation .. 137
17.8 Viewing strings ... 138
17.9 Constant strings ... 139
17.10 Scratch strings .. 139

18 The `l3str-convert` package: String encoding conversions

18.1 Encoding and escaping schemes ... 140
18.2 Conversion functions ... 142
18.3 Conversion by expansion (for PDF contexts) 142
18.4 Possibilities, and things to do ... 142

19 The `l3quark` package: Quarks and scan marks

19.1 Quarks ... 144
19.2 Defining quarks .. 145
19.3 Quark tests .. 145
19.4 Recursion .. 146
 19.4.1 An example of recursion with quarks 147
19.5 Scan marks .. 148
20 The l3seq package: Sequences and stacks

20.1 Creating and initialising sequences ... 149
20.2 Appending data to sequences .. 151
20.3 Recovering items from sequences ... 151
20.4 Recovering values from sequences with branching 153
20.5 Modifying sequences ... 154
20.6 Sequence conditionals ... 155
20.7 Mapping over sequences .. 155
20.8 Using the content of sequences directly 158
20.9 Sequences as stacks ... 159
20.10 Sequences as sets ... 160
20.11 Constant and scratch sequences ... 161
20.12 Viewing sequences ... 162

21 The l3int package: Integers

21.1 Integer expressions ... 163
21.2 Creating and initialising integers .. 166
21.3 Setting and incrementing integers .. 167
21.4 Using integers .. 168
21.5 Integer expression conditionals .. 168
21.6 Integer expression loops .. 170
21.7 Integer step functions .. 172
21.8 Formatting integers ... 173
21.9 Converting from other formats to integers 174
21.10 Random integers ... 175
21.11 Viewing integers ... 175
21.12 Constant integers ... 176
21.13 Scratch integers ... 176
21.14 Direct number expansion ... 177
21.15 Primitive conditionals .. 177

22 The l3flag package: Expandable flags

22.1 Setting up flags ... 179
22.2 Expandable flag commands .. 180

23 The l3clist package: Comma separated lists

23.1 Creating and initialising comma lists 181
23.2 Adding data to comma lists .. 183
23.3 Modifying comma lists .. 184
23.4 Comma list conditionals .. 185
23.5 Mapping over comma lists ... 185
23.6 Using the content of comma lists directly 187
23.7 Comma lists as stacks ... 188
23.8 Using a single item ... 189
23.9 Viewing comma lists ... 190
23.10 Constant and scratch comma lists ... 190
24 The \texttt{l3token} package: Token manipulation

- **24.1 Creating character tokens** .. 192
- **24.2 Manipulating and interrogating character tokens** 193
- **24.3 Generic tokens** ... 196
- **24.4 Converting tokens** .. 197
- **24.5 Token conditionals** ... 197
- **24.6 Peeking ahead at the next token** 201
- **24.7 Description of all possible tokens** 206

25 The \texttt{l3prop} package: Property lists

- **25.1 Creating and initialising property lists** 209
- **25.2 Adding and updating property list entries** 211
- **25.3 Recovering values from property lists** 212
- **25.4 Modifying property lists** 213
- **25.5 Property list conditionals** 213
- **25.6 Recovering values from property lists with branching** ... 214
- **25.7 Mapping over property lists** 215
- **25.8 Viewing property lists** 216
- **25.9 Scratch property lists** 217
- **25.10 Constants** ... 217

26 The \texttt{l3skip} package: Dimensions and skips

- **26.1 Creating and initialising \texttt{dim} variables** 218
- **26.2 Setting \texttt{dim} variables** 219
- **26.3 Utilities for dimension calculations** 219
- **26.4 Dimension expression conditionals** 220
- **26.5 Dimension expression loops** 222
- **26.6 Dimension step functions** 223
- **26.7 Using \texttt{dim} expressions and variables** 224
- **26.8 Viewing \texttt{dim} variables** 226
- **26.9 Constant dimensions** .. 227
- **26.10 Scratch dimensions** .. 227
- **26.11 Creating and initialising \texttt{skip} variables** 227
- **26.12 Setting \texttt{skip} variables** 228
- **26.13 Skip expression conditionals** 229
- **26.14 Using \texttt{skip} expressions and variables** 229
- **26.15 Viewing \texttt{skip} variables** 229
- **26.16 Constant skips** .. 230
- **26.17 Scratch skips** .. 230
- **26.18 Inserting skips into the output** 230
- **26.19 Creating and initialising \texttt{muskip} variables** 231
- **26.20 Setting \texttt{muskip} variables** 231
- **26.21 Using \texttt{muskip} expressions and variables** 232
- **26.22 Viewing \texttt{muskip} variables** 232
- **26.23 Constant muskips** .. 233
- **26.24 Scratch muskips** .. 233
- **26.25 Primitive conditional** ... 233
33 The \texttt{unicode} package: Unicode support functions 285

34 The \texttt{text} package: Text processing 288
 34.1 Expanding text ... 288
 34.2 Case changing ... 289
 34.3 Removing formatting from text 291
 34.4 Control variables ... 291
 34.5 Mapping to graphemes 292

VI Typesetting 293

35 The \texttt{box} package: Boxes 294
 35.1 Creating and initialising boxes 294
 35.2 Using boxes ... 295
 35.3 Measuring and setting box dimensions 296
 35.4 Box conditionals ... 297
 35.5 The last box inserted 297
 35.6 Constant boxes .. 297
 35.7 Scratch boxes ... 297
 35.8 Viewing box contents 298
 35.9 Boxes and color ... 298
 35.10 Horizontal mode boxes 298
 35.11 Vertical mode boxes 299
 35.12 Using boxes efficiently 301
 35.13 Affine transformations 302
 35.14 Viewing part of a box 305
 35.15 Primitive box conditionals 306

36 The \texttt{coffins} package: Coffin code layer 307
 36.1 Creating and initialising coffins 307
 36.2 Setting coffin content and poles 308
 36.3 Coffin affine transformations 309
 36.4 Joining and using coffins 310
 36.5 Measuring coffins .. 310
 36.6 Coffin diagnostics .. 311
 36.7 Constants and variables 312

37 The \texttt{color} package: Color support 313
 37.1 Color in boxes ... 313
 37.2 Color models ... 313
 37.3 Color expressions ... 315
 37.4 Named colors ... 316
 37.5 Selecting colors .. 316
 37.6 Colors for fills and strokes 317
 37.6.1 Coloring math mode material 317
 37.7 Multiple color models 317
 37.8 Exporting color specifications 318
 37.9 Creating new color models 319
 37.9.1 Color profiles ... 320
43.21 Breaking out of mapping functions .. 397
43.22 Starting a paragraph ... 397

44 \texttt{\texttt{l3_expansion}} implementation ... 398
44.1 General expansion ... 398
44.2 Hand-tuned definitions ... 402
44.3 Last-unbraced versions ... 405
44.4 Preventing expansion .. 407
44.5 Controlled expansion ... 407
44.6 Defining function variants .. 408
44.7 Definitions with the automated technique 418
44.8 Held-over variant generation ... 419

45 \texttt{\texttt{l3_sort}} implementation ... 421
45.1 Variables ... 421
45.2 Finding available \texttt{\texttt{	extbackslash tok_registers}} registers 422
45.3 Protected user commands ... 424
45.4 Merge sort .. 426
45.5 Expandable sorting ... 429
45.6 Messages ... 434

46 \texttt{\texttt{l3_analysis}} implementation .. 437
46.1 Internal functions ... 437
46.2 Internal format .. 437
46.3 Variables and helper functions .. 438
46.4 Plan of attack .. 440
46.5 Disabling active characters .. 441
46.6 First pass ... 442
46.7 Second pass .. 447
46.8 Mapping through the analysis .. 450
46.9 Showing the results ... 451
46.10 Peeking ahead ... 454
46.11 Messages ... 461

47 \texttt{\texttt{l3_regex}} implementation ... 462
47.1 Plan of attack ... 462
47.2 Helpers .. 463
47.2.1 Constants and variables ... 465
47.2.2 Testing characters ... 466
47.2.3 Internal auxiliaries ... 467
47.2.4 Character property tests ... 470
47.2.5 Simple character escape ... 472
47.3 Compiling .. 477
47.3.1 Variables used when compiling .. 478
47.3.2 Generic helpers used when compiling 480
47.3.3 Mode .. 481
47.3.4 Framework .. 483
47.3.5 Quantifiers ... 486
47.3.6 Raw characters ... 489
47.3.7 Character properties .. 491

\textit{xii}
65 l3skip implementation 918
65.1 Length primitives renamed .. 918
65.2 Internal auxiliaries .. 918
65.3 Creating and initialising dim variables 918
65.4 Setting dim variables ... 919
65.5 Utilities for dimension calculations 920
65.6 Dimension expression conditionals 921
65.7 Dimension expression loops ... 923
65.8 Dimension step functions .. 924
65.9 Using dim expressions and variables 926
65.10 Conversion of dim to other units 927
65.11 Viewing dim variables .. 932
65.12 Constant dimensions .. 932
65.13 Scratch dimensions .. 932
65.14 Creating and initialising skip variables 932
65.15 Setting skip variables .. 934
65.16 Skip expression conditionals 934
65.17 Using skip expressions and variables 935
65.18 Inserting skips into the output 935
65.19 Viewing skip variables ... 936
65.20 Constant skips ... 936
65.21 Scratch skips .. 936
65.22 Creating and initialising muskip variables 936
65.23 Setting muskip variables .. 937
65.24 Using muskip expressions and variables 938
65.25 Viewing muskip variables ... 938
65.26 Constant muskips .. 939
65.27 Scratch muskips ... 939

66 l3keys implementation 940
66.1 Low-level interface ... 940
66.2 Constants and variables ... 947
66.2.1 Internal auxiliaries .. 949
66.3 The key defining mechanism 950
66.4 Turning properties into actions 952
66.5 Creating key properties ... 959
66.6 Setting keys .. 965
66.7 Utilities ... 974
66.8 Messages ... 977

67 l3intarray implementation 978
67.1 Lua implementation .. 978
67.1.1 Allocating arrays ... 978
67.1.2 Array items ... 981
67.1.3 Working with contents of integer arrays 983
67.2 Font dimension based implementation 984
67.2.1 Allocating arrays ... 985
67.2.2 Array items ... 986
67.2.3 Working with contents of integer arrays 988
67.3 Common parts ... 990
68 l3fp implementation 991

69 l3fp-aux implementation 992
 69.1 Access to primitives 992
 69.2 Internal representation 992
 69.3 Using arguments and semicolons 993
 69.4 Constants, and structure of floating points 994
 69.5 Overflow, underflow, and exact zero 997
 69.6 Expanding after a floating point number 997
 69.7 Other floating point types 998
 69.8 Packing digits ... 1001
 69.9 Decimate (dividing by a power of 10) 1004
 69.10 Functions for use within primitive conditional branches .. 1006
 69.11 Integer floating points 1007
 69.12 Small integer floating points 1008
 69.13 Fast string comparison 1009
 69.14 Name of a function from its l3fp-parse name 1009
 69.15 Messages .. 1009

70 l3fp-traps implementation 1010
 70.1 Flags ... 1010
 70.2 Traps .. 1010
 70.3 Errors .. 1014
 70.4 Messages .. 1014

71 l3fp-round implementation 1016
 71.1 Rounding tools ... 1016
 71.2 The round function 1020

72 l3fp-parse implementation 1025
 72.1 Work plan ... 1025
 72.1.1 Storing results 1026
 72.1.2 Precedence and infix operators 1027
 72.1.3 Prefix operators, parentheses, and functions 1030
 72.1.4 Numbers and reading tokens one by one 1031
 72.2 Main auxiliary functions 1033
 72.3 Helpers ... 1034
 72.4 Parsing one number 1035
 72.4.1 Numbers: trimming leading zeros 1041
 72.4.2 Number: small significand 1042
 72.4.3 Number: large significand 1044
 72.4.4 Number: beyond 16 digits, rounding 1046
 72.4.5 Number: finding the exponent 1049
 72.5 Constants, functions and prefix operators 1052
 72.5.1 Prefix operators 1052
 72.5.2 Constants ... 1055
 72.5.3 Functions ... 1056
 72.6 Main functions .. 1057
 72.7 Infix operators ... 1059
 72.7.1 Closing parentheses and commas 1060
76 l3fp-extended implementation

- 76.1 Description of fixed point numbers .. 1118
- 76.2 Helpers for numbers with extended precision 1119
- 76.3 Multiplying a fixed point number by a short one 1120
- 76.4 Dividing a fixed point number by a small integer 1120
- 76.5 Adding and subtracting fixed points 1121
- 76.6 Multiplying fixed points .. 1122
- 76.7 Combining product and sum of fixed points 1123
- 76.8 Extended-precision floating point numbers 1126
- 76.9 Dividing extended-precision numbers 1128
- 76.10 Inverse square root of extended precision numbers 1132
- 76.11 Converting from fixed point to floating point 1134

77 l3fp-expo implementation

- 77.1 Logarithm 1136
 - 77.1.1 Work plan 1136
 - 77.1.2 Some constants 1137
 - 77.1.3 Sign, exponent, and special numbers 1137
 - 77.1.4 Absolute ln 1137
- 77.2 Exponential 1145
 - 77.2.1 Sign, exponent, and special numbers 1145
- 77.3 Power 1149
- 77.4 Factorial 1155

78 l3fp-trig implementation

- 78.1 Direct trigonometric functions .. 1159
 - 78.1.1 Filtering special cases .. 1159
 - 78.1.2 Distinguishing small and large arguments 1162
 - 78.1.3 Small arguments .. 1163
 - 78.1.4 Argument reduction in degrees 1163
 - 78.1.5 Argument reduction in radians 1164
 - 78.1.6 Computing the power series 1172
- 78.2 Inverse trigonometric functions 1174
 - 78.2.1 Arctangent and arcocotangent 1175
 - 78.2.2 Arccosine and arccosecant 1180
 - 78.2.3 Arcsecant and arcsecant .. 1182

79 l3fp-convert implementation

- 79.1 Dealing with tuples .. 1184
- 79.2 Trimming trailing zeros .. 1184
- 79.3 Scientific notation .. 1185
- 79.4 Decimal representation .. 1186
- 79.5 Token list representation .. 1188
- 79.6 Formatting .. 1189
- 79.7 Convert to dimension or integer 1189
- 79.8 Convert from a dimension .. 1190
- 79.9 Use and eval .. 1191
- 79.10 Convert an array of floating points to a comma list 1192
80 l3fp-random implementation
 80.1 Engine support .. 1194
 80.2 Random floating point .. 1197
 80.3 Random integer .. 1198

81 l3fp-types implementation
 81.1 Support for types .. 1203
 81.2 Dispatch according to the type 1203

82 l3fp-symbolic implementation
 82.1 Misc .. 1206
 82.2 Building blocks for expressions 1206
 82.3 Expanding after a symbolic expression 1207
 82.4 Applying infix operators to expressions 1208
 82.5 Applying prefix functions to expressions 1209
 82.6 Conversions ... 1210
 82.7 Identifiers .. 1211
 82.8 Declaring variables and assigning values 1212
 82.9 Messages .. 1215
 82.10 Road-map ... 1215

83 l3fp-functions implementation
 83.1 Declaring functions .. 1216
 83.2 Defining functions by their expression 1217

84 l3farray implementation
 84.1 Allocating arrays ... 1220
 84.2 Array items .. 1221

85 l3bitset implementation
 85.1 Messages .. 1225
 85.2 Stub package .. 1230

86 l3ctab implementation
 86.1 Variables ... 1231
 86.2 Allocating category code tables 1232
 86.3 Saving category code tables 1233
 86.4 Using category code tables 1234
 86.5 Category code table conditionals 1239
 86.6 Constant category code tables 1240
 86.7 Messages .. 1242

87 l3unicode implementation
 87.1 User functions .. 1244
 87.2 Data loader ... 1248
94 \l3color implementation
 94.1 Basics ... 1387
 94.2 Predefined color names 1388
 94.3 Setup .. 1389
 94.4 Utility functions 1389
 94.5 Model conversion 1390
 94.6 Color expressions 1391
 94.7 Selecting colors (and color models) 1400
 94.8 Math color ... 1402
 94.9 Fill and stroke color 1405
 94.10 Defining named colors 1405
 94.11 Exporting colors 1408
 94.12 Additional color models 1410
 94.13 Applying profiles 1425
 94.14 Diagnostics 1425
 94.15 Messages ... 1426

95 \l3pdf implementation
 95.1 Compression 1430
 95.2 Objects .. 1431
 95.3 Version .. 1431
 95.4 Page size .. 1433
 95.5 Destinations 1433
 95.6 PDF Page size (media box) 1433

96 \l3candidates implementation
 96.1 Additions to \l3seq 1435
 96.2 Additions to \l3tl 1435
 96.2.1 Building a token list 1435

97 \l3deprecation implementation
 97.1 Patching definitions to deprecate 1436
 97.2 Removed functions 1438
 97.3 Deprecated \l3basics functions 1442
 97.4 Deprecated \l3file functions 1442
 97.5 Deprecated \l3keys functions 1443
 97.6 Deprecated \l3pdf functions 1443
 97.7 Deprecated \l3prg functions 1444
 97.8 Deprecated \l3str functions 1444
 97.9 Deprecated \l3seq functions 1445
 97.10 Deprecated \l3sys functions 1445
 97.11 Deprecated \l3text functions 1445
 97.12 Deprecated \l3tf functions 1446
 97.13 Deprecated \l3token functions 1446

98 \l3debug implementation

Index

xxiii
Part I

Introduction
Chapter 1

Introduction to expl3 and this document

This document is intended to act as a comprehensive reference manual for the expl3 language. A general guide to the \LaTeX3 programming language is found in expl3.pdf.

1.1 Naming functions and variables

\LaTeX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _ and : are used in internal macro names to provide structure. The name of each function is divided into logical units using _, while : separates the name of the function from the argument specifier (“arg-spec”). This describes the arguments expected by the function. In most cases, each argument is represented by a single letter. The complete list of arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a small number of very basic functions, all expl3 function names contain at least one underscore to divide the module name from the descriptive name of the function. For example, all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no arguments, this will be blank and the function name will end :. Most functions take one or more arguments, and use the following argument specifiers:

N and n These mean no manipulation, of a single token for N and of a set of tokens given in braces for n. Both pass the argument through exactly as given. Usually, if you use a single token for an n argument, all will be well.

c This means csname, and indicates that the argument will be turned into a csname before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N \ArgumentOne. All macros that appear in the argument are expanded. An internal error will occur if the result of expansion inside a c-type argument is not a series of character tokens.

V and v These mean value of variable. The V and v specifiers are used to get the content of a variable without needing to worry about the underlying \TeX structure containing the data. A V argument will be a single token (similar to N), for example
\foo:\V \MyVariable: on the other hand, using \v a csname is constructed first, and then the value is recovered, for example \foo:\v {\MyVariable}.

- This means \textit{expansion once}. In general, the \V and \v specifiers are favoured over \o for recovering stored information. However, \o is useful for correctly processing information with delimited arguments.

- The \x specifier stands for \textit{exhaustive expansion}: every token in the argument is fully expanded until only unexpandable ones remain. The \TeX \edef primitive carries out this type of expansion. Functions which feature an \x-type argument are \textit{not} expandable.

- The \e specifier is in many respects identical to \x, but uses \texttt{\expanded} primitive. Parameter character (usually \#) in the argument need not be doubled. Functions which feature an \e-type argument may be expandable.

- The \f specifier stands for \textit{full expansion}, and in contrast to \x stops at the first non-expandable token (reading the argument from left to right) without trying to expand it. If this token is a \langle space token\rangle, it is gobbled, and thus won’t be part of the resulting argument. For example, when setting a token list variable (a macro used for storage), the sequence

\begin{verbatim}
\tl_set:Nn \l_mya_tl { A }
\tl_set:Nn \l_myb_tl { B }
\tl_set:Nf \l_mya_tl { \l_mya_tl \l_myb_tl }
\end{verbatim}

will leave \l_mya_tl with the content \texttt{A\l_myb_tl}, as \texttt{A} cannot be expanded and so terminates expansion before \texttt{\l_myb_tl} is considered.

\textbf{T and F} For logic tests, there are the branch specifiers \texttt{T} (true) and \texttt{F} (false). Both specifiers treat the input in the same way as \texttt{n} (no change), but make the logic much easier to see.

- The letter \texttt{p} indicates \TeX \texttt{parameters}. Normally this will be used for delimited functions as expl3 provides better methods for creating simple sequential arguments.

- Finally, there is the \texttt{w} specifier for \textit{weird} arguments. This covers everything else, but mainly applies to delimited values (where the argument must be terminated by some specified string).

- The \texttt{D} stands for \textit{Do not use}. All of the \TeX primitives are initially \texttt{\let} to a \texttt{D} name, and some are then given a second name. These functions have no standardized syntax, they are engine dependent and their name can change without warning, thus their use is \textit{strongly discouraged} in package code: programmers should instead use the interfaces documented in interface3.pdf.

Notice that the argument specifier describes how the argument is processed prior to being passed to the underlying function. For example, \texttt{\foo:c} will take its argument, convert it to a control sequence and pass it to \texttt{\foo:N}.

Variables are named in a similar manner to functions, but begin with a single letter to define the type of variable:

- \texttt{c} Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.

l Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically starting with the module\(^1\) name and then a descriptive part. Variables end with a short identifier to show the variable type:

bitset a set of bits (a string made up of a series of 0 and 1 tokens that are accessed by position).

clist Comma separated list.

dim “Rigid” lengths.

fp Floating-point values;

int Integer-valued count register.

muskip “Rubber” lengths for use in mathematics.

seq “Sequence”: a data-type used to implement lists (with access at both ends) and stacks.

skip “Rubber” lengths.

str String variables: contain character data.

tl Token list variables: placeholder for a token list.

Applying V-type or v-type expansion to variables of one of the above types is supported, while it is not supported for the following variable types:

bool Either true or false.

box Box register.

coffin A “box with handles” — a higher-level data type for carrying out box alignment operations.

flag Integer that can be incremented expandably.

fparray Fixed-size array of floating point values.

intarray Fixed-size array of integers.

ior/iow An input or output stream, for reading from or writing to, respectively.

prop Property list: analogue of dictionary or associative arrays in other languages.

regex Regular expression.

\(^1\)The module names are not used in case of generic scratch registers defined in the data type modules, e.g., the int module contains some scratch variables called \(\texttt{\textbackslash l_tmpa_int}, \texttt{\textbackslash l_tmpb_int}\), and so on. In such a case adding the module name up front to denote the module and in the back to indicate the type, as in \(\texttt{\textbackslash l_int_tmpa_int}\) would be very unreadable.
1.1.1 Scratch variables

Modules focussed on variable usage typically provide four scratch variables, two local and two global, with names of the form \(\langle \text{scope} \rangle_{\text{tmpa}} \langle \text{type} \rangle / \langle \text{scope} \rangle_{\text{tmpb}} \langle \text{type} \rangle \).

These are never used by the core code. The nature of \TeX{} grouping means that as with any other scratch variable, these should only be set and used with no intervening third-party code.

1.1.2 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming modules, we often refer to “variables” and “functions” as if they were actual constructs from a real programming language. In truth, \TeX{} is a macro processor, and functions are simply macros that may or may not take arguments and expand to their replacement text. Many of the common variables are also macros, and if placed into the input stream will simply expand to their definition as well — a “function” with no arguments and a “token list variable” are almost the same.\(^2\) On the other hand, some “variables” are actually registers that must be initialised and their values set and retrieved with specific functions.

The conventions of the expl3 code are designed to clearly separate the ideas of “macros that contain data” and “macros that contain code”, and a consistent wrapper is applied to all forms of “data” whether they be macros or actually registers. This means that sometimes we will use phrases like “the function returns a value”, when actually we just mean “the macro expands to something”. Similarly, the term “execute” might be used in place of “expand” or it might refer to the more specific case of “processing in \TeX{}’s stomach” (if you are familiar with the \TeX{}book parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions and need to be told to tighten up our terminology.

1.2 Documentation conventions

This document is typeset with the experimental \l3doc class; several conventions are used to help describe the features of the code. A number of conventions are used here to make the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name, this might read:

\begin{tabular}{l}
\texttt{\ExplSyntaxOn} \hspace{1em} \texttt{\ExplSyntaxOn} \hspace{1em} \texttt{\ExplSyntaxOn} \hspace{1em} \texttt{\ExplSyntaxOn} \hspace{1em} \texttt{\ExplSyntaxOn} ... \hspace{1em} \texttt{\ExplSyntaxOff} \hspace{1em} \texttt{\ExplSyntaxOff} \\
\texttt{\ExplSyntaxOn} \hspace{1em} \texttt{\ExplSyntaxOff} \\
\end{tabular}

The textual description of how the function works would appear here. The syntax of the function is shown in mono-spaced text to the right of the box. In this example, the function takes no arguments and so the name of the function is simply reprinted.

For programming functions, which use _ and : in their name there are a few additional conventions: If two related functions are given with identical names but different argument specifiers, these are termed variants of each other, and the latter functions are printed in grey to show this more clearly. They will carry out the same function but will take different types of argument:

\(^2\)\TeX{}nically, functions with no arguments are \texttt{\long} while token list variables are not.
\seq_new:N \seq_new:N \seq_new:c

When a number of variants are described, the arguments are usually illustrated only for the base function. Here, \texttt{sequence} indicates that \texttt{\seq_new:N} expects the name of a sequence. From the argument specifier, \texttt{\seq_new:c} also expects a sequence name, but as a name rather than as a control sequence. Each argument given in the illustration should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them to be used within an \texttt{x}-type or \texttt{e}-type argument (in plain \TeX{} terms, inside an \texttt{edef} or \texttt{\expanded}), as well as within an \texttt{f}-type argument. These fully expandable functions are indicated in the documentation by a star:

\cs_to_str:N \cs_to_str:N \cs

As with other functions, some text should follow which explains how the function works. Usually, only the star will indicate that the function is expandable. In this case, the function expects a \texttt{(cs)}, shorthand for a \texttt{(control sequence)}.

Restricted expandable functions A few functions are fully expandable but cannot be fully expanded within an \texttt{f}-type argument. In this case a hollow star is used to indicate this:

\seq_map_function:NN \seq_map_function:NN ✱

Conditional functions Conditional (if) functions are normally defined in three variants, with T, F and TF argument specifiers. This allows them to be used for different “true”/“false” branches, depending on which outcome the conditional is being used to test. To indicate this without repetition, this information is given in a shortened form:

\sys_if_engine_xetex:TF \sys_if_engine_xetex:TF {⟨true code⟩} {⟨false code⟩}

The underlining and italic of \texttt{TF} indicates that three functions are available:

- \texttt{\sys_if_engine_xetex:T}
- \texttt{\sys_if_engine_xetex:F}
- \texttt{\sys_if_engine_xetex:TF}

Usually, the illustration will use the \texttt{TF} variant, and so both \texttt{(true code)} and \texttt{(false code)} will be shown. The two variant forms \texttt{T} and \texttt{F} take only \texttt{(true code)} and \texttt{(false code)}, respectively. Here, the star also shows that this function is expandable. With some minor exceptions, \texttt{all} conditional functions in the \texttt{expl3} modules should be defined in this way.

Variables, constants and so on are described in a similar manner:

\l_tmpa_tl

A short piece of text will describe the variable: there is no syntax illustration in this case.

In some cases, the function is similar to one in \TeX{} 2e or plain \TeX{}. In these cases, the text will include an extra \texttt{“\TeX{}hackers note”} section:
The normal description text.

TeXhackers note: Detail for the experienced \TeX{} or \LaTeX{}\TeX{} \exp3{} programmer. In this case, it would point out that this function is the \TeX{} primitive \texttt{\string}.

Changes to behaviour When new functions are added to \exp3{}, the date of first inclusion is given in the documentation. Where the documented behaviour of a function changes after it is first introduced, the date of the update will also be given. This means that the programmer can be sure that any release of \exp3{} after the date given will contain the function of interest with expected behaviour as described. Note that changes to code internals, including bug fixes, are not recorded in this way unless they impact on the expected behaviour.

1.3 Formal language conventions which apply generally

As this is a formal reference guide for \LaTeX{}3 programming, the descriptions of functions are intended to be reasonably “complete”. However, there is also a need to avoid repetition. Formal ideas which apply to general classes of function are therefore summarised here.

For tests which have a TF argument specification, the test if evaluated to give a logically \texttt{\texttt{\true}} or \texttt{\false} result. Depending on this result, either the \texttt{\true code} or the \texttt{\false code} will be left in the input stream. In the case where the test is expandable, and a predicate \texttt{_p} variant is available, the logical value determined by the test is left in the input stream: this will typically be part of a larger logical construct.

1.4 TeX concepts not supported by \LaTeX{}3

The \TeX{} concept of an \texttt{\outer} macro is not supported at all by \LaTeX{}3. As such, the functions provided here may break when used on top of \LaTeX{}2\epsilon{} if \texttt{\outer} tokens are used in the arguments.
Part II

Bootstrapping
Chapter 2

The l3bootstrap package
Bootstrap code

2.1 Using the \LaTeX3 modules

The modules documented in interface3 (and this file) are designed to be used on top of \LaTeX2ε and are already pre-loaded since \LaTeX2ε 2020-02-02. To support older formats, the \usepackage{exp13} or \RequirePackage{exp13} instructions are still available to load them all as one.

As the modules use a coding syntax different from standard \LaTeX2ε it provides a few functions for setting it up.

\ExplSyntaxOn \ExplSyntaxOff

The \ExplSyntaxOn function switches to a category code regime in which spaces and new lines are ignored, and in which the colon (:) and underscore (_) are treated as “letters”, thus allowing access to the names of code functions and variables. Within this environment, ~ is used to input a space. The \ExplSyntaxOff reverts to the document category code regime.

\textbf{\LaTeXX hackers note:} Spaces introduced by ~ behave much in the same way as normal space characters in the standard category code regime: they are ignored after a control word or at the start of a line, and multiple consecutive ~ are equivalent to a single one. However, ~ is not ignored at the end of a line.

\ProvidesExplPackage \ProvidesExplClass \ProvidesExplFile

These functions act broadly in the same way as the corresponding \LaTeX2ε kernel functions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also implicitly switch \ExplSyntaxOn for the remainder of the code with the file. At the end of the file, \ExplSyntaxOff will be called to reverse this. (This is the same concept as \LaTeX2ε provides in turning on \makeatletter within package and class code.) The \texttt{\langle date\rangle} should be given in the format \texttt{\langle year\rangle/\langle month\rangle/\langle day\rangle} or in the ISO date format \texttt{\langle year\rangle-\langle month\rangle-\langle day\rangle}. If the \texttt{\langle version\rangle} is given then a leading v is optional: if given as a “pure” version string, a v will be prepended.
\GetIdInfo \Id: \{SVN info field\} $\{\text{description}\}$

Extracts all information from a SVN field. Spaces are not ignored in these fields. The information pieces are stored in separate control sequences with \ExplFileName for the part of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion for version and \ExplFileDescription for the description.

To summarize: Every single package using this syntax should identify itself using one of the above methods. Special care is taken so that every package or class file loaded with \RequirePackage or similar are loaded with usual \LaTeX2e category codes and the \LaTeX3 category code scheme is reloaded when needed afterwards. See implementation for details. If you use the \GetIdInfo command you can use the information when loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}
Chapter 3

The \texttt{l3names} package

Namespace for primitives

3.1 Setting up the \LaTeX{}3 programming language

This module is at the core of the \LaTeX{}3 programming language. It performs the following tasks:

- defines new names for all \TeX{} primitives;
- emulate required primitives not provided by default in Lua\TeX{};
- switches to the category code régime for programming;

This module is entirely dedicated to primitives (and emulations of these), which should not be used directly within \LaTeX{}3 code (outside of “kernel-level” code). As such, the primitives are not documented here: \textit{The \TeX{}book}, \textit{\TeX{} by Topic} and the manuals for pdf\TeX{}, Xe\TeX{}, Lua\TeX{}, \pdf\TeX{} and up\TeX{} should be consulted for details of the primitives. These are named \texttt{\textbackslash tex_\langle name\rangle:D}, typically based on the primitive’s \texttt{\langle name\rangle} in pdf\TeX{} and omitting a leading \texttt{pdf} when the primitive is not related to pdf output.
Part III
Programming Flow
Chapter 4

The \l3basics package
Basic definitions

As the name suggest this package holds some basic definitions which are needed by most or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean functions dealing with the construction and testing of control sequences. Furthermore the basic parts of conditional processing are covered: conditional processing dealing with specific data types is described in the modules specific for the respective data types.

4.1 No operation functions

\prg_do_nothing: \prg_do_nothing:
An expandable function which does nothing at all: leaves nothing in the input stream after a single expansion.

\scan_stop: \scan_stop:
A non-expandable function which does nothing. Does not vanish on expansion but produces no typeset output.

4.2 Grouping material

\group_begin: \group_end:
These functions begin and end a group for definition purposes. Assignments are local to groups unless carried out in a global manner. (A small number of exceptions to this rule will be noted as necessary elsewhere in this document.) Each \group_begin: must be matched by a \group_end:, although this does not have to occur within the same function. Indeed, it is often necessary to start a group within one function and finish it within another, for example when seeking to use non-standard category codes.
\texttt{\textbackslash group_insert_after:N} \hfill \texttt{\textbackslash group_insert_after:N\ (token)}

Adds \texttt{(token)} to the list of \texttt{(tokens)} to be inserted when the current group level ends. The list of \texttt{(tokens)} to be inserted is empty at the beginning of a group: multiple applications of \texttt{\group_insert_after:N} may be used to build the inserted list one \texttt{(token)} at a time. The current group level may be closed by a \texttt{\group_end:} function or by a token with category code 2 (close-group), namely a \texttt{)}} if standard category codes apply.

\textbf{\texttt{\TeX}hackers note:} This is the \texttt{\TeX} primitive \texttt{\textbackslash aftergroup}.

\texttt{\textbackslash group_show_list:} \hfill \texttt{\textbackslash group_show_list:}

Display (to the terminal or log file) a list of the groups that are currently opened. This is intended for tracking down problems.

\textbf{\texttt{\TeX}hackers note:} This is a wrapper around the \texttt{\varepsilon\-\TeX} primitive \texttt{\textbackslash showgroups}.

\section{4.3 Control sequences and functions}

As \texttt{\TeX} is a macro language, creating new functions means creating macros. At point of use, a function is replaced by the replacement text ("code") in which each parameter in the code (\texttt{#1}, \texttt{#2}, \texttt{etc.}) is replaced the appropriate arguments absorbed by the function. In the following, \texttt{(code)} is therefore used as a shorthand for "replacement text".

Functions which are not "protected" are fully expanded inside an \texttt{e}-type or \texttt{x}-type expansions. In contrast, "protected" functions are not expanded within \texttt{e} and \texttt{x} expansions.

\subsection*{4.3.1 Defining functions}

Functions can be created with no requirement that they are declared first (in contrast to variables, which must always be declared). Declaring a function before setting up the code means that the name chosen is checked and an error raised if it is already in use. The name of a function can be checked at the point of definition using the \texttt{\cs_new\ldots} functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to expand to the substitution text. Within the substitution text the actual parameters are substituted for the formal parameters (\texttt{#1}, \texttt{#2}, \texttt{\ldots}).

\texttt{new} Create a new function with the \texttt{new} scope, such as \texttt{\cs_new:Np_n}. The definition is global and results in an error if it is already defined.

\texttt{set} Create a new function with the \texttt{set} scope, such as \texttt{\cs_set:Np_n}. The definition is restricted to the current \texttt{\TeX} group and does not result in an error if the function is already defined.

\texttt{gset} Create a new function with the \texttt{gset} scope, such as \texttt{\cs_gset:Np_n}. The definition is global and does not result in an error if the function is already defined.

14
Within each set of scope there are different ways to define a function. The differences depend on restrictions on the actual parameters and the expandability of the resulting function.

nopar Create a new function with the *nopar* restriction, such as `{\cs_set_nopar:Npn}`. The parameter may not contain `{\par}` tokens.

protected Create a new function with the *protected* restriction, such as `{\cs_set_protected:Npn}`. The parameter may contain `{\par}` tokens but the function will not expand within an `e`-type or `x`-type expansion.

Finally, the functions in Subsections 4.3.2 and 4.3.3 are primarily meant to define *base functions* only. Base functions can only have the following argument specifiers:

- `N` and `n` No manipulation.
- `T` and `F` Functionally equivalent to `n` (you are actually encouraged to use the family of `{\prg_new_conditional}`: functions described in Section 9.1).
- `p` and `w` These are special cases.

The `{\cs_new}`: functions below (and friends) do not stop you from using other argument specifiers in your function names, but they do not handle expansion for you. You should define the base function and then use `{\cs_generate_variant:Nn}` to generate custom variants as described in Section 5.2.

4.3.2 Defining new functions using parameter text

- `{\cs_new:Npn \langle function \rangle \langle parameters \rangle \{\langle code \rangle\}}` Creates `{\langle function \rangle}` to expand to `{\langle code \rangle}` as replacement text. Within the `{\langle code \rangle}`, the `{\langle parameters \rangle}` (#1, #2, etc.) will be replaced by those absorbed by the function. The definition is global and an error results if the `{\langle function \rangle}` is already defined.

- `{\cs_new_nopar:Npn \langle function \rangle \langle parameters \rangle \{\langle code \rangle\}}` Creates `{\langle function \rangle}` to expand to `{\langle code \rangle}` as replacement text. Within the `{\langle code \rangle}`, the `{\langle parameters \rangle}` (#1, #2, etc.) will be replaced by those absorbed by the function. When the `{\langle function \rangle}` is used the `{\langle parameters \rangle}` absorbed cannot contain `{\par}` tokens. The definition is global and an error results if the `{\langle function \rangle}` is already defined.

- `{\cs_new_protected:Npn \langle function \rangle \langle parameters \rangle \{\langle code \rangle\}}` Creates `{\langle function \rangle}` to expand to `{\langle code \rangle}` as replacement text. Within the `{\langle code \rangle}`, the `{\langle parameters \rangle}` (#1, #2, etc.) will be replaced by those absorbed by the function. The `{\langle function \rangle}` will not expand within an `e`-type or `x`-type argument. The definition is global and an error results if the `{\langle function \rangle}` is already defined.

Creates ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the ⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. When the ⟨function⟩ is used the ⟨parameters⟩ absorbed cannot contain \par tokens. The ⟨function⟩ will not expand within an e-type or x-type argument. The definition is global and an error results if the ⟨function⟩ is already defined.

\cs_set:Npn \cs_set:cpn \cs_set:Npe \cs_set:cpe \cs_set:Npx \cs_set:cpx

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the ⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a meaning to the ⟨function⟩ is restricted to the current \TeX group level.

\cs_set_protected:Npn \cs_set_protected:cpn \cs_set_protected:Npe \cs_set_protected:cpe \cs_set_protected:Npx \cs_set_protected:cpx

Sets ⟨function⟩ to expand to ⟨code⟩ as replacement text. Within the ⟨code⟩, the ⟨parameters⟩ (#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a meaning to the ⟨function⟩ is restricted to the current \TeX group level. The ⟨function⟩ will not expand within an e-type or x-type argument.
Globally sets (function) to expand to (code) as replacement text. Within the (code), the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a meaning to the (function) is not restricted to the current \TeX group level: the assignment is global.

Globally sets (function) to expand to (code) as replacement text. Within the (code), the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the (function) is used the (parameters) absorbed cannot contain \par tokens. The assignment of a meaning to the (function) is not restricted to the current \TeX group level: the assignment is global. The (function) will not expand within an e-type or x-type argument.

Globally sets (function) to expand to (code) as replacement text. Within the (code), the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the (function) is used the (parameters) absorbed cannot contain \par tokens. The assignment of a meaning to the (function) is not restricted to the current \TeX group level: the assignment is global. The (function) will not expand within an e-type or x-type argument.

4.3.3 Defining new functions using the signature

Creates (function) to expand to (code) as replacement text. Within the (code), the number of (parameters) is detected automatically from the function signature. These (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The definition is global and an error results if the (function) is already defined.

Creates (function) to expand to (code) as replacement text. Within the (code), the number of (parameters) is detected automatically from the function signature. These (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the (function) is used the (parameters) absorbed cannot contain \par tokens. The definition is global and an error results if the (function) is already defined.
\cs_set_protected:Nn \cs_set_protected:(cn|Ne|ce)
\cs_new_protected:Nn \cs_new_protected:(cn|Ne|ce)

Creates \texttt{function} to expand to \texttt{code} as replacement text. Within the \texttt{code}, the number of \texttt{parameters} is detected automatically from the function signature. These \texttt{parameters} \texttt{(#1, #2, etc.)} will be replaced by those absorbed by the function. The \texttt{function} will not expand within an \texttt{e}-type or \texttt{x}-type argument. The definition is global and an error results if the \texttt{function} is already defined.

\cs_set_protected_nopar:Nn \cs_set_protected_nopar:(cn|Ne|ce)
\cs_new_protected_nopar:Nn \cs_new_protected_nopar:(cn|Ne|ce)

Creates \texttt{function} to expand to \texttt{code} as replacement text. Within the \texttt{code}, the number of \texttt{parameters} is detected automatically from the function signature. These \texttt{parameters} \texttt{(#1, #2, etc.)} will be replaced by those absorbed by the function. When the \texttt{function} is used the \texttt{parameters} absorbed cannot contain \texttt{par} tokens. The \texttt{function} will not expand within an \texttt{e}-type or \texttt{x}-type argument. The definition is global and an error results if the \texttt{function} is already defined.

\cs_set:Nn \cs_set:(cn|Ne|ce)
\cs_set_protected:Nn \cs_set_protected:(cn|Ne|ce)

Sets \texttt{function} to expand to \texttt{code} as replacement text. Within the \texttt{code}, the number of \texttt{parameters} is detected automatically from the function signature. These \texttt{parameters} \texttt{(#1, #2, etc.)} will be replaced by those absorbed by the function. The assignment of a meaning to the \texttt{function} is restricted to the current \TeX{} group level.

\cs_set_nopar:Nn \cs_set_nopar:(cn|Ne|ce)
\cs_set_protected_nopar:Nn \cs_set_protected_nopar:(cn|Ne|ce)

Sets \texttt{function} to expand to \texttt{code} as replacement text. Within the \texttt{code}, the number of \texttt{parameters} is detected automatically from the function signature. These \texttt{parameters} \texttt{(#1, #2, etc.)} will be replaced by those absorbed by the function. When the \texttt{function} is used the \texttt{parameters} absorbed cannot contain \texttt{par} tokens. The assignment of a meaning to the \texttt{function} is restricted to the current \TeX{} group level.

\cs_set:Nn \cs_set:(cn|Ne|ce)
\cs_set_protected:Nn \cs_set_protected:(cn|Ne|ce)

Sets \texttt{function} to expand to \texttt{code} as replacement text. Within the \texttt{code}, the number of \texttt{parameters} is detected automatically from the function signature. These \texttt{parameters} \texttt{(#1, #2, etc.)} will be replaced by those absorbed by the function. The \texttt{function} will not expand within an \texttt{e}-type or \texttt{x}-type argument. The assignment of a meaning to the \texttt{function} is restricted to the current \TeX{} group level.
\texttt{\textbackslash cs_gset:Nn} \texttt{\textbackslash cs_gset:cn\textbar Ne\textbar ce} \texttt{\textbackslash cs_gset_nopar:Nn} \texttt{\textbackslash cs_gset_protected:Nn} \texttt{\textbackslash cs_gset_protected_nopar:Nn} \texttt{\textbackslash cs_generate_from_arg_count:NNnn} \texttt{\textbackslash cs_generate_from_arg_count:NNno\textbar cNnn\textbar Ncnn} \texttt{\int_eval:n}

Sets \texttt{\textbackslash function} to expand to \texttt{(code)} as replacement text. Within the \texttt{(code)}, the number of \texttt{\textbackslash parameters} is detected automatically from the function signature. These \texttt{\textbackslash parameters} (#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a meaning to the \texttt{\textbackslash function} is global.

Sets \texttt{\textbackslash function} to expand to \texttt{(code)} as replacement text. Within the \texttt{(code)}, the number of \texttt{\textbackslash parameters} is detected automatically from the function signature. These \texttt{\textbackslash parameters} (#1, #2, etc.) will be replaced by those absorbed by the function. When the \texttt{\textbackslash function} is used the \texttt{\textbackslash parameters} absorbed cannot contain \texttt{\textbackslash par} tokens. The assignment of a meaning to the \texttt{\textbackslash function} is global.

Uses the \texttt{\textbackslash creator} function (which should have signature \texttt{\textbackslash Npn}, for example \texttt{\textbackslash cs_new:Npn}) to define a \texttt{\textbackslash function} which takes \texttt{\textbackslash number} arguments and has \texttt{\textbackslash code} as replacement text. The \texttt{\textbackslash number} of arguments is an integer expression, evaluated as detailed for \texttt{\int_eval:n}.

4.3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same meaning using the functions described here. Making two control sequences equivalent means that the second control sequence is a \textit{copy} of the first (rather than a pointer to it). Thus the old and new control sequence are not tied together: changes to one are not reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

19
\texttt{\textbackslash cs_new_eq:NN} \texttt{\langle cs_1 \rangle \langle cs_2 \rangle}
\texttt{\langle token \rangle}
Globally creates \texttt{\langle control sequence_1 \rangle} and sets it to have the same meaning as \texttt{\langle control sequence_2 \rangle} or \texttt{\langle token \rangle}. The second control sequence may subsequently be altered without affecting the copy.

\texttt{\textbackslash cs_set_eq:NN} \texttt{\langle cs_1 \rangle \langle cs_2 \rangle}
\texttt{\langle token \rangle}
Sets \texttt{\langle control sequence_1 \rangle} to have the same meaning as \texttt{\langle control sequence_2 \rangle} (or \texttt{\langle token \rangle}). The second control sequence may subsequently be altered without affecting the copy. The assignment of a meaning to the \texttt{\langle control sequence_1 \rangle} is restricted to the current \TeX{} group level.

\texttt{\textbackslash cs_gset_eq:NN} \texttt{\langle cs_1 \rangle \langle cs_2 \rangle}
\texttt{\langle token \rangle}
Globally sets \texttt{\langle control sequence_1 \rangle} to have the same meaning as \texttt{\langle control sequence_2 \rangle} (or \texttt{\langle token \rangle}). The second control sequence may subsequently be altered without affecting the copy. The assignment of a meaning to the \texttt{\langle control sequence_1 \rangle} is not restricted to the current \TeX{} group level: the assignment is global.

\section*{4.3.5 Deleting control sequences}
There are occasions where control sequences need to be deleted. This is handled in a very simple manner.

\texttt{\textbackslash cs_undefine:N} \texttt{\langle control sequence \rangle}
Sets \texttt{\langle control sequence \rangle} to be globally undefined.

\section*{4.3.6 Showing control sequences}
This function expands to the \texttt{meaning} of the \texttt{\langle control sequence \rangle} control sequence. For a macro, this includes the \texttt{replacement text}.

\TeX{}hackers note: This is the \TeX{} primitive \texttt{\textbackslash meaning}. For tokens that are not control sequences, it is more logical to use \texttt{\textbackslash token_to_meaning:N}. The \texttt{c} variant correctly reports undefined arguments.

\texttt{\textbackslash cs_show:N} \texttt{\langle control sequence \rangle}
Displays the definition of the \texttt{\langle control sequence \rangle} on the terminal.

\TeX{}hackers note: This is similar to the \TeX{} primitive \texttt{\textbackslash show}, wrapped to a fixed number of characters per line.
\texttt{\cs_log:N} \texttt{(control sequence)}

Wrote the definition of the \texttt{(control sequence)} in the log file. See also \texttt{\cs_show:N} which displays the result in the terminal.

4.3.7 Converting to and from control sequences

\texttt{\use:c{⟨control sequence name⟩}}

Expands the \texttt{(control sequence name)} until only characters remain, and then converts this into a control sequence. This process requires two expansions. As in other \texttt{c}-type arguments the \texttt{(control sequence name)} must, when fully expanded, consist of character tokens, typically a mixture of category code 10 (space), 11 (letter) and 12 (other).

As an example of the \texttt{\use:c} function, both

\begin{verbatim}
\use:c { a b c }
\end{verbatim}

and

\begin{verbatim}
\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl { a b c }
\use:c { \tl_use:N \l_my_tl }
\end{verbatim}

would be equivalent to

\begin{verbatim}
\abc
\end{verbatim}

derstood as two expansions of \texttt{\use:c}.

\texttt{\cs_if_exist_use:N} \texttt{(control sequence)} \texttt{\cs_if_exist_use:NTF} \texttt{(control sequence)} \texttt{⟨true code⟩} \texttt{⟨false code⟩}

Tests whether the \texttt{(control sequence)} is currently defined according to the conditional \texttt{\cs_if_exist_use:NTF} (whether as a function or another control sequence type), and if it is inserts the \texttt{(control sequence)} into the input stream followed by the \texttt{(true code)}. Otherwise the \texttt{(false code)} is used.

\texttt{\cs:w ⟨control sequence name⟩} \texttt{\cs_end;

\texttt{\cs_end:} \texttt{\cs_end:}

Converts the given \texttt{(control sequence name)} into a single control sequence token. This process requires one expansion. The content for \texttt{(control sequence name)} may be literal material or from other expandable functions. The \texttt{(control sequence name)} must, when fully expanded, consist of character tokens which are not active: typically of category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

\textbf{\TeX{}hackers note:} These are the \TeX{} primitives \texttt{\csname csname} and \texttt{\endcsname}.

As an example of the \texttt{\cs:w} and \texttt{\cs:end:} functions, both

\begin{verbatim}
\cs:w a b c \cs_end:
\end{verbatim}

and
would be equivalent to

\abc

after one expansion of \cs:w.

\cs_to_str:N \cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code 12 (other), except spaces, of category code 10. The result does not include the current escape token, contrarily to \token_to_str:N. Full expansion of this function requires exactly 2 expansion steps, and so an e-type or x-type expansion, or two o-type expansions are required to convert the (control sequence) to a sequence of characters in the input stream. In most cases, an f-expansion is correct as well, but this loses a space at the start of the result.

4.4 Analysing control sequences

\cs_split_function:N \cs_split_function:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature) (i.e. after the colon). This information is then placed in the input stream in three parts: the (name), the (signature) and a logic token indicating if a colon was found (to differentiate variables from function names). The (name) does not include the escape character, and both the (name) and (signature) are made up of tokens with category code 12 (other).

The next three functions decompose \TeX macros into their constituent parts: if the (token) passed is not a macro then no decomposition can occur. In the latter case, all three functions leave \scan_stop: in the input stream.

\cs_prefix_spec:N \cs_prefix_spec:N (token)

If the (token) is a macro, this function leaves the applicable \TeX prefixes in input stream as a string of tokens of category code 12 (with spaces having category code 10). Thus for example

\cs_set:Npn \next:nn #1#2 { x #1-y #2 }
\cs_prefix_spec:N \next:nn

leaves \long in the input stream. If the (token) is not a macro then \scan_stop: is left in the input stream.

\TeXhackers note: The prefix can be empty, \long, \protected or \protected\long with backslash replaced by the current escape character.
\texttt{cs_parameter_spec:N} \texttt{⟨token⟩}

If the \texttt{⟨token⟩} is a macro, this function leaves the primitive \TeX parameter specification in input stream as a string of character tokens of category code 12 (with spaces having category code 10). Thus for example

\begin{verbatim}
\cs_set:Npn \next:nn #1#2 { x #1 y #2 }
\cs_parameter_spec:N \next:nn
\end{verbatim}

leaves #1#2 in the input stream. If the \texttt{⟨token⟩} is not a macro then \texttt{_scan_stop:} is left in the input stream.

\textbf{\TeX hackers note:} If the parameter specification contains the string \texttt{-\textgreater}, then the function produces incorrect results.

\texttt{cs_replacement_spec:N} \texttt{⟨token⟩}

If the \texttt{⟨token⟩} is a macro, this function leaves the replacement text in input stream as a string of character tokens of category code 12 (with spaces having category code 10). Thus for example

\begin{verbatim}
\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_replacement_spec:N \next:nn
\end{verbatim}

leaves \texttt{x#1__y#2} in the input stream. If the \texttt{⟨token⟩} is not a macro then \texttt{_scan_stop:} is left in the input stream.

\textbf{\TeX hackers note:} If the parameter specification contains the string \texttt{-\textgreater}, then the function produces incorrect results.

\section{Using or removing tokens and arguments}

Tokens in the input can be read and used or read and discarded. If one or more tokens are wrapped in braces then when absorbing them the outer set is removed. At the same time, the category code of each token is set when the token is read by a function (if it is read more than once, the category code is determined by the situation in force when first function absorbs the token).
As illustrated, these functions absorb between one and four arguments, as indicated by the argument specifier. The braces surrounding each argument are removed and the remaining tokens are left in the input stream. The category code of these tokens is also fixed by this process (if it has not already been by some other absorption). All of these functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } }

results in the input stream containing

abc { def }

i.e. only the outer braces are removed.

\TeXhackers note: The \use:n function is equivalent to \LaTeX's \@firstofone.
These functions absorb a number \((n)\) arguments from the input stream. They then discard all arguments other than that indicated by the roman numeral, which is left in the input stream. For example, \texttt{\use_i:nn} discards the second argument, and leaves the content of the first argument in the input stream. The category code of these tokens is also fixed (if it has not already been by some other absorption). A single expansion is needed for the functions to take effect.
This function absorbs three arguments and leaves the content of the first and second in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }

results in the input stream containing

abc { def }

i.e. the outer braces are removed and the third group is removed.

This function absorbs two arguments and leaves the content of the second and first in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect.

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the \textit{n} arguments may be an unbraced single token (\textit{i.e.} an \texttt{N} argument).

\textbf{\LaTeX}hackers note: These are equivalent to \LaTeXe’s \texttt{@gobble}, \texttt{@gobbbletwo}, etc.

Fully expands the \textit{token list} in an \texttt{e}-type manner, in which parameter character (usually \texttt{#}) need not be doubled, and the function remains fully expandable.

\textbf{\LaTeX}hackers note: \use:e is a wrapper around the primitive \texttt{\expanded}. It requires two
expansions to complete its action.

4.5.1 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use delimited arguments.

Absorb the \textit{(balanced text)} from the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.
Absorb the \textit{balanced text} from the input stream delimited by the marker given in the function name, leaving \textit{inserted tokens} in the input stream for further processing.

4.6 Predicates and conditionals

\LaTeX{} has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending on its result, either the code supplied as the \textit{true code} or the \textit{false code}. These arguments are denoted with \texttt{T} and \texttt{F}, respectively. An example would be

\begin{verbatim}
cs_if_free:cTF {abc} {\textit{true code}} {\textit{false code}}
\end{verbatim}

a function that turns the first argument into a control sequence (since it’s marked as \texttt{c}) then checks whether this control sequence is still free and then depending on the result carries out the code in the second argument (true case) or in the third argument (false case).

These type of functions are known as “conditionals”; whenever a \texttt{TF} function is defined it is usually accompanied by \texttt{T} and \texttt{F} functions as well. These are provided for convenience when the branch only needs to go a single way. Package writers are free to choose which types to define but the kernel definitions always provide all three versions.

Important to note is that these branching conditionals with \textit{true code} and/or \textit{false code} are always defined in a way that the code of the chosen alternative can operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are expandable they are accompanied by a “predicate” for the same test as described below.

Predicates “Predicates” are functions that return a special type of boolean value which can be tested by the boolean expression parser. All functions of this type are expandable and have names that end with \texttt{p} in the description part. For example,

\begin{verbatim}
cs_if_free_p:N
\end{verbatim}

would be a predicate function for the same type of test as the conditional described above. It would return “true” if its argument (a single token denoted by \texttt{N}) is still free for definition. It would be used in constructions like

\begin{verbatim}
\bool_if:nTF {
 \cs_if_free_p:N \l_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(\textit{true code})} {(\textit{false code})}
\end{verbatim}

For each predicate defined, a “branching conditional” also exists that behaves like a conditional described above.
Primitive conditionals There is a third variety of conditional, which is the original concept used in plain \TeX{} and \LaTeX{} \texttt{2e}. Their use is discouraged in expl3 (although still used in low-level definitions) because they are more fragile and in many cases require more expansion control (hence more code) than the two types of conditionals described above.

4.6.1 Tests on control sequences

\begin{verbatim}
\cs_if_eq_p:NN \cs_if_eq_p:NN \cs_if_eq:NNNTF \cs_if_eq:NNNTF
\cs_if_exist_p:N \cs_if_exist:pN \cs_if_exist:NTF \cs_if_exist:NTF
\cs_if_free_p:N \cs_if_free:pN \cs_if_free:NTF \cs_if_free:NTF
\end{verbatim}

Compares the definition of two \textit{(control sequences)} and is logically \texttt{true} if they are the same, \textit{i.e.} if they have exactly the same definition when examined with \texttt{\cs_show:N}.

\begin{verbatim}
\cs_if_exist_p:N \cs_if_exist:pN \cs_if_exist:NTF \cs_if_exist:NTF
\cs_if_free_p:N \cs_if_free:pN \cs_if_free:NTF \cs_if_free:NTF
\end{verbatim}

Tests whether the \textit{(control sequence)} is currently defined (whether as a function or another control sequence type). Any definition of \textit{(control sequence)} other than \texttt{\relax} evaluates as \texttt{true}.

\begin{verbatim}
\cs_if_free_p:N \cs_if_free:pN \cs_if_free:NTF \cs_if_free:NTF
\end{verbatim}

Tests whether the \textit{(control sequence)} is currently free to be defined. This test is \texttt{false} if the \textit{(control sequence)} currently exists (as defined by \texttt{\cs_if_exist:NTF}).

4.6.2 Primitive conditionals

The \texttt{\epsilon\TeX} engine itself provides many different conditionals. Some expand whatever comes after them and others don’t. Hence the names for these underlying functions often contains a \texttt{:w} part but higher level functions are often available. See for instance \texttt{\int_compare_p:nNn} which is a wrapper for \texttt{\if_int_compare:w}.

Certain conditionals deal with specific data types like boxes and fonts and are described there. The ones described below are either the universal conditionals or deal with control sequences. We prefix primitive conditionals with \texttt{\if_}, except for \texttt{\if:w}.

\begin{verbatim}
\if_true: \if_true: \if_true: \if_true: \if_true: \if_true: \if_true: \else: \else: \else: \else: \else: \else:
\else: \else: \else: \else: \else: \else:
\fi: \fi: \fi: \fi: \fi: \fi: \else: \else: \else: \else: \else: \else:
\reverse_if:N \reverse_if:N \reverse_if:N \reverse_if:N \reverse_if:N \reverse_if:N \reverse_if:N
\end{verbatim}

\texttt{\if_true:} always executes \textit{(true code)}, while \texttt{\if_false:} always executes \textit{(false code)}. \texttt{\reverse_if:N} reverses any two-way primitive conditional. \texttt{\else:} and \texttt{\fi:} delimit the branches of the conditional. The function \texttt{\or:} is documented in \texttt{l3int} and used in case switches.

\begin{verbatim}
\if_true: \if_true: \if_true: \if_true: \if_true: \if_true: \if_true: \else: \else: \else: \else: \else: \else:
\else: \else: \else: \else: \else: \else:
\fi: \fi: \fi: \fi: \fi: \fi: \else: \else: \else: \else: \else: \else:
\reverse_if:N \reverse_if:N \reverse_if:N \reverse_if:N \reverse_if:N \reverse_if:N \reverse_if:N
\end{verbatim}

\texttt{\if_true:} and \texttt{\if_false:} are equivalent to their corresponding \TeX{} primitive conditionals \texttt{\iftrue} and \texttt{\iffalse}; \texttt{\else:} and \texttt{\fi:} are the \TeX{} primitives \texttt{\else} and \texttt{\fi}; \texttt{\reverse_if:N} is the \texttt{\epsilon\TeX} primitive \texttt{\unless}.

28
\if_meaning:w \if_meaning:w (arg_1) (arg_2) (true code) \else: (false code) \fi:
\if_meaning:w \langle arg_1 \rangle \langle arg_2 \rangle \langle true code \rangle \else: (false code) \fi:

\if_meaning:w \if_meaning:w \langle \text{true code} \rangle \when \langle arg_1 \rangle \text{ and } \langle arg_2 \rangle \text{ are the same, otherwise it executes } \langle \text{false code} \rangle. \langle arg_1 \rangle \text{ and } \langle arg_2 \rangle \text{ could be functions, variables, tokens; in all cases the unexpanded definitions are compared.}

\TeXhackers note: This is the \TeX primitive \texttt{\ifx}.

\if:w \if:w \langle \text{true code} \rangle \when \langle \text{false code} \rangle \else: \fi:
\if_charcode:w \if_charcode:w \langle \text{true code} \rangle \when \langle \text{false code} \rangle \else: \fi:
\if_catcode:w \if_catcode:w \langle \text{true code} \rangle \when \langle \text{false code} \rangle \else: \fi:

These conditionals expand any following tokens until two unexpandable tokens are left. If you wish to prevent this expansion, prefix the token in question with \texttt{\exp_not:N}. \if_catcode:w tests if the category codes of the two tokens are the same whereas \if:w tests if the character codes are identical. \if_charcode:w is an alternative name for \if:w.

\TeXhackers note: \if:w and \if_charcode:w are both the \TeX primitive \if. \if_catcode:w is the \TeX primitive \ifcat.

\if_cs_exist:N \if_cs_exist:N \langle cs \rangle \langle \text{true code} \rangle \when \langle \text{false code} \rangle \else: \fi:
\if_cs_exist:w \if_cs_exist:w \langle \text{tokens} \rangle \cs_end: \langle \text{true code} \rangle \when \langle \text{false code} \rangle \else: \fi:

Check if \langle cs \rangle appears in the hash table or if the control sequence that can be formed from \langle tokens \rangle appears in the hash table. The latter function does not turn the control sequence in question into \texttt{\scan_stop}:! This can be useful when dealing with control sequences which cannot be entered as a single token.

\TeXhackers note: These are the \TeX primitives \texttt{\ifdefined} and \texttt{\ifcsname}.

\if_mode_horizontal: \if_mode_horizontal: \langle true code \rangle \when \langle false code \rangle \fi:
\if_mode_vertical: \if_mode_vertical: \star \fi:
\if_mode_math: \if_mode_math: \star \fi:
\if_mode_inner: \if_mode_inner: \star \fi:

Execute \langle true code \rangle if currently in horizontal mode, otherwise execute \langle false code \rangle. Similar for the other functions.

\TeXhackers note: These are the \TeX primitives \ifhmode, \ifvmode, \ifmmode, and \ifinner.

4.7 Starting a paragraph

\mode_leave_vertical: \mode_leave_vertical:
\New: 2017-07-04

\New: 2017-07-04

Ensures that \TeXX is not in vertical (inter-paragraph) mode. In horizontal or math mode this command has no effect, in vertical mode it switches to horizontal mode, and inserts a box of width \texttt{\parindent}, followed by the \texttt{\everypar} token list.

\TeXhackers note: This results in the contents of the \texttt{\everypar} token register being inserted, after \texttt{\mode_leave_vertical:} is complete. Notice that in contrast to the \TeXX2e \texttt{\leavevmode} approach, no box is used by the method implemented here.
4.8 Debugging support

\debug_on:n \debug_on:n \{ comma-separated list \} \\
\debug_off:n \debug_off:n \{ comma-separated list \}

Turn on and off within a group various debugging code, some of which is also available as expl3 load-time options. The items that can be used in the \langle list \rangle are

- **check-declarations** that checks all expl3 variables used were previously declared and that local/global variables (based on their name or on their first assignment) are only locally/globally assigned;

- **check-expressions** that checks integer, dimension, skip, and muskip expressions are not terminated prematurely;

- **deprecation** that makes soon-to-be-deprecated commands produce errors;

- **log-functions** that logs function definitions;

- **all** that does all of the above.

Providing these as switches rather than options allows testing code even if it relies on other packages: load all other packages, call \debug_on:n, and load the code that one is interested in testing.

\debug_suspend: ... \debug_resume:

Suppress (locally) errors and logging from debug commands, except for the deprecation errors or warnings. These pairs of commands can be nested. This can be used around pieces of code that are known to fail checks, if such failures should be ignored. See for instance l3coffins.
Chapter 5

The \texttt{l3expan} package

Argument expansion

This module provides generic methods for expanding \TeX\ arguments in a systematic manner. The functions in this module all have prefix \texttt{exp}.

Not all possible variations are implemented for every base function. Instead only those that are used within the \texttt{l3}\TeX\ kernel or otherwise seem to be of general interest are implemented. Consult the module description to find out which functions are actually defined. The next section explains how to define missing variants.

5.1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new functions or when applying a kernel function in a situation that we haven’t thought of before.

Internally preprocessing of arguments is done with functions of the form \texttt{\exp_\ldots}. They all look alike, an example would be \texttt{\exp_args:NNo}. This function has three arguments, the first and the second are a single token, while the third argument should be given in braces. Applying \texttt{\exp_args:NNo} expands the content of third argument once before any expansion of the first and second arguments. If \texttt{\seq_gpush:No} was not defined it could be coded in the following way:

\begin{verbatim}
\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
\{ \l_tmpa_tl \}
\end{verbatim}

In other words, the first argument to \texttt{\exp_args:NNo} is the base function and the other arguments are preprocessed and then passed to this base function. In the example the first argument to the base function should be a single token which is left unchanged while the second argument is expanded once. From this example we can also see how the variants are defined. They just expand into the appropriate \texttt{\exp_} function followed by the desired base function, \textit{e.g.}:

\begin{verbatim}
\cs_generate_variant:Nn \seq_gpush:Nn \{ No \}
\end{verbatim}

results in the definition of \texttt{\seq_gpush:No}.
Providing variants in this way in style files is safe as the `\cs_generate_variant:Nn` function will only create new definitions if there is not already one available. Therefore adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function `\cs_generate_variant:Nn`, described next.

5.2 Methods for defining variants

We recall the set of available argument specifiers.

- `N` is used for single-token arguments while `c` constructs a control sequence from its name and passes it to a parent function as an `N`-type argument.

- Many argument types extract or expand some tokens and provide it as an `n`-type argument, namely a braced multiple-token argument: `V` extracts the value of a variable, `v` extracts the value from the name of a variable, `n` uses the argument as it is, `o` expands once, `f` expands fully the front of the token list, `e` and `x` expand fully all tokens (differences are explained later).

- A few odd argument types remain: `T` and `F` for conditional processing, otherwise identical to `n`-type arguments, `p` for the parameter text in definitions, `w` for arguments with a specific syntax, and `D` to denote primitives that should not be used directly.
This function is used to define argument-specifier variants of the \textit{parent control sequence} for \LaTeX{} code-level macros. The \textit{parent control sequence} is first separated into the \textit{base name} and \textit{original argument specifier}. The comma-separated list of \textit{variant argument specifiers} is then used to define variants of the \textit{original argument specifier} if these are not already defined; entries which correspond to existing functions are silently ignored. For each \textit{variant} given, a function is created that expands its arguments as detailed and passes them to the \textit{parent control sequence}. So for example

\begin{verbatim}
\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { c }
\end{verbatim}

creates a new function \texttt{\textbackslash foo:cn} which expands its first argument into a control sequence name and passes the result to \texttt{\textbackslash foo:Nn}. Similarly

\begin{verbatim}
\cs_generate_variant:Nn \foo:Nn { NV , cV }
\end{verbatim}

generates the functions \texttt{\textbackslash foo:NV} and \texttt{\textbackslash foo:cV} in the same way. The \texttt{\textbackslash cs_generate_variant:Nn} function should only be applied if the \textit{parent control sequence} is already defined. (This is only enforced if debugging support \texttt{check-declarations} is enabled.) If the \textit{parent control sequence} is protected or if the \textit{variant} involves any \texttt{x} argument, then the \textit{variant control sequence} is also protected. The \textit{variant} is created globally, as is any \texttt{\exp_args:N} function needed to carry out the expansion. There is no need to re-apply \texttt{\cs_generate_variant:Nn} after changing the definition of the parent function: the \textit{variant} will always use the current definition of the parent. Providing variants repeatedly is safe as \texttt{\cs_generate_variant:Nn} will only create new definitions if there is not already one available.

Only \texttt{n} and \texttt{N} arguments can be changed to other types. The only allowed changes are

- \texttt{c} variant of an \texttt{N} parent;
- \texttt{o, V, v, f, e, or x} variant of an \texttt{n} parent;
- \texttt{N, n, T, F, or p} argument unchanged.

This means the \textit{parent} of a \textit{variant} form is always unambiguous, even in cases where both an \texttt{n}-type parent and an \texttt{N}-type parent exist, such as for \texttt{\tl_count:n} and \texttt{\tl_count:N}.

When creating variants for conditional functions, \texttt{\prg_generate_conditional_variant:Nnn} provides a convenient way of handling the related function set.

For backward compatibility it is currently possible to make \texttt{n, o, V, v, f, e, or x}-type variants of an \texttt{N}-type argument or \texttt{N} or \texttt{c}-type variants of an \texttt{n}-type argument. Both are deprecated. The first because passing more than one token to an \texttt{N}-type argument will typically break the parent function’s code. The second because programmers who use that most often want to access the value of a variable given its name, hence should use a \texttt{V}-type or \texttt{v}-type variant instead of \texttt{c}-type. In those cases, using the lower-level \texttt{\exp_args:N} or \texttt{\exp_args:Nc} functions explicitly is preferred to defining confusing variants.
\texttt{\exp_args_generate:n (\langle\text{variant argument specifiers}\rangle)}

Defines \texttt{\exp_args:N (\langle\text{variant}\rangle)} functions for each \langle\text{variant}\rangle given in the comma list \{\langle\text{variant argument specifiers}\rangle\}. Each \langle\text{variant}\rangle should consist of the letters \texttt{N, c, n, V, v, o, f, e, x, p} and the resulting function is protected if the letter \texttt{x} appears in the \langle\text{variant}\rangle. This is only useful for cases where \texttt{\cs_generate_variant:Nn} is not applicable.

5.3 Introducing the variants

The \texttt{V} type returns the value of a register, which can be one of \texttt{tl, clist, int, skip, dim, muskip}, or built-in \TeX \ registers. The \texttt{v} type is the same except it first creates a control sequence out of its argument before returning the value.

In general, the programmer should not need to be concerned with expansion control. When simply using the content of a variable, functions with a \texttt{V} specifier should be used. For those referred to by (cs)name, the \texttt{v} specifier is available for the same purpose. Only when specific expansion steps are needed, such as when using delimited arguments, should the lower-level functions with \texttt{o} specifiers be employed.

The \texttt{e} type expands all tokens fully, starting from the first. More precisely the expansion is identical to that of \TeX \texttt{\message} (in particular \texttt{#} needs not be doubled). It relies on the primitive \texttt{\expanded} hence is fast.

The \texttt{x} type expands all tokens fully, starting from the first. In contrast to \texttt{e}, all macro parameter characters \texttt{#} must be doubled, and omitting this leads to low-level errors. In addition this type of expansion is not expandable, namely functions that have \texttt{x} in their signature do not themselves expand when appearing inside \texttt{e} or \texttt{x} expansion.

The \texttt{f} type is so special that it deserves an example. It is typically used in contexts where only expandable commands are allowed. Then \texttt{x}-expansion cannot be used, and \texttt{f}-expansion provides an alternative that expands the front of the token list as much as can be done in such contexts. For instance, say that we want to evaluate the integer expression \texttt{3 + 4} and pass the result \texttt{7} as an argument to an expandable function \texttt{\example:n}. For this, one should define a variant using \texttt{\cs_generate_variant:Nn \example:n \{ f \}}, then do

\begin{verbatim}
\example:f \{ \int_eval:n \{ 3 + 4 \} \}
\end{verbatim}

Note that \texttt{x}-expansion would also expand \texttt{\int_eval:n} fully to its result \texttt{7}, but the variant \texttt{\example:x} cannot be expandable. Note also that \texttt{o}-expansion would not expand \texttt{\int_eval:n} fully to its result since that function requires several expansions. Besides the fact that \texttt{x}-expansion is protected rather than expandable, another difference between \texttt{f}-expansion and \texttt{x}-expansion is that \texttt{f}-expansion expands tokens from the beginning and stops as soon as a non-expandable token is encountered, while \texttt{x}-expansion continues expanding further tokens. Thus, for instance

\begin{verbatim}
\example:f \{ \int_eval:n \{ 1 + 2 \} , \int_eval:n \{ 3 + 4 \} \}
\end{verbatim}

results in the call

\begin{verbatim}
\example:n \{ 3 , \int_eval:n \{ 3 + 4 \} \}
\end{verbatim}

while using \texttt{\example:x} or \texttt{\example:e} instead results in

\begin{verbatim}
\example:n \{ 3 , 7 \}
\end{verbatim}
at the cost of being protected for x-type. If you use f type expansion in conditional processing then you should stick to using TF type functions only as the expansion does not finish any \if... \fi: itself!

It is important to note that both f- and o-type expansion are concerned with the expansion of tokens from left to right in their arguments. In particular, o-type expansion applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN \{ <base function> \exp_after:wN { <argument> } \}

At the same time, f-type expansion stops at the first non-expandable token. This means for example that both

\tl_set:No \l_tmpa_tl { { \g_tmpb_tl } }

and

\tl_set:Nf \l_tmpa_tl { { \g_tmpb_tl } }

leave \g_tmpb_tl unchanged: \{ is the first token in the argument and is non-expandable.

It is usually best to keep the following in mind when using variant forms.

- Variants with x-type arguments (that are fully expanded before being passed to the n-type base function) are never expandable even when the base function is. Such variants cannot work correctly in arguments that are themselves subject to expansion. Consider using f or e expansion.

- In contrast, e expansion (full expansion, almost like x except for the treatment of #) does not prevent variants from being expandable (if the base function is).

- Finally f expansion only expands the front of the token list, stopping at the first non-expandable token. This may fail to fully expand the argument.

When speed is essential (for functions that do very little work and whose variants are used numerous times in a document) the following considerations apply because the speed of internal functions that expand the arguments of a base function depend on what needs doing with each argument and where this happens in the list of arguments:

- for fastest processing any c-type arguments should come first followed by all other modified arguments;

- unchanged N-type args that appear before modified ones have a small performance hit;

- unchanged n-type args that appear before modified ones have a relative larger performance hit.

5.4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same rules but is described in a shorter fashion.
This function absorbs two arguments (the \textit{function} name and the \textit{tokens}). The \textit{tokens} are expanded until only characters remain, and are then turned into a control sequence. The result is inserted into the input stream after reinsertion of the \textit{function}. Thus the \textit{function} may take more than one argument: all others are left unchanged.

The \texttt{:cc} variant constructs the \textit{function} name in the same manner as described for the \textit{tokens}.

This function absorbs two arguments (the \textit{function} name and the \textit{tokens}). The \textit{tokens} are expanded once, and the result is inserted in braces into the input stream after reinsertion of the \textit{function}. Thus the \textit{function} may take more than one argument: all others are left unchanged.

This function absorbs two arguments (the names of the \textit{function} and the \textit{variable}). The content of the \textit{variable} are recovered and placed inside braces into the input stream after reinsertion of the \textit{function}. Thus the \textit{function} may take more than one argument: all others are left unchanged.

This function absorbs two arguments (the \textit{function} name and the \textit{tokens}). The \textit{tokens} are expanded until only characters remain, and are then turned into a control sequence. This control sequence should be the name of a \textit{variable}. The content of the \textit{variable} are recovered and placed inside braces into the input stream after reinsertion of the \textit{function}. Thus the \textit{function} may take more than one argument: all others are left unchanged.

This function absorbs two arguments (the \textit{function} name and the \textit{tokens}) and exhaustively expands the \textit{tokens}. The result is inserted in braces into the input stream after reinsertion of the \textit{function}. Thus the \textit{function} may take more than one argument: all others are left unchanged.

This function absorbs two arguments (the \textit{function} name and the \textit{tokens}) and exhaustively expands the \textit{tokens}. The result is inserted in braces into the input stream after reinsertion of the \textit{function}. Thus the \textit{function} may take more than one argument: all others are left unchanged.
5.5 Manipulating two arguments

\exp_args:NNc \langle \text{token}_1 \rangle \langle \text{token}_2 \rangle \{\langle \text{tokens} \rangle \}

These optimized functions absorb three arguments and expand the second and third as detailed by their argument specifier. The first argument of the function is then the next item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Nnc \langle \text{token} \rangle \{\langle \text{tokens}_1 \rangle \} \{\langle \text{tokens}_2 \rangle \}

These functions absorb three arguments and expand the second and third as detailed by their argument specifier. The first argument of the function is then the next item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Nnx \langle \text{token}_1 \rangle \langle \text{token}_2 \rangle \{\langle \text{tokens} \rangle \}

These functions absorb three arguments and expand the second and third as detailed by their argument specifier. The first argument of the function is then the next item on the input stream, followed by the expansion of the second and third arguments. These functions are not expandable due to their \textit{x}-type argument.

5.6 Manipulating three arguments

\exp_args:NNNo \langle \text{token}_1 \rangle \langle \text{token}_2 \rangle \langle \text{token}_3 \rangle \{\langle \text{tokens} \rangle \}

These optimized functions absorb four arguments and expand the second, third and fourth as detailed by their argument specifier. The first argument of the function is then the next item on the input stream, followed by the expansion of the second argument, etc.
These functions absorb four arguments and expand the second, third and fourth as detailed by their argument specifier. The first argument of the function is then the next item on the input stream, followed by the expansion of the second argument, \textit{etc.}

\begin{verbatim}
\exp_args:NNcN (token) \{token\} \{(tokens)\}
\exp_args:NNco (token) \{token\} \{(tokens)\}
\end{verbatim}

These functions absorb four arguments and expand the second, third and fourth as detailed by their argument specifier. The first argument of the function is then the next item on the input stream, followed by the expansion of the second argument, \textit{etc.}

\begin{verbatim}
\exp_last_unbraced:Noo (token) \{token\} \{(tokens)\}
\end{verbatim}

These functions absorb the number of arguments given by their specification, carry out the expansion indicated and leave the results in the input stream, with the last argument not surrounded by the usual braces. Of these, the :NNo, :Noo, :Nfo and :NnNo variants need slower processing.

\textbf{\LaTeX{}hackers note:} As an optimization, the last argument is unbraced by some of those functions before expansion. This can cause problems if the argument is empty: for instance, \texttt{\exp_last_unbraced:Nf \foo_bar:w \{ \}} \texttt{\q_stop} leads to an infinite loop, as the quark is \texttt{f}-expanded.

\begin{verbatim}
\exp_last_unbraced:No * \exp_last_unbraced:NNo \{token\} \{(tokens)\}
\exp_last_unbraced:NV * \exp_last_unbraced:NNo \{token\} \{(tokens)\}
\exp_last_unbraced:Ne * \exp_last_unbraced:NNv \{\}
\exp_last_unbraced:Nf * \exp_last_unbraced:NMo \{\}
\exp_last_unbraced:Nco * \exp_last_unbraced:NNo \{\}
\exp_last_unbraced:NcV * \exp_last_unbraced:Ncno \{\}
\exp_last_unbraced:NnV * \exp_last_unbraced:Nnno \{\}
\exp_last_unbraced:NvN * \exp_last_unbraced:Nnno \{\}
\exp_last_unbraced:NvV * \exp_last_unbraced:Nnno \{\}
\exp_last_unbraced:NnV * \exp_last_unbraced:Nnno \{\}
\exp_last_unbraced:NnV * \exp_last_unbraced:Nnno \{\}
\exp_last_unbraced:NcVV * \exp_last_unbraced:Nnno \{\}
\exp_last_unbraced:NcVV * \exp_last_unbraced:Nnno \{\}
\exp_last_unbraced:NnV * \exp_last_unbraced:Nnno \{\}
\exp_last_unbraced:NnV * \exp_last_unbraced:Nnno \{\}
\end{verbatim}

\textbf{\LaTeX{}hackers note:} As an optimization, the last argument is unbraced by some of those functions before expansion. This can cause problems if the argument is empty: for instance, \texttt{\exp_last_unbraced:Nf \foo_bar:w \{ \}} \texttt{\q_stop} leads to an infinite loop, as the quark is \texttt{f}-expanded.
This function fully expands the \langle tokens\rangle and leaves the result in the input stream after reinsertion of the \langle function\rangle. This function is not expandable.

This function absorbs three arguments and expands the second and third once. The first argument of the function is then the next item on the input stream, followed by the expansion of the second and third arguments, which are not wrapped in braces. This function needs special (slower) processing.

Carries out a single expansion of \langle token\rangle (which may consume arguments) prior to the expansion of \langle token\rangle. If \langle token\rangle has no expansion (for example, if it is a character) then it is left unchanged. It is important to notice that \langle token\rangle may be any single token, including group-opening and -closing tokens (\{ or \}) assuming normal \TeX{} category codes. Unless specifically required this should be avoided: expansion should be carried out using an appropriate argument specifier variant or the appropriate \exp_args:N\langle variant\rangle function.

\TeX{}hackers note: This is the \TeX{} primitive \expandafter.

5.8 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re designed to be used in an expandable context and hence are all marked as being ‘expandable’ since they themselves disappear after the expansion has completed.

Prevents expansion of the \langle token\rangle in a context where it would otherwise be expanded, for example an e-type or x-type argument or the first token in an o-type or f-type argument.

\TeX{}hackers note: This is the \TeX{} primitive \noexpand. It only prevents expansion. At the beginning of an f-type argument, a space \langle token\rangle is removed even if it appears as \exp_not:N \c_space_token. In an e-expanding definition (\cs_new:Npe), a macro parameter introduces an argument even if it appears as \exp_not:N # 1. This differs from \exp_not:n.

Expands the \langle tokens\rangle until only characters remain, and then converts this into a control sequence. Further expansion of this control sequence is then inhibited using \exp_not:N.
\exp_not:n \{\{\tokens\}\}
Prevents expansion of the \langle tokens \rangle in an \texttt{e}-type or \texttt{x}-type argument. In all other cases the \langle tokens \rangle continue to be expanded, for example in the input stream or in other types of arguments such as \texttt{c}, \texttt{f}, \texttt{v}. The argument of \texttt{\exp_not:n} must be surrounded by braces.

\textbf{TeXHackers note:} This is the \texttt{\textepsilon-TEX} primitive \texttt{\unexpanded}. In an \texttt{e}-expanding definition (\texttt{\cs_new:Npe}), \exp_not:n {\#1} is equivalent to \#\#1 rather than to \#1, namely it inserts the two characters \# and 1, and \exp_not:n {\#} is equivalent to \#, namely it inserts the character \#.

\exp_not:o \{\{\tokens\}\}
Expands the \langle tokens \rangle once, then prevents any further expansion in \texttt{e}-type or \texttt{x}-type arguments using \exp_not:n.

\exp_not:V \langle variable \rangle
Recovers the content of the \langle variable \rangle, then prevents expansion of this material in \texttt{e}-type or \texttt{x}-type arguments using \exp_not:n.

\exp_not:v \{\{\tokens\}\}
Expands the \langle tokens \rangle until only characters remains, and then converts this into a control sequence which should be a \langle variable \rangle name. The content of the \langle variable \rangle is recovered, and further expansion in \texttt{e}-type or \texttt{x}-type arguments is prevented using \exp_not:n.

\exp_not:e \{\{\tokens\}\}
Expands \langle tokens \rangle exhaustively, then protects the result of the expansion (including any tokens which were not expanded) from further expansion in \texttt{e}-type or \texttt{x}-type arguments using \exp_not:n. This is very rarely useful but is provided for consistency.

\exp_not:f \{\{\tokens\}\}
Expands \langle tokens \rangle fully until the first unexpandable token is found (if it is a space it is removed). Expansion then stops, and the result of the expansion (including any tokens which were not expanded) is protected from further expansion in \texttt{e}-type or \texttt{x}-type arguments using \exp_not:n.

\exp_stop_f: \{\{\tokens\}\} \exp_stop_f: \{\{\more\tokens\}\}
This function terminates an \texttt{f}-type expansion. Thus if a function \texttt{\foo_bar:f} starts an \texttt{f}-type expansion and all of \langle tokens \rangle are expandable \exp_stop_f: terminates the expansion of tokens even if \langle more tokens \rangle are also expandable. The function itself is an implicit space token. Inside an \texttt{e}-type or \texttt{x}-type expansion, it retains its form, but when typeset it produces the underlying space (\texttt{\textampersand}).

\section{Controlled expansion}

The expl3 language makes all efforts to hide the complexity of \TeX expansion from the programmer by providing concepts that evaluate/expand arguments of functions prior to
calling the “base” functions. Thus, instead of using many \expandafter calls and other trickery it is usually a matter of choosing the right variant of a function to achieve a desired result.

Of course, deep down \TeX{} is using expansion as always and there are cases where a programmer needs to control that expansion directly; typical situations are basic data manipulation tools. This section documents the functions for that level. These commands are used throughout the kernel code, but we hope that outside the kernel there will be little need to resort to them. Instead the argument manipulation methods document above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to expand several tokens in one go. The next set of commands provide this functionality. Be aware that it is absolutely required that the programmer has full control over the tokens to be expanded, i.e., it is not possible to use these functions to expand unknown input as part of (expandable-tokens) as that will break badly if unexpandable tokens are encountered in that place!

\begin{verbatim}
\exp:w ⟨expandable tokens⟩ \exp_end:
\end{verbatim}

Expands ⟨expandable-tokens⟩ until reaching \exp_end: at which point expansion stops. The full expansion of ⟨expandable tokens⟩ has to be empty. If any token in ⟨expandable tokens⟩ or any token generated by expanding the tokens therein is not expandable the expansion will end prematurely and as a result \exp_end: will be misinterpreted later on.\footnote{Due to the implementation you might get the character in position 0 in the current font (typically “’”) in the output without any error message!}

In typical use cases the \exp_end: is hidden somewhere in the replacement text of ⟨expandable-tokens⟩ rather than being on the same expansion level than \exp:w, e.g., you may see code such as

\begin{verbatim}
\exp:w \@@_case:NnTF #1 {#2} { } { }
\end{verbatim}

where somewhere during the expansion of \@@_case:NnTF the \exp_end: gets generated.

\TeX{}hackers note: The current implementation uses \romannumeral hence ignores space tokens and explicit signs + and − in the expansion of the ⟨expandable tokens⟩, but this should not be relied upon.
\exp:w * \exp:w (expandable-tokens) \exp_end_continue_f:w (further-tokens)

Expands (expandable-tokens) until reaching \exp_end_continue_f:w at which point expansion continues as an f-type expansion expanding (further-tokens) until an unexpandable token is encountered (or the f-type expansion is explicitly terminated by \exp_stop_f:). As with all f-type expansions a space ending the expansion gets removed.

The full expansion of (expandable-tokens) has to be empty. If any token in (expandable-tokens) or any token generated by expanding the tokens therein is not expandable the expansion will end prematurely and as a result \exp_end_continue_f:w will be misinterpreted later on.\(^4\)

In typical use cases (expandable-tokens) contains no tokens at all, e.g., you will see code such as

\exp_after:wN \{ \exp:w \exp_end_continue_f:w \#2 \}

where the \exp_after:wN triggers an f-expansion of the tokens in \#2. For technical reasons this has to happen using two tokens (if they would be hidden inside another command \exp_after:wN would only expand the command but not trigger any additional f-expansion).

You might wonder why there are two different approaches available, after all the effect of

\exp:w (expandable-tokens) \exp_end:

can be alternatively achieved through an f-type expansion by using \exp_stop_f:, i.e.

\exp:w \exp_end_continue_f:w (expandable-tokens) \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and less expansion internally) so in places where such performance really matters and where we want to explicitly stop the expansion at a defined point the first form is preferable.

\exp:w * \exp:w (expandable-tokens) \exp_end_continue_f:nw (further-tokens)

The difference to \exp_end_continue_f:w is that we first we pick up an argument which is then returned to the input stream. If (further-tokens) starts with space tokens then these space tokens are removed while searching for the argument. If it starts with a brace group then the braces are removed. Thus such spaces or braces will not terminate the f-type expansion.

\(^4\)In this particular case you may get a character into the output as well as an error message.
5.10 Internal functions

\cs_new:Npn \exp_args:Ncof { \::c \::o \::f \::: }
\::n
Internal forms for the base expansion types. These names do not conform to the general \LaTeX3 approach as this makes them more readily visible in the log and so forth. They should not be used outside this module.

\::n
\::N
\::p
\::c
\::o
\::e
\::f
\::x
\::v
\::V
\:::

\cs_new:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }
\::o_unbraced
\::e_unbraced
\::f_unbraced
\::x_unbraced
\::v_unbraced
\::V_unbraced
\:::

Internal forms for the expansion types which leave the terminal argument unbraced. These names do not conform to the general \LaTeX3 approach as this makes them more readily visible in the log and so forth. They should not be used outside this module.
Chapter 6

The \texttt{l3sort} package

Sorting functions

6.1 Controlling sorting

\LaTeX{} comes with a facility to sort list variables (sequences, token lists, or comma-lists) according to some user-defined comparison. For instance,

\begin{verbatim}
clist_set:Nn \l_foo_clist { 3 , 01 , -2 , 5 , +1 }
clist_sort:Nn \l_foo_clist
{ \int_compare:nNnTF { #1 } > { #2 } { \sort_return_swapped: } { \sort_return_same: } }
\end{verbatim}

results in \l_foo_clist holding the values $\{-2 , 01 , +1 , 3 , 5 \}$ sorted in non-decreasing order.

The code defining the comparison should call $\sort_return_swapped$: if the two items given as $\#1$ and $\#2$ are not in the correct order, and otherwise it should call \sort_return_same: to indicate that the order of this pair of items should not be changed.

For instance, a \textit{⟨comparison code⟩} consisting only of \sort_return_same: with no test yields a trivial sort: the final order is identical to the original order. Conversely, using a \textit{⟨comparison code⟩} consisting only of $\sort_return_swapped$: reverses the list (in a fairly inefficient way).

\textbf{TeXhackers note:} The current implementation is limited to sorting approximately 20000 items (40000 in Lua\TeX{}), depending on what other packages are loaded.

Internally, the code from \texttt{l3sort} stores items in \toks registers allocated locally. Thus, the \textit{⟨comparison code⟩} should not call $\texttt{newtoks}$ or other commands that allocate new \toks registers. On the other hand, altering the value of a previously allocated \toks register is not a problem.
\texttt{\textbackslash sort_return_same}: \texttt{\textbackslash seq_sort:nn (seq var)}
\texttt{\textbackslash sort_return_swapped}: \{ ... \texttt{\textbackslash sort_return_same}: or \texttt{\textbackslash sort_return_swapped}: ... \}

Indicates whether to keep the order or swap the order of two items that are compared in the sorting code. Only one of the \texttt{\textbackslash sort_return_...} functions should be used by the code, according to the results of some tests on the items \#1 and \#2 to be compared.
Chapter 7

The \l3tl-analysis package

Analysing token lists

This module provides functions that are particularly useful in the \l3regex module for mapping through a token list one \langle token \rangle at a time (including begin-group/end-group tokens). For \tl_analysis_map_inline:Nn or \tl_analysis_map_inline:nn, the token list is given as an argument; the analogous function \peek_analysis_map_inline:n documented in \l3token finds tokens in the input stream instead. In both cases the user provides \langle inline code \rangle that receives three arguments for each \langle token \rangle:

- \langle tokens \rangle, which both \texttt{o}-expand and \texttt{e/x}-expand to the \langle token \rangle. The detailed form of \langle tokens \rangle may change in later releases.
- \langle char code \rangle, a decimal representation of the character code of the \langle token \rangle, \(-1\) if it is a control sequence.
- \langle catcode \rangle, a capital hexadecimal digit which denotes the category code of the \langle token \rangle: \langle token \rangle \{ 0: \text{control sequence}, 1: \text{begin-group}, 2: \text{end-group}, 3: \text{math shift}, 4: \text{alignment tab}, 6: \text{parameter}, 7: \text{superscript}, 8: \text{subscript}, A: \text{space}, B: \text{letter}, C: \text{other}, D: \text{active}. \}
 This can be converted to an integer by writing \langle catcode \rangle.

In addition, there is a debugging function \tl_analysis_show:n, very similar to the \ShowTokens macro from the \ted package.

\tl_analysis_show:N
\tl_analysis_show:n \{ \langle token list \rangle \}
\tl_analysis_log:N
\tl_analysis_log:n \{ \langle token list \rangle \}

Displays to the terminal (or log) the detailed decomposition of the \langle token list \rangle into tokens, showing the category code of each character token, the meaning of control sequences and active characters, and the value of registers.

\tl_analysis_map-inline:n
\tl_analysis_map-inline:nn \{ \langle token list \rangle \} \{ \langle inline function \rangle \}
\tl_analysis_map-inline:NN

Applies the \langle inline function \rangle to each individual \langle token \rangle in the \langle token list \rangle. The \langle inline function \rangle receives three arguments as explained above. As all other mappings the mapping is done at the current group level, \textit{i.e.} any local assignments made by the \langle inline function \rangle remain in effect after the loop.

New: 2021-05-11

Updated: 2022-03-26
Chapter 8

The l3regex package

Regular expressions in \TeX

The l3regex package provides regular expression testing, extraction of submatches, splitting, and replacement, all acting on token lists. The syntax of regular expressions is mostly a subset of the PCRE syntax (and very close to POSIX), with some additions due to the fact that \TeX manipulates tokens rather than characters. For performance reasons, only a limited set of features are implemented. Notably, back-references are not supported.

Let us give a few examples. After

\begin{verbatim}
\tl_set:Nn \l_my_tl { That~cat. }
\regex_replace_once:nnN { at } { is } \l_my_tl
\end{verbatim}

the token list variable \l_my_tl holds the text “This cat.”, where the first occurrence of “at” was replaced by “is”. A more complicated example is a pattern to emphasize each word and add a comma after it:

\begin{verbatim}
\regex_replace_all:nnN { \w+ } { \c{emph}\cB\{ \0 \cE\} , } \l_my_tl
\end{verbatim}

The \w sequence represents any “word” character, and + indicates that the \w sequence should be repeated as many times as possible (at least once), hence matching a word in the input token list. In the replacement text, \0 denotes the full match (here, a word). The command \emph is inserted using \c{emph}, and its argument \0 is put between braces \cB\{} and \cE\}.

If a regular expression is to be used several times, it can be compiled once, and stored in a regex variable using \regex_set:Nn. For example,

\begin{verbatim}
\regex_new:N \l_foo_regex
\regex_set:Nn \l_foo_regex { \c{begin} \cB. (\c[^BE].*) \cE. }
\end{verbatim}

stores in \l_foo_regex a regular expression which matches the starting marker for an environment: \begin, followed by a begin-group token (\cB.), then any number of tokens which are neither begin-group nor end-group character tokens (\c[^BE].*), ending with an end-group token (\cE.). As explained in the next section, the parentheses “capture” the result of \c[^BE].*, giving us access to the name of the environment when doing replacements.
8.1 Syntax of regular expressions

8.1.1 Regular expression examples

We start with a few examples, and encourage the reader to apply \regex_show:n to these regular expressions.

- **Cat** matches the word “Cat” capitalized in this way, but also matches the beginning of the word “Cattle”: use \bCat\b to match a complete word only.

- **[abc]** matches one letter among “a”, “b”, “c”; the pattern (a|b|c) matches the same three possible letters (but see the discussion of submatches below).

- **[A-Za-z]** matches any number (due to the quantifier *) of Latin letters (not accented).

- \c\{[A-Za-z]*\} matches a control sequence made of Latin letters.

- _\{_*_\} matches an underscore, any number of characters other than underscore, and another underscore; it is equivalent to _.*?_ where _ matches arbitrary characters and the lazy quantifier *? means to match as few characters as possible, thus avoiding matching underscores.

- **[\+\-]d** matches an explicit integer with at most one sign.

- **[\+\-]*d\+**** matches an explicit integer with any number of + and − signs, with spaces allowed except within the mantissa, and surrounded by spaces.

- **[\+\-]*d*d*** matches an explicit integer or decimal number; using [,] instead of \. would allow the comma as a decimal marker.

- **[\+\-]*\(d*\d**\)****(\d+|\d*\.\d+)** matches an explicit dimension with any unit that \TeX\ knows, where (\?) means to treat lowercase and uppercase letters identically.

- **[\+\-]*\((\d+|\d*\.\d+)** matches an explicit floating point number or the special values nan and inf (with signs and spaces allowed).

- **[\+\-]**(\d+|\cC.*)** matches an explicit integer or control sequence (without checking whether it is an integer variable).

- \G.*?\K at the beginning of a regular expression matches and discards (due to \K) everything between the end of the previous match (\G) and what is matched by the rest of the regular expression; this is useful in \regex_replace_all:nnN when the goal is to extract matches or submatches in a finer way than with \regex_extract_all:nnN.

While it is impossible for a regular expression to match only integer expressions, **[\+\-]/\{\+\-\}**(\d***\)** matches among other things all valid integer expressions (made only with explicit integers). One should follow it with further testing.
8.1.2 Characters in regular expressions

Most characters match exactly themselves, with an arbitrary category code. Some characters are special and must be escaped with a backslash (e.g., * matches a star character). Some escape sequences of the form backslash–letter also have a special meaning (for instance \d matches any digit). As a rule,

- every alphanumeric character (A–Z, a–z, 0–9) matches exactly itself, and should not be escaped, because \A, \B, \e have special meanings;
- non-alphanumeric printable ascii characters can (and should) always be escaped: many of them have special meanings (e.g., use \(, \), \?, \., \^);
- spaces should always be escaped (even in character classes);
- any other character may be escaped or not, without any effect: both versions match exactly that character.

Note that these rules play nicely with the fact that many non-alphanumeric characters are difficult to input into \TeX under normal category codes. For instance, \abc\% matches the characters \abc\% (with arbitrary category codes), but does not match the control sequence \abc followed by a percent character. Matching control sequences can be done using the \c{⟨regex⟩} syntax (see below).

Any special character which appears at a place where its special behaviour cannot apply matches itself instead (for instance, a quantifier appearing at the beginning of a string), after raising a warning.

Characters.

\x{hh...} Character with hex code hh...
\xhh Character with hex code hh.
\a Alarm (hex 07).
\e Escape (hex 1B).
\f Form-feed (hex 0C).
\n New line (hex 0A).
\r Carriage return (hex 0D).
\t Horizontal tab (hex 09).

8.1.3 Characters classes

Character properties.

. A single period matches any token.
\d Any decimal digit.
\h Any horizontal space character, equivalent to [\ \h: space and tab.
\s Any space character, equivalent to [\h\h\h\h\h].
\v Any vertical space character, equivalent to [\^^J\^^K\^^L\^^M]. Note that \^^K is a vertical space, but not a space, for compatibility with Perl.

\w Any word character, i.e., alphanumerics and underscore, equivalent to the explicit class [A-Za-z0-9_].

\D Any token not matched by \d.

\H Any token not matched by \h.

\N Any token other than the \n character (hex 0A).

\S Any token not matched by \s.

\V Any token not matched by \v.

\W Any token not matched by \w.

Of those, ., \D, \H, \N, \S, \W, and \W match arbitrary control sequences.

Character classes match exactly one token in the subject.

[...] Positive character class. Matches any of the specified tokens.

[^...] Negative character class. Matches any token other than the specified characters.

x-y Within a character class, this denotes a range (can be used with escaped characters).

[:^⟨name⟩:] Negative POSIX character class.

For instance, [a-oq-z\cC.] matches any lowercase latin letter except p, as well as control sequences (see below for a description of \c).

In character classes, only [, ^,], \ and spaces are special, and should be escaped. Other non-alphanumeric characters can still be escaped without harm. Any escape sequence which matches a single character (\d, \D, etc.) is supported in character classes. If the first character is ^, then the meaning of the character class is inverted; ^ appearing anywhere else in the range is not special. If the first character (possibly following a leading ^) is] then it does not need to be escaped since ending the range there would make it empty. Ranges of characters can be expressed using ^, for instance, [\D 0-5] and [^6-9] are equivalent.

8.1.4 Structure: alternatives, groups, repetitions

Quantifiers (repetition).

? 0 or 1, greedy.

?? 0 or 1, lazy.

* 0 or more, greedy.

*? 0 or more, lazy.

+ 1 or more, greedy.
For greedy quantifiers the regex code will first investigate matches that involve as many repetitions as possible, while for lazy quantifiers it investigates matches with as few repetitions as possible first.

Alternation and capturing groups.

A|B|C Either one of A, B, or C, investigating A first.

(....) Capturing group.

(?:....) Non-capturing group.

Capturing groups are a means of extracting information about the match. Parenthesized groups are labelled in the order of their opening parenthesis, starting at 1. The contents of those groups corresponding to the “best” match (leftmost longest) can be extracted and stored in a sequence of token lists using for instance `\regex_extract_once:nntF`.

The `\K` escape sequence resets the beginning of the match to the current position in the token list. This only affects what is reported as the full match. For instance,

```latex
\regex_extract_all:nntN \{ a \K . \} \{ a123aaxyz \} \l_foo_seq
```

results in `\l_foo_seq` containing the items `{1}` and `{a}`: the true matches are `{a1}` and `{aa}`, but they are trimmed by the use of `\K`. The `\K` command does not affect capturing groups: for instance,

```latex
\regex_extract_once:nntN \{ (. \K c)+ \d \} \{ acbc3 \} \l_foo_seq
```

results in `\l_foo_seq` containing the items `{c3}` and `{bc}`: the true match is `{acbc3}`, with first submatch `{bc}`, but `\K` resets the beginning of the match to the last position where it appears.

8.1.5 Matching exact tokens

The `\c` escape sequence allows to test the category code of tokens, and match control sequences. Each character category is represented by a single uppercase letter:

- **C** for control sequences;
- **B** for begin-group tokens;
- **E** for end-group tokens;
• M for math shift;
• T for alignment tab tokens;
• P for macro parameter tokens;
• U for superscript tokens (up);
• D for subscript tokens (down);
• S for spaces;
• L for letters;
• O for others; and
• A for active characters.

The \c escape sequence is used as follows.

\c{⟨regex⟩} A control sequence whose csname matches the ⟨regex⟩, anchored at the beginning
and end, so that \c{begin} matches exactly \begin and nothing else.

\cX Applies to the next object, which can be a character, escape character sequence such
as \x{0A}, character class, or group, and forces this object to only match tokens
with category X (any of CBEMTPUDSLOA). For instance, \cL[\A-\Z\d] matches uppercase
letters and digits of category code letter, \cC. matches any control sequence,
and \cO(abc) matches abc where each character has category other.\footnote{This last example
also captures “abc” as a regex group; to avoid this use a non-capturing group
\cO(?:abc).}

\c[XYZ] Applies to the next object, and forces it to only match tokens with category X, Y,
or Z (each being any of CBEMTPUDSLOA). For instance, \c[LSO](...) matches two
tokens of category letter, space, or other.

\c[^XYZ] Applies to the next object and prevents it from matching any token with category
X, Y, or Z (each being any of CBEMTPUDSLOA). For instance, \c[^O]\d matches digits
which have any category different from other.

The category code tests can be used inside classes; for instance, [\cO\d \c[LO]\A-P]] matches
what \pX considers as hexadecimal digits, namely digits with category other,
or uppercase letters from A to F with category either letter or other. Within a group
affected by a category code test, the outer test can be overridden by a nested test: for
instance, \cL(ab\c0\v*cd) matches ab*cd where all characters are of category letter,
except * which has category other.

The \u escape sequence allows to insert the contents of a token list directly into
a regular expression or a replacement, avoiding the need to escape special characters.
Namely, \u{⟨var name⟩} matches the exact contents (both character codes and cate-
gory codes) of the variable \⟨var name⟩, which are obtained by applying \exp_not:v
{⟨var name⟩} at the time the regular expression is compiled. Within a \c{...} control
sequence matching, the \u escape sequence only expands its argument once, in effect
performing \tl_to_str:v. Quantifiers are supported.

The \ur escape sequence allows to insert the contents of a regex variable into a
larger regular expression. For instance, A\ur{\1_tmpa_regex}D matches the tokens A and
D separated by something that matches the regular expression \l_tmpa_regex. This behaves as if a non-capturing group were surrounding \l_tmpa_regex, and any group contained in \l_tmpa_regex is converted to a non-capturing group. Quantifiers are supported.

For instance, if \l_tmpa_regex has value B|C, then A\r{l_tmpa_regex}D is equivalent to A(?:B|C)D (matching ABD or ACD) and not to AB|CD (matching AB or CD). To get the latter effect, it is simplest to use \TeX's expansion machinery directly: if \l-_mymodule_BC_tl contains B|C then the following two lines show the same result:

\regex_show:n { A \u{l_mymodule_BC_tl} D }
\regex_show:n { A B | C D }

8.1.6 Miscellaneous

Anchors and simple assertions.

\b Word boundary: either the previous token is matched by \w and the next by \W, or the opposite. For this purpose, the ends of the token list are considered as \W.

\B Not a word boundary: between two \w tokens or two \W tokens (including the boundary).

\^ or \A Start of the subject token list.

\$, \Z or \z End of the subject token list.

\G Start of the current match. This is only different from \~ in the case of multiple matches: for instance \regex_count:nnN { \G a } { aaba } \l_tmpa_int yields 2, but replacing \G by \~ would result in \l_tmpa_int holding the value 1.

The option (?i) makes the match case insensitive (treating A–Z and a–z as equivalent, with no support yet for Unicode case changing). This applies until the end of the group in which it appears, and can be reverted using (?-i). For instance, in (?i)(a(?-i)b|c)d, the letters a and d are affected by the i option. Characters within ranges and classes are affected individually: (?i)\[?\-B\] is equivalent to \[?\-b\] (and differs from the much larger class \[?\-\b\]), and (?i)\[^aeiou\] matches any character which is not a vowel. The i option has no effect on \c{...}, on \u{...}, on character properties, or on character classes, for instance it has no effect at all in (?i)\u{l_foo_tl}\d\d[[:lower:]].

8.2 Syntax of the replacement text

Most of the features described in regular expressions do not make sense within the replacement text. Backslash introduces various special constructions, described further below:

- \0 is the whole match;
- \1 is the submatch that was matched by the first (capturing) group (\ldots); similarly for \2, \ldots, \9 and \g{number};
- \l inserts a space (spaces are ignored when not escaped);
• \a, \e, \f, \n, \r, \t, \xhh, \x{}{hhh} correspond to single characters as in regular expressions;
• \c{(es name)} inserts a control sequence;
• \c(category){character} (see below);
• \u{(tl var name)} inserts the contents of the \langle tl var \rangle (see below).

Characters other than backslash and space are simply inserted in the result (but since the replacement text is first converted to a string, one should also escape characters that are special for \TeX, for instance use \#). Non-alphanumeric characters can always be safely escaped with a backslash.

For instance,
\begin{verbatim}
\tl_set:Nn \l_my_tl { Hello,-world! }
\regex_replace_all:nnN { \[^,\]+ } { \u{\l_my_\0_tl} } \l_my_tl
\end{verbatim}
results in \l_my_tl holding H(ell--el)(o,--o) w(or--o)(1d--l)!

The submatches are numbered according to the order in which the opening parenthesis of capturing groups appear in the regular expression to match. The \(n\)-th submatch is empty if there are fewer than \(n\) capturing groups or for capturing groups that appear in alternatives that were not used for the match. In case a capturing group matches several times during a match (due to quantifiers) only the last match is used in the replacement text. Submatches always keep the same category codes as in the original token list.

By default, the category code of characters inserted by the replacement are determined by the prevailing category code regime at the time where the replacement is made, with two exceptions:
• space characters (with character code 32) inserted with \x{20} have category code 10 regardless of the prevailing category code regime;
• if the category code would be 0 (escape), 5 (newline), 9 (ignore), 14 (comment) or 15 (invalid), it is replaced by 12 (other) instead.

The escape sequence \c allows to insert characters with arbitrary category codes, as well as control sequences.

\cX{...} Produces the characters “...” with category X, which must be one of CBEMTPUDSLOA as in regular expressions. Parentheses are optional for a single character (which can be an escape sequence). When nested, the innermost category code applies, for instance \cL(Hello\cs\ world)! gives this text with standard category codes.

\c{text}) Produces the control sequence with csname \langle text \rangle. The \langle text \rangle may contain references to the submatches \0, \1, and so on, as in the example for \u below.

The escape sequence \u{(var name)} allows to insert the contents of the variable with name \langle var name \rangle directly into the replacement, giving an easier control of category codes. When nested in \c{...} and \u{...} constructions, the \u and \c escape sequences perform \tl_to_str:v, namely extract the value of the control sequence and turn it into a string. Matches can also be used within the arguments of \c and \u. For instance,
\begin{verbatim}
\tl_set:Nn \l_my_one_tl { first }
\tl_set:Nn \l_my_two_tl { \emph{second} }
\tl_set:Nn \l_my_tl { one , two , one , one }
\regex_replace_all:nnN { \[\],+ } { \u{\l_my_\0_tl} } \l_my_tl
\end{verbatim}

\textbf{54}
results in \l_my_tl holding first,\emph{second},first,first.

Regex replacement is also a convenient way to produce token lists with arbitrary category codes. For instance
\begin{verbatim}
\tl_clear:N \l_tmpa_tl
\regex_replace_all:nnN { } { \cU\% \cA\~ } \l_tmpa_tl
\end{verbatim}
results in \l_tmpa_tl containing the percent character with category code 7 (superscript) and an active tilde character.

8.3 Pre-compiling regular expressions

If a regular expression is to be used several times, it is better to compile it once rather than doing it each time the regular expression is used. The compiled regular expression is stored in a variable. All of the \texttt{l3regex} module’s functions can be given their regular expression argument either as an explicit string or as a compiled regular expression.

- \texttt{\regex_new:N}\langle \texttt{regex var} \rangle
 Creates a new \langle \texttt{regex var} \rangle or raises an error if the name is already taken. The declaration is global. The \langle \texttt{regex var} \rangle is initially such that it never matches.

- \texttt{\regex_set:Nn}\langle \texttt{regex var} \rangle{\langle \texttt{regex} \rangle}
 Stores a compiled version of the \langle \texttt{regular expression} \rangle in the \langle \texttt{regex var} \rangle. The assignment is local for \texttt{\regex_set:Nn} and global for \texttt{\regex_gset:Nn}. For instance, this function can be used as
 \begin{verbatim}
 \regex_new:N \l_my_regex
 \regex_set:Nn \l_my_regex { my\ (simple\)? reg(ex|ular\ expression) }
 \end{verbatim}

- \texttt{\regex_const:Nn}\langle \texttt{regex var} \rangle{\langle \texttt{regex} \rangle}
 Creates a new constant \langle \texttt{regex var} \rangle or raises an error if the name is already taken. The value of the \langle \texttt{regex var} \rangle is set globally to the compiled version of the \langle \texttt{regular expression} \rangle.

- \texttt{\regex_show:n}\langle \texttt{regex} \rangle
- \texttt{\regex_log:n}\langle \texttt{regex} \rangle
 Displays in the terminal or writes in the log file (respectively) how \texttt{l3regex} interprets the \langle \texttt{regex} \rangle. For instance, \texttt{\regex_show:n}{\A X|Y} shows
 \begin{verbatim}
 +-branch
 anchor at start (\A)
 char code 88 (X)
 +-branch
 char code 89 (Y)
 \end{verbatim}
 indicating that the anchor \A only applies to the first branch: the second branch is not anchored to the beginning of the match.

55
8.4 Matching

All regular expression functions are available in both :n and :N variants. The former require a “standard” regular expression, while the later require a compiled expression as generated by \regex_set:Nn.

\regex_match:nnTF \regex_match:nnN \regex_match:Nn \regex_match:NV
\regex_match:nV \regex_match:Nn
\regex_match:NV

Tests whether the \term{regular expression} matches any part of the \term{token list}. For instance,

\begin{verbatim}
\regex_match:nnTF { b [cde]* } { abecdcx } { TRUE } { FALSE }
\regex_match:nnTF { [b-dq-w] } { example } { TRUE } { FALSE }
\end{verbatim}

leaves TRUE then FALSE in the input stream.

\regex_count:nnN \regex_count:nVN \regex_count:NnN \regex_count:NVN

Sets \term{int var} within the current \TeX{} group level equal to the number of times \term{regular expression} appears in \term{token list}. The search starts by finding the left-most longest match, respecting greedy and lazy (non-greedy) operators. Then the search starts again from the character following the last character of the previous match, until reaching the end of the token list. Infinite loops are prevented in the case where the regular expression can match an empty token list: then we count one match between each pair of characters. For instance,

\begin{verbatim}
\int_new:N \l_foo_int
\regex_count:nnN { (b+|c) } { abbababcbbb } \l_foo_int
\end{verbatim}

results in \verb|\l_foo_int| taking the value 5.

\regex_match_case:nn \regex_match_case:nn
\regex_match_case:nV \regex_match_case:Nn
\regex_match_case:NV
\regex_match_case:nn
\regex_match_case:nn

Determines which of the \term{regular expressions} matches at the earliest point in the \term{token list}, and leaves the corresponding \term{code} followed by the \term{true code} in the input stream. If several \term{regex} match starting at the same point, then the first one in the list is selected and the others are discarded. If none of the \term{regex} match, the \term{false code} is left in the input stream. Each \term{regex} can either be given as a regex variable or as an explicit regular expression.

In detail, for each starting position in the \term{token list}, each of the \term{regex} is searched in turn. If one of them matches then the corresponding \term{code} is used and everything else is discarded, while if none of the \term{regex} match at a given position then the next starting position is attempted. If none of the \term{regex} match anywhere in the \term{token list} then nothing is left in the input stream. Note that this differs from nested \regex_match:nnTF statements since all \term{regex} are attempted at each position rather than attempting to match \term{regex1} at every position before moving on to \term{regex2}.

56
8.5 Submatch extraction

\regex_extract_once:nnN \regex_extract_once:nVN \regex_extract_once:NnN \regex_extract_once:NnN \regex_extract_once:NNF \regex_extract_once:nnN
\regex_extract_all:nnN \regex_extract_all:nVN \regex_extract_all:NnN \regex_extract_all:NnN \regex_extract_all:NNF \regex_extract_all:nnN

New: 2017-05-26

\regex_extract_once:nnN \regex_extract_once:nVN \regex_extract_once:NnN \regex_extract_once:NnN
\regex_extract_once:NNF \regex_extract_once:nnN \regex_extract_all:nnN \regex_extract_all:nVN \regex_extract_all:NnN \regex_extract_all:NnN
\regex_extract_all:NNF \regex_extract_all:nnN

Finds the first match of the ⟨regular expression⟩ in the ⟨token list⟩. If it exists, the match is stored as the first item of the ⟨seq var⟩, and further items are the contents of capturing groups, in the order of their opening parenthesis. The ⟨seq var⟩ is assigned locally. If there is no match, the ⟨seq var⟩ is cleared. The testing versions insert the ⟨true code⟩ into the input stream if a match was found, and the ⟨false code⟩ otherwise.

For instance, assume that you type

\regex_extract_once:nnNTF { \A(La)?TeX(!*)\Z } { LaTeX!!! } \l_foo_seq { true } { false }

Then the regular expression (anchored at the start with \A and at the end with \Z) must match the whole token list. The first capturing group, (La)?, matches La, and the second capturing group, (!*), matches !!! Thus, \l_foo_seq contains as a result the items {LaTeX!!!}, {La}, and {!!!}, and the true branch is left in the input stream. Note that the n-th item of \l_foo_seq, as obtained using \seq_item:Nn, correspond to the submatch numbered (n − 1) in functions such as \regex_replace_once:nnN.

\regex_extract_all:nnN \regex_extract_all:nVN \regex_extract_all:NnN \regex_extract_all:NnN \regex_extract_all:NNF \regex_extract_all:nnN
\regex_extract_all:nnN \regex_extract_all:nVN \regex_extract_all:NnN \regex_extract_all:NnN
\regex_extract_all:NNF \regex_extract_all:nnN

Finds all matches of the ⟨regular expression⟩ in the ⟨token list⟩, and stores all the submatch information in a single sequence (concatenating the results of multiple \regex_extract_once:nnN calls). The ⟨seq var⟩ is assigned locally. If there is no match, the ⟨seq var⟩ is cleared. The testing versions insert the ⟨true code⟩ into the input stream if a match was found, and the ⟨false code⟩ otherwise. For instance, assume that you type

\regex_extract_all:nnNTF { \w* } { Hello,-world! } \l_foo_seq { true } { false }

Then the regular expression matches twice, the resulting sequence contains the two items {Hello} and {world}, and the true branch is left in the input stream.
Splits the \textit{token list} into a sequence of parts, delimited by matches of the \textit{regular expression}. If the \textit{regular expression} has capturing groups, then the token lists that they match are stored as items of the sequence as well. The assignment to \textit{seq var} is local. If no match is found the resulting \textit{seq var} has the \textit{token list} as its sole item. If the \textit{regular expression} matches the empty token list, then the \textit{token list} is split into single tokens. The testing versions insert the \textit{true code} into the input stream if a match was found, and the \textit{false code} otherwise. For example, after

\begin{verbatim}
\seq_new:N \l_path_seq
\regex_split:nnNTF { / } { the/path/for/this/file.tex } \l_path_seq
 { true } { false }
\end{verbatim}

the sequence \texttt{\l_path_seq} contains the items \{the\}, \{path\}, \{for\}, \{this\}, and \{file.tex\}, and the \texttt{true} branch is left in the input stream.

8.6 Replacement

Searches for the \textit{regular expression} in the contents of the \texttt{tl var} and replaces the first match with the \textit{replacement}. In the \textit{replacement}, \texttt{\0} represents the full match, \texttt{\1} represent the contents of the first capturing group, \texttt{\2} of the second, \textit{etc}. The result is assigned locally to \texttt{tl var}.

Replaces all occurrences of the \textit{regular expression} in the contents of the \texttt{tl var} by the \textit{replacement}, where \texttt{\0} represents the full match, \texttt{\1} represent the contents of the first capturing group, \texttt{\2} of the second, \textit{etc}. Every match is treated independently, and matches cannot overlap. The result is assigned locally to \texttt{tl var}.
Replaces the earliest match of the regular expression \((?| ⟨\text{regex}1⟩|...| ⟨\text{regex}n⟩) \) in the ⟨token list variable⟩ by the ⟨replacement⟩ corresponding to which ⟨regex⟩ matched, then leaves the ⟨true code⟩ in the input stream. If none of the ⟨regex⟩ match, then the ⟨tl var⟩ is not modified, and the ⟨false code⟩ is left in the input stream. Each ⟨regex⟩ can either be given as a regex variable or as an explicit regular expression.

In detail, for each starting position in the ⟨token list⟩, each of the ⟨regex⟩ is searched in turn. If one of them matches then it is replaced by the corresponding ⟨replacement⟩ as described for \regex_replace_once:nN. This is equivalent to checking with \regex_match_case:n which ⟨regex⟩ matches, then performing the replacement with \regex_replace_once:nN.

\(\regex_replace_case_all:nN \)

Replaces all occurrences of all ⟨regex⟩ in the ⟨token list⟩ by the corresponding ⟨replacement⟩. Every match is treated independently, and matches cannot overlap. The result is assigned locally to ⟨tl var⟩, and the ⟨true code⟩ or ⟨false code⟩ is left in the input stream depending on whether any replacement was made or not.

In detail, for each starting position in the ⟨token list⟩, each of the ⟨regex⟩ is searched in turn. If one of them matches then it is replaced by the corresponding ⟨replacement⟩, and the search resumes at the position that follows this match (and replacement). For instance

\tl_set:Nn \l_tmpa_tl { Hello,-world! }
\regex_replace_case_all:nN
{ ⟨[A-Za-z]+⟩ {''\0''} ⟨\b⟩ {---} ⟨\ . ⟩ {\[\0\]} \l_tmpa_tl}

results in \l_tmpa_tl having the contents ‘‘Hello’’---[,][,]‘world’’---[!]. Note in particular that the word-boundary assertion \b did not match at the start of words because the case ⟨[A-Za-z]+⟩ matched at these positions. To change this, one could simply swap the order of the two cases in the argument of \regex_replace_case_all:nN.
8.7 Scratch regular expressions

\l_tmpa_regex \l_tmpb_regex

Scratch regex for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\l_tmpa_regex \l_tmpb_regex

Nov: 2017-12-11

\g_tmpa_regex \g_tmpb_regex

Scratch regex for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

New: 2017-12-11

8.8 Bugs, misfeatures, future work, and other possibilities

The following need to be done now.

- Rewrite the documentation in a more ordered way, perhaps add a BNF?

 Additional error-checking to come.

- Clean up the use of messages.

- Cleaner error reporting in the replacement phase.

- Add tracing information.

- Detect attempts to use back-references and other non-implemented syntax.

- Test for the maximum register \c_max_register_int.

- Find out whether the fact that \W and friends match the end-marker leads to bugs. Possibly update _regex_item_reverse:n.

- The empty cs should be matched by \c{}, not by \c{csname.?endcsname\s?}.

 Code improvements to come.

- Shift arrays so that the useful information starts at position 1.

- Only build \c{...} once.

- Use arrays for the left and right state stacks when compiling a regex.

- Should _regex_action_free_group:n only be used for greedy \{n,\} quantifier? (I think not.)

- Quantifiers for \u and assertions.

- When matching, keep track of an explicit stack of curr_state and curr_-submatches.

- If possible, when a state is reused by the same thread, kill other subthreads.
• Use an array rather than `__regex_balance_tl` to build the function `__regex replacement_balance_one_match:n`.

• Reduce the number of epsilon-transitions in alternatives.

• Optimize simple strings: use less states (abcade should give two states, for abc and ade). [Does that really make sense?]

• Optimize groups with no alternative.

• Optimize states with a single `__regex_action_free:n`.

• Optimize the use of `__regex_action_success:` by inserting it in state 2 directly instead of having an extra transition.

• Optimize the use of `\int_step...` functions.

• Groups don’t capture within regexes for csnames; optimize and document.

• Better “show” for anchors, properties, and catcode tests.

• Does \K really need a new state for itself?

• When compiling, use a boolean in_cs and less magic numbers.

• Instead of checking whether the character is special or alphanumeric using its character code, check if it is special in regexes with `\cs_if_exist` tests.

The following features are likely to be implemented at some point in the future.

• General look-ahead/behind assertions.

• Regex matching on external files.

• Conditional subpatterns with look ahead/behind: “if what follows is […], then […].”

• (*) and (?) sequences to set some options.

• UTF-8 mode for pdfTeX.

• Newline conventions are not done. In particular, we should have an option for . not to match newlines. Also, \A should differ from \^, and \Z \z and $ should differ.

• Unicode properties: \p{} and \P{}; \X which should match any “extended” Unicode sequence. This requires to manipulate a lot of data, probably using treeboxes.

The following features of PCRE or Perl may or may not be implemented.

• Callout with (?C…) or other syntax: some internal code changes make that possible, and it can be useful for instance in the replacement code to stop a regex replacement when some marker has been found; this raises the question of a potential `\regex_break` and then of playing well with `\tl_map_break` called from within the code in a regex. It also raises the question of nested calls to the regex machinery, which is a problem since `\fontdimen` are global.
• Conditional subpatterns (other than with a look-ahead or look-behind condition): this is non-regular, isn’t it?

• Named subpatterns: \TeX\ programmers have lived so far without any need for named macro parameters.

The following features of \pcre\ or Perl will definitely not be implemented.

• Back-references: non-regular feature, this requires backtracking, which is prohibitively slow.

• Recursion: this is a non-regular feature.

• Atomic grouping, possessive quantifiers: those tools, mostly meant to fix catastrophic backtracking, are unnecessary in a non-backtracking algorithm, and difficult to implement.

• Subroutine calls: this syntactic sugar is difficult to include in a non-backtracking algorithm, in particular because the corresponding group should be treated as atomic.

• Backtracking control verbs: intrinsically tied to backtracking.

• \texttt{\backslash d\texttt{dd}}, matching the character with octal code \texttt{dd}: we already have \texttt{\\textbackslash x\{\ldots\} and the syntax is confusingly close to what we could have used for backreferences (\texttt{\\textbackslash 1, \\textbackslash 2, \ldots}), making it harder to produce useful error message.

• \texttt{\textbackslash cx}, similar to \TeX\’s own \texttt{\textbackslash ^{\textbackslash x}}.

• Comments: \TeX\ already has its own system for comments.

• \texttt{\Q\ldots\E escaping: this would require to read the argument verbatim, which is not in the scope of this module.

• \texttt{\textbackslash C single byte in UTF-8 mode: \Xe\TeX\ and Lua\TeX\ serve us characters directly, and splitting those into bytes is tricky, encoding dependent, and most likely not useful anyways.}
Chapter 9

The \l3prog package

Control structures

Conditional processing in \l3T\ex3 is defined as something that performs a series of tests, possibly involving assignments and calling other functions that do not read further ahead in the input stream. After processing the input, a state is returned. The states returned are \langle true \rangle and \langle false \rangle.

\l3T\ex3 has two forms of conditional flow processing based on these states. The first form is predicate functions that turn the returned state into a boolean \langle true \rangle or \langle false \rangle. For example, the function \cs_if_free:p:N checks whether the control sequence given as its argument is free and then returns the boolean \langle true \rangle or \langle false \rangle values to be used in testing with \if predicate:w or in functions to be described below. The second form is the kind of functions choosing a particular argument from the input stream based on the result of the testing as in \cs_if_free:NTF which also takes one argument (the \texttt{N}) and then executes either \texttt{true} or \texttt{false} depending on the result.

\textbf{T\exhackers note:} The arguments are executed after exiting the underlying \if...\fi: structure.

9.1 Defining a set of conditional functions

\begin{verbatim}
\prg_new_conditional:Npnn \prg_set_conditional:Npnn \prg_gset_conditional:Npnn \prg_new_conditional:Nnn \prg_set_conditional:Nnn \prg_gset_conditional:Nnn
\end{verbatim}

These functions create a family of conditionals using the same \langle code \rangle to perform the test created. Those conditionals are expandable if \langle code \rangle is. The new versions check for existing definitions and perform assignments globally \textit{(cf. \cs_new:Npn)} whereas the set versions do no check and perform assignments locally \textit{(cf. \cs_set:Npn)}. The conditionals created are dependent on the comma-separated list of \langle conditions \rangle, which should be one or more of \texttt{p}, \texttt{T}, \texttt{F} and \texttt{TF}.
These functions create a family of protected conditionals using the same \{code\} to perform the test created. The \{code\} does not need to be expandable. The new version check for existing definitions and perform assignments globally (\textit{cf.} \cs_new:Npn) whereas the \texttt{set} version do not (\textit{cf.} \cs_set:Npn). The conditionals created are depended on the comma-separated list of \{conditions\}, which should be one or more of T, F and TF (not \texttt{p}).

The conditionals are defined by \prg_new_protected_conditional:Npnn and friends as:

- \(\texttt{name}_p: \langle \text{arg spec} \rangle\) — a predicate function which will supply either a logical \texttt{true} or logical \texttt{false}. This function is intended for use in cases where one or more logical tests are combined to lead to a final outcome. This function cannot be defined for protected conditionals.

- \(\texttt{name}: \langle \text{arg spec} \rangle T\) — a function with one more argument than the original \langle \text{arg spec} \rangle demands. The \langle true branch\rangle code in this additional argument will be left on the input stream only if the test is \texttt{true}.

- \(\texttt{name}: \langle \text{arg spec} \rangle F\) — a function with one more argument than the original \langle \text{arg spec} \rangle demands. The \langle false branch\rangle code in this additional argument will be left on the input stream only if the test is \texttt{false}.

- \(\texttt{name}: \langle \text{arg spec} \rangle TF\) — a function with two more argument than the original \langle \text{arg spec} \rangle demands. The \langle true branch\rangle code in the first additional argument will be left on the input stream if the test is \texttt{true}, while the \langle false branch\rangle code in the second argument will be left on the input stream if the test is \texttt{false}.

The \{code\} of the test may use \{parameters\} as specified by the second argument to \prg_set_conditional:Npnn: this should match the \langle argument specification\rangle but this is not enforced. The \texttt{Nnn} versions infer the number of arguments from the argument specification given (\textit{cf.} \cs_new:Nn, \textit{etc.}). Within the \{code\}, the functions \prg_return_true: and \prg_return_false: are used to indicate the logical outcomes of the test.

An example can easily clarify matters here:

\begin{verbatim}
\prg_set_conditional:Npnn \foo_if_bar:NN #1#2 { p , T , TF }
{\if_meaning:w \l_tmpa_tl #1 \prg_return_true: \else:
 \if_meaning:w \l_tmpa_tl #2 \prg_return_true: \else:
 \prg_return_false:
 \fi:
\fi:}
\end{verbatim}
This defines the function \(\texttt{foo_if_bar_p:NN} \), \(\texttt{foo_if_bar_NNTF} \) and \(\texttt{foo_if_bar_NNT} \) but not \(\texttt{foo_if_bar_NFF} \) (because \(F \) is missing from the \(\langle \text{conditions} \rangle \) list). The return statements take care of resolving the remaining \(\texttt{\}else:} \) and \(\texttt{\}fi:} \) before returning the state. There must be a return statement for each branch; failing to do so will result in erroneous output if that branch is executed.

\[
\begin{align*}
\texttt{prg_new_eq_conditional:NNn} & \quad \texttt{prg_new_eq_conditional:NNn} \langle \text{name1} \rangle: \langle \text{arg spec1} \rangle \langle \text{name2} \rangle: \langle \text{arg spec2} \rangle \\
\texttt{prg_set_eq_conditional:NNn} & \quad \langle \text{conditions} \rangle \\
\texttt{prg_gset_eq_conditional:NNn} &
\end{align*}
\]

These functions copy a family of conditionals. The \texttt{new} version checks for existing definitions (cf. \texttt{\cs_new_eq:NN}) whereas the \texttt{set} version does not (cf. \texttt{\cs_set_eq:NN}). The conditionals copied are dependent on the comma-separated list of \(\langle \text{conditions} \rangle \), which should be one or more of \(p, T, F \) and \(TF \).

\[
\begin{align*}
\texttt{prg_return_true:} & \quad \texttt{prg_return_true:} \\
\texttt{prg_return_false:} & \quad \texttt{prg_return_false:}
\end{align*}
\]

These “return” functions define the logical state of a conditional statement. They appear within the code for a conditional function generated by \(\texttt{prg_set_conditional:Npnn} \), etc., to indicate when a true or false branch should be taken. While they may appear multiple times each within the code of such conditionals, the execution of the conditional must result in the expansion of one of these two functions \textit{exactly once}.

The return functions trigger what is internally an \texttt{f}\-expansion process to complete the evaluation of the conditional. Therefore, after \(\texttt{prg_return_true:} \) or \(\texttt{prg_return_false:} \) there must be no non-expandable material in the input stream for the remainder of the expansion of the conditional code. This includes other instances of either of these functions.

\[
\begin{align*}
\texttt{prg_generate_conditional_variant:Nnn} & \quad \texttt{prg_generate_conditional_variant:Nnn} \langle \text{name} \rangle: \langle \text{arg spec} \rangle \\
& \quad \langle \text{variant argument specifiers} \rangle \langle \text{condition specifiers} \rangle
\end{align*}
\]

Defines argument-specifier variants of conditionals. This is equivalent to running \(\texttt{\cs_generate_variant:Nn \langle \text{conditional} \rangle \langle \text{variant argument specifiers} \rangle} \) on each \(\langle \text{conditional} \rangle \) described by the \(\langle \text{condition specifiers} \rangle \). These base-form \(\langle \text{conditionals} \rangle \) are obtained from the \(\langle \text{name} \rangle \) and \(\langle \text{arg spec} \rangle \) as described for \(\texttt{prg_new_conditional:Npnn} \), and they should be defined.

9.2 The boolean data type

This section describes a boolean data type which is closely connected to conditional processing as sometimes you want to execute some code depending on the value of a switch (\textit{e.g., draft/final}) and other times you perhaps want to use it as a predicate function in an \(\texttt{if_predicate:w} \) test. The problem of the primitive \(\texttt{if_false:} \) and \(\texttt{if_true:} \) tokens is that it is not always safe to pass them around as they may interfere with scanning for termination of primitive conditional processing. Therefore, we employ two canonical booleans: \(\texttt{\c_true_bool} \) or \(\texttt{\c_false_bool} \). Besides preventing problems as described above, it also allows us to implement a simple boolean parser supporting
the logical operations And, Or, Not, etc. which can then be used on both the boolean type and predicate functions.

All conditional \bool functions except assignments are expandable and expect the input to also be fully expandable (which generally means being constructed from predicate functions and booleans, possibly nested).

\textbf{\TeX hackers note:} The \texttt{bool} data type is not implemented using the \texttt{\iffalse/\iftrue} primitives, in contrast to \texttt{\newif}, etc., in plain \TeX. \IfTeX and so on. Programmers should not base use of \texttt{bool} switches on any particular expectation of the implementation.

\begin{verbatim}
\bool_new:N \bool_new:c

\bool_new:N \bool_new:c
\bool_const:Nn \bool_const:cn
\bool_set_false:N \bool_set_false:c \bool_gset_false:N \bool_gset_false:c
\bool_set_true:N \bool_set_true:c \bool_gset_true:N \bool_gset_true:c
\bool_set_eq:NN \bool_set_eq:c \bool_gset_eq:NN \bool_gset_eq:cc
\bool_set:Nn \bool_set:cn \bool_gset:Nn \bool_gset:cn
\bool_set_inverse:N \bool_set_inverse:cn \bool_gset_inverse:N \bool_gset_inverse:cc
\end{verbatim}

\begin{verbatim}
\bool_new:N \bool_new:c
\bool_new:N \bool_new:c
\bool_const:Nn \bool_const:cn\bool_set_false:N \bool_set_false:c \bool_gset_false:N \bool_gset_false:c
\bool_set_true:N \bool_set_true:c \bool_gset_true:N \bool_gset_true:c
\bool_set_eq:NN \bool_set_eq:c \bool_gset_eq:NN \bool_gset_eq:cc
\bool_set:Nn \bool_set:cn \bool_gset:Nn \bool_gset:cn
\bool_set_inverse:N \bool_set_inverse:cn \bool_gset_inverse:N \bool_gset_inverse:cc
\end{verbatim}

\begin{verbatim}
\bool_new:N \bool_new:c
\bool_new:N \bool_new:c
\bool_const:Nn \bool_const:cn\bool_set_false:N \bool_set_false:c \bool_gset_false:N \bool_gset_false:c
\bool_set_true:N \bool_set_true:c \bool_gset_true:N \bool_gset_true:c
\bool_set_eq:NN \bool_set_eq:c \bool_gset_eq:NN \bool_gset_eq:cc
\bool_set:Nn \bool_set:cn \bool_gset:Nn \bool_gset:cn
\bool_set_inverse:N \bool_set_inverse:cn \bool_gset_inverse:N \bool_gset_inverse:cc
\end{verbatim}
\bool_if_p:N \bool_if_p:c \bool_if:NTF \bool_if:c *
Tests the current truth of \textit{boolean}, and continues expansion based on this result.

\bool_to_str:N \bool_to_str:c \bool_to_str:n *
Expands to the string \texttt{true} or \texttt{false} depending on the logical truth of the \textit{boolean} or \textit{boolean expression}.

\bool_show:N \bool_show:c \bool_show:n *
Displays the logical truth of the \textit{boolean} on the terminal.

\bool_log:N \bool_log:c \bool_log:n *
Writes the logical truth of the \textit{boolean} in the log file.

\bool_if_exist_p:N \bool_if_exist_p:c \bool_if_exist:NTF \bool_if_exist:c *
Tests whether the \textit{boolean} is currently defined. This does not check that the \textit{boolean} really is a boolean variable.

\c_true_bool \c_false_bool

\l_tmpa_bool \l_tmpb_bool

\section{Constant and scratch booleans}

\texttt{\c_true_bool} and \texttt{\c_false_bool}, respectively. Used to implement predicates.

\texttt{\l_tmpa_bool} and \texttt{\l_tmpb_bool}, A scratch boolean for local assignment. It is never used by the kernel code, and so is safe for use with any LaTeX3-defined function. However, it may be overwritten by other non-kernel code and so should only be used for short-term storage.
A scratch boolean for global assignment. It is never used by the kernel code, and so is
safe for use with any \LaTeX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

9.3 Boolean expressions

As we have a boolean datatype and predicate functions returning boolean \langle true \rangle or \langle false \rangle
values, it seems only fitting that we also provide a parser for \langle boolean expressions \rangle.

A boolean expression is an expression which given input in the form of predicate
functions and boolean variables, return boolean \langle true \rangle or \langle false \rangle. It supports the logical
operations And, Or and Not as the well-known infix operators && and || and prefix !
with their usual precedences (namely, && binds more tightly than ||). In addition to
this, parentheses can be used to isolate sub-expressions. For example,

\begin{verbatim}
\int_compare_p:n { 1 = 1 } &&
(\int_compare_p:n { 2 = 3 } ||
\int_compare_p:n { 4 <= 4 } ||
\str_if_eq_p:nn { abc } { def }
) &&
! \int_compare_p:n { 2 = 4 }
\end{verbatim}

is a valid boolean expression.

Contrarily to some other programming languages, the operators && and || evaluate
both operands in all cases, even when the first operand is enough to determine the result.
This “eager” evaluation should be contrasted with the “lazy” evaluation of \bool_lazy_-
... functions.

\TeXhackers note: The eager evaluation of boolean expressions is unfortunately necessary
in \TeX. Indeed, a lazy parser can get confused if && or || or parentheses appear as (unbraced)
arguments of some predicates. For instance, the innocuous-looking expression below would break
(in a lazy parser) if \#1 were a closing parenthesis and \l_tmpa_bool were \true.

\begin{verbatim}
(\l_tmpa_bool || \token_if_eq_meaning_p:NN X \#1)
\end{verbatim}

Minimal (lazy) evaluation can be obtained using the conditionals \bool_lazy_-\all:nTF, \bool_lazy_and:nnTF, \bool_lazy_any:nTF, or \bool_lazy_or:nnTF, which
only evaluate their boolean expression arguments when they are needed to determine the
resulting truth value. For example, when evaluating the boolean expression

\begin{verbatim}
\bool_lazy_and_p:nn
{ { \int_compare_p:n { 2 = 3 } } { \int_compare_p:n { 4 <= 4 } } { \int_compare_p:n { 1 = \error } } % skipped }
\end{verbatim}

68
the line marked with `skipped` is not expanded because the result of `\bool_lazy_any_p:n` is known once the second boolean expression is found to be logically `true`. On the other hand, the last line is expanded because its logical value is needed to determine the result of `\bool_lazy_and_p:nn`.

\begin{verbatim}
\bool_if_p:n * \bool_if:nTF \bool_if:nTF \bool_if:nTF \bool_if:nTF \bool_if:nTF \bool_if:nTF \bool_if:nTF

Tests the current truth of \emph{boolean expression}, and continues expansion based on this result. The \emph{boolean expression} should consist of a series of predicates or boolean variables with the logical relationship between these defined using `&&` ("And"), `|` ("Or"), `!` ("Not") and parentheses. The logical Not applies to the next predicate or group.

\end{verbatim}

\begin{verbatim}
\bool_lazy_all_p:n * \bool_lazy_all_p:n \bool_lazy_all_p:n \bool_lazy_all_p:n \bool_lazy_all_p:n \bool_lazy_all_p:n \bool_lazy_all_p:n \bool_lazy_all_p:n

Implements the "And" operation on the \emph{boolean expressions}, hence is `true` if all of them are `true` and `false` if any of them is `false`. Contrarily to the infix operator `&&`, only the \emph{boolean expressions} which are needed to determine the result of `\bool_lazy_all:nTF` are evaluated. See also `\bool_lazy_and:nn` when there are only two \emph{boolean expressions}.

\end{verbatim}

\begin{verbatim}
\bool_lazy_and_p:nn * \bool_lazy_and_p:nn \bool_lazy_and_p:nn \bool_lazy_and_p:nn \bool_lazy_and_p:nn \bool_lazy_and_p:nn \bool_lazy_and_p:nn \bool_lazy_and_p:nn

Implements the "And" operation between two boolean expressions, hence is `true` if both are `true`. Contrarily to the infix operator `&&`, the \emph{boolean expressions} is only evaluated if it is needed to determine the result of `\bool_lazy_and:nTF`. See also `\bool_lazy_all:nTF` when there are more than two \emph{boolean expressions}.

\end{verbatim}

\begin{verbatim}
\bool_lazy_any_p:n * \bool_lazy_any_p:n \bool_lazy_any_p:n \bool_lazy_any_p:n \bool_lazy_any_p:n \bool_lazy_any_p:n \bool_lazy_any_p:n \bool_lazy_any_p:n

Implements the "Or" operation on the \emph{boolean expressions}, hence is `true` if any of them is `true` and `false` if all of them are `false`. Contrarily to the infix operator `||`, only the \emph{boolean expressions} which are needed to determine the result of `\bool_lazy_any:nTF` are evaluated. See also `\bool_lazy_or:nTF` when there are only two \emph{boolean expressions}.

\end{verbatim}

\begin{verbatim}
\bool_lazy_or_p:nn * \bool_lazy_or_p:nn \bool_lazy_or_p:nn \bool_lazy_or_p:nn \bool_lazy_or_p:nn \bool_lazy_or_p:nn \bool_lazy_or_p:nn \bool_lazy_or_p:nn

Implements the "Or" operation between two boolean expressions, hence is `true` if either one is `true`. Contrarily to the infix operator `||`, the \emph{boolean expressions} is only evaluated if it is needed to determine the result of `\bool_lazy_or:nTF`. See also `\bool_lazy_any:nTF` when there are more than two \emph{boolean expressions}.

\end{verbatim}

\begin{verbatim}
\bool_not_p:n * \bool_not_p:n \bool_not_p:n \bool_not_p:n \bool_not_p:n \bool_not_p:n \bool_not_p:n \bool_not_p:n

Function version of `!(\emph{boolean expression})` within a boolean expression.

\end{verbatim}
\bool_xor_p:nn\{boolexpr\}\{boolexpr\}
\bool_xor:nnTF\{boolexpr\}\{boolexpr\}\{true code\}\{false code\}

Implements an “exclusive or” operation between two boolean expressions. There is no infix operation for this logical operation.

9.4 Logical loops

Loops using either boolean expressions or stored boolean values.

\bool_do_until:Nn ∗ \bool_do_until:cn ∗
\bool_do_until:Nn \{boolean\} \{code\}
Places the \{code\} in the input stream for \TeX{} to process, and then checks the logical value of the \{boolean\}. If it is false then the \{code\} is inserted into the input stream again and the process loops until the \{boolean\} is true.

\bool_do_until:cn
\bool_do_until:nn
\bool_do_until:nTF
\bool_do_until:nnTF

\bool_do_while:Nn ∗ \bool_do_while:cn ∗
\bool_do_while:Nn \{boolean\} \{code\}
Places the \{code\} in the input stream for \TeX{} to process, and then checks the logical value of the \{boolean\}. If it is true then the \{code\} is inserted into the input stream again and the process loops until the \{boolean\} is false.

\bool_do_while:cn
\bool_do_while:nn
\bool_do_while:nTF
\bool_do_while:nnTF

\bool_until_do:Nn ∗ \bool_until_do:cn ∗
\bool_until_do:Nn \{boolean\} \{code\}
This function first checks the logical value of the \{boolean\}. If it is false the \{code\} is placed in the input stream and expanded. After the completion of the \{code\} the truth of the \{boolean\} is re-evaluated. The process then loops until the \{boolean\} is true.

\bool_until_do:cn
\bool_until_do:nn
\bool_until_do:nTF
\bool_until_do:nnTF

\bool_while_do:Nn ∗ \bool_while_do:cn ∗
\bool_while_do:Nn \{boolean\} \{code\}
This function first checks the logical value of the \{boolean\}. If it is true the \{code\} is placed in the input stream and expanded. After the completion of the \{code\} the truth of the \{boolean\} is re-evaluated. The process then loops until the \{boolean\} is false.

\bool_while_do:cn
\bool_while_do:nn
\bool_while_do:nTF
\bool_while_do:nnTF

\bool_until_do:nn ∗ \bool_until_do:nTF
\bool_until_do:nn \{boolean expression\} \{code\}
Places the \{code\} in the input stream for \TeX{} to process, and then checks the logical value of the \{boolean expression\} as described for \\bool_if:nTF. If it is false then the \{code\} is inserted into the input stream again and the process loops until the \{boolean expression\} evaluates to true.

\bool_until_do:nTF
\bool_until_do:nn
\bool_until_do:nnTF

\bool_do_until:nn ∗ \bool_do_until:nTF
\bool_do_until:nn \{boolean expression\} \{code\}
Places the \{code\} in the input stream for \TeX{} to process, and then checks the logical value of the \{boolean expression\} as described for \\bool_if:nTF. If it is true then the \{code\} is inserted into the input stream again and the process loops until the \{boolean expression\} evaluates to false.

\bool_do_until:nTF
\bool_do_until:nn
\bool_do_until:nnTF

\bool_until_do:nn ∗ \bool_until_do:nTF
\bool_until_do:nn \{boolean expression\} \{code\}
This function first checks the logical value of the \{boolean expression\} (as described for \\bool_if:nTF). If it is false the \{code\} is placed in the input stream and expanded. After the completion of the \{code\} the truth of the \{boolean expression\} is re-evaluated. The process then loops until the \{boolean expression\} is true.

\bool_until_do:nTF
\bool_until_do:nn
\bool_until_do:nnTF

70
This function first checks the logical value of the \textit{(boolean expression)} (as described for \texttt{\textbackslash bool_if:nTF}). If it is \texttt{true} the \textit{(code)} is placed in the input stream and expanded. After the completion of the \textit{(code)} the truth of the \textit{(boolean expression)} is re-evaluated. The process then loops until the \textit{(boolean expression)} is \texttt{false}.

Evaluates in turn each of the \textit{(boolean expression cases)} until the first one that evaluates to \texttt{true}. The \textit{(code)} associated to this first case is left in the input stream, followed by the \texttt{(true code)}, and other cases are discarded. If none of the cases match then only the \texttt{(false code)} is inserted. The function \texttt{\textbackslash bool_case:n}, which does nothing if there is no match, is also available. For example

\begin{verbatim}
\bool_case:nF { \dim_compare_p:n { \l__mypkg_wd_dim <= 10pt } } { Fits } { \int_compare_p:n { \l__mypkg_total_int >= 10 } } { Many } { \l__mypkg_special_bool } { Special } } { No idea! }
\end{verbatim}

leaves “Fits” or “Many” or “Special” or “No idea!” in the input stream, in a way similar to some other language’s \texttt{if...elseif...elseif...else...}.

\section*{9.5 Producing multiple copies}

\begin{verbatim}
\prg_replicate:nn \prg_replicate:nn \prg_replicate:nn {\texttt{integer expression}} \{\texttt{tokens}}
\end{verbatim}

Evaluates the \textit{(integer expression)} (which should be zero or positive) and creates the resulting number of copies of the \textit{(tokens)}. The function is both expandable and safe for nesting. It yields its result after two expansion steps.

\section*{9.6 Detecting \TeX’s mode}

\begin{verbatim}
\mode_if_horizontal_p: \mode_if_horizontal_p: \mode_if_horizontal:TF \mode_if_horizontal:TF \{\texttt{true code}} \{\texttt{false code}}
\end{verbatim}

Detects if \TeX{} is currently in horizontal mode.
\mode_if_inner_p:\ \mode_if_inner:TF \{\text{true code}\} \{\text{false code}\}

Detects if \TeX{} is currently in inner mode.

\mode_if_math_p:\ \mode_if_math:TF \{\text{true code}\} \{\text{false code}\}

Detects if \TeX{} is currently in maths mode.

\mode_if_vertical_p:\ \mode_if_vertical:TF \{\text{true code}\} \{\text{false code}\}

Detects if \TeX{} is currently in vertical mode.

9.7 Primitive conditionals

\if_predicate:w \{\text{predicate}\} \{\text{true code}\} \else: \{\text{false code}\} \fi:

This function takes a predicate function and branches according to the result. (In practice this function would also accept a single boolean variable in place of the \textit{predicate} but to make the coding clearer this should be done through \texttt{\if_bool:N}.)

\if_bool:N \{\text{boolean}\} \{\text{true code}\} \else: \{\text{false code}\} \fi:

This function takes a boolean variable and branches according to the result.

9.8 Nestable recursions and mappings

There are a number of places where recursion or mapping constructs are used in expl3. At a low-level, these typically require insertion of tokens at the end of the content to allow “clean up”. To support such mappings in a nestable form, the following functions are provided.

\prg_break_point:Nn \{\text{type}\}_map_break: \{\text{code}\}

Used to mark the end of a recursion or mapping: the functions \texttt{\{\text{type}\}_map_break:} and \texttt{\{\text{type}\}_map_break:n} use this to break out of the loop (see \texttt{\prg_map_break:Nn} for how to set these up). After the loop ends, the \textit{code} is inserted into the input stream. This occurs even if the break functions are not applied: \texttt{\prg_break_point:Nn} is functionally-equivalent in these cases to \texttt{\use_ii:nn}.
\prg_map_break:Nn \(\text{type}\)_map_break: \{(user code)\}

\prg_break_point:Nn \(\text{type}\)_map_break: \{(ending code)\}

Breaks a recursion in mapping contexts, inserting in the input stream the \(\text{user code}\) after the \(\text{ending code}\) for the loop. The function breaks loops, inserting their \(\text{ending code}\), until reaching a loop with the same \(\text{type}\) as its first argument. This \(\text{type}\)_map_break: argument must be defined; it is simply used as a recognizable marker for the \(\text{type}\).

For types with mappings defined in the kernel, \(\text{type}\)_map_break: and \(\text{type}\)_map_break:n are defined as \prg_map_break:Nn \(\text{type}\)_map_break: {} and the same with {} omitted.

9.8.1 Simple mappings

In addition to the more complex mappings above, non-nestable mappings are used in a number of locations and support is provided for these.

\prg_break_point: *

This copy of \prg_do_nothing: is used to mark the end of a fast short-term recursion: the function \prg_break:n uses this to break out of the loop.

\prg_break: * \prg_break:n \{(code)\} \prg_break_point:
\prg_break:n *

Breaks a recursion which has no \(\text{ending code}\) and which is not a user-breakable mapping (see for instance implementation of \int_step_function:nnnN), and inserts the \(\text{code}\) in the input stream.

9.9 Internal programming functions

\group_align_safe_begin: *
\group_align_safe_end: *

These functions are used to enclose material in a \TeX{} alignment environment within a specially-constructed group. This group is designed in such a way that it does not add brace groups to the output but does act as a group for the & token inside \halign. This is necessary to allow grabbing of tokens for testing purposes, as \TeX{} uses group level to determine the effect of alignment tokens. Without the special grouping, the use of a function such as \peek_after:Nw would result in a forbidden comparison of the internal \endtemplate token, yielding a fatal error. Each \group_align_safe_begin: must be matched by a \group_align_safe_end:, although this does not have to occur within the same function.
Chapter 10

The \texttt{i3sys} package
System/runtime functions

10.1 The name of the job

\texttt{\c_sys_jobname_str}

Constant that gets the “job name” assigned when \TeX{} starts.

\textbf{\TeX{}hackers note:} This is the \TeX{} primitive \texttt{\jobname{}}. For technical reasons, the string here is not of the same internal form as other, but may be manipulated using normal string functions.

10.2 Date and time

\texttt{\c_sys_minute_int} \texttt{\c_sys_hour_int} \texttt{\c_sys_day_int} \texttt{\c_sys_month_int} \texttt{\c_sys_year_int}

The date and time at which the current job was started: these are all reported as integers.

\textbf{\TeX{}hackers note:} Whilst the underlying \TeX{} primitives \texttt{\time{}}, \texttt{\day{}}, \texttt{\month{}}, and \texttt{\year{}} can be altered by the user, this interface to the time and date is intended to be the “real” values.

\texttt{\c_sys_timestamp_str}

The timestamp for the current job: the format is as described for \texttt{\file_timestamp:n}.

\textbf{\TeX{}hackers note:}
10.3 Engine

\begin{verbatim}
\sys_if_engine_luatex_p: \sys_if_engine_pdfTeX_p: \sys_if_engine_ptex_p: \sys_if_engine_uptex_p: \sys_if_engine_xetex_p: \sys_if_engine_pdfTeX:TF \sys_if_engine_ptex:TF \sys_if_engine_uptex:TF \sys_if_engine_xetex:TF
\end{verbatim}

Conditionals which allow engine-specific code to be used. The names follow naturally
from those of the engine binaries: note that the (u)p\TeX\ tests are for ε-p\TeX\ and ε-up\TeX\,
as expl3 requires the ε-\TeX\ extensions. Each conditional is true for \textit{exactly one} supported
engine. In particular, \texttt{\sys_if_engine_ptex_p:} is true for ε-p\TeX\ but false for ε-up\TeX.\new{2015-09-07}

\begin{verbatim}
\c_sys_engine_str
\end{verbatim}
The current engine given as a lower case string: one of lualatex, pdftex, ptex, uptex or xetex.\new{2015-09-11}

\begin{verbatim}
\c_sys_engine_exec_str
\end{verbatim}
The name of the standard executable for the current \TeX\ engine given as a lower case
string: one of lualatex, luahbtx, pdftex, eptex, euptex or xetex.\new{2020-08-20}

\begin{verbatim}
\c_sys_engine_format_str
\end{verbatim}
The name of the preloaded format for the current \TeX\ run given as a lower case string:
one of lualatex (or dvilualatex), pdflatex (or latex), platex, uplatex or xelatex
for L\TeX, similar names for plain \TeX\ (except pdf\TeX\ in DVI mode yields etex), and
cont-en for Con\TeX\t (i.e. the \texttt{\fmtname}).\new{2020-08-20}

\begin{verbatim}
\c_sys_engine_version_str
\end{verbatim}
The version string of the current engine, in the same form as given in the banner issued
when running a job. For pdf\TeX\ and L\TeX\ this is of the form

\begin{verbatim}
<major>.<minor>.<revision>
\end{verbatim}

For X\TeX, the form is

\begin{verbatim}
<major>(<minor>)
\end{verbatim}

For p\TeX\ and up\TeX, only releases since \TeX{} Live 2018 make the data available, and
the form is more complex, as it comprises the p\TeX\ version, the up\TeX\ version and the
\texttt{e-}p\TeX\ version.

\begin{verbatim}
p<major>(<minor>).<revision>-u<major>(<minor>).<revision>-epTeX
\end{verbatim}
where the \texttt{u} part is only present for up\TeX.\new{2018-05-02}

\begin{verbatim}
\sys_timer:
\end{verbatim}
Expands to the current value of the engine’s timer clock, a non-negative integer. This
function is only defined for engines with timer support. This command measures not
just CPU time but real time (including time waiting for user input). The unit are scaled
seconds (2^{-16} seconds).\new{2021-05-12}

75
10.4 Output format

Conditionals which give the current output mode the \TeX run is operating in. This is always one of two outcomes, DVI mode or PDF mode. The two sets of conditionals are thus complementary and are both provided to allow the programmer to emphasise the most appropriate case.

\c_sys_output_str

The current output mode given as a lower case string: one of dvi or pdf.

10.5 Platform

Conditionals which allow platform-specific code to be used. The names follow the \texttt{os.type()} function, \textit{i.e.} all Unix-like systems are \texttt{unix} (including Linux and MacOS).

\c_sys_platform_str

The current platform given as a lower case string: one of unix, windows or unknown.

10.6 Random numbers

Expands to the current value of the engine’s random seed, a non-negative integer. In engines without random number support this expands to 0.
\texttt{\sys_gset_rand_seed:n \{int expr\}}

Globally sets the seed for the engine’s pseudo-random number generator to the \textit{(integer expression)}. This random seed affects all \ldots \texttt{rand} functions (such as \texttt{\int_rand:nn} or \texttt{\clist_rand_item:n}) as well as other packages relying on the engine’s random number generator. In engines without random number support this produces an error.

\textbf{TeXhackers note:} While a 32-bit (signed) integer can be given as a seed, only the absolute value is used and any number beyond \(2^{28}\) is divided by an appropriate power of 2. We recommend using an integer in \([0, 2^{28} - 1]\).

10.7 Access to the shell

\textbf{\texttt{\sys_get_shell:nnN}}

\textbf{\texttt{\sys_get_shell:nnNTF}}

\begin{verbatim}
\sys_get_shell:nnN \{shell command\} \{\texttt{setup}\} \texttt{\{tl var\}}
\sys_get_shell:nnNTF \{\texttt{setup}\} \texttt{\{true code\}} \texttt{\{false code\}}
\end{verbatim}

New: 2019-09-20

Defines \texttt{(tl var)} to the text returned by the \texttt{(shell command)}. The \texttt{(shell command)} is converted to a string using \texttt{\tl_to_str:n}. Category codes may need to be set appropriately via the \texttt{(setup)} argument, which is run just before running the \texttt{(shell command)} (in a group). If shell escape is disabled, the \texttt{(tl var)} will be set to \texttt{\q_no_value} in the non-branching version. Note that quote characters (") cannot be used inside the \texttt{(shell command)}. The \texttt{\sys_get_shell:nnNTF} conditional inserts the \texttt{(true code)} if the shell is available and no quote is detected, and the \texttt{(false code)} otherwise.

\textit{Note:} It is not possible to tell from \TeX{} if a command is allowed in restricted shell escape. If restricted escape is enabled, the \texttt{true} branch is taken: if the command is forbidden at this stage, a low-level \TeX{} error will arise.

\textbf{\texttt{\c_sys_shell_escape_int}}

New: 2017-05-27

This variable exposes the internal triple of the shell escape status. The possible values are:

- 0 Shell escape is disabled
- 1 Unrestricted shell escape is enabled
- 2 Restricted shell escape is enabled

\textbf{\texttt{\sys_if_shell_p: * \sys_if_shell_p:}}

\textbf{\texttt{\sys_if_shell:TF * \sys_if_shell:TF \{\texttt{true code\}}} \{\texttt{false code\}}}

New: 2017-05-27

Performs a check for whether shell escape is enabled. This returns true if either of restricted or unrestricted shell escape is enabled.

\textbf{\texttt{\sys_if_shell_unrestricted_p: * \sys_if_shell_unrestricted_p:}}

\textbf{\texttt{\sys_if_shell_unrestricted:TF * \sys_if_shell_unrestricted:TF \{\texttt{true code\}}} \{\texttt{false code\}}}

New: 2017-05-27

Performs a check for whether \textit{unrestricted} shell escape is enabled.
\sys_if_shell_restricted_p: ∗ \sys_if_shell_restricted_p:
\sys_if_shell_restricted:TF ∗ \sys_if_shell_restricted:TF \{⟨true code⟩\} \{⟨false code⟩\}

Performs a check for whether restricted shell escape is enabled. This returns false if unrestricted shell escape is enabled. Unrestricted shell escape is not considered a superset of restricted shell escape in this case. To find whether any shell escape is enabled use \sys_if_shell:TF.

\sys_shell_now:n \sys_shell_now:e
\sys_shell_now:n \{⟨tokens⟩\}
\sys_shell_now:e

Execute ⟨⟨tokens⟩⟩ through shell escape immediately.

\sys_shell_shipout:n \sys_shell_shipout:e
\sys_shell_shipout:n \{⟨tokens⟩\}
\sys_shell_shipout:e

Execute ⟨⟨tokens⟩⟩ through shell escape at shipout.

10.8 Loading configuration data

\sys_load_backend:n \sys_load_backend:n \{⟨backend⟩\}
\sys_load_backend:n
\sys_load_backend:n

Loads the additional configuration file needed for backend support. If the ⟨backend⟩ is empty, the standard backend for the engine in use will be loaded. This command may only be used once.

\sys_ensure_backend:
\sys_ensure_backend:
\sys_ensure_backend:
\sys_ensure_backend:

Ensures that a backend has been loaded by calling \sys_load_backend:n if required.

\c_sys_backend_str
\c_sys_backend_str
\c_sys_backend_str
\c_sys_backend_str

Set to the name of the backend in use by \sys_load_backend:n when issued. Possible values are

- pdftex
- luatex
- xetex
- dvips
- dvipdfmx
- dvisvgm

\sys_load_debug:
\sys_load_debug:
\sys_load_debug:
\sys_load_debug:

Load the additional configuration file for debugging support.
10.8.1 Final settings

\sys_finalise: \sys_finalise:

Rev: 2019-10-06 Finalises all system-dependent functionality: required before loading a backend.
Chapter 11

The l3msg package

Messages

Messages need to be passed to the user by modules, either when errors occur or to indicate how the code is proceeding. The l3msg module provides a consistent method for doing this (as opposed to writing directly to the terminal or log).

The system used by l3msg to create messages divides the process into two distinct parts. Named messages are created in the first part of the process; at this stage, no decision is made about the type of output that the message will produce. The second part of the process is actually producing a message. At this stage a choice of message class has to be made, for example error, warning or info.

By separating out the creation and use of messages, several benefits are available. First, the messages can be altered later without needing details of where they are used in the code. This makes it possible to alter the language used, the detail level and so on. Secondly, the output which results from a given message can be altered. This can be done on a message class, module or message name basis. In this way, message behaviour can be altered and messages can be entirely suppressed.

11.1 Creating new messages

All messages have to be created before they can be used. The text of messages is automatically wrapped to the length available in the console. As a result, formatting is only needed where it helps to show meaning. In particular, \ may be used to force a new line and \ forces an explicit space. Additionally, \, \#, \ and \ can be used to produce the corresponding character.

Messages may be subdivided by one level using the / character. This is used within the message filtering system to allow for example the \LaTeX\ kernel messages to belong to the module \LaTeX\ while still being filterable at a more granular level. Thus for example

\msg_new:nnnn \{ mymodule \} \{ submodule / message \} ...

will allow to filter out specifically messages from the submodule.

Some authors may find the need to include spaces as - characters tedious. This can be avoided by locally resetting the category code of -.
although in general this may be confusing; simply writing the messages using - characters is the method favored by the team.

\char_set_catcode_space:n { ‘\ } \msg_new:nn { foo } { bar } {Some message text using ‘#1’ and usual message shorthands ‘{ ‘ ‘ ‘}.”} \char_set_catcode_ignore:n { ‘\ }

although in general this may be confusing; simply writing the messages using ~ characters is the method favored by the team.

\msg_new:nnnn {⟨module⟩} {⟨message⟩} {⟨text⟩} {⟨more text⟩} Creates a ⟨message⟩ for a given ⟨module⟩. The message is defined to first give ⟨text⟩ and then ⟨more text⟩ if the user requests it. If no ⟨more text⟩ is available then a standard text is given instead. Within ⟨text⟩ and ⟨more text⟩ four parameters (#1 to #4) can be used: these will be supplied at the time the message is used. An error is raised if the ⟨message⟩ already exists.

\msg_set:nnnn {⟨module⟩} {⟨message⟩} {⟨text⟩} {⟨more text⟩} Sets up the text for a ⟨message⟩ for a given ⟨module⟩. The message is defined to first give ⟨text⟩ and then ⟨more text⟩ if the user requests it. If no ⟨more text⟩ is available then a standard text is given instead. Within ⟨text⟩ and ⟨more text⟩ four parameters (#1 to #4) can be used: these will be supplied at the time the message is used.

\msg_if_exist_p:nn {⟨module⟩} {⟨message⟩} \msg_if_exist:nnTF {⟨module⟩} {⟨message⟩} {⟨true code⟩} {⟨false code⟩} Tests whether the ⟨message⟩ for the ⟨module⟩ is currently defined.

11.2 Customizable information for message modules

\msg_module_name:n {⟨module⟩} \msg_module_name:n Expands to the public name of the ⟨module⟩ as defined by \g_msg_module_name_prop (or otherwise leaves the ⟨module⟩ unchanged).

\msg_module_type:n {⟨module⟩} \msg_module_type:n Expands to the description which applies to the ⟨module⟩, for example a Package or Class. The information here is defined in \g_msg_module_type_prop, and will default to Package if an entry is not present.

\g_msg_module_name_prop \g_msg_module_name_prop Provides a mapping between the module name used for messages, and that for documentation.

\g_msg_module_type_prop \g_msg_module_type_prop Provides a mapping between the module name used for messages, and that type of module. For example, for \LaTeX{} core messages, an empty entry is set here meaning that they are not described using the standard Package text.
11.3 Contextual information for messages

\msg_line_context: * \msg_line_number: *

Prints the current line number when a message is given, and thus suitable for giving context to messages. The number itself is proceeded by the text on line.

\msg_line_context: ✤ \msg_line_number: ✤

Prints the current line number when a message is given.

\msg_fatal_text:n \{⟨module⟩\}

Produces the standard text

Fatal Package ⟨module⟩ Error

This function can be redefined to alter the language in which the message is given, using #1 as the name of the ⟨module⟩ to be included.

\msg_critical_text:n \{⟨module⟩\}

Produces the standard text

Critical Package ⟨module⟩ Error

This function can be redefined to alter the language in which the message is given, using #1 as the name of the ⟨module⟩ to be included.

\msg_error_text:n \{⟨module⟩\}

Produces the standard text

Package ⟨module⟩ Error

This function can be redefined to alter the language in which the message is given, using #1 as the name of the ⟨module⟩ to be included.

\msg_warning_text:n \{⟨module⟩\}

Produces the standard text

Package ⟨module⟩ Warning

This function can be redefined to alter the language in which the message is given, using #1 as the name of the ⟨module⟩ to be included. The ⟨type⟩ of ⟨module⟩ may be adjusted: Package is the standard outcome: see \msg_module_type:n.

\msg_info_text:n \{⟨module⟩\}

Produces the standard text:

Package ⟨module⟩ Info

This function can be redefined to alter the language in which the message is given, using #1 as the name of the ⟨module⟩ to be included. The ⟨type⟩ of ⟨module⟩ may be adjusted: Package is the standard outcome: see \msg_module_type:n.
Produces the standard text

See the ⟨module⟩ documentation for further information.

This function can be redefined to alter the language in which the message is given, using #1 as the name of the ⟨module⟩ to be included. The name of the ⟨module⟩ is produced using \msg_module_name:n.

11.4 Issuing messages

Messages behave differently depending on the message class. In all cases, the message may be issued supplying 0 to 4 arguments. If the number of arguments supplied here does not match the number in the definition of the message, extra arguments are ignored, or empty arguments added (of course the sense of the message may be impaired). The four arguments are converted to strings before being added to the message text: the e-type variants should be used to expand material. Note that this expansion takes place with the standard definitions in effect, which means that shorthands such as \~ or \ are not available; instead one should use \iow_char:N \~ and \iow_newline:, respectively. The following message classes exist:

- **fatal**, ending the TEX run;
- **critical**, ending the file being input;
- **error**, interrupting the TEX run without ending it;
- **warning**, written to terminal and log file, for important messages that may require corrections by the user;
- **note** (less common than info) for important information messages written to the terminal and log file;
- **info** for normal information messages written to the log file only;
- **term** and **log** for un-decorated messages written to the terminal and log file, or to the log file only;
- **none** for suppressed messages.
Issues \texttt{\textbackslash msg_fatal:nnnnnn \{module\} \{message\} \{arg one\} \{arg two\} \{arg three\} \{arg four\}} error \texttt{\{message\}}, passing \texttt{\{arg one\}} to \texttt{\{arg four\}} to the text-creating functions. After issuing a fatal error the \TeX run halts. No PDF file will be produced in this case (DVI mode runs may produce a truncated DVI file).

\TeXhacksnote: The \TeX \texttt{\textbackslash endinput} primitive is used to exit the file. In particular, the rest of the current line remains in the input stream.

Issues \texttt{\textbackslash msg_critical:nnnnnn \{module\} \{message\} \{arg one\} \{arg two\} \{arg three\} \{arg four\}} error \texttt{\{message\}}, passing \texttt{\{arg one\}} to \texttt{\{arg four\}} to the text-creating functions. After issuing a critical error, \TeX stops reading the current input file. This may halt the \TeX run (if the current file is the main file) or may abort reading a sub-file.

Issues \texttt{\textbackslash msg_error:nnnnnn \{module\} \{message\} \{arg one\} \{arg two\} \{arg three\} \{arg four\}} error \texttt{\{message\}}, passing \texttt{\{arg one\}} to \texttt{\{arg four\}} to the text-creating functions. The error interrupts processing and issues the text at the terminal. After user input, the run continues.
Issues \textit{\langle module \rangle} warning \textit{\langle message \rangle}, passing \textit{\langle arg one \rangle} to \textit{\langle arg four \rangle} to the text-creating functions. The warning text is added to the log file and the terminal, but the \TeX run is not interrupted.

Issues \textit{\langle module \rangle} information \textit{\langle message \rangle}, passing \textit{\langle arg one \rangle} to \textit{\langle arg four \rangle} to the text-creating functions. For the more common \texttt{\msg_info:nnnnnn}, the information text is added to the log file only, while \texttt{\msg_note:nnnnnn} adds the info text to both the log file and the terminal. The \TeX run is not interrupted.
Issues `module` information `message`, passing `arg one` to `arg four` to the text-creating functions. The output is briefer than `msg_info:nnnnnn`, omitting for instance the module name. It is added to the log file by `msg_log:nnnnnn` while `msg_term:nnnnnn` also prints it on the terminal.

Does nothing: used as a message class to prevent any output at all (see the discussion of message redirection).
11.4.1 Messages for showing material

\msg_show:nnnnnn {\langle module\rangle} {\langle message\rangle} {\langle arg one\rangle} {\langle arg two\rangle} {\langle arg three\rangle} {\langle arg four\rangle}

\msg_show:nneee
\msg_show:nnnn
\msg_show:nn
\msg_show:nne
\msg_show:nne
\msg_show:nne

\msg_show:nnnnn
\msg_show:nneee
\msg_show:nnnn
\msg_show:nne
\msg_show:nne
\msg_show:nne

New: 2017-12-04

Issues {\langle module\rangle} information {\langle message\rangle}, passing {\langle arg one\rangle} to {\langle arg four\rangle} to the text-creating functions. The information text is shown on the terminal and the \TeX run is interrupted in a manner similar to \tl_show:n. This is used in conjunction with \msg_show_item:n and similar functions to print complex variable contents completely. If the formatted text does not contain > at the start of a line, an additional line > will be put at the end. In addition, a final period is added if not present.

\seq_map_function:NN \l_tmpa_seq \msg_show_item:n
\prop_map_function:NN \l_tmpa_seq \msg_show_item:nn
\msg_show_item:n * \seq_map_function:NN \l_tmpa_seq \msg_show_item:n
\msg_show_item_unbraced:n * \prop_map_function:NN \l_tmpa_seq \msg_show_item:nn
\msg_show_item:n * \prop_map_function:NN \l_tmpa_seq \msg_show_item:nn
\msg_show_item_unbraced:n * \prop_map_function:NN \l_tmpa_seq \msg_show_item:nn

New: 2017-12-04

Used in the text of messages for \msg_show:nnnnnn to show or log a list of items or key–value pairs. The output of \msg_show_item:n produces a newline, the prefix >, two spaces, then the braced string representation of its argument. The two-argument versions separates the key and value using \luer\equiv\luer, and the unbraced versions don’t print the surrounding braces.

These functions are suitable for usage with iterator functions like \seq_map_function:NN, \prop_map_function:NN, etc. For example, with a sequence \l_tmpa_seq containing a, \{b\} and \c,

\seq_map_function:NN \l_tmpa_seq \msg_show_item:n

would expand to three lines:

> {a}
> \{b\}
> \{c\}

11.4.2 Expandable error messages

In very rare cases it may be necessary to produce errors in an expansion-only context. The functions in this section should only be used if there is no alternative approach using \msg_error:nnnnnn or other non-expandable commands from the previous section. Despite having a similar interface as non-expandable messages, expandable errors must be handled internally very differently from normal error messages, as none of the tools
to print to the terminal or the log file are expandable. As a result, short-hands such as \{ or \ do not work, and messages must be very short (with default settings, they are truncated after approximately 50 characters). It is advisable to ensure that the message is understandable even when truncated, by putting the most important information up front. Another particularity of expandable messages is that they cannot be redirected or turned off by the user.

\msg_expandable_error:nnnnnn \{module\} \{message\} \{arg one\} \{arg two\} \{arg three\} \{arg four\}
\msg_expandable_error:nnffff
\msg_expandable_error:nnnn
\msg_expandable_error:nnnn
\msg_expandable_error:nnnn
\msg_expandable_error:nnnn
\msg_expandable_error:nnnn
\msg_expandable_error:nnnn
\msg_expandable_error:nnnn
\msg_expandable_error:nnnn

Issues an “Undefined error” message from \TeX itself using the undefined control sequence \::error then prints “! (module): ”(error message), which should be short. With default settings, anything beyond approximately 60 characters long (or bytes in some engines) is cropped. A leading space might be removed as well.

11.5 Redirecting messages

Each message has a “name”, which can be used to alter the behaviour of the message when it is given. Thus we might have

\msg_new:nnnn { module } { my-message } { Some-text } { Some-more-text }

\msg_error:nn { module } { my-message }

when it is used. With no filtering, this raises an error. However, we could alter the behaviour with

\msg_redirect_class:nn { error } { warning }

\msg_redirect_module:nnn { module } { error } { warning }

\msg_redirect_name:nnn { module } { my-message } { warning }

to alter only messages from that module, or even

\msg_redirect_name:nnn { module } { my-message } { warning }

to target just one message. Redirection applies first to individual messages, then to messages from one module and finally to messages of one class. Thus it is possible to select out an individual message for special treatment even if the entire class is already redirected.

Multiple redirections are possible. Redirections can be cancelled by providing an empty argument for the target class. Redirection to a missing class raises an error
immediately. Infinite loops are prevented by eliminating the redirection starting from the target of the redirection that caused the loop to appear. Namely, if redirecitions are requested as $A \rightarrow B$, $B \rightarrow C$ and $C \rightarrow A$ in this order, then the $A \rightarrow B$ redirection is cancelled.

\[\text{\texttt{msg_redirect_class:nn}} \{\text{class one}\} \{\text{class two}\} \]

Changes the behaviour of messages of \{class one\} so that they are processed using the code for those of \{class two\}. Each \{class\} can be one of fatal, critical, error, warning, note, info, term, log, none.

\[\text{\texttt{msg_redirect_module:nnn}} \{\text{module}\} \{\text{class one}\} \{\text{class two}\} \]

Redirects message of \{class one\} for \{module\} to act as though they were from \{class two\}. Messages of \{class one\} from sources other than \{module\} are not affected by this redirection. This function can be used to make some messages “silent” by default. For example, all of the warning messages of \{module\} could be turned off with:

\[\text{\texttt{msg_redirect_module:nnn}} \{\text{module}\} \{\text{warning}\} \{\text{none}\} \]

\[\text{\texttt{msg_redirect_name:nnn}} \{\text{module}\} \{\text{message}\} \{\text{class}\} \]

Redirects a specific \{message\} from a specific \{module\} to act as a member of \{class\} of messages. No further redirection is performed. This function can be used to make a selected message “silent” without changing global parameters:

\[\text{\texttt{msg_redirect_name:nnn}} \{\text{module}\} \{\text{annoying-message}\} \{\text{none}\} \]
Chapter 12

The l3file package

File and I/O operations

This module provides functions for working with external files. Some of these functions apply to an entire file, and have prefix `\file_...`, while others are used to work with files on a line by line basis and have prefix `\ior_...` (reading) or `\iow_...` (writing).

It is important to remember that when reading external files TeX attempts to locate them using both the operating system path and entries in the TeX file database (most TeX systems use such a database). Thus the “current path” for TeX is somewhat broader than that for other programs.

For functions which expect a ⟨file name⟩ argument, this argument may contain both literal items and expandable content, which should on full expansion be the desired file name. Active characters (as declared in `\l_char_active_seq`) are not expanded, allowing the direct use of these in file names. Quote tokens (") are not permitted in file names as they are reserved for internal use by some TeX primitives.

Spaces are trimmed at the beginning and end of the file name: this reflects the fact that some file systems do not allow or interact unpredictably with spaces in these positions. When no extension is given, this will trim spaces from the start of the name only.

12.1 Input–output stream management

As TeX engines have a limited number of input and output streams, direct use of the streams by the programmer is not supported in L\TeX. Instead, an internal pool of streams is maintained, and these are allocated and deallocated as needed by other modules. As a result, the programmer should close streams when they are no longer needed, to release them for other processes.

Note that I/O operations are global: streams should all be declared with global names and treated accordingly.
Globally reserves the name of the \texttt{stream}, either for reading or for writing as appropriate. The \texttt{stream} is not opened until the appropriate \texttt{_open:N} function is used. Attempting to use a \texttt{stream} which has not been opened is an error, and the \texttt{stream} will behave as the corresponding \texttt{c_term}....

\ior_open:Nn \ior_open:cn
\ior_open:NnTF \ior_open:cn
\iow_open:Nn \iow_open:cn
\iow_open:cn(NV|cn|cV)
\iow_shell_open:Nn \iow_shell_open:cn
\iow_shell_open:NnTF \iow_shell_open:cn

Opens (file name) for reading using (stream) as the control sequence for file access. If the (stream) was already open it is closed before the new operation begins. The (stream) is available for access immediately and will remain allocated to (file name) until a \ior_close:N instruction is given or the \TeX run ends. If the file is not found, an error is raised.

Opens (file name) for writing using (stream) as the control sequence for file access. If the (stream) was already open it is closed before the new operation begins. The (stream) is available for access immediately and will remain allocated to (file name) until a \ior_close:N instruction is given or the \TeX run ends. Opening a file for writing clears any existing content in the file (i.e. writing is not additive).

Opens the pseudo-file created by the output of the \texttt{shell command} for reading using \texttt{stream} as the control sequence for access. If the \texttt{stream} was already open it is closed before the new operation begins. The \texttt{stream} is available for access immediately and will remain allocated to \texttt{shell command} until a \ior_close:N instruction is given or the \TeX run ends. For details of handling of the \texttt{shell command}, see \texttt{sys_get_shell:nnNTF}.

Opens the pseudo-file created by the output of the \texttt{shell command} for writing using \texttt{stream} as the control sequence for access. If the \texttt{stream} was already open it is closed before the new operation begins. The \texttt{stream} is available for access immediately and will remain allocated to \texttt{shell command} until a \iow_close:N instruction is given or the \TeX run ends. If piped system calls are disabled an error is raised. For details of handling of the \texttt{shell command}, see \texttt{sys_get_shell:nnNTF}.
Closes the \(\text{stream}\). Streams should always be closed when they are finished with as this ensures that they remain available to other programmers.

Display (to the terminal or log file) the file name associated to the (read or write) \(\text{stream}\).

Display (to the terminal or log file) a list of the file names associated with each open (read or write) stream. This is intended for tracking down problems.

12.1.1 Reading from files

Reading from files and reading from the terminal are separate processes in expl3. The functions \ior{get} and \ior{str_get}, and their branching equivalents, are designed to work with files.
Function that reads one or more lines (until an equal number of left and right braces are found) from the file input \langle stream \rangle and stores the result locally in the \langle token list \rangle variable. The material read from the \langle stream \rangle is tokenized by \TeX{} according to the category codes and \texttt{endlinechar} in force when the function is used. Assuming normal settings, any lines which do not end in a comment character \% have the line ending converted to a space, so for example input
\begin{verbatim}
a b c
\end{verbatim}
results in a token list \texttt{a b c}. Any blank line is converted to the token \texttt{\par}. Therefore, blank lines can be skipped by using a test such as
\begin{verbatim}
\ior_get:NN \l_my_stream \l_tmpa_tl
\tl_set:Nn \l_tmpb_tl { \par }
\tl_if_eq:NNF \l_tmpa_tl \l_tmpb_tl
\end{verbatim}
\ldots
Also notice that if multiple lines are read to match braces then the resulting token list can contain \texttt{\par} tokens. In the non-branching version, where the \langle stream \rangle is not open the \langle tl var \rangle is set to \texttt{\q_no_value}.

\TeX{}hackers note: This protected macro is a wrapper around the \TeX{} primitive \texttt{\readline}. Regardless of settings, \TeX{} replaces trailing space and tab characters (character codes 32 and 9) in each line by an end-of-line character (character code \texttt{endlinechar}, omitted if \texttt{endlinechar} is negative or too large) before turning characters into tokens according to current category codes. With default settings, spaces appearing at the beginning of lines are also ignored.

Function that reads one line from the file input \langle stream \rangle and stores the result locally in the \langle token list \rangle variable. The material is read from the \langle stream \rangle as a series of tokens with category code 12 (other), with the exception of space characters which are given category code 10 (space). Multiple whitespace characters are retained by this process. It always only reads one line and any blank lines in the input result in the \langle token list variable \rangle being empty. Unlike \texttt{\ior_get:NN}, line ends do not receive any special treatment. Thus input
\begin{verbatim}
a b c
\end{verbatim}
results in a token list \texttt{a b c} with the letters \texttt{a}, \texttt{b}, and \texttt{c} having category code 12. In the non-branching version, where the \langle stream \rangle is not open the \langle tl var \rangle is set to \texttt{\q_no_value}.

\TeX{}hackers note: This protected macro is a wrapper around the \TeX{} primitive \texttt{\readline}. Regardless of settings, \TeX{} removes trailing space and tab characters (character codes 32 and 9). However, the end-line character normally added by this primitive is not included in the result of \texttt{\ior_str_get:NN}.

All mappings are done at the current group level, \textit{i.e.} any local assignments made by the \langle function \rangle or \langle code \rangle discussed below remain in effect after the loop.
\ior_map_inline:Nn
\ior_map_inline:Nn \iorget:nN \ior_map_inline:Nn (stream) \{\langle inline function\rangle\}

Applies the \langle inline function\rangle to each set of \langle lines\rangle obtained by calling \iorget:nN until reaching the end of the file. \TeX{} ignores any trailing new-line marker from the file it reads. The \langle inline function\rangle should consist of code which receives the \langle line\rangle as \#1.

\ior_str_map_inline:Nn
\ior_str_map_inline:Nn \iorget:nN \ior_str_map_inline:Nn \{\langle inline function\rangle\}

Applies the \langle inline function\rangle to every \langle line\rangle in the \langle stream\rangle. The material is read from the \langle stream\rangle as a series of tokens with category code 12 (other), with the exception of space characters which are given category code 10 (space). The \langle inline function\rangle should consist of code which receives the \langle line\rangle as \#1. Note that \TeX{} removes trailing space and tab characters (character codes 32 and 9) from every line upon input. \TeX{} also ignores any trailing new-line marker from the file it reads.

\ior_map_variable:NNn
\ior_map_variable:NNn \iorstrmap:nN \ior_map_variable:NNn \{\langle stream\rangle \{\langle tl var\rangle \{\langle code\rangle\}\}\}\}

For each set of \langle lines\rangle obtained by calling \iorget:nN until reaching the end of the file, stores the \langle lines\rangle in the \langle tl var\rangle then applies the \langle code\rangle. The \langle code\rangle will usually make use of the \langle variable\rangle, but this is not enforced. The assignments to the \langle variable\rangle are local. Its value after the loop is the last set of \langle lines\rangle, or its original value if the \langle stream\rangle is empty. \TeX{} ignores any trailing new-line marker from the file it reads. This function is typically faster than \ior_map_inline:Nn.

\ior_str_map_variable:NNn
\ior_str_map_variable:NNn \ior_str_map_variable:NNn \{\langle stream\rangle \{\langle variable\rangle \{\langle code\rangle\}\}\}\}

For each \langle line\rangle in the \langle stream\rangle, stores the \langle line\rangle in the \langle variable\rangle then applies the \langle code\rangle. The material is read from the \langle stream\rangle as a series of tokens with category code 12 (other), with the exception of space characters which are given category code 10 (space). The \langle code\rangle will usually make use of the \langle variable\rangle, but this is not enforced. The assignments to the \langle variable\rangle are local. Its value after the loop is the last \langle line\rangle, or its original value if the \langle stream\rangle is empty. Note that \TeX{} removes trailing space and tab characters (character codes 32 and 9) from every line upon input. \TeX{} also ignores any trailing new-line marker from the file it reads. This function is typically faster than \ior_str_map_inline:Nn.

\ior_map_break:
\ior_map_break:

Used to terminate a \ior_map_... function before all lines from the \langle stream\rangle have been processed. This normally takes place within a conditional statement, for example

\ior_map_inline:Nn \iorget:nN \l_my_ior
\{ \strifeq:nTF { #1 } { bingo } \{ \ior_map_break: \} \%
 Do something useful \}

Use outside of a \ior_map_... scenario leads to low level \TeX{} errors.

\TeX{}hackers note: When the mapping is broken, additional tokens may be inserted before further items are taken from the input stream. This depends on the design of the mapping function.
\ior_map_break:n \ior_map_break:n \{\langle\text{code}\rangle\}

Used to terminate a \ior_map... function before all lines in the \langle\text{stream}\rangle have been processed, inserting the \langle\text{code}\rangle after the mapping has ended. This normally takes place within a conditional statement, for example

\ior_map_inline:Nn \l_my_gor
\{
\str_if_eq:nnTF { #1 } { bingo } \{
\ior_map_break:n \{ <\text{code}> \} \{
\%	ext{Do something useful}
\}
\}
\}

Use outside of a \ior_map... scenario leads to low level \TeX{} errors.

\textbf{\TeX{}hackers note:} When the mapping is broken, additional tokens may be inserted before the \langle\text{code}\rangle is inserted into the input stream. This depends on the design of the mapping function.

\ior_if_eof_p:N \ior_if_eof_p:N \langle\text{stream}\rangle
\ior_if_eof:NTF \ior_if_eof:NTF \langle\text{stream}\rangle \langle\text{true code}\rangle \langle\text{false code}\rangle

Tests if the end of a file \langle\text{stream}\rangle has been reached during a reading operation. The test also returns a \texttt{true} value if the \langle\text{stream}\rangle is not open.

12.1.2 Reading from the terminal

\ior_get_term:nN \ior_get_term:nN \langle\text{prompt}\rangle \langle\text{token list variable}\rangle
\ior_str_get_term:nN \ior_str_get_term:nN

Function that reads one or more lines (until an equal number of left and right braces are found) from the terminal and stores the result locally in the \langle\text{token list}\rangle variable. Tokenization occurs as described for \ior_get:N or \ior_str_get:N, respectively. When the \langle\text{prompt}\rangle is empty, \TeX{} will wait for input without any other indication: typically the programmer will have provided a suitable text using e.g. \ior_term:n. Where the \langle\text{prompt}\rangle is given, it will appear in the terminal followed by an =, e.g.

prompt=

12.1.3 Writing to files

\ior_now:Nn \ior_now:Nn \langle\text{stream}\rangle \langle\text{tokens}\rangle
\ior_now:Nn \ior_now:Nn \langle\text{NV|Ne|cn|cv|ce}\rangle

This function writes \langle\text{tokens}\rangle to the specified \langle\text{stream}\rangle immediately (i.e. the write operation is called on expansion of \ior_now:Nn).

\ior_log:n \ior_log:n \langle\text{tokens}\rangle
\ior_log:e

This function writes the given \langle\text{tokens}\rangle to the log (transcript) file immediately: it is a dedicated version of \ior_now:Nn.
This function writes the given \textit{tokens} to the terminal file immediately: it is a dedicated version of \texttt{iow_now:Nn}.

\textbf{\texttt{iow_shipout:Nn}} \texttt{\langle stream \rangle \{\langle tokens \rangle\}}

This function writes \textit{tokens} to the specified \textit{stream} when the current page is finalised \textit{(i.e. at shipout)}. The \texttt{e}-type variants expand the \textit{tokens} at the point where the function is used but \textit{not} when the resulting tokens are written to the \textit{stream} (cf. \texttt{iow_shipout-_e:Nn}).

\textbf{\texttt{TEXhackers note}}: When using expl3 with a format other than \LaTeX, new line characters inserted using \texttt{iow_newline:} or using the line-wrapping code \texttt{iow_wrap:nnnN} are not recognized in the argument of \texttt{iow_shipout:Nn}. This may lead to the insertion of additional unwanted line-breaks.

\textbf{\texttt{iow_shipout_e:Nn}} \texttt{\langle stream \rangle \{\langle tokens \rangle\}}

This function writes \textit{tokens} to the specified \textit{stream} when the current page is finalised \textit{(i.e. at shipout)}. The \textit{tokens} are expanded at the time of writing in addition to any expansion when the function is used. This makes these functions suitable for including material finalised during the page building process (such as the page number integer).

\textbf{\texttt{TEXhackers note}}: This is a wrapper around the \TeX primitive \texttt{\write}. When using expl3 with a format other than \LaTeX, new line characters inserted using \texttt{iow_newline:} or using the line-wrapping code \texttt{iow_wrap:nnnN} are not recognized in the argument of \texttt{iow_shipout:Nn}. This may lead to the insertion of additional unwanted line-breaks.

\textbf{\texttt{iow_char:N}} \texttt{\langle char \rangle}

Inserts \textit{char} into the output stream. Useful when trying to write difficult characters such as \texttt{\%}, \texttt{"}, \texttt{\{}, etc. in messages, for example:

\begin{verbatim}
\iow_now:Ne \g_my_iow \{ \iow_char:N \{ text \iow_char:N \} \}
\end{verbatim}

The function has no effect if writing is taking place without expansion \textit{(e.g. in the second argument of \texttt{iow_now:Nn})}.

\textbf{\texttt{iow_newline:}} \texttt{\langle char \rangle}

Function to add a new line within the \textit{tokens} written to a file. The function has no effect if writing is taking place without expansion \textit{(e.g. in the second argument of \texttt{iow_now:Nn})}.

\textbf{\texttt{TEXhackers note}}: When using expl3 with a format other than \LaTeX, the character inserted by \texttt{iow_newline:} is not recognized by \TeX, which may lead to the insertion of additional unwanted line-breaks. This issue only affects \texttt{iow_shipout:Nn}, \texttt{iow_shipout_e:Nn} and direct uses of primitive operations.
12.1.4 Wrapping lines in output

\iow_wrap:nnnN \iow_wrap:nenN

New: 2012-06-28
Updated: 2017-12-04

This function wraps the \langle text \rangle to a fixed number of characters per line. At the start of each line which is wrapped, the \langle run-on text \rangle is inserted. The line character count targeted is the value of \l_iow_line_count_int minus the number of characters in the \langle run-on text \rangle for all lines except the first, for which the target number of characters is simply \l_iow_line_count_int since there is no run-on text. The \langle text \rangle and \langle run-on text \rangle are exhaustively expanded by the function, with the following substitutions:

- \textbackslash or \iownewline: may be used to force a new line,
- \textbackslash may be used to represent a forced space (for example after a control sequence),
- \#, \%, \{, \} may be used to represent the corresponding character,
- \iow_wrap_allow_break: may be used to allow a line-break without inserting a space,
- \iow_indent:n may be used to indent a part of the \langle text \rangle (not the \langle run-on text \rangle).

Additional functions may be added to the wrapping by using the \langle set up \rangle, which is executed before the wrapping takes place: this may include overriding the substitutions listed.

Any expandable material in the \langle text \rangle which is not to be expanded on wrapping should be converted to a string using \token_to_str:N, \tl_to_str:n, \tl_to_str:N, etc.

The result of the wrapping operation is passed as a braced argument to the \langle function \rangle, which is typically a wrapper around a write operation. The output of \iow_wrap:nnnN (i.e. the argument passed to the \langle function \rangle) consists of characters of category “other” (category code 12), with the exception of spaces which have category “space” (category code 10). This means that the output does not expand further when written to a file.

\texttt{\TeXhacker\ notes:} Internally, \iow_wrap:nnnN carries out an \texttt{e}-type expansion on the \langle text \rangle to expand it. This is done in such a way that \exp_not:N or \exp_not:n could be used to prevent expansion of material. However, this is less conceptually clear than conversion to a string, which is therefore the supported method for handling expandable material in the \langle text \rangle.

\iow_wrap_allow_break:

New: 2023-04-25

In the first argument of \iow_wrap:nnnN (for instance in messages), inserts a break-point that allows a line break. If no break occurs, this function adds nothing to the output.

\iow_indent:n \iow_indent:n \{(text)\}

New: 2011-09-21

In the first argument of \iow_wrap:nnnN (for instance in messages), indents \langle text \rangle by four spaces. This function does not cause a line break, and only affects lines which start within the scope of the \langle text \rangle. In case the indented \langle text \rangle should appear on separate lines from the surrounding text, use \textbackslash to force line breaks.
The maximum number of characters in a line to be written by the `w:nnnN` function. This value depends on the TeX system in use: the standard value is 78, which is typically correct for unmodified TeX Live and MiKTeX systems.

12.1.5 Constant input–output streams, and variables

Scratch input stream for global use. These are never used by the kernel code, and so are safe for use with any \TeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

Scratch output stream for global use. These are never used by the kernel code, and so are safe for use with any \TeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

12.1.6 Primitive conditionals

Tests if the \texttt{stream} returns “end of file”, which is true for non-existent files. The \texttt{else}: branch is optional.

\TeX hacknote: This is the \TeX primitive \texttt{if:}

12.2 File operations

12.2.1 Basic file operations

Contain the directory, name and extension of the current file. The directory is empty if the file was loaded without an explicit path (i.e. if it is in the \TeX search path), and does not end in / other than the case that it is exactly equal to the root directory. The \texttt{name} and \texttt{ext} parts together make up the file name, thus the \texttt{name} part may be thought of as the “job name” for the current file.

Note that \TeX does not provide information on the \texttt{dir} and \texttt{ext} part for the main (top level) file and that this file always has empty \texttt{dir} and \texttt{ext} components. Also, the \texttt{name} here will be equal to \texttt{sys_jobname_str}, which may be different from the real file name (if set using \texttt{--jobname}, for example).
Each entry is the path to a directory which should be searched when seeking a file. Each path can be relative or absolute, and need not include the trailing slash. Spaces need not be quoted.

\verb|\l_file_search_path_seq|\hspace{1em}Updated: 2023-06-15

Texparsers note: When working as a package in \LaTeX, expl3 will automatically append the current \verb|\input@path| to the set of values from \verb|\l_file_search_path_seq|.

\begin{verbatim}
\file_if_exist_p:n \verb|\file_if_exist_p:n| {{\file_name}}
\file_if_exist_p:V \verb|\file_if_exist_p:n| {{\file_name}} {{true code}} {{false code}}
\file_if_exist:nTF \verb|\file_if_exist:n| \{{\file_name}\} \{{true code\}\} \{{false code\}\}
\file_if_exist:V \verb|\file_if_exist:n| \{{\file_name}\} \{{true code\}\} \{{false code\}\}
\end{verbatim}

Expands the argument of the \verb|\file_name| to give a string, then searches for this string using the current \TeX{} search path and the additional paths controlled by \verb|\l_file_search_path_seq|.

The following commands do not have an \verb|\tl| equivalent.

\begin{verbatim}
\file_hex_dump:n \verb|\file_hex_dump:n| {{\file_name}}
\file_hex_dump:V \verb|\file_hex_dump:n| {{\file_name}}
\file_hex_dump:nnn \verb|\file_hex_dump:n| \{{\file_name\}\} \{{start index\}\} \{{end index\}\}
\file_hex_dump:Vnn \verb|\file_hex_dump:n| \{{\file_name\}\} \{{start index\}\} \{{end index\}\}
\end{verbatim}

Searches for \verb|\file_name| using the current \TeX{} search path and the additional paths controlled by \verb|\l_file_search_path_seq|. It then expands to leave the hexadecimal dump of the file content in the input stream. The file is read as bytes, which means that in contrast to most \TeX{} behaviour there will be a difference in result depending on the line endings used in text files. The same file will produce the same result between different engines: the algorithm used is the same in all cases. When the file is not found, the result of expansion is empty. The \{{start index\}\} and \{{end index\}\} values work as described for \verb|\str_range:nnn|.

\begin{verbatim}
\file_get_hex_dump:nN \verb|\file_get_hex_dump:n| {{\file_name}} \{{\tl_var\}}
\file_get_hex_dump:nnnN \verb|\file_get_hex_dump:n| \{{\file_name\}\} \{{start index\}\} \{{end index\}\} \{{\tl_var\}}
\file_get_hex_dump:VnnN \verb|\file_get_hex_dump:n| \{{\file_name\}\} \{{start index\}\} \{{end index\}\}
\end{verbatim}

Sets the \verb|\tl_var| to the result of applying \verb|\file_hex_dump:n|/\verb|\file_hex_dump:nnn| to the \verb|\file|. If the file is not found, the \verb|\tl_var| will be set to \verb|\q_no_value|.

\begin{verbatim}
\file_get_hex_dump:nN \verb|\file_get_hex_dump:n| {{\file_name\}} \tl{\var}
\file_get_hex_dump:nnnN \verb|\file_get_hex_dump:n| \{{\file_name\}\} \{{start index\}\} \{{end index\}\} \tl{\var}
\end{verbatim}

12.2.2 Information about files and file contents

Functions in this section return information about files as expl3 str data, except that the non-expandable functions set their return token list to \verb|\q_no_value| if the file requested is not found. As such, comparison of file names, hashes, sizes, etc., should use \verb|\str_if_eq:nnTF| rather than \verb|\tl_if_eq:nnTF| and so on.

\begin{verbatim}
\file_hex_dump:n \verb|\file_hex_dump:n| {{\file_name}}
\file_hex_dump:V \verb|\file_hex_dump:n| {{\file_name}}
\file_hex_dump:nnn \verb|\file_hex_dump:n| \{{\file_name\}\} \{{start index\}\} \{{end index\}\}
\file_hex_dump:Vnn \verb|\file_hex_dump:n| \{{\file_name\}\} \{{start index\}\} \{{end index\}\}
\end{verbatim}

Sets the (\verb|\tl| var) to the result of applying \verb|\file_hex_dump:n|/\verb|\file_hex_dump:nnn| to the (\verb|\file|). If the file is not found, the (\verb|\tl| var) will be set to \verb|\q_no_value|.

\begin{verbatim}
\file_get_hex_dump:nN \verb|\file_get_hex_dump:n| {{\file_name\}} \tl{\var}
\file_get_hex_dump:nnnN \verb|\file_get_hex_dump:n| \{{\file_name\}\} \{{start index\}\} \{{end index\}\} \tl{\var}
\end{verbatim}

Updated: 2019-11-19
\file_mdfive_hash:n \file_mdfive_hash:V

Seeks for \textit{(file name)} using the current \TeX{} search path and the additional paths controlled by \texttt{\l_file_search_path_seq}. It then expands to leave the MD5 sum generated from the contents of the file in the input stream. The file is read as bytes, which means that in contrast to most \TeX{} behaviour there will be a difference in result depending on the line endings used in text files. The same file will produce the same result between different engines: the algorithm used is the same in all cases. When the file is not found, the result of expansion is empty.

\file_get_mdfive_hash:n \file_get_mdfive_hash:VN
\file_get_mdfive_hash:n \file_get_mdfive_hash:V

\texttt{\file_get_mdfive_hash:n} \texttt{\file_get_mdfive_hash:V} \texttt{\file_get_mdfive_hash:VN} \texttt{\file_get_mdfive_hash:V}

\New: 2019-09-03
\Updated: 2019-02-16

\texttt{\file_mdfive_hash:n} \texttt{\file_mdfive_hash:V}

\file_get_mdfive_hash:n \texttt{(file name)} \texttt{\tl var}

Sets the \texttt{(tl var)} to the result of applying \texttt{\file_mdfive_hash:n} to the \texttt{(file)}. If the file is not found, the \texttt{(tl var)} will be set to \texttt{\q_no_value}.

\file_size:n \file_size:V

\file_get_size:n \file_get_size:VN
\file_get_size:n \file_get_size:V

\New: 2019-09-03
\Updated: 2019-02-16

\texttt{\file_size:n} \texttt{\file_size:V}

\file_size:n \texttt{(file name)}

Searches for \textit{(file name)} using the current \TeX{} search path and the additional paths controlled by \texttt{\l_file_search_path_seq}. It then expands to leave the size of the file in bytes in the input stream. When the file is not found, the result of expansion is empty.

\file_get_size:n \file_get_size:VN
\file_get_size:n \file_get_size:V

\New: 2017-07-09
\Updated: 2019-02-16

\texttt{\file_get_size:n} \texttt{\file_get_size:V}

\file_get_size:n \texttt{(file name)} \texttt{\tl var}

Sets the \texttt{(tl var)} to the result of applying \texttt{\file_size:n} to the \texttt{(file)}. If the file is not found, the \texttt{(tl var)} will be set to \texttt{\q_no_value}. This is not available in older versions of \TeX{}.

\file_timestamp:n \file_timestamp:V

\file_get_timestamp:n \file_get_timestamp:VN
\file_get_timestamp:n \file_get_timestamp:V

\New: 2019-09-03
\Updated: 2019-02-16

\texttt{\file_timestamp:n} \texttt{\file_timestamp:V}

\file_timestamp:n \texttt{(file name)}

Searches for \textit{(file name)} using the current \TeX{} search path and the additional paths controlled by \texttt{\l_file_search_path_seq}. It then expands to leave the modification timestamp of the file in the input stream. The timestamp is of the form \texttt{D:\textbackslash (year)\textbackslash (month)\textbackslash (day)\textbackslash (hour)\textbackslash (minute)\textbackslash (second)\textbackslash (offset)}, where the latter may be \texttt{Z} (UTC) or \texttt{plus-minus\textbackslash (hours)\textbackslash (minutes)\textbackslash \textbackslash (offset)}. When the file is not found, the result of expansion is empty. This is not available in older versions of \TeX{}.

\file_get_timestamp:n \file_get_timestamp:VN
\file_get_timestamp:n \file_get_timestamp:V

\New: 2017-07-09
\Updated: 2019-02-16

\texttt{\file_get_timestamp:n} \texttt{\file_get_timestamp:V}

\file_get_timestamp:n \texttt{(file name)} \texttt{\tl var}

Sets the \texttt{(tl var)} to the result of applying \texttt{\file_timestamp:n} to the \texttt{(file)}. If the file is not found, the \texttt{(tl var)} will be set to \texttt{\q_no_value}. This is not available in older versions of \TeX{}.

100
Compares the file stamps on the two (files) as indicated by the (comparator), and inserts either the (true code) or (false case) as required. A file which is not found is treated as older than any file which is found. This allows for example the construct

\file_compare_timestamp:nNnTF { source-file } > { derived-file }

\{ % Code to regenerate derived file \}

to work when the derived file is entirely absent. The timestamp of two absent files is regarded as different. This is not available in older versions of X\TeX.

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found sets the (tl var) the fully-qualified name of the file, i.e. the path and file name. This includes an extension .tex when the given (file name) has no extension but the file found has that extension. In the non-branching version, the (tl var) will be set to \q_no_value in the case that the file does not exist.

Parses the (full name) and splits it into three parts, each of which is returned by setting the appropriate local string variable:

- The (dir): everything up to the last / (path separator) in the (file path). As with system PATH variables and related functions, the (dir) does not include the trailing / unless it points to the root directory. If there is no path (only a file name), (dir) is empty.

- The (name): everything after the last / up to the last ., where both of those characters are optional. The (name) may contain multiple . characters. It is empty if (full name) consists only of a directory name.

- The (ext): everything after the last . (including the dot). The (ext) is empty if there is no . after the last /.

Before parsing, the (full name) is expanded until only non-expandable tokens remain, except that active characters are also not expanded. Quotes (") are invalid in file names and are discarded from the input.
12.2.3 Accessing file contents

\file_parse_full_name:nnN \{\langle\text{full name}\rangle\}
\file_parse_full_name:V

Parses the \langle\text{full name}\rangle as described for \file_parse_full_name:nNNN, and leaves \langle\text{dir}\rangle, \langle\text{name}\rangle, and \langle\text{ext}\rangle in the input stream, each inside a pair of braces.

\file_parse_full_name_apply:nnN \{\langle\text{full name}\rangle\} \{\langle\text{function}\rangle\}
\file_parse_full_name_apply:VN

Parses the \langle\text{full name}\rangle as described for \file_parse_full_name:nNNN, and passes \langle\text{dir}\rangle, \langle\text{name}\rangle, and \langle\text{ext}\rangle as arguments to \langle\text{function}\rangle, as an n-type argument each, in this order.

\file_get:nnN \{\langle\text{file name}\rangle\} \{\langle\text{setup}\rangle\} \{\langle\text{tl}\rangle\}
\file_get:VnN
\file_get:nnNTF \{\langle\text{file name}\rangle\} \{\langle\text{setup}\rangle\} \{\langle\text{true code}\rangle\} \{\langle\text{false code}\rangle\}

Defines \langle\text{tl}\rangle to the contents of \langle\text{file name}\rangle. Category codes may need to be set appropriately via the \langle\text{setup}\rangle argument. The non-branching version sets the \langle\text{tl}\rangle to \texttt{\textbackslash q_no_value} if the file is not found. The branching version runs the \langle\text{true code}\rangle after the assignment to \langle\text{tl}\rangle if the file is found, and \langle\text{false code}\rangle otherwise. The file content will be tokenized using the current category code régime.

\file_input:n \{\langle\text{file name}\rangle\}
\file_input:V

Searches for \langle\text{file name}\rangle in the path as detailed for \file_if_exist:nTF, and if found reads in the file as additional \LaTeX{} source. All files read are recorded for information and the file name stack is updated by this function. An error is raised if the file is not found.

\file_input_raw:n \{\langle\text{file name}\rangle\}
\file_input_raw:V

Searches for \langle\text{file name}\rangle in the path as detailed for \file_if_exist:nTF, and if found reads in the file as additional \TeX{} source. No data concerning the file is tracked. If the file is not found, no action is taken.

\TeX{}hackers note: This function is intended only for contexts where files must be read purely by expansion, for example at the start of a table cell in an \texttt{\textbackslash halign}.

\file_if_exist_input:n \{\langle\text{file name}\rangle\}
\file_if_exist_input:V
\file_if_exist_input:nF \{\langle\text{false code}\rangle\}
\file_if_exist_input:VF

Searches for \langle\text{file name}\rangle using the current \TeX{} search path and the additional paths included in \texttt{\textbackslash l_file_search_path_seq}. If found then reads in the file as additional \TeX{} source as described for \file_input:n, otherwise inserts the \langle\text{false code}\rangle. Note that these functions do not raise an error if the file is not found, in contrast to \file_\text{-input}:n.
\file_input_stop: \file_input_stop:

\texttt{Nov: 2017-07-07}

Ends the reading of a file started by \file_input:n or similar before the end of the file is reached. Where the file reading is being terminated due to an error, \msg_-
critical:nn(nn) should be preferred.

\textbf{Te\TeX{}hackers note:} This function must be used on a line on its own: \TeX{} reads files line-by-line and so any additional tokens in the “current” line will still be read.

This is also true if the function is hidden inside another function (which will be the normal case), i.e., all tokens on the same line in the source file are still processed. Putting it on a line by itself in the definition doesn’t help as it is the line where it is used that counts!

\file_show_list: \file_show_list:
\file_log_list: \file_log_list:

These functions list all files loaded by \LaTeX{} commands that populate \@filelist or by \file_input:n. While \file_show_list: displays the list in the terminal, \file_log_list: outputs it to the log file only.
Chapter 13

The \texttt{l3luatex} package

\textbf{Lua\TeX\-specific functions}

The \textsf{Lua\TeX} engine provides access to the Lua programming language, and with it access to the “internals” of \TeX. In order to use this within the framework provided here, a family of functions is available. When used with \texttt{pdf\TeX}, \texttt{d\TeX}, \texttt{u\TeX} or \texttt{X\TeX} these raise an error: use \texttt{\textbackslash sys_if_engine_luatex:T} to avoid this. Details on using Lua with the \textsf{Lua\TeX} engine are given in the \textsf{Lua\TeX} manual.

13.1 Breaking out to Lua

\begin{verbatim}
\lua_now:n {⟨token list⟩}
\lua_now:e
\end{verbatim}

The \texttt{⟨token list⟩} is first tokenized by \TeX, which includes converting line ends to spaces in the usual \TeX manner and which respects currently-applicable \TeX category codes. The resulting \texttt{(Lua input)} is passed to the Lua interpreter for processing. Each \texttt{\lua_now:n} block is treated by Lua as a separate chunk. The Lua interpreter executes the \texttt{(Lua input)} immediately, and in an expandable manner.

\textbf{\TeX\hackers note:} \texttt{\lua_now:e} is a macro wrapper around \texttt{\textbackslash directlua}: when \textsf{Lua\TeX} is in use two expansions are required to yield the result of the Lua code.

\begin{verbatim}
\lua_shipout:e:n \lua_shipout:n {⟨token list⟩}
\end{verbatim}

The \texttt{⟨token list⟩} is first tokenized by \TeX, which includes converting line ends to spaces in the usual \TeX manner and which respects currently-applicable \TeX category codes. The resulting \texttt{(Lua input)} is passed to the Lua interpreter when the current page is finalised (\textit{i.e.} at shipout). Each \texttt{\lua_shipout:n} block is treated by Lua as a separate chunk. The Lua interpreter will execute the \texttt{(Lua input)} during the page-building routine: no \TeX expansion of the \texttt{(Lua input)} will occur at this stage.

In the case of the \texttt{\lua_shipout_e:n} version the input is fully expanded by \TeX in an \texttt{e}-type manner during the shipout operation.

\textbf{\TeX\hackers note:} At a \TeX level, the \texttt{(Lua input)} is stored as a “whatsit.”
\texttt{lua_escape:n} \{token list\}
\texttt{lua_escape:e}

Converts the \{token list\} such that it can safely be passed to Lua: embedded backslashes, double and single quotes, and newlines and carriage returns are escaped. This is done by prepending an extra token consisting of a backslash with category code 12, and for the line endings, converting them to \texttt{\textbackslash n} and \texttt{\textbackslash r}, respectively.

\textbf{\TeX\ hackers note}: \texttt{lua_escape:e} is a macro wrapper around \texttt{luaescapestring}: when Lua\TeX\ is in use two expansions are required to yield the result of the Lua code.

\texttt{lua_load_module:n} \{Lua module name\}

Loads a Lua module into the Lua interpreter.

\texttt{lua_now:n} passes its \{\texttt{token list}\} argument to the Lua interpreter as a single line, with characters interpreted under the current catcode regime. These two facts mean that \texttt{lua_now:n} rarely behaves as expected for larger pieces of code. Therefore, package authors should not write significant amounts of Lua code in the arguments to \texttt{lua_now:n}. Instead, it is strongly recommended that they write the majority of their Lua code in a separate file, and then load it using \texttt{lua_load_module:n}.

\textbf{\TeX\ hackers note}: This is a wrapper around the Lua call \texttt{require '\{module\}'}.

13.2 Lua interfaces

As well as interfaces for \TeX, there are a small number of Lua functions provided here.

\texttt{ltx.utils}

Most public interfaces provided by the module are stored within the \texttt{ltx.utils} table.

\texttt{ltx.utils_filedump}

\begin{verbatim}
(dump) = ltx.utils.filedump((file),(offset),(length))
\end{verbatim}

Returns the uppercase hexadecimal representation of the content of the \{file\} read as bytes. If the \{length\} is given, only this part of the file is returned; similarly, one may specify the \{offset\} from the start of the file. If the \{length\} is not given, the entire file is read starting at the \{offset\}.

\texttt{ltx.utils_filemd5sum}

\begin{verbatim}
(hash) = ltx.utils.filemd5sum((file))
\end{verbatim}

Returns the MD5 sum of the file contents read as bytes; note that the result will depend on the nature of the line endings used in the file, in contrast to normal \TeX\ behaviour. If the \{file\} is not found, nothing is returned with \texttt{no error} raised.

\texttt{ltx.utils_filemoddate}

\begin{verbatim}
(date) = ltx.utils.filemoddate((file))
\end{verbatim}

Returns the date/time of last modification of the \{file\} in the format

\begin{verbatim}
D:(year)(month)(day)(hour)(minute)(second)(offset)
\end{verbatim}

where the latter may be Z (UTC) or \{plus-minus\}\{hours\}'\{minutes\}'. If the \{file\} is not found, nothing is returned with \texttt{no error} raised.
Returns the size of the (file) in bytes. If the (file) is not found, nothing is returned with no error raised.
There are a small number of \TeX or \LaTeX concepts which are not used in expl3 code but which need to be manipulated when working as a \LaTeX2ε package. To allow these to be integrated cleanly into expl3 code, a set of legacy interfaces are provided here.

\newcommand*{\legacy_if_p:n}{\name}
\newcommand*{\legacy_if:nTF}{\name \{\true\} \{\false\}}

Tests if the \LaTeX2ε/plain \TeX conditional (generated by \newif) is true or false and branches accordingly. The \name of the conditional should omit the leading if.

\newcommand*{\legacy_if_set_true:n}{\name \true}
\newcommand*{\legacy_if_set_false:n}{\name \false}
\newcommand*{\legacy_if_gset_true:n}{\name \true}
\newcommand*{\legacy_if_gset_false:n}{\name \false}

Sets the \LaTeX2ε/plain \TeX conditional \if\name (generated by \newif) to be true or false.

\newcommand*{\legacy_if_set:nn}{\name \{\bool\}}
\newcommand*{\legacy_if_gset:nn}{\name \{\bool\}}

Sets the \LaTeX2ε/plain \TeX conditional \if\name (generated by \newif) to the result of evaluating the \bool expression.
Part IV
Data types
Chapter 15

The l3tl package
Token lists

\TeX{} works with tokens, and L3\TeX{} provides a number of functions to deal with lists of tokens. Token lists may be present directly in the argument to a function:

\begin{verbatim}
\foo:n { a collection of \texttt{\textbackslash{}tokens} }
\end{verbatim}

or may be stored in a so-called “token list variable”, which have the suffix \texttt{tl}: a token list variable can also be used as the argument to a function, for example

\begin{verbatim}
\foo:N \some_tl
\end{verbatim}

In both cases, functions are available to test and manipulate the lists of tokens, and these have the module prefix \texttt{tl}. In many cases, functions which can be applied to token list variables are paired with similar functions for application to explicit lists of tokens: the two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”, or a list of “tokens”. An item is whatever \texttt{use:n} would grab as its argument: a single non-space token or a brace group, with optional leading explicit space characters (each item is thus itself a token list). A token is either a normal \texttt{N} argument, or \texttt{\textbackslash{}, \{, or \}} (assuming normal \TeX{} category codes). Thus for example

\begin{verbatim}
\{ Hello \} - world
\end{verbatim}

contains six items (\texttt{Hello, w, o, r, l} and \texttt{d}), but thirteen tokens (\texttt{\{, H, e, l, l, o, \}, \textbackslash{}, w, o, r, l} and \texttt{d}). Functions which act on items are often faster than their analogue acting directly on tokens.

15.1 Creating and initialising token list variables

\begin{verbatim}
\tl_new:N \tl_new:N \tl_new:c
\end{verbatim}

\texttt{\tl_new:N} \texttt{\tl_new:N} \texttt{\tl_new:c}\

Creates a new \texttt{\{tl var\}} or raises an error if the name is already taken. The declaration is global. The \texttt{\{tl var\}} is initially empty.

109
\texttt{\textbackslash tl_const:Nn} \texttt{\textbackslash tl_const:(Ne|cn|ce)} \texttt{\{token list\}}

Creates a new constant \texttt{\langle tl\ var \rangle} or raises an error if the name is already taken. The value of the \texttt{\langle tl\ var \rangle} is set globally to the \texttt{\langle token list \rangle}.

\texttt{\textbackslash tl_clear:N} \texttt{\textbackslash tl_clear:c} \texttt{\textbackslash tl_gclear:N} \texttt{\textbackslash tl_gclear:c}

Clears all entries from the \texttt{\langle tl\ var \rangle}.

\texttt{\textbackslash tl_clear_new:N} \texttt{\textbackslash tl_clear_new:c} \texttt{\textbackslash tl_gclear_new:N} \texttt{\textbackslash tl_gclear_new:c}

Ensures that the \texttt{\langle tl\ var \rangle} exists globally by applying \texttt{\tl_new:N} if necessary, then applies \texttt{\tl_(g)clear:N} to leave the \texttt{\langle tl\ var \rangle} empty.

\texttt{\textbackslash tl_set_eq:NN} \texttt{\textbackslash tl_set_eq:(cN|Nc|cc)} \texttt{\textbackslash tl_gset_eq:NN} \texttt{\textbackslash tl_gset_eq:(cN|Nc|cc)}

Sets the content of \texttt{\langle tl\ var1 \rangle} equal to that of \texttt{\langle tl\ var2 \rangle}.

\texttt{\textbackslash tl_concat:NNN} \texttt{\textbackslash tl_concat:ccc} \texttt{\textbackslash tl_gconcat:NNN} \texttt{\textbackslash tl_gconcat:ccc}

Concatenates the content of \texttt{\langle tl\ var2 \rangle} and \texttt{\langle tl\ var3 \rangle} together and saves the result in \texttt{\langle tl\ var1 \rangle}. The \texttt{\langle tl\ var2 \rangle} is placed at the left side of the new token list.

\texttt{\textbackslash tl_if_exist_p:N} \texttt{\textbackslash tl_if_exist_p:c} \texttt{\textbackslash tl_if_exist:NTF} \texttt{\textbackslash tl_if_exist:c}

Tests whether the \texttt{\langle tl\ var \rangle} is currently defined. This does not check that the \texttt{\langle tl\ var \rangle} really is a token list variable.

15.2 Adding data to token list variables

\texttt{\textbackslash tl_set:Nn} \texttt{\textbackslash tl_set:(NV|No|Ne|Nf|cn|cV|cv|co|ce|cf)} \texttt{\textbackslash tl_gset:Nn} \texttt{\textbackslash tl_gset:(NV|No|Ne|Nf|cn|cV|cv|co|ce|cf)}

Sets \texttt{\langle tl\ var \rangle} to contain \texttt{\langle tokens \rangle}, removing any previous content from the variable.

\texttt{\textbackslash tl_put_left:Nn} \texttt{\textbackslash tl_put_left:(NV|No|Ne|Nf|cn|cV|cv|co)} \texttt{\textbackslash tl_gput_left:Nn} \texttt{\textbackslash tl_gput_left:(NV|No|Ne|Nf|cn|cV|cv|co)}

Appends \texttt{\langle tokens \rangle} to the left side of the current content of \texttt{\langle tl\ var \rangle}.

110
15.3 Token list conditionals

\[\text{\texttt{tl_put_right:Nn}} \]
\[\text{\texttt{tl_put_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)}} \]
\[\text{\texttt{tl_gput_right:Nn}} \]
\[\text{\texttt{tl_gput_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)}} \]

Appends \((\texttt{tokens})\) to the right side of the current content of \((\texttt{tl_var})\).

\[\text{\texttt{\textbackslash tl_if_blank_p:n}} \]
\[\text{\texttt{\textbackslash tl_if_blank:p\{e|V|o\}}} \]
\[\text{\texttt{\textbackslash tl_if_blank:nTF}} \]
\[\text{\texttt{\textbackslash tl_if_blank:n}} \]
\[\text{\texttt{\textbackslash tl_if_empty:p\{N|c\}}} \]
\[\text{\texttt{\textbackslash tl_if_empty:nTF}} \]
\[\text{\texttt{\textbackslash tl_if_empty:n}} \]
\[\text{\texttt{\textbackslash tl_if_eq:p:NN}} \]
\[\text{\texttt{\textbackslash tl_if_eq:p\{e|N|c\}}} \]
\[\text{\texttt{\textbackslash tl_if_eq:p\{N|c\}}} \]

Tests if the \((\texttt{token\ list})\) consists only of blank spaces (i.e. contains no item). The test is true if \((\texttt{token\ list})\) is zero or more explicit space characters (explicit tokens with character code 32 and category code 10), and is false otherwise.

Tests if the \((\texttt{token\ list\ variable})\) is entirely empty (i.e. contains no tokens at all).

Compares the content of two \((\texttt{token\ list\ variables})\) and is logically true if the two contain the same list of tokens (i.e. identical in both the list of characters they contain and the category codes of those characters). Thus for example

\begin{verbatim}
\tl_set:Nn \l_tmpa_tl { abc }
\tl_set:Ne \l_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NN \l_tmpa_tl \l_tmpb_tl \l_tmpa_tl \l_tmpb_tl \false
\end{verbatim}

yields false. See also \texttt{\textbackslash str_if_eq:nnTF} for a comparison that ignores category codes.

Tests if the \((\texttt{token\ list\ variable}_1)\) and the \((\texttt{token\ list}_2)\) contain the same list of tokens, both in respect of character codes and category codes. This conditional is not expandable: see \texttt{\textbackslash tl_if_eq:NNTF} for an expandable version when both token lists are stored in variables, or \texttt{\textbackslash str_if_eq:nnTF} if category codes are not important.
\tl_if_eq:nTF \{\token\} \{\token\} \{\true\} \{\false\}
Tests if \token and \token contain the same list of tokens, both in respect
of character codes and category codes. This conditional is not expandable: see \tl_if_eq:NNTF for an expandable version when token lists are stored in variables, or \str_if_eq:nnTF if category codes are not important.

\tl_if_in:NnTF \{\token\} \{\true\} \{\false\}
\tl_if_in:(\{\token\}) \{\true\} \{\false\}
Tests if \token is found in the content of \token. The \token cannot
contain the tokens {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:nTF \{\token\} \{\token\} \{\true\} \{\false\}
\tl_if_in:(\{\token\}) \{\true\} \{\false\}
Tests if \token is found inside \token. The \token cannot contain the
tokens {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6). The search does not enter brace (category code 1/2) groups.

\tl_if_novalue_p:n \tl_if_novalue:nTF \{\token\} \{\true\} \{\false\}
\tl_if_novalue:n \{\token\} \{\true\} \{\false\}
Tests if the \token list is exactly equal to the special \c_novalue_tl marker. This
function is intended to allow construction of flexible document interface structures in
which missing optional arguments are detected.

\tl_if_single_p:N \tl_if_single_p:c \tl_if_single_p:nTF \tl_if_single_p:n \{\true\} \{\false\}
\tl_if_single:nTF \tl_if_single:n \{\true\} \{\false\}
Tests if the content of the \token \token consists of a single \item, i.e.
is a single normal token (neither an explicit space character nor a begin-group character) or a single brace group,
surrounded by optional spaces on both sides. In other words, such a token list has token
count 1 according to \tl_count:n.

\tl_if_single_p:n \tl_if_single_p:nTF \tl_if_single:nTF \tl_if_single:n \{\true\} \{\false\}
Tests if the \token list has exactly one \item, i.e. is a single normal token (neither an explicit space character nor a begin-group character) or a single brace group, surrounded by optional spaces on both sides. In other words, such a token list has token count 1 according to \tl_count:n.

\tl_if_single_token_p:n \tl_if_single_token_p:nTF \tl_if_single_token:nTF \tl_if_single_token:n \{\true\} \{\false\}

Tests if the token list consists of exactly one token, i.e. is either a single space character or a single normal token. Token groups {...} are not single tokens.
15.3.1 Testing the first token

\tl_if_head_eq_catcode_p:nN * \tl_if_head_eq_catcode_p:nN {⟨token list⟩} ⟨test token⟩
\tl_if_head_eq_catcode_p:(VN)eN:NTF * \tl_if_head_eq_catcode:⟨test token⟩
\tl_if_head_eq_catcode:⟨test token⟩{true code} {false code}
\tl_if_head_eq_catcode_p:nN ★ \tl_if_head_eq_catcode_p:
\tl_if_head_eq_catcode_p:(VN)eN|eN|oN:⋆
\tl_if_head_eq_catcode:nN:TF ★ \tl_if_head_eq_catcode:
\tl_if_head_eq_catcode:⟨test token⟩{true code} {false code}

Tests if the first ⟨token⟩ in the ⟨token list⟩ has the same category code as the ⟨test token⟩. In the case where the ⟨token list⟩ is empty, the test is always false.

\tl_if_head_eq_charcode_p:nN * \tl_if_head_eq_charcode_p:nN {⟨token list⟩} ⟨test token⟩
\tl_if_head_eq_charcode_p:(VN)eN|eN|fN:⋆
\tl_if_head_eq_charcode:nN:TF ★ \tl_if_head_eq_charcode:
\tl_if_head_eq_charcode:⟨test token⟩{true code} {false code}

Tests if the first ⟨token⟩ in the ⟨token list⟩ has the same character code as the ⟨test token⟩. In the case where the ⟨token list⟩ is empty, the test is always false.

\tl_if_head_eq_meaning_p:nN * \tl_if_head_eq_meaning_p:nN {⟨token list⟩} ⟨test token⟩
\tl_if_head_eq_meaning_p:(VN)eN:⋆
\tl_if_head_eq_meaning:nN:TF ★ \tl_if_head_eq_meaning:
\tl_if_head_eq_meaning:⟨test token⟩{true code} {false code}

Tests if the first ⟨token⟩ in the ⟨token list⟩ has the same meaning as the ⟨test token⟩. In the case where the ⟨token list⟩ is empty, the test is always false.

\tl_if_head_is_group_p:n * \tl_if_head_is_group_p:n {⟨token list⟩}
\tl_if_head_is_group_p:nTF * \tl_if_head_is_group:n {true code} {false code}

Tests if the first ⟨token⟩ in the ⟨token list⟩ is an explicit begin-group character (with category code 1 and any character code), in other words, if the ⟨token list⟩ starts with a brace group. In particular, the test is false if the ⟨token list⟩ starts with an implicit token such as \vc_group_begin_token, or if it is empty. This function is useful to implement actions on token lists on a token by token basis.

\tl_if_head_is_N_type_p:n * \tl_if_head_is_N_type_p:n {⟨token list⟩}
\tl_if_head_is_N_type:nTF * \tl_if_head_is_N_type:n {true code} {false code}

Tests if the first ⟨token⟩ in the ⟨token list⟩ is a normal N-type argument. In other words, it is neither an explicit space character (explicit token with character code 32 and category code 10) nor an explicit begin-group character (with category code 1 and any character code). An empty argument yields false, as it does not have a normal first token. This function is useful to implement actions on token lists on a token by token basis.
Tests if the first ⟨token⟩ in the ⟨token list⟩ is an explicit space character (explicit token with character code 32 and category code 10). In particular, the test is false if the ⟨token list⟩ starts with an implicit token such as \c_space_token, or if it is empty. This function is useful to implement actions on token lists on a token by token basis.

15.4 Working with token lists as a whole

15.4.1 Using token lists

Converting the ⟨token list⟩ to a ⟨string⟩, leaving the resulting character tokens in the input stream. A ⟨string⟩ is a series of tokens with category code 12 (other) with the exception of spaces, which retain category code 10 (space). The base function requires only a single expansion. Its argument must be braced.

\textbf{\textit{\LaTeX}hackers note:} This is the \LaTeX primitive \texttt{\detokenize}. Converting a ⟨token list⟩ to a ⟨string⟩ yields a concatenation of the string representations of every token in the ⟨token list⟩. The string representation of a control sequence is

- an escape character, whose character code is given by the internal parameter \texttt{\escapechar}, absent if the \texttt{\escapechar} is negative or greater than the largest character code;
- the control sequence name, as defined by \texttt{\cs_to_str:N};
- a space, unless the control sequence name is a single character whose category at the time of expansion of \texttt{\tl_to_str:n} is not “letter”.

The string representation of an explicit character token is that character, doubled in the case of (explicit) macro parameter characters (normally \#). In particular, the string representation of a token list may depend on the category codes in effect when it is evaluated, and the value of the \texttt{\escapechar}: for instance \texttt{\tl_to_str:n \{\a\}} normally produces the three character “backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the escape character is negative and \texttt{\a} is currently not a letter.

Converting the content of the ⟨tl var⟩ into a series of characters with category code 12 (other) with the exception of spaces, which retain category code 10 (space). This ⟨string⟩ is then left in the input stream. For low-level details, see the notes given for \texttt{\tl_to_str:n}.

Recovers the content of a ⟨tl var⟩ and places it directly in the input stream. An error is raised if the variable does not exist or if it is invalid. Note that it is possible to use a ⟨tl var⟩ directly without an accessor function.
15.4.2 Counting and reversing token lists

\tl_count:n \{\langle tokens\rangle\}
Counts the number of \langle items\rangle in \langle tokens\rangle and leaves this information in the input stream. Unbraced tokens count as one element as do each token group \{\langle \ldots \rangle\}. This process ignores any unprotected spaces within \langle tokens\rangle. See also \tl_count:N. This function requires three expansions, giving an \langle integer denotation\rangle.

\tl_count:N \{tl var\}
Counts the number of \langle items\rangle in the \langle tl var\rangle and leaves this information in the input stream. Unbraced tokens count as one element as do each token group \{\langle \ldots \rangle\}. This process ignores any unprotected spaces within the \langle tl var\rangle. See also \tl_count:n. This function requires three expansions, giving an \langle integer denotation\rangle.

\tl_count_tokens:n \{\langle tokens\rangle\}
Counts the number of \TeX tokens in the \langle tokens\rangle and leaves this information in the input stream. Every token, including spaces and braces, contributes one to the total; thus for instance, the token count of a-{bc} is 6.

\tl_reverse:n \{\langle token list\rangle\}
Reverses the order of the \langle items\rangle in the \langle token list\rangle, so that \langle item_1\rangle\langle item_2\rangle\langle item_3\rangle \ldots \langle item_n\rangle becomes \langle item_n\rangle \ldots \langle item_3\rangle\langle item_2\rangle\langle item_1\rangle. This process preserves unprotected space within the \langle token list\rangle. Tokens are not reversed within braced token groups, which keep their outer set of braces. In situations where performance is important, consider \tl_reverse_items:n. See also \tl_reverse:N.

\TeXhackers note: The result is returned within \unexpanded, which means that the token list does not expand further when appearing in an \e-type or \x-type argument expansion.

\tl_reverse:N \{tl var\}
Sets the \langle tl var\rangle to contain the result of reversing the order of its \langle items\rangle, so that \langle item_1\rangle\langle item_2\rangle\langle item_3\rangle \ldots \langle item_n\rangle becomes \langle item_n\rangle \ldots \langle item_3\rangle\langle item_2\rangle\langle item_1\rangle. This process preserves unprotected spaces within the \langle token list variable\rangle. Braced token groups are copied without reversing the order of tokens, but keep the outer set of braces. This is equivalent to a combination of an assignment and \tl_reverse:V. See also \tl_reverse_items:n for improved performance.

\tl_reverse:n \{\langle token list\rangle\}
Reverses the order of the \langle items\rangle in the \langle token list\rangle, so that \langle item_1\rangle\langle item_2\rangle\langle item_3\rangle \ldots \langle item_n\rangle becomes \langle \{item_n\}\rangle \ldots \langle \{item_3\}\rangle\langle \{item_2\}\rangle\langle \{item_1\}\rangle. This process removes any unprotected space within the \langle token list\rangle. Braced token groups are copied without reversing the order of tokens, and keep the outer set of braces. Items which are initially not braced are copied with braces in the result. In cases where preserving spaces is important, consider the slower function \tl_reverse:n.

\TeXhackers note: The result is returned within \unexpanded, which means that the token list does not expand further when appearing in an \e-type or \x-type argument expansion.
\tl_trim_spaces:n * \tl_trim_spaces:n \{(token list)\}

Removes any leading and trailing explicit space characters (explicit tokens with character code 32 and category code 10) from the \{token list\} and leaves the result in the input stream.

TeXhackers note: The result is returned within \unexpanded, which means that the token list does not expand further when appearing in an e-type or x-type argument expansion.

\tl_trim_spaces_apply:nN * \tl_trim_spaces_apply:nN \{(token list)\} \{function\}

Removes any leading and trailing explicit space characters (explicit tokens with character code 32 and category code 10) from the \{token list\} and passes the result to the \{function\} as an n-type argument.

\tl_trim_spaces:N \tl_trim_spaces:c \tl_gtrim_spaces:N \tl_gtrim_spaces:c

New: 2011-07-09

Sets the \{tl var\} to contain the result of removing any leading and trailing explicit space characters (explicit tokens with character code 32 and category code 10) from its contents.

15.4.3 Viewing token lists

\tl_show:N \tl_show:c

Displays the content of the \{tl var\} on the terminal.

TeXhackers note: This is similar to the \TeX primitive \show, wrapped to a fixed number of characters per line.

\tl_log:N \tl_log:c

Writes the content of the \{tl var\} in the log file. See also \tl_show:N which displays the result in the terminal.

\tl_log:n \tl_log:e

Writes the \{token list\} in the log file. See also \tl_show:n which displays the result in the terminal.
15.5 Manipulating items in token lists

15.5.1 Mapping over token lists

All mappings are done at the current group level, \(i.e. \) any local assignments made by the \(\langle \text{function} \rangle \) or \(\langle \text{code} \rangle \) discussed below remain in effect after the loop.

\[
\text{\texttt{tl_map_function:NN}} \star
\]
\[
\text{\texttt{tl_map_function:cN}} \star
\]

Updated: 2012-06-29

Applications \(\langle \text{function} \rangle \) to every \(\langle \text{item} \rangle \) in the \(\langle \text{tl var} \rangle \). The \(\langle \text{function} \rangle \) receives one argument for each iteration. This may be a number of tokens if the \(\langle \text{item} \rangle \) was stored within braces. Hence the \(\langle \text{function} \rangle \) should anticipate receiving \(n \)-type arguments. See also \texttt{tl_map_function:nN}.

\[
\text{\texttt{tl_map_function:nN}} \star
\]
\[
\text{\texttt{tl_map_function:cN}} \star
\]

Updated: 2012-06-29

Applications \(\langle \text{function} \rangle \) to every \(\langle \text{item} \rangle \) in the \(\langle \text{token list} \rangle \). The \(\langle \text{function} \rangle \) receives one argument for each iteration. This may be a number of tokens if the \(\langle \text{item} \rangle \) was stored within braces. Hence the \(\langle \text{function} \rangle \) should anticipate receiving \(n \)-type arguments. See also \texttt{tl_map_function:NN}.

\[
\text{\texttt{tl_map_inline:Nn}} \star
\]
\[
\text{\texttt{tl_map_inline:cNn}} \star
\]

Updated: 2012-06-29

Applies the \(\langle \text{inline function} \rangle \) to every \(\langle \text{item} \rangle \) stored within the \(\langle \text{tl var} \rangle \). The \(\langle \text{inline function} \rangle \) should consist of code which receives the \(\langle \text{item} \rangle \) as \(\#1 \). See also \texttt{tl_map_function:NN}.

\[
\text{\texttt{tl_map_inline:nn}} \star
\]
\[
\text{\texttt{tl_map_inline:cn}} \star
\]

Updated: 2012-06-29

Applies the \(\langle \text{inline function} \rangle \) to every \(\langle \text{item} \rangle \) stored within the \(\langle \text{token list} \rangle \). The \(\langle \text{inline function} \rangle \) should consist of code which receives the \(\langle \text{item} \rangle \) as \(\#1 \). See also \texttt{tl_map_function:nN}.

\[
\text{\texttt{tl_map_tokens:Nn}} \star
\]
\[
\text{\texttt{tl_map_tokens:cn}} \star
\]
\[
\text{\texttt{tl_map_tokens:nn}} \star
\]

New: 2019-09-02

Analogue of \texttt{tl_map_function:NN} which maps several tokens instead of a single function. The \(\langle \text{code} \rangle \) receives each \(\langle \text{item} \rangle \) in the \(\langle \text{tl var} \rangle \) or in \(\langle \text{tokens} \rangle \) as a trailing brace group. For instance,

\[
\text{\texttt{\tl_map_tokens:Nn}} \ \l_my_tl \ \{ \ \texttt{\prg_replicate:nn} \ \{ 2 \} \}
\]

expands to twice each \(\langle \text{item} \rangle \) in the \(\langle \text{tl var} \rangle \): for each \(\langle \text{item} \rangle \) in \(\l_my_tl \) the function \texttt{\prg_replicate:nn} receives 2 and \(\langle \text{item} \rangle \) as its two arguments. The function \texttt{\tl_map_inline:Nn} is typically faster but is not expandable.

\[
\text{\texttt{tl_map_variable:NNn}} \star
\]
\[
\text{\texttt{tl_map_variable:cnN}} \star
\]
\[
\text{\texttt{tl_map_variable:nnN}} \star
\]

Updated: 2012-06-29

Stores each \(\langle \text{item} \rangle \) of the \(\langle \text{tl var} \rangle \) in turn in the (token list) \(\langle \text{variable} \rangle \) and applies the \(\langle \text{code} \rangle \). The \(\langle \text{code} \rangle \) will usually make use of the \(\langle \text{variable} \rangle \), but this is not enforced. The assignments to the \(\langle \text{variable} \rangle \) are local. Its value after the loop is the last \(\langle \text{item} \rangle \) in the \(\langle \text{tl var} \rangle \), or its original value if the \(\langle \text{tl var} \rangle \) is blank. See also \texttt{tl_map_inline:Nn}.
\tl_map_variable:nNn \tl_map_variable:nNn \{(token list}\} \{variable\} \{(code)\}

Stores each \item of the \token list in turn in the \token list \variable and applies the \code. The \code will usually make use of the \variable, but this is not enforced. The assignments to the \variable are local. Its value after the loop is the last \item in the \tl var, or its original value if the \tl var is blank. See also \tl_map_inline:nn.

\tl_map_break: \tl_map_break:

Used to terminate a \tl_map... function before all entries in the \token list variable have been processed. This normally takes place within a conditional statement, for example

\tl_map_inline:Nn \l_my_tl
{\
 \str_if_eq:nnT \{ #1 \} \{ bingo \} \{ \tl_map_break: \}
 % Do something useful
}

See also \tl_map_break:n. Use outside of a \tl_map... scenario leads to low level \TeX errors.

\TeXhackers note: When the mapping is broken, additional tokens may be inserted before the \tokens are inserted into the input stream. This depends on the design of the mapping function.

\tl_map_break:n \tl_map_break:n \{(code)\}

Used to terminate a \tl_map... function before all entries in the \token list variable have been processed, inserting the \code after the mapping has ended. This normally takes place within a conditional statement, for example

\tl_map_inline:Nn \l_my_tl
{\
 \str_if_eq:nnT \{ #1 \} \{ bingo \}
 \{ \tl_map_break:n \{ <code> \} \}
 % Do something useful
}

Use outside of a \tl_map... scenario leads to low level \TeX errors.

\TeXhackers note: When the mapping is broken, additional tokens may be inserted before the \code is inserted into the input stream. This depends on the design of the mapping function.

15.5.2 Head and tail of token lists

Functions which deal with either only the very first item (balanced text or single normal token) in a token list, or the remaining tokens.
Leaves in the input stream the first \langle item \rangle in the \langle token list \rangle, discarding the rest of the \langle token list \rangle. All leading explicit space characters (explicit tokens with character code 32 and category code 10) are discarded; for example

\tl_head:n \{ abc \}

and

\tl_head:n \{ ~ abc \}

both leave a in the input stream. If the “head” is a brace group, rather than a single token, the braces are removed, and so

\tl_head:n \{ - \{ - ab \} c \}

yields \~ab. A blank \langle token list \rangle (see \tl_if_blank:nTF) results in \tl_head:n leaving nothing in the input stream.

TEXhackers note: The result is returned within \exp_not:n, which means that the token list does not expand further when appearing in an e-type or x-type argument expansion.

Discards all leading explicit space characters (explicit tokens with character code 32 and category code 10) and the first \langle item \rangle in the \langle token list \rangle, and leaves the remaining tokens in the input stream. Thus for example

\tl_tail:n \{ a - \{bc\} d \}

and

\tl_tail:n \{ - a - \{bc\} d \}

both leave \{bc\}d in the input stream. A blank \langle token list \rangle (see \tl_if_blank:nTF) results in \tl_tail:n leaving nothing in the input stream.

TEXhackers note: The result is returned within \exp_not:n, which means that the token list does not expand further when appearing in an e-type or x-type argument expansion.

If you wish to handle token lists where the first token may be a space, and this
needs to be treated as the head/tail, this can be accomplished using \tl_if_head_is_space:nTF, for example

\exp_last_unbraced:NNo
\cs_new:Npn _mypkg_gobble_space:w \c_space_tl { }
\cs_new:Npn \mypkg_tl_head_keep_space:n #1
 { \tl_if_head_is_space:nTF {#1}
 { ~ }
 { \tl_head:n {#1} } }
\cs_new:Npn \mypkg_tl_tail_keep_space:n #1
 { \tl_if_head_is_space:nTF {#1}
 { \exp_not:o { __mypkg_gobble_space:w #1 } }
 { \tl_tail:n {#1} } }

15.5.3 Items and ranges in token lists

\tl_item:nn \tl_item:Nn \tl_item:cn
\tl_rand_item:N \tl_rand_item:n \tl_rand_item:c \tl_rand_item:n

Indexing items in the \langle token list \rangle from 1 on the left, this function evaluates the \langle integer expression \rangle and leaves the appropriate item from the \langle token list \rangle in the input stream. If the \langle integer expression \rangle is negative, indexing occurs from the right of the token list, starting at \(-1\) for the right-most item. If the index is out of bounds, then the function expands to nothing.

\textbf{TeXhackers note:} The result is returned within the \texttt{\textbackslash unexpanded} primitive \texttt{\textbackslash exp_not:n}, which means that the \langle item \rangle does not expand further when appearing in an \texttt{e}-type or \texttt{x}-type argument expansion.

\tl_rand_item:N \tl_rand_item:n
\tl_rand_item:N \tl_rand_item:n

Selects a pseudo-random item of the \langle token list \rangle. If the \langle token list \rangle is blank, the result is empty. This is not available in older versions of \LaTeX{}.

\textbf{TeXhackers note:} The result is returned within the \texttt{\textbackslash unexpanded} primitive \texttt{\textbackslash exp_not:n}, which means that the \langle item \rangle does not expand further when appearing in an \texttt{e}-type or \texttt{x}-type argument expansion.
Leaves in the input stream the items from the \langle start index \rangle to the \langle end index \rangle inclusive. Spaces and braces are preserved between the items returned (but never at either end of the list). Here \langle start index \rangle and \langle end index \rangle should be \langle integer expressions \rangle. For describing in detail the functions’ behavior, let \(m \) and \(n \) be the start and end index respectively. If either is 0, the result is empty. A positive index means ‘start counting from the left end’, and a negative index means ‘from the right end’. Let \(l \) be the count of the token list.

The actual start point is determined as \(M = m \) if \(m > 0 \) and as \(M = l + m + 1 \) if \(m < 0 \). Similarly the actual end point is \(N = n \) if \(n > 0 \) and \(N = l + n + 1 \) if \(n < 0 \). If \(M > N \), the result is empty. Otherwise it consists of all items from position \(M \) to position \(N \) inclusive; for the purpose of this rule, we can imagine that the token list extends at infinity on either side, with void items at positions \(s \) for \(s \leq 0 \) or \(s > l \).

Spaces in between items in the actual range are preserved. Spaces at either end of the token list will be removed anyway (think to the token list being passed to \texttt{\tl_trim_spaces:n} to begin with.

Thus, with \(l = 7 \) as in the examples below, all of the following are equivalent and result in the whole token list

\begin{verbatim}
\tl_range:nnn { abcd-{e{}}fg } { 1 } { 7 }
\tl_range:nnn { abcd-{e{}}fg } { 1 } { 12 }
\tl_range:nnn { abcd-{e{}}fg } { -7 } { 7 }
\tl_range:nnn { abcd-{e{}}fg } { -12 } { 7 }
\end{verbatim}

Here are some more interesting examples. The calls

\begin{verbatim}
\iow_term:e { \tl_range:nnn { abcd-{e{}}fg } { 2 } { 5 } }
\iow_term:e { \tl_range:nnn { abcd-{e{}}fg } { 2 } { -3 } }
\iow_term:e { \tl_range:nnn { abcd-{e{}}fg } { -6 } { 5 } }
\iow_term:e { \tl_range:nnn { abcd-{e{}}fg } { -6 } { -3 } }
\end{verbatim}

are all equivalent and will print \texttt{bcd\{e\}} on the terminal; similarly

\begin{verbatim}
\iow_term:e { \tl_range:nnn { abcd-{e{}}fg } { 2 } { 5 } }
\iow_term:e { \tl_range:nnn { abcd-{e{}}fg } { 2 } { -3 } }
\iow_term:e { \tl_range:nnn { abcd-{e{}}fg } { -6 } { 5 } }
\iow_term:e { \tl_range:nnn { abcd-{e{}}fg } { -6 } { -3 } }
\end{verbatim}

are all equivalent and will print \texttt{bcd \{e\}} on the terminal (note the space in the middle).

To the contrary,

\begin{verbatim}
\tl_range:nnn { abcd-{e{}}f } { 2 } { 4 }
\end{verbatim}

will discard the space after ‘d’.

If we want to get the items from, say, the third to the last in a token list \texttt{<tl>}, the call is \texttt{\tl_range:nnn \{ <tl> \} \{ 3 \} \{ -1 \}}. Similarly, for discarding the last item, we can do \texttt{\tl_range:nnn \{ <tl> \} \{ 1 \} \{ -2 \}}.

\textbf{\TeXhackers note:} The result is returned within the \texttt{\unexpanded} primitive (\texttt{\exp_not:n}), which means that the \langle item \rangle does not expand further when appearing in an \texttt{e}-type or \texttt{x}-type argument expansion.
15.5.4 Sorting token lists

\tl_sort:Nn \tl_sort:Nn \tl_sort:cn \tl_gsort:Nn \tl_gsort:cn

Sorts the items in the \tl var according to the \comparison code, and assigns the result to \tl var. The details of sorting comparison are described in Section 6.1.

\tl_sort:nN \tl_sort:nN \tl_sort:cn \tl_gsort:nN \tl_gsort:cn

New: 2017-02-06

Sorts the items in the \token list, using the \conditional to compare items, and leaves the result in the input stream. The \conditional should have signature \texttt{:nnTF}, and return \texttt{true} if the two items being compared should be left in the same order, and \texttt{false} if the items should be swapped. The details of sorting comparison are described in Section 6.1.

\textbf{TeXhackers note:} The result is returned within \exp_not:n, which means that the token list does not expand further when appearing in an \texttt{e}-type or \texttt{x}-type argument expansion.

15.6 Manipulating tokens in token lists

15.6.1 Replacing tokens

Within token lists, replacement takes place at the top level: there is no recursion into brace groups (more precisely, within a group defined by a category code 1/2 pair).

\tl_replace_once:Nnn \tl_replace_once:cn \tl_greplace_once:Nnn \tl_greplace_once:cn

Replaces the first (leftmost) occurrence of \texttt{(old tokens)} in the \tl var with \texttt{(new tokens)}. \texttt{(Old tokens)} cannot contain \texttt{,} or \texttt{#} (more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_replace_all:Nnn \tl_replace_all:cn \tl_greplace_all:Nnn \tl_greplace_all:cn

Replaces all occurrences of \texttt{(old tokens)} in the \tl var with \texttt{(new tokens)}. \texttt{(Old tokens)} cannot contain \texttt{,} or \texttt{#} (more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function operates from left to right, the pattern \texttt{(old tokens)} may remain after the replacement (see \tl_remove_all:Nn for an example).
\tl_remove_once:Nn \tl_remove_once:NV|Ne|cn|cV|ce
\tl_gremove_once:Nn \tl_gremove_once:NV|Ne|cn|cV|ce

Updated: 2011-08-11

Removes the first (leftmost) occurrence of \langle tokens \rangle from the \langle tl var \rangle. \langle Tokens \rangle cannot contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_remove_all:Nn \tl_remove_all:NV|Ne|cn|cV|ce
\tl_gremove_all:Nn \tl_gremove_all:NV|Ne|cn|cV|ce

Updated: 2011-08-11

Removes all occurrences of \langle tokens \rangle from the \langle tl var \rangle. \langle Tokens \rangle cannot contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function operates from left to right, the pattern \langle tokens \rangle may remain after the removal, for instance,

\tl_set:Nn \l_tmpa_tl {abbccd} \tl_remove_all:NN \l_tmpa_tl {bc}

results in \l_tmpa_tl containing abcd.

15.6.2 Reassigning category codes

These functions allow the rescanning of tokens: re-apply \TeX{}’s tokenization process to apply category codes different from those in force when the tokens were absorbed. Whilst this functionality is supported, it is often preferable to find alternative approaches to achieving outcomes rather than rescanning tokens (for example construction of token lists token-by-token with intervening category code changes or using \char_generate:nn).
Sets \(\{ \text{tl var} \} \) to contain \(\{ \text{tokens} \} \), applying the category code régime specified in the \(\langle \text{setup} \rangle \) before carrying out the assignment. (Category codes applied to tokens not explicitly covered by the \(\langle \text{setup} \rangle \) are those in force at the point of use of \(\backslash \text{tl_set_rescan:Nnn} \).) This allows the \(\langle \text{tl var} \rangle \) to contain material with category codes other than those that apply when \(\langle \text{tokens} \rangle \) are absorbed. The \(\langle \text{setup} \rangle \) is run within a group and may contain any valid input, although only changes in category codes, such as uses of \(\backslash \text{ctab_select:N} \), are relevant. See also \(\backslash \text{tl_set_rescan:Nnn} \).

\textbf{\TeX\hacknote}{:} The \(\langle \text{tokens} \rangle \) are first turned into a string (using \(\backslash \text{tl_to_str:n} \)). If the string contains one or more characters with character code \(\backslash \text{newlinechar} \) (set equal to \(\backslash \text{endlinechar} \) unless that is equal to 32, before the user \(\langle \text{setup} \rangle \)), then it is split into lines at these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise, spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the middle of a line read from a file.

\textbf{\TeX\hacknote}{:} Rescans \(\langle \text{tokens} \rangle \) applying the category code régime specified in the \(\langle \text{setup} \rangle \), and leaves the resulting tokens in the input stream. (Category codes applied to tokens not explicitly covered by the \(\langle \text{setup} \rangle \) are those in force at the point of use of \(\backslash \text{tl_rescan:nV} \).) The \(\langle \text{setup} \rangle \) is run within a group and may contain any valid input, although only changes in category codes, such as uses of \(\backslash \text{ctab_select:N} \), are relevant. See also \(\backslash \text{tl_set_rescan:Nnn} \), which is more robust than using \(\backslash \text{tl_set:Nn} \) in the \(\langle \text{tokens} \rangle \) argument of \(\backslash \text{tl_rescan:nV} \).

\textbf{\TeX\hacknote}{:} The \(\langle \text{tokens} \rangle \) are first turned into a string (using \(\backslash \text{tl_to_str:n} \)). If the string contains one or more characters with character code \(\backslash \text{newlinechar} \) (set equal to \(\backslash \text{endlinechar} \) unless that is equal to 32, before the user \(\langle \text{setup} \rangle \)), then it is split into lines at these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise, spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the middle of a line read from a file.

Contrarily to the \(\backslash \text{scantokens} \) \TeX{} primitive, \(\backslash \text{tl_rescan:nV} \) tokenizes the whole string in the same category code régime rather than one token at a time, so that directives such as \(\verb{} \) that rely on changing category codes will not function properly.

\section*{15.7 Constant token lists}

\begin{longtable}{ll}
\hline
\texttt{c_empty_tl} & Constant that is always empty. \\
\end{longtable}
\c_novalue_tl A marker for the absence of an argument. This constant \texttt{tl} can safely be typeset (cf. \texttt{\textbackslash q-nil}), with the result being \texttt{-NoValue-}. It is important to note that \texttt{\c_novalue_tl} is constructed such that it will \textit{not} match the simple text input \texttt{-NoValue-}, \textit{i.e.} that

\begin{verbatim}
\tl_if_eq:NnTF \c_novalue_tl \{ -NoValue- }
\end{verbatim}

is logically \texttt{false}. The \texttt{\c_novalue_tl} marker is intended for use in creating document-level interfaces, where it serves as an indicator that an (optional) argument was omitted. In particular, it is distinct from a simple empty \texttt{tl}.

\c_space_tl An explicit space character contained in a token list (compare this with \texttt{\c_space_token}). For use where an explicit space is required.

15.8 Scratch token lists

\l_tmpa_tl \l_tmpb_tl Scratch token lists for local assignment. These are never used by the kernel code, and so are safe for use with any \texttt{\LaTeX3}-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_tl \g_tmpb_tl Scratch token lists for global assignment. These are never used by the kernel code, and so are safe for use with any \texttt{\LaTeX3}-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
Chapter 16

The \l3tl-build package

Piecewise tl constructions

16.1 Constructing $\langle \text{tl var} \rangle$ by accumulation

When creating a $\langle \text{tl var} \rangle$ by accumulation of many tokens, the performance available using a combination of \tl_set:Nn and \tl_put_right:Nn or similar begins to become an issue. To address this, a set of functions are available to “build” a $\langle \text{tl var} \rangle$. The performance of this approach is much more efficient than the standard \tl_put_right:Nn, but the constructed token list cannot be accessed during construction other than by methods provided in this section.

\tl_build_begin:N
\tl_build_gbegin:N

Clears the $\langle \text{tl var} \rangle$ and sets it up to support other \tl_build... functions. Until \tl_build_end:N $\langle \text{tl var} \rangle$ is called, applying any function from \l3tl other than \tl_build... will lead to incorrect results. The begin and gbegin functions must be used for local and global $\langle \text{tl var} \rangle$ respectively.

\tl_build_put_left:Nn
\tl_build_put_left:Ne
\tl_build_gput_left:Nn
\tl_build_gput_left:Ne
\tl_build_put_right:Nn
\tl_build_gput_right:Nn

Adds $\langle \text{tokens} \rangle$ to the left or right side of the current contents of $\langle \text{tl var} \rangle$. The $\langle \text{tl var} \rangle$ must have been set up with \tl_build_begin:N or \tl_build_gbegin:N. The put and gput functions must be used for local and global $\langle \text{tl var} \rangle$ respectively. The right functions are about twice faster than the left functions.

\tl_build_end:N
\tl_build_gend:N

Gets the contents of $\langle \text{tl var} \rangle$ and stores that into the $\langle \text{tl var} \rangle$ using \tl_set:Nn or \tl_gset:Nn. The $\langle \text{tl var} \rangle$ must have been set up with \tl_build_begin:N or \tl_build_gbegin:N. The end and gend functions must be used for local and global $\langle \text{tl var} \rangle$ respectively. These functions completely remove the setup code that enabled $\langle \text{tl var} \rangle$ to be used for other \tl_build... functions. After the action of end/gend, the $\langle \text{tl var} \rangle$ may be manipulated using standard tl functions.
Chapter 17

The \texttt{l3str} package

Strings

\TeX\ associates each character with a category code: as such, there is no concept of a “string” as commonly understood in many other programming languages. However, there are places where we wish to manipulate token lists while in some sense “ignoring” category codes: this is done by treating token lists as strings in a \TeX\ sense.

A \TeX\ string (and thus an \texttt{expl3} string) is a series of characters which have category code 12 (“other”) with the exception of space characters which have category code 10 (“space”). Thus at a technical level, a \TeX\ string is a token list with the appropriate category codes. In this documentation, these are simply referred to as strings.

String variables are simply specialised token lists, but by convention should be named with the suffix \texttt{str}. Such variables should contain characters with category code 12 (other), except spaces, which have category code 10 (blank space). All the functions in this module which accept a token list argument first convert it to a string using \texttt{\tl_to_str:n} for internal processing, and do not treat a token list or the corresponding string representation differently.

As a string is a subset of the more general token list, it is sometimes unclear when one should be used over the other. Use a string variable for data that isn’t primarily intended for typesetting and for which a level of protection from unwanted expansion is suitable. This data type simplifies comparison of variables since there are no concerns about expansion of their contents.

The functions \texttt{\cs_to_str:N}, \texttt{\tl_to_str:n}, \texttt{\tl_to_str:N} and \texttt{\token_to_str:N} (and variants) generate strings from the appropriate input: these are documented in \texttt{l3basics}, \texttt{l3tl} and \texttt{l3token}, respectively.

Most expandable functions in this module come in three flavours:

- \texttt{\str___:N}, which expect a token list or string variable as their argument;

- \texttt{\str___:n}, taking any token list (or string) as an argument;

- \texttt{\str___:ignore__spaces:n}, which ignores any space encountered during the operation: these functions are typically faster than those which take care of escaping spaces appropriately.

127
17.1 Creating and initialising string variables

\texttt{\textbackslash str_new:N} ⟨str var⟩

Creates a new ⟨str var⟩ or raises an error if the name is already taken. The declaration is global. The ⟨str var⟩ is initially empty.

\texttt{\textbackslash str_const:Nn} ⟨str var⟩ {⟨token list⟩}

Creates a new constant ⟨str var⟩ or raises an error if the name is already taken. The value of the ⟨str var⟩ is set globally to the ⟨token list⟩, converted to a string.

\texttt{\textbackslash str_clear:N} ⟨str var⟩
\texttt{\textbackslash str_clear:c} ⟨str var⟩
\texttt{\textbackslash str_gclear:N} ⟨str var⟩
\texttt{\textbackslash str_gclear:c}

Clears the content of the ⟨str var⟩.

\texttt{\textbackslash str_clear_new:N} ⟨str var⟩
\texttt{\textbackslash str_clear_new:c} ⟨str var⟩
\texttt{\textbackslash str_gclear_new:N} ⟨str var⟩
\texttt{\textbackslash str_gclear_new:c}

Ensures that the ⟨str var⟩ exists globally by applying \texttt{\textbackslash str_new:N} if necessary, then applies \texttt{\textbackslash str_gclear:N} to leave the ⟨str var⟩ empty.

\texttt{\textbackslash str_set_eq:NN} ⟨str var⟩ ⟨str var⟩
\texttt{\textbackslash str_set_eq:cN} ⟨str var⟩
\texttt{\textbackslash str_gset_eq:NN} ⟨str var⟩ ⟨str var⟩
\texttt{\textbackslash str_gset_eq:cN}

Sets the content of ⟨str var⟩ equal to that of ⟨str var⟩.

\texttt{\textbackslash str_concat:NNN} ⟨str var⟩ ⟨str var⟩ ⟨str var⟩
\texttt{\textbackslash str_concat:ccc} ⟨str var⟩ ⟨str var⟩
\texttt{\textbackslash str_gconcat:NNN} ⟨str var⟩ ⟨str var⟩ ⟨str var⟩
\texttt{\textbackslash str_gconcat:ccc}

Concatenates the content of ⟨str var⟩ and ⟨str var⟩ together and saves the result in ⟨str var⟩. The ⟨str var⟩ is placed at the left side of the new string variable. The ⟨str var⟩ and ⟨str var⟩ must indeed be strings, as this function does not convert their contents to a string.

\texttt{\textbackslash str_if_exist:p:N} ⟨str var⟩
\texttt{\textbackslash str_if_exist:p:c} *
\texttt{\textbackslash str_if_exist:NNT} ⟨str var⟩
\texttt{\textbackslash str_if_exist:NTF} ⟨str var⟩
\texttt{\textbackslash str_if_exist:c} *

Tests whether the ⟨str var⟩ is currently defined. This does not check that the ⟨str var⟩ really is a string.
17.2 Adding data to string variables

\str_set:Nn \str_set: {token list}\n\str_set:NV \str_set:N \str_set:NV \str_set:Ne \str_set:cn \str_set:cV \str_set:ce

Converts the (token list) to a (string), and stores the result in (str var).

\str_gset:Nn \str_gset: {token list}\n\str_gset:NV \str_gset:N \str_gset:NV \str_gset:Ne \str_gset:cn \str_gset:cV \str_gset:ce

New: 2015-09-18
Updated: 2018-07-28

\str_put_left:Nn \str_put_left: {token list}\n\str_put_left:NV \str_put_left:N \str_put_left:NV \str_put_left:Ne \str_put_left:cn \str_put_left:cV \str_put_left:ce

Converts the (token list) to a (string), and prepends the result to (str var). The current contents of the (str var) are not automatically converted to a string.

\str_put_right:Nn \str_put_right: {token list}\n\str_put_right:NV \str_put_right:N \str_put_right:NV \str_put_right:Ne \str_put_right:cn \str_put_right:cV \str_put_right:ce

Converts the (token list) to a (string), and appends the result to (str var). The current contents of the (str var) are not automatically converted to a string.

17.3 String conditionals

\str_if_empty_p:N \str_if_empty:NTF \str_if_empty_p:c \str_if_empty:N \str_if_empty:n \str_if_empty:n TF

Tests if the (string variable) is entirely empty (i.e. contains no characters at all).

\str_if_eq_p:NN \str_if_eq:NNTF \str_if_eq:p:NN \str_if_eq:p:NN TF

Compares the content of two (str variables) and is logically true if the two contain the same characters in the same order. See \tl_if_eq:NNTF to compare tokens (including their category codes) rather than characters.
\str_if_eq_p:nn * \str_if_eq_p:nn \{\textit{tl}_1\} \{\textit{tl}_2\}
\str_if_eq_p:\{\textit{Vn}|\textit{on}|\textit{no}|\textit{nV}|\textit{VV}|\textit{vn}|\textit{nv}|\textit{ee}\} * \str_if_eq:nnTF \{\textit{tl}_1\} \{\textit{tl}_2\} \{\text{true code}\} \{\text{false code}\}
\str_if_eq:nnTF *
\str_if_eq:\{\textit{Vn}|\textit{on}|\textit{no}|\textit{nV}|\textit{VV}|\textit{vn}|\textit{nv}|\textit{ee}\} \str_if_eq_p:

Compares the two \textit{(token lists)} on a character by character basis (namely after converting them to strings), and is \textit{true} if the two \textit{(strings)} contain the same characters in the same order. Thus for example

\texttt{\str_if_eq_p:no \{ abc \} \{ \tl_to_str:n \{ abc \} \}}

is logically \textit{true}. See \texttt{\tl_if_eq:nnTF} to compare tokens (including their category codes) rather than characters.

\str_if_in:NnTF \str_if_in:nnTF
\str_if_in:nnTF

Converts the \textit{(token list)} to a \textit{(string)} and tests if that \textit{(string)} is found in the content of the \textit{(str var)}.

\str_if_in:nnTF
\str_if_in:nnTF

Converts both \textit{(token lists)} to \textit{(strings)} and tests whether \textit{(string)} \textit{2} is found inside \textit{(string)} \textit{1}.

\str_case:nn * \str_case:nnTF \{\textit{test string}\}
\str_case:\{\textit{Vn}|\textit{on}|\textit{en}|\textit{nV}|\textit{nv}\} * \{
\str_case:nnTF * \{\textit{string case}_1\} \{\text{code case}_1\}
\str_case:nnTF * \{\textit{string case}_2\} \{\text{code case}_2\}
\str_case:nn * \ldots
\str_case:nnTF * \{\textit{string case}_n\} \{\text{code case}_n\}

Compares the \textit{(test string)} in turn with each of the \textit{(string case)} \textit{s} (all token lists are converted to strings). If the two are equal (as described for \texttt{\str_if_eq:nnTF}) then the associated \textit{(code)} is left in the input stream and other cases are discarded. If any of the cases are matched, the \textit{(true code)} is also inserted into the input stream (after the code for the appropriate case), while if none match then the \textit{(false code)} is inserted. The function \texttt{\str_case:nn}, which does nothing if there is no match, is also available.

This set of functions performs no expansion on each \textit{(string case)} argument, so any variable in there will be compared as a string. If expansion is needed in the \textit{(string case)} \textit{s}, then \texttt{\str_case_e:nn(TF)} should be used instead.
\texttt{\str_case_e:nn} * \texttt{\str_case_e:nnTF} \{\langle\text{test string}\rangle\}
\texttt{\str_case_e:en} * \{ \{\langle\text{string case}\rangle\} \{\langle\text{code case}\rangle\} \}
\texttt{\str_case_e:nnTF} * \{ \{\langle\text{string case}\rangle\} \{\langle\text{code case}\rangle\} \}
\texttt{\str_case_e:en} * \{ \{\langle\text{string case}\rangle\} \{\langle\text{code case}\rangle\} \}

\begin{itemize}
\item \texttt{\str_case_e:nn(TF)}, the \langle\text{test string}\rangle is expanded in each comparison, and must always yield the same result: for example, random numbers must not be used within this string.
\end{itemize}

\texttt{\str_compare_p:nNn} \{\langle\text{token list}\rangle\} \{\langle\text{relation}\rangle\} \{\langle\text{token list}\rangle\}
\texttt{\str_compare:nNnTF} \{\langle\text{token list}\rangle\} \{\langle\text{relation}\rangle\} \{\langle\text{token list}\rangle\} \{\langle\text{true code}\rangle\} \{\langle\text{false code}\rangle\}

\begin{itemize}
\item for \texttt{<}, if the first string is earlier than the second in lexicographic order;
\item for \texttt{=}, if the two strings have exactly the same characters;
\item for \texttt{>}, if the first string is later than the second in lexicographic order.
\end{itemize}

Thus for example the following is logically \texttt{true}:

\texttt{\str_compare_p:nNn } \{a\} \texttt{<} \{abc\}

\texttt{\TeX} hackers note: This is a wrapper around the \TeX{} primitive \texttt{(pdf)strcmp}. It is meant for programming and not for sorting textual contents, as it simply considers character codes and not more elaborate considerations of grapheme clusters, locale, etc.

17.4 Mapping over strings

All mappings are done at the current group level, \emph{i.e.} any local assignments made by the \langle\text{function}\rangle or \langle\text{code}\rangle discussed below remain in effect after the loop.

\texttt{\str_map_function:nN} * \texttt{\str_map_function:nN} \{\langle\text{token list}\rangle\} \{\langle\text{function}\rangle\}
\texttt{\str_map_function:NN} * \texttt{\str_map_function:NN} \{\langle\text{str var}\rangle\} \{\langle\text{function}\rangle\}
\texttt{\str_map_function:cN} * \texttt{\str_map_function:cN} \{\langle\text{character}\rangle\} \{\langle\text{function}\rangle\}

Converts the \langle\text{token list}\rangle to a \langle\text{string}\rangle then applies \langle\text{function}\rangle to every \langle\text{character}\rangle in the \langle\text{string}\rangle including spaces.
\str_map_inline:nn \str_map_inline:nn \{\text{token list}\} \{\text{inline function}\} \str_map_inline:NN \str_map_inline:Nn \str_map_inline:cn

Converts the \langle token list \rangle to a \langle string \rangle then applies the \langle inline function \rangle to every \langle character \rangle in the \langle str var \rangle including spaces. The \langle inline function \rangle should consist of code which receives the \langle character \rangle as \#1.

\str_map_tokens:nn \str_map_tokens:nn \star \str_map_tokens:NN \str_map_tokens:Nn \str_map_tokens:cn \star

Converts the \langle token list \rangle to a \langle string \rangle then applies \langle code \rangle to every \langle character \rangle in the \langle string \rangle including spaces. The \langle code \rangle receives each character as a trailing brace group. This is equivalent to \str_map_function:nN if the \langle code \rangle consists of a single function.

\str_map_variable:nNn \str_map_variable:nNn \{\text{token list}\} \{\text{variable}\} \{\text{code}\} \str_map_variable:NNn \str_map_variable:Nn \str_map_variable:cnN

Converts the \langle token list \rangle to a \langle string \rangle then stores each \langle character \rangle in the \langle string \rangle (including spaces) in turn in the \langle string or token list \rangle \langle variable \rangle and applies the \langle code \rangle. The \langle code \rangle will usually make use of the \langle variable \rangle, but this is not enforced. The assignments to the \langle variable \rangle are local. Its value after the loop is the last \langle character \rangle in the \langle string \rangle, or its original value if the \langle string \rangle is empty. See also \str_map_inline:Nn.

\str_map_break: \star \str_map_break:

Used to terminate a \str_map_... function before all characters in the \langle string \rangle have been processed. This normally takes place within a conditional statement, for example

\str_map_inline:Nn \l_\text{my_str}
\{ \str_if_eq:nnT \{ \#1 \} \{ \text{bingo} \} \{ \str_map_break: \} % Do something useful \}

See also \str_map_break:n. Use outside of a \str_map_... scenario leads to low level \TeX errors.

\textbf{\TeXhackers note}: When the mapping is broken, additional tokens may be inserted before continuing with the code that follows the loop. This depends on the design of the mapping function.
\str_map_break:n \str_map_break:n {⟨code⟩}

Used to terminate a \str_map... function before all characters in the ⟨string⟩ have been processed, inserting the ⟨code⟩ after the mapping has ended. This normally takes place within a conditional statement, for example

\str_map_inline:Nn \l_my_str
{\str_if_eq:nnT { #1 } { bingo } { \str_map_break:n {⟨code⟩} }
% Do something useful
}

Use outside of a \str_map... scenario leads to low level \TeX{} errors.

\TeXhackers{} note: When the mapping is broken, additional tokens may be inserted before the ⟨code⟩ is inserted into the input stream. This depends on the design of the mapping function.

17.5 Working with the content of strings

\str_use:N \str_use:N ⟨str var⟩

Recovers the content of a ⟨str var⟩ and places it directly in the input stream. An error is raised if the variable does not exist or if it is invalid. Note that it is possible to use a ⟨str⟩ directly without an accessor function.

\str_count:n \str_count:n ⟨token list⟩
\str_count:c \str_count:c ⟨token list⟩
\str_count:n \str_count:n ⟨token list⟩
\str_count_ignore_spaces:n \str_count_ignore_spaces:n ⟨token list⟩

Leaves in the input stream the number of characters in the string representation of ⟨token list⟩, as an integer denotation. The functions differ in their treatment of spaces. In the case of \str_count:n and \str_count:n, all characters including spaces are counted. The \str_count_ignore_spaces:n function leaves the number of non-space characters in the input stream.

\str_count_spaces:n \str_count_spaces:n ⟨token list⟩
\str_count_spaces:c \str_count_spaces:c ⟨token list⟩
\str_count_spaces:n \str_count_spaces:n ⟨token list⟩

Leaves in the input stream the number of space characters in the string representation of ⟨token list⟩, as an integer denotation. Of course, this function has no _ignore_spaces variant.
\str_head:N \str_head:c \str_head:n \str_head_ignore_spaces:n

New: 2015-09-18

Converts the ⟨token list⟩ into a ⟨string⟩. The first character in the ⟨string⟩ is then left in
the input stream, with category code “other”. The functions differ if the first character is a
space: \str_head:N and \str_head:n return a space token with category code 10 (blank
space), while the \str_head_ignore_spaces:n function ignores this space character and
leaves the first non-space character in the input stream. If the ⟨string⟩ is empty (or only
contains spaces in the case of the _ignore_spaces function), then nothing is left on the
input stream.

\str_tail:N \str_tail:c \str_tail:n \str_tail_ignore_spaces:n

New: 2015-09-18

Converts the ⟨token list⟩ to a ⟨string⟩, removes the first character, and leaves the remain-
ing characters (if any) in the input stream, with category codes 12 and 10 (for spaces).
The functions differ in the case where the first character is a space: \str_tail:N and
\str_tail:n only trim that space, while \str_tail_ignore_spaces:n removes the first
non-space character and any space before it. If the ⟨token list⟩ is empty (or blank in the
case of the _ignore_spaces variant), then nothing is left on the input stream.

\str_item:Nn \str_item:nn \str_item_ignore_spaces:nn

Rev: 2015-09-18

Converts the ⟨token list⟩ to a ⟨string⟩, and leaves in the input stream the character
in position ⟨integer expression⟩ of the ⟨string⟩, starting at 1 for the first (left-most)
character. In the case of \str_item:Nn and \str_item:nn, all characters including
spaces are taken into account. The \str_item_ignore_spaces:nn function skips spaces
when counting characters. If the ⟨integer expression⟩ is negative, characters are counted
from the end of the ⟨string⟩. Hence, −1 is the right-most character, etc.
\str_range:nnn * \str_range:nnn \{token list\} \{start index\} \{end index\}
\str_range:nnn *
\str_range:nnn *
\str_range_ignore_spaces:nnn *

New: 2015-09-18

Converts the \{token list\} to a \{string\}, and leaves in the input stream the characters from the \{start index\} to the \{end index\} inclusive. Spaces are preserved and counted as items (contrast this with \tl_range:nnn where spaces are not counted as items and are possibly discarded from the output).

Here \{start index\} and \{end index\} should be integer denotations. For describing in detail the functions’ behavior, let \(m\) and \(n\) be the start and end index respectively. If either is 0, the result is empty. A positive index means ‘start counting from the left end’, a negative index means ‘start counting from the right end’. Let \(l\) be the count of the token list.

The actual start point is determined as \(M = m\) if \(m > 0\) and as \(M = l + m + 1\) if \(m < 0\). Similarly the actual end point is \(N = n\) if \(n > 0\) and \(N = l + n + 1\) if \(n < 0\). If \(M > N\), the result is empty. Otherwise it consists of all items from position \(M\) to position \(N\) inclusive; for the purpose of this rule, we can imagine that the token list extends at infinity on either side, with void items at positions \(s\) for \(s \leq 0\) or \(s > l\). For instance,

\begin{verbatim}
\io_term:e \{ \str_range:nnn \{ abcdef \} { 2 } { 5 } \}
\io_term:e \{ \str_range:nnn \{ abcdef \} { -4 } { -1 } \}
\io_term:e \{ \str_range:nnn \{ abcdef \} { -2 } { -1 } \}
\io_term:e \{ \str_range:nnn \{ abcdef \} { 0 } { -1 } \}
\end{verbatim}

prints bcde, cdef, ef, and an empty line to the terminal. The \{start index\} must always be smaller than or equal to the \{end index\}: if this is not the case then no output is generated. Thus

\begin{verbatim}
\io_term:e \{ \str_range:nnn \{ abcdef \} { 5 } { 2 } \}
\io_term:e \{ \str_range:nnn \{ abcdef \} { -1 } { -4 } \}
\end{verbatim}

both yield empty strings.

The behavior of \str_range_ignore_spaces:nnn is similar, but spaces are removed before starting the job. The input

\begin{verbatim}
\io_term:e \{ \str_range:nnn \{ abcdefg \} { 2 } { 5 } \}
\io_term:e \{ \str_range:nnn \{ abcdefg \} { 2 } { -3 } \}
\io_term:e \{ \str_range:nnn \{ abcdefg \} { -6 } { 5 } \}
\io_term:e \{ \str_range:nnn \{ abcdefg \} { -6 } { -3 } \}
\io_term:e \{ \str_range:nnn \{ abc-efg \} { 2 } { 5 } \}
\io_term:e \{ \str_range:nnn \{ abc-efg \} { 2 } { -3 } \}
\io_term:e \{ \str_range:nnn \{ abc-efg \} { -6 } { 5 } \}
\io_term:e \{ \str_range:nnn \{ abc-efg \} { -6 } { -3 } \}
\io_term:e \{ \str_range_ignore_spaces:nnn \{ abcdefg \} { 2 } { 5 } \}
\io_term:e \{ \str_range_ignore_spaces:nnn \{ abcdefg \} { 2 } { -3 } \}
\io_term:e \{ \str_range_ignore_spaces:nnn \{ abcdefg \} { -6 } { 5 } \}
\io_term:e \{ \str_range_ignore_spaces:nnn \{ abcdefg \} { -6 } { -3 } \}
\end{verbatim}
will print four instances of bcde, four instances of bc e and eight instances of bcde.

17.6 Modifying string variables

\ior_term:e { \str_range_ignore_spaces:nnn { abcd-efg } { 2 } { 5 } }
\ior_term:e { \str_range_ignore_spaces:nnn { abcd-efg } { 2 } { -3 } }
\ior_term:e { \str_range_ignore_spaces:nnn { abcd-efg } { -6 } { 5 } }
\ior_term:e { \str_range_ignore_spaces:nnn { abcd-efg } { -6 } { -3 } }

\str_replace_once:Nnn \str_replace_once:cnn
\str_greplace_once:Nnn \str_greplace_once:cnn

\str_replace_once:Nn \str_replace_once:cn \str_gremove_once:Nn \str_gremove_once:cn

\str_replace_all:Nnn \str_replace_all:cnn \str_greplace_all:Nnn \str_greplace_all:cnn

\str_remove_once:Nn \str_remove_once:cn \str_gremove_once:Nn \str_gremove_once:cn

\str_remove_all:Nn \str_remove_all:cn \str_gremove_all:Nn \str_gremove_all:cn

\str_set:Nn \l_tmpa_str {abbccd} \str_remove_all:Nn \l_tmpa_str \{bc\}

results in \l_tmpa_str containing abcd.
17.7 String manipulation

\str_lowercase:n \str_uppercase:n
\str_lowercase:f \str_uppercase:f
\str_uppercase:n \str_uppercase:f

Converts the input \textit{tokens} to their string representation, as described for \texttt{\tl_to_str:n}, and then to the lower or upper case representation using a one-to-one mapping as described by the Unicode Consortium file UnicodeData.txt.

These functions are intended for case changing programmatic data in places where upper/lower case distinctions are meaningful. One example would be automatically generating a function name from user input where some case changing is needed. In this situation the input is programmatic, not textual, case does have meaning and a language-independent one-to-one mapping is appropriate. For example

\begin{verbatim}
\cs_new_protected:Npn \myfunc:nn #1#2
{\cs_set_protected:cpn
 {user
 \str_uppercase:f { \tl_head:n {#1} }
 \str_lowercase:f { \tl_tail:n {#1} }
 }
 { #2 }
}
\end{verbatim}

would be used to generate a function with an auto-generated name consisting of the upper case equivalent of the supplied name followed by the lower case equivalent of the rest of the input.

These functions should \textit{not} be used for

- Caseless comparisons: use \texttt{\str_casefold:n} for this situation (case folding is distinct from lower casing).

- Case changing text for typesetting: see the \texttt{\text_lowercase:n(n)}, \texttt{\text_uppercase:n(n)} and \texttt{\text_titlecase_(all|once):n(n)} functions which correctly deal with context-dependence and other factors appropriate to text case changing.
\str_casefold:n \{\langle tokens\rangle\}
\str_casefold:V

Converts the input \langle tokens\rangle to their string representation, as described for \tl_to_str:n, and then folds the case of the resulting \langle string\rangle to remove case information. The result of this process is left in the input stream.

String folding is a process used for material such as identifiers rather than for “text”. The folding provided by \str_casefold:n follows the mappings provided by the Unicode Consortium, who state:

Case folding is primarily used for caseless comparison of text, such as identifiers in a computer program, rather than actual text transformation. Case folding in Unicode is based on the lowercase mapping, but includes additional changes to the source text to help make it language-insensitive and consistent. As a result, case-folded text should be used solely for internal processing and generally should not be stored or displayed to the end user.

The folding approach implemented by \str_casefold:n follows the “full” scheme defined by the Unicode Consortium (e.g. SSfolds to SS). As case-folding is a language-insensitive process, there is no special treatment of Turkic input (i.e. I always folds to i and not to ı).

\str_mdfive_hash:n \{\langle tl\rangle\}
\str_mdfive_hash:e

Expands to the MD5 sum generated from the \langle tl\rangle, which is converted to a \langle string\rangle as described for \tl_to_str:n.

17.8 Viewing strings

\str_show:N \str_show:c \str_show:n

Displays the content of the \langle str var\rangle on the terminal.

\str_log:N \str_log:c \str_log:n

Writes the content of the \langle str var\rangle in the log file.
17.9 Constant strings

\c_\&str \c_\@str \c_\\str \c_\{str \c_\}str \c_\^str \c:_str \c_\$str \c_\#str \c_\%str \c_\~str \c__str \c_0str

New: 2015-09-19
Updated: 2020-12-22

\c_emptystr

New: 2023-12-07

17.10 Scratch strings

\l_\tmpa_str \l_\tmpb_str

Scratch strings for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_\tmpa_str \g_\tmpb_str

Scratch strings for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
Chapter 18

The \texttt{l3str-convert} package
String encoding conversions

18.1 Encoding and escaping schemes

Traditionally, string encodings only specify how strings of characters should be stored as bytes. However, the resulting lists of bytes are often to be used in contexts where only a restricted subset of bytes are permitted (e.g., PDF string objects, URLs). Hence, storing a string of characters is done in two steps.

• The code points (“character codes”) are expressed as bytes following a given “encoding”. This can be \texttt{utf-16}, \texttt{iso 8859-1}, \textit{etc.} See Table 1 for a list of supported encodings.6

• Bytes are translated to \TeX tokens through a given “escaping”. Those are defined for the most part by the \texttt{pdf} file format. See Table 2 for a list of escaping methods supported.6

6Encodings and escapings will be added as they are requested.
Table 1: Supported encodings. Non-alphanumeric characters are ignored, and capital letters are lower-cased before searching for the encoding in this list.

<table>
<thead>
<tr>
<th>Encoding</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>utf8</td>
<td>UTF-8</td>
</tr>
<tr>
<td>utf16</td>
<td>UTF-16, with byte-order mark</td>
</tr>
<tr>
<td>utf16be</td>
<td>UTF-16, big-endian</td>
</tr>
<tr>
<td>utf16le</td>
<td>UTF-16, little-endian</td>
</tr>
<tr>
<td>utf32</td>
<td>UTF-32, with byte-order mark</td>
</tr>
<tr>
<td>utf32be</td>
<td>UTF-32, big-endian</td>
</tr>
<tr>
<td>utf32le</td>
<td>UTF-32, little-endian</td>
</tr>
<tr>
<td>iso88591, latin1</td>
<td>ISO 8859-1</td>
</tr>
<tr>
<td>iso88592, latin2</td>
<td>ISO 8859-2</td>
</tr>
<tr>
<td>iso88593, latin3</td>
<td>ISO 8859-3</td>
</tr>
<tr>
<td>iso88594, latin4</td>
<td>ISO 8859-4</td>
</tr>
<tr>
<td>iso88595</td>
<td>ISO 8859-5</td>
</tr>
<tr>
<td>iso88596</td>
<td>ISO 8859-6</td>
</tr>
<tr>
<td>iso88597</td>
<td>ISO 8859-7</td>
</tr>
<tr>
<td>iso88598</td>
<td>ISO 8859-8</td>
</tr>
<tr>
<td>iso88599, latin5</td>
<td>ISO 8859-9</td>
</tr>
<tr>
<td>iso885910, latin6</td>
<td>ISO 8859-10</td>
</tr>
<tr>
<td>iso885911</td>
<td>ISO 8859-11</td>
</tr>
<tr>
<td>iso885913, latin7</td>
<td>ISO 8859-13</td>
</tr>
<tr>
<td>iso885914, latin8</td>
<td>ISO 8859-14</td>
</tr>
<tr>
<td>iso885915, latin9</td>
<td>ISO 8859-15</td>
</tr>
<tr>
<td>iso885916, latin10</td>
<td>ISO 8859-16</td>
</tr>
<tr>
<td>cplist</td>
<td>Comma-list of integers</td>
</tr>
<tr>
<td>⟨empty⟩</td>
<td>Native (Unicode) string</td>
</tr>
<tr>
<td>default</td>
<td>Like utf8 with 8-bit engines, and like native with unicode-engines</td>
</tr>
</tbody>
</table>

Table 2: Supported escapings. Non-alphanumeric characters are ignored, and capital letters are lower-cased before searching for the escaping in this list.

<table>
<thead>
<tr>
<th>Escaping</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes, or empty</td>
<td>Arbitrary bytes</td>
</tr>
<tr>
<td>hex, hexadecimal</td>
<td>Byte = two hexadecimal digits</td>
</tr>
<tr>
<td>name</td>
<td>See \pdfescapename</td>
</tr>
<tr>
<td>string</td>
<td>See \pdfescapestring</td>
</tr>
<tr>
<td>url</td>
<td>Encoding used in URLs</td>
</tr>
</tbody>
</table>
18.2 Conversion functions

\str_set_convert:Nnnn \str_set_convert:Nnnn (str var) \langle string \rangle \langle name 1 \rangle \langle name 2 \rangle

This function converts the \langle string \rangle from the encoding given by \langle name 1 \rangle to the encoding given by \langle name 2 \rangle, and stores the result in the \langle str var \rangle. Each \langle name \rangle can have the form \langle encoding \rangle or \langle encoding \rangle/\langle escaping \rangle, where the possible values of \langle encoding \rangle and \langle escaping \rangle are given in Tables 1 and 2, respectively. The default escaping is to input and output bytes directly. The special case of an empty \langle name \rangle indicates the use of “native” strings, 8-bit for pdfTeX, and Unicode strings for the other two engines.

For example,

\str_set_convert:Nnnn \l_foo_str { Hello! } { } { utf16/hex }

results in the variable \l_foo_str holding the string FEFF00480065006C006C006F0021. This is obtained by converting each character in the (native) string Hello! to the UTF-16 encoding, and expressing each byte as a pair of hexadecimal digits. Note the presence of a (big-endian) byte order mark "FEFF, which can be avoided by specifying the encoding utf16be/hex.

An error is raised if the \langle string \rangle is not valid according to the \langle escaping 1 \rangle and \langle encoding 1 \rangle, or if it cannot be reencoded in the \langle encoding 2 \rangle and \langle escaping 2 \rangle (for instance, if a character does not exist in the \langle encoding 2 \rangle). Erroneous input is replaced by the Unicode replacement character \#FFFD, and characters which cannot be reencoded are replaced by either the replacement character \#FFFD if it exists in the \langle encoding 2 \rangle, or an encoding-specific replacement character, or the question mark character.

\str_set_convert:NnnnTF \str_set_convert:NnnnTF (str var) \langle string \rangle \langle name 1 \rangle \langle name 2 \rangle \langle true code \rangle \langle false code \rangle

As \str_set_convert:Nnnn, converts the \langle string \rangle from the encoding given by \langle name 1 \rangle to the encoding given by \langle name 2 \rangle, and assigns the result to \langle str var \rangle. Contrarily to \str_set_convert:Nnnn, the conditional variant does not raise errors in case the \langle string \rangle is not valid according to the \langle name 1 \rangle encoding, or cannot be expressed in the \langle name 2 \rangle encoding. Instead, the \langle false code \rangle is performed.

18.3 Conversion by expansion (for PDF contexts)

A small number of expandable functions are provided for use in PDF string/name contexts. These assume UTF-8 and no escaping in the input.

\str_convert_pdfname:n \str_convert_pdfname:n \langle string \rangle

As \str_convert_pdfname:n, converts the \langle string \rangle on a byte-by-byte basis with non-ASCII codepoints escaped using hashes.

18.4 Possibilities, and things to do

Encoding/escaping-related tasks.
• In Xe\TeX/Lua\TeX, would it be better to use the \ldots approach to build a string from a given list of character codes? Namely, within a group, assign 0-9a-f and all characters we want to category “other”, then assign ^ the category superscript, and use \texttt{scantokens}.

• Change \texttt{str_set_convert:Nnnn} to expand its last two arguments.

• Describe the internal format in the code comments. Refuse code points in [D800..DFFF] in the internal representation?

• Add documentation about each encoding and escaping method, and add examples.

• The \texttt{hex} unescaping should raise an error for odd-token count strings.

• Decide what bytes should be escaped in the \texttt{uri} escaping. Perhaps the characters \\!'()*-./0123456789_ are safe, and all other characters should be escaped?

• Automate generation of 8-bit mapping files.

• Change the framework for 8-bit encodings: for decoding from 8-bit to Unicode, use 256 integer registers; for encoding, use a tree-box.

• More encodings (see Heiko’s \texttt{stringenc}). CESU?

• More escapings: \texttt{ascii85}, shell escapes, lua escapes, \textit{etc}.?
Chapter 19

The \texttt{l3quark} package
Quarks and scan marks

Two special types of constants in \LaTeX{} are “quarks” and “scan marks”. By convention all constants of type quark start out with \texttt{\q{}}, and scan marks start with \texttt{\s{}}.

19.1 Quarks

Quarks are control sequences (and in fact, token lists) that expand to themselves and should therefore \textit{never} be executed directly in the code. This would result in an endless loop!

They are meant to be used as delimiter in weird functions, the most common use case being the ‘stop token’ (i.e. \texttt{\q{}\texttt{stop}}). For example, when writing a macro to parse a user-defined date

\begin{verbatim}
\date_parse:n {19/June/1981}
\end{verbatim}

one might write a command such as

\begin{verbatim}
\cs_new:Npn \date_parse:n #1 { \date_parse_aux:w #1 \q_stop }
\cs_new:Npn \date_parse_aux:w #1 / #2 / #3 \q_stop
{ <do something with the date> }
\end{verbatim}

Quarks are sometimes also used as error return values for functions that receive erroneous input. For example, in the function \texttt{\prop_get:NnN} to retrieve a value stored in some key of a property list, if the key does not exist then the return value is the quark \texttt{\q{}\texttt{no_value}}. As mentioned above, such quarks are extremely fragile and it is imperative when using such functions that code is carefully written to check for pathological cases to avoid leakage of a quark into an uncontrolled environment.

Quarks also permit the following ingenious trick when parsing tokens: when you pick up a token in a temporary variable and you want to know whether you have picked up a particular quark, all you have to do is compare the temporary variable to the quark using \texttt{\tl_if_eq:NNTF}. A set of special quark testing functions is set up below. All the quark testing functions are expandable although the ones testing only single tokens are much faster.
19.2 Defining quarks

\texttt{\quark_new:N} \quark_new:N \langle quark \rangle

Creates a new \langle quark \rangle which expands only to \langle quark \rangle. The \langle quark \rangle is defined globally, and an error message is raised if the name was already taken.

\texttt{\q_stop} Used as a marker for delimited arguments, such as

\texttt{\cs_set:Npn \tmp:w \#1\#2 \q_stop \{\#1\}}

\texttt{\q_mark} Used as a marker for delimited arguments when \texttt{\q_stop} is already in use.

\texttt{\q_nil} Quark to mark a null value in structured variables or functions. Used as an end delimiter when this may itself need to be tested (in contrast to \texttt{\q_stop}, which is only ever used as a delimiter).

\texttt{\q_no_value} A canonical value for a missing value, when one is requested from a data structure. This is therefore used as a “return” value by functions such as \texttt{\prop_get:NnN} if there is no data to return.

19.3 Quark tests

The method used to define quarks means that the single token (N) tests are faster than the multi-token (n) tests. The latter should therefore only be used when the argument can definitely take more than a single token.

\texttt{\quark_if_nil_p:N} \quark_if_nil:p:N \langle token \rangle

Tests if the \langle token \rangle is equal to \texttt{\q_nil}.

\texttt{\quark_if_nil_nTF} \quark_if_nil:nTF \langle token \rangle \{\{true code\}\} \{\{false code\}\}

Tests if the \langle token \rangle contains only \texttt{\q_nil} (distinct from \langle token list \rangle being empty or containing \texttt{\q_nil} plus one or more other tokens).

\texttt{\quark_if_no_value_p:N} \quark_if_no_value:p:N \langle token \rangle

Tests if the \langle token \rangle is equal to \texttt{\q_no_value}.

\texttt{\quark_if_no_value_nTF} \quark_if_no_value:nTF \langle token \rangle \{\{true code\}\} \{\{false code\}\}

Tests if the \langle token list \rangle contains only \texttt{\q_no_value} (distinct from \langle token list \rangle being empty or containing \texttt{\q_no_value} plus one or more other tokens).
19.4 Recursion

This module provides a uniform interface to intercepting and terminating loops as when one is doing tail recursion. The building blocks follow below and an example is shown in Section 19.4.1.

\q_recursion_tail
This quark is appended to the data structure in question and appears as a real element there. This means it gets any list separators around it.

\q_recursion_stop
This quark is added after the data structure. Its purpose is to make it possible to terminate the recursion at any point easily.

\quark_if_recursion_tail_stop:N \langle token \rangle \quark_if_recursion_tail_stop:N \star
Tests if \langle token \rangle contains only the marker \q_recursion_tail, and if so uses \use_-none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to. The recursion input must include the marker tokens \q_recursion_tail and \q_recursion_stop as the last two items.

\quark_if_recursion_tail_stop:n \langle token list \rangle \quark_if_recursion_tail_stop:o \star
Tests if the \langle token list \rangle contains only \q_recursion_tail, and if so uses \use_-i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to. The recursion input must include the marker tokens \q_recursion_tail and \q_recursion_stop as the last two items. The \langle insertion \rangle code is then added to the input stream after the recursion has ended.

\quark_if_recursion_tail_stop_do:Nn \langle token \rangle \{\langle insertion \rangle \}
Tests if \langle token \rangle contains only \q_recursion_tail, and if so uses \use_i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to. The recursion input must include the marker tokens \q_recursion_tail and \q_recursion_stop as the last two items. The \langle insertion \rangle code is then added to the input stream after the recursion has ended.

\quark_if_recursion_tail_stop_do:nn \langle token list \rangle \{\langle insertion \rangle \}
Tests if the \langle token list \rangle contains only \q_recursion_tail, and if so uses \use_i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to. The recursion input must include the marker tokens \q_recursion_tail and \q_recursion_stop as the last two items. The \langle insertion \rangle code is then added to the input stream after the recursion has ended.
Tests if (token list) contains only \q_recursion_tail, and if so terminates the recursion using \((type) _map_break:. The recursion end should be marked by \prg_break_point:Nn \((type) _map_break:.

19.4.1 An example of recursion with quarks

Quarks are mainly used internally in the expl3 code to define recursion functions such as \tl_map_inline:nn and so on. Here is a small example to demonstrate how to use quarks in this fashion. We shall define a command called \my_map_dbl:nn which takes a token list and applies an operation to every pair of tokens. For example, \my_map_dbl:nn {abcd} \{--#1--#2--\} \~ would produce \"[-a-b-] [-c-d-] \". Using quarks to define such functions simplifies their logic and ensures robustness in many cases.

Here’s the definition of \my_map_dbl:nn. First of all, define the function that does the processing based on the inline function argument \#2. Then initiate the recursion using an internal function. The token list \#1 is terminated using \q_recursion_tail, with delimiters according to the type of recursion (here a pair of \q_recursion_tail), concluding with \q_recursion_stop. These quarks are used to mark the end of the token list being operated upon.

\cs_new:Npn \my_map_dbl:nn #1#2
{\cs_set:Npn __my_map_dbl_fn:nn ##1 ##2 {#2} __my_map_dbl:nn #1 \q_recursion_tail \q_recursion_tail \q_recursion_stop}

The definition of the internal recursion function follows. First check if either of the input tokens are the termination quarks. Then, if not, apply the inline function to the two arguments.

\cs_new:Nn __my_map_dbl:nn
{\quark_if_recursion_tail_stop:n {#1} \quark_if_recursion_tail_stop:n {#2} __my_map_dbl_fn:nn \#1 \#2}

Finally, recurse:

__my_map_dbl:nn

Note that contrarily to \LaTeXX built-in mapping functions, this mapping function cannot be nested, since the second map would overwrite the definition of __my_map_dbl_fn:nn.
19.5 Scan marks

Scan marks are control sequences set equal to \scan_stop; hence never expand in an expansion context and are (largely) invisible if they are encountered in a typesetting context.

Like quarks, they can be used as delimiters in weird functions and are often safer to use for this purpose. Since they are harmless when executed by TeX in non-expandable contexts, they can be used to mark the end of a set of instructions. This allows to skip to that point if the end of the instructions should not be performed (see \l3regex).

\scan_new:N \use_\s_stop:w

\scan_new:N \use_\s_stop:w (scan mark)

New: 2018-04-01

Creates a new (scan mark) which is set equal to \scan_stop:. The (scan mark) is defined globally, and an error message is raised if the name was already taken by another scan mark.

\s_stop

Used at the end of a set of instructions, as a marker that can be jumped to using \use_-
none_delimit_by_s_stop:w.

\use_none_delimit_by_s_stop:w \use_none_delimit_by_s_stop:w \s_stop

New: 2018-04-01

Removes the (tokens) and \s_stop from the input stream. This leads to a low-level \TeX error if \s_stop is absent.
Chapter 20

The \texttt{l3seq} package
Sequences and stacks

\texttt{l3seq} implements a “sequence” data type, which contain an ordered list of entries which may contain any \textit{(balanced text)}. It is possible to map functions to sequences such that the function is applied to every item in the sequence.

Sequences are also used to implement stack functions in \texttt{l3seq}. This is achieved using a number of dedicated stack functions.

20.1 Creating and initialising sequences

\begin{itemize}
 \item \texttt{\seq_new:N} \langle seq \ var \rangle \texttt{\seq_new:N} \langle seq \ var \rangle
 Creates a new \langle seq \ var \rangle or raises an error if the name is already taken. The declaration is global. The \langle seq \ var \rangle initially contains no items.
 \item \texttt{\seq_clear:N} \langle seq \ var \rangle \texttt{\seq_clear:N} \langle seq \ var \rangle \texttt{\seq_gclear:N} \langle seq \ var \rangle \texttt{\seq_gclear:N} \langle seq \ var \rangle
 Clears all items from the \langle seq \ var \rangle.
 \item \texttt{\seq_clear_new:N} \langle seq \ var \rangle \texttt{\seq_clear_new:N} \langle seq \ var \rangle \texttt{\seq_gclear_new:N} \langle seq \ var \rangle \texttt{\seq_gclear_new:N} \langle seq \ var \rangle
 Ensures that the \langle seq \ var \rangle exists globally by applying \texttt{\seq_new:N} if necessary, then applies \texttt{\seq(g)clear:N} to leave the \langle seq \ var \rangle empty.
 \item \texttt{\seq_set_eq:NN} \langle seq \ var_1 \rangle \langle seq \ var_2 \rangle \texttt{\seq_set_eq:NN} \langle seq \ var_1 \rangle \langle seq \ var_2 \rangle \texttt{\seq_gset_eq:NN} \langle seq \ var_1 \rangle \langle seq \ var_2 \rangle \texttt{\seq_gset_eq:NN} \langle seq \ var_1 \rangle \langle seq \ var_2 \rangle
 Sets the content of \langle seq \ var_1 \rangle equal to that of \langle seq \ var_2 \rangle.
\end{itemize}
Converts the data in the ⟨comma list⟩ into a ⟨seq var⟩: the original ⟨comma list⟩ is unchanged.

Creates a new constant ⟨seq var⟩ or raises an error if the name is already taken. The ⟨seq var⟩ is set globally to contain the items in the ⟨comma list⟩.

Splits the ⟨token list⟩ into ⟨items⟩ separated by ⟨delimiter⟩, and assigns the result to the ⟨seq var⟩. Spaces on both sides of each ⟨item⟩ are ignored, then one set of outer braces is removed (if any); this space trimming behaviour is identical to that of \l3clist functions. Empty ⟨items⟩ are preserved by \seq_set_split:Nnn, and can be removed afterwards using \seq_remove_all:Nn ⟨seq var⟩ {}. The ⟨delimiter⟩ may not contain {}, or # (assuming \TeX’s normal category code régime). If the ⟨delimiter⟩ is empty, the ⟨token list⟩ is split into ⟨items⟩ as a ⟨token list⟩. See also \seq_set_split_keep_spaces:Nnn, which omits space stripping.

Splits the ⟨token list⟩ into ⟨items⟩ separated by ⟨delimiter⟩, and assigns the result to the ⟨seq var⟩. One set of outer braces is removed (if any) but any surrounding spaces are retained: any braces inside one or more spaces are therefore kept. Empty ⟨items⟩ are preserved by \seq_set_split_keep_spaces:Nnn, and can be removed afterwards using \seq_remove_all:Nn ⟨seq var⟩ {}. The ⟨delimiter⟩ may not contain {}, or # (assuming \TeX’s normal category code régime). If the ⟨delimiter⟩ is empty, the ⟨token list⟩ is split into ⟨items⟩ as a ⟨token list⟩. See also \seq_set_split:Nnn, which removes spaces around the delimiters.
20.2 Appending data to sequences

Appends the \textit{item} to the left of the \seq var.

Appends the \textit{item} to the right of the \seq var.

20.3 Recovering items from sequences

Items can be recovered from either the left or the right of sequences. For implementation reasons, the actions at the left of the sequence are faster than those acting on the right. These functions all assign the recovered material locally, \textit{i.e.} setting the \textit{token list variable} used with \texttt{\tl_set:Nn} and never \texttt{\tl_gset:Nn}.

Stores the left-most item from a \seq var in the \textit{token list variable} without removing it from the \seq var. The \textit{token list variable} is assigned locally. If \seq var is empty the \textit{token list variable} is set to the special marker \texttt{\q_no_value}.

Stores the right-most item from a \seq var in the \textit{token list variable} without removing it from the \seq var. The \textit{token list variable} is assigned locally. If \seq var is empty the \textit{token list variable} is set to the special marker \texttt{\q_no_value}.
\seq_pop_left:NN \seq_pop_left:CN
Pops the left-most item from a \langle seq var \rangle into the \langle token list variable \rangle, i.e. removes the item from the sequence and stores it in the \langle token list variable \rangle. Both of the variables are assigned locally. If \langle seq var \rangle is empty the \langle token list variable \rangle is set to the special marker \q_no_value.

Updated: 2012-05-14

\seq_gpop_left:NN \seq_gpop_left:CN
Pops the left-most item from a \langle seq var \rangle into the \langle token list variable \rangle, i.e. removes the item from the sequence and stores it in the \langle token list variable \rangle. The \langle seq var \rangle is modified globally, while the assignment of the \langle token list variable \rangle is local. If \langle seq var \rangle is empty the \langle token list variable \rangle is set to the special marker \q_no_value.

Updated: 2012-05-14

\seq_pop_right:NN \seq_pop_right:CN
Pops the right-most item from a \langle seq var \rangle into the \langle token list variable \rangle, i.e. removes the item from the sequence and stores it in the \langle token list variable \rangle. Both of the variables are assigned locally. If \langle seq var \rangle is empty the \langle token list variable \rangle is set to the special marker \q_no_value.

Updated: 2012-05-19

\seq_gpop_right:NN \seq_gpop_right:CN
Pops the right-most item from a \langle seq var \rangle into the \langle token list variable \rangle, i.e. removes the item from the sequence and stores it in the \langle token list variable \rangle. The \langle seq var \rangle is modified globally, while the assignment of the \langle token list variable \rangle is local. If \langle seq var \rangle is empty the \langle token list variable \rangle is set to the special marker \q_no_value.

Updated: 2012-06-19

\seq_item:Nn \seq_item:CN \star \seq_item:Nn \langle seq var \rangle \langle integer expression \rangle
Indexing items in the \langle seq var \rangle from 1 at the top (left), this function evaluates the \langle integer expression \rangle and leaves the appropriate item from the sequence in the input stream. If the \langle integer expression \rangle is negative, indexing occurs from the bottom (right) of the sequence. If the \langle integer expression \rangle is larger than the number of items in the \langle seq var \rangle (as calculated by \seq_count:N) then the function expands to nothing.

\TeXhackers\ note: The result is returned within the \unexpanded primitive \langle \exp_not:n \rangle, which means that the \langle item \rangle does not expand further when appearing in an \e-type or \x-type argument expansion.

\seq_rand_item:N \seq_rand_item:CN \star \seq_rand_item:N \langle seq var \rangle
Selects a pseudo-random item of the \langle seq var \rangle. If the \langle seq var \rangle is empty the result is empty. This is not available in older versions of \TeX.

\TeXhackers\ note: The result is returned within the \unexpanded primitive \langle \exp_not:n \rangle, which means that the \langle item \rangle does not expand further when appearing in an \e-type or \x-type argument expansion.

New: 2014-07-17

New: 2016-12-06

152
20.4 Recovering values from sequences with branching

The functions in this section combine tests for non-empty sequences with recovery of an item from the sequence. They offer increased readability and performance over separate testing and recovery phases.

\seq_pop_right:NNTF
\seq_pop_right:CN

If the \seqitem is empty, leaves the \texttt{false code} in the input stream. The value of the \seqitem is not defined in this case and should not be relied upon. If the \seqitem is non-empty, stores the left-most item from the \seqitem in the \seqitem without removing it from the \seqitem, then leaves the \texttt{true code} in the input stream. The \seqitem is assigned locally.

\seq_pop_right:NNTF
\seq_pop_right:CN

If the \seqitem is empty, leaves the \texttt{false code} in the input stream. The value of the \seqitem is not defined in this case and should not be relied upon. If the \seqitem is non-empty, stores the right-most item from the \seqitem in the \seqitem without removing it from the \seqitem, then leaves the \texttt{true code} in the input stream. The \seqitem is assigned locally.

\seq_gpop_left:NNTF
\seq_gpop_left:CN

If the \seqitem is empty, leaves the \texttt{false code} in the input stream. The value of the \seqitem is not defined in this case and should not be relied upon. If the \seqitem is non-empty, pops the left-most item from the \seqitem in the \seqitem, \ie removes the item from the \seqitem, then leaves the \texttt{true code} in the input stream. Both the \seqitem and the \seqitem are assigned locally.

\seq_pop_left:NNTF
\seq_pop_left:CN

If the \seqitem is empty, leaves the \texttt{false code} in the input stream. The value of the \seqitem is not defined in this case and should not be relied upon. If the \seqitem is non-empty, pops the right-most item from the \seqitem in the \seqitem, \ie removes the item from the \seqitem, then leaves the \texttt{true code} in the input stream. The \seqitem is modified globally, while the \seqitem is assigned locally.

\seq_pop_right:NNTF
\seq_pop_right:CN

If the \seqitem is empty, leaves the \texttt{false code} in the input stream. The value of the \seqitem is not defined in this case and should not be relied upon. If the \seqitem is non-empty, pops the right-most item from the \seqitem in the \seqitem, \ie removes the item from the \seqitem, then leaves the \texttt{true code} in the input stream. Both the \seqitem and the \seqitem are assigned locally.
If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

20.5 Modifying sequences

While sequences are normally used as ordered lists, it may be necessary to modify the content. The functions here may be used to update sequences, while retaining the order of the unaffected entries.

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

\begin{verbatim}
\seq_gpop_right:NNTF \seq_gpop_right:cN
\end{verbatim}

New: 2012-05-19

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

\begin{verbatim}
\seq_gpop_right:NNTF \seq_gpop_right:cN
\end{verbatim}

New: 2012-05-19

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

\begin{verbatim}
\seq_gpop_right:NNTF \seq_gpop_right:cN
\end{verbatim}

New: 2012-05-19

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

\begin{verbatim}
\seq_gpop_right:NNTF \seq_gpop_right:cN
\end{verbatim}

New: 2012-05-19

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

\begin{verbatim}
\seq_gpop_right:NNTF \seq_gpop_right:cN
\end{verbatim}

New: 2012-05-19

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

\begin{verbatim}
\seq_gpop_right:NNTF \seq_gpop_right:cN
\end{verbatim}

New: 2012-05-19

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

\begin{verbatim}
\seq_gpop_right:NNTF \seq_gpop_right:cN
\end{verbatim}

New: 2012-05-19

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

\begin{verbatim}
\seq_gpop_right:NNTF \seq_gpop_right:cN
\end{verbatim}

New: 2012-05-19

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

\begin{verbatim}
\seq_gpop_right:NNTF \seq_gpop_right:cN
\end{verbatim}

New: 2012-05-19

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

\begin{verbatim}
\seq_gpop_right:NNTF \seq_gpop_right:cN
\end{verbatim}

New: 2012-05-19

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.

\begin{verbatim}
\seq_gpop_right:NNTF \seq_gpop_right:cN
\end{verbatim}

New: 2012-05-19

If the ⟨seq var⟩ is empty, leaves the ⟨false code⟩ in the input stream. The value of the ⟨token list variable⟩ is not defined in this case and should not be relied upon. If the ⟨seq var⟩ is non-empty, pops the right-most item from the ⟨seq var⟩ in the ⟨token list variable⟩, i.e., removes the item from the ⟨seq var⟩, then leaves the ⟨true code⟩ in the input stream. The ⟨seq var⟩ is modified globally, while the ⟨token list variable⟩ is assigned locally.
\seq_sort:Nn \seq_sort:cn \seq_gsort:Nn \seq_gsort:cn
\seq_sort:Nn (seq var) \{(comparison code)\}
Sorts the items in the \seq var according to the \{(comparison code)\}, and assigns the result to \seq var. The details of sorting comparison are described in Section 6.1.

\seq_shuffle:N \seq_shuffle:c \seq_gshuffle:N \seq_gshuffle:c
\seq_shuffle:N (seq var)
Sets the \seq var to the result of placing the items of the \seq var in a random order. Each item is (roughly) as likely to end up in any given position.

\TeXhackers note: For sequences with more than 13 items or so, only a small proportion of all possible permutations can be reached, because the random seed \sys_rand_seed: only has 28-bits. The use of \toks internally means that sequences with more than 32767 or 65535 items (depending on the engine) cannot be shuffled.

\seq_if_empty_p:N \seq_if_empty:NTF \seq_if_empty:N \seq_if_empty:c
\seq_if_empty_p:N (seq var) \seq_if_empty:NTF (seq var) \{(true code)\} \{(false code)\}
Tests if the \seq var is empty (containing no items).

\seq_if_in:NnTF \seq_if_in:NTF \seq_if_in:N \seq_if_in:c
\seq_if_in:NnTF \seq_if_in:NTF \seq_if_in:N \seq_if_in:c \seq_if_in:{NV|Nv|Ne|No|cn|cV|cv|ce|co}|TF
Tests if the \item is present in the \seq var.

20.6 Sequence conditionals

\seq_map_function:NN \seq_map_function:CN \seq_map_inline:N \seq_map_inline:CN
\seq_map_function:NN (seq var) \seq_map_function:CN (seq var) \seq_map_inline:N (seq var) \seq_map_inline:CN (seq var)
Applies \{function\} to every \item stored in the \seq var. The \{function\} will receive one argument for each iteration. The \{items\} are returned from left to right. To pass further arguments to the \{function\}, see \seq_map_tokens:Nn. The function \seq_map_inline:N is faster than \seq_map_function:NN for sequences with more than about 10 items.

20.7 Mapping over sequences

All mappings are done at the current group level, \textit{i.e.} any local assignments made by the \{function\} or \{code\} discussed below remain in effect after the loop.

\seq_map_function:NN \seq_map_function:CN \seq_map_inline:N \seq_map_inline:CN
\seq_map_function:NN (seq var) \seq_map_function:CN (seq var) \seq_map_inline:N (seq var) \seq_map_inline:CN (seq var)
Applies \{inline function\} to every \item stored within the \seq var. The \{inline function\} should consist of code which will receive the \item as \#1. The \{items\} are returned from left to right.
\seq_map_tokens:Nn \seq_map_tokens:cn

Analogue of \seq_map_function:NN which maps several tokens instead of a single function. The \seq_map_tokens{\langle code\rangle} receives each item in the \seq_var as a trailing brace group. For instance,
\seq_map_tokens:Nn \l_my_seq \{ \prg_replicate:nn {2} \}

expands to twice each item in the \seq_var: for each item in \l_my_seq the function \prg_replicate:nn receives 2 and \seq_item as its two arguments. The function \seq_map_inline:NN is typically faster but it is not expandable.

\seq_map_variable:NN \seq_map_variable:NN \seq_map_variable:NN \seq_map_variable:NN

Stores each \seq_item of the \seq_var in turn in the (token list) \seq_variable and applies the \seq_map_variable{\langle code\rangle}. The \seq_map_variable will usually make use of the \seq_variable, but this is not enforced. The assignments to the \seq_variable are local. Its value after the loop is the last \seq_item in the \seq_var, or its original value if the \seq_var is empty. The \seq_items are returned from left to right.

\seq_map_indexed_function:NN \seq_map_indexed_function:NN

Applies \seq_indexed_function to every entry in the \seq_var. The \seq_indexed_function should have signature :nn. It receives two arguments for each iteration: the \seq_index as the first entry, then 2 and so on and the \seq_item.

\seq_map_indexed_inline:NN \seq_map_indexed_inline:NN

Applies \seq_indexed_inline_function to every entry in the \seq_var. The \seq_indexed_inline_function should consist of code which receives the \seq_index (namely 1 for the first entry, then 2 and so on) as \#1 and the \seq_item as \#2.

\seq_map_pairwise_function:NN \seq_map_pairwise_function:NN

Applies \seq_pairwise_function to every pair of items \seqitem\seqitem from the two sequences, returning items from both sequences from left to right. The \seq_pairwise_function receives two \n-type arguments for each iteration. The mapping terminates when the end of either sequence is reached (\i.e. whichever sequence has fewer items determines how many iterations occur).
\seq_map_break: \seq_map_break:

Used to terminate a \seq_map_\ldots function before all entries in the \seq_var{} have been processed. This normally takes place within a conditional statement, for example

\seq_map_inline:Nn \l_my_seq
{\str_if_eq:nnTF { #1 } { bingo }{ \seq_map_break: }
{ % Do something useful }
}

Use outside of a \seq_map_\ldots scenario leads to low level \TeX{} errors.

\TeXhackers\note: When the mapping is broken, additional tokens may be inserted before further items are taken from the input stream. This depends on the design of the mapping function.

\seq_map_break:n \seq_map_break:n {\code{}}

Used to terminate a \seq_map_\ldots function before all entries in the \seq_var{} have been processed, inserting the \code{} after the mapping has ended. This normally takes place within a conditional statement, for example

\seq_map_inline:Nn \l_my_seq
{\str_if_eq:nnTF { #1 } { bingo }{ \seq_map_break:n { \code{}} }
{ % Do something useful }
}

Use outside of a \seq_map_\ldots scenario leads to low level \TeX{} errors.

\TeXhackers\note: When the mapping is broken, additional tokens may be inserted before the \code{} is inserted into the input stream. This depends on the design of the mapping function.

\seq_set_map:NNn \seq_gset_map:NNn
\seq_set_map:Nn \seq_gset_map:Nn \seq_var{} \seq_var{} {\inline_function{}}

Applies \inline_function{} to every \item{} stored within the \seq_var{}. The \inline_function{} should consist of code which will receive the \item{} as \#1. The sequence resulting applying \inline_function{} to each \item{} is assigned to \seq_var{}.

\TeXhackers\note: Contrarily to other mapping functions, \seq_map_break: cannot be used in this function, and would lead to low-level \TeX{} errors.

157
\seq_set_map_e:NNn \seq_set_gmap_e:NNn
\seq_set_map_e:NNn \seq_set_gmap_e:NNn

Applies \{inline function\} to every \{item\} stored within the \{seq var\}. The \{inline function\} should consist of code which will receive the \{item\} as \#1. The sequence resulting from e-expanding \{inline function\} applied to each \{item\} is assigned to \{seq var\}. As such, the code in \{inline function\} should be expandable.

\TeXhacksnote: Contrarily to other mapping functions, \seq_map_break: cannot be used in this function, and would lead to low-level \TeX\ errors.

\seq_count:N \seq_count:c
\seq_count:N \seq_count:c

Leaves the number of items in the \{seq var\} in the input stream as an \{integer denotation\}. The total number of items in a \{seq var\} includes those which are empty and duplicates, \textit{i.e.} every item in a \{seq var\} is unique.

20.8 Using the content of sequences directly

\seq_use:Nnnn \seq_use:cnnn
\seq_use:Nnnn \seq_use:cnnn

Places the contents of the \{seq var\} in the input stream, with the appropriate \{separator\} between the items. Namely, if the sequence has more than two items, the \{separator between more than two\} is placed between each pair of items except the last, for which the \{separator between final two\} is used. If the sequence has exactly two items, then they are placed in the input stream separated by the \{separator between two\}. If the sequence has a single item, it is placed in the input stream, and an empty sequence produces no output. An error is raised if the variable does not exist or if it is invalid.

For example,

\seq_set_split:Nnn \l_tmpa_seq { | } { a | b | c | {de} | f }
\seq_use:Nnnn \l_tmpa_seq { ~and~ } { ,~ } { ,~and~ }

inserts “a, b, c, de, and f” in the input stream. The first separator argument is not used in this case because the sequence has more than 2 items.

\TeXhacksnote: The result is returned within the \unexpanded primitive (\exp_not:n), which means that the \{items\} do not expand further when appearing in an \texttt{e-type} or \texttt{x-type} argument expansion.
\seq_use:Nn \seq_use:Nn \seq_set_split:Nnn \l_tmpa_seq { | } { a | b | c | \{de\} | f } \seq_use:Nn \l_tmpa_seq { ~and~ }

inserts “a and b and c and de and f” in the input stream.

TeXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n), which means that the \item\s do not expand further when appearing in an e-type or x-type argument expansion.

20.9 Sequences as stacks

Sequences can be used as stacks, where data is pushed to and popped from the top of the sequence. (The left of a sequence is the top, for performance reasons.) The stack functions for sequences are not intended to be mixed with the general ordered data functions detailed in the previous section: a sequence should either be used as an ordered data type or as a stack, but not in both ways.

\seq_get:NN \seq_get:cN Reads the top item from a \seq into the \token list variable without removing it from the \seq. The \token list variable is assigned locally. If \seq is empty the \token list variable is set to the special marker \q_no_value.

\seq_pop:NN \seq_pop:cN Pops the top item from a \seq into the \token list variable. Both of the variables are assigned locally. If \seq is empty the \token list variable is set to the special marker \q_no_value.

\seq_gpop:NN \seq_gpop:cN Pops the top item from a \seq into the \token list variable. The \seq is modified globally, while the \token list variable is assigned locally. If \seq is empty the \token list variable is set to the special marker \q_no_value.

\seq_get:NNTF \seq_get:cN If the \seq is empty, leaves the \false code in the input stream. The value of the \token list variable is not defined in this case and should not be relied upon. If the \seq is non-empty, stores the top item from a \seq into the \token list variable without removing it from the \seq. The \token list variable is assigned locally.
If the \(\langle \text{seq var} \rangle \) is empty, leaves the \(\langle \text{false code} \rangle \) in the input stream. The value of the \(\langle \text{token list variable} \rangle \) is not defined in this case and should not be relied upon. If the \(\langle \text{seq var} \rangle \) is non-empty, pops the top item from the \(\langle \text{seq var} \rangle \) in the \(\langle \text{token list variable} \rangle \), i.e. removes the item from the \(\langle \text{seq var} \rangle \). Both the \(\langle \text{seq var} \rangle \) and the \(\langle \text{token list variable} \rangle \) are assigned locally.

If the \(\langle \text{seq var} \rangle \) is empty, leaves the \(\langle \text{false code} \rangle \) in the input stream. The value of the \(\langle \text{token list variable} \rangle \) is not defined in this case and should not be relied upon. If the \(\langle \text{seq var} \rangle \) is non-empty, pops the top item from the \(\langle \text{seq var} \rangle \) in the \(\langle \text{token list variable} \rangle \), i.e. removes the item from the \(\langle \text{seq var} \rangle \). The \(\langle \text{seq var} \rangle \) is modified globally, while the \(\langle \text{token list variable} \rangle \) is assigned locally.

Adding the \{\langle item\}\} to the top of the \(\langle \text{seq var} \rangle \).

20.10 Sequences as sets

Sequences can also be used as sets, such that all of their items are distinct. Usage of sequences as sets is not currently widespread, hence no specific set function is provided. Instead, it is explained here how common set operations can be performed by combining several functions described in earlier sections. When using sequences to implement sets, one should be careful not to rely on the order of items in the sequence representing the set.

Sets should not contain several occurrences of a given item. To make sure that a \(\langle \text{sequence variable} \rangle \) only has distinct items, use \seq_remove_duplicates:N \(\langle \text{sequence variable} \rangle \). This function is relatively slow, and to avoid performance issues one should only use it when necessary.

Some operations on a set \(\langle \text{seq var} \rangle \) are straightforward. For instance, \seq_count:N \(\langle \text{seq var} \rangle \) expands to the number of items, while \seq_if_in:NnTF \(\langle \text{seq var} \rangle \) \{\langle item\}\} tests if the \{\langle item\}\} is in the set.

Adding an \{\langle item\}\} to a set \(\langle \text{seq var} \rangle \) can be done by appending it to the \(\langle \text{seq var} \rangle \) if it is not already in the \(\langle \text{seq var} \rangle \):

\[
\begin{align*}
\text{seq_if_in:NnF} & \langle \text{seq var} \rangle \{\langle item\}\} \\
\text{seq_put_right:Nn} & \langle \text{seq var} \rangle \{\langle item\}\}
\end{align*}
\]

Removing an \{\langle item\}\} from a set \(\langle \text{seq var} \rangle \) can be done using \seq_remove_all:Nn,

\[
\text{seq_remove_all:Nn} \langle \text{seq var} \rangle \{\langle item\}\}
\]

The intersection of two sets \(\langle \text{seq var}_1 \rangle \) and \(\langle \text{seq var}_2 \rangle \) can be stored into \(\langle \text{seq var}_3 \rangle \) by collecting items of \(\langle \text{seq var}_1 \rangle \) which are in \(\langle \text{seq var}_2 \rangle \).
The code as written here only works if \seq var \text{var}_3 is different from the other two sequence variables. To cover all cases, items should first be collected in a sequence \l__\langle pkg\rangle _\text{internal_seq}, then \seq var \text{var}_3 should be set equal to this internal sequence. The same remark applies to other set functions.

The union of two sets \seq var \text{var}_1 and \seq var \text{var}_2 can be stored into \seq var \text{var}_3 through

\begin{verbatim}
\seq_concat:NNN \seq var \text{var}_3 (seq var \text{var}_1) (seq var \text{var}_2)
\seq_remove_duplicates:N (seq var \text{var}_3)
\end{verbatim}

or by adding items to (a copy of) \seq var \text{var}_1 one by one,

\begin{verbatim}
\seq_set_eq:NN \seq var \text{var}_3 (seq var \text{var}_1)
\seq_map_inline:Nn (seq var \text{var}_2)
{ \seq_if_in:NnF \seq var \text{var}_3 {#1} }
{ \seq_put_right:Nn \seq var \text{var}_3 {#1} }
\end{verbatim}

The second approach is faster than the first when the \seq var \text{var}_2 is short compared to \seq var \text{var}_1.

The difference of two sets \seq var \text{var}_1 and \seq var \text{var}_2 can be stored into \seq var \text{var}_3 by removing items of the \seq var \text{var}_2 from (a copy of) the \seq var \text{var}_1 one by one.

\begin{verbatim}
\seq_set_eq:NN \seq var \text{var}_3 (seq var \text{var}_1)
\seq_map_inline:Nn (seq var \text{var}_2)
{ \seq_remove_all:NN \seq var \text{var}_3 {#1} }
\seq_set_eq:NN \seq var \text{var}_3 (seq var \text{var}_1)
\seq_map_inline:Nn (seq var \text{var}_2)
{ \seq_remove_all:NN \seq var \text{var}_3 {#1} }
\seq_concat:NNN \seq var \text{var}_3 (seq var \text{var}_3) \l__\langle pkg\rangle _\text{internal_seq}
\end{verbatim}

\subsection{Constant and scratch sequences}

\c_empty_seq Constant that is always empty.

Rev: 2012-07-02
Scratch sequences for local assignment. These are never used by the kernel code, and so are safe for use with any \texttt{TEX3}-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\texttt{l_tmpa_seq} \texttt{l_tmpb_seq}

New: 2012-04-26

Scratch sequences for global assignment. These are never used by the kernel code, and so are safe for use with any \texttt{TEX3}-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\texttt{g_tmpa_seq} \texttt{g_tmpb_seq}

New: 2012-04-26

\section{Viewing sequences}

\texttt{\seq_show:N} \texttt{\seq_show:c} \texttt{\seq_show:N \{seq \ var\}}

Displays the entries in the \texttt{\seq \ var} in the terminal.

Updated: 2021-04-29

\texttt{\seq_log:N} \texttt{\seq_log:c} \texttt{\seq_log:N \{seq \ var\}}

Writes the entries in the \texttt{\seq \ var} in the log file.

Updated: 2021-04-29
Chapter 21

The l3int package

Integers

Calculation and comparison of integer values can be carried out using literal numbers, \texttt{int} registers, constants and integers stored in token list variables. The standard operators +, −, / and * and parentheses can be used within such expressions to carry arithmetic operations. This module carries out these functions on integer expressions ("(int expr)").

21.1 Integer expressions

Throughout this module, (almost) all \texttt{n}-type argument allow for an \texttt{(int expr)} argument with the following syntax. The \texttt{(integer expression)} should consist, after expansion, of +, −, *, /, (,) and of course integer operands. The result is calculated by applying standard mathematical rules with the following peculiarities:

- / denotes division rounded to the closest integer with ties rounded away from zero;
- there is an error and the overall expression evaluates to zero whenever the absolute value of any intermediate result exceeds $2^{31} - 1$, except in the case of scaling operations \texttt{a*b/c}, for which \texttt{a*b} may be arbitrarily large (but the operands \texttt{a}, \texttt{b}, \texttt{c} are still constrained to an absolute value at most $2^{31} - 1$);
- parentheses may not appear after unary + or −, namely placing +(or −(at the start of an expression or after +, −, *, / or (leads to an error.

Each integer operand can be either an integer variable (with no need for \texttt{\int_use:N}) or an integer denotation. For example both

\begin{verbatim}
\int_show:n \{ 5 + 4 * 3 - (3 + 4 * 5) \}
\end{verbatim}

and

\begin{verbatim}
\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl \{ 5 \}
\int_new:N \l_my_int
\int_set:Nn \l_my_int \{ 4 \}
\int_show:n \{ \l_my_tl + \l_my_int * 3 - (3 + 4 * 5) \}
\end{verbatim}
show the same result −6 because _my_tl expands to the integer denotation 5 while the integer variable _my_int takes the value 4. As the ⟨integer expression⟩ is fully expanded from left to right during evaluation, fully expandable and restricted-expandable functions can both be used, and \exp_not:n and its variants have no effect while \exp_not:N may incorrectly interrupt the expression.

\TeX hacklers note: Exactly two expansions are needed to evaluate \int_eval:n. The result is not an ⟨internal integer⟩, and therefore should be terminated by a space if used in \int_value:w or in a \TeX-style integer assignment.

As all \TeX integers, integer operands can also be: \value{⟨\LaTeX\ 2ε counter⟩}; dimension or skip variables, converted to integers in \sp; the character code of some character given as ‘⟨char⟩’ or ‘\langle char⟩’; octal numbers given as ‘ followed by digits from 0 to 7; or hexadecimal numbers given as ” followed by digits and upper case letters from A to F.
\texttt{\int_eval:n} \{⟨\textit{int expr}⟩\}

Evaluates the ⟨\textit{int expr}⟩ and leaves the result in the input stream as an integer denotation: for positive results an explicit sequence of decimal digits not starting with 0, for negative results – followed by such a sequence, and 0 for zero. The ⟨\textit{int expr}⟩ should consist, after expansion, of +-*,/,(,) and of course integer operands. The result is calculated by applying standard mathematical rules with the following peculiarities:

- / denotes division mathematical rounded to the closest integer with ties rounded away from zero;
- there is an error and the overall expression evaluates to zero whenever the absolute value of any intermediate result exceeds \(2^{31} - 1\), except in the case of scaling operations \(a*b/c\), for which \(a*b\) may be arbitrarily large;
- parentheses may not appear after unary + or -, namely placing +{} or -{} at the start of an expression or after +, -, *, / or (leads to an error.

Each integer operand can be either an integer variable (with no need for \texttt{\int_use:N}) or an integer denotation. For example both

\[
\int_eval:n \{ 5 + 4 * 3 - (3 + 4 * 5) \}
\]

and

\[
\tl_new:N \l_my_tl
\tl_set:Nn \l_my_tl \{ 5 \}
\int_new:N \l_my_int
\int_set:Nn \l_my_int \{ 4 \}
\int_eval:n \{ \l_my_tl + \l_my_int * 3 - (3 + 4 * 5) \}
\]

evaluate to \(-6\) because \(\l_my_tl\) expands to the integer denotation \(5\). As the ⟨\textit{int expr}⟩ is fully expanded from left to right during evaluation, fully expandable and restricted-expandable functions can both be used, and \texttt{\exp_not:n} and its variants have no effect while \texttt{\exp_not:N} may incorrectly interrupt the expression.

\textbf{\TeX}hacks note: Exactly two expansions are needed to evaluate \texttt{\int_eval:n}. The result is not an \textit{internal integer}, and therefore requires suitable termination if used in a \TeX-style integer assignment.

As all \TeX\ integers, integer operands can also be dimension or skip variables, converted to integers in \texttt{sp}, or octal numbers given as \` followed by digits other than 8 and 9, or hexadecimal numbers given as " followed by digits or upper case letters from \texttt{A} to \texttt{F}, or the character code of some character or one-character control sequence, given as \`\langle\textit{char}\rangle\`.

\texttt{\int_eval:w} \{ ⟨\textit{int expr}⟩ \}

Evaluates the ⟨\textit{int expr}⟩ as described for \texttt{\int_eval:n}. The end of the expression is the first token encountered that cannot form part of such an expression. If that token is \texttt{\scan_stop}: it is removed, otherwise not. Spaces do not terminate the expression. However, spaces terminate explicit integers, and this may terminate the expression: for instance, \texttt{\int_eval:w 1.0*1.0\texttt{9}} (with explicit space tokens inserted using ~ in a code setting) expands to \(29\) since the digit \(9\) is not part of the expression. Expansion details, etc., are as given for \texttt{\int_eval:n}.

165
\texttt{\textbackslash int_sign\:n} \hspace{1em} \texttt{int_sign}\{\texttt{\langle int\ expr\rangle}\}

Evaluates the \texttt{\langle int\ expr\rangle} then leaves \texttt{1} or \texttt{0} or \texttt{−1} in the input stream according to the sign of the result.

\texttt{\textbackslash int_abs\:n} \hspace{1em} \texttt{\textbackslash int_abs}\{\texttt{\langle int\ expr\rangle}\}

Updated: 2012–09–26

Evaluates the \texttt{\langle int\ expr\rangle} as described for \texttt{\textbackslash int_eval\:n} and leaves the absolute value of the result in the input stream as an \texttt{\langle integer\ denotation\rangle} after two expansions.

\texttt{\textbackslash int_div_round\:nn} \hspace{1em} \texttt{\textbackslash int_div_round\:nn}\{\texttt{\langle int\ expr_1\rangle}\}\{\texttt{\langle int\ expr_2\rangle}\}

Updated: 2012–09–26

Evaluates the two \texttt{\langle int\ expr\rangle}s as described earlier, then divides the first value by the second, and rounds the result to the closest integer. Ties are rounded away from zero. Note that this is identical to using \texttt{/} directly in an \texttt{\langle int\ expr\rangle}. The result is left in the input stream as an \texttt{\langle integer\ denotation\rangle} after two expansions.

\texttt{\textbackslash int_div_truncate\:nn} \hspace{1em} \texttt{\textbackslash int_div_truncate\:nn}\{\texttt{\langle int\ expr_1\rangle}\}\{\texttt{\langle int\ expr_2\rangle}\}

Updated: 2012–02–09

Evaluates the two \texttt{\langle int\ expr\rangle}s as described earlier, then divides the first value by the second, and rounds the result towards zero. Note that division using \texttt{/} rounds to the closest integer instead. The result is left in the input stream as an \texttt{\langle integer\ denotation\rangle} after two expansions.

\texttt{\textbackslash int_max\:nn} \hspace{1em} \texttt{\textbackslash int_max}\{\texttt{\langle int\ expr_1\rangle}\}\{\texttt{\langle int\ expr_2\rangle}\}

\texttt{\textbackslash int_min\:nn} \hspace{1em} \texttt{\textbackslash int_min}\{\texttt{\langle int\ expr_1\rangle}\}\{\texttt{\langle int\ expr_2\rangle}\}

Updated: 2012–09–26

Evaluates the \texttt{\langle int\ expr\rangle}s as described for \texttt{\textbackslash int_eval\:n} and leaves either the larger or smaller value in the input stream as an \texttt{\langle integer\ denotation\rangle} after two expansions.

\texttt{\textbackslash int_mod\:nn} \hspace{1em} \texttt{\textbackslash int_mod}\{\texttt{\langle int\ expr_1\rangle}\}\{\texttt{\langle int\ expr_2\rangle}\}

Updated: 2012–09–26

Evaluates the two \texttt{\langle int\ expr\rangle}s as described earlier, then calculates the integer remainder of dividing the first expression by the second. This is obtained by subtracting \texttt{\textbackslash int_div_truncate\:nn}\{\texttt{\langle int\ expr_1\rangle}\}\{\texttt{\langle int\ expr_2\rangle}\} times \texttt{\langle int\ expr_2\rangle} from \texttt{\langle int\ expr_1\rangle}. Thus, the result has the same sign as \texttt{\langle int\ expr_1\rangle} and its absolute value is strictly less than that of \texttt{\langle int\ expr_2\rangle}. The result is left in the input stream as an \texttt{\langle integer\ denotation\rangle} after two expansions.

21.2 Creating and initialising integers

\texttt{\textbackslash int_new\:N} \hspace{1em} \texttt{\textbackslash int_new}\{\texttt{\langle integer\rangle}\}

\texttt{\textbackslash int_new\:c}

Creates a new \texttt{\langle integer\rangle} or raises an error if the name is already taken. The declaration is global. The \texttt{\langle integer\rangle} is initially equal to \texttt{0}.

\texttt{\textbackslash int_const\:Nn} \hspace{1em} \texttt{\textbackslash int_const}\{\texttt{\langle integer\rangle}\}\{\texttt{\langle int\ expr\rangle}\}

\texttt{\textbackslash int_const\:cn}

Updated: 2011–10–22

Creates a new constant \texttt{\langle integer\rangle} or raises an error if the name is already taken. The value of the \texttt{\langle integer\rangle} is set globally to the \texttt{\langle int\ expr\rangle}.

166
\int_zero:N \{integer\}
Sets \{integer\} to 0.

\int_zero:c
\int_gzero:N
\int_gzero:c

\int_zero_new:N \{integer\}
\int_zero_new:c
\int_gzero_new:N
\int_gzero_new:c
Ensures that the \{integer\} exists globally by applying \int_new:N if necessary, then applies \int_(g)zero:N to leave the \{integer\} set to zero.

\int_set_eq:NN \{integer\} \{integer\}
Sets the content of \{integer\} equal to that of \{integer\}.

\int_if_exist_p:N \{int\}
\int_if_exist:NTF \{int\} {\{true code\}} {\{false code\}}
Tests whether the \{int\} is currently defined. This does not check that the \{int\} really is an integer variable.

\int_add:Nn \{integer\} \{\{int expr\}\}
Adds the result of the \{int expr\} to the current content of the \{integer\}.

\int_decr:N \{integer\}
\int_decr:c
\int_gdecr:N
\int_gdecr:c
Decreases the value stored in \{integer\} by 1.

\int_incr:N \{integer\}
\int_incr:c
\int_gincr:N
\int_gincr:c
Increases the value stored in \{integer\} by 1.

\int_set:Nn \{integer\} \{\{int expr\}\}
Sets \{integer\} to the value of \{int expr\}, which must evaluate to an integer (as described for \int_eval:n).

New: 2011-12-13

21.3 Setting and incrementing integers

\int_set_eq:NN \{integer_1\} \{integer_2\}
Sets the content of \{integer_1\} equal to that of \{integer_2\}.

\new: 2012-03-03

167
\int_sub:Nn \int_sub:cn \int_gsub:Nn \int_gsub:cn

Subtracts the result of the \textit{int expr} from the current content of the \textit{integer}.

Updated: 2011-10-22

21.4 Using integers

\int_use:N \int_use:c

Recover the content of an \textit{integer} and places it directly in the input stream. An error is raised if the variable does not exist or if it is invalid. Can be omitted in places where an \textit{integer} is required (such as in the first and third arguments of \texttt{\int_compare:nNnTF}).

\textbf{\LaTeX} hackers note: \texttt{\int_use:N} is the \LaTeX primitive \texttt{\the}: this is one of several \LaTeX3 names for this primitive.

Updated: 2011-10-22

21.5 Integer expression conditionals

\int_compare_p:nNn \int_compare:p:nNn \int_compare:nNnTF

This function first evaluates each of the \textit{int expr}s as described for \texttt{\int_eval:n}. The two results are then compared using the \textit{relation}:

\begin{align*}
 \text{Equal} & = \\
 \text{Greater than} & > \\
 \text{Less than} & <
\end{align*}

This function is less flexible than \texttt{\int_compare:nTF} but around 5 times faster.
This function evaluates the \(\text{\textit{int expr}}\)s as described for \texttt{\texttt{\textbackslash int_eval:n}} and compares consecutive result using the corresponding \(\text{\textit{relation}}\), namely it compares \(\text{\textit{int expr}}_1\) and \(\text{\textit{int expr}}_2\) using the \(\text{\textit{relation}}_1\), then \(\text{\textit{int expr}}_2\) and \(\text{\textit{int expr}}_3\) using the \(\text{\textit{relation}}_2\), until finally comparing \(\text{\textit{int expr}}_N\) and \(\text{\textit{int expr}}_{N+1}\) using the \(\text{\textit{relation}}_N\). The test yields \texttt{true} if all comparisons are \texttt{true}. Each \(\text{\textit{int expr}}\) is evaluated only once, and the evaluation is lazy, in the sense that if one comparison is \texttt{false}, then no other \(\text{\textit{integer expression}}\) is evaluated and no other comparison is performed. The \(\text{\textit{relations}}\) can be any of the following:

- Equal \(=\) or \(==\)
- Greater than or equal to \(>=\)
- Greater than \(>\)
- Less than or equal to \(<=\)
- Less than \(<\)
- Not equal \(!=\)

This function is more flexible than \texttt{\texttt{\textbackslash int_compare:nNnTF}} but around 5 times slower.
\text{This function evaluates the } \langle \text{test int expr} \rangle \text{ and compares this in turn to each of the } \langle \text{int expr cases} \rangle. \text{ If the two are equal then the associated } \langle \text{code} \rangle \text{ is left in the input stream and other cases are discarded. If any of the cases are matched, the } \langle \text{true code} \rangle \text{ is also inserted into the input stream (after the code for the appropriate case), while if none match then the } \langle \text{false code} \rangle \text{ is inserted. The function } \texttt{\textbackslash int-case:nn} \text{, which does nothing if there is no match, is also available. For example}

\texttt{\textbackslash int-case:nnF} \{ 2 * 5 \}
\{ \{ 5 \} \{ \text{Small} \} \{ 4 + 6 \} \{ \text{Medium} \} \{ -2 * 10 \} \{ \text{Negative} \} \{ \text{No idea!} \} \}

\text{leaves “Medium” in the input stream.}

\text{This function first evaluates the } \langle \text{int expr} \rangle \text{ as described for } \texttt{\textbackslash int-eval:n}. \text{ It then evaluates if this is odd or even, as appropriate.}

\text{This function first evaluates the } \langle \text{int expr} \rangle \text{ as described for } \texttt{\textbackslash int-eval:n}. \text{ It then evaluates if this is zero or not.}

\section{21.6 Integer expression loops}

\text{Places the } \langle \text{code} \rangle \text{ in the input stream for } \LaTeX \text{ to process, and then evaluates the relationship between the two } \langle \text{int expr} \rangle \text{s as described for } \texttt{\textbackslash int-compare:nNnTF}. \text{ If the test is } \texttt{false} \text{ then the } \langle \text{code} \rangle \text{ is inserted into the input stream again and a loop occurs until the } \langle \text{relation} \rangle \text{ is } \texttt{true}.\texttt{\textbackslash int-do_until:nNn} \{ (\text{int expr}_1) \} \{ (\text{relation}) \} \{ (\text{int expr}_2) \} \{ (\text{code}) \}
\int_do_while:nNnn \int_do_while:nNnn \{\text{int expr}_1\} \{\text{relation}\} \{\text{int expr}_2\} \{\text{code}\}

Places the \text{code} in the input stream for \TeX to process, and then evaluates the relationship between the two \text{int expr}s as described for \\texttt{int_compare:nNnTF}. If the test is \texttt{true} then the \text{code} is inserted into the input stream again and a loop occurs until the \text{relation} is \texttt{false}.

\int_until_do:nNnn \int_until_do:nNnn \{\text{int expr}_1\} \{\text{relation}\} \{\text{int expr}_2\} \{\text{code}\}

Evaluates the relationship between the two \text{int expr}s as described for \\texttt{int_compare:nNnTF}, and then places the \text{code} in the input stream if the \text{relation} is \texttt{false}. After the \text{code} has been processed by \TeX the test is repeated, and a loop occurs until the test is \texttt{true}.

\int_while_do:nNnn \int_while_do:nNnn \{\text{int expr}_1\} \{\text{relation}\} \{\text{int expr}_2\} \{\text{code}\}

Evaluates the relationship between the two \text{int expr}s as described for \\texttt{int_compare:nNnTF}, and then places the \text{code} in the input stream if the \text{relation} is \texttt{true}. After the \text{code} has been processed by \TeX the test is repeated, and a loop occurs until the test is \texttt{false}.

\int_do_until:nn \int_do_until:nn \{\text{integer relation}\} \{\text{code}\}

Updated: 2013-01-13

Places the \text{code} in the input stream for \TeX to process, and then evaluates the \text{integer relation} as described for \\texttt{int_compare:nTF}. If the test is \texttt{false} then the \text{code} is inserted into the input stream again and a loop occurs until the \text{relation} is \texttt{true}.

\int_do_while:nn \int_do_until:nn \{\text{integer relation}\} \{\text{code}\}

Updated: 2013-01-13

Places the \text{code} in the input stream for \TeX to process, and then evaluates the \text{integer relation} as described for \\texttt{int_compare:nTF}. If the test is \texttt{true} then the \text{code} is inserted into the input stream again and a loop occurs until the \text{relation} is \texttt{false}.

\int_until_do:nn \int_until:nn \{\text{integer relation}\} \{\text{code}\}

Updated: 2013-01-13

Evaluates the \text{integer relation} as described for \\texttt{int_compare:nTF}, and then places the \text{code} in the input stream if the \text{relation} is \texttt{false}. After the \text{code} has been processed by \TeX the test is repeated, and a loop occurs until the test is \texttt{true}.

\int_while_do:nn \int_until:nn \{\text{integer relation}\} \{\text{code}\}

Updated: 2013-01-13

Evaluates the \text{integer relation} as described for \\texttt{int_compare:nTF}, and then places the \text{code} in the input stream if the \text{relation} is \texttt{true}. After the \text{code} has been processed by \TeX the test is repeated, and a loop occurs until the test is \texttt{false}.
21.7 Integer step functions

\int_step_function:nN \int_step_function:nnN \int_step_function:nnN

This function first evaluates the (initial value), (step) and (final value), all of which should be integer expressions. The (function) is then placed in front of each (value) from the (initial value) to the (final value) in turn (using (step) between each (value)). The (step) must be non-zero. If the (step) is positive, the loop stops when the (value) becomes larger than the (final value). If the (step) is negative, the loop stops when the (value) becomes smaller than the (final value). The (function) should absorb one numerical argument. For example

\cs_set:Npn \my_func:n #1 { \[I saw #1\] \quad }
\int_step_function:nnN \int_step_function:nnN \int_step_function:nnN

would print

[I saw 1] [I saw 2] [I saw 3] [I saw 4] [I saw 5]

The functions \int_step_function:nN and \int_step_function:nnN both use a fixed (step) of 1, and in the case of \int_step_function:nN the (initial value) is also fixed as 1. These functions are provided as simple short-cuts for code clarity.

\int_step_inline:nn \int_step_inline:nn \int_step_inline:nn

This function first evaluates the (initial value), (step) and (final value), all of which should be integer expressions. Then for each (value) from the (initial value) to the (final value) in turn (using (step) between each (value)), the (code) is inserted into the input stream with \#1 replaced by the current (value). Thus the (code) should define a function of one argument (#1).

The functions \int_step_inline:nn and \int_step_inline:nnn both use a fixed (step) of 1, and in the case of \int_step_inline:nn the (initial value) is also fixed as 1. These functions are provided as simple short-cuts for code clarity.

\int_step_variable:nN \int_step_variable:nN \int_step_variable:nN \int_step_variable:nN

This function first evaluates the (initial value), (step) and (final value), all of which should be integer expressions. Then for each (value) from the (initial value) to the (final value) in turn (using (step) between each (value)), the (code) is inserted into the input stream, with the (tl var) defined as the current (value). Thus the (code) should make use of the (tl var).

The functions \int_step_variable:nN and \int_step_variable:nN both use a fixed (step) of 1, and in the case of \int_step_variable:nN the (initial value) is also fixed as 1. These functions are provided as simple short-cuts for code clarity.
21.8 Formatting integers

Integers can be placed into the output stream with formatting. These conversions apply to any integer expressions.

\int_to_arabic:n \{\text{int expr}\}

Places the value of the \text{int expr} in the input stream as digits, with category code 12 (other).

\int_to_alph:n \{\text{int expr}\}

Evaluates the \text{int expr} and converts the result into a series of letters, which are then left in the input stream. The conversion rule uses the 26 letters of the English alphabet, in order, adding letters when necessary to increase the total possible range of representable numbers. Thus

\int_to_alph:n \{1\}

places a in the input stream,

\int_to_alph:n \{26\}

is represented as z and

\int_to_alph:n \{27\}

is converted to aa. For conversions using other alphabets, use \texttt{\int_to_symbols:nnn} to define an alphabet-specific function. The basic \texttt{\int_to_alph:n} and \texttt{\int_to_Alph:n} functions should not be modified. The resulting tokens are digits with category code 12 (other) and letters with category code 11 (letter).

\int_to_symbols:nnn \{\text{int expr}\} \{\text{total symbols}\} \{\text{value to symbol mapping}\}

This is the low-level function for conversion of an \text{int expr} into a symbolic form (often letters). The \text{total symbols} available should be given as an integer expression. Values are actually converted to symbols according to the \text{value to symbol mapping}. This should be given as \text{total symbols} pairs of entries, a number and the appropriate symbol. Thus the \texttt{\int_to_alph:n} function is defined as

\cs_new:Npn \int_to_alph:n #1
{\int_to_symbols:nnn \{#1\} \{26\}
\{1\} \{a\}
\{2\} \{b\}
\ldots
\{26\} \{z\}\}
}
\int_to_bin:n \{(int expr)\}

Calculates the value of the \{(int expr)\} and places the binary representation of the result in the input stream.

\int_to_hex:n \int_to_Hex:n

\{(int expr)\}

Calculates the value of the \{(int expr)\} and places the hexadecimal (base 16) representation of the result in the input stream. Letters are used for digits beyond 9: lower case letters for \int_to_hex:n and upper case ones for \int_to_Hex:n. The resulting tokens are digits with category code 12 (other) and letters with category code 11 (letter).

\int_to_oct:n

\{(int expr)\}

Calculates the value of the \{(int expr)\} and places the octal (base 8) representation of the result in the input stream. The resulting tokens are digits with category code 12 (other) and letters with category code 11 (letter).

\int_to_base:nn \int_to_Base:nn

\{(int expr)\} \{(base)\}

Calculates the value of the \{(int expr)\} and converts it into the appropriate representation in the \{(base)\}; the later may be given as an integer expression. For bases greater than 10 the higher “digits” are represented by letters from the English alphabet: lower case letters for \int_to_base:n and upper case ones for \int_to_Base:n. The maximum \{(base)\} value is 36. The resulting tokens are digits with category code 12 (other) and letters with category code 11 (letter).

\int_to_roman:n \int_to_Roman:n

\{(int expr)\}

Places the value of the \{(int expr)\} in the input stream as Roman numerals, either lower case \int_to_roman:n or upper case \int_to_Roman:n. If the value is negative or zero, the output is empty. The Roman numerals are letters with category code 11 (letter). The letters used are mdcclxvi, repeated as needed: the notation with bars (such as \bar{v} for 5000) is not used. For instance \int_to_roman:n \{8249\} expands to mmmmmmmccxlix.

Updated: 2011-10-22

21.9 Converting from other formats to integers

\int_from_alph:n \int_from_alph:n

\{(letters)\}

Converts the \{(letters)\} into the integer (base 10) representation and leaves this in the input stream. The \{(letters)\} are first converted to a string, with no expansion. Lower and upper case letters from the English alphabet may be used, with “a” equal to 1 through to “z” equal to 26. The function also accepts a leading sign, made of + and -. This is the inverse function of \int_to_alph:n and \int_to_Alph:n.

\int_from_bin:n \int_from_bin:n

\{(binary number)\}

Converts the \{(binary number)\} into the integer (base 10) representation and leaves this in the input stream. The \{(binary number)\} is first converted to a string, with no expansion. The function accepts a leading sign, made of + and -, followed by binary digits. This is the inverse function of \int_to_bin:n.

Updated: 2014-08-25

Updated: 2014-08-25

174
\textbf{\texttt{\textbackslash int_from_hex:n}} \{\langle \text{hexadecimal number} \rangle\} \new{2014-02-11} \updated{2014-08-25}

Converts the \langle \text{hexadecimal number} \rangle into the integer (base 10) representation and leaves this in the input stream. Digits greater than 9 may be represented in the \langle \text{hexadecimal number} \rangle by upper or lower case letters. The \langle \text{hexadecimal number} \rangle is first converted to a string, with no expansion. The function also accepts a leading sign, made of + and -. This is the inverse function of \texttt{\textbackslash int_to_hex:n} and \texttt{\textbackslash int_to_Hex:n}.

\textbf{\texttt{\textbackslash int_from_oct:n}} \{\langle \text{octal number} \rangle\} \new{2014-02-11} \updated{2014-08-25}

Converts the \langle \text{octal number} \rangle into the integer (base 10) representation and leaves this in the input stream. The \langle \text{octal number} \rangle is first converted to a string, with no expansion. The function accepts a leading sign, made of + and -, followed by octal digits. This is the inverse function of \texttt{\textbackslash int_to_oct:n}.

\textbf{\texttt{\textbackslash int_from_roman:n}} \{\langle \text{roman numeral} \rangle\} \updated{2014-08-25}

Converts the \langle \text{roman numeral} \rangle into the integer (base 10) representation and leaves this in the input stream. The \langle \text{roman numeral} \rangle is first converted to a string, with no expansion. The \langle \text{roman numeral} \rangle may be in upper or lower case; if the numeral contains characters besides mdclxvi or MDCLXVI then the resulting value is \(-1\). This is the inverse function of \texttt{\textbackslash int_to_roman:n} and \texttt{\textbackslash int_to_Roman:n}.

\textbf{\texttt{\textbackslash int_from_base:nn}} \{\langle \text{number} \rangle\} \{\langle \text{base} \rangle\} \updated{2014-08-25}

Converts the \langle \text{number} \rangle expressed in \langle \text{base} \rangle into the appropriate value in base 10. The \langle \text{number} \rangle is first converted to a string, with no expansion. The \langle \text{number} \rangle should consist of digits and letters (either lower or upper case), plus optionally a leading sign. The maximum \langle \text{base} \rangle value is 36. This is the inverse function of \texttt{\textbackslash int_to_base:nn} and \texttt{\textbackslash int_to_Base:nn}.

\section*{21.10 Random integers}

\textbf{\texttt{\textbackslash int_rand:nn}} \{\langle \text{int expr}_1 \rangle\} \{\langle \text{int expr}_2 \rangle\} \new{2016-12-06} \updated{2018-04-27}

Evaluates the two \langle \text{int expr} \rangle s and produces a pseudo-random number between the two (with bounds included). This is not available in older versions of \texttt{Xe\LaTeX}.

\textbf{\texttt{\textbackslash int_rand:n}} \{\langle \text{int expr} \rangle\} \new{2018-05-05}

Evaluates the \langle \text{int expr} \rangle then produces a pseudo-random number between 1 and the \langle \text{int expr} \rangle (included). This is not available in older versions of \texttt{Xe\LaTeX}.

\section*{21.11 Viewing integers}

\textbf{\texttt{\textbackslash int_show:N}} \{\langle \text{integer} \rangle\}

Displays the value of the \langle \text{integer} \rangle on the terminal.

21.12 Constant integers

Integer values used with primitive tests and assignments: their self-terminating nature makes these more convenient and faster than literal numbers.

\c_zero_int \c_one_int

The maximum value that can be stored as an integer.

\c_max_int

Maximum number of registers.

\c_max_char_int

Maximum character code completely supported by the engine.

21.13 Scratch integers

Scratch integer for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\l_tmpa_int \l_tmpb_int

Scratch integer for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
21.14 Direct number expansion

\texttt{\textbackslash int_value:w} \texttt{\textbackslash (integer)} \texttt{\textbackslash int_value:w} \texttt{\textbackslash (integer\ denotation)} \texttt{(optional\ space)}

Expands the following tokens until an \texttt{\textbackslash (integer)} is formed, and leaves a normalized form (no leading sign except for negative numbers, no leading digit 0 except for zero) in the input stream as category code 12 (other) characters. The \texttt{\textbackslash (integer)} can consist of any number of signs (with intervening spaces) followed by

- an integer variable (in fact, any \TeX{} register except \texttt{\toks}) or
- explicit digits (or by \texttt{'(octal\ digits)} or \texttt{"(hexadecimal\ digits)} or \texttt{'(character)}).

In this last case expansion stops once a non-digit is found; if that is a space it is removed as in \texttt{f}\texttt{-}\texttt{expansion}, and so \texttt{\exp_stop_f:} may be employed as an end marker. Note that protected functions \texttt{are} expanded by this process.

This function requires exactly one expansion to produce a value, and so is suitable for use in cases where a number is required “directly”. In general, \texttt{\textbackslash int_eval:n} is the preferred approach to generating numbers.

\TeX{}hackers note: This is the \TeX{} primitive \texttt{\textbackslash number}.

21.15 Primitive conditionals

\texttt{\if\textbackslash int_compare:w} \texttt{\textbackslash if_int_compare:w} \texttt{\textbackslash (integer1)} \texttt{\textbackslash (relation)} \texttt{\textbackslash (integer2)} \texttt{\textbackslash (true\ code)} \texttt{\else:} \texttt{\textbackslash (false\ code)} \texttt{\fi:}

Compare two integers using \texttt{\textbackslash (relation)}, which must be one of \texttt{=} , \texttt{< } or \texttt{>} with category code 12. The \texttt{\else:} branch is optional.

\TeX{}hackers note: This is the \TeX{} primitive \texttt{\ifnum}.

\texttt{\if\textbackslash case:w} \texttt{\textbackslash if_case:w} \texttt{\textbackslash (integer)} \texttt{\textbackslash (case0)} \texttt{\or:} \texttt{\textbackslash or:} \texttt{\textbackslash (integer1)} \texttt{\or:} \texttt{\textbackslash or:} \texttt{\ldots} \texttt{\else:} \texttt{\textbackslash (default)} \texttt{\fi:}

Selects a case to execute based on the value of the \texttt{\textbackslash (integer)}. The first case \texttt{(\textbackslash case0)} is executed if \texttt{\textbackslash (integer)} is 0, the second \texttt{(\textbackslash case1)} if the \texttt{\textbackslash (integer)} is 1, \texttt{etc}. The \texttt{\textbackslash (integer)} may be a literal, a constant or an integer expression (\texttt{e.g.} using \texttt{\textbackslash int_eval:n}).

\TeX{}hackers note: These are the \TeX{} primitives \texttt{\ifcase} and \texttt{\or}.
\if_int_odd:w \if_int_odd:w \exp:w \if_int_odd:w \toks:w \fi:w
\else:w
 \true:w
\fi:w

Expands \emph{tokens} until a non-numeric token or a space is found, and tests whether the resulting \emph{integer} is odd. If so, \emph{true code} is executed. The \texttt{\else:} branch is optional.

\TeXHacksNote This is the \TeX{} primitive \texttt{ifodd}.
Chapter 22

The l3flag package

Expandable flags

Flags are the only data-type that can be modified in expansion-only contexts. This module is meant mostly for kernel use: in almost all cases, booleans or integers should be preferred to flags because they are very significantly faster.

A flag can hold any non-negative value, which we call its \langle height \rangle. In expansion-only contexts, a flag can only be “raised”: this increases the \langle height \rangle by 1. The \langle height \rangle can also be queried expandably. However, decreasing it, or setting it to zero requires non-expandable assignments.

Flag variables are always local. They are referenced by a \langle flag name \rangle such as \texttt{@@_missing}. The \langle flag name \rangle is used as part of \use:c constructions hence is expanded at point of use. It must expand to character tokens only, with no spaces.

A typical use case of flags would be to keep track of whether an exceptional condition has occurred during expandable processing, and produce a meaningful (non-expandable) message after the end of the expandable processing. This is exemplified by \texttt{l3str-convert}, which for performance reasons performs conversions of individual characters expandably and for readability reasons produces a single error message describing incorrect inputs that were encountered.

Flags should not be used without carefully considering the fact that raising a flag takes a time and memory proportional to its height. Flags should not be used unless unavoidable.

22.1 Setting up flags

\flag_new:n \{\langle flag name \rangle\}

Creates a new flag with a name given by \langle flag name \rangle, or raises an error if the name is already taken. The \langle flag name \rangle may not contain spaces. The declaration is global, but flags are always local variables. The \langle flag \rangle initially has zero height.

\flag_clear:n \{\langle flag name \rangle\}

The \langle flag \rangle’s height is set to zero. The assignment is local.
\flag_clear_new:n \flag_clear_new:n \{flag name\}

Ensures that the \textit{flag} exists globally by applying \flag_new:n if necessary, then applies \flag_clear:n, setting the height to zero locally.

\flag_show:n \flag_show:n \{flag name\}

Displays the \textit{flag}'s height in the terminal.

\flag_log:n \flag_log:n \{flag name\}

Writes the \textit{flag}'s height to the log file.

22.2 Expandable flag commands

\flag_if_exist_p:n \flag_if_exist_p:n \{flag name\}
\flag_if_exist_nTF \flag_if_exist_nTF \{flag name\} \{(true code)\} \{(false code)\}

This function returns \texttt{true} if the \textit{flag name} references a flag that has been defined previously, and \texttt{false} otherwise.

\flag_if_raised_p:n \flag_if_raised_p:n \{flag name\}
\flag_if_raised_nTF \flag_if_raised_nTF \{flag name\} \{(true code)\} \{(false code)\}

This function returns \texttt{true} if the \textit{flag} has non-zero height, and \texttt{false} if the \textit{flag} has zero height.

\flag_height:n \flag_height:n \{flag name\}

Expands to the height of the \textit{flag} as an integer denotation.

\flag_raise:n \flag_raise:n \{flag name\}

The \textit{flag}'s height is increased by 1 locally.

\flag_ensure_raised:n \flag_ensure_raised:n \{flag name\}

Ensures the \textit{flag} is raised by making its height at least 1, locally.
Chapter 23
The l3clist package
Comma separated lists

Comma lists (in short, clist) contain ordered data where items can be added to the left or right end of the list. This data type allows basic list manipulations such as adding/removing items, applying a function to every item, removing duplicate items, extracting a given item, using the comma list with specified separators, and so on. Sequences (defined in l3seq) are safer, faster, and provide more features, so they should often be preferred to comma lists. Comma lists are mostly useful when interfacing with \LaTeX or other code that expects or provides items separated by commas.

Several items can be added at once. To ease input of comma lists from data provided by a user outside an \ExplSyntaxOn ... \ExplSyntaxOff block, spaces are removed from both sides of each comma-delimited argument upon input. Blank arguments are ignored, to allow for trailing commas or repeated commas (which may otherwise arise when concatenating comma lists “by hand”). In addition, a set of braces is removed if the result of space-trimming is braced: this allows the storage of any item in a comma list. For instance,

\begin{verbatim}
\clist_new:N \l_my_clist
\clist_put_left:Nn \l_my_clist { -a- , -{b}- , c\-d }
\clist_put_right:Nn \l_my_clist { -{e-} , , {f} , }
\end{verbatim}

results in \l_my_clist containing a,b,c\-d,e\- and \{f\}. Comma lists normally do not contain empty or blank items so the following gives an empty comma list:

\begin{verbatim}
\clist_clear_new:N \l_my_clist
\clist_set:Nn \l_my_clist { , , , }
\clist_if_empty:NTF \l_my_clist { true } { false }
\end{verbatim}

and it leaves true in the input stream. To include an “unsafe” item (empty, or one that contains a comma, or starts or ends with a space, or is a single brace group), surround it with braces.

Any n-type token list is a valid comma list input for l3clist functions, which will split the token list at every comma and process the items as described above. On the other hand, \texttt{N}-type functions expect comma list variables, which are particular token list variables in which this processing of items (and removal of blank items) has already
occurred. Because comma list variables are token list variables, expanding them once yields their items separated by commas, and \textbf{\texttt{l3tl}} functions such as \texttt{\tl_show:N} can be applied to them. (These functions often have \textbf{\texttt{l3clist}} analogues, which should be preferred.)

Almost all operations on comma lists are noticeably slower than those on sequences so converting the data to sequences using \texttt{\seq_set_from_clist:Nn} (see \textbf{\texttt{l3seq}}) may be advisable if speed is important. The exception is that \texttt{\clist_if_in:NnTF} and \texttt{\clist_remove_duplicates:N} may be faster than their sequence analogues for large lists. However, these functions work slowly for “unsafe” items that must be braced, and may produce errors when their argument contains \{, \} or \# (assuming the usual \TeX{} category codes apply). The sequence data type should thus certainly be preferred to comma lists to store such items.

23.1 Creating and initialising comma lists

\begin{itemize}
 \item \texttt{\clist_new:N} \texttt{\clist_new:}}\langle\textit{clist var}\rangle

 Creates a new \langle\textit{clist var}\rangle or raises an error if the name is already taken. The declaration is global. The \langle\textit{clist var}\rangle initially contains no items.

 \item \texttt{\clist_new:Nn} \texttt{\clist_new:c}

 Creates a new constant \langle\textit{clist var}\rangle or raises an error if the name is already taken. The value of the \langle\textit{clist var}\rangle is set globally to the \langle\textit{comma list}\rangle.

 \item \texttt{\clist_clear:N}\langle\textit{clist var}\rangle

 Clears all items from the \langle\textit{clist var}\rangle.

 \item \texttt{\clist_clear:Nn} \texttt{\clist_clear:c}

 Ensures that the \langle\textit{clist var}\rangle exists globally by applying \texttt{\clist_new:N} if necessary, then applies \texttt{\clist_(g)clear:N} to leave the list empty.

 \item \texttt{\clist_set_eq:NN} \texttt{\clist_set_eq:}}\langle\textit{comma list}\rangle \langle\textit{comma list}\rangle

 Sets the content of \langle\textit{comma list}\rangle equal to that of \langle\textit{comma list}\rangle. To set a token list variable equal to a comma list variable, use \texttt{\tl_set_eq:NN}. Conversely, setting a comma list variable to a token list is unadvisable unless one checks space-trimming and related issues.

 \item \texttt{\clist_set_from_seq:NN} \texttt{\clist_set_from_seq:}}\langle\textit{sequence}\rangle

 Converts the data in the \langle\textit{sequence}\rangle into a \langle\textit{clist var}\rangle: the original \langle\textit{sequence}\rangle is unchanged. Items which contain either spaces or commas are surrounded by braces.
\end{itemize}
\clist_concat:NNN \clist_concat:ccc
\clist_gconcat:NNN \clist_gconcat:ccc

\clist_if_exist_p:N ⋆ \clist_if_exist:p:c ⋆ \clist_if_exist:N TF ⋆ \clist_if_exist:c ⋆

\clist_set:Nn \clist_set:(NV|Ne|No|cn|cV|ce|co)
\clist_gset:Nn \clist_gset:(NV|Ne|No|cn|cV|ce|co)

\clist_put_left:Nn \clist_put_left:(NV|Ne|No|cn|cV|cv|ce|co)
\clist_gput_left:Nn \clist_gput_left:(NV|Ne|No|cn|cV|cv|ce|co)

\clist_put_right:Nn \clist_put_right:(NV|Ne|No|cn|cV|cv|ce|co)
\clist_gput_right:Nn \clist_gput_right:(NV|Ne|No|cn|cV|cv|ce|co)

23.2 Adding data to comma lists

\clist_set:Nn \clist_set:(item_1),...,(item_n)}
\clist_set:Nn \clist_set:(item_1),...,(item_n)}
\clist_gset:Nn \clist_gset:(item_1),...,(item_n)}
\clist_gput_left:Nn \clist_gput_left:(item_1),...,(item_n)}
\clist_gput_right:Nn \clist_gput_right:(item_1),...,(item_n)}

Sets \(\text{clist var}\) to contain the \(\langle\text{items}\rangle\), removing any previous content from the variable. Blank items are omitted, spaces are removed from both sides of each item, then a set of braces is removed if the resulting space-trimmed item is braced. To store some \(\langle\text{tokens}\rangle\) as a single \(\langle\text{item}\rangle\) even if the \(\langle\text{tokens}\rangle\) contain commas or spaces, add a set of braces:
\[
\text{\clist_set:Nn}
\text{\clist_set:NV|Ne|No|cn|cV|ce|co}
\{
\{\langle\text{tokens}\}\}
\]

Updated: 2011-09-06

Appends the \(\langle\text{items}\rangle\) to the left of the \(\langle\text{clist var}\rangle\). Blank items are omitted, spaces are removed from both sides of each item, then a set of braces is removed if the resulting space-trimmed item is braced. To append some \(\langle\text{tokens}\rangle\) as a single \(\langle\text{item}\rangle\) even if the \(\langle\text{tokens}\rangle\) contain commas or spaces, add a set of braces:
\[
\text{\clist_put_left:Nn}
\text{\clist_put_left:NV|Ne|No|cn|cV|cv|ce|co}
\{
\{\langle\text{tokens}\}\}
\]

Updated: 2011-09-06

Appends the \(\langle\text{items}\rangle\) to the right of the \(\langle\text{clist var}\rangle\). Blank items are omitted, spaces are removed from both sides of each item, then a set of braces is removed if the resulting space-trimmed item is braced. To append some \(\langle\text{tokens}\rangle\) as a single \(\langle\text{item}\rangle\) even if the \(\langle\text{tokens}\rangle\) contain commas or spaces, add a set of braces:
\[
\text{\clist_put_right:Nn}
\text{\clist_put_right:NV|Ne|No|cn|cV|cv|ce|co}
\{
\{\langle\text{tokens}\}\}
\]

Updated: 2011-09-06
23.3 Modifying comma lists

While comma lists are normally used as ordered lists, it may be necessary to modify the content. The functions here may be used to update comma lists, while retaining the order of the unaffected entries.

\clist_remove_duplicates:N \clist_remove_duplicates:N \clist_gremove_duplicates:N \clist_gremove_duplicates:c

Removes duplicate items from the \clist{clist var}, leaving the left most copy of each item in the \clist{clist var}. The \item{item} comparison takes place on a token basis, as for \tl_if_eq:nnTF.

\textbf{\TeX{}hackers note:} This function iterates through every item in the \clist{clist var} and does a comparison with the \item{items} already checked. It is therefore relatively slow with large comma lists. Furthermore, it may fail if any of the items in the \clist{clist var} contains {,}, or # (assuming the usual \TeX{} category codes apply).

\clist_remove_all:Nn \clist_remove_all:Nn \clist_gremove_all:Nn \clist_gremove_all:Nn

Updated: 2011-09-06

Removes every occurrence of \item{item} from the \clist{clist var}. The \item{item} comparison takes place on a token basis, as for \tl_if_eq:nnTF.

\textbf{\TeX{}hackers note:} The function may fail if the \item{item} contains {,}, or # (assuming the usual \TeX{} category codes apply).

\clist_reverse:N \clist_reverse:N \clist_greverse:N \clist_greverse:c

New: 2014-07-18

Reverses the order of items stored in the \clist{clist var}.

\clist_reverse:n \clist_reverse:n

New: 2014-07-18

Leaves the items in the \clist{comma list} in the input stream in reverse order. Contrarily to other what is done for other \texttt{n-type} \clist{comma list} arguments, braces and spaces are preserved by this process.

\textbf{\TeX{}hackers note:} The result is returned within \texttt{\unexpanded}, which means that the comma list does not expand further when appearing in an \texttt{e-type} or \texttt{x-type} argument expansion.
\clist_sort:Nn \clist_sort:cn \clist_gsort:Nn \clist_gsort:cn
\newcommand{\clist_sort:Nn}{\clist_sort:cn} \newcommand{\clist_gsort:Nn}{\clist_gsort:cn}

\section{Comma list conditionals}

\clist_if_empty_p:N \clist_if_empty:NTF \clist_if_empty:N \clist_if_empty:c \clist_if_empty_p:n \clist_if_empty:nTF
\newcommand{\clist_if_empty_p:N}{\clist_if_empty:NTF} \newcommand{\clist_if_empty:p:n}{\clist_if_empty:nTF}

\clist_if_in:NnTF \clist_if_in:N \clist_if_in:NV \clist_if_in:n \clist_if_in:nTF
\newcommand{\clist_if_in:NnTF}{\clist_if_in:N \clist_if_in:nTF}

\section{Mapping over comma lists}

The functions described in this section apply a specified function to each item of a comma list. All mappings are done at the current group level, \textit{i.e.} any local assignments made by the \textit{function} or \textit{code} discussed below remain in effect after the loop.

When the comma list is given explicitly, as an n-type argument, spaces are trimmed around each item. If the result of trimming spaces is empty, the item is ignored. Otherwise, if the item is surrounded by braces, one set is removed, and the result is passed to the mapped function. Thus, if the comma list that is being mapped is \{a\}, \{b\}, \{c\}, then the arguments passed to the mapped function are \texttt{a}, \texttt{b}, an empty argument, and \texttt{c}.

\begin{verbatim}
\clist_if_in:nTF { a , {b} , {c} , b } { true } { false }
\end{verbatim}

yields \texttt{true}.

\textbf{TeXhackers note:} The function may fail if the \textit{item} contains \{, \}, or \# (assuming the usual \TeX{} category codes apply).
When the comma list is given as an \texttt{N}-type argument, spaces have already been
trimmed on input, and items are simply stripped of one set of braces if any. This case is
more efficient than using \texttt{n}-type comma lists.

\begin{verbatim}
\clist_map_function:NN \clist_map_function:cn \clist_map_function:nn
\end{verbatim}

\texttt{\clist_map_function:NN \clist var \{function\}}

Applies \texttt{(function)} to every \texttt{(item)} stored in the \texttt{(clist var)}. The \texttt{(function)} receives one
argument for each iteration. The \texttt{(items)} are returned from left to right. The function
\texttt{\clist_map_inline:Nn} is in general more efficient than \texttt{\clist_map_function:NN}.

\begin{verbatim}
\clist_map_inline:Nn \clist_map_inline:cn \clist_map_inline:nn
\end{verbatim}

\texttt{\clist_map_inline:Nn \clist var \{inline function\}}

Applies \texttt{(inline function)} to every \texttt{(item)} stored within the \texttt{(clist var)}. The \texttt{(inline
function)} should consist of code which receives the \texttt{(item)} as \#1. The \texttt{(items)} are returned
from left to right.

\begin{verbatim}
\clist_map_variable:NNn \clist_map_variable:cn \clist_map_variable:nn
\end{verbatim}

\texttt{\clist_map_variable:NNn \clist var \{variable\} \{code\}}

Stores each \texttt{(item)} of the \texttt{(clist var)} in turn in the (token list) \texttt{(variable)} and applies the
\texttt{(code)}. The \texttt{(code)} will usually make use of the \texttt{(variable)}, but this is not enforced. The
assignments to the \texttt{(variable)} are local. Its value after the loop is the last \texttt{(item)} in the
\texttt{(comma list)}, or its original value if there were no \texttt{(item)}. The \texttt{(items)} are returned from
left to right.

\begin{verbatim}
\clist_map_tokens:Nn \clist_map_tokens:cn \clist_map_tokens:nn
\end{verbatim}

\texttt{\clist_map_tokens:Nn \clist var \{code\}}

\texttt{\clist_map_tokens:nn \{comma list\} \{code\}}

Calls \texttt{(code)} \texttt{(item)} for every \texttt{(item)} stored in the \texttt{(clist var)}. The \texttt{(code)} receives each
\texttt{(item)} as a trailing brace group. If the \texttt{(code)} consists of a single function this is equivalent
to \texttt{\clist_map_function:nN}.

\begin{verbatim}
\clist_map_break: \end{verbatim}

\texttt{\clist_map_break:}

Used to terminate a \texttt{\clist_map...} function before all entries in the \texttt{(comma list)} have
been processed. This normally takes place within a conditional statement, for example

\begin{verbatim}
\clist_map_inline:Nn \l_my_clist
{ \str_if_eq:nnTF { #1 } { bingo } { \clist_map_break: }
 \% Do something useful }
\end{verbatim}

Use outside of a \texttt{\clist_map...} scenario leads to low level \LaTeX{} errors.

\textbf{\TeX{}hackers note:} When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.
\clist_map_break:n

Used to terminate a \clist_map_... function before all entries in the \langle comma list \rangle have been processed, inserting the \langle code \rangle after the mapping has ended. This normally takes place within a conditional statement, for example

\clist_map_inline:Nn \l_my_clist
{\str_if_eq:nnTF { #1 } { bingo } { \clist_map_break:n { <code> } }{ % Do something useful }}

Use outside of a \clist_map_... scenario leads to low level \TeX errors.

\TeXhackers note: When the mapping is broken, additional tokens may be inserted before the \langle code \rangle is inserted into the input stream. This depends on the design of the mapping function.

\clist_count:N
\clist_count:c
\clist_count:e

Leaves the number of items in the \langle clist var \rangle in the input stream as an \langle integer denotation \rangle. The total number of items in a \langle clist var \rangle includes those which are duplicates, i.e. every item in a \langle clist var \rangle is counted.

23.6 Using the content of comma lists directly

\clist_use:Nnnn
\clist_use:nnnn

Places the contents of the \langle clist var \rangle in the input stream, with the appropriate \langle separator \rangle between the items. Namely, if the comma list has more than two items, the \langle separator between more than two \rangle is placed between each pair of items except the last, for which the \langle separator between final two \rangle is used. If the comma list has exactly two items, then they are placed in the input stream separated by the \langle separator between two \rangle. If the comma list has a single item, it is placed in the input stream, and a comma list with no items produces no output. An error is raised if the variable does not exist or if it is invalid.

For example,

\clist_set:Nn \l_tmpa_clist { a , b , , c , {de} , f }
\clist_use:Nnnn \l_tmpa_clist { -and- } { , - } { , -and- }

inserts “a, b, c, de, and f” in the input stream. The first separator argument is not used in this case because the comma list has more than 2 items.

\TeXhackers note: The result is returned within the \langle unexpanded primitive \langle \exp_not:n \rangle, which means that the \langle items \rangle do not expand further when appearing in an e-type or x-type argument expansion.
\clist_use:Nn \clist_use:Nn \clist var \{\langle \text{separator} \rangle \}

Places the contents of the \clist var in the input stream, with the \langle \text{separator} \rangle between the items. If the comma list has a single item, it is placed in the input stream, and a comma list with no items produces no output. An error is raised if the variable does not exist or if it is invalid.

For example,

\begin{verbatim}
\clist_set:Nn \l_tmpa_clist { a, b, , c, \{de\}, f }
\clist_use:Nn \l_tmpa_clist { -and- }
\end{verbatim}

inserts “a and b and c and de and f” in the input stream.

\texttt{TeXhackers note: The result is returned within the \texttt{\unexpanded} primitive (\exp_not:n), which means that the \langle \text{items} \rangle do not expand further when appearing in an \texttt{e}-type or \texttt{x}-type argument expansion.

\clist_use:nnnn \clist_use:nnnn \comma list \{\langle \text{separator between two} \rangle \}

Places the contents of the \comma list in the input stream, with the appropriate \langle \text{separator} \rangle between the items. As for \clist_set:Nn, blank items are omitted, spaces are removed from both sides of each item, then a set of braces is removed if the resulting space-trimmed item is braced. The \langle \text{separators} \rangle are then inserted in the same way as for \clist_use:NNNn and \clist_use:NN, respectively.

\texttt{TeXhackers note: The result is returned within the \texttt{\unexpanded} primitive (\exp_not:n), which means that the \langle \text{items} \rangle do not expand further when appearing in an \texttt{e}-type or \texttt{x}-type argument expansion.

23.7 Comma lists as stacks

Comma lists can be used as stacks, where data is pushed to and popped from the top of the comma list. (The left of a comma list is the top, for performance reasons.) The stack functions for comma lists are not intended to be mixed with the general ordered data functions detailed in the previous section: a comma list should either be used as an ordered data type or as a stack, but not in both ways.

\begin{verbatim}
\clist_get:NN \clist_get:NN \clist_get:CN
\clist_get:NN \clist_get:cN \clist_get:NN \clist_get:n
\end{verbatim}

Stores the left-most item from a \langle \text{clist var} \rangle in the \langle \text{token list variable} \rangle without removing it from the \langle \text{clist var} \rangle. The \langle \text{token list variable} \rangle is assigned locally. In the non-branching version, if the \langle \text{clist var} \rangle is empty the \langle \text{token list variable} \rangle is set to the marker value \texttt{\q_no_value}.

\begin{verbatim}
\clist_pop:NN \clist_pop:NN \clist_pop:CN
\clist_pop:NN \clist_pop:cN \clist_pop:NN \clist_pop:n
\end{verbatim}

Pops the left-most item from a \langle \text{clist var} \rangle into the \langle \text{token list variable} \rangle, \textit{i.e.} removes the item from the comma list and stores it in the \langle \text{token list variable} \rangle. Both of the variables are assigned locally.
\clist_gpop:NN \clist_gpop:NN \clist_gpop:N \clist_gpop:n \clist_gpop:cn \clist_gpop:NN \clist_gpop:cN

Pops the left-most item from a \langle \clist var \rangle into the \langle \token list variable \rangle., i.e. removes the item from the comma list and stores it in the \langle \token list variable \rangle. The \langle \clist var \rangle is modified globally, while the assignment of the \langle \token list variable \rangle is local.

\clist_gpop:NN \clist_gpop:NN \clist_gpop:NN \clist_gpop:NN \clist_gpop:NN \clist_gpop:NN \clist_gpop:NN \clist_gpop:NN \clist_gpop:NN

If the \langle \clist var \rangle is empty, leaves the \langle \false code \rangle in the input stream. The value of the \langle \token list variable \rangle is not defined in this case and should not be relied upon. If the \langle \clist var \rangle is non-empty, pops the top item from the \langle \clist var \rangle in the \langle \token list variable \rangle, i.e. removes the item from the \langle \clist var \rangle. Both the \langle \clist var \rangle and the \langle \token list variable \rangle are assigned locally.

\clist_gpush:Nn \clist_gpush:Nn \clist_gpush:Nn

If the \langle \clist var \rangle is empty, leaves the \langle \false code \rangle in the input stream. The value of the \langle \token list variable \rangle is not defined in this case and should not be relied upon. If the \langle \clist var \rangle is non-empty, pops the top item from the \langle \clist var \rangle in the \langle \token list variable \rangle, i.e. removes the item from the \langle \clist var \rangle. The \langle \clist var \rangle is modified globally, while the \langle \token list variable \rangle is assigned locally.

\clist_item:Nn \clist_item:Nn \clist_item:Nn \clist_item:Nn

Adding the \langle \items \rangle to the top of the \langle \clist var \rangle. Spaces are removed from both sides of each item as for any \texttt{n}-type comma list.

\list_item:Nn \list_item:Nn \list_item:Nn \list_item:Nn

Indexing items in the \langle \clist var \rangle from 1 at the top (left), this function evaluates the \langle \int expr \rangle and leaves the appropriate item from the comma list in the input stream. If the \langle \int expr \rangle is negative, indexing occurs from the bottom (right) of the comma list. When the \langle \int expr \rangle is larger than the number of items in the \langle \clist var \rangle (as calculated by \clist_count:N) then the function expands to nothing.

\TeXhackers note: The result is returned within the \unexpanded primitive \langle \exp_not:n \rangle, which means that the \langle \item \rangle does not expand further when appearing in an \texttt{e}-type or \texttt{x}-type argument expansion.

23.8 Using a single item
\clist_rand_item:N \clist_rand_item:c \clist_rand_item:n * Selects a pseudo-random item of the \clist var/\comma list. If the \comma list has no item, the result is empty.

\TeXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n), which means that the \item does not expand further when appearing in an e-type or x-type argument expansion.

23.9 Viewing comma lists

\clist_show:N \clist_show:c Displays the entries in the \clist in the terminal.

\clist_show:n \clist_show:n {\tokens} Displays the entries in the comma list in the terminal.

\clist_log:N \clist_log:c Writes the entries in the \clist in the log file. See also \clist_show:N which displays the result in the terminal.

\clist_log:n \clist_log:n {\tokens} Writes the entries in the comma list in the log file. See also \clist_show:n which displays the result in the terminal.

23.10 Constant and scratch comma lists

\c_empty_clist Constant that is always empty.

\l_tmpa_clist \l_tmpb_clist Scratch comma lists for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_clist \g_tmpb_clist Scratch comma lists for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
Chapter 24

The l3token package
Token manipulation

This module deals with tokens. Now this is perhaps not the most precise description so let’s try with a better description: When programming in \TeX{}, it is often desirable to know just what a certain token is: is it a control sequence or something else. Similarly one often needs to know if a control sequence is expandable or not, a macro or a primitive, how many arguments it takes etc. Another thing of great importance (especially when it comes to document commands) is looking ahead in the token stream to see if a certain character is present and maybe even remove it or disregard other tokens while scanning. This module provides functions for both and as such has two primary function categories: \token{} for anything that deals with tokens and \peek{} for looking ahead in the token stream.

Most functions we describe here can be used on control sequences, as those are tokens as well.

It is important to distinguish two aspects of a token: its “shape” (for lack of a better word), which affects the matching of delimited arguments and the comparison of token lists containing this token, and its “meaning”, which affects whether the token expands or what operation it performs. One can have tokens of different shapes with the same meaning, but not the converse.

For instance, \if:, \if_charcode:, and \tex_if:D are three names for the same internal operation of \TeX{}, namely the primitive testing the next two characters for equality of their character code. They have the same meaning hence behave identically in many situations. However, \TeX{} distinguishes them when searching for a delimited argument. Namely, the example function \show_until_if:w defined below takes everything until \if:w as an argument, despite the presence of other copies of \if:w under different names.

\begin{verbatim}
\cs_new:Npn \show_until_if:w #1 \if:w { \tl_show:n {#1} }
\show_until_if:w \tex_if:D \if_charcode:w \if:w
\end{verbatim}

A list of all possible shapes and a list of all possible meanings are given in section 24.7.
24.1 Creating character tokens

\char_set_active_eq:NN \char_set_active_eq:Nc \char_gset_active_eq:NN \char_gset_active_eq:Nc
 \char_set_active_eq:nn \char_set_active_eq:nnn \char_set_active_eq:nc \char_gset_active_eq:nn \char_gset_active_eq:nnn \char_gset_active_eq:nc

Sets the behaviour of the \langle char \rangle in situations where it is active (category code 13) to be equivalent to that of the \langle function \rangle. The category code of the \langle char \rangle is unchanged by this process. The \langle function \rangle may itself be an active character.

\char_set_active_eq:nN \char_set_active_eq:nc \char_gset_active_eq:nN \char_gset_active_eq:nc

Sets the behaviour of the \langle char \rangle which has character code as given by the \langle integer expression \rangle in situations where it is active (category code 13) to be equivalent to that of the \langle function \rangle. The category code of the \langle char \rangle is unchanged by this process. The \langle function \rangle may itself be an active character.

\char_generate:nn \char_generate:nnn

Generates a character token of the given \langle charcode \rangle and \langle catcode \rangle (both of which may be integer expressions). The \langle catcode \rangle may be one of

- 1 (begin group)
- 2 (end group)
- 3 (math toggle)
- 4 (alignment)
- 6 (parameter)
- 7 (math superscript)
- 8 (math subscript)
- 10 (space)
- 11 (letter)
- 12 (other)
- 13 (active)

and other values raise an error. The \langle charcode \rangle may be any one valid for the engine in use, except that for \langle catcode \rangle 10, \langle charcode \rangle 0 is not allowed. Active characters cannot be generated in older versions of Xe\TeX. Another way to build token lists with unusual category codes is \texttt{\regex_replace:nnN {.*} \{\textbackslash replacement\} \tl var}.

\textbf{\TeX\hackers\note:} Exactly two expansions are needed to produce the character.

\c_catcode_active_space_tl

Token list containing one character with category code 13, ("active"), and character code 32 (space).
24.2 Manipulating and interrogating character tokens

\char_set_catcode_escape:N \char_set_catcode_letter:N \langle \text{character} \rangle
\char_set_catcode_group_begin:N
\char_set_catcode_group_end:N
\char_set_catcode_math_toggle:N
\char_set_catcode_alignment:N
\char_set_catcode_end_line:N
\char_set_catcode_parameter:N
\char_set_catcode_math_superscript:N
\char_set_catcode_math_subscript:N
\char_set_catcode_ignore:N
\char_set_catcode_space:N
\char_set_catcode_letter:N
\char_set_catcode_active:N
\char_set_catcode_other:N
\char_set_catcode_comment:N
\char_set_catcode_invalid:N

Sets the category code of the \langle character \rangle to that indicated in the function name. Depending on the current category code of the \langle token \rangle the escape token may also be needed:

\char_set_catcode_other:N \%

The assignment is local.
\char_set_catcode:nn \{\text{integer expression}\} \{\text{integer expression}\}

Sets the category code of the \textit{character} which has character code as given by the \textit{integer expression}. This version can be used to set up characters which cannot otherwise be given (cf. the \texttt{N}-type variants). The assignment is local.

\char_set_catcode:nn {\text{int expr}_1} {\text{int expr}_2}

These functions set the category code of the \textit{character} which has character code as given by the \textit{integer expression}. The first \textit{integer expression} is the character code and the second is the category code to apply. The setting applies within the current \TeX\ group. In general, the symbolic functions \char_set_catcode_\langle\text{type}\rangle should be preferred, but there are cases where these lower-level functions may be useful.

\char_value_catcode:n \{\text{integer expression}\}

Expands to the current category code of the \textit{character} with character code given by the \textit{integer expression}.

\char_show_value_catcode:n \{\text{integer expression}\}

Displays the current category code of the \textit{character} with character code given by the \textit{integer expression} on the terminal.

\char_set_lccode:nn {\text{int expr}_1} {\text{int expr}_2}

Sets up the behaviour of the \textit{character} when found inside \texttt{text_lowercase:n}, such that \textit{character}_1 will be converted into \textit{character}_2. The two \textit{characters} may be specified using an \textit{integer expression} for the character code concerned. This may include the \TeX\ \texttt{\char{\text{character}}} method for converting a single character into its character code:

\begin{verbatim}
\char_set_lccode:nn { \text{"A"} } { \text{"a"} } \% Standard behaviour
\char_set_lccode:nn { \text{"\text{	extbackslash A"} + 32} } \% Single character conversion
\char_set_lccode:nn { 50 } { 60 }
\end{verbatim}

The setting applies within the current \TeX\ group.
\char_value_lccode:n \{ \text{integer expression} \}

Expands to the current lower case code of the \textit{character} with character code given by the \textit{integer expression}.

\char_show_value_lccode:n \{ \text{integer expression} \}

Displays the current lower case code of the \textit{character} with character code given by the \textit{integer expression} on the terminal.

\char_set_uccode:nn \{ \text{int expr}_1 \} \{ \text{int expr}_2 \}

Sets up the behaviour of the \textit{character} when found inside \texttt{text_uppercase:n}, such that \textit{character}_1 will be converted into \textit{character}_2. The two \textit{characters} may be specified using an \textit{integer expression} for the character code concerned. This may include the \TeX \textit{\textbackslash{}character} method for converting a single character into its character code:

\begin{verbatim}
\char_set_uccode:nn \{ \texttt{\textbackslash{a}} \} \{ \texttt{\textbackslash{A}} \} \% Standard behaviour
\char_set_uccode:nn \{ \texttt{\textbackslash{A}} \} \{ \texttt{\textbackslash{A} - 32} \}
\char_set_uccode:nn \{ 60 \} \{ 50 \}
\end{verbatim}

The setting applies within the current \TeX{} group.

\char_value_uccode:n \{ \text{integer expression} \}

Expands to the current upper case code of the \textit{character} with character code given by the \textit{integer expression}.

\char_show_value_uccode:n \{ \text{integer expression} \}

Displays the current upper case code of the \textit{character} with character code given by the \textit{integer expression} on the terminal.

\char_set_mathcode:nn \{ \text{int expr}_1 \} \{ \text{int expr}_2 \}

This function sets up the math code of the \textit{character}. The \textit{character} is specified as an \textit{integer expression} which will be used as the character code of the relevant character. The setting applies within the current \TeX{} group.

\char_value_mathcode:n \{ \text{integer expression} \}

Expands to the current math code of the \textit{character} with character code given by the \textit{integer expression}.

\char_set_sfcode:nn \{ \text{int expr}_1 \} \{ \text{int expr}_2 \}

This function sets up the space factor for the \textit{character}. The \textit{character} is specified as an \textit{integer expression} which will be used as the character code of the relevant character. The setting applies within the current \TeX{} group.

195
\char_value_sfcode:n \char_value_sfcode:n {\langle integer expression\rangle}

Expands to the current space factor for the \langle character\rangle with character code given by the \langle integer expression\rangle.

\char_show_value_sfcode:n \char_show_value_sfcode:n {\langle integer expression\rangle}

Displays the current space factor for the \langle character\rangle with character code given by the \langle integer expression\rangle on the terminal.

\l_char_active_seq
\begin{center}
\text{New: 2012-01-23} \\
\text{Updated: 2015-11-11}
\end{center}

Used to track which tokens may require special handling at the document level as they are (or have been at some point) of category \langle active\rangle (catcode 13). Each entry in the sequence consists of a single escaped token, for example \~. Active tokens should be added to the sequence when they are defined for general document use.

\l_char_special_seq
\begin{center}
\text{New: 2012-01-23} \\
\text{Updated: 2015-11-11}
\end{center}

Used to track which tokens will require special handling when working with verbatim-like material at the document level as they are not of categories \langle letter\rangle (catcode 11) or \langle other\rangle (catcode 12). Each entry in the sequence consists of a single escaped token, for example \ for the backslash or \ for an opening brace. Escaped tokens should be added to the sequence when they are defined for general document use.

24.3 Generic tokens

\c_group_begin_token \\c_group_end_token \\c_math_toggle_token \\c_alignment_token \\c_parameter_token \\c_math_superscript_token \\c_math_subscript_token \\c_space_token

These are implicit tokens which have the category code described by their name. They are used internally for test purposes but are also available to the programmer for other uses.

\c_catcode_letter_token \\c_catcode_other_token

These are implicit tokens which have the category code described by their name. They are used internally for test purposes and should not be used other than for category code tests.

\c_catcode_active_tl

A token list containing an active token. This is used internally for test purposes and should not be used other than in appropriately-constructed category code tests.
24.4 Converting tokens

\token_to_meaning:N \token_to_meaning:N \token\ (token)

Inserts the current meaning of the \langle token \rangle into the input stream as a series of characters of category code 12 (other). This is the primitive \TeX\ description of the \langle token \rangle, thus for example both functions defined by \cs_set_nopar:Npn and token list variables defined using \tl_new:N are described as macros.

\textbf{\TeXhackers\ note:} This is the \TeX\ primitive \meaning. The \langle token \rangle can thus be an explicit space token or an explicit begin-group or end-group character token \{ or \} when normal \TeX\ category codes apply even though these are not valid \texttt{N}-type arguments.

\token_to_str:N \token_to_str:N \token\ (token)

Converts the given \langle token \rangle into a series of characters with category code 12 (other). If the \langle token \rangle is a control sequence, this will start with the current escape character with category code 12 (the escape character is part of the \langle token \rangle). This function requires only a single expansion.

\textbf{\TeXhackers\ note:} \token_to_str:N is the \TeX\ primitive \string. The \langle token \rangle can thus be an explicit space tokens or an explicit begin-group or end-group character token \{ or \} when normal \TeX\ category codes apply even though these are not valid \texttt{N}-type arguments.

\token_to_catcode:N \token_to_catcode:N \token\ (token)

Converts the given \langle token \rangle into a number describing its category code. If \langle token \rangle is a control sequence this expands to 16. This can’t detect the categories 0 (escape character), 5 (end of line), 9 (ignored character), 14 (comment character), or 15 (invalid character). Control sequences or active characters let to a token of one of the detectable category codes will yield that category.

24.5 Token conditionals

\token_if_group_begin_p:N \token_if_group_begin_p:N \token\ (token)
\token_if_group_begin:NTF \token_if_group_begin:NTF \token\ {\langle true code \rangle} {\langle false code \rangle}

Tests if \langle token \rangle has the category code of a begin group token \{ when normal \TeX\ category codes are in force). Note that an explicit begin group token cannot be tested in this way, as it is not a valid \texttt{N}-type argument.

\token_if_group_end_p:N \token_if_group_end_p:N \token\ (token)
\token_if_group_end:NTF \token_if_group_end:NTF \token\ {\langle true code \rangle} {\langle false code \rangle}

Tests if \langle token \rangle has the category code of an end group token \} when normal \TeX\ category codes are in force). Note that an explicit end group token cannot be tested in this way, as it is not a valid \texttt{N}-type argument.
Tests if \(\langle \text{token} \rangle \) has the category code of a math shift token (\$ when normal \LaTeX\ category codes are in force).

Tests if \(\langle \text{token} \rangle \) has the category code of an alignment token (& when normal \LaTeX\ category codes are in force).

Tests if \(\langle \text{token} \rangle \) has the category code of a macro parameter token (# when normal \LaTeX\ category codes are in force).

Tests if \(\langle \text{token} \rangle \) has the category code of a superscript token (^ when normal \LaTeX\ category codes are in force).

Tests if \(\langle \text{token} \rangle \) has the category code of a subscript token (_) when normal \LaTeX\ category codes are in force).

Tests if \(\langle \text{token} \rangle \) has the category code of a space token. Note that an explicit space token with character code 32 cannot be tested in this way, as it is not a valid N-type argument.

Tests if \(\langle \text{token} \rangle \) has the category code of a letter token.

Tests if \(\langle \text{token} \rangle \) has the category code of an “other” token.

Tests if \(\langle \text{token} \rangle \) has the category code of an active character.

Tests if the two \(\langle \text{tokens} \rangle \) have the same category code.
\token_if_eq_charcode_p:NN \token_if_eq_charcode_p:NN \token_if_eq_charcode:NNTF \token_if_eq_charcode:NNTF \token_if_eq_charcode:NNTF \token_if_eq_charcode:NNTF \token_if_eq_charcode:NNTF
\token_if_eq_meaning_p:NN \token_if_eq_meaning_p:NN \token_if_eq_meaning:NNTF \token_if_eq_meaning:NNTF
\token_if_macro_p:N \token_if_macro_p:N \token_if_macro:NTF \token_if_macro:NTF
\token_if_cs_p:N \token_if_cs_p:N \token_if_cs:NTF \token_if_cs:NTF
\token_if_expandable_p:N \token_if_expandable_p:N \token_if_expandable:NTF \token_if_expandable:NTF
\token_if_long_macro_p:N \token_if_long_macro_p:N \token_if_long_macro:NTF \token_if_long_macro:NTF
\token_if_protected_macro_p:N \token_if_protected_macro_p:N \token_if_protected_macro:NTF \token_if_protected_macro:NTF
\token_if_protected_long_macro_p:N \token_if_protected_long_macro_p:N \token_if_protected_long_macro:NTF \token_if_protected_long_macro:NTF
\token_if_chardef_p:N \token_if_chardef_p:N \token_if_chardef:NTF \token_if_chardef:NTF
\token_if_chardef:NTF \token_if_chardef:NTF

Tests if the two \emph{tokens} have the same character code.

Tests if the two \emph{tokens} have the same meaning when expanded.

Tests if the \emph{token} is a \TeX{} macro.

Tests if the \emph{token} is a control sequence.

Tests if the \emph{token} is expandable. This test returns \emph{false} for an undefined token.

Tests if the \emph{token} is a long macro.

Tests if the \emph{token} is a protected macro: for a macro which is both protected and long this returns \emph{false}.

Tests if the \emph{token} is a protected long macro.

Tests if the \emph{token} is defined to be a chardef.

\textbf{\TeX{}hackers note:} Booleans, boxes and small integer constants are implemented as \chardefs.
Tests if the \langle token \rangle is defined to be a mathchardef.

Tests if the \langle token \rangle is defined to be a font selection command.

Tests if the \langle token \rangle is defined to be a dimension register.

Tests if the \langle token \rangle is defined to be a integer register.

\TeXhackers\note: Constant integers may be implemented as integer registers, \chardef\s, or \mathchardef\s depending on their value.

Tests if the \langle token \rangle is defined to be a muskip register.

Tests if the \langle token \rangle is defined to be a skip register.

Tests if the \langle token \rangle is defined to be a toks register (not used by \LaTeX3).

Tests if the \langle token \rangle is an engine primitive. In \LuaTeX\ this includes primitive-like commands defined using \texttt{token.set_lua}.

Updated: 2020-09-11
This function compares the \textit{test token} in turn with each of the \textit{token cases}. If the two are equal (as described for \texttt{\token_if_eq_catcode:NNTF}, \texttt{\token_if_eq_charcode:NNTF}, and \texttt{\token_if_eq_meaning:NNTF}, respectively) then the associated \textit{code} is left in the input stream and other cases are discarded. If any of the cases are matched, the \textit{true code} is also inserted into the input stream (after the code for the appropriate case), while if none match then the \textit{false code} is inserted. The functions \texttt{\token_case_catcode:Nn}, \texttt{\token_case_charcode:Nn}, and \texttt{\token_case_meaning:Nn}, which do nothing if there is no match, are also available.

24.6 Peeking ahead at the next token

There is often a need to look ahead at the next token in the input stream while leaving it in place. This is handled using the “peek” functions. The generic \texttt{\peek_after:Nw} is provided along with a family of predefined tests for common cases. As peeking ahead does not skip spaces the predefined tests include both a space-respecting and space-skipping version. In addition, using \texttt{\peek_analysis_map_inline:n}, one can map through the following tokens in the input stream and repeatedly perform some tests.

\begin{verbatim}
\peek_after:Nw \peek_after:Nw \token (function) \token
\peek_gafter:Nw \peek_gafter:Nw \token (function) \token
\end{verbatim}

\texttt{\peek_after:Nw} \texttt{\peek_gafter:Nw} functions locally and globally set the test variable \texttt{\l_peek_token} equal to \texttt{\token} (as an implicit token, not as a token list), and then expands the \texttt{\token} to the test variable \texttt{\g_peek_token} equal to \texttt{\token} (as an implicit token, not as a token list), and then expands the \texttt{\token} to the \texttt{\token} remains in the input stream as the next item after the \texttt{\token} remains in the input stream as the next item after the \texttt{\token}. The \texttt{\token} here may be \texttt{\l_peek_token} or \texttt{\g_peek_token} (assuming normal \TeX{} category codes), \textit{i.e.} it is not necessarily the next argument which would be grabbed by a normal function.

\texttt{\l_peek_token} Token set by \texttt{\peek_after:Nw} and available for testing as described above.

\texttt{\g_peek_token} Token set by \texttt{\peek_gafter:Nw} and available for testing as described above.
\peek_catcode:N \peek_catcode_remove:N \peek_charcode:N \peek_charcode_remove:N \peek_meaning:N \peek_meaning_remove:N \peek_remove_spaces:n

\peek_catcode:NNTF \peek_catcode:NTF \token_if_eq_catcode:NNTF \peek_catcode_remove:NTF \peek_charcode:NNTF \peek_charcode_remove:NTF \peek_meaning:NNTF \peek_meaning_remove:NTF \peek_remove_spaces:n

Tests if the next \textit{token} in the input stream has the same category code as the \textit{test token} (as defined by the test \texttt{\token_if_eq_catcode:NNTF}). Spaces are respected by the test and the \textit{token} is left in the input stream after the \textit{true code} or \textit{false code} (as appropriate to the result of the test).

Tests if the next \textit{token} in the input stream has the same category code as the \textit{test token} (as defined by the test \texttt{\token_if_eq_catcode:NNTF}). Spaces are respected by the test and the \textit{token} is removed from the input stream if the test is true. The function then places either the \textit{true code} or \textit{false code} in the input stream (as appropriate to the result of the test).

Tests if the next \textit{token} in the input stream has the same character code as the \textit{test token} (as defined by the test \texttt{\token_if_eq_charcode:NNTF}). Spaces are respected by the test and the \textit{token} is left in the input stream after the \textit{true code} or \textit{false code} (as appropriate to the result of the test).

Tests if the next \textit{token} in the input stream has the same character code as the \textit{test token} (as defined by the test \texttt{\token_if_eq_charcode:NNTF}). Spaces are respected by the test and the \textit{token} is removed from the input stream if the test is true. The function then places either the \textit{true code} or \textit{false code} in the input stream (as appropriate to the result of the test).

Tests if the next \textit{token} in the input stream has the same meaning as the \textit{test token} (as defined by the test \texttt{\token_if_eq_meaning:NNTF}). Spaces are respected by the test and the \textit{token} is left in the input stream after the \textit{true code} or \textit{false code} (as appropriate to the result of the test).

Tests if the next \textit{token} in the input stream has the same meaning as the \textit{test token} (as defined by the test \texttt{\token_if_eq_meaning:NNTF}). Spaces are respected by the test and the \textit{token} is removed from the input stream if the test is true. The function then places either the \textit{true code} or \textit{false code} in the input stream (as appropriate to the result of the test).

Peeks ahead and detect if the following token is a space (category code 10 and character code 32). If so, removes the token and checks the next token. Once a non-space token is found, the \textit{code} will be inserted into the input stream. Typically this will contain a \texttt{peek} operation, but this is not required.
\peek_remove_filler:n \peek_remove_filler:n \{\langle code\rangle\}

Peeks ahead and detect if the following token is a space (category code 10) or has meaning equal to \scan_stop:. If so, removes the token and checks the next token. If neither of these cases apply, expands the next token using \texttt{I}-type expansion, then checks the resulting leading token in the same way. If after expansion the next token is neither of the two test cases, the \langle code\rangle will be inserted into the input stream. Typically this will contain a \texttt{peek} operation, but this is not required.

\textbf{\TeXhackers note}: This is essentially a macro-based implementation of how \TeX\ handles the search for a left brace after for example \texttt{\everypar}, except that any non-expandable token cleanly ends the \langle filler\rangle (i.e. it does not lead to a \TeX\ error).

In contrast to \TeX\’s filler removal, a construct \texttt{\exp_not:N \foo} will be treated in the same way as \texttt{\foo}.

\texttt{\peek_N_type:TF} \texttt{\peek_N_type:TF} \{\langle true code\rangle\} \{\langle false code\rangle\}

Tests if the next \langle token\rangle in the input stream can be safely grabbed as an \texttt{N}-type argument. The test is \langle false\rangle if the next \langle token\rangle is either an explicit or implicit begin-group or end-group token (with any character code), or an explicit or implicit space character (with character code 32 and category code 10), or an outer token (never used in \LaTeX3) and \langle true\rangle in all other cases. Note that a \langle true\rangle result ensures that the next \langle token\rangle is a valid \texttt{N}-type argument. However, if the next \langle token\rangle is for instance \texttt{\c_space_token}, the test takes the \langle false\rangle branch, even though the next \langle token\rangle is in fact a valid \texttt{N}-type argument. The \langle token\rangle is left in the input stream after the \langle true code\rangle or \langle false code\rangle (as appropriate to the result of the test).
\peek_analysis_map_inline:n {\inline function}\}

Repeatedly removes one \textit{token} from the input stream and applies the \textit{inline function} to it, until \peek_analysis_map_break: is called. The \textit{inline function} receives three arguments for each \textit{token} in the input stream:

- \textit{tokens}, which both \texttt{o}-expand and \texttt{e/x}-expand to the \textit{token}. The detailed form of \textit{tokens} may change in later releases.

- \textit{char code}, a decimal representation of the character code of the \textit{token}, \(-1\) if it is a control sequence.

- \textit{catcode}, a capital hexadecimal digit which denotes the category code of the \textit{token} (\(0: \text{control sequence}, 1: \text{begin-group}, 2: \text{end-group}, 3: \text{math shift}, 4: \text{alignment tab}, 6: \text{parameter}, 7: \text{superscript}, 8: \text{subscript}, A: \text{space}, B: \text{letter}, C: \text{other}, D: \text{active}\)).

This can be converted to an integer by writing \texttt{\textbackslash catcode}.

These arguments are the same as for \texttt{\tl_analysis_map_inline:nn} defined in \texttt{l3tl-analysis}. The \textit{char code} and \textit{catcode} do not take the meaning of a control sequence or active character into account: for instance, upon encountering the token \texttt{\c_group_begin_token} in the input stream, \peek_analysis_map_inline:n calls the \textit{inline function} with \#1 being \texttt{\exp_not:n { \c_group_begin_token }}, \#2 being \(-1\), and \#3 being \(0\), as for any other control sequence. In contrast, upon encountering an explicit begin-group token \{, the \textit{inline function} is called with arguments \texttt{\exp_after:wN \{ \if_false: \fi:} ; 123 and 1.

The mapping is done at the current group level, \textit{i.e.} any local assignments made by the \textit{inline function} remain in effect after the loop. Within the code, \texttt{\l_peek_token} is set equal (as a token, not a token list) to the token under consideration.

\peek_analysis_map_break: \peek_analysis_map_inline:n
\peek_analysis_map_break:n { ... \peek_analysis_map_break:n {\texttt{(code)}}}

Stops the \peek_analysis_map_inline:n loop from seeking more tokens, and inserts \texttt{(code)} in the input stream (empty for \peek_analysis_map_break:].
\peek_regex:nTF \peek_regex:nTF \{\langle\mathrm{regex}\rangle\} \{\langle\mathrm{true\ code}\rangle\} \{\langle\mathrm{false\ code}\rangle\}

New: 2020-12-03

Tests if the \langle\mathrm{tokens}\rangle that follow in the input stream match the \langle\mathrm{regular\ expression}\rangle. Any \langle\mathrm{tokens}\rangle that have been read are left in the input stream after the \langle\mathrm{true\ code}\rangle or \langle\mathrm{false\ code}\rangle (as appropriate to the result of the test). See \l3regex for documentation of the syntax of regular expressions. The \langle\mathrm{regular\ expression}\rangle is implicitly anchored at the start, so for instance \peek_regex:nTF \{ a \} is essentially equivalent to \peek_charcode:NTF a.

\textbf{\TeX{}hackers note:} Implicit character tokens are correctly considered by \peek_regex:nTF as control sequences, while functions that inspect individual tokens (for instance \peek_charcode:NTF) only take into account their meaning.

The \peek_regex:nTF function only inspects as few tokens as necessary to determine whether the regular expression matches. For instance \peek_regex:nTF \{ abc | [a-z] \} \{ \} \{ \} abc will only inspect the first token a even though the first branch abc of the alternative is preferred in functions such as \peek_regex_remove_once:nTF. This may have an effect on tokenization if the input stream has not yet been tokenized and category codes are changed.

\peek_regex_remove_once:nTF \peek_regex_remove_once:nTF \{\langle\mathrm{regex}\rangle\} \{\langle\mathrm{true\ code}\rangle\} \{\langle\mathrm{false\ code}\rangle\}

New: 2020-12-03

Tests if the \langle\mathrm{tokens}\rangle that follow in the input stream match the \langle\mathrm{regex}\rangle. If the test is true, the \langle\mathrm{tokens}\rangle are removed from the input stream and the \langle\mathrm{true\ code}\rangle is inserted, while if the test is false, the \langle\mathrm{false\ code}\rangle is inserted followed by the \langle\mathrm{tokens}\rangle that were originally in the input stream. See \l3regex for documentation of the syntax of regular expressions. The \langle\mathrm{regular\ expression}\rangle is implicitly anchored at the start, so for instance \peek_regex_remove_once:nTF \{ a \} is essentially equivalent to \peek_charcode_remove:NTF a.

\textbf{\TeX{}hackers note:} Implicit character tokens are correctly considered by \peek_regex_remove_once:nTF as control sequences, while functions that inspect individual tokens (for instance \peek_charcode:NTF) only take into account their meaning.
If the \langle tokens \rangle that follow in the input stream match the \langle regex \rangle, replaces them according to the \langle replacement \rangle as for \texttt{\regex_replace_once:nN}, and leaves the result in the input stream, after the \langle true code \rangle. Otherwise, leaves \langle false code \rangle followed by the \langle tokens \rangle that were originally in the input stream, with no modifications. See \texttt{l3regex} for documentation of the syntax of regular expressions and of the \langle replacement \rangle: for instance \texttt{\0} in the \langle replacement \rangle is replaced by the tokens that were matched in the input stream. The \langle regular expression \rangle is implicitly anchored at the start. In contrast to \texttt{\regex_replace_once:nN}, no error arises if the \langle replacement \rangle leads to an unbalanced token list: the tokens are inserted into the input stream without issue.

\textbf{\TeXhacks note:} Implicit character tokens are correctly considered by \texttt{\peek_regex_replace_once:nTF} as control sequences, while functions that inspect individual tokens (for instance \texttt{\peek_charcode:NTF}) only take into account their meaning.

\section{24.7 Description of all possible tokens}

Let us end by reviewing every case that a given token can fall into. This section is quite technical and some details are only meant for completeness. We distinguish the meaning of the token, which controls the expansion of the token and its effect on \TeX’s state, and its shape, which is used when comparing token lists such as for delimited arguments. Two tokens of the same shape must have the same meaning, but the converse does not hold.

A token has one of the following shapes.

- A control sequence, characterized by the sequence of characters that constitute its name: for instance, \texttt{\use:n} is a five-letter control sequence.

- An active character token, characterized by its character code (between 0 and 1114111 for \LaTeX{} and \XeTeX{} and less for other engines) and category code 13.

- A character token, characterized by its character code and category code (one of 1, 2, 3, 4, 6, 7, 8, 10, 11 or 12 whose meaning is described below).

There are also a few internal tokens. The following list may be incomplete in some engines.

- Expanding \texttt{\the\font} results in a token that looks identical to the command that was used to select the current font (such as \texttt{\texttt{\ttfamily}}) but it differs from it in shape.

- A “frozen” \texttt{\relax}, which differs from the primitive in shape (but has the same meaning), is inserted when the closing \texttt{\fi} of a conditional is encountered before the conditional is evaluated.

- Expanding \texttt{\noexpand \langle token \rangle} (when the \langle token \rangle is expandable) results in an internal token, displayed (temporarily) as \texttt{\notexpanded: \langle token \rangle}, whose shape coincides with the \langle token \rangle and whose meaning differs from \texttt{\relax}.
• An `outer endtemplate:` can be encountered when peeking ahead at the next
token; this expands to another internal token, `end of alignment template`.

• Tricky programming might access a frozen `endwrite`.

• Some frozen tokens can only be accessed in interactive sessions: `\cr`, `\right`,
 `\endgroup`, `\fi`, `\inaccessible`.

• In LuaTeX, there is also the strange case of “bytes” `1100xy` where `x, y`
 are any two lowercase hexadecimal digits, so that the hexadecimal number ranges
 from `110000 = 1114112` to `1100ff = 1114367`. These are used to output individual
 bytes to files, rather than UTF-8. For the purposes of token comparisons
 they behave like non-expandable primitive control sequences (not characters) whose
 `\meaning is the_character` followed by the given byte. If this byte is in the range
 `80–ff` this gives an “invalid utf-8 sequence” error: applying `\token_to_str:N` or
 `\token_to_meaning:N` to these tokens is unsafe. Unfortunately, they don’t seem
 to be detectable safely by any means except perhaps Lua code.

The meaning of a (non-active) character token is fixed by its category code (and
character code) and cannot be changed. We call these tokens explicit character tokens.
Category codes that a character token can have are listed below by giving a sample
output of the TeX primitive `\meaning`, together with their \TeX{3} names and most
common example:

1 begin-group character (`group_begin`, often `{`),
2 end-group character (`group_end`, often `}`),
3 math shift character (`math_toggle`, often `\$`),
4 alignment tab character (`alignment`, often `&`),
6 macro parameter character (`parameter`, often `#`),
7 superscript character (`math_superscript`, often `^`),
8 subscript character (`math_subscript`, often `_`),
10 blank space (`space`, often character code `32`),
11 the letter (`letter`, such as `A`),
12 the character (`other`, such as `0`).

Category code 13 (active) is discussed below. Input characters can also have sev-
eral other category codes which do not lead to character tokens for later processing:
0 (`escape`), 5 (`end_line`), 9 (`ignore`), 14 (`comment`), and 15 (`invalid`).

The meaning of a control sequence or active character can be identical to that of any
character token listed above (with any character code), and we call such tokens implicit
character tokens. The meaning is otherwise in the following list:

• a macro, used in \LaTeX{3} for most functions and some variables (`tl, fp, seq` ...),
• a primitive such as `\def` or `\topmark`, used in \LaTeX{3} for some functions,
• a register such as `\count123`, used in \LaTeX{3} for the implementation of some vari-
 ables (`int, dim` ...),

207
• a constant integer such as \texttt{\texttt{char}}"56 or \texttt{\texttt{mathchar}}"121,
• a font selection command,
• undefined.

Macros can be \texttt{\texttt{\protect protected}} or not, \texttt{\texttt{\long long}} or not (the opposite of what \texttt{\LaTeX3} calls \texttt{\texttt{nopar}}), and \texttt{\texttt{\outer outer}} or not (unused in \texttt{\LaTeX3}). Their \texttt{\texttt{\meaning meaning}} takes the form

\begin{quote}
\texttt{	exttt{(prefix) macro: (argument)}\texttt{-}\texttt{\rightarrow (replacement)}}
\end{quote}

where \texttt{\texttt{(prefix)}} is among \texttt{\texttt{\protect protected\long long\outer}}, \texttt{\texttt{(argument)}} describes parameters that the macro expects, such as \texttt{\#1\#2\#3}, and \texttt{\texttt{(replacement)}} describes how the parameters are manipulated, such as \texttt{\texttt{\texttt{int_eval:n(#2+1*#3)}}}.

Now is perhaps a good time to mention some subtleties relating to tokens with category code 10 (space). Any input character with this category code (normally, space and tab characters) becomes a normal space, with character code 32 and category code 10.

When a macro takes an undelimited argument, explicit space characters (with character code 32 and category code 10) are ignored. If the following token is an explicit character token with category code 1 (begin-group) and an arbitrary character code, then \LaTeX scans ahead to obtain an equal number of explicit character tokens with category code 1 (begin-group) and 2 (end-group), and the resulting list of tokens (with outer braces removed) becomes the argument. Otherwise, a single token is taken as the argument for the macro: we call such single tokens “N-type”, as they are suitable to be used as an argument for a function with the signature :N.

When a macro takes a delimited argument \LaTeX scans ahead until finding the delimiter (outside any pairs of begin-group/end-group explicit characters), and the resulting list of tokens (with outer braces removed) becomes the argument. Note that explicit space characters at the start of the argument are not ignored in this case (and they prevent brace-stripping).
Chapter 25

The l3prop package

Property lists

expl3 implements a \langle property list \rangle data type, which contain an unordered list of entries each of which consists of a \langle key \rangle and an associated \langle value \rangle. The \langle key \rangle and \langle value \rangle may both be any \langle balanced text \rangle, the \langle key \rangle is processed using \texttt{\textbackslash tl\textunderscore to\textunderscore str:n}, meaning that category codes are ignored. It is possible to map functions to property lists such that the function is applied to every key–value pair within the list.

Each entry in a property list must have a unique \langle key \rangle: if an entry is added to a property list which already contains the \langle key \rangle then the new entry overwrites the existing one. The \langle keys \rangle are compared on a string basis, using the same method as \texttt{\textbackslash str\textunderscore if\textunderscore eq:nnTF}.

Property lists are intended for storing key-based information for use within code. This is in contrast to key–value lists, which are a form of \textit{input} parsed by the l3keys module.

25.1 Creating and initialising property lists

\texttt{\prop_new:N \langle property list \rangle}

Creates a new \langle property list \rangle or raises an error if the name is already taken. The declaration is global. The \langle property list \rangle initially contains no entries.

\texttt{\prop_clear:N \langle property list \rangle}

Clears all entries from the \langle property list \rangle.

\texttt{\prop_clear_new:N \langle property list \rangle}

Ensures that the \langle property list \rangle exists globally by applying \texttt{\prop_new:N} if necessary, then applies \texttt{\prop_\texttt{(g)clear:N}} to leave the list empty.
\prop_set_eq:NN \prop_set_eq:(cN|Nc|cc) \prop_set_eq:NN \prop_set_eq:(cN|Nc|cc)

Sets the content of \langle property list_1 \rangle equal to that of \langle property list_2 \rangle.

\prop_set_from_keyval:Nn \prop_set_from_keyval:cn \prop_gset_from_keyval:Nn \prop_gset_from_keyval:cn

\prop_const_from_keyval:Nn \prop_const_from_keyval:cn

Sets \langle property list \rangle to contain key–value pairs given in the second argument. If duplicate keys appear only the last of the values is kept.

Spaces are trimmed around every \langle key \rangle and every \langle value \rangle, and if the result of trimming spaces consists of a single brace group then a set of outer braces is removed. This enables both the \langle key \rangle and the \langle value \rangle to contain spaces, commas or equal signs. The \langle key \rangle is then processed by \tl_to_str:n. This function correctly detects the = and , signs provided they have the standard category code 12 or they are active.

Notice that in contrast to most keyval lists (e.g. those in \l3keys), each key here must be followed with an = sign.

\prop_const_from_keyval:Nn \prop_const_from_keyval:cn

Creates a new constant \langle property list \rangle or raises an error if the name is already taken. The \langle property list \rangle is set globally to contain key–value pairs given in the second argument, processed in the way described for \prop_set_from_keyval:Nn. If duplicate keys appear only the last of the values is kept. This function correctly detects the = and , signs provided they have the standard category code 12 or they are active.

Notice that in contrast to most keyval lists (e.g. those in \l3keys), each key here must be followed with an = sign.

25.2 Adding and updating property list entries

\prop_put:Nnn \prop_put:NNn \prop_gput:Nnn \prop_put:Nnn \prop_gput:Nnn
\prop_put_if_new:Nnn \prop_gput_if_new:Nnn \prop_put_if_new:Nnn \prop_gput_if_new:Nnn
\prop_concat:NNn \prop_gconcat:NNn \prop_concat:ccc \prop_gconcat:ccc

\prop_put:Nnn \langle property list \rangle \{ \langle key \rangle \} \{ \langle value \rangle \}
\prop_gput:Nnn \langle property list \rangle \{ \langle key \rangle \} \{ \langle value \rangle \}
\prop_put_if_new:Nnn \langle property list \rangle \{ \langle key \rangle \} \{ \langle value \rangle \}
\prop_gput_if_new:Nnn \langle property list \rangle \{ \langle key \rangle \} \{ \langle value \rangle \}
\prop_concat:NNn \langle property list \rangle \langle property list \rangle \langle property list \rangle
\prop_gconcat:NNn \langle property list \rangle \langle property list \rangle \langle property list \rangle

Add an entry to the \langle property list \rangle which may be accessed using the \langle key \rangle and which has \langle value \rangle. If the \langle key \rangle is already present in the \langle property list \rangle, the existing entry is overwritten by the new \langle value \rangle. Both the \langle key \rangle and \langle value \rangle may contain any \langle balanced text \rangle. The \langle key \rangle is stored after processing with \texttt{\tl_to_str:n}, meaning that category codes are ignored.

If the \langle key \rangle is present in the \langle property list \rangle then no action is taken. Otherwise, a new entry is added as described for \texttt{\prop_put:Nnn}.

Combines the key–value pairs of \langle property list \rangle and \langle property list \rangle, and saves the result in \langle property list \rangle. If a key appears in both \langle property list \rangle and \langle property list \rangle, and the last value, namely the value in \langle property list \rangle is kept.
\prop_put_from_keyval:Nn
\prop_put_from_keyval:cn
\prop_gput_from_keyval:Nn
\prop_gput_from_keyval:cn

Receives \texttt{2021-05-16}
Updated: 2021-11-07

Propagates a \texttt{property list} by adding entries for each key–value pair given in the second argument. The addition is done through \prop_put:Nnn, hence if the \texttt{property list} already contains some of the keys, the corresponding values are discarded and replaced by those given in the key–value list. If duplicate keys appear in the key–value list then only the last of the values is kept.

The function is equivalent to storing the key–value pairs in a temporary property list using \prop_set_from_keyval:Nn, then combining the \texttt{property list} with the temporary variable using \prop_concat:NNN. In particular, the \texttt{keys} and \texttt{values} are space–trimmed and unbraced as described in \prop_set_from_keyval:Nn. This function correctly detects the \texttt{=} and \texttt{,} signs provided they have the standard category code 12 or they are active.

25.3 Recovering values from property lists

\prop_get:NnN
\prop_get:NVN|NvN|NeN|NoN|cnN|cVN|cvN|ceN|coN|cnc

Updated: 2011-08-28

Recovers the \texttt{value} stored with \texttt{key} from the \texttt{property list}, and places this in the \texttt{token list variable}. If the \texttt{key} is not found in the \texttt{property list} then the \texttt{token list variable} is set to the special marker \q_no_value. The \texttt{token list variable} is set within the current \TeX{} group. See also \prop_get:NnNTF.

\prop_pop:NnN
\prop_pop:NVN|NvN|NeN|NoN|cnN|cVN|cvN|ceN|coN

Updated: 2011-08-18

Recovers the \texttt{value} stored with \texttt{key} from the \texttt{property list}, and places this in the \texttt{token list variable}. If the \texttt{key} is not found in the \texttt{property list} then the \texttt{token list variable} is set to the special marker \q_no_value. The \texttt{key} and \texttt{value} are then deleted from the property list. Both assignments are local. See also \prop_pop:NnNTF.

\prop_gpop:NnN
\prop_gpop:NVN|NvN|NeN|NoN|cnN|cVN|cvN|ceN|coN

Updated: 2011-08-18

Recovers the \texttt{value} stored with \texttt{key} from the \texttt{property list}, and places this in the \texttt{token list variable}. If the \texttt{key} is not found in the \texttt{property list} then the \texttt{token list variable} is set to the special marker \q_no_value. The \texttt{key} and \texttt{value} are then deleted from the property list. The \texttt{property list} is modified globally, while the assignment of the \texttt{token list variable} is local. See also \prop_gpop:NnNTF.
Expands to the \texttt{<value>} corresponding to the \texttt{<key>} in the \texttt{<property list>}. If the \texttt{<key>} is missing, this has an empty expansion.

\textbf{\TeXhacker{} Note:} This function is slower than the non-expandable analogue \texttt{$\prop_get:Nn$}. The result is returned within the \texttt{\unexpanded} primitive \texttt{($\exp_not:n$)}, which means that the \texttt{<value>} does not expand further when appearing in an \texttt{e} or \texttt{x}-type argument expansion.

\texttt{$\prop_count:N$} \texttt{<property list>}
Leaves the number of key–value pairs in the \texttt{<property list>} in the input stream as an \texttt{integer denotation}.

\texttt{$\prop_to_keyval:N$} \texttt{<property list>}
Expands to the \texttt{<property list>} in a key–value notation. Keep in mind that a \texttt{<property list>} is unordered, while key–value interfaces don’t necessarily are, so this can’t be used for arbitrary interfaces.

\textbf{\TeXhacker{} Note:} The result is returned within the \texttt{\unexpanded} primitive \texttt{($\exp_not:n$)}, which means that the key–value list does not expand further when appearing in an \texttt{e} or \texttt{x}-type argument expansion. It also needs exactly two steps of expansion.

25.4 Modifying property lists

\texttt{$\prop_remove:Nn$} \texttt{<property list> \{<key>\}}
Removes the entry listed under \texttt{<key>} from the \texttt{<property list>}. If the \texttt{<key>} is not found in the \texttt{<property list>} no change occurs, \textit{i.e} there is no need to test for the existence of a key before deleting it.

25.5 Property list conditionals

\texttt{$\prop_if_exist_p:N$} \texttt{<property list>}
Tests whether the \texttt{<property list>} is currently defined. This does not check that the \texttt{<property list>} really is a property list variable.

New: 2012-05-12

New: 2012-03-03

New: 2014-07-17

213
Tests if the \langle property list \rangle is empty (containing no entries).

\prop_if_empty_p:N * \prop_if_empty_p:N \langle property list \rangle
\prop_if_empty_p:c * \prop_if_empty:NTF \langle property list \rangle \{(true code)\} \{(false code)\}
\prop_if_empty:N *
\prop_if_empty:c
\prop_if_empty:NTF *
\prop_if_empty:c

Tests if the \langle key \rangle is present in the \langle property list \rangle, making the comparison using the method described by \str_if_eq:nnTF.

\TeXhacker note: This function iterates through every key–value pair in the \langle property list \rangle and is therefore slower than using the non-expandable \prop_get:NnTF.

25.6 Recovering values from property lists with branching

The functions in this section combine tests for the presence of a key in a property list with recovery of the associated value. This makes them useful for cases where different cases follow dependent on the presence or absence of a key in a property list. They offer increased readability and performance over separate testing and recovery phases.

\prop_get:NnNTF \langle property list \rangle \{(key)\} \langle token list variable \rangle \{(true code)\} \{(false code)\}
\prop_get:NnN \langle property list \rangle \{(key)\} \langle token list variable \rangle \{(true code)\} \{(false code)\}
\prop_pop:NnNTF \langle property list \rangle \{(key)\} \langle token list variable \rangle \{(true code)\} \{(false code)\}
\prop_pop:NnN \langle property list \rangle \{(key)\} \langle token list variable \rangle \{(true code)\} \{(false code)\}

If the \langle key \rangle is not present in the \langle property list \rangle, leaves the \langle false code \rangle in the input stream. The value of the \langle token list variable \rangle is not defined in this case and should not be relied upon. If the \langle key \rangle is present in the \langle property list \rangle, stores the corresponding \langle value \rangle in the \langle token list variable \rangle without removing it from the \langle property list \rangle, then leaves the \langle true code \rangle in the input stream. The \langle token list variable \rangle is assigned locally.

If the \langle key \rangle is not present in the \langle property list \rangle, leaves the \langle false code \rangle in the input stream. The value of the \langle token list variable \rangle is not defined in this case and should not be relied upon. If the \langle key \rangle is present in the \langle property list \rangle, pops the corresponding \langle value \rangle in the \langle token list variable \rangle, i.e. removes the item from the \langle property list \rangle. Both the \langle property list \rangle and the \langle token list variable \rangle are assigned locally.
If the (key) is not present in the (property list), leaves the (false code) in the input stream. The value of the (token list variable) is not defined in this case and should not be relied upon. If the (key) is present in the (property list), pops the corresponding (value) in the (token list variable), i.e. removes the item from the (property list). The (property list) is modified globally, while the (token list variable) is assigned locally.

25.7 Mapping over property lists

All mappings are done at the current group level, i.e. any local assignments made by the (function) or (code) discussed below remain in effect after the loop.

\prop_map_function:NN \prop_map_function:CN

\prop_map_function:NN \prop_map_function:CN

\prop_map_inline:NN \prop_map_inline:CN

\prop_map_tokens:NN \prop_map_tokens:CN

\prop_map_tokens:NN \prop_map_tokens:CN

Analogue of \prop_map_function:NN which maps several tokens instead of a single function. The (code) receives each key-value pair in the (property list) as two trailing brace groups. For instance,

\prop_map_tokens:NN \l_my_prop \str_if_eq:nnT { mykey }

expands to the value corresponding to mykey: for each pair in \l_my_prop the function \str_if_eq:nnT receives mykey, the (key) and the (value) as its three arguments. For that specific task, \prop_item:NN is faster.
\prop_map_break: Used to terminate a \prop_map... function before all entries in the \langle property list \rangle have been processed. This normally takes place within a conditional statement, for example

\prop_map_inline:Nn \l_my_prop
{\str_if_eq:nnTF { #1 } { bingo } { \prop_map_break: } { % Do something useful }}

Use outside of a \prop_map... scenario leads to low level \TeX errors.

\TeXhackers note: When the mapping is broken, additional tokens may be inserted before further items are taken from the input stream. This depends on the design of the mapping function.

\prop_map_break:n \langle code \rangle

\prop_map_break:n Used to terminate a \prop_map... function before all entries in the \langle property list \rangle have been processed, inserting the \langle code \rangle after the mapping has ended. This normally takes place within a conditional statement, for example

\prop_map_inline:Nn \l_my_prop
{\str_if_eq:nnTF { #1 } { bingo } { \prop_map_break:n \langle code \rangle } { % Do something useful }}

Use outside of a \prop_map... scenario leads to low level \TeX errors.

\TeXhackers note: When the mapping is broken, additional tokens may be inserted before the \langle code \rangle is inserted into the input stream. This depends on the design of the mapping function.

25.8 Viewing property lists

\prop_show:N \langle property list \rangle
\prop_show:c Displays the entries in the \langle property list \rangle in the terminal.
25.9 Scratch property lists

Scratch property lists for local assignment. These are never used by the kernel code, and so are safe for use with any \TeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

25.10 Constants

A permanently-empty property list used for internal comparisons.
Chapter 26

The \texttt{l3skip} package

Dimensions and skips

\LaTeX{}3 provides two general length variables: \texttt{dim} and \texttt{skip}. Lengths stored as \texttt{dim} variables have a fixed length, whereas \texttt{skip} lengths have a rubber (stretch/shrink) component. In addition, the \texttt{muskip} type is available for use in math mode: this is a special form of \texttt{skip} where the lengths involved are determined by the current math font (in mu). There are common features in the creation and setting of length variables, but for clarity the functions are grouped by variable type.

Many functions take \textit{dimension expressions} ("\texttt{(dim expr)}") or \textit{skip expressions} ("\texttt{(skip expr)}") as arguments.

26.1 Creating and initialising \texttt{dim} variables

\begin{verbatim}
\dim_new:N \dim_new:c \dim_new:Nn \dim_new:cn
\dim_new:N \dim_new:c \dim_new:N \dim_new:cn
\dim_const:Nn \dim_const:cn \dim_const:N \dim_const:cn
\dim_const:Nn \dim_const:cn \dim_const:N \dim_const:cn
\dim_zero:N \dim_zero:c \dim_gzero:N \dim_gzero:c \dim_gzero:N \dim_gzero:c
\dim_zero_new:N \dim_zero_new:c \dim_gzero_new:N \dim_gzero_new:c \dim_gzero_new:N \dim_gzero_new:c
\end{verbatim}

\begin{itemize}
\item \texttt{\dim_new:N \dim_new:c} (\texttt{\dim_new:N (dimension)}): Creates a new \textit{(dimension)} or raises an error if the name is already taken. The declaration is global. The \textit{(dimension)} is initially equal to 0 pt.

\item \texttt{\dim_const:Nn \dim_const:cn \dim_const:N \dim_const:cn} (\texttt{\dim_const:N (dimension) \{\dim expr\}}): Creates a new constant \textit{(dimension)} or raises an error if the name is already taken. The value of the \textit{(dimension)} is set globally to the \textit{(dim expr)}.

\item \texttt{\dim_zero:N \dim_zero:c \dim_gzero:N \dim_gzero:c} (\texttt{\dim_zero:N (dimension)}): Sets \textit{(dimension)} to 0 pt.

\item \texttt{\dim_zero_new:N \dim_zero_new:c \dim_gzero_new:N \dim_gzero_new:c \dim_gzero_new:N \dim_gzero_new:c} (\texttt{\dim_zero_new:N (dimension)}): Ensures that the \textit{(dimension)} exists globally by applying \texttt{\dim_new:N} if necessary, then applies \texttt{\dim_(g)zero:N} to leave the \textit{(dimension)} set to zero.
\end{itemize}
Tests whether the \textit{dimension} is currently defined. This does not check that the \textit{dimension} really is a dimension variable.

\section*{26.2 Setting dim variables}

\begin{description}
\item[\texttt{\dim_add:N} \{\textit{dim expr}\}]\texttt{\dim_add:N} \{\textit{dim expr}\} \{(dim expr)\}
\item[\texttt{\dim_add:cn} \{\textit{dim expr}\}]\texttt{\dim_add:cn} \{\textit{dim expr}\}
\item[\texttt{\dim_gadd:N} \{\textit{dim expr}\}]\texttt{\dim_gadd:N} \{\textit{dim expr}\}
\item[\texttt{\dim_gadd:cn} \{\textit{dim expr}\}]\texttt{\dim_gadd:cn} \{\textit{dim expr}\}
\end{description}

\texttt{\dim_add:N} \{\textit{dim expr}\} \{\textit{dim expr}\}
\texttt{\dim_add:cn} \{\textit{dim expr}\}
\texttt{\dim_gadd:N} \{\textit{dim expr}\}
\texttt{\dim_gadd:cn} \{\textit{dim expr}\}

\begin{description}
\item[\texttt{\dim_set:N} \{\textit{dim expr}\}]\texttt{\dim_set:N} \{\textit{dim expr}\} \{\textit{dim expr}\}
\item[\texttt{\dim_set:cn} \{\textit{dim expr}\}]\texttt{\dim_set:cn} \{\textit{dim expr}\}
\item[\texttt{\dim_gset:N} \{\textit{dim expr}\}]\texttt{\dim_gset:N} \{\textit{dim expr}\}
\item[\texttt{\dim_gset:cn} \{\textit{dim expr}\}]\texttt{\dim_gset:cn} \{\textit{dim expr}\}
\end{description}

\texttt{\dim_set:N} \{\textit{dim expr}\} \{\textit{dim expr}\}
\texttt{\dim_set:cn} \{\textit{dim expr}\}
\texttt{\dim_gset:N} \{\textit{dim expr}\}
\texttt{\dim_gset:cn} \{\textit{dim expr}\}

\begin{description}
\item[\texttt{\dim_set_eq:NN} \{\textit{dimension}1\} \{\textit{dimension}2\}]\texttt{\dim_set_eq:NN} \{\textit{dimension}1\} \{\textit{dimension}2\}
\item[\texttt{\dim_gset_eq:NN} \{\textit{dimension}1\} \{\textit{dimension}2\}]\texttt{\dim_gset_eq:NN} \{\textit{dimension}1\} \{\textit{dimension}2\}
\end{description}

\texttt{\dim_set_eq:NN} \{\textit{dimension}1\} \{\textit{dimension}2\}
\texttt{\dim_gset_eq:NN} \{\textit{dimension}1\} \{\textit{dimension}2\}

\begin{description}
\item[\texttt{\dim_sub:N} \{\textit{dim expr}\}]\texttt{\dim_sub:N} \{\textit{dim expr}\} \{\textit{dim expr}\}
\item[\texttt{\dim_sub:cn} \{\textit{dim expr}\}]\texttt{\dim_sub:cn} \{\textit{dim expr}\}
\item[\texttt{\dim_gsub:N} \{\textit{dim expr}\}]\texttt{\dim_gsub:N} \{\textit{dim expr}\}
\item[\texttt{\dim_gsub:cn} \{\textit{dim expr}\}]\texttt{\dim_gsub:cn} \{\textit{dim expr}\}
\end{description}

\texttt{\dim_sub:N} \{\textit{dim expr}\} \{\textit{dim expr}\}
\texttt{\dim_sub:cn} \{\textit{dim expr}\}
\texttt{\dim_gsub:N} \{\textit{dim expr}\}
\texttt{\dim_gsub:cn} \{\textit{dim expr}\}

\section*{26.3 Utilities for dimension calculations}

\begin{description}
\item[\texttt{\dim_abs:n} \{\textit{dim expr}\}]\texttt{\dim_abs:n} \{\textit{dim expr}\} \{\textit{dim expr}\}
\item[\texttt{\dim_max:nn} \{\textit{dim expr}1\} \{\textit{dim expr}2\}]\texttt{\dim_max:nn} \{\textit{dim expr}1\} \{\textit{dim expr}2\}
\item[\texttt{\dim_min:nn} \{\textit{dim expr}1\} \{\textit{dim expr}2\}]\texttt{\dim_min:nn} \{\textit{dim expr}1\} \{\textit{dim expr}2\}
\end{description}

\texttt{\dim_abs:n} \{\textit{dim expr}\}
\texttt{\dim_max:nn} \{\textit{dim expr}1\} \{\textit{dim expr}2\}
\texttt{\dim_min:nn} \{\textit{dim expr}1\} \{\textit{dim expr}2\}

\texttt{\dim_abs:n} \{\textit{dim expr}\}
\texttt{\dim_max:nn} \{\textit{dim expr}1\} \{\textit{dim expr}2\}
\texttt{\dim_min:nn} \{\textit{dim expr}1\} \{\textit{dim expr}2\}
\textbackslash dim_ratio:nn \textbackslash dim_ratio:nn \{ \{ \text{dim expr}_1 \} \} \{ \{ \text{dim expr}_2 \} \}

Parses the two \(\langle \text{dim exprs} \rangle \) and converts the ratio of the two to a form suitable for use inside a \(\langle \text{dim expr} \rangle \). This ratio is then left in the input stream, allowing syntax such as

\textbackslash dim_set:Nn \l_my_dim
\{ 10 \text{ pt} \textasteriskcentered \text{"\textbackslash dim_ratio:nn \{ 5 \text{ pt} \} \{ 10 \text{ pt} \}\text{"}} \}

The output of \textbackslash dim_ratio:nn on full expansion is a ratio expression between two integers, with all distances converted to scaled points. Thus

\textbackslash tl_set:Ne \l_my_tl \{ \textbackslash dim_ratio:nn \{ 5 \text{ pt} \} \{ 10 \text{ pt} \}\text{"}} \text{"}
\textbackslash tl_show:N \l_my_tl

displays \(327680/655360 \) on the terminal.

\section{26.4 Dimension expression conditionals}

\textbackslash dim_compare:p_nNn \textbackslash dim_compare:p_nNn \{ \{ \text{dim expr}_1 \} \} \{ \{ \text{dim expr}_2 \} \}
\textbackslash dim_compare:nNnTF \textbackslash dim_compare:nNnTF
\{ \{ \text{dim expr}_1 \} \} \{ \{ \text{dim expr}_2 \} \}
\{ \{ \text{true code} \} \} \{ \{ \text{false code} \} \}

This function first evaluates each of the \(\langle \text{dim exprs} \rangle \) as described for \textbackslash dim_eval:n. The two results are then compared using the \(\langle \text{relation} \rangle \):

\begin{align*}
\text{Equal} & = \\
\text{Greater than} & > \\
\text{Less than} & <
\end{align*}

This function is less flexible than \textbackslash dim_compare:nTF but around 5 times faster.
This function evaluates the \textit{dim exprs} as described for \texttt{dim_eval:n} and compares consecutive result using the corresponding \textit{relations}, namely it compares \texttt{dim expr_1} and \texttt{dim expr_2} using the \texttt{relation_1}, then \texttt{dim expr_2} and \texttt{dim expr_3} using the \texttt{relation_2}, until finally comparing \texttt{dim expr_N} and \texttt{dim expr_{N+1}} using the \texttt{relation_N}. The test yields \texttt{true} if all comparisons are \texttt{true}. Each \texttt{dim expr} is evaluated only once, and the evaluation is lazy, in the sense that if one comparison is \texttt{false}, then no other \texttt{dim expr} is evaluated and no other comparison is performed. The \textit{relations} can be any of the following:

- Equal \(= \) or \(== \)
- Greater than or equal to \(>= \)
- Greater than \(> \)
- Less than or equal to \(<= \)
- Less than \(< \)
- Not equal \(!= \)

This function is more flexible than \texttt{dim_compare:nNnTF} but around 5 times slower.
This function evaluates the \(\text{test dim expr} \) and compares this in turn to each of the \(\text{dim expr cases} \). If the two are equal then the associated \(\text{code} \) is left in the input stream and other cases are discarded. If any of the cases are matched, the \(\text{true code} \) is also inserted into the input stream (after the code for the appropriate case), while if none match then the \(\text{false code} \) is inserted. The function \dim_case:nn, which does nothing if there is no match, is also available. For example

\[
\begin{align*}
\texttt{\textbackslash dim_set:Nn} & \ \texttt{\l_tmpa_dim} \ { 5 \ pt } \\
\texttt{\dim_case:nnF} & \ { 2 \ \texttt{\l_tmpa_dim} } \\
& \ { } \\
& \ { 5 \ pt } \quad \{ \text{Small} \} \\
& \ { 4 \ pt \ + \ 6 \ pt } \quad \{ \text{Medium} \} \\
& \ { - 10 \ pt } \quad \{ \text{Negative} \} \\
& \ { \text{No idea!} } \\
\end{align*}
\]

leaves “Medium” in the input stream.

26.5 Dimension expression loops

\[
\begin{align*}
\texttt{\dim_do_until:nNnn} & \quad \texttt{\dim_do_until:nNnn} \ \{ \text{dim expr}_1 \} \ \{ \text{relation} \} \ \{ \text{dim expr}_2 \} \ \{ \text{code} \} \\
\texttt{\dim_do_while:nNnn} & \quad \texttt{\dim_do_while:nNnn} \ \{ \text{dim expr}_1 \} \ \{ \text{relation} \} \ \{ \text{dim expr}_2 \} \ \{ \text{code} \} \\
\texttt{\dim_until_do:nNnn} & \quad \texttt{\dim_until_do:nNnn} \ \{ \text{dim expr}_1 \} \ \{ \text{relation} \} \ \{ \text{dim expr}_2 \} \ \{ \text{code} \}
\end{align*}
\]

Places the \(\text{code} \) in the input stream for \TeX{} to process, and then evaluates the relationship between the two \(\text{dim exprs} \) as described for \dim_compare:nNnTF. If the test is false then the \(\text{code} \) is inserted into the input stream again and a loop occurs until the \(\text{relation} \) is true.

Places the \(\text{code} \) in the input stream for \TeX{} to process, and then evaluates the relationship between the two \(\text{dim exprs} \) as described for \dim_compare:nNnTF. If the test is true then the \(\text{code} \) is inserted into the input stream again and a loop occurs until the \(\text{relation} \) is false.

Evaluates the relationship between the two \(\text{dim exprs} \) as described for \dim_compare:nNnTF, and then places the \(\text{code} \) in the input stream if the \(\text{relation} \) is false. After the \(\text{code} \) has been processed by \TeX{} the test is repeated, and a loop occurs until the test is true.
\dim_step_function:nnnN \dim_step_function:nnnN \{\text{(initial value)}\} \{\text{(step)}\} \{\text{(final value)}\} \{\text{(function)}\}

This function first evaluates the \text{(initial value)}, \text{(step)} and \text{(final value)}, all of which should be dimension expressions. The \text{(function)} is then placed in front of each \text{(value)} from the \text{(initial value)} to the \text{(final value)} in turn (using \text{(step)} between each \text{(value)}). The \text{(step)} must be non-zero. If the \text{(step)} is positive, the loop stops when the \text{(value)} becomes larger than the \text{(final value)}. If the \text{(step)} is negative, the loop stops when the \text{(value)} becomes smaller than the \text{(final value)}. The \text{(function)} should absorb one argument.

\dim_step_inline:nnn \dim_step_inline:nnn \{\text{(initial value)}\} \{\text{(step)}\} \{\text{(final value)}\} \{\text{(code)}\}

This function first evaluates the \text{(initial value)}, \text{(step)} and \text{(final value)}, all of which should be dimension expressions. Then for each \text{(value)} from the \text{(initial value)} to the \text{(final value)} in turn (using \text{(step)} between each \text{(value)}), the \text{(code)} is inserted into the input stream with \text{\#1} replaced by the current \text{(value)}. Thus the \text{(code)} should define a function of one argument (\text{\#1}).
This function first evaluates the \langle initial value \rangle, \langle step \rangle and \langle final value \rangle, all of which should be dimension expressions. Then for each \langle value \rangle from the \langle initial value \rangle to the \langle final value \rangle in turn (using \langle step \rangle between each \langle value \rangle), the \langle code \rangle is inserted into the input stream, with the \langle tl var \rangle defined as the current \langle value \rangle. Thus the \langle code \rangle should make use of the \langle tl var \rangle.

26.7 Using \textit{dim} expressions and variables

\texttt{\dim_step_variable:nnnNn}

{\langle initial value \rangle} {\langle step \rangle} {\langle final value \rangle} {\langle tl var \rangle} {\langle code \rangle}

\texttt{\dim_eval:n}

\texttt{\dim_eval:n {\langle dim expr \rangle}}

\texttt{\dim_sign:n}

\texttt{\dim_sign:n {\langle dim expr \rangle}}

\texttt{\dim_use:N}

\texttt{\dim_use:N {\langle dimension \rangle}}

\texttt{\dim_to_decimal:n}

\texttt{\dim_to_decimal:n {\langle dim expr \rangle}}
\dim_to_decimal_in_bp:n \{ \langle \text{dim expr} \rangle \}

Evaluates the \langle \text{dim expr} \rangle, and leaves the result, expressed in big points (bp) in the input stream, with no units. The result is rounded by \TeX{} to at most five decimal places. If the decimal part of the result is zero, it is omitted, together with the decimal marker.

For example
\begin{verbatim}
\dim_to_decimal_in_bp:n { 1pt }
\end{verbatim}

leaves 0.99628 in the input stream, i.e. the magnitude of one (\TeX) point when converted to big points.

\textbf{\TeX{}hackers note:} The implementation of this function is re-entrant: the result of
\begin{verbatim}
\dim_compare:nNnTF \{ <x>bp \} = \{ \dim_to_decimal_in_bp:n \{ <x>bp \} bp \}
\end{verbatim}

will be logically \texttt{true}. The decimal representations may differ provided they produce the same \TeX{} dimension.

\dim_to_decimal_in_cm:n \{ \langle \text{dim expr} \rangle \}

Evaluates the \langle \text{dim expr} \rangle, and leaves the result, expressed with the appropriate scaling in the input stream, with no units. If the decimal part of the result is zero, it is omitted, together with the decimal marker. The precisions of the result is limited to a maximum of five decimal places with trailing zeros omitted.

The maximum \TeX{} allowable dimension value (available as \texttt{\maxdimen} in plain \TeX{} and \LaTeX{} and \texttt{\c_max_dim} in expl3) can only be expressed exactly in the units pt, bp and sp. The maximum allowable input values to five decimal places are

\begin{verbatim}
1276.00215 cc
575.83174 cm
15312.02584 dd
226.70540 in
5758.31742 mm
1365.33333 pc
\end{verbatim}

(Note that these are not all equal, but rather any larger value will overflow due to the way \TeX{} converts to \texttt{sp}.) Values given to five decimal places larger that these will result in \TeX{} errors; the behavior if additional decimal places are given depends on the \TeX{} internals and thus larger values are \texttt{not} supported by expl3.

\textbf{\TeX{}hackers note:} The implementation of these functions is re-entrant: the result of
\begin{verbatim}
\dim_compare:nNnTF \{ <x><unit> \} = \{ \dim_to_decimal_in_<unit>:n \{ <x><unit> \} <unit> \}
\end{verbatim}

will be logically \texttt{true}. The decimal representations may differ provided they produce the same \TeX{} dimension.
\texttt{\textbackslash dim_to_decimal_in_sp:n} \item \texttt{\textbackslash dim_to_decimal_in_sp:n \{\textit{dim\ expr}\}}

Evaluates the \textit{\textit{dim\ expr}}, and leaves the result, expressed in scaled points (\textit{sp}) in the input stream, with \textit{no units}. The result is necessarily an integer.

\texttt{\textbackslash dim_to_decimal_in_unit:nn} \item \texttt{\textbackslash dim_to_decimal_in_unit:nn \{\textit{dim\ expr}_1\} \{\textit{dim\ expr}_2\}}

Evaluates the \textit{\textit{dim\ exprs}}, and leaves the value of \textit{\textit{dim\ expr}_1}, expressed in a unit given by \textit{\textit{dim\ expr}_2}, in the input stream. If the decimal part of the result is zero, it is omitted, together with the decimal marker. The precisions of the result is limited to a maximum of five decimal places with trailing zeros omitted.

For example

\texttt{\textbackslash dim_to_decimal_in_unit:nn \{ 1bp \} \{ 1mm \}}

leaves 0.35278 in the input stream, \textit{i.e.} the magnitude of one big point when expressed in millimetres. The conversions do \textit{not} guarantee that \TeX{} would yield identical results for the direct input in an equality test, thus for instance

\texttt{\textbackslash dim_compare:nNnTF}
\begin{verbatim}
\{ 1bp \} =
\{ \textbackslash dim_to_decimal_in_unit:nn \{ 1bp \} \{ 1mm \} \text\{ mm \}
\end{verbatim}

will take the \texttt{false} branch.

\texttt{\textbackslash dim_to_fp:n} \item \texttt{\textbackslash dim_to_fp:n \{\textit{dim\ expr}\}}

Expands to an internal floating point number equal to the value of the \textit{\textit{dim\ expr}} in pt. Since dimension expressions are evaluated much faster than their floating point equivalent, \texttt{\textbackslash dim_to_fp:n} can be used to speed up parts of a computation where a low precision and a smaller range are acceptable.

\section{26.8 Viewing \texttt{dim} variables}

\texttt{\textbackslash dim_show:N} \item \texttt{\textbackslash dim_show:N \{\textit{dimension}\}}

Displays the value of the \textit{\textit{dimension}} on the terminal.

\texttt{\textbackslash dim_show:n} \item \texttt{\textbackslash dim_show:n \{\textit{dim\ expr}\}}

Displays the result of evaluating the \textit{\textit{dim\ expr}} on the terminal.

\texttt{\textbackslash dim_log:N} \item \texttt{\textbackslash dim_log:N \{\textit{dimension}\}}

Writes the value of the \textit{\textit{dimension}} in the log file.
\dim_log:n \{\dim expr\}

Wrote the result of evaluating the \dim expr in the log file.

New: 2014-08-22
Updated: 2015-08-07

26.9 Constant dimensions

\c_max_dim
The maximum value that can be stored as a dimension. This can also be used as a component of a skip.

\c_zero_dim
A zero length as a dimension. This can also be used as a component of a skip.

26.10 Scratch dimensions

\l_tmpa_dim \l_tmpb_dim
Scratch dimension for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_dim \g_tmpb_dim
Scratch dimension for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

26.11 Creating and initialising skip variables

\skip_new:N \skip_new:c
\skip_new:N \{\skip expr\}

Creates a new \skip or raises an error if the name is already taken. The declaration is global. The \skip is initially equal to 0pt.

\skip_const:Nn \skip_const:cn
\skip_const:Nn \{\skip expr\}

Creates a new constant \skip or raises an error if the name is already taken. The value of the \skip is set globally to the \skip expr.

\skip_zero:N \skip_zero:c \skip_gzero:N \skip_gzero:c
Sets \skip to 0 pt.
\skip_zero_new:N \skip_zero_new:c \skip_gzero_new:N \skip_gzero_new:c

Ensures that the \textit{(skip)} exists globally by applying \texttt{\skip_new:N} if necessary, then applies \texttt{\skip_(g)zero:N} to leave the \textit{(skip)} set to zero.

\skip_if_exist_p:N \skip_if_exist:NTF \skip_if_exist:c

Tests whether the \textit{(skip)} is currently defined. This does not check that the \textit{(skip)} really is a skip variable.

26.12 Setting skip variables

\skip_add:Nn \skip_add:cn \skip_gadd:Nn \skip_gadd:cn

\texttt{\skip_add:Nn} \texttt{\skip_add:cn} \texttt{\skip_gadd:Nn} \texttt{\skip_gadd:cn}

Adds the result of the \textit{(skip expr)} to the current content of the \textit{(skip)}.

\skip_set:Nn \skip_set:cn \skip_gset:Nn \skip_gset:cn

\texttt{\skip_set:Nn} \texttt{\skip_set:cn} \texttt{\skip_gset:Nn} \texttt{\skip_gset:cn}

Sets \textit{(skip)} to the value of \textit{(skip expr)}, which must evaluate to a length with units and may include a rubber component (for example 1 cm plus 0.5 cm).

\skip_set_eq:NN \skip_set_eq:(cN|Nc|cc) \skip_gset_eq:NN \skip_gset_eq:(cN|Nc|cc)

\texttt{\skip_set_eq:NN} \texttt{\skip_set_eq:(cN|Nc|cc)} \texttt{\skip_gset_eq:NN} \texttt{\skip_gset_eq:(cN|Nc|cc)}

Sets the content of \textit{(skip\textsubscript{1})} equal to that of \textit{(skip\textsubscript{2})}.

\skip_sub:Nn \skip_sub:cn \skip_gsub:Nn \skip_gsub:cn

\texttt{\skip_sub:Nn} \texttt{\skip_sub:cn} \texttt{\skip_gsub:Nn} \texttt{\skip_gsub:cn}

Subtracts the result of the \textit{(skip expr)} from the current content of the \textit{(skip)}.

228
26.13 Skip expression conditionals

\skip_if_eq_p:n = \skip_if_eq_p:n \match{\langle \text{skip expr}_1 \rangle}{\langle \text{skip expr}_2 \rangle}
\skip_if_eq:nTF = \skip_if_eq:nTF \match{\langle \text{skip expr}_1 \rangle}{\langle \text{skip expr}_2 \rangle}
\match{\langle \text{true code} \rangle}{\langle \text{false code} \rangle}

This function first evaluates each of the \langle \text{skip exprs} \rangle as described for \skip_eval:n. The two results are then compared for exact equality, \textit{i.e.} both the fixed and rubber components must be the same for the test to be true.

\skip_if_finite_p:n = \skip_if_finite_p:n \match{\langle \text{skip expr} \rangle}
\skip_if_finite:nTF = \skip_if_finite:nTF \match{\langle \text{skip expr} \rangle}{\langle \text{true code} \rangle}{\langle \text{false code} \rangle}

\textbf{New: 2012-03-05}

Evaluates the \langle \text{skip expr} \rangle as described for \skip_eval:n, and then tests if all of its components are finite.

26.14 Using skip expressions and variables

\skip_eval:n = \skip_eval:n \match{\langle \text{skip expr} \rangle}
\textbf{Updated: 2011-10-22}

Evaluates the \langle \text{skip expr} \rangle, expanding any skips and token list variables within the \langle \text{expression} \rangle to their content (without requiring \skip_use:N/\tl_use:N) and applying the standard mathematical rules. The result of the calculation is left in the input stream as a \langle \text{glue denotation} \rangle after two expansions. This is expressed in points (pt), and requires suitable termination if used in a \TeX-style assignment as it is not an \langle \text{internal glue} \rangle.

\skip_use:N = \skip_use:N \match{\langle \text{skip} \rangle}
\skip_use:c \match{\langle \text{skip} \rangle}
\textbf{Updated: 2015-08-03}

Recovers the content of a \langle \text{skip} \rangle and places it directly in the input stream. An error is raised if the variable does not exist or if it is invalid. Can be omitted in places where a \langle \text{dimension} \rangle or \langle \text{skip} \rangle is required (such as in the argument of \skip_eval:n).

\TeXhackers note: \skip_use:N is the \TeX primitive \the: this is one of several \LaTeX names for this primitive.

26.15 Viewing skip variables

\skip_show:N = \skip_show:N \match{\langle \text{skip} \rangle}
\skip_show:n \match{\langle \text{skip expr} \rangle}
\textbf{Updated: 2015-08-03}

Displays the value of the \langle \text{skip} \rangle on the terminal.

\skip_show:n \match{\langle \text{skip expr} \rangle}
\textbf{Updated: 2015-08-07}

Displays the result of evaluating the \langle \text{skip expr} \rangle on the terminal.
\skip_log:N \skip_log:C \skip_log:n

Writers the value of the \langle skip\rangle in the log file.

\skip_log:n \{\langle skip expr\rangle\}

Writers the result of evaluating the \langle skip expr\rangle in the log file.

\new:2014-08-22 \updated:2015-08-07

\skip_horizontal:N \skip_horizontal:n \skip_horizontal:c

Inserts a horizontal \langle skip\rangle into the current list. The argument can also be a \langle dim\rangle.

\TeXhackers note: \skip_horizontal:N is the \TeX primitive \hskip.
\skip_vertical:N \skip_vertical:C \skip_vertical:n
Inserts a vertical \textit{skip} into the current list. The argument can also be a \textit{dim}.

\TeXhackersnote: \skip_vertical:N is the \TeX primitive \texttt{\vskip}.

\newpage

\section{Creating and initialising muskip variables}

\muskip_new:N \muskip_new:C \muskip_new:n
Creates a new \textit{muskip} or raises an error if the name is already taken. The declaration is global. The \textit{(muskip)} is initially equal to 0\textmu.

\muskip_const:Nn \muskip_const:cn
\new: 2012-03-05
Creates a new constant \textit{muskip} or raises an error if the name is already taken. The value of the \textit{(muskip)} is set globally to the \textit{(muskip expr)}.

\muskip_zero:N \muskip_zero:C \muskip_gzero:N \muskip_gzero:C
\new: 2012-01-07
Sets \textit{muskip} to 0\textmu.

\muskip_zero_new:N \muskip_zero_new:C \muskip_gzero_new:N \muskip_gzero_new:C
\new: 2012-01-07
Ensures that the \textit{(muskip)} exists globally by applying \texttt{\muskip_new:N} if necessary, then applies \texttt{\muskip_(g)zero:N} to leave the \textit{(muskip)} set to zero.

\muskip_if_exist_p:N \muskip_if_exist:NTF \muskip_if_exist_p:C \muskip_if_exist:c
\new: 2012-03-03
Tests whether the \textit{(muskip)} is currently defined. This does not check that the \textit{(muskip)} really is a muskip variable.

\section{Setting muskip variables}

\muskip_add:Nn \muskip_add:cn \muskip_gadd:Nn \muskip_gadd:cn
\new: 2011-10-22
Adds the result of the \textit{(muskip expr)} to the current content of the \textit{(muskip)}.
26.21 Using \texttt{muskip} expressions and variables

\begin{verbatim}
\muskip_set:Nn \muskip_set:cn \muskip_gset:Nn \muskip_gset:cn
Updated: 2011-10-22

\muskip_set_eq:NN \muskip_set_eq:NN \muskip_set_eq:N{\mathchoice{\mathchardef\t1\mathchardef\h2\mathchardef\m3}{\mathchardef\t1\mathchardef\h2\mathchardef\m3}}\muskip_gset_eq:NN \muskip_gset_eq:N{\mathchoice{\mathchardef\t1\mathchardef\h2\mathchardef\m3}{\mathchardef\t1\mathchardef\h2\mathchardef\m3}}
\muskip_sub:Nn \muskip_sub:cn \muskip_gsub:Nn \muskip_gsub:cn
Updated: 2011-10-22
\end{verbatim}

\begin{verbatim}
\muskip_eval:n
\muskip_use:N \muskip_use:c
Updated: 2011-10-22
\end{verbatim}

\begin{verbatim}
\muskip_show:N \muskip_show:c
Updated: 2015-08-03
\end{verbatim}

\begin{verbatim}
\muskip_set:Nn \muskip_set:cn \muskip_gset:Nn \muskip_gset:cn
Updated: 2011-10-22

\muskip_set_eq:NN \muskip_set_eq:NN \muskip_set_eq:N{\mathchoice{\mathchardef\t1\mathchardef\h2\mathchardef\m3}{\mathchardef\t1\mathchardef\h2\mathchardef\m3}}\muskip_gset_eq:NN \muskip_gset_eq:N{\mathchoice{\mathchardef\t1\mathchardef\h2\mathchardef\m3}{\mathchardef\t1\mathchardef\h2\mathchardef\m3}}
\muskip_sub:Nn \muskip_sub:cn \muskip_gsub:Nn \muskip_gsub:cn
Updated: 2011-10-22
\end{verbatim}

\begin{verbatim}
\muskip_eval:n
\muskip_use:N \muskip_use:c
Updated: 2011-10-22
\end{verbatim}

\begin{verbatim}
\muskip_show:N \muskip_show:c
Updated: 2015-08-03
\end{verbatim}

26.22 Viewing \texttt{muskip} variables

\begin{verbatim}
\muskip_set:Nn \muskip_set:cn \muskip_gset:Nn \muskip_gset:cn
Updated: 2011-10-22

\muskip_set_eq:NN \muskip_set_eq:NN \muskip_set_eq:N{\mathchoice{\mathchardef\t1\mathchardef\h2\mathchardef\m3}{\mathchardef\t1\mathchardef\h2\mathchardef\m3}}\muskip_gset_eq:NN \muskip_gset_eq:N{\mathchoice{\mathchardef\t1\mathchardef\h2\mathchardef\m3}{\mathchardef\t1\mathchardef\h2\mathchardef\m3}}
\muskip_sub:Nn \muskip_sub:cn \muskip_gsub:Nn \muskip_gsub:cn
Updated: 2011-10-22
\end{verbatim}

\begin{verbatim}
\muskip_eval:n
\muskip_use:N \muskip_use:c
Updated: 2011-10-22
\end{verbatim}

\begin{verbatim}
\muskip_show:N \muskip_show:c
Updated: 2015-08-03
\end{verbatim}

\begin{verbatim}
\muskip_set:Nn \muskip_set:cn \muskip_gset:Nn \muskip_gset:cn
Updated: 2011-10-22

\muskip_set_eq:NN \muskip_set_eq:NN \muskip_set_eq:N{\mathchoice{\mathchardef\t1\mathchardef\h2\mathchardef\m3}{\mathchardef\t1\mathchardef\h2\mathchardef\m3}}\muskip_gset_eq:NN \muskip_gset_eq:N{\mathchoice{\mathchardef\t1\mathchardef\h2\mathchardef\m3}{\mathchardef\t1\mathchardef\h2\mathchardef\m3}}
\muskip_sub:Nn \muskip_sub:cn \muskip_gsub:Nn \muskip_gsub:cn
Updated: 2011-10-22
\end{verbatim}

\begin{verbatim}
\muskip_eval:n
\muskip_use:N \muskip_use:c
Updated: 2011-10-22
\end{verbatim}

\begin{verbatim}
\muskip_show:N \muskip_show:c
Updated: 2015-08-03
\end{verbatim}

\begin{verbatim}
\muskip_set:Nn \muskip_set:cn \muskip_gset:Nn \muskip_gset:cn
Updated: 2011-10-22

\muskip_set_eq:NN \muskip_set_eq:NN \muskip_set_eq:N{\mathchoice{\mathchardef\t1\mathchardef\h2\mathchardef\m3}{\mathchardef\t1\mathchardef\h2\mathchardef\m3}}\muskip_gset_eq:NN \muskip_gset_eq:N{\mathchoice{\mathchardef\t1\mathchardef\h2\mathchardef\m3}{\mathchardef\t1\mathchardef\h2\mathchardef\m3}}
\muskip_sub:Nn \muskip_sub:cn \muskip_gsub:Nn \muskip_gsub:cn
Updated: 2011-10-22
\end{verbatim}

\begin{verbatim}
\muskip_eval:n
\muskip_use:N \muskip_use:c
Updated: 2011-10-22
\end{verbatim}

\begin{verbatim}
\muskip_show:N \muskip_show:c
Updated: 2015-08-03
\end{verbatim}

Sets \texttt{muskip} to the value of \texttt{muskip expr}, which must evaluate to a math length with units and may include a rubber component (for example 1 mu plus 0.5 mu.

\begin{itemize}
\item \texttt{muskip expr}
\item \texttt{muskip expr}
\item \texttt{muskip expr}
\end{itemize}

Sets the content of \texttt{muskip} equal to that of \texttt{muskip}. Subtract the result of the \texttt{muskip expr} from the current content of the \texttt{muskip}.

\texttt{muskip expr}

Evaluates the \texttt{muskip expr}, expanding any skips and token list variables within the \texttt{expression} to their content (without requiring \texttt{muskip use:N/tl_use:N}) and applying the standard mathematical rules. The result of the calculation is left in the input stream as a \texttt{muglue denotation} after two expansions. This is expressed in mu, and requires suitable termination if used in a \TeX-style assignment as it is not an \texttt{internal muglue}.

\texttt{muskip expr}

Recovers the content of a \texttt{skip} and places it directly in the input stream. An error is raised if the variable does not exist or if it is invalid. Can be omitted in places where a \texttt{dimension} is required (such as in the argument of \texttt{muskip eval:n}).

\texttt{muskip expr}

\texttt{muskip expr}

Displays the value of the \texttt{muskip} on the terminal.

232
\muskip_show:n \muskip_show:n \{\muskip \expr\}
Displays the result of evaluating the \(\muskip \expr\) on the terminal.

\muskip_log:N \muskip_log:c
\muskip_log:N \{\muskip\}
Writes the value of the \(\muskip\) in the log file.

\muskip_log:n \muskip_log:n \{\muskip \expr\}
Writes the result of evaluating the \(\muskip \expr\) in the log file.

\ expend\show\n \expandafter\expandafter\expandafter\show\n \expandafter\expandafter\expandafter\\show\n
\section{Constant muskips}

\c_max_muskip
The maximum value that can be stored as a muskip, with no stretch nor shrink component.

\c_zero_muskip
A zero length as a muskip, with no stretch nor shrink component.

\section{Scratch muskips}

\l_tmpa_muskip \l_tmpb_muskip
Scratch muskip for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_muskip \g_tmpb_muskip
Scratch muskip for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\subsection{Primitive conditional}

\if_dim:w \if_dim:w \{\dimen,\} \{\relation\} \{\dimen,\}
\{\true\ code\}
\else:
\{\false\}
\fi:
Compare two dimensions. The \(\relation\) is one of \(<\), \(\le\), \(\ge\), \(\ne\) or \(\ne\) with category code 12.

\TeX\ hackers\ note: This is the \TeX\ primitive \ifdim.
Chapter 27

The l3keys package
Key–value interfaces

The key–value method is a popular system for creating large numbers of settings for controlling function or package behaviour. The system normally results in input of the form

\MyModuleSetup{
 key-one = value one,
 key-two = value two
}

or

\MyModuleMacro[
 key-one = value one,
 key-two = value two
]{argument}

for the user.

The high level functions here are intended as a method to create key–value controls. Keys are themselves created using a key–value interface, minimising the number of functions and arguments required. Each key is created by setting one or more properties of the key:

\keys_define:nn { mymodule }
{
 key-one .code:n = code including parameter #1,
 key-two .tl_set:N = \l_mymodule_store_tl
}

These values can then be set as with other key–value approaches:

\keys_set:nn { mymodule }
{
 key-one = value one,
 key-two = value two
}
As illustrated, keys are created inside a ⟨module⟩: a set of related keys, typically those for a single module/\LaTeX\,2e package. See Section for suggestions on how to divide large numbers of keys for a single module.

At a document level, \texttt{\textbackslash keys_set:nn} is used within a document function, for example

\begin{verbatim}
\DeclareDocumentCommand \MyModuleSetup { }{ \keys_set:nn { mymodule } { #1 } }
\DeclareDocumentCommand \MyModuleMacro { m }{ \group_begin: \keys_set:nn { mymodule } { #1 } \% Main code for \MyModuleMacro \group_end: }
\end{verbatim}

Key names may contain any tokens, as they are handled internally using \texttt{\textbackslash tl_to_str:n}. As discussed in section 27.2, it is suggested that the character / is reserved for sub-division of keys into logical groups. Functions and variables are not expanded when creating key names, and so

\begin{verbatim}
\tl_set:Nn \l_mymodule_tmp_tl { key }
\keys_define:nn { mymodule }{ }
 \l_mymodule_tmp_tl .code:n = code
\end{verbatim}

creates a key called \texttt{\l_mymodule_tmp_tl}, and not one called key.

27.1 Creating keys

\begin{verbatim}
\keys_define:nn \keys_define:ne
{⟨module⟩} ⟨keyval list⟩
\end{verbatim}

 Parses the ⟨keyval list⟩ and defines the keys listed there for ⟨module⟩. The ⟨module⟩ name is treated as a string. In practice the ⟨module⟩ should be chosen to be unique to the module in question (unless deliberately adding keys to an existing module).

The ⟨keyval list⟩ should consist of one or more key names along with an associated key property. The properties of a key determine how it acts. The individual properties are described in the following text; a typical use of \texttt{\keys_define:nn} might read

\begin{verbatim}
\keys_define:nn { mymodule }{ }
 keycode .code:n = Some-code-using-#1,
 keycode .value_required:n = true
\end{verbatim}

where the properties of the key begin from the . after the key name.

The various properties available take either no arguments at all, or require one or more arguments. This is indicated in the name of the property using an argument specification. In the following discussion, each property is illustrated attached to an arbitrary ⟨key⟩, which when used may be supplied with a ⟨value⟩. All key definitions are local.
Key properties are applied in the reading order and so the ordering is significant. Key properties which define “actions”, such as .code:n, .tl_set:N, etc., override one another. Some other properties are mutually exclusive, notably .value_required:n and .value_forbidden:n, and so they replace one another. However, properties covering non-exclusive behaviours may be given in any order. Thus for example the following definitions are equivalent.

\keys_define:nn { mymodule }
{
 keyname .code:n = Some-code-using-#1,
 keyname .value_required:n = true
}
\keys_define:nn { mymodule }
{
 keyname .value_required:n = true,
 keyname .code:n = Some-code-using-#1
}

Note that all key properties define the key within the current \TeX group, with an exception that the special .undefine: property undefines the key within the current \TeX group.

\bool_set:N \bool_set:c \bool_gset:N \bool_gset:c
\bool_set_inverse:N \bool_set_inverse:c \bool_gset_inverse:N \bool_gset_inverse:c
\clist_set:N \clist_set:c \clist_gset:N \clist_gset:c
\clist_set_inverse:N \clist_set_inverse:c \clist_gset_inverse:N \clist_gset_inverse:c

\keys_define:nn { mymodule }
{
 keyname .code:n = Some-code-using-#1,
 keyname .value_required:n = true
}
\keys_define:nn { mymodule }
{
 keyname .value_required:n = true,
 keyname .code:n = Some-code-using-#1
}

\key .bool_set:N = (boolean variable)
\key .bool_set:c
\key .bool_gset:N \key .bool_gset:c
\key .bool_set_inverse:N \key .bool_set_inverse:c \key .bool_gset_inverse:N \key .bool_gset_inverse:c

\key .clist_set:N = (comma list variable)
\key .clist_set:c \key .clist_gset:N \key .clist_gset:c

\choice: \key .choice:
Sets \key to act as a choice key. Each valid choice for \key must then be created, as discussed in section 27.3.

\choices:nn \choices:(Vn|en|on)
\choices:nn = \{choices\} \{\code\}

\clist_set:N \clist_set:c \clist_gset:N \clist_gset:c
\clist_set_inverse:N \clist_set_inverse:c \clist_gset_inverse:N \clist_gset_inverse:c

\key .clist_set:N = (comma list variable)
\key .clist_set:c \key .clist_gset:N \key .clist_gset:c

\key .bool_set:N = (boolean variable)
\key .bool_set:c
\key .bool_gset:N \key .bool_gset:c
\key .bool_set_inverse:N \key .bool_set_inverse:c \key .bool_gset_inverse:N \key .bool_gset_inverse:c

\key .clist_set:N = (comma list variable)
\key .clist_set:c \key .clist_gset:N \key .clist_gset:c

\key .bool_set:N = (boolean variable)
\key .bool_set:c
\key .bool_gset:N \key .bool_gset:c
\key .bool_set_inverse:N \key .bool_set_inverse:c \key .bool_gset_inverse:N \key .bool_gset_inverse:c

\key .clist_set:N = (comma list variable)
\key .clist_set:c \key .clist_gset:N \key .clist_gset:c

\keys_define:nn { mymodule }
{
 keyname .code:n = Some-code-using-#1,
 keyname .value_required:n = true
}
\keys_define:nn { mymodule }
{
 keyname .value_required:n = true,
 keyname .code:n = Some-code-using-#1
}

Note that all key properties define the key within the current \TeX group, with an exception that the special .undefine: property undefines the key within the current \TeX group.

\key .bool_set:N \key .bool_set:c \key .bool_gset:N \key .bool_gset:c
\key .bool_set_inverse:N \key .bool_set_inverse:c \key .bool_gset_inverse:N \key .bool_gset_inverse:c

\key .clist_set:N \key .clist_set:c \key .clist_gset:N \key .clist_gset:c
\key .clist_set_inverse:N \key .clist_set_inverse:c \key .clist_gset_inverse:N \key .clist_gset_inverse:c

\key .bool_set:N \key .bool_set:c \key .bool_gset:N \key .bool_gset:c
\key .bool_set_inverse:N \key .bool_set_inverse:c \key .bool_gset_inverse:N \key .bool_gset_inverse:c

\key .clist_set:N \key .clist_set:c \key .clist_gset:N \key .clist_gset:c
\key .clist_set_inverse:N \key .clist_set_inverse:c \key .clist_gset_inverse:N \key .clist_gset_inverse:c

\keys_define:nn { mymodule }
{
 keyname .code:n = Some-code-using-#1,
 keyname .value_required:n = true
}
\keys_define:nn { mymodule }
{
 keyname .value_required:n = true,
 keyname .code:n = Some-code-using-#1
}

Note that all key properties define the key within the current \TeX group, with an exception that the special .undefine: property undefines the key within the current \TeX group.

\key .bool_set:N \key .bool_set:c \key .bool_gset:N \key .bool_gset:c
\key .bool_set_inverse:N \key .bool_set_inverse:c \key .bool_gset_inverse:N \key .bool_gset_inverse:c

\key .clist_set:N \key .clist_set:c \key .clist_gset:N \key .clist_gset:c
\key .clist_set_inverse:N \key .clist_set_inverse:c \key .clist_gset_inverse:N \key .clist_gset_inverse:c

\keys_define:nn { mymodule }
{
 keyname .code:n = Some-code-using-#1,
 keyname .value_required:n = true
}
\keys_define:nn { mymodule }
{
 keyname .value_required:n = true,
 keyname .code:n = Some-code-using-#1
}

Note that all key properties define the key within the current \TeX group, with an exception that the special .undefine: property undefines the key within the current \TeX group.

\key .bool_set:N \key .bool_set:c \key .bool_gset:N \key .bool_gset:c
\key .bool_set_inverse:N \key .bool_set_inverse:c \key .bool_gset_inverse:N \key .bool_gset_inverse:c

\key .clist_set:N \key .clist_set:c \key .clist_gset:N \key .clist_gset:c
\key .clist_set_inverse:N \key .clist_set_inverse:c \key .clist_gset_inverse:N \key .clist_gset_inverse:c

\keys_define:nn { mymodule }
{
 keyname .code:n = Some-code-using-#1,
 keyname .value_required:n = true
}
\keys_define:nn { mymodule }
{
 keyname .value_required:n = true,
 keyname .code:n = Some-code-using-#1
}

Note that all key properties define the key within the current \TeX group, with an exception that the special .undefine: property undefines the key within the current \TeX group.

\key .bool_set:N \key .bool_set:c \key .bool_gset:N \key .bool_gset:c
\key .bool_set_inverse:N \key .bool_set_inverse:c \key .bool_gset_inverse:N \key .bool_gset_inverse:c

\key .clist_set:N \key .clist_set:c \key .clist_gset:N \key .clist_gset:c
\key .clist_set_inverse:N \key .clist_set_inverse:c \key .clist_gset_inverse:N \key .clist_gset_inverse:c

\keys_define:nn { mymodule }
{
 keyname .code:n = Some-code-using-#1,
 keyname .value_required:n = true
}
\keys_define:nn { mymodule }
{
 keyname .value_required:n = true,
 keyname .code:n = Some-code-using-#1
}

Note that all key properties define the key within the current \TeX group, with an exception that the special .undefine: property undefines the key within the current \TeX group.

\key .bool_set:N \key .bool_set:c \key .bool_gset:N \key .bool_gset:c
\key .bool_set_inverse:N \key .bool_set_inverse:c \key .bool_gset_inverse:N \key .bool_gset_inverse:c

\key .clist_set:N \key .clist_set:c \key .clist_gset:N \key .clist_gset:c
\key .clist_set_inverse:N \key .clist_set_inverse:c \key .clist_gset_inverse:N \key .clist_gset_inverse:c

\keys_define:nn { mymodule }
{
 keyname .code:n = Some-code-using-#1,
 keyname .value_required:n = true
}
\keys_define:nn { mymodule }
{
 keyname .value_required:n = true,
 keyname .code:n = Some-code-using-#1
}

Note that all key properties define the key within the current \TeX group, with an exception that the special .undefine: property unde
(key) .code:n = {\langle code\rangle}

Stores the \langle code\rangle for execution when \langle key\rangle is used. The \langle code\rangle can include one parameter (#1), which will be the \langle value\rangle given for the \langle key\rangle.

\langle key\rangle .cs_set:Np = \langle control sequence\rangle \langle arg. spec.\rangle

Defines \langle key\rangle to set \langle control sequence\rangle to have \langle arg. spec.\rangle and replacement text \langle value\rangle.

\langle key\rangle .default:n = {\langle default\rangle}

Creates a \langle default\rangle value for \langle key\rangle, which is used if no value is given. This will be used if only the key name is given, but not if a blank \langle value\rangle is given:

\keys_define:nn { mymodule }
\{
 key .code:n = Hello-#1,
 key .default:n = World
\}

\keys_set:nn { mymodule }
\{
 key = Fred, % Prints ‘Hello Fred’
 key, % Prints ‘Hello World’
 key = , % Prints ‘Hello ’
\}

The default does not affect keys where values are required or forbidden. Thus a required value cannot be supplied by a default value, and giving a default value for a key which cannot take a value does not trigger an error.

When no value is given for a key as part of \keys_set:nn, the .default:n value provides the value before key properties are considered. The only exception is when the .value_required:n property is active: a required value cannot be supplied by the default, and must be explicitly given as part of \keys_set:nn.

\langle key\rangle .dim_set:N = \langle dimension\rangle

Defines \langle key\rangle to set \langle dimension\rangle to \langle value\rangle (which must a dimension expression). If the variable does not exist, it is created globally at the point that the key is set up. The key will require a value at point-of-use unless a default is set.

\langle key\rangle .fp_set:N = \langle floating point\rangle

Defines \langle key\rangle to set \langle floating point\rangle to \langle value\rangle (which must a floating point expression). If the variable does not exist, it is created globally at the point that the key is set up. The key will require a value at point-of-use unless a default is set.
.\groups:n (key) .\groups:n = \{\text{groups}\}

Defines (key) as belonging to the (\text{groups}) declared. Groups provide a “secondary axis” for selectively setting keys, and are described in Section 27.7.

.\inherit:n (key) .\inherit:n = \{\text{parents}\}

New: 2016-11-22

Specifies that the (key) path should inherit the keys listed as any of the (\text{parents}) (a comma list), which can be a module or a subgroup. For example, after setting

\begin{verbatim}
\keys_define:nn { foo } { test .\code:n = \text{\tl_show:n \{#1\}} }
\keys_define:nn { } { bar .\inherit:n = foo }
\end{verbatim}

setting

\begin{verbatim}
\keys_set:nn { bar } { test = a }
\end{verbatim}

will be equivalent to

\begin{verbatim}
\keys_set:nn { foo } { test = a }
\end{verbatim}

Inheritance applies at point of use, not at definition, thus keys may be added to the (\text{parent}) after the use of .\\inherit:n and will be active. If more than one (\text{parent}) is specified, the presence of the (key) will be tested for each in turn, with the first successful hit taking priority.

.\\initial:n (key) .\\initial:n = \{(\text{value})\}

Initialises the (key) with the (\text{value}), equivalent to

\begin{verbatim}
\keys_set:nn { \langle\text{module}\rangle\} { \langle\text{key}\rangle = \langle\text{value}\rangle }
\end{verbatim}

.\\int_set:N \langle\text{key}\rangle .\\int_set:N = \langle\text{integer}\rangle

.\\int_set:c \langle\text{key}\rangle .\\int_set:c

.\\int_gset:N \langle\text{key}\rangle .\\int_gset:N

.\\int_gset:c \langle\text{key}\rangle .\\int_gset:c

Updated: 2020-01-17

Defines (\text{key}) to set (\text{integer}) to (\text{value}) (which must be an integer expression). If the variable does not exist, it is created globally at the point that the key is set up. The key will require a value at point-of-use unless a default is set.

.\\\legacy_if_set:n \langle\text{key}\rangle .\\\legacy_if_set:n = \langle\text{switch}\rangle

.\\\legacy_if_set_inverse:n \langle\text{key}\rangle .\\\legacy_if_set_inverse:n

Updated: 2022-01-15

Defines (\text{key}) to set legacy \textbackslash if\textbackslash (\text{switch}) to (\text{value}) (which must be either “\texttt{true}” or “\texttt{false}”). The (\text{switch}) is the name of the switch without the leading if.

The \textit{inverse} versions will set the (\text{switch}) to the logical opposite of the (\text{value}).

.\\meta:n \langle\text{key}\rangle .\\meta:n = \langle\text{keyval list}\rangle

Updated: 2013-07-10

Makes (\text{key}) a meta-key, which will set (\text{keyval list}) in one go. The (\text{keyval list}) can refer as \#1 to the value given at the time the (\text{key}) is used (or, if no value is given, the (\text{key})’s default value).
Makes \langle key \rangle a meta-key, which will set \langle keyval list \rangle in one go using the \langle path \rangle in place of the current one. The \langle keyval list \rangle can refer as \#1 to the value given at the time the \langle key \rangle is used (or, if no value is given, the \langle key \rangle’s default value).

Sets \langle key \rangle to act as a multiple choice key. Each valid choice for \langle key \rangle must then be created, as discussed in section 27.3.

Sets \langle key \rangle to act as a multiple choice key, and defines a series \langle choices \rangle which are implemented using the \langle code \rangle. Inside \langle code \rangle, \backslash l_keys_choice_tl will be the name of the choice made, and \backslash l_keys_choice_int will be the position of the choice in the list of \langle choices \rangle (indexed from 1). Choices are discussed in detail in section 27.3.

Defines \langle key \rangle to set \langle muskip \rangle to \langle value \rangle (which must be a muskip expression). If the variable does not exist, it is created globally at the point that the key is set up. The key will require a value at point-of-use unless a default is set.

Defines \langle key \rangle to put \langle value \rangle onto the \langle property list \rangle stored under the \langle key \rangle. If the variable does not exist, it is created globally at the point that the key is set up.

Defines \langle key \rangle to set \langle skip \rangle to \langle value \rangle (which must be a skip expression). If the variable does not exist, it is created globally at the point that the key is set up. The key will require a value at point-of-use unless a default is set.

Defines \langle key \rangle to set \langle string variable \rangle to \langle value \rangle. If the variable does not exist, it is created globally at the point that the key is set up.

Defines \langle key \rangle to set \langle string variable \rangle to \langle value \rangle, which will be subjected to an e-type expansion (i.e. using \texttt{str_set:Ne}). If the variable does not exist, it is created globally at the point that the key is set up.
\texttt{.tl_set:N} \hspace{1em} \langle \text{key} \rangle .\texttt{tl_set:N} = \langle \text{token list variable} \rangle
\texttt{.tl_set:c}
\texttt{.tl_gset:N}
\texttt{.tl_gset:c}

Defines \langle \text{key} \rangle to set \langle \text{token list variable} \rangle to \langle \text{value} \rangle. If the variable does not exist, it is created globally at the point that the key is set up.

\texttt{.tl_set_e:N} \hspace{1em} \langle \text{key} \rangle .\texttt{tl_set_e:N} = \langle \text{token list variable} \rangle
\texttt{.tl_set_e:c}
\texttt{.tl_gset_e:N}
\texttt{.tl_gset_e:c}

Defines \langle \text{key} \rangle to set \langle \text{token list variable} \rangle to \langle \text{value} \rangle, which will be subjected to an \texttt{e}-type expansion (\textit{i.e.} using \texttt{\tl_set:Ne}). If the variable does not exist, it is created globally at the point that the key is set up.

\texttt{.undefine:} \hspace{1em} \langle \text{key} \rangle .\texttt{undefine:}

Removes the definition of the \langle \text{key} \rangle within the current \TeX{} group.

\texttt{.value_forbidden:n} \hspace{1em} \langle \text{key} \rangle .\texttt{value_forbidden:n} = \texttt{true|false}

\texttt{.value_required:n} \hspace{1em} \langle \text{key} \rangle .\texttt{value_required:n} = \texttt{true|false}

New: 2015-07-14

Specifies that \langle \text{key} \rangle cannot receive a \langle \text{value} \rangle when used. If a \langle \text{value} \rangle is given then an error will be issued. Setting the property \texttt{“false”} cancels the restriction.

Specifies that \langle \text{key} \rangle must receive a \langle \text{value} \rangle when used. If a \langle \text{value} \rangle is not given then an error will be issued. Setting the property \texttt{“false”} cancels the restriction.

\section*{27.2 Sub-dividing keys}

When creating large numbers of keys, it may be desirable to divide them into several sub-groups for a given module. This can be achieved either by adding a sub-division to the module name:

\begin{verbatim}
\keys_define:nn { mymodule / subgroup }
 { key .code:n = code }
\end{verbatim}

or to the key name:

\begin{verbatim}
\keys_define:nn { mymodule }
 { subgroup / key .code:n = code }
\end{verbatim}

As illustrated, the best choice of token for sub-dividing keys in this way is \texttt{/}. This is because of the method that is used to represent keys internally. Both of the above code fragments set the same key, which has full name \texttt{mymodule/subgroup/key}.

As illustrated in the next section, this subdivision is particularly relevant to making multiple choices.
27.3 Choice and multiple choice keys

The \l3keys system supports two types of choice key, in which a series of pre-defined input values are linked to varying implementations. Choice keys are usually created so that the various values are mutually-exclusive: only one can apply at any one time. “Multiple” choice keys are also supported: these allow a selection of values to be chosen at the same time.

Mutually-exclusive choices are created by setting the .choice: property:

\keys_define:nn { mymodule }
 { key .choice: }

For keys which are set up as choices, the valid choices are generated by creating sub-keys of the choice key. This can be carried out in two ways.

In many cases, choices execute similar code which is dependant only on the name of the choice or the position of the choice in the list of all possibilities. Here, the keys can share the same code, and can be rapidly created using the .choices:nn property.

\keys_define:nn { mymodule }
 { key .choices:nn =
 { choice-a, choice-b, choice-c }
 { You-gave-choice-"\tl_use:N \l_keys_choice_tl",~
 which-is-in-position-\int_use:N \l_keys_choice_int \c_space_tl
 in-the-list.~
 }
 }

The index \l_keys_choice_int in the list of choices starts at 1.

Inside the code block for a choice generated using .choices:nn, the variables \l_keys_choice_tl and \l_keys_choice_int are available to indicate the name of the current choice, and its position in the comma list. The position is indexed from 1. Note that, as with standard key code generated using .code:n, the value passed to the key (i.e. the choice name) is also available as #1.

On the other hand, it is sometimes useful to create choices which use entirely different code from one another. This can be achieved by setting the .choice: property of a key, then manually defining sub-keys.

\keys_define:nn { mymodule }
 { key .choice:,
 key / choice-a .code:n = code-a,
 key / choice-b .code:n = code-b,
 key / choice-c .code:n = code-c,
 }

It is possible to mix the two methods, but manually-created choices should not use \l_keys_choice_tl or \l_keys_choice_int. These variables do not have defined
behaviour when used outside of code created using \texttt{.choices:nn} \textit{(i.e. anything might happen)}.

It is possible to allow choice keys to take values which have not previously been defined by adding code for the special \texttt{unknown} choice. The general behavior of the \texttt{unknown} key is described in Section 27.6. A typical example in the case of a choice would be to issue a custom error message:

\begin{verbatim}
\keys_define:nn { mymodule }
{
 key .choice:,
 key / choice-a .code:n = code-a,
 key / choice-b .code:n = code-b,
 key / choice-c .code:n = code-c,
 key / unknown .code:n = \msg_error:nneee { mymodule } { unknown-choice }
 { key } % Name of choice key
 { choice-a , choice-b , choice-c } % Valid choices
 { \exp_not:n {#1} } % Invalid choice given
 }
\end{verbatim}

Multiple choices are created in a very similar manner to mutually-exclusive choices, using the properties \texttt{.multichoice:} and \texttt{.multichoice:nn}. As with mutually exclusive choices, multiple choices are define as sub-keys. Thus both

\begin{verbatim}
\keys_define:nn { mymodule }
{
 key .multichoices:nn =
 { choice-a, choice-b, choice-c }
 { You-gave-choice-‘\tl_use:N \l_keys_choice_tl’,- \which-is-in-position- \int_use:N \l_keys_choice_int \c_space_tl in-the-list. }
}
\end{verbatim}

and

\begin{verbatim}
\keys_define:nn { mymodule }
{
 key .multichoice:,
 key / choice-a .code:n = code-a,
 key / choice-b .code:n = code-b,
 key / choice-c .code:n = code-c,
}
\end{verbatim}

are valid.

When a multiple choice key is set
\keys_set:nn { mymodule }
{
 key = { a , b , c } % 'key' defined as a multiple choice
}

Each choice is applied in turn, equivalent to a clist mapping or to applying each value individually:

\keys_set:nn { mymodule }
{
 key = a ,
 key = b ,
 key = c ,
}

Thus each separate choice will have passed to it the \l_keys_choice_tl and \l_keys_choice_int in exactly the same way as described for .choices:nn.

27.4 Key usage scope

Some keys will be used as settings which have a strictly limited scope of usage. Some will be only available once, others will only be valid until typesetting begins. To allow formats to support this in a structured way, l3keys allows this information to be specified using the .usage:n property.

\begin{itemize}
 \item \texttt{.usage:n} \langle key \rangle .usage:n = \langle scope \rangle
\end{itemize}

\texttt{New: 2022-01-10}

\l_keys_usage_load_prop
\l_keys_usage_preamble_prop

\texttt{New: 2022-01-10}

\l3keys itself does \textit{not} attempt to redefine keys based on the usage scope. Rather, this information is made available with these two property lists. These hold an entry for each module (prefix); the value of each entry is a comma-separated list of the usage-restricted key(s).

27.5 Setting keys

\begin{itemize}
 \item \texttt{\keys_set:nn \keys_set:{nV|nv|ne|no}}
\end{itemize}

\texttt{Updated: 2017-11-14}

\texttt{\keys_set:nn \{module\} \{(keyval list)\}}

Parses the \langle keyval list \rangle, and sets those keys which are defined for \langle module \rangle. The behaviour on finding an unknown key can be set by defining a special \texttt{unknown} key: this is illustrated later.
For each key processed, information of the full path of the key, the name of the key and the value of the key is available within two string and one token list variables. These may be used within the code of the key.

The path of the key is a “full” description of the key, and is unique for each key. It consists of the module and full key name, thus for example

\keys_set:nn \{ mymodule \} \{ key-a = some-value \}

has path mymodule/key-a while

\keys_set:nn \{ mymodule \} \{ subset / key-a = some-value \}

has path mymodule/subset/key-a. This information is stored in \l_keys_path_str.

The name of the key is the part of the path after the last /, and thus is not unique. In the preceding examples, both keys have name key-a despite having different paths. This information is stored in \l_keys_key_str.

The value is everything after the =, which may be empty if no value was given. This is stored in \l_keys_value_tl, and is not processed in any way by \keys_set:nn.

27.6 Handling of unknown keys

If a key has not previously been defined (is unknown), \keys_set:nn looks for a special unknown key for the same module, and if this is not defined raises an error indicating that the key name was unknown. This mechanism can be used for example to issue custom error texts.

\keys_define:nn \{ mymodule \}

\{
 unknown .code:n =
 You-tried-to-set-key-’\l_keys_key_str’-to-’#1’.
\}

These functions set keys which are known for the \langle module \rangle, and simply ignore other keys. The \keys_set_known:nn function parses the \langle keyval list \rangle, and sets those keys which are defined for \langle module \rangle. Any keys which are unknown are not processed further by the parser. In addition, \keys_set_known:nnN stores the key–value pairs in the \langle tl \rangle in comma-separated form (i.e. an edited version of the \langle keyval list \rangle). When a \langle root \rangle is given (\keys_set_known:nnnN), the key–value entries are returned relative to this point in the key tree. When it is absent, only the key name and value are provided. The correct list is returned by nested calls.
27.7 Selective key setting

In some cases it may be useful to be able to select only some keys for setting, even though these keys have the same path. For example, with a set of keys defined using

\keys_define:nn { mymodule }
{
 key-one .code:n = { \my_func:n {#1} } ,
 key-two .tl_set:N = \l_my_a_tl ,
 key-three .tl_set:N = \l_my_b_tl ,
 key-four .fp_set:N = \l_my_a_fp ,
}

the use of \keys_set:nn attempts to set all four keys. However, in some contexts it may only be sensible to set some keys, or to control the order of setting. To do this, keys may be assigned to groups: arbitrary sets which are independent of the key tree. Thus modifying the example to read

\keys_define:nn { mymodule }
{
 key-one .code:n = { \my_func:n {#1} } ,
 key-one .groups:n = { first } ,
 key-two .tl_set:N = \l_my_a_tl ,
 key-two .groups:n = { first } ,
 key-three .tl_set:N = \l_my_b_tl ,
 key-three .groups:n = { second } ,
 key-four .fp_set:N = \l_my_a_fp ,
}

assigns key-one and key-two to group first, key-three to group second, while key-four is not assigned to a group.

Selective key setting may be achieved either by selecting one or more groups to be made “active”, or by marking one or more groups to be ignored in key setting.

\keys_set_filter:nn
\keys_set_filter:nnN
\keys_set_filter:nnnnN

Activates key filtering in an “opt-out” sense: keys assigned to any of the (groups) specified are ignored. The (groups) are given as a comma-separated list. Unknown keys are not assigned to any group and are thus always set. The key–value pairs for each key which is filtered out are stored in the (tl) in a comma-separated form (i.e. an edited version of the (keyval list)). The \keys_set_filter:nn version skips this stage.

Use of \keys_set_filter:nnN can be nested, with the correct residual (keyval list) returned at each stage. In the version which takes a (root) argument, the key list is returned relative to that point in the key tree. In the cases without a (root) argument, only the key names and values are returned.

\keys_set_filter:nn
\keys_set_filter:nnN
\keys_set_filter:nnnnN
\keys_set_filter:nnnnN
Activates key filtering in an “opt-in” sense: only keys assigned to one or more of the \langle groups \rangle specified are set. The \langle groups \rangle are given as a comma-separated list. Unknown keys are not assigned to any group and are thus never set.

27.8 Digesting keys

\keys_precompile:nnN \keys_precompile:nnN \langle module \rangle \{ \langle keyval list \rangle \} \langle tl \rangle

Parses the \langle keyval list \rangle as for \keys_set:nn, placing the resulting code for those which set variables or functions into the \langle tl \rangle. Thus this function “precompiles” the keyval list into a set of results which can be applied rapidly.

27.9 Utility functions for keys

\keys_if_exist_p:nn \keys_if_exist_p:nn \langle module \rangle \{ \langle key \rangle \}
\keys_if_exist_p:ne \keys_if_exist_p:ne \langle module \rangle \{ \langle key \rangle \} \{ \text{false code} \}
\keys_if_exist:nnTF \keys_if_exist:nnTF \langle module \rangle \{ \langle key \rangle \} \{ \langle true code \rangle \} \{ \text{false code} \}

Tests if the \langle key \rangle exists for \langle module \rangle, \text{i.e.} if any code has been defined for \langle key \rangle.

\keys_if_choice_exist_p:nnn \keys_if_choice_exist_p:nnn \langle module \rangle \{ \langle key \rangle \} \{ \langle choice \rangle \}
\keys_if_choice_exist:nnnTF \keys_if_choice_exist:nnnTF \langle module \rangle \{ \langle key \rangle \} \{ \langle choice \rangle \} \{ \text{true code} \}
\keys_if_choice_exist:nnn \keys_if_choice_exist:nnn \langle module \rangle \{ \langle key \rangle \} \{ \langle choice \rangle \} \{ \text{false code} \}

Tests if the \langle choice \rangle is defined for the \langle key \rangle within the \langle module \rangle, \text{i.e.} if any code has been defined for \langle key \rangle/\langle choice \rangle. The test is \text{false} if the \langle key \rangle itself is not defined.

\keys_show:nn \keys_show:nn \langle module \rangle \{ \langle key \rangle \}

Displays in the terminal the information associated to the \langle key \rangle for a \langle module \rangle, including the function which is used to actually implement it.

\keys_log:nn \keys_log:nn \langle module \rangle \{ \langle key \rangle \}

Writes in the log file the information associated to the \langle key \rangle for a \langle module \rangle. See also \keys_show:nn which displays the result in the terminal.
27.10 Low-level interface for parsing key–val lists

To re-cap from earlier, a key–value list is input of the form

\[
\begin{align*}
\text{KeyOne} &= \text{ValueOne} , \\
\text{KeyTwo} &= \text{ValueTwo} , \\
\text{KeyThree}
\end{align*}
\]

where each key–value pair is separated by a comma from the rest of the list, and each key–value pair does not necessarily contain an equals sign or a value! Processing this type of input correctly requires a number of careful steps, to correctly account for braces, spaces and the category codes of separators.

While the functions described earlier are used as a high-level interface for processing such input, in special circumstances you may wish to use a lower-level approach. The low-level parsing system converts a \(\langle\text{key–value list}\rangle\) into \(\langle\text{keys}\rangle\) and associated \(\langle\text{values}\rangle\). After the parsing phase is completed, the resulting keys and values (or keys alone) are available for further processing. This processing is not carried out by the low-level parser itself, and so the parser requires the names of two functions along with the key–value list. One function is needed to process key–value pairs (it receives two arguments), and a second function is required for keys given without any value (it is called with a single argument).

The parser does not double \# tokens or expand any input. Active tokens = and \, appearing at the outer level of braces are converted to category “other” (12) so that the parser does not “miss” any due to category code changes. Spaces are removed from the ends of the keys and values. Keys and values which are given in braces have exactly one set removed (after space trimming), thus

\[
\begin{align*}
\text{key} &= \{\text{value here}\}, \\
\text{key} &= \text{value here},
\end{align*}
\]

are treated identically.
\keyval_parse:nnn \keyval_parse:(nnV|nnV) \keyval_parse:(nnV|nnV) \keyval_parse:nnn \keyval_parse:nnn {\use_none:nn} {\use_none:nn} {\use_none:nn} {\use_none:nn}

parses the \textit{\langle key–value list \rangle} into a series of \textit{\langle keys \rangle} and associated \textit{\langle values \rangle}, or keys alone (if no \textit{\langle value \rangle} was given). \textit{\langle code\textsubscript{1} \rangle} receives each \textit{\langle key \rangle} (with no \textit{\langle value \rangle}) as a trailing brace group, whereas \textit{\langle code\textsubscript{2} \rangle} is appended by two brace groups, the \textit{\langle key \rangle} and \textit{\langle value \rangle}. The order of the \textit{\langle keys \rangle} in the \textit{\langle key–value list \rangle} is preserved. Thus

\begin{verbatim}
\keyval_parse:nnn
 { \use_none:nn { code 1 } }
 { \use_none:nnn { code 2 } }
 { key1 = value1, key2 = value2, key3 = , key4 }
\end{verbatim}

is converted into an input stream

\begin{verbatim}
\use_none:nnn { code 2 } { key1 } { value1 }
\use_none:nnn { code 2 } { key2 } { value2 }
\use_none:nnn { code 2 } { key3 } { }
\use_none:nn { code 1 } { key4 }
\end{verbatim}

Note that there is a difference between an empty value (an equals sign followed by nothing) and a missing value (no equals sign at all). Spaces are trimmed from the ends of the \textit{\langle key \rangle} and \textit{\langle value \rangle}, then one outer set of braces is removed from the \textit{\langle key \rangle} and \textit{\langle value \rangle} as part of the processing. If you need exactly the output shown above, you'll need to either \texttt{e}-type or \texttt{x}-type expand the function.

\textbf{\TeX hackers note:} The result of each list element is returned within \texttt{\exp_not:n}, which means that the converted input stream does not expand further when appearing in an \texttt{e}-type or \texttt{x}-type argument expansion.
\keyval_parse:NNn \keyval_parse:{NNV}|{NNv} \star
\keyval_parse:NNn \{function_1\} \{function_2\} \{(key–value list)\}

Parses the \{(key–value list)\} into a series of \{(keys)\} and associated \{(values)\}, or keys alone (if no \{(value)\} was given). \{(function)\} should take one argument, while \{(function_2)\} should absorb two arguments. After \keyval_parse:Nnn has parsed the \{(key–value list)\}, \{(function)\} is used to process keys given with no value and \{(function_2)\} is used to process keys given with a value. The order of the \{(keys)\} in the \{(key–value list)\} is preserved. Thus

\keyval_parse:NNn \function:n \function:nn
{ key1 = value1, key2 = value2, key3 = , key4 }

is converted into an input stream

\function:nn { key1 } { value1 }
\function:nn { key2 } { value2 }
\function:nn { key3 } { }
\function:n { key4 }

Note that there is a difference between an empty value (an equals sign followed by nothing) and a missing value (no equals sign at all). Spaces are trimmed from the ends of the \{(key)\} and \{(value)\}, then one outer set of braces is removed from the \{(key)\} and \{(value)\} as part of the processing.

This shares the implementation of \keyval_parse:nnn, the difference is only semantically.

\TeXhackers note: The result is returned within \exp_not:n, which means that the converted input stream does not expand further when appearing in an e-type or x-type argument expansion.
Chapter 28

The \texttt{l3intarray} package
Fast global integer arrays

28.1 \texttt{l3intarray} documentation

For applications requiring heavy use of integers, this module provides arrays which can be accessed in constant time (contrast \texttt{l3seq}, where access time is linear). These arrays have several important features

- The size of the array is fixed and must be given at point of initialisation
- The absolute value of each entry has maximum $2^{30} - 1$ (i.e. one power lower than the usual \texttt{c_max_int} ceiling of $2^{31} - 1$)

The use of \texttt{intarray} data is therefore recommended for cases where the need for fast access is of paramount importance.

\begin{verbatim}
\intarray_new:Nn \intarray_new:cn
\intarray_count:N \intarray_count:c
\intarray_gset:Nnn \intarray_gset:cnn
\end{verbatim}

\texttt{\intarray_new:Nn \langle intarray var\rangle \{\langle size\rangle\}}

Evaluates the integer expression \langle size\rangle and allocates an \langle integer array variable\rangle with that number of (zero) entries. The variable name should start with \texttt{\g_} because assignments are always global.

\begin{verbatim}
\intarray_count:N \intarray_count:c
\end{verbatim}

\texttt{\intarray_count:N \langle intarray var\rangle}

Expands to the number of entries in the \langle integer array variable\rangle. Contrarily to \texttt{\seq_count:N} this is performed in constant time.

\begin{verbatim}
\intarray_gset:Nnn \intarray_gset:cnn
\end{verbatim}

\texttt{\intarray_gset:Nnn \langle intarray var\rangle \{\langle position\rangle\} \{\langle value\rangle\}}

Stores the result of evaluating the integer expression \langle value\rangle into the \langle integer array variable\rangle at the (integer expression) \langle position\rangle. If the \langle position\rangle is not between 1 and the \texttt{\intarray_count:N}, or the \langle value\rangle’s absolute value is bigger than $2^{30} - 1$, an error occurs. Assignments are always global.
\intarray_const_from_clist:Nn \intarray_const_from_clist:Nn \intarray_var \{ \text{int expr clist} \}
\intarray_const_from_clist:cn

New: 2018-05-04

Creates a new constant (integer array variable) or raises an error if the name is already taken. The (integer array variable) is set (globally) to contain as its items the results of evaluating each (integer expression) in the (comma list).

\intarray_gzero:N \intarray_gzero:c

New: 2018-06-04

\intarray_item:Nn \intarray_item:cn \{ \text{position} \}

Expands to the integer entry stored at the (integer expression) (position) in the (integer array variable). If the (position) is not between 1 and the \texttt{\intarray_count:N}, an error occurs.

\intarray_rand_item:N \intarray_rand_item:c

New: 2018-05-05

\intarray_show:N \intarray_show:c \intarray_log:N \intarray_log:c

New: 2018-05-04

28.1.1 Implementation notes

It is a wrapper around the \texttt{\fontdimen} primitive, used to store arrays of integers (with a restricted range: absolute value at most $2^{30} - 1$). In contrast to \texttt{l3seq} sequences the access to individual entries is done in constant time rather than linear time, but only integers can be stored. More precisely, the primitive \texttt{\fontdimen} stores dimensions but the \texttt{l3intarray} package transparently converts these from/to integers. Assignments are always global.

While Lua\TeX 's memory is extensible, other engines can “only” deal with a bit less than 4×10^6 entries in all \texttt{\fontdimen} arrays combined (with default \TeX Live settings).
Chapter 29

The l3fp package
Floating points

A decimal floating point number is one which is stored as a significand and a separate exponent. The module implements expandably a wide set of arithmetic, trigonometric, and other operations on decimal floating point numbers, to be used within floating point expressions. Floating point expressions (\texttt{"(fp expr"}) support the following operations with their usual precedence.

- Basic arithmetic: addition \(x + y\), subtraction \(x - y\), multiplication \(x \star y\), division \(x/y\), square root \(\sqrt{x}\), and parentheses.
- Comparison operators: \(x < y\), \(x <= y\), \(x > y\), \(x != y\) etc.
- Boolean logic: sign \(\text{sign} x\), negation \(!x\), conjunction \(x \&\& y\), disjunction \(x || y\), ternary operator \(x ? y : z\).
- Exponentials: \(\exp x\), \(\ln x\), \(x^y\), \(\log_b x\).
- Integer factorial: \(\text{fact} x\).
- Trigonometry: \(\sin x\), \(\cos x\), \(\tan x\), \(\cot x\), \(\sec x\), \(\csc x\) expecting their arguments in radians, and \(\sin d x\), \(\cos d x\), \(\tan d x\), \(\cot d x\), \(\sec d x\), \(\csc d x\) expecting their arguments in degrees.
- Inverse trigonometric functions: \(\arcsin x\), \(\arccos x\), \(\arctan x\), \(\arccot x\), \(\arcsec x\), \(\arccsc x\) giving a result in radians, and \(\arcsind x\), \(\arccosd x\), \(\arctand x\), \(\arccotd x\), \(\arcsecd x\), \(\arcscd x\) giving a result in degrees.
- Extrema: \(\max(x_1, x_2, \ldots)\), \(\min(x_1, x_2, \ldots)\), \(\abs{x}\).
- Rounding functions, controlled by two optional values, \(n\) (number of places, 0 by default) and \(t\) (behavior on a tie, \texttt{nan} by default):
 - \(\text{trunc}(x, n)\) rounds towards zero,
 - \(\text{floor}(x, n)\) rounds towards \(-\infty\),

\(\text{not yet}\) Hyperbolic functions and their inverse functions: \(\sinh x\), \(\cosh x\), \(\tanh x\), \(\coth x\), \(\sech x\), \(\csch x\), and \(\text{arsinh} x\), \(\text{arcosh} x\), \(\text{artanh} x\), \(\text{arcoth} x\), \(\text{arsech} x\), \(\text{arcsch} x\).

- Extrema: \(\max(x_1, x_2, \ldots)\), \(\min(x_1, x_2, \ldots)\), \(\abs{x}\).
– $\text{ceil}(x, n)$ rounds towards $+\infty$,
– $\text{round}(x, n, t)$ rounds to the closest value, with ties rounded to an even value by default, towards zero if $t = 0$, towards $+\infty$ if $t > 0$ and towards $-\infty$ if $t < 0$.

And (not yet) modulo, and “quantize”.

• Random numbers: $\text{rand}()$, $\text{randint}(m, n)$.
• Constants: π, deg (one degree in radians).
• Dimensions, automatically expressed in points, e.g., pc is 12.
• Automatic conversion (no need for \(\text{type_use:N}\)) of integer, dimension, and skip variables to floating point numbers, expressing dimensions in points and ignoring the stretch and shrink components of skips.
• Tuples: (x_1, \ldots, x_n) that can be stored in variables, added together, multiplied or divided by a floating point number, and nested.

Floating point numbers can be given either explicitly (in a form such as $1.234e-34$, or -0.0001), or as a stored floating point variable, which is automatically replaced by its current value. A “floating point” is a floating point number or a tuple thereof. See section 29.12.1 for a description of what a floating point is, section 29.12.2 for details about how an expression is parsed, and section 29.12.3 to know what the various operations do. Some operations may raise exceptions (error messages), described in section 29.10.

An example of use could be the following.

\LaTeX{} can now compute: $\frac{\sin (3.5)}{2} + 2\cdot 10^{-3}$

= \ExplSyntaxOn \fp_to_decimal:n {sin(3.5)/2 + 2e-3} \ExplSyntaxOff.

The operation round can be used to limit the result’s precision. Adding $+0$ avoids the possibly undesirable output -0, replacing it by $+0$. However, the \texttt{l3fp} module is mostly meant as an underlying tool for higher-level commands. For example, one could provide a function to typeset nicely the result of floating point computations.

\documentclass{article}
\usepackage{siunitx}
\ExplSyntaxOn
\NewDocumentCommand { \calcnum } { m } { \num { \fp_to_scientific:n {#1} } }
\ExplSyntaxOff
\begin{document}
\calcnum { 2 \pi * \sin (2.3 ^ 5) }
\end{document}

See the documentation of \texttt{siunitx} for various options of νm.

253
29.1 Creating and initialising floating point variables

\newcommand{\fp}{\textit{fp var}}
\newcommand{\fp_c}{\textit{fp var}}
\newcommand{\cons}{\textit{fp expr}}

\newcommand{\fp_new}{\texttt{\textbackslash fp_new:N}}
\fp_new\fp
\newcommand{\fp_new:c}{\texttt{\textbackslash fp_new:c}}
\newcommand{\fp_const}{\texttt{\textbackslash fp_const:Nn}}
\newcommand{\fp_const:c}{\texttt{\textbackslash fp_const:cn}}
\newcommand{\fp_zero}{\texttt{\textbackslash fp_zero:N}}
\newcommand{\fp_zero:c}{\texttt{\textbackslash fp_zero:c}}
\newcommand{\fp_gzero}{\texttt{\textbackslash fp_gzero:N}}
\newcommand{\fp_gzero:c}{\texttt{\textbackslash fp_gzero:c}}
\newcommand{\fp_zero_new}{\texttt{\textbackslash fp_zero_new:N}}
\newcommand{\fp_zero_new:c}{\texttt{\textbackslash fp_zero_new:c}}
\newcommand{\fp_gzero_new}{\texttt{\textbackslash fp_gzero_new:N}}
\newcommand{\fp_gzero_new:c}{\texttt{\textbackslash fp_gzero_new:c}}

Creates a new \fp\ or raises an error if the name is already taken. The declaration is global. The \fp\ is initially +0.

\newcommand{\fp_const}{\texttt{\textbackslash fp_const:Nn}}
\fp const\fp \cons
\newcommand{\fp_const:c}{\texttt{\textbackslash fp_const:cn}}
\newcommand{\fp_zero}{\texttt{\textbackslash fp_zero:N}}
\newcommand{\fp_zero:c}{\texttt{\textbackslash fp_zero:c}}
\newcommand{\fp_gzero}{\texttt{\textbackslash fp_gzero:N}}
\newcommand{\fp_gzero:c}{\texttt{\textbackslash fp_gzero:c}}
\newcommand{\fp_zero_new}{\texttt{\textbackslash fp_zero_new:N}}
\newcommand{\fp_zero_new:c}{\texttt{\textbackslash fp_zero_new:c}}
\newcommand{\fp_gzero_new}{\texttt{\textbackslash fp_gzero_new:N}}
\newcommand{\fp_gzero_new:c}{\texttt{\textbackslash fp_gzero_new:c}}

Updated: 2012-05-08

29.2 Setting floating point variables

\newcommand{\fp_set}{\texttt{\textbackslash fp_set:Nn}}
\newcommand{\fp_set:c}{\texttt{\textbackslash fp_set:cn}}
\newcommand{\fp_gset}{\texttt{\textbackslash fp_gset:Nn}}
\newcommand{\fp_gset:c}{\texttt{\textbackslash fp_gset:cn}}
\newcommand{\fp_set_eq}{\texttt{\textbackslash fp_set_eq:NN}}
\newcommand{\fp_set_eq:c}{\texttt{\textbackslash fp_set_eq:cc}}
\newcommand{\fp_gset_eq}{\texttt{\textbackslash fp_gset_eq:NN}}
\newcommand{\fp_gset_eq:c}{\texttt{\textbackslash fp_gset_eq:cc}}
\newcommand{\fp_add}{\texttt{\textbackslash fp_add:Nn}}
\newcommand{\fp_add:c}{\texttt{\textbackslash fp_add:cn}}
\newcommand{\fp_gadd}{\texttt{\textbackslash fp_gadd:Nn}}
\newcommand{\fp_gadd:c}{\texttt{\textbackslash fp_gadd:cn}}

Sets \fp\ equal to the result of computing the \cons.

\seteq\fp\fp\cons\fp\fp
\seteq\fp\fp\cons\fp\fp
\seteq\fp\fp\cons\fp\fp
\seteq\fp\fp\cons\fp\fp

Updated: 2012-05-08

Added the result of computing the \cons to the \fp. This also applies if \fp and \cons evaluate to tuples of the same size.

Updated: 2012-05-08

254
Subtracts the result of computing the \textit{floating point expression} from the \textit{fp var}. This also applies if \textit{fp var} and \textit{floating point expression} evaluate to tuples of the same size.

\section*{29.3 Using floating points}

Evaluates the \textit{fp expr} and expresses the result as a decimal number with no exponent. Leading or trailing zeros may be inserted to compensate for the exponent. Non-significant trailing zeros are trimmed, and integers are expressed without a decimal separator. The values $\pm \infty$ and \texttt{nan} trigger an “invalid operation” exception. For a tuple, each item is converted using \texttt{fp_eval:n} and they are combined as $(\texttt{fp}_1, \texttt{fp}_2, \ldots, \texttt{fp}_n)$ if $n > 1$ and (\texttt{fp}_1) or () for fewer items. This function is identical to \texttt{fp_to_decimal:n}.

Evaluates the \textit{fp expr} and leaves its sign in the input stream using \texttt{fp_eval:n} \{\texttt{sign(\langle result\rangle)}\}: $+1$ for positive numbers and for $+\infty$, -1 for negative numbers and for $-\infty$, ± 0 for ± 0. If the operand is a tuple or is \texttt{nan}, then “invalid operation” occurs and the result is 0.

Evaluates the \textit{fp expr} and expresses the result as a decimal number with no exponent. Leading or trailing zeros may be inserted to compensate for the exponent. Non-significant trailing zeros are trimmed, and integers are expressed without a decimal separator. The values $\pm \infty$ and \texttt{nan} trigger an “invalid operation” exception. For a tuple, each item is converted using \texttt{fp_to_decimal:n} and they are combined as $(\texttt{fp}_1, \texttt{fp}_2, \ldots, \texttt{fp}_n)$ if $n > 1$ and (\texttt{fp}_1) or () for fewer items.

Evaluates the \textit{fp expr} and expresses the result as a dimension (in pt) suitable for use in dimension expressions. The output is identical to \texttt{fp_to_decimal:n}, with an additional trailing \texttt{pt} (both letter tokens). In particular, the result may be outside the range $[-2^{14} + 2^{-17}, 2^{14} - 2^{-17}]$ of valid \TeX\ dimensions, leading to overflow errors if used as a dimension. Tuples, as well as the values $\pm \infty$ and \texttt{nan}, trigger an “invalid operation” exception.

Evaluates the \textit{fp expr}, and rounds the result to the closest integer, rounding exact ties to an even integer. The result may be outside the range $[-2^{31} + 1, 2^{31} - 1]$ of valid \TeX\ integers, leading to overflow errors if used in an integer expression. Tuples, as well as the values $\pm \infty$ and \texttt{nan}, trigger an “invalid operation” exception.
\fp_to_scientific:N * \fp_to_scientific:c * \fp_to_scientific:n *

Evaluates the \langle fp expr \rangle and expresses the result in scientific notation:

\langle optional - \rangle \langle digit \rangle . \langle 15 digits \rangle \langle \text{e} \rangle \langle \text{optional sign} \rangle \langle \text{exponent} \rangle

The leading \langle digit \rangle is non-zero except in the case of \pm 0. The values \pm \infty and \text{nan} trigger an “invalid operation” exception. Normal category codes apply: thus the e is category code 11 (a letter). For a tuple, each item is converted using \fp_to_scientific:n and they are combined as \langle (f_{p_1}), (f_{p_2}), \ldots (f_{p_n}) \rangle if \(n > 1 \) and \langle (f_{p_1}) \rangle or \langle \rangle for fewer items.

\fp_to_tl:N * \fp_to_tl:c * \fp_to_tl:n *

Evaluates the \langle fp expr \rangle and expresses the result in (almost) the shortest possible form. Numbers in the ranges \((0, 10^{-3})\) and \([10^{16}, \infty)\) are expressed in scientific notation with trailing zeros trimmed and no decimal separator when there is a single significant digit (this differs from \fp_to_scientific:n). Numbers in the range \([10^{-3}, 10^{16})\) are expressed in a decimal notation without exponent, with trailing zeros trimmed, and no decimal separator for integer values (see \fp_to_decimal:n. Negative numbers start with -. The special values \pm 0, \pm \infty and \text{nan} are rendered as 0, -0, \text{inf}, -\text{inf}, and \text{nan} respectively. Normal category codes apply and thus \text{inf} or \text{nan}, if produced, are made up of letters. For a tuple, each item is converted using \fp_to_tl:n and they are combined as \langle (f_{p_1}), (f_{p_2}), \ldots (f_{p_n}) \rangle if \(n > 1 \) and \langle (f_{p_1}) \rangle or \langle \rangle for fewer items. This function is identical to \fp_to_decimal:N.

\fp_use:N * \fp_use:c *

Inserts the value of the \langle fp var \rangle into the input stream as a decimal number with no exponent. Leading or trailing zeros may be inserted to compensate for the exponent. Non-significant trailing zeros are trimmed. Integers are expressed without a decimal separator. The values \pm \infty and \text{nan} trigger an “invalid operation” exception. For a tuple, each item is converted using \fp_to_decimal:n and they are combined as \langle (f_{p_1}), (f_{p_2}), \ldots (f_{p_n}) \rangle if \(n > 1 \) and \langle (f_{p_1}) \rangle or \langle \rangle for fewer items.

29.4 Floating point conditionals

\fp_if_exist_p:N * \fp_if_exist_p:c * \fp_if_exist:N * \fp_if_exist:c *

Tests whether the \langle fp var \rangle is currently defined. This does not check that the \langle fp var \rangle really is a floating point variable.
\fp_compare_p:nNn * \fp_compare_p:nNn \{fp expr\} \{relation\} \{fp expr\} \{relation\}
\fp_compare:nNnTF * \fp_compare:nNnTF \{fp expr\} \{relation\} \{fp expr\} \{relation\} \{true code\} \{false code\}

Compares the \{fp expr\} and the \{fp expr\}, and returns true if the \{relation\} is obeyed. Two floating points \(x\) and \(y\) may obey four mutually exclusive relations: \(x < y\), \(x = y\), \(x > y\), or \(x ? y\) (“not ordered”). The last case occurs exactly if one or both operands is nan or is a tuple, unless they are equal tuples. Note that a nan is distinct from any value, even another nan, hence \(x = x\) is not true for a nan. To test if a value is nan, compare it to an arbitrary number with the “not ordered” relation.

\[
\text{\texttt{\fp_compare_p:nNn \{<value> \}? \{0\}}}
\]
\{
\}
\%
\texttt{<value> is nan}
\{
\}
\%
\texttt{<value> is not nan}

Tuples are equal if they have the same number of items and items compare equal (in particular there must be no nan). At present any other comparison with tuples yields ? (not ordered). This is experimental.

This function is less flexible than \\fp_compare:nTF but slightly faster. It is provided for consistency with \\int_compare:nNnTF and \\dim_compare:nNnTF.

\fp_compare_p:n * \fp_compare_p:n
\fp_compare:nNn * \{fp expr\} \{relation\}
\fp_compare:nNnTF * \{fp expr\} \{relation\} \{fp expr\} \{relation\} \{true code\} \{false code\}

Evaluates the \{fp expr\} as described for \\fp_eval:n and compares consecutive result using the corresponding \{relation\}, namely it compares \{fp expr\} and \{fp expr\} using the \{relation\}, then \{fp expr\} and \{fp expr\} using the \{relation\}, until finally comparing \{fp expr\} and \{fp expr\} using the \{relation\}. The test yields true if all comparisons are true. Each \{floating point expression\} is evaluated only once. Contrarily to \\int_compare:nTF, all \{fp expr\} are computed, even if one comparison is false. Two floating points \(x\) and \(y\) may obey four mutually exclusive relations: \(x < y\), \(x = y\), \(x > y\), or \(x ? y\) (“not ordered”). The last case occurs exactly if one or both operands is nan or is a tuple, unless they are equal tuples. Each \{relation\} can be any (non-empty) combination of \(<\), \(\geq\), \(\leq\), and \\
\texttt{?}, plus an optional leading ! (which negates the \{relation\}), with the restriction that the \{relation\} may not start with ?!, as this symbol has a different meaning (in combination with :) within floating point expressions. The comparison \(x \{relation\} y\) is then true if the \{relation\} does not start with ! and the actual relation (\(<\), \(=\), \(\geq\), or \(\leq\)) between \(x\) and \(y\) appears within the \{relation\}, or on the contrary if the \{relation\} starts with ! and the relation between \(x\) and \(y\) does not appear within the \{relation\}. Common choices of \{relation\} include \(\geq\) (greater or equal), !\(=\) (not equal), ? or \(\leftrightarrow\) (comparable).

This function is more flexible than \\fp_compare:nNnTF and only slightly slower.
Evaluates the \(fp \) expr and tests whether the result is exactly nan. The test returns false for any other result, even a tuple containing nan.

29.5 Floating point expression loops

\[
\text{\textbackslash fp_if_nan_p:n} \quad \text{\textbackslash fp_if_nan_p:n \{(fp \ expr)\}} \\
\text{\textbackslash fp_if_nan:nTF} \quad \text{\textbackslash fp_if_nan:nTF \{(fp \ expr) \{(true \ code) \{(false \ code)\}\}} \\
\text{\textbackslash fp_do_until:nNnn} \quad \text{\textbackslash fp_do_until:nNnn \{(fp \ expr)_1\} \{relation\} \{(fp \ expr)_2\} \{(code)\}} \\
\text{\textbackslash fp_do_while:nNnn} \quad \text{\textbackslash fp_do_while:nNnn \{(fp \ expr)_1\} \{relation\} \{(fp \ expr)_2\} \{(code)\}} \\
\text{\textbackslash fp_until_do:nNnn} \quad \text{\textbackslash fp_until_do:nNnn \{(fp \ expr)_1\} \{relation\} \{(fp \ expr)_2\} \{(code)\}} \\
\text{\textbackslash fp_while_do:nNnn} \quad \text{\textbackslash fp_while_do:nNnn \{(fp \ expr)_1\} \{relation\} \{(fp \ expr)_2\} \{(code)\}}
\]

Places the (code) in the input stream for \TeX{} to process, and then evaluates the relationship between the two (floating point expressions) as described for \textbackslash fp_compare:nNnTF. If the test is false then the (code) is inserted into the input stream again and a loop occurs until the (relation) is true.

Placed in the input stream for \TeX{} to process, and then evaluates the relationship between the two (floating point expressions) as described for \textbackslash fp_compare:nNnTF. If the test is true then the (code) is inserted into the input stream again and a loop occurs until the (relation) is false.

Evaluates the relationship between the two (floating point expressions) as described for \textbackslash fp_compare:nNnTF, and then places the (code) in the input stream if the (relation) is false. After the (code) has been processed by \TeX{} the test is repeated, and a loop occurs until the test is true.

Evaluates the relationship between the two (floating point expressions) as described for \textbackslash fp_compare:nNnTF, and then places the (code) in the input stream if the (relation) is true. After the (code) has been processed by \TeX{} the test is repeated, and a loop occurs until the test is false.

Places the (code) in the input stream for \TeX{} to process, and then evaluates the relationship between the two (floating point expressions) as described for \textbackslash fp_compare:nNnTF. If the test is false then the (code) is inserted into the input stream again and a loop occurs until the (relation) is true.

Places the (code) in the input stream for \TeX{} to process, and then evaluates the relationship between the two (floating point expressions) as described for \textbackslash fp_compare:nNnTF. If the test is true then the (code) is inserted into the input stream again and a loop occurs until the (relation) is false.

258
This function first evaluates the \(\text{relation} \) and \(\text{expr}_1 \) \(\text{expr}_2 \) \(\text{expr}_3 \) \(\text{expr}_4 \), then places the \(\text{code} \) in the input stream if the \(\text{relation} \) is \text{false}. After the \(\text{code} \) has been processed by \TeX{} the test is repeated, and a loop occurs until the test is \text{true}.

\[\text{fp}_\text{while}_\text{do} : \text{nn} \]

This function first evaluates the \(\text{relation} \) and \(\text{expr}_1 \) \(\text{expr}_2 \) \(\text{expr}_3 \) \(\text{expr}_4 \), then places the \(\text{code} \) in the input stream if the \(\text{relation} \) is \text{true}. After the \(\text{code} \) has been processed by \TeX{} the test is repeated, and a loop occurs until the test is \text{false}.

\[\text{fp}_\text{step}_\text{function} : \text{nn} \]

This function first evaluates the \(\text{initial value} \), \(\text{step} \) and \(\text{final value} \), each of which should be floating point expressions evaluating to a floating point number, not a tuple. The \(\text{function} \) is then placed in front of each \(\text{value} \) from the \(\text{initial value} \) to the \(\text{final value} \) in turn (using \(\text{step} \) between each \(\text{value} \)). The \(\text{step} \) must be non-zero. If the \(\text{step} \) is positive, the loop stops when the \(\text{value} \) becomes larger than the \(\text{final value} \). If the \(\text{step} \) is negative, the loop stops when the \(\text{value} \) becomes smaller than the \(\text{final value} \). The \(\text{function} \) should absorb one numerical argument. For example

\[\cs\set\text{Nn} \my\text{func}:\text{n} \ #1 \ { [I-saw-#1] } \ \text{quad} \]
\[\text{fp}_\text{step}_\text{function} : \text{nn} \ { 1.0 } \ { 0.1 } \ { 1.5 } \ \my\text{func}:\text{n} \]

would print

\[[I \ \text{saw} \ 1.0] [I \ \text{saw} \ 1.1] [I \ \text{saw} \ 1.2] [I \ \text{saw} \ 1.3] [I \ \text{saw} \ 1.4] [I \ \text{saw} \ 1.5] \]

\TeX{}\text{hackers note:} Due to rounding, it may happen that adding the \(\text{step} \) to the \(\text{value} \) does not change the \(\text{value} \); such cases give an error, as they would otherwise lead to an infinite loop.

\[\text{fp}_\text{step}_\text{inline} : \text{nn} \]

This function first evaluates the \(\text{initial value} \), \(\text{step} \) and \(\text{final value} \), all of which should be floating point expressions evaluating to a floating point number, not a tuple. Then for each \(\text{value} \) from the \(\text{initial value} \) to the \(\text{final value} \) in turn (using \(\text{step} \) between each \(\text{value} \)), the \(\text{code} \) is inserted into the input stream with \#1 replaced by the current \(\text{value} \). Thus the \(\text{code} \) should define a function of one argument (\#1).

\[\text{fp}_\text{step}_\text{variable} : \text{nn} \]

This function first evaluates the \(\text{initial value} \), \(\text{step} \) and \(\text{final value} \), all of which should be floating point expressions evaluating to a floating point number, not a tuple. Then for each \(\text{value} \) from the \(\text{initial value} \) to the \(\text{final value} \) in turn (using \(\text{step} \) between each \(\text{value} \)), the \(\text{code} \) is inserted into the input stream, with the \(\text{tl var} \) defined as the current \(\text{value} \). Thus the \(\text{code} \) should make use of the \(\text{tl var} \).
29.6 Symbolic expressions

Floating point expressions support variables: these can only be set locally, so act like standard \l_... variables.

```
\fp_new_variable:n { A }
\fp_set:Nn \l_tmpb_fp { 1 * sin(A) + 3**2 }
\fp_show:n \l_tmpb_fp
\fp_set:N \l_tmpb_fp
\fp_set_variable:nn { A } { pi/2 }
\fp_show:n \l_tmpb_fp
\fp_set:N \l_tmpb_fp
\fp_set_variable:nn { A } { 0 }
\fp_show:n \l_tmpb_fp
\fp_show:N \l_tmpb_fp
```

defines A to be a variable, then defines \l_tmpb_fp to stand for 1*sin(A)+9 (note that 3**2 is evaluated, but the 1* product is not simplified away). Until \l_tmpb_fp is changed, \fp_show:N \l_tmpb_fp will show ((1*sin(A))+9) regardless of the value of A. The next step defines A to be equal to pi/2: then \fp_show:n \l_tmpb_fp will evaluate \l_tmpb_fp and show 10. We then redefine A to be 0: since \l_tmpb_fp still stands for 1*sin(A)+9, the value shown is then 9. Variables can be set with \fp_set_variable:nn to arbitrary floating point expressions including other variables.

```latex
\fp_new_variable:n \fp_new_variable:n { (identifier) } \fbox{Nov: 2023-10-19}
```

Declares the (identifier) as a variable, which allows it to be used in floating point expressions. For instance,

```
\fp_new_variable:n { A }
\fp_show:n { A**2 - A + 1 }
```

shows ((A^2)-A)+1). If the declaration was missing, the parser would complain about an “Unknown fp word ‘A’”. The (identifier) must consist entirely of Latin letters among [a-zA-Z].

260
\fp_set_variable:nn \fp_set_variable:nn \{\langle\text{identifier}\rangle\} \{\langle\text{fp expr}\rangle\}

Defines the \langle\text{identifier}\rangle\ to stand in any further expression for the result of evaluating the \langle\text{floating point expression}\rangle\ as much as possible. The result may contain other variables, which are then replaced by their values if they have any. For instance,

\begin{verbatim}
\fp_new_variable:n { A }
\fp_new_variable:n { B }
\fp_new_variable:n { C }
\fp_set_variable:nn { A } { 3 }
\fp_set_variable:nn { C } { A \text{ ** } 2 + B \ast 1 }
\fp_show:n { C + 4 }
\fp_set_variable:nn { A } { 4 }
\fp_show:n { C + 4 }
\end{verbatim}

shows \((9+(B\ast1))+4)\ twice: changing the value of \text{A} to 4 does not alter \text{C} because \text{A} was replaced by its value 3 when evaluating \text{A}**2+B*1.

\fp_clear_variable:n \fp_clear_variable:n \{\langle\text{identifier}\rangle\}

Removes any value given by \fp_set_variable:nn to the variable with this \langle\text{identifier}\rangle. For instance,

\begin{verbatim}
\fp_new_variable:n { A }
\fp_set_variable:nn { A } { 3 }
\fp_show:n { A \text{ }^2 }
\fp_clear_variable:n { A }
\fp_show:n { A \text{ }^2 }
\end{verbatim}

shows 9, then \((A^2)\).

\section{User-defined functions}

It is possible to define new user functions which can be used inside the argument to \fp_eval:n, etc. These functions may take one or more named arguments, and should be implemented using expansion methods only.

\fp_new_function:n \fp_new_function:n \{\langle\text{identifier}\rangle\}

Declares the \langle\text{identifier}\rangle as a function, which allows it to be used in floating point expressions. For instance,

\begin{verbatim}
\fp_new_function:n { foo }
\fp_show:n { foo (1 + 2 , foo(3), A) ** 2) }
\end{verbatim}

shows \((foo(3, foo(3), A))^{2}\). If the declaration was missing, the parser would complain about an “Unknown \text{fp\ word\ ‘foo’}”. The \langle\text{identifier}\rangle must consist entirely of Latin letters \[a-zA-Z\].
\fp_set_function:nnn \fp_set_function:nnn \{\langle identifier\rangle\} \{\langle vars\rangle\} \{\langle fp expr\rangle\}

Defines the \langle identifier\rangle to stand in any further expression for the result of evaluating
the \langle floating point expression\rangle, with the \langle identifier\rangle accepting the \langle vars\rangle (a non-empty
comma-separated list). The result may contain other functions, which are then replaced
by their results if they have any. For instance,

\begin{verbatim}
\fp_new_function:n { foo }
\fp_set_function:nnn { npow } { a,b } { a**b }
\fp_show:n { npow(16,0.25) } }
\end{verbatim}

shows 2. The names of the \langle vars\rangle must consist entirely of Latin letters \([a-zA-Z]\), but are
otherwise not restricted: in particular, they are independent of any variables declared by \fp_new_variable:n.

\fp_clear_function:n \fp_clear_function:n \{\langle identifier\rangle\}

Removes any definition given by \fp_set_function:nnn to the function with this
\langle identifier\rangle.

\section{Some useful constants, and scratch variables}

\c_zero_fp \c_minus_zero_fp

Zero, with either sign.

\c_one_fp

One as an fp: useful for comparisons in some places.

\c_inf_fp \c_minus_inf_fp

Infinity, with either sign. These can be input directly in a floating point expression as
inf and -inf.

\c_nan_fp

Not a number. This can be input directly in a floating point expression as nan.

\c_e_fp

The value of the base of the natural logarithm, \(e = \exp(1)\).

\c_pi_fp

The value of \(\pi\). This can be input directly in a floating point expression as pi.
The value of 1° in radians. Multiply an angle given in degrees by this value to obtain a
result in radians. Note that trigonometric functions expecting an argument in radians or
in degrees are both available. Within floating point expressions, this can be accessed as
deg.

\c_one_degree_fp

29.9 Scratch variables

\l_tmpa_fp\l_tmpb_fp Scratch floating points for local assignment. These are never used by the kernel code, and
so are safe for use with any \LaTeX3-defined function. However, they may be overwriten
by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_fp\g_tmpb_fp Scratch floating points for global assignment. These are never used by the kernel code,
and so are safe for use with any \LaTeX3-defined function. However, they may be over-
written by other non-kernel code and so should only be used for short-term storage.

29.10 Floating point exceptions

The functions defined in this section are experimental, and their functionality may be altered or removed altogether.

“Exceptions” may occur when performing some floating point operations, such as
0 / 0, or 10 ** 1e9999. The relevant IEEE standard defines 5 types of exceptions, of
which we implement 4.

- **Overflow** occurs whenever the result of an operation is too large to be represented
as a normal floating point number. This results in ±∞.

- **Underflow** occurs whenever the result of an operation is too close to 0 to be repre-
sented as a normal floating point number. This results in ±0.

- **Invalid operation** occurs for operations with no defined outcome, for instance 0/0
or \sin(∞), and results in a nan. It also occurs for conversion functions whose target
type does not have the appropriate infinite or nan value (e.g., \fp_to_dim:n).

- **Division by zero** occurs when dividing a non-zero number by 0, or when evaluating
functions at poles, e.g., ln(0) or cot(0). This results in ±∞.

(not yet) **Inexact** occurs whenever the result of a computation is not exact, in other words,
amost always. At the moment, this exception is entirely ignored in \LaTeX3.

To each exception we associate a “flag”: fp_overflow, fp_underflow, fp_invalid_operation and fp_division_by_zero. The state of these flags can be tested and modi-
ified with commands from \l3flag.

By default, the “invalid operation” exception triggers an (expandable) error, and
raises the corresponding flag. Other exceptions raise the corresponding flag but do not
trigger an error. The behaviour when an exception occurs can be modified (using \fp_trap:nn) to either produce an error and raise the flag, or only raise the flag, or do nothing
at all.
\fp_trap:nn \{exception\} \{trap type\}

All occurrences of the \textit{exception} (overflow, underflow, invalid_operation or division_by_zero) within the current group are treated as \textit{trap type}, which can be

- none: the \textit{exception} will be entirely ignored, and leave no trace;
- flag: the \textit{exception} will turn the corresponding flag on when it occurs;
- error: additionally, the \textit{exception} will halt the \TeX run and display some information about the current operation in the terminal.

\textit{This function is experimental, and may be altered or removed.}\n
\begin{Verbatim}
\texttt{\texttt{flag,fp_overflow}}
\texttt{\texttt{flag,fp_underflow}}
\texttt{\texttt{flag,fp_invalid_operation}}
\texttt{\texttt{flag,fp_division_by_zero}}
\end{Verbatim}

Flags denoting the occurrence of various floating-point exceptions.

\section{29.11 Viewing floating points}

\begin{Verbatim}
\texttt{\texttt{\texttt{\fp_show:N}}}
\texttt{\texttt{\texttt{\fp_show:N \{fp\ \var\}}}}
\texttt{\texttt{\texttt{\fp_show:c}}}
\texttt{\texttt{\texttt{\fp_show:n}}}
\end{Verbatim}

Evaluates the \textit{fp expr} and displays the result in the terminal.

\begin{Verbatim}
\texttt{\texttt{\texttt{\fp_log:N}}}
\texttt{\texttt{\texttt{\fp_log:N \{fp\ \var\}}}}
\texttt{\texttt{\texttt{\fp_log:c}}}
\texttt{\texttt{\texttt{\fp_log:n}}}
\end{Verbatim}

Evaluates the \textit{fp expr} and writes the result in the log file.

\section{29.12 Floating point expressions}

\subsection{29.12.1 Input of floating point numbers}

We support four types of floating point numbers:

- $\pm m \cdot 10^n$, a floating point number, with integer $1 \leq m \leq 10^{16}$, and $-10000 \leq n \leq 10000$;
- ± 0, zero, with a given sign;
- $\pm \infty$, infinity, with a given sign;
- \texttt{nan}, is “not a number”, and can be either quiet or signalling (\textit{not yet}: this distinction is currently unsupported);
Normal floating point numbers are stored in base 10, with up to 16 significant figures.

On input, a normal floating point number consists of:

- \langle\text{sign}\rangle: a possibly empty string of + and – characters;
- \langle\text{significand}\rangle: a non-empty string of digits together with zero or one dot;
- \langle\text{exponent}\rangle optionally: the character e or E, followed by a possibly empty string of + and – tokens, and a non-empty string of digits.

The sign of the resulting number is + if \langle\text{sign}\rangle contains an even number of –, and – otherwise, hence, an empty \langle\text{sign}\rangle denotes a non-negative input. The stored significand is obtained from \langle\text{significand}\rangle by omitting the decimal separator and leading zeros, and rounding to 16 significant digits, filling with trailing zeros if necessary. In particular, the value stored is exact if the input \langle\text{significand}\rangle has at most 16 digits. The stored \langle\text{exponent}\rangle is obtained by combining the input \langle\text{exponent}\rangle (0 if absent) with a shift depending on the position of the significand and the number of leading zeros.

A special case arises if the resulting \langle\text{exponent}\rangle is either too large or too small for the floating point number to be represented. This results either in an overflow (the number is then replaced by ±\infty), or an underflow (resulting in ±0).

The result is thus ±0 if and only if \langle\text{significand}\rangle contains no non-zero digit (i.e., consists only in characters 0, and an optional period), or if there is an underflow. Note that a single dot is currently a valid floating point number, equal to +0, but that is not guaranteed to remain true.

The \langle\text{significand}\rangle must be non-empty, so e1 and e-1 are not valid floating point numbers. Note that the latter could be mistaken with the difference of “e” and 1. To avoid confusions, the base of natural logarithms cannot be input as e and should be input as \text{exp}(1) or c_e_fp (which is faster).

Special numbers are input as follows:

- \text{inf} represents +\infty, and can be preceded by any \langle\text{sign}\rangle, yielding ±\infty as appropriate.
- \text{nan} represents a (quiet) non-number. It can be preceded by any sign, but that sign is ignored.
- Any unrecognizable string triggers an error, and produces a \text{nan}.
- Note that commands such as \text{\infy}, \text{\pi}, or \text{\sin} do not work in floating point expressions. They may silently be interpreted as completely unexpected numbers, because integer constants (allowed in expressions) are commonly stored as mathematical characters.

29.12.2 Precedence of operators

We list here all the operations supported in floating point expressions, in order of decreasing precedence: operations listed earlier bind more tightly than operations listed below them.

- Function calls (\text{sin}, \text{ln}, etc).
- Binary ** and ~ (right associative).
- Unary +, -, !.
• Implicit multiplication by juxtaposition (2pi) when neither factor is in parentheses.
• Binary \(*\) and \(/\), implicit multiplication by juxtaposition with parentheses (for instance \(3(4+5)\)).
• Binary \(+\) and \(-\).
• Comparisons \(\geq, \!=, \lt, \text{ etc.}\).
• Logical \(\text{and}\), denoted by \&\&.
• Logical \(\text{or}\), denoted by \(||\).
• Ternary operator \(?::\) (right associative).
• Comma (to build tuples).

The precedence of operations can be overridden using parentheses. In particular, the precedence of juxtaposition implies that

\[
\frac{1}{2\pi} = 1/(2\pi),
\]

\[
\frac{1}{2\pi}(\pi + \pi) = (2\pi)^{-1}(\pi + \pi) \approx 1,
\]

\[
\sin 2\pi = \sin(2\pi) \neq 0,
\]

\[
2^{-2}\max(3, 5) = 2^2 \max(3, 5) = 20,
\]

\[
\text{in/cm} = (\text{in})/(\text{cm}) = 2.54.
\]

Functions are called on the value of their argument, contrarily to \TeX\ macros.

29.12.3 Operations

We now present the various operations allowed in floating point expressions, from the lowest precedence to the highest. When used as a truth value, a floating point expression is \textit{false} if it is \(\pm 0\), and \textit{true} otherwise, including when it is \textit{nan} or a tuple such as \((0, 0)\). Tuples are only supported to some extent by operations that work with truth values (?:, \&\&, \|\|), by comparisons (!<=>?), and by +, -, *, /\). Unless otherwise specified, providing a tuple as an argument of any other operation yields the “invalid operation” exception and a \textit{nan} result.

\[
?:: \text{\texttt{\textbackslash fp_eval_n \{ \langle operand_1 \rangle ? \langle operand_2 \rangle : \langle operand_3 \rangle \}}}
\]

The ternary operator \(?::\) results in \langle operand_2 \rangle if \langle operand_1 \rangle is true (not \(\pm 0\)), and \langle operand_3 \rangle if \langle operand_1 \rangle is false (\(\pm 0\)). All three \langle operands \rangle are evaluated in all cases; they may be tuples. The operator is right associative, hence

\[
\text{\texttt{\textbackslash fp_eval_n \{ 1 + 3 > 4 ? 1 : 2 + 4 > 5 ? 2 : 3 + 5 > 6 ? 3 : 4 \}}}
\]

first tests whether \(1 + 3 > 4\); since this isn’t true, the branch following : is taken, and \(2 + 4 > 5\) is compared; since this is true, the branch before : is taken, and everything else is (evaluated then) ignored. That allows testing for various cases in a concise manner, with the drawback that all computations are made in all cases.
\(\text{fp_eval:n} \{ \langle \text{operand}_1 \rangle \ \text{or} \ \langle \text{operand}_2 \rangle \} \)

If \(\langle \text{operand}_1 \rangle \) is true (not ±0), use that value, otherwise the value of \(\langle \text{operand}_2 \rangle \). Both \(\langle \text{operands} \rangle \) are evaluated in all cases; they may be tuples. In \(\langle \text{operand}_1 \rangle \ \text{or} \ \langle \text{operand}_2 \rangle \ \ldots \ \langle \text{operand}_{n} \rangle \), the first true (nonzero) \(\langle \text{operand} \rangle \) is used and if all are zero the last one (±0) is used.

\(\text{fp_eval:n} \{ \langle \text{operand}_1 \rangle \ \text{and} \ \langle \text{operand}_2 \rangle \} \)

If \(\langle \text{operand}_1 \rangle \) is false (equal to ±0), use that value, otherwise the value of \(\langle \text{operand}_2 \rangle \). Both \(\langle \text{operands} \rangle \) are evaluated in all cases; they may be tuples. In \(\langle \text{operand}_1 \rangle \ \text{and} \ \langle \text{operand}_2 \rangle \ \ldots \ \langle \text{operand}_{n} \rangle \), the first false (±0) \(\langle \text{operand} \rangle \) is used and if none is zero the last one is used.

\(\text{fp_eval:n} \{ \langle \text{operand}_1 \rangle \ \text{relation} \langle \text{operand}_2 \rangle \ldots \langle \text{operand}_{N} \rangle \ \text{relation}_{N} \langle \text{operand}_{N+1} \rangle \} \)

Each \(\text{relation} \) consists of a non-empty string of <, =, >, and ?, optionally preceded by !, and may not start with ?. This evaluates to +1 if all comparisons \(\langle \text{operand}_i \rangle \ \text{relation}_{i} \langle \text{operand}_{i+1} \rangle \) are true, and +0 otherwise. All \(\langle \text{operands} \rangle \) are evaluated (once) in all cases. See \text{fp_compare:nTF} for details.

\(\text{fp_eval:n} \{ \langle \text{operand}_1 \rangle + \langle \text{operand}_2 \rangle \} \)
\(\text{fp_eval:n} \{ \langle \text{operand}_1 \rangle - \langle \text{operand}_2 \rangle \} \)

Computes the sum or the difference of its two \(\langle \text{operands} \rangle \). The “invalid operation” exception occurs for \(\infty - \infty \). “Underflow” and “overflow” occur when appropriate. These operations supports the itemwise addition or subtraction of two tuples, but if they have a different number of items the “invalid operation” exception occurs and the result is \text{nan}.

\(\text{fp_eval:n} \{ \langle \text{operand}_1 \rangle \ast \langle \text{operand}_2 \rangle \} \)
\(\text{fp_eval:n} \{ \langle \text{operand}_1 \rangle / \langle \text{operand}_2 \rangle \} \)

Computes the product or the ratio of its two \(\langle \text{operands} \rangle \). The “invalid operation” exception occurs for \(\infty / \infty \), 0/0, or 0*\(\infty \). “Division by zero” occurs when dividing a finite non-zero number by ±0. “Underflow” and “overflow” occur when appropriate. When \(\langle \text{operand}_1 \rangle \) is a tuple and \(\langle \text{operand}_2 \rangle \) is a floating point number, each item of \(\langle \text{operand}_1 \rangle \) is multiplied or divided by \(\langle \text{operand}_2 \rangle \). Multiplication also supports the case where \(\langle \text{operand}_1 \rangle \) is a floating point number and \(\langle \text{operand}_2 \rangle \) a tuple. Other combinations yield an “invalid operation” exception and a \text{nan} result.

\(\text{fp_eval:n} \{ + \langle \text{operand} \rangle \} \)
\(\text{fp_eval:n} \{ - \langle \text{operand} \rangle \} \)
\(\text{fp_eval:n} \{ ! \langle \text{operand} \rangle \} \)

The unary + does nothing, the unary - changes the sign of the \(\langle \text{operand} \rangle \) (for a tuple, of all its components), and ! \(\langle \text{operand} \rangle \) evaluates to 1 if \(\langle \text{operand} \rangle \) is false (is ±0) and 0 otherwise (this is the not boolean function). Those operations never raise exceptions.

Updated: 2013-12-14
Raisers \(\langle\text{operand}_1\rangle\) to the power \(\langle\text{operand}_2\rangle\). This operation is right associative, hence \(2 \times 2 \times 3 = 2^3 = 256\). If \(\langle\text{operand}_1\rangle\) is negative or \(-0\) then: the result’s sign is + if the \(\langle\text{operand}_2\rangle\) is infinite and \((-1)^p\) if the \(\langle\text{operand}_2\rangle\) is \(p/5^q\) with \(p, q\) integers; the result is +0 if \(\text{abs}(\langle\text{operand}_1\rangle)\)^\(\langle\text{operand}_2\rangle\) evaluates to zero; in other cases the “invalid operation” exception occurs because the sign cannot be determined. “Division by zero” occurs when raising ±0 to a finite strictly negative power. “Underflow” and “overflow” occur when appropriate. If either operand is a tuple, “invalid operation” occurs.

\[
\text{abs} \; \langle\text{fp expr}\rangle
\]

Computes the absolute value of the \(\langle\text{fp expr}\rangle\). If the operand is a tuple, “invalid operation” occurs. This operation does not raise exceptions in other cases. See also \(\text{fp_abs:n}\).

\[
\text{exp} \; \langle\text{fp expr}\rangle
\]

Computes the exponential of the \(\langle\text{fp expr}\rangle\). “Underflow” and “overflow” occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

\[
\text{fact} \; \langle\text{fp expr}\rangle
\]

Computes the factorial of the \(\langle\text{fp expr}\rangle\). If the \(\langle\text{fp expr}\rangle\) is an integer between \(-0\) and 3248 included, the result is finite and correctly rounded. Larger positive integers give \(+\infty\) with “overflow”, while \(\text{fact}(+\infty) = +\infty\) and \(\text{fact}(\text{nan}) = \text{nan}\) with no exception. All other inputs give \(\text{nan}\) with the “invalid operation” exception.

\[
\ln \; \langle\text{fp expr}\rangle
\]

Computes the natural logarithm of the \(\langle\text{fp expr}\rangle\). Negative numbers have no (real) logarithm, hence the “invalid operation” is raised in that case, including for \(\ln(-0)\). “Division by zero” occurs when evaluating \(\ln(+0) = -\infty\). “Underflow” and “overflow” occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

\[
\logb \; \langle\text{fp expr}\rangle
\]

Determines the exponent of the \(\langle\text{fp expr}\rangle\), namely the floor of the base-10 logarithm of its absolute value. “Division by zero” occurs when evaluating \(\logb(\pm 0) = -\infty\). Other special values are \(\logb(\pm \infty) = +\infty\) and \(\logb(\text{nan}) = \text{nan}\). If the operand is a tuple or is \(\text{nan}\), then “invalid operation” occurs and the result is \(\text{nan}\).

\[
\text{max} \; \langle\text{fp expr}\rangle
\]

Evaluates each \(\langle\text{fp expr}\rangle\) and computes the largest (smallest) of those. If any of the \(\langle\text{fp expr}\rangle\) is a \(\text{nan}\) or tuple, the result is \(\text{nan}\). If any operand is a tuple, “invalid operation” occurs; these operations do not raise exceptions in other cases.
round \[\texttt{fp_eval:n \{ round (\{fp expr\}) \}} \]

\[\texttt{fp_eval:n \{ round (\{fp expr\} , \{fp expr2\}) \}} \]

\[\texttt{fp_eval:n \{ round (\{fp expr\} , \{fp expr2\} , \{fp expr3\}) \}} \]

Only \texttt{round} accepts a third argument. Evaluates \(\langle fp \ expr1 \rangle = x \) and \(\langle fp \ expr2 \rangle = n \) and \(\langle fp \ expr3 \rangle = t \) then rounds \(x \) to \(n \) places. If \(n \) is an integer, this rounds \(x \) to a multiple of \(10^{-n} \); if \(n = +\infty \), this always yields \(x \); if \(n = -\infty \), this yields one of \(\pm 0 \), \(\pm \infty \), or \(\texttt{nan} \); if \(n = \texttt{nan} \), this yields \(\texttt{nan} \); if \(n \) is neither \(\pm \infty \) nor an integer, then an “invalid operation” exception is raised. When \(\langle fp \ expr2 \rangle \) is omitted, \(n = 0 \), i.e., \(\langle fp \ expr1 \rangle \) is rounded to an integer. The rounding direction depends on the function.

- \texttt{round} yields the multiple of \(10^{-n} \) closest to \(x \), with ties (\(x \) half-way between two such multiples) rounded as follows. If \(t \) is \(\texttt{nan} \) (or not given) the even multiple is chosen (“ties to even”), if \(t = \pm 0 \) the multiple closest to \(0 \) is chosen (“ties to zero”), if \(t \) is positive/negative the multiple closest to \(\infty / -\infty \) is chosen (“ties towards positive/negative infinity”).

- \texttt{floor} yields the largest multiple of \(10^{-n} \) smaller or equal to \(x \) (“round towards negative infinity”);

- \texttt{ceil} yields the smallest multiple of \(10^{-n} \) greater or equal to \(x \) (“round towards positive infinity”);

- \texttt{trunc} yields a multiple of \(10^{-n} \) with the same sign as \(x \) and with the largest absolute value less than that of \(x \) (“round towards zero”).

“Overflow” occurs if \(x \) is finite and the result is infinite (this can only happen if \(\langle fp \ expr2 \rangle < -9984 \)). If any operand is a tuple, “invalid operation” occurs.

\[\texttt{fp_eval:n \{ sign(\{fp expr\}) \}} \]

Evaluates the \(\langle fp \ expr \rangle \) and determines its sign: \(+1\) for positive numbers and for \(+\infty \), \(-1\) for negative numbers and for \(-\infty \), \(\pm 0 \) for \(\pm 0 \), and \(\texttt{nan} \) for \(\texttt{nan} \). If the operand is a tuple, “invalid operation” occurs. This operation does not raise exceptions in other cases.

\[\texttt{fp_eval:n \{ sin(\{fp expr\}) \}} \]

\[\texttt{fp_eval:n \{ cos(\{fp expr\}) \}} \]

\[\texttt{fp_eval:n \{ tan(\{fp expr\}) \}} \]

\[\texttt{fp_eval:n \{ cot(\{fp expr\}) \}} \]

\[\texttt{fp_eval:n \{ csc(\{fp expr\}) \}} \]

\[\texttt{fp_eval:n \{ sec(\{fp expr\}) \}} \]

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the \(\langle fp \ expr \rangle \) given in radians. For arguments given in degrees, see \texttt{sind}, \texttt{cosd}, etc. Note that since \(\pi \) is irrational, \(\sin(8\pi) \) is not quite zero, while its analogue \(\texttt{sind}(8 \times 180) \) is exactly zero. The trigonometric functions are undefined for an argument of \(\pm \infty \), leading to the “invalid operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at one of their poles leads to a “division by zero” exception. “Underflow” and “overflow” occur when appropriate. If the operand is a tuple, “invalid operation” occurs.
Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the \(\text{fp expr}\) given in degrees. For arguments given in radians, see \texttt{sin}, \texttt{cos}, \texttt{etc}. Note that since \(\pi\) is irrational, \(\sin(8\pi)\) is not quite zero, while its analogue \(\text{sind}(8 \times 180)\) is exactly zero. The trigonometric functions are undefined for an argument of \(\pm \infty\), leading to the “invalid operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at one of their poles leads to a “division by zero” exception. “Underflow” and “overflow” occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

Computes the arcsine, arccosine, arccosecant, or arcsecant of the \(\text{fp expr}\) and returns the result in radians, in the range \([-\pi/2, \pi/2]\) for \texttt{asin} and \texttt{acsc} and \([0, \pi]\) for \texttt{acos} and \texttt{asec}. For a result in degrees, use \texttt{asind}, \texttt{acscd}, \texttt{acosd}, \texttt{asecd}. If the argument of \texttt{asin} or \texttt{acos} lies outside the range \([-1, 1]\), or the argument of \texttt{acsc} or \texttt{asec} inside the range \((-1, 1)\), an “invalid operation” exception is raised. “Underflow” and “overflow” occur when appropriate. If the operand is a tuple, “invalid operation” occurs.

Computes the arcsine, arccosine, arccosecant, or arcsecant of the \(\text{fp expr}\) and returns the result in degrees, in the range \([-\pi/2, \pi/2]\) for \texttt{asin} and \texttt{acsc} and \([0, \pi]\) for \texttt{acos} and \texttt{asec}. For a result in radians, use \texttt{asind}, \texttt{acscd}, \texttt{acosd}, \texttt{asecd}. If the argument of \texttt{asin} or \texttt{acos} lies outside the range \([-1, 1]\), or the argument of \texttt{acsc} or \texttt{asec} inside the range \((-1, 1)\), an “invalid operation” exception is raised. “Underflow” and “overflow” occur when appropriate. If the operand is a tuple, “invalid operation” occurs.
\texttt{atan} \$
\texttt{fp_eval:n\{ atan(\{fp\ expr\})\}}$
\texttt{acot} \$
\texttt{fp_eval:n\{ acot(\{fp\ expr\})\}}$
\texttt{atand} \$
\texttt{fp_eval:n\{ atand(\{fp\ expr\}, \{fp\ expr\})\}}$
\texttt{acotd} \$
\texttt{fp_eval:n\{ acotd(\{fp\ expr\}, \{fp\ expr\})\}}$

Those functions yield an angle in radians: \texttt{atan} and \texttt{acot} are their analogs in degrees. The one-argument versions compute the arctangent or arccotangent of the \texttt{fp expr}: arctangent takes values in the range \([-\pi/2, \pi/2]\], and arccotangent in the range \([0, \pi]\). The two-argument arctangent computes the angle in polar coordinates of the point with Cartesian coordinates \((\texttt{fp expr}_2, \texttt{fp expr}_1)\): this is the arctangent of \((\texttt{fp expr}_1)/\texttt{fp expr}_2\), possibly shifted by \(\pi\) depending on the signs of \texttt{fp expr}_1 and \texttt{fp expr}_2. The two-argument arccotangent computes the angle in polar coordinates of the point \((\texttt{fp expr}_1, \texttt{fp expr}_2)\), equal to the arccotangent of \((\texttt{fp expr}_1)/\texttt{fp expr}_2\), possibly shifted by \(\pi\). Both two-argument functions take values in the wider range \([-\pi, \pi]\). The ratio \((\texttt{fp expr}_1)/\texttt{fp expr}_2\) need not be defined for the two-argument arctangent: when both expressions yield \(\pm 0\), or when both yield \(\pm \infty\), the resulting angle is one of \(\{\pm \pi/4, \pm 3\pi/4\}\) depending on signs. The “underflow” exception can occur. If any operand is a tuple, “invalid operation” occurs.

\texttt{atand} \$
\texttt{fp_eval:n\{ atand(\{fp\ expr\})\}}$
\texttt{acotd} \$
\texttt{fp_eval:n\{ acotd(\{fp\ expr\})\}}$
\texttt{atand} \$
\texttt{fp_eval:n\{ atand(\{fp\ expr\}, \{fp\ expr\})\}}$
\texttt{acotd} \$
\texttt{fp_eval:n\{ acotd(\{fp\ expr\}, \{fp\ expr\})\}}$

Those functions yield an angle in degrees: \texttt{atan} and \texttt{acot} are their analogs in radians. The one-argument versions compute the arctangent or arccotangent of the \texttt{fp expr}: arctangent takes values in the range \([-90, 90]\], and arccotangent in the range \([0, 180]\). The two-argument arctangent computes the angle in polar coordinates of the point with Cartesian coordinates \((\texttt{fp expr}_2, \texttt{fp expr}_1)\): this is the arctangent of \((\texttt{fp expr}_1)/\texttt{fp expr}_2\), possibly shifted by \(180\) depending on the signs of \texttt{fp expr}_1 and \texttt{fp expr}_2. The two-argument arccotangent computes the angle in polar coordinates of the point \((\texttt{fp expr}_1, \texttt{fp expr}_2)\), equal to the arccotangent of \((\texttt{fp expr}_1)/\texttt{fp expr}_2\), possibly shifted by \(180\). Both two-argument functions take values in the wider range \([-180, 180]\). The ratio \((\texttt{fp expr}_1)/\texttt{fp expr}_2\) need not be defined for the two-argument arctangent: when both expressions yield \(\pm 0\), or when both yield \(\pm \infty\), the resulting angle is one of \(\{\pm 45, \pm 135\}\) depending on signs. The “underflow” exception can occur. If any operand is a tuple, “invalid operation” occurs.

\texttt{sqrt} \$
\texttt{fp_eval:n\{ sqrt(\{fp\ expr\})\}}$

Computes the square root of the \texttt{fp expr}. The “invalid operation” is raised when the \texttt{fp expr} is negative or is a tuple; no other exception can occur. Special values yield \(\sqrt{-0} = -0, \sqrt{+0} = +0, \sqrt{+\infty} = +\infty\) and \(\sqrt{\texttt{nan}} = \texttt{nan}\).
rand \quad \texttt{fp_eval:n \{ rand() \}}

New: 2016-12-05

Produces a pseudo-random floating-point number (multiple of 10^{-16}) between 0 included and 1 excluded. This is not available in older versions of \TeX{}. The random seed can be queried using \texttt{\sys_rand_seed:} and set using \texttt{\sys_gset_rand_seed:n}.

\TeX{}hackers note: This is based on pseudo-random numbers provided by the engine’s primitive \texttt{\pdfuniformdeviate} in pdf\TeX{}, \p\TeX{}, up\TeX{} and \texttt{\uniformdeviate} in Lua\TeX{} and \Xe\TeX{}. The underlying code is based on Metapost, which follows an additive scheme recommended in Section 3.6 of “The Art of Computer Programming, Volume 2”.

While we are more careful than \texttt{\uniformdeviate} to preserve uniformity of the underlying stream of 28-bit pseudo-random integers, these pseudo-random numbers should of course not be relied upon for serious numerical computations nor cryptography.

randint \quad \texttt{fp_eval:n \{ randint(\langle fp expr\rangle) \}}
\texttt{fp_eval:n \{ randint(\langle fp expr\rangle_1, \langle fp expr\rangle_2) \}}

New: 2016-12-05

Produces a pseudo-random integer between 1 and \texttt{\langle fp expr\rangle} or between \texttt{\langle fp expr\rangle_1} and \texttt{\langle fp expr\rangle_2} inclusive. The bounds must be integers in the range \((−10^{16}, 10^{16})\) and the first must be smaller or equal to the second. See \texttt{rand} for important comments on how these pseudo-random numbers are generated.

\inf The special values $+\infty$, $-\infty$, and \texttt{nan} are represented as \texttt{inf}, \texttt{-inf} and \texttt{nan} (see \texttt{\c_-\inf_fp}, \texttt{\c_minus_inf_fp} and \texttt{\c_nan_fp}).

\p The value of π (see \texttt{\c_pi_fp}).

\deg The value of 1° in radians (see \texttt{\c_one_degree_fp}).
Those units of measurement are equal to their values in pt, namely

\[
1 \text{ in} = 72.27 \text{ pt}
\]

\[
1 \text{ pt} = 1 \text{ pt}
\]

\[
1 \text{ pc} = 12 \text{ pt}
\]

\[
1 \text{ cm} = \frac{1}{25.4} \text{ in} = 28.45275590551181 \text{ pt}
\]

\[
1 \text{ mm} = \frac{1}{25.4} \text{ in} = 2.845275590551181 \text{ pt}
\]

\[
1 \text{ dd} = 0.376065 \text{ mm} = 1.07000856496063 \text{ pt}
\]

\[
1 \text{ cc} = 12 \text{ dd} = 12.84010277952756 \text{ pt}
\]

\[
1 \text{ nd} = 0.375 \text{ mm} = 1.066978346456693 \text{ pt}
\]

\[
1 \text{ nc} = 12 \text{ nd} = 12.80374015748031 \text{ pt}
\]

\[
1 \text{ bp} = \frac{1}{72} \text{ in} = 1.00375 \text{ pt}
\]

\[
1 \text{ sp} = 2^{-16} \text{ pt} = 1.52587890625 \times 10^{-5} \text{ pt}.
\]

The values of the (font-dependent) units \texttt{em} and \texttt{ex} are gathered from \TeX{} when the surrounding floating point expression is evaluated.

\begin{verbatim}
\true\false
\end{verbatim}

\begin{verbatim}
\fp_abs:n \fp_abs:n \langle fp expr \rangle
\end{verbatim}

Evaluates the \texttt{\langle fp expr \rangle} as described for \texttt{\fp_eval:n} and leaves the absolute value of the result in the input stream. If the argument is \pm \infty, \texttt{nan} or a tuple, “invalid operation” occurs. Within floating point expressions, \texttt{abs()} can be used; it accepts \pm \infty and \texttt{nan} as arguments.

\begin{verbatim}
\fp_max:nn \fp_min:nn \langle fp expr_1 \rangle \langle fp expr_2 \rangle
\end{verbatim}

Evaluates the \texttt{\langle fp exprs \rangle} as described for \texttt{\fp_eval:n} and leaves the resulting larger (\texttt{\max}) or smaller (\texttt{\min}) value in the input stream. If the argument is a tuple, “invalid operation” occurs, but no other case raises exceptions. Within floating point expressions, \texttt{\max()} and \texttt{\min()} can be used.

29.13 Disclaimer and roadmap

The package may break down if the escape character is among \texttt{0123456789_+}, or if it receives a \TeX{} primitive conditional affected by \texttt{\exp_not:N}.

The following need to be done. I’ll try to time-order the items.

- Function to count items in a tuple (and to determine if something is a tuple).
- Decide what exponent range to consider.

273
• Support signalling \texttt{nan}.

• Modulo and remainder, and rounding function \texttt{quantize} (and its friends analogous to \texttt{trunc}, \texttt{ceil}, \texttt{floor}).

\begin{verbatim}
\fp_format:nn {⟨fp expr⟩} {⟨format⟩}, but what should ⟨format⟩ be? More general pretty printing?
\end{verbatim}

• Add \texttt{and}, \texttt{or}, \texttt{xor}? Perhaps under the names \texttt{all}, \texttt{any}, and \texttt{xor}?

• Add \(\log(x,b)\) for logarithm of \(x\) in base \(b\).

• \texttt{hypot} (Euclidean length). Cartesian-to-polar transform.

• Hyperbolic functions \texttt{cosh}, \texttt{sinh}, \texttt{tanh}.

• Inverse hyperbolics.

• Base conversion, input such as \texttt{0xAB.CDEF}.

• Factorial (not with \texttt{!}), gamma function.

• Improve coefficients of the \texttt{sin} and \texttt{tan} series.

• Treat upper and lower case letters identically in identifiers, and ignore underscores.

• Add an \texttt{array}(1,2,3) and \texttt{i=complex(0,1)}.

• Provide an experimental \texttt{map} function? Perhaps easier to implement if it is a single character, \texttt{@sin(1,2)}?

• Provide an \texttt{isnan} function analogue of \texttt{\fp_if_nan:nTF}?

• Support keyword arguments?

\texttt{Pgfmath} also provides box-measurements (depth, height, width), but boxes are not possible expandably.

Bugs, and tests to add.

• Check that functions are monotonic when they should.

• Add exceptions to \texttt{?}, \texttt{!<>?=}, \texttt{&&}, \texttt{||}, and \texttt{!}.

• Logarithms of numbers very close to 1 are inaccurate.

• When rounding towards \(-\infty\), \texttt{\dim_to_fp:n} \{\texttt{0pt}\} should return \(-0\), not \(+0\).

• The result of \((\pm0) + (\pm0)\), of \(x + (-x)\), and of \((-x) + x\) should depend on the rounding mode.

• \texttt{0e9999999999} gives a \texttt{TeX} “number too large” error.

• Subnormals are not implemented.

Possible optimizations/improvements.

• Document that \texttt{l3trial/l3fp-types} introduces tools for adding new types.

• In subsection 29.12.1, write a grammar.
• It would be nice if the parse auxiliaries for each operation were set up in the corresponding module, rather than centralizing in l3fp-parse.

• Some functions should get an _o ending to indicate that they expand after their result.

• More care should be given to distinguish expandable/restricted expandable (auxiliary and internal) functions.

• The code for the ternary set of functions is ugly.

• There are many ~ missing in the doc to avoid bad line-breaks.

• The algorithm for computing the logarithm of the significand could be made to use a 5 terms Taylor series instead of 10 terms by taking $c = 2000/(\lfloor 200x \rfloor + 1) \in [10, 95]$ instead of $c \in [1, 10]$. Also, it would then be possible to simplify the computation of t. However, we would then have to hard-code the logarithms of 44 small integers instead of 9.

• Improve notations in the explanations of the division algorithm (l3fp-basics).

• Understand and document __fp_____ basics_pack_weird_low:NNNNw and __fp____ basics_pack_weird_high:NNNNNNNNw better. Move the other basics_pack auxiliaries to l3fp-aux under a better name.

• Find out if underflow can really occur for trigonometric functions, and redoc as appropriate.

• Add bibliography. Some of Kahan’s articles, some previous \TeX fp packages, the international standards,…

• Also take into account the “inexact” exception?

• Support multi-character prefix operators (e.g., \@/ or whatever)?
Chapter 30

The l3fparray package
Fast global floating point arrays

30.1 l3fparray documentation

For applications requiring heavy use of floating points, this module provides arrays which
can be accessed in constant time (contrast l3seq, where access time is linear). The
interface is very close to that of l3intarray. The size of the array is fixed and must be
given at point of initialisation

\fparray_new:Nn
\fparray_new:Nn \langle \text{fparray var} \rangle \{\langle \text{size} \rangle\}

Evaluates the integer expression \langle \text{size} \rangle and allocates an \langle \text{floating point array variable} \rangle
with that number of (zero) entries. The variable name should start with \texttt{\textbackslash g_} because
assignments are always global.

\fparray_count:N
\fparray_count:N \langle \text{fparray var} \rangle

Expands to the number of entries in the \langle \text{floating point array variable} \rangle. This is performed
in constant time.

\fparray_gset:Nnn
\fparray_gset:Nnn \langle \text{fparray var} \rangle \{\langle \text{position} \rangle\} \{\langle \text{value} \rangle\}

Stores the result of evaluating the floating point expression \langle \text{value} \rangle into the \langle \text{floating point array variable} \rangle at the (integer expression) \langle \text{position} \rangle. If the \langle \text{position} \rangle is not between 1
and the \fparray_count:N, an error occurs. Assignments are always global.

\fparray_gzero:N
\fparray_gzero:N \langle \text{fparray var} \rangle

Sets all entries of the \langle \text{floating point array variable} \rangle to +0. Assignments are always global.

\fparray_item:Nn * \fparray_item:Nn \langle \text{fparray var} \rangle \{\langle \text{position} \rangle\}

Applies \texttt{\textbackslash fp_use:N} or \texttt{\textbackslash fp_to_tl:N} (respectively) to the floating point entry stored at
the (integer expression) \langle \text{position} \rangle in the \langle \text{floating point array variable} \rangle. If the \langle \text{position} \rangle
is not between 1 and the \fparray_count:N, an error occurs.
Chapter 31

The \texttt{l3bitset} package

Bitsets

This package defines and implements the data type \texttt{bitset}, a vector of bits. The size of the vector may grow dynamically. Individual bits can be set and unset by names pointing to an index position. The names 1, 2, 3, \ldots are predeclared and point to the index positions 1, 2, 3,\ldots. More names can be added and existing names can be changed. The index is like all other indices in \texttt{expl3} modules \textit{1-based}. A \texttt{bitset} can be output as binary number or—as needed e.g. in a PDF dictionary—as decimal (arabic) number. Currently only a small subset of the functions provided by the \texttt{bitset} package are implemented here, mainly the functions needed to use bitsets in PDF dictionaries.

The bitset is stored as a string (but one shouldn’t rely on the internal representation) and so the vector size is theoretically unlimited, only restricted by \TeX-memory. But the functions to set and clear bits uses integer functions for the index so bitsets can’t be longer than $2^{31} - 1$. The export function \texttt{\textbackslash bitset_to_arabic:N} can use functions from the \texttt{int} module only if the largest index used for this bitset is smaller then 32, for longer bitsets \texttt{fp} is used and this is slower.
31.1

Creating bitsets

\bitset_new:N \bitset_new:N ⟨bitset var ⟩
\bitset_new:c \bitset_new:Nn ⟨bitset var ⟩
\bitset_new:Nn
{
\bitset_new:cn
⟨name1⟩ = ⟨index1⟩ ,
⟨name2⟩ = ⟨index2⟩ , ...
New: 2023-11-15
}

Creates a new ⟨bitset var⟩ or raises an error if the name is already taken. The declaration
is global. The ⟨bitset var⟩ is initially 0.
Bitsets are implemented as string variables consisting of 1’s and 0’s. The rightmost
number is the index position 1, so the string variable can be viewed directly as the binary
number. But one shouldn’t rely on the internal representation, but use the dedicated
\bitset_to_bin:N instead to get the binary number.
The name–index pairs given in the second argument of \bitset_new:Nn declares
names for some indices, which can be used to set and unset bits. The names 1, 2, 3, . . .
are predeclared and point to the index positions 1, 2, 3,
⟨index. . . ⟩ should be a positive number or an ⟨integer expression⟩ which evaluates to
a positive number. The expression is evaluated when the index is used, not a declaration
time. The names ⟨name. . . ⟩ should be unique. Using a number as name, e.g. 10=1, is
allowed, it then overwrites the predeclared name 10, but the index position 10 can then
only be reached if some other name for it exists, e.g. ten=10. It is not necessary to give
every index a name, and an index can have more than one name. The named index can
be extended or changed with the next function.
\bitset_addto_named_index:Nn \bitset_addto_named_index:Nn ⟨bitset var ⟩
{
New: 2023-11-15
⟨name1⟩ = ⟨index1⟩ ,
⟨name2⟩ = ⟨index2⟩ , ...
}

This extends or changes the name–index pairs for ⟨bitset var⟩ globally as described for
\bitset_new:Nn.
For example after these settings
\bitset_new:Nn \l_pdfannot_F_bitset
{
Invisible
= 1,
Hidden
= 2,
Print
= 3,
NoZoom
= 4,
NoRotate
= 5,
NoView
= 6,
ReadOnly
= 7,
Locked
= 8,
ToggleNoView
= 9,
LockedContents = 10
}
\bitset_addto_named_index:Nn \l_pdfannot_F_bitset
{

278


it is possible to set bit 3 by using any of this alternatives:

\bitset_set_true:Nn \l_pdfannot_F_bitset {Print}
\bitset_set_true:Nn \l_pdfannot_F_bitset {print}
\bitset_set_true:Nn \l_pdfannot_F_bitset {3}

\bitset_if_exist_p:N ζ \bitset_if_exist:NTF \bitset_if_exist:c ζ

Tests whether the \texttt{(bitset var)} exist.

31.2 Setting and unsetting bits

\bitset_set_true:Nn \bitset_set_true:cn \bitset_gset_true:Nn \bitset_gset_true:cn
New: 2023-11-15

\bitset_set_true:Nn \bitset_set_true:cn \bitset_gset_true:Nn \bitset_gset_true:cn
New: 2023-11-15

\bitset_set_false:Nn \bitset_set_false:cn \bitset_gset_false:Nn \bitset_gset_false:cn
New: 2023-11-15

\bitset_set_false:Nn \bitset_set_false:cn \bitset_gset_false:Nn \bitset_gset_false:cn
New: 2023-11-15

\bitset_clear:N \bitset_clear:c \bitset_gclear:N \bitset_gclear:c
New: 2023-11-15

\bitset_clear:N \bitset_clear:c \bitset_gclear:N \bitset_gclear:c
New: 2023-11-15

31.3 Using bitsets

\bitset_item:Nn \bitset_item:cn
\bitset_item:Nn \bitset_item:cn
New: 2023-11-15

\bitset_item:Nn \bitset_item:cn
This leaves the current value of the bitset expressed as a binary (string) number in the input stream. If no bit has been set yet, the output is zero.

This leaves the current value of the bitset expressed as a decimal number in the input stream. If no bit has been set yet, the output is zero. The function uses \texttt{int_from_bin:n} if the largest index that have been set or unset is smaller then 32, and a slower implementation based on \texttt{fp_eval:n} otherwise.

Displays the binary and decimal value of the \texttt{bitset var} on the terminal.

Writes the value of the \texttt{bitset var} in the log file.
Chapter 32

The \input{cctab} package

Category code tables

A category code table enables rapid switching of all category codes in one operation. For \LaTeXe, this is possible over the entire Unicode range. For other engines, only the 8-bit range (0–255) is covered by such tables. The implementation of category code tables in expl3 also saves and restores the \TeX \texttt{\endlinechar} primitive value, meaning they could be used for example to implement \texttt{\ExplSyntaxOn}.

32.1 Creating and initialising category code tables

\begin{verbatim}
\NewCCTab\new:c
\NewCCTab\const:Nn
\NewCCTab\gset:Nn
\NewCCTab\gsave_current:N
\end{verbatim}

\begin{itemize}
\item \verb|\NewCCTab\new:N| \langle category code table \rangle
\verb|\NewCCTab\new:c|

Updated: 2020-07-02

Creates a new \langle category code table \rangle variable or raises an error if the name is already taken. The declaration is global. The \langle category code table \rangle is initialised with the codes as used by ini\TeXe.

\item \verb|\NewCCTab\const:Nn| \langle category code table \rangle \{\langle category code set up \rangle\}
\verb|\NewCCTab\const:cn|

Updated: 2020-07-07

Creates a new \langle category code table \rangle, applies (in a group) the \langle category code set up \rangle on top of ini\TeXe settings, then saves them globally as a constant table. The \langle category code set up \rangle can include a call to \verb|\SelectCCTab:N|.

\item \verb|\NewCCTab\gset:Nn| \langle category code table \rangle \{\langle category code set up \rangle\}
\verb|\NewCCTab\gset:cn|

Updated: 2020-07-07

Starting from the ini\TeXe category codes, applies (in a group) the \langle category code set up \rangle, then saves them globally in the \langle category code table \rangle. The \langle category code set up \rangle can include a call to \verb|\SelectCCTab:N|.

\item \verb|\NewCCTab\gsave_current:N| \langle category code table \rangle
\verb|\NewCCTab\gsave_current:c|

Updated: 2023-05-26

Saves the current prevailing category codes in the \langle category code table \rangle.
\end{itemize}
32.2 Using category code tables

\cctab_begin:N (category code table)
\cctab_begin:c
Switches locally the category codes in force to those stored in the (category code table).
The prevailing codes before the function is called are added to a stack, for use with \cctab_end:. This function does not start a \TeX{} group.

\cctab_end:
Ends the scope of a (category code table) started using \cctab_begin:N, returning the
codes to those in force before the matching \cctab_begin:N was used. This must be
used within the same \TeX{} group (and at the same \TeX{} group level) as the matching
\cctab_begin:N.

\cctab_select:N (category code table)
\cctab_select:c
Selects the (category code table) for the scope of the current group. This is in particu-
lar useful in the (setup) arguments of \tl_set_rescan:NNn, \tl_rescan:nn, \cctab_-
cst:Nn, and \cctab_gset:Nn.

\cctab_item:Nn (category code table) \{\langle \int expr \rangle \}
Determines the (character) with character code given by the (int expr) and expands to
its category code specified by the (category code table).

32.3 Category code table conditionals

\cctab_if_exist_p:N (category code table)
\cctab_if_exist_p:c
\cctab_if_exist:NTF (category code table) \{\langle \true code \rangle \} \{\langle \false code \rangle \}
Tests whether the (category code table) is currently defined. This does not check that the
\{category code table\} really is a category code table.

32.4 Constant and scratch category code tables

\c_code_cctab
Updated: 2020-07-10
Category code table for the expl3 code environment; this does not include \$, which is
retained as an “other” character. Sets the \endlinechar{} value to 32 (a space).

\c_document_cctab
Updated: 2020-07-08
Category code table for a standard \LaTeX{} document, as set by the \LaTeX{} kernel. In
particular, the upper-half of the 8-bit range will be set to “active” with pdf\LaTeX{} only.
No babel shorthands will be activated. Sets the \endlinechar{} value to 13 (normal line
ending).
\c_initex_cctab
Updated: 2020-07-02
Category code table as set up by \ini\TeX{}.

\c_other_cctab
Updated: 2020-07-02
Category code table where all characters have category code 12 (other). Sets the \texttt{\endlinechar} value to \texttt{-1}.

\c_str_cctab
Updated: 2020-07-02
Category code table where all characters have category code 12 (other) with the exception of spaces, which have category code 10 (space). Sets the \texttt{\endlinechar} value to \texttt{-1}.

\g_tmpa_cctab
\g_tmpb_cctab
New: 2023-05-26
Scratch category code tables.
Part V
Text manipulation
Chapter 33

The l3unicode package
Unicode support functions

This module provides Unicode-specific functions along with loading data from a range of Unicode Consortium files. Most of the code here is internal, but there are a small set of public functions. These work with Unicode (codepoints) and are designed to give useable results with both Unicode-aware and 8-bit engines.
\codepoint_generate:nn \{\langle codepoint \rangle\} \{\langle catcode \rangle\}

Generates one or more character tokens representing the \langle codepoint \rangle. With Unicode engines, exactly one character token will be generated, and this will have the \langle catcode \rangle specified as the second argument:

- 1 (begin group)
- 2 (end group)
- 3 (math toggle)
- 4 (alignment)
- 6 (parameter)
- 7 (math superscript)
- 8 (math subscript)
- 10 (space)
- 11 (letter)
- 12 (other)
- 13 (active)

For 8-bit engines, between one and four character tokens will be produced: these will be the bytes of the UTF-8 representation of the \langle codepoint \rangle. For all codepoints outside of the classical ASCII range, the generated character tokens will be active (category code 13); for codepoints in the ASCII range, the given \langle catcode \rangle will be used. To allow the result of this function to be used inside a expansion context, the result is protected by \exp_not:n.

\TeX hackers note: Users of (u)p\TeX note that these engines are treated as 8-bit in this context. In particular, for up\TeX, irrespective of the \kcatcode of the \langle codepoint \rangle, any value outside the ASCII range will result in a series of active bytes being generated.

\codepoint_str_generate:n \{\langle codepoint \rangle\}

Generates one or more character tokens representing the \langle codepoint \rangle. With Unicode engines, exactly one character token will be generated. For 8-bit engines, between one and four character tokens will be produced: these will be the bytes of the UTF-8 representation of the \langle codepoint \rangle. All of the generated character tokens will be of category code 12, except any spaces (codepoint 32), which will be category code 10.
\codepoint_to_category:n \{(codepoint)\}

Expands to the Unicode general category identifier of the \{(codepoint)\}. The general category identifier is a string made up of two letter characters, the first uppercase and the second lowercase. The uppercase letters divide codepoints into broader groups, which are then refined by the lowercase letter. For example, codepoints representing letters all have identifiers starting L, for example Lu (uppercase letter), Lt (titlecase letter), etc. Full details are available in the documentation provided by the Unicode Consortium: see https://www.unicode.org/reports/tr44/#General_Category_Values

\codepoint_to_nfd:n \{(codepoint)\}

Converts the \{(codepoint)\} to the Unicode Normalization Form Canonical Decomposition. The generated character(s) will have the current category code as they would if typed in directly for Unicode engines; for 8-bit engines, active characters are used for all codepoints outside of the ASCII range.
Chapter 34

The \texttt{l3text} package

Text processing

This module deals with manipulation of (formatted) text; such material is comprised of a restricted set of token list content. The functions provided here concern conversion of textual content for example in case changing, generation of bookmarks and extraction to tags. All of the major functions operate by expansion. Begin-group and end-group tokens in the \texttt{text} are normalized and become \{ and \}, respectively.

34.1 Expanding text

\texttt{\texttt{text_expand:n} \{ \texttt{text} \}}

Takes user input \texttt{text} and expands the content. Protected commands (typically formatting) are left in place, and no processing takes place of math mode material (as delimited by pairs given in \l_text_math_delims_tl or as the argument to commands listed in \l_text_math_arg_tl). Commands which are neither engine- nor \LaTeX{} protected are expanded exhaustively. Any commands listed in \l_text_expand_exclude_tl are excluded from expansion, as are those in \l_text_case_exclude_arg_tl and \l_text_math_arg_tl.

\texttt{\texttt{text_declare_expand_equivalent:Nn} \{ \texttt{cmd} \} \{ \texttt{replacement} \}}

\texttt{\texttt{text_declare_expand_equivalent:cn}}

Declares that the \texttt{replacement} tokens should be used whenever the \texttt{cmd} (a single token) is encountered. The \texttt{replacement} tokens should be expandable. A token can be “replaced” by itself if the defined replacement wraps it in \texttt{\exp_not:n}, for example

\texttt{\texttt{text_declare_expand_equivalent:Nn} \' \{ \exp_not:n \{ \' \} \}}
34.2 Case changing

\text_lowercase:n \star \text_uppercase:n \{(\text{tokens})\} \star \text_uppercase:nn \{(\text{BCP-47})\} \{(\text{tokens})\}

\text{Takes user input} \langle \text{text} \rangle \text{first applies} \text{\textunderscore expand:n}, \text{then transforms the case of character tokens as specified by the function name.} \text{The category code of letters are not changed by this process when Unicode engines are used; in 8-bit engines, case changed characters in the ASCII range will have the current prevailing category code, while those outside of it will be represented by active characters.}

Upper- and lowercase have the obvious meanings. Titlecasing may be regarded informally as converting the first character of the \langle \text{tokens} \rangle to uppercase. However, the process is more complex than this as there are some situations where a single lowercase character maps to a special form, for example i\text{j} in Dutch which becomes IJ. There are two functions available for titlecasing: one which applies the change to each “word” and a second which only applies at the start of the input. (Here, “word” boundaries are spaces: at present, full Unicode word breaking is not attempted.)

Importantly, notice that these functions are intended for working with user text for typesetting. For case changing programmatic data see the l3str module and discussion there of \text{\textunderscore lowercase:n}, \text{\textunderscore uppercase:n} and \text{\textunderscore casefold:n}.

Case changing does not take place within math mode material so for example

\text{\textunderscore uppercase:n} \{ \text{Some-text-$y = mx + c$-with-{Braces}} \}

becomes

\text{\textunderscore uppercase:n} \{ \text{SOME TEXT $y = mx + c$ WITH {BRACES}} \}

The first mandatory argument of commands listed in \text{l_text_case_exclude_arg_t1} is excluded from case changing; the latter are entirely non-textual content (such as labels).

The standard mappings here follow those defined by the Unicode Consortium in UnicodeData.txt and SpecialCasing.txt. For \text{\textunderscore P\text{X}}, only the ASCII range is covered as the engine treats input outside of this range as east Asian.

Locale-sensitive conversions are enabled using the \langle \text{BCP-47} \rangle argument, and follow Unicode Consortium guidelines. Currently, the locale strings recognized for special handling are as follows.

- Armenian (\text{\textunderscore hy} and \text{\textunderscore hy-x-yiwn}) The setting \text{\textunderscore hy} maps the codepoint U+0587, the ligature of letters ech and yiwn, to the codepoints for capital ech and vew when uppercasing: this follows the spelling reform which is used in Armenia. The alternative \text{\textunderscore hy-x-yiwn} maps U+0587 to capital ech and yiwn on uppercasing (also the output if Armenian is not selected at all).

- Azeri and Turkish (\text{\textunderscore az} and \text{\textunderscore tr}). The case pairs I/i-dotless and I-dot/i are activated for these languages. The combining dot mark is removed when lowercasing I-dot and introduced when upper casing i-dotless.

- German (\text{\textunderscore de-x-eszett}). An alternative mapping for German in which the lowercase \text{\textunderscore Eszett} maps to a \text{\textunderscore gro\text{\textunderscore f"{o}s} Eszett}.

289
• Greek (el). Removes accents from Greek letters when uppercasing; titlecasing leaves accents in place. A variant el-x-iota is available which converts the ypoge-grammaeni (subscript muted iota) to capital iota when uppercasing: the standard version retains the subscript versions.

• Lithuanian (lt). The lowercase letters i and j should retain a dot above when the accents grave, acute or tilde are present. This is implemented for lowercasing of the relevant uppercase letters both when input as single Unicode codepoints and when using combining accents. The combining dot is removed when uppercasing in these cases. Note that only the accents used in Lithuanian are covered: the behaviour of other accents are not modified.

• Medieval Latin (la-x-medieval). The characters u and V are interchanged on case changing.

• Dutch (nl). Capitalisation of i j at the beginning of titlecased input produces IJ rather than Ij.

Determining whether non-letter characters at the start of text should count as the uppercase element is controllable. When \text{\texttt{text_titlecase_check_letter_bool}} is true, codepoints which are not letters (Unicode general category L) are not changed, and only the first letter is uppercased. When \text{\texttt{text_titlecase_check_letter-bool}} is false, the first codepoint is uppercased, irrespective of the general code of the character.

\text{\texttt{text_declare_case_equivalent:Nn}} \langle \text{cmd} \rangle \{\langle \text{replacement} \rangle \}

\text{\texttt{text_declare_lowercase_mapping:nn}} \langle \text{codepoint} \rangle \{\langle \text{replacement} \rangle \}
\text{\texttt{text_declare_lowercase_mapping:nnn}} \langle \text{BCP-47} \rangle \langle \text{codepoint} \rangle \{\langle \text{replacement} \rangle \}
\text{\texttt{text_declare_titlecase_mapping:nn}} \{\langle \text{replacement} \rangle \}
\text{\texttt{text_declare_uppercase_mapping:nn}} \{\langle \text{replacement} \rangle \}

\text{\texttt{text_case_switch:nnnn}} \langle \text{normal} \rangle \langle \text{upper} \rangle \langle \text{lower} \rangle \langle \text{title} \rangle

Declarations that the \langle replacement \rangle tokens should be used whenever the \langle cmd \rangle (a single token) is encountered during case changing.

\text{\texttt{text_case_switch:nnnn}} \langle normal \rangle \langle upper \rangle \langle lower \rangle \langle title \rangle

Context-sensitive function which will expand to one of the \langle normal \rangle, \langle upper \rangle, \langle lower \rangle or \langle title \rangle tokens depending on the current case changing operation. Outside of case changing, the \langle normal \rangle tokens are produced. Within case changing, the appropriate mapping tokens are inserted.
34.3 Removing formatting from text

\text_purify:n \{⟨text⟩}\)

Takes user input ⟨text⟩ and expands as described for \text_expand:n, then removes all functions from the resulting text. Math mode material (as delimited by pairs given in \l_text_math_delims_tl or as the argument to commands listed in \l_text_math_arg_tl) is left contained in a pair of $ delimiters. Non-expandable functions present in the ⟨text⟩ must either have a defined equivalent (see \text_declare_purify_equivalent:Nn) or will be removed from the result. Implicit tokens are converted to their explicit equivalent.

\text_declare_purify_equivalent:Nn \text_declare_purify_equivalent:Nn ⟨cmd⟩ \{⟨replacement⟩\}
\text_declare_purify_equivalent:Nn

Declares that the ⟨replacement⟩ tokens should be used whenever the ⟨cmd⟩ (a single token) is encountered. The ⟨replacement⟩ tokens should be expandable.

34.4 Control variables

\l_text_math_arg_tl

Lists commands present in the ⟨text⟩ where the argument of the command should be treated as math mode material. The treatment here is similar to \l_text_math_delims_tl but for a command rather than paired delimiters.

\l_text_math_delims_tl

Lists pairs of tokens which delimit (in-line) math mode content; such content may be excluded from processing.

\l_text_case_exclude_arg_tl

Lists commands where the first mandatory argument is excluded from case changing.

\l_text_expand_exclude_tl

Lists commands which are excluded from expansion. This protection includes everything up to and including their first braced argument.

\l_text_titlecase_check_letter_bool

Controls how the start of titlecasing is handled: when true, the first letter in text is considered. The standard setting is true.
34.5 Mapping to graphemes

Grapheme splitting is implemented using the algorithm described in Unicode Standard Annex #29. This includes support for extended grapheme clusters. Text starting with a line feed or carriage return character will drop this due to standard TeX processing. At present extended pictograms are not supported: these may be added in a future release.

\text_map_function:nN \text_map_function:nN \text_map_function:nN \text_map_function:nN \text_map_function:nN \text_map_function:nN \text_map_function:nN \text_map_function:nN

\text_map_inline:nn \text_map_inline:nn \text_map_inline:nn \text_map_inline:nn \text_map_inline:nn \text_map_inline:nn \text_map_inline:nn \text_map_inline:nn

Used to terminate a \text_map_... function before all entries in the \text{text} have been processed. This normally takes place within a conditional statement.
Part VI

Typesetting
Chapter 35

The \texttt{l3box} package

Boxes

Box variables contain typeset material that can be inserted on the page or in other boxes. Their contents cannot be converted back to lists of tokens. There are three kinds of box operations: horizontal mode denoted with prefix \texttt{\hbox\textunderscore}, vertical mode with prefix \texttt{\vbox\textunderscore}, and the generic operations working in both modes with prefix \texttt{\box\textunderscore}. For instance, a new box variable containing the words “Hello, world!” (in a horizontal box) can be obtained by the following code.

\begin{verbatim}
\box_new:N \l_hello_box
\hbox_set:Nn \l_hello_box { Hello, ~ world! }
\end{verbatim}

The argument is typeset inside a \TeX{} group so that any variables assigned during the construction of this box restores its value afterwards.

Box variables from \texttt{l3box} are compatible with those of \LaTeX{} and plain \TeX{} and can be used interchangeably. The \texttt{l3box} commands to construct boxes, such as \texttt{\hbox:n} or \texttt{\hbox_set:Nn}, are “color-safe”, meaning that

\begin{verbatim}
\hbox:n \{ \color_select:n \{ blue \} Hello, \} - world!
\end{verbatim}

will result in “Hello,” taking the color blue, but “world!” remaining with the prevailing color outside the box.

35.1 Creating and initialising boxes

\begin{verbatim}
\box_new:N \box_new:c
\end{verbatim}

\texttt{\box_new:N \langle box\rangle} creates a new \langle box\rangle or raises an error if the name is already taken. The declaration is global. The \langle box\rangle is initially void.

\begin{verbatim}
\box_clear:N \box_clear:c
\box_gclear:N \box_gclear:c
\end{verbatim}

\texttt{\box_clear:N \langle box\rangle} clears the content of the \langle box\rangle by setting the box equal to \texttt{c\textunderscore empty\textunderscore box}.\texttt{\box_gclear:N \langle box\rangle} clears the content of the \langle box\rangle by setting the box equal to \texttt{c\textunderscore empty\textunderscore box}.\texttt{\box_gclear:C}
\box_clear_new:N \box_clear:c \box_gclear_new:N \box_gclear_new:c
\box_set_eq:NN \box_gset_eq:NN \box_if_exist_p:N \box_if_exist:NTF \box_if_exist:c
\box_use:N \box_use:c \box_move_right:nn \box_move_left:nn \box_move_up:nn \box_move_down:nn

Ensures that the \(\langle\text{box}\rangle\) exists globally by applying \texttt{\box_new:N} if necessary, then applies \texttt{\box_(g)clear:N} to leave the \(\langle\text{box}\rangle\) empty.

\box_set_eq:NN \box_gset_eq:(cN|Nc|cc) \box_if_exist_p:N \box_if_exist:NTF \box_if_exist:c
\box_use:N \box_use:c \box_move_right:nn \box_move_left:nn \box_move_up:nn \box_move_down:nn

Sets the content of \(\langle\text{box}_1\rangle\) equal to that of \(\langle\text{box}_2\rangle\).

Tests whether the \(\langle\text{box}\rangle\) is currently defined. This does not check that the \(\langle\text{box}\rangle\) really is a box.

New: 2012-03-03

35.2 Using boxes

\box_use:N \box_use:c \box_move_right:nn \box_move_left:nn \box_move_up:nn \box_move_down:nn

Inserts the current content of the \(\langle\text{box}\rangle\) onto the current list for typesetting. An error is raised if the variable does not exist or if it is invalid.

\TeXhackers note: This is the \TeX{} primitive \texttt{\copy}.

This function operates in vertical mode, and inserts the material specified by the \(\langle\text{box function}\rangle\) such that its reference point is displaced horizontally by the given \(\langle\text{dim expr}\rangle\) from the reference point for typesetting, to the right or left as appropriate. The \(\langle\text{box function}\rangle\) should be a box operation such as \texttt{\box_use:N \box} or a “raw” box specification such as \texttt{\vbox:n \{ xyz \}}.

This function operates in horizontal mode, and inserts the material specified by the \(\langle\text{box function}\rangle\) such that its reference point is displaced vertically by the given \(\langle\text{dim expr}\rangle\) from the reference point for typesetting, up or down as appropriate. The \(\langle\text{box function}\rangle\) should be a box operation such as \texttt{\box_use:N \box} or a “raw” box specification such as \texttt{\vbox:n \{ xyz \}}.
35.3 Measuring and setting box dimensions

\texttt{\box_dp:N} \texttt{\box_dp:c} \texttt{\box_dp:N} \texttt{\box_dp:c}
Calculates the depth (below the baseline) of the \texttt{(box)} in a form suitable for use in a \texttt{(dim expr)}.

\textbf{\TeX hackers note:} This is the \TeX primitive \texttt{dp}.

\texttt{\box_ht:N} \texttt{\box_ht:c} \texttt{\box_ht:N} \texttt{\box_ht:c}
Calculates the height (above the baseline) of the \texttt{(box)} in a form suitable for use in a \texttt{(dim expr)}.

\textbf{\TeX hackers note:} This is the \TeX primitive \texttt{ht}.

\texttt{\box_wd:N} \texttt{\box_wd:c} \texttt{\box_wd:N} \texttt{\box_wd:c}
Calculates the width of the \texttt{(box)} in a form suitable for use in a \texttt{(dim expr)}.

\textbf{\TeX hackers note:} This is the \TeX primitive \texttt{wd}.

\texttt{\box_ht_plus_dp:N} \texttt{\box_ht_plus_dp:c} \texttt{\box_ht_plus_dp:N} \texttt{\box_ht_plus_dp:c}
Calculates the total vertical size (height plus depth) of the \texttt{(box)} in a form suitable for use in a \texttt{(dim expr)}.

\texttt{\box_set_dp:N\{dim expr\}} \texttt{\box_set_dp:cn} \texttt{\box_gset_dp:N\{dim expr\}} \texttt{\box_gset_dp:cn}
Set the depth (below the baseline) of the \texttt{(box)} to the value of the \texttt{(dim expr)}.

\textbf{Updated: 2019-01-22}

\texttt{\box_set_ht:N\{dim expr\}} \texttt{\box_set_ht:cn} \texttt{\box_gset_ht:N\{dim expr\}} \texttt{\box_gset_ht:cn}
Set the height (above the baseline) of the \texttt{(box)} to the value of the \texttt{(dim expr)}.

\textbf{Updated: 2019-01-22}

\texttt{\box_set_wd:N\{dim expr\}} \texttt{\box_set_wd:cn} \texttt{\box_gset_wd:N\{dim expr\}} \texttt{\box_gset_wd:cn}
Set the width of the \texttt{(box)} to the value of the \texttt{(dim expr)}.

\textbf{Updated: 2019-01-22}
35.4 Box conditionals

\box_if_empty_p:N \box_if_empty_p:c \box_if_empty:NTF \box_if_empty:c
Tests if \langle box \rangle is a empty (equal to \c_empty_box).

\box_if_horizontal_p:N \box_if_horizontal_p:c \box_if_horizontal:NTF \box_if_horizontal:c
Tests if \langle box \rangle is a horizontal box.

\box_if_vertical_p:N \box_if_vertical_p:c \box_if_vertical:NTF \box_if_vertical:c
Tests if \langle box \rangle is a vertical box.

35.5 The last box inserted

\box_set_to_last:N \box_set_to_last:c \box_gset_to_last:N \box_gset_to_last:c
Sets the \langle box \rangle equal to the last item (box) added to the current partial list, removing the item from the list at the same time. When applied to the main vertical list, the \langle box \rangle is always void as it is not possible to recover the last added item.

35.6 Constant boxes

\c_empty_box
Updated: 2012-11-04
This is a permanently empty box, which is neither set as horizontal nor vertical.

\TeXhackers note: At the \TeX level this is a void box.

35.7 Scratch boxes

\l_tmpa_box \l_tmpb_box
Updated: 2012-11-04
Scratch boxes for local assignment. These are never used by the kernel code, and so are safe for use with any \EMTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_box \g_tmpb_box
Scratch boxes for global assignment. These are never used by the kernel code, and so are safe for use with any \EMTeX3-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

297
35.8 Viewing box contents

\box_show:N \box_show:N \{box\} \Box
\box_show:C
Shows full details of the content of the \{box\} in the terminal.
\box_show:Nnn \box_show:Nnn \{\int expr_1\} \{\int expr_2\}
\Box
Display the contents of \{box\} in the terminal, showing the first \{int expr_1\} items of the
box, and descending into \{int expr_2\} group levels.
\box_log:N \box_log:N \{box\} \Box
\box_log:C
 Writes full details of the content of the \{box\} to the log.
\box_log:Nnn \box_log:Nnn \{\int expr_1\} \{\int expr_2\}
\Box
 Writes the contents of \{box\} to the log, showing the first \{int expr_1\} items of the box,
and descending into \{int expr_2\} group levels.

35.9 Boxes and color

All \TeX{} boxes are “color safe”: a color set inside the box stops applying after the end
of the box has occurred.

35.10 Horizontal mode boxes

\hbox:n \hbox:n \{\text{contents}\} \Box
Typesets the \{contents\} into a horizontal box of natural width and then includes this box
in the current list for typesetting.
\hbox_to_wd:nn \hbox_to_wd:nn \{\text{dim expr}\} \{\text{contents}\} \Box
Typesets the \{contents\} into a horizontal box of width \{dim expr\} and then includes this
box in the current list for typesetting.
\hbox_to_zero:n \hbox_to_zero:n \{\text{contents}\} \Box
Typesets the \{contents\} into a horizontal box of zero width and then includes this box in
the current list for typesetting.
\hbox_set:Nn \hbox_set:Nn \{\text{box}\} \{\text{contents}\} \Box
Typesets the \{contents\} at natural width and then stores the result inside the \{box\}. 298
\hbox_set_to_wd:Nnn \hbox_set_to_wd:cnm \hbox_gset_to_wd:Nnn \hbox_gset_to_wd:cnm

Typesets the \langle contents \rangle to the width given by the \langle dim expr \rangle and then stores the result inside the \langle box \rangle.

\hbox_overlap_center:n \hbox_overlap_center:n \langle contents \rangle

Typesets the \langle contents \rangle into a horizontal box of zero width such that material protrudes equally to both sides of the insertion point.

\hbox_overlap_right:n \hbox_overlap_right:n \langle contents \rangle

Typesets the \langle contents \rangle into a horizontal box of zero width such that material protrudes to the right of the insertion point.

\hbox_overlap_left:n \hbox_overlap_left:n \langle contents \rangle

Typesets the \langle contents \rangle into a horizontal box of zero width such that material protrudes to the left of the insertion point.

\hbox_set:Nw \hbox_set:Nw \langle box \rangle \langle contents \rangle \hbox_set_end:

Typesets the \langle contents \rangle at natural width and then stores the result inside the \langle box \rangle. In contrast to \hbox_set:Nn this function does not absorb the argument when finding the \langle content \rangle, and so can be used in circumstances where the \langle content \rangle may not be a simple argument.

\hbox_set_to_wd:Nnw \hbox_set_to_wd:cnw \hbox_gset_to_wd:Nnw \hbox_gset_to_wd:cnw

Typesets the \langle contents \rangle to the width given by the \langle dim expr \rangle and then stores the result inside the \langle box \rangle. In contrast to \hbox_set_to_wd:Nnn this function does not absorb the argument when finding the \langle content \rangle, and so can be used in circumstances where the \langle content \rangle may not be a simple argument.

\hbox_unpack:N \hbox_unpack:N \langle box \rangle

Unpacks the content of the horizontal \langle box \rangle, retaining any stretching or shrinking applied when the \langle box \rangle was set.

\textbf{TeXhackers note:} This is the \TeX primitive \texttt{unhcopy}.

35.11 \textbf{Vertical mode boxes}

Vertical boxes inherit their baseline from their contents. The standard case is that the baseline of the box is at the same position as that of the last item added to the box. This means that the box has no depth unless the last item added to it had depth. As a result most vertical boxes have a large height value and small or zero depth. The exception are
_top boxes, where the reference point is that of the first item added. These tend to have a large depth and small height, although the latter is typically non-zero.

\vbox:n \{\langle contents\rangle\}
Updated: 2017-04-05
Typesets the \langle contents\rangle into a vertical box of natural height and includes this box in the current list for typesetting.

\vbox_top:n \{\langle contents\rangle\}
Updated: 2017-04-05
Typesets the \langle contents\rangle into a vertical box of natural height and includes this box in the current list for typesetting. The baseline of the box is equal to that of the first item added to the box.

\vbox_to_ht:nn \{(dim expr)\} \{\langle contents\rangle\}
Updated: 2017-04-05
Typesets the \langle contents\rangle into a vertical box of height \langle dim expr\rangle and then includes this box in the current list for typesetting.

\vbox_to_zero:n \{\langle contents\rangle\}
Updated: 2017-04-05
Typesets the \langle contents\rangle into a vertical box of zero height and then includes this box in the current list for typesetting.

\vbox_set:Nn \langle box\rangle \{\langle contents\rangle\}
\vbox_set:cn
\vbox_gset:Nn
\vbox_gset:cn
Updated: 2017-04-05
Typesets the \langle contents\rangle at natural height and then stores the result inside the \langle box\rangle.

\vbox_set_top:Nn \langle box\rangle \{\langle contents\rangle\}
\vbox_set_top:cn
\vbox_gset_top:Nn
\vbox_gset_top:cn
Updated: 2017-04-05
Typesets the \langle contents\rangle at natural height and then stores the result inside the \langle box\rangle. The baseline of the box is equal to that of the first item added to the box.

\vbox_set_to_ht:Nnn \langle box\rangle \{(dim expr)\} \{\langle contents\rangle\}
\vbox_set_to_ht:cnn
\vbox_gset_to_ht:Nnn
\vbox_gset_to_ht:cnn
Updated: 2017-04-05
Typesets the \langle contents\rangle to the height given by the \langle dim expr\rangle and then stores the result inside the \langle box\rangle.

\vbox_set:Nw \langle box\rangle \langle contents\rangle \vbox_set_end:
\vbox_set:cw
\vbox_set_end:
\vbox_gset:Nw
\vbox_gset:cw
\vbox_gset_end:
Updated: 2017-04-05
Typesets the \langle contents\rangle at natural height and then stores the result inside the \langle box\rangle. In contrast to \vbox_set:Nn this function does not absorb the argument when finding the \langle content\rangle, and so can be used in circumstances where the \langle content\rangle may not be a simple argument.
\vbox_set_to_ht:Nnw \vbox_set_to_ht:cnw \vbox_gset_to_ht:Nnw \vbox_gset_to_ht:cnw

Updated: 2017-06-08

\vbox_set_split_to_ht:NNn \vbox_set_split_to_ht:NNn \vbox_gset_split_to_ht:NNn \vbox_gset_split_to_ht:NNn

Updated: 2018-12-29

Sets \langle box_1 \rangle to contain material to the height given by the \langle dim expr \rangle by removing content from the top of \langle box_2 \rangle (which must be a vertical box).

\vbox_unpack:N \vbox_unpack:c

Unpacks the content of the vertical \langle box \rangle, retaining any stretching or shrinking applied when the \langle box \rangle was set.

\TeX{} hackers note: This is the \TeX{} primitive \texttt{unvcopy}.

35.12 Using boxes efficiently

The functions above for using box contents work in exactly the same way as for any other expl3 variable. However, for efficiency reasons, it is also useful to have functions which drop box contents on use. When a box is dropped, the box becomes empty at the group level where the box was originally set rather than necessarily at the current group level. For example, with

\begin{verbatim}
\hbox_set:Nn \l_tmpa_box { A }
\group_begin:
 \hbox_set:Nn \l_tmpa_box { B }
 \group_begin:
 \box_use_drop:N \l_tmpa_box
 \group_end:
 \box_show:N \l_tmpa_box
\group_end:
\box_show:N \l_tmpa_box
\end{verbatim}

the first use of \texttt{\box_show:N} will show an entirely cleared (void) box, and the second will show the letter \texttt{A} in the box.

These functions should be preferred when the content of the box is no longer required after use. Note that due to the unusual scoping behaviour of \texttt{drop} functions they may be applied to both local and global boxes: the latter will naturally be set and thus cleared at a global level.
\texttt{\box_use_drop:N} \texttt{\box_use_drop:c}

Inserts the current content of the \texttt{\langle box \rangle} onto the current list for typesetting then drops the box content. An error is raised if the variable does not exist or if it is invalid. This function may be applied to local or global boxes.

\textbf{TeXhackers note:} This is the \TeX{} primitive \texttt{\box{}}.

\texttt{\box_set_eq_drop:NN} \texttt{\box_set_eq_drop:c}

Sets the content of \texttt{\langle box_1 \rangle} equal to that of \texttt{\langle box_2 \rangle}, then drops \texttt{\langle box_2 \rangle}.

New: 2019-01-17

\texttt{\box_gset_eq_drop:NN} \texttt{\box_gset_eq_drop:c}

Sets the content of \texttt{\langle box_1 \rangle} globally equal to that of \texttt{\langle box_2 \rangle}, then drops \texttt{\langle box_2 \rangle}.

New: 2019-01-17

\texttt{\hbox_unpack_drop:N} \texttt{\hbox_unpack_drop:c}

Unpacks the content of the horizontal \texttt{\langle box \rangle}, retaining any stretching or shrinking applied when the \texttt{\langle box \rangle} was set. The original \texttt{\langle box \rangle} is then dropped.

\textbf{TeXhackers note:} This is the \TeX{} primitive \texttt{\unhbox{}}.

\texttt{\vbox_unpack_drop:N} \texttt{\vbox_unpack_drop:c}

Unpacks the content of the vertical \texttt{\langle box \rangle}, retaining any stretching or shrinking applied when the \texttt{\langle box \rangle} was set. The original \texttt{\langle box \rangle} is then dropped.

\textbf{TeXhackers note:} This is the \TeX{} primitive \texttt{\unvbox{}}.

35.13 Affine transformations

Affine transformations are changes which (informally) preserve straight lines. Simple translations are affine transformations, but are better handled in \TeX{} by doing the translation first, then inserting an unmodified box. On the other hand, rotation and resizing of boxed material can best be handled by modifying boxes. These transformations are described here.
Resizes the \textit{box} to fit within the given \textit{x-size} (horizontally) and \textit{y-size} (vertically); both of the sizes are dimension expressions. The \textit{y-size} is the height only: it does not include any depth. The updated \textit{box} is an hbox, irrespective of the nature of the \textit{box} before the resizing is applied. The final size of the \textit{box} is the smaller of \{\textit{x-size}\} and \{\textit{y-size}\}, i.e. the result fits within the dimensions specified. Negative sizes cause the material in the \textit{box} to be reversed in direction, but the reference point of the \textit{box} is unchanged. Thus a negative \textit{y-size} results in the \textit{box} having a depth dependent on the height of the original and \textit{vice versa}.

Resizes the \textit{box} to fit within the given \textit{x-size} (horizontally) and \textit{y-size} (vertically); both of the sizes are dimension expressions. The \textit{y-size} is the total vertical size (height plus depth). The updated \textit{box} is an hbox, irrespective of the nature of the \textit{box} before the resizing is applied. The final size of the \textit{box} is the smaller of \{\textit{x-size}\} and \{\textit{y-size}\}, i.e. the result fits within the dimensions specified. Negative sizes cause the material in the \textit{box} to be reversed in direction, but the reference point of the \textit{box} is unchanged. Thus a negative \textit{y-size} results in the \textit{box} having a depth dependent on the height of the original and \textit{vice versa}.

Resizes the \textit{box} to \textit{y-size} (vertically), scaling the horizontal size by the same amount; \textit{y-size} is a dimension expression. The \textit{y-size} is the height only: it does not include any depth. The updated \textit{box} is an hbox, irrespective of the nature of the \textit{box} before the resizing is applied. A negative \textit{y-size} causes the material in the \textit{box} to be reversed in direction, but the reference point of the \textit{box} is unchanged. Thus a negative \textit{y-size} results in the \textit{box} having a depth dependent on the height of the original and \textit{vice versa}.
Resizes the \{box\} to \langle y\text{-size} \rangle (vertically), scaling the horizontal size by the same amount; \langle y\text{-size} \rangle is a dimension expression. The \langle y\text{-size} \rangle is the total vertical size (height plus depth). The updated \{box\} is an hbox, irrespective of the nature of the \{box\} before the resizing is applied. A negative \langle y\text{-size} \rangle causes the material in the \{box\} to be reversed in direction, but the reference point of the \{box\} is unchanged. Thus a negative \langle y\text{-size} \rangle results in the \{box\} having a depth dependent on the height of the original and vice versa.

Resizes the \{box\} to \langle x\text{-size} \rangle (horizontally), scaling the vertical size by the same amount; \langle x\text{-size} \rangle is a dimension expression. The updated \{box\} is an hbox, irrespective of the nature of the \{box\} before the resizing is applied. A negative \langle x\text{-size} \rangle causes the material in the \{box\} to be reversed in direction, but the reference point of the \{box\} is unchanged. Thus a negative \langle x\text{-size} \rangle results in the \{box\} having a depth dependent on the height of the original and vice versa.

Resizes the \{box\} to \langle x\text{-size} \rangle (horizontally) and \langle y\text{-size} \rangle (vertically): both of the sizes are dimension expressions. The \langle y\text{-size} \rangle is the height only and does not include any depth. The updated \{box\} is an hbox, irrespective of the nature of the \{box\} before the resizing is applied. Negative sizes cause the material in the \{box\} to be reversed in direction, but the reference point of the \{box\} is unchanged. Thus a negative \langle y\text{-size} \rangle results in the \{box\} having a depth dependent on the height of the original and vice versa.

Resizes the \{box\} to \langle x\text{-size} \rangle (horizontally) and \langle y\text{-size} \rangle (vertically): both of the sizes are dimension expressions. The \langle y\text{-size} \rangle is the total vertical size (height plus depth). The updated \{box\} is an hbox, irrespective of the nature of the \{box\} before the resizing is applied. Negative sizes cause the material in the \{box\} to be reversed in direction, but the reference point of the \{box\} is unchanged. Thus a negative \langle y\text{-size} \rangle results in the \{box\} having a depth dependent on the height of the original and vice versa.
\textbf{35.14 Viewing part of a box}

TeXhackers note: Clipping is implemented by the driver, and as such the full content of the box is placed in the output file. Thus clipping does not remove any information from the raw output, and hidden material can therefore be viewed by direct examination of the file.

Updated: 2019-01-22

\textbf{\box_rotate:Nn} \texttt{\box_rotate:Nn \langle box \rangle \{\langle angle \rangle\}}

Rotates the \langle box \rangle by \langle angle \rangle (in degrees) anti-clockwise about its reference point. The reference point of the updated box is moved horizontally such that it is at the left side of the smallest rectangle enclosing the rotated material. The updated \langle box \rangle is an \texttt{hbox}, irrespective of the nature of the \langle box \rangle before the rotation is applied.

\textbf{Updated:} 2019-01-22

\textbf{\box_scale:Nnn} \texttt{\box_scale:Nnn \langle box \rangle \{\langle x-scale \rangle\} \{\langle y-scale \rangle\}}

Scales the \langle box \rangle by factors \langle x-scale \rangle and \langle y-scale \rangle in the horizontal and vertical directions, respectively (both scales are integer expressions). The updated \langle box \rangle is an \texttt{hbox}, irrespective of the nature of the \langle box \rangle before the scaling is applied. Negative scalings cause the material in the \langle box \rangle to be reversed in direction, but the reference point of the \langle box \rangle is unchanged. Thus a negative \langle y-scale \rangle results in the \langle box \rangle having a depth dependent on the height of the original and \textit{vice versa}.

\textbf{\box_set_clipped:N} \texttt{\box_set_clipped:N \langle box \rangle}

Clips the \langle box \rangle in the output so that only material inside the bounding box is displayed in the output. The updated \langle box \rangle is an \texttt{hbox}, irrespective of the nature of the \langle box \rangle before the clipping is applied. Additional box levels are also generated by this operation.

Updated: 2023-04-14

\textbf{\box_set_trim:Nnnnn} \texttt{\box_set_trim:Nnnnn \langle box \rangle \{\langle left \rangle\} \{\langle bottom \rangle\} \{\langle right \rangle\} \{\langle top \rangle\}}

Adjusts the bounding box of the \langle box \rangle \langle left \rangle is removed from the left-hand edge of the bounding box, \langle right \rangle from the right-hand edge and so fourth. All adjustments are \langle dim exprs \rangle. Material outside of the bounding box is still displayed in the output unless \texttt{\box_set_clipped:N} is subsequently applied. The updated \langle box \rangle is an \texttt{hbox}, irrespective of the nature of the \langle box \rangle before the trim operation is applied. Additional box levels are also generated by this operation. The behavior of the operation where the trims requested is greater than the size of the box is undefined.

New: 2019-01-23

\textbf{\box_set_viewport:Nnnnn} \texttt{\box_set_viewport:Nnnnn \langle box \rangle \{\langle llx \rangle\} \{\langle lly \rangle\} \{\langle urx \rangle\} \{\langle ury \rangle\}}

Adjusts the bounding box of the \langle box \rangle such that it has lower-left co-ordinates \langle llx \rangle, \langle lly \rangle and upper-right co-ordinates \langle urx \rangle, \langle ury \rangle. All four co-ordinate positions are \langle dim exprs \rangle. Material outside of the bounding box is still displayed in the output unless \texttt{\box_set_clipped:N} is subsequently applied. The updated \langle box \rangle is an \texttt{hbox}, irrespective of the nature of the \langle box \rangle before the viewport operation is applied. Additional box levels are also generated by this operation.

New: 2019-01-23
35.15 Primitive box conditionals

\if_hbox:N \if_hbox:N (box)
\true code \else: \false code \fi:
Tests is (box) is a horizontal box.

\TeXhackers note: This is the \TeX primitive \ifhbox.

\if_vbox:N \if_vbox:N (box)
\true code \else: \false code \fi:
Tests is (box) is a vertical box.

\TeXhackers note: This is the \TeX primitive \ifvbox.

\if_box_empty:N \if_box_empty:N (box)
\true code \else: \false code \fi:
Tests is (box) is an empty (void) box.

\TeXhackers note: This is the \TeX primitive \ifvoid.
Chapter 36

The \texttt{l3coffins} package

Coffin code layer

The material in this module provides the low-level support system for coffins. For details about the design concept of a coffin, see the \texttt{xcffins} module (in the \texttt{l3experimental} bundle).

36.1 Creating and initialising coffins

\begin{verbatim}
\coffin_new:N (coffin)
\coffin_new:c
\coffin_clear:N (coffin)
\coffin_clear:c
\coffin_gclear:N
\coffin_gclear:c
\coffin_set_eq:NN
\coffin_set_eq:c
\coffin_gset_eq:NN
\coffin_gset_eq:c
\coffin_if_exist_p:N
\coffin_if_exist:NTF
\coffin_if_exist:c
\end{verbatim}

\coffin_new:N \coffin_new:c
\coffin_clear:N \coffin_clear:c
\coffin_gclear:N \coffin_gclear:c

New: 2011-08-17
Updated: 2019-01-21

\coffin_set_eq:NN \coffin_set_eq:c \coffin_set_eq:NN \coffin_set_eq:c
\coffin_gset_eq:NN \coffin_gset_eq:c \coffin_gset_eq:NN \coffin_gset_eq:c

New: 2011-08-17
Updated: 2019-01-21

\coffin_if_exist_p:N \coffin_if_exist_p:c \coffin_if_exist:NTF \coffin_if_exist:NTF \coffin_if_exist:c \coffin_if_exist:c

New: 2012-06-20

\coffin_new:N (coffin)
Creates a new \texttt{(coffin)} or raises an error if the name is already taken. The declaration is global. The \texttt{(coffin)} is initially empty.

\coffin_clear:N (coffin)
Clears the content of the \texttt{(coffin)}.

\coffin_set_eq:NN \langle coffin \rangle \langle coffin \rangle
Sets both the content and poles of \texttt{(coffin)} equal to those of \texttt{(coffin)}.

\coffin_if_exist_p:N \langle coffin \rangle \langle coffin \rangle
Tests whether the \texttt{(coffin)} is currently defined.

307
36.2 Setting coffin content and poles

\hcoffin_set:Nn \hcoffin_set:cn \hcoffin_gset:Nn \hcoffin_gset:cn

Typesets the \langle \text{material} \rangle in horizontal mode, storing the result in the \langle \text{coffin} \rangle. The standard poles for the \langle \text{coffin} \rangle are then set up based on the size of the typeset material.

New: 2011-08-17
Updated: 2019-01-21

\hcoffin_set:Nw \hcoffin_set:cw \hcoffin_set_end: \hcoffin_gset:Nw \hcoffin_gset:cw \hcoffin_gset_end:

Typesets the \langle \text{material} \rangle in horizontal mode, storing the result in the \langle \text{coffin} \rangle. The standard poles for the \langle \text{coffin} \rangle are then set up based on the size of the typeset material. These functions are useful for setting the entire contents of an environment in a coffin.

New: 2011-09-10
Updated: 2019-01-21

\vcoffin_set:Nnn \vcoffin_set:cnn \vcoffin_gset:Nnn \vcoffin_gset:cnn

Typesets the \langle \text{material} \rangle in vertical mode constrained to the given \langle \text{width} \rangle and stores the result in the \langle \text{coffin} \rangle. The standard poles for the \langle \text{coffin} \rangle are then set up based on the size of the typeset material.

New: 2011-08-17
Updated: 2019-01-21

\vcoffin_set:Nnw \vcoffin_set:cnw \vcoffin_set_end: \vcoffin_gset:Nnw \vcoffin_gset:cnw \vcoffin_gset_end:

Typesets the \langle \text{material} \rangle in vertical mode constrained to the given \langle \text{width} \rangle and stores the result in the \langle \text{coffin} \rangle. The standard poles for the \langle \text{coffin} \rangle are then set up based on the size of the typeset material. These functions are useful for setting the entire contents of an environment in a coffin.

New: 2011-09-10
Updated: 2019-01-21

\coffin_set_horizontal_pole:Nnn \coffin_set_horizontal_pole:cnn \coffin_gset_horizontal_pole:Nnn \coffin_gset_horizontal_pole:cnn

Sets the \langle \text{pole} \rangle to run horizontally through the \langle \text{coffin} \rangle. The \langle \text{pole} \rangle is placed at the \langle \text{offset} \rangle from the baseline of the \langle \text{coffin} \rangle. The \langle \text{offset} \rangle should be given as a dimension expression.

New: 2012-07-20
Updated: 2019-01-21
Sets the \textit{pole} to run vertically through the \textit{coffin}. The \textit{pole} is placed at the \textit{offset} from the left-hand edge of the bounding box of the \textit{coffin}. The \textit{offset} should be given as a dimension expression.

Resets the poles of the \textit{coffin} to the standard set, removing any custom or inherited poles. The poles will therefore be equal to those that would be obtained from \texttt{\hcoffin_set:NN} or similar; the bounding box of the coffin is not reset, so any material outside of the formal bounding box will not influence the poles.

36.3 Coffin affine transformations

Resized the \textit{coffin} to \texttt{\width} and \texttt{\total_height}, both of which should be given as dimension expressions.

Rotates the \textit{coffin} by the given \texttt{\angle} (given in degrees counter-clockwise). This process rotates both the coffin content and poles. Multiple rotations do not result in the bounding box of the coffin growing unnecessarily.

Scales the \textit{coffin} by a factors \texttt{\xs_scale} and \texttt{\ys_scale} in the horizontal and vertical directions, respectively. The two scale factors should be given as real numbers.
This function attaches \(\text{<coffin}_2\rangle\) to \(\text{<coffin}_1\rangle\) such that the bounding box of \(\text{<coffin}_1\rangle\) is not altered, i.e. \(\text{<coffin}_2\rangle\) can protrude outside of the bounding box of the coffin. The alignment is carried out by first calculating \(\langle\text{handle}_1\rangle\), the point of intersection of \(\langle\text{coffin}_1\text{-pole}_1\rangle\) and \(\langle\text{coffin}_1\text{-pole}_2\rangle\), and \(\langle\text{handle}_2\rangle\), the point of intersection of \(\langle\text{coffin}_2\text{-pole}_1\rangle\) and \(\langle\text{coffin}_2\text{-pole}_2\rangle\). \(\text{<coffin}_2\rangle\) is then attached to \(\text{<coffin}_1\rangle\) such that the relationship between \(\langle\text{handle}_1\rangle\) and \(\langle\text{handle}_2\rangle\) is described by the \(\langle x\text{-offset}\rangle\) and \(\langle y\text{-offset}\rangle\).

This function joins \(\langle\text{coffin}\rangle\) to \(\langle\text{coffin}_1\rangle\) such that the bounding box of \(\langle\text{coffin}_1\rangle\) may expand. The new bounding box covers the area containing the bounding boxes of the two original coffins. The alignment is carried out by first calculating \(\langle\text{handle}_1\rangle\), the point of intersection of \(\langle\text{coffin}_1\text{-pole}_1\rangle\) and \(\langle\text{coffin}_1\text{-pole}_2\rangle\), and \(\langle\text{handle}_2\rangle\), the point of intersection of \(\langle\text{coffin}_2\text{-pole}_1\rangle\) and \(\langle\text{coffin}_2\text{-pole}_2\rangle\). \(\text{<coffin}_2\rangle\) is then attached to \(\text{<coffin}_1\rangle\) such that the relationship between \(\langle\text{handle}_1\rangle\) and \(\langle\text{handle}_2\rangle\) is described by the \(\langle x\text{-offset}\rangle\) and \(\langle y\text{-offset}\rangle\). The two offsets should be given as dimension expressions.

Typesetting is carried out by first calculating \(\langle\text{handle}\rangle\), the point of intersection of \(\langle\text{pole}_1\rangle\) and \(\langle\text{pole}_2\rangle\). The coffin is then typeset in horizontal mode such that the relationship between the current reference point in the document and the \(\langle\text{handle}\rangle\) is described by the \(\langle x\text{-offset}\rangle\) and \(\langle y\text{-offset}\rangle\). The two offsets should be given as dimension expressions. Typesetting a coffin is therefore analogous to carrying out an alignment where the “parent” coffin is the current insertion point.

36.5 Measuring coffins

\begin{verbatim}
\coffin_dp:c \coffin
\coffin_dp:N \coffin
\end{verbatim}

Calculates the depth (below the baseline) of the \(\langle\text{coffin}\rangle\) in a form suitable for use in a \(\langle\text{dim expr}\rangle\).
\coffin_ht:N \coffin_ht:c
Calculates the height (above the baseline) of the \coffin in a form suitable for use in a \langle dim expr \rangle.

\coffin_wd:N \coffin_wd:c
Calculates the width of the \coffin in a form suitable for use in a \langle dim expr \rangle.

\coffin_display_handles:Nn
\coffin_display_handles:cn
This function first calculates the intersections between all of the \langle poles \rangle of the \langle coffin \rangle to give a set of \langle handles \rangle. It then prints the \langle coffin \rangle at the current location in the source, with the position of the \langle handles \rangle marked on the coffin. The \langle handles \rangle are labelled as part of this process: the locations of the \langle handles \rangle and the labels are both printed in the \langle color \rangle specified.

\coffin_mark_handle:Nnnn
\coffin_mark_handle:cn
This function first calculates the \langle handle \rangle for the \langle coffin \rangle as defined by the intersection of \langle pole1 \rangle and \langle pole2 \rangle. It then marks the position of the \langle handle \rangle on the \langle coffin \rangle. The \langle handle \rangle are labelled as part of this process: the location of the \langle handle \rangle and the label are both printed in the \langle color \rangle specified.

\coffin_show_structure:N
\coffin_show_structure:c
This function shows the structural information about the \langle coffin \rangle in the terminal. The width, height and depth of the typeset material are given, along with the location of all of the poles of the coffin.

Notice that the poles of a coffin are defined by four values: the \(x \) and \(y \) co-ordinates of a point that the pole passes through and the \(x \)- and \(y \)-components of a vector denoting the direction of the pole. It is the ratio between the later, rather than the absolute values, which determines the direction of the pole.

\coffin_log_structure:N
\coffin_log_structure:c
This function writes the structural information about the \langle coffin \rangle in the log file. See also \coffin_show_structure:N which displays the result in the terminal.

\coffin_show:N \coffin_log:N
Shows full details of poles and contents of the \langle coffin \rangle in the terminal or log file. See \coffin_show_structure:N and \box_show:N to show separately the pole structure and the contents.

36.6 Coffin diagnostics
\coffin_show:Nnn \coffin_show:cnn \coffin_log:Nnn \coffin_log:cnn

Shows poles and contents of the \textit{coffin} in the terminal or log file, showing the first \textit{int expr}\textsubscript{1} items in the coffin, and descending into \textit{int expr}\textsubscript{2} group levels. See \texttt{coffin-}
\texttt{show_structure:N} and \texttt{box_show:Nnn} to show separately the pole structure and the contents.

36.7 Constants and variables

\c_empty_coffin A permanently empty coffin.

\l_tmpa_coffin \l_tmpb_coffin

Scratch coffins for local assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX\-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.

\g_tmpa_coffin \g_tmpb_coffin

Scratch coffins for global assignment. These are never used by the kernel code, and so are safe for use with any \LaTeX\-defined function. However, they may be overwritten by other non-kernel code and so should only be used for short-term storage.
Chapter 37

The l3color package

Color support

37.1 Color in boxes

Controlling the color of text in boxes requires a small number of control functions, so that the boxed material uses the color at the point where it is set, rather than where it is used.

\color_group_begin:
\color_group_end:
\color_group_end:

New: 2011-09-03

Creates a color group: one used to “trap” color settings. This grouping is built in to for example \hbox_set:Nn.

\color_ensure_current:
\color_ensure_current:

New: 2011-09-03

Ensures that material inside a box uses the foreground color at the point where the box is set, rather than that in force when the box is used. This function should usually be used within a \color_group_begin: ... \color_group_end: group.

37.2 Color models

A color model is a way to represent sets of colors. Different models are particularly suitable for different output methods, e.g. screen or print. Parameter-based models can describe a very large number of unique colors, and have a varying number of axes which define a color space. In contrast, various proprietary models are available which define spot colors (more formally separations).

Core models are used to pass color information to output; these are “native” to l3color. Core models use real numbers in the range [0, 1] to represent values. The core models supported here are

- **gray** Grayscale color, with a single axis running from 0 (fully black) to 1 (fully white)
- **rgb** Red-green-blue color, with three axes, one for each of the components
• **cmyk** Cyan-magenta-yellow-black color, with four axes, one for each of the components

There are also interface models: these are convenient for users but have to be manipulated before storing/passing to the backend. Interface models are primarily integer-based: see below for more detail. The supported interface models are

• **Gray** Grayscale color, with a single axis running from 0 (fully black) to 15 (fully white)

• **hsb** Hue-saturation-brightness color, with three axes, all real values in the range
\[0, 1\] for hue saturation and brightness

• **Hsb** Hue-saturation-brightness color, with three axes, integer in the range \([0, 360]\) for hue, real values in the range \([0, 1]\) for saturation and brightness

• **HSB** Hue-saturation-brightness color, with three axes, integers in the range \([0, 240]\) for hue, saturation and brightness

• **HTML** HTML format representation of RGB color given as a single six-digit hexadecimal number

• **RGB** Red-green-blue color, with three axes, one for each of the components, values as integers from 0 to 255

• **wave** Light wavelength, a real number in the range 380 to 780 (nanometres)

All interface models are internally stored as **rgb**.

Finally, there are a small number of models which are parsed to allow data transfer from **xcolor** but which should not be used by end-users. These are

• **cmy** Cyan-magenta-yellow color with three axes, one for each of the components; converted to **cmyk**

• **tHsb** “Tuned” hue-saturation-brightness color with three axes, integer in the range \([0, 360]\) for hue, real values in the range \([0, 1]\) for saturation and brightness; converted to **rgb** using the standard tuning map defined by **xcolor**

• **&spot** Spot color tint with one value; treated as a gray tint as spot color data is not available for extraction

To allow parsing of data from **xcolor**, any leading model up the first : will be discarded; the approach of selecting an internal form for data is **not** used in **3color**.

Additional models may be created to allow mixing of separation colors with each other or with those from other models. See Section 37.9 for more detail of color support for additional models.

When color is selected by model, the **(values)** given are specified as a comma-separated list. The length of the list will therefore be determined by the detail of the model involved.

Color models (and interconversion) are complex, and more details are given in the manual to the **EiTeX 2ε xcolor** package and in the PostScript Language Reference Manual, published by Addison-Wesley.

314
37.3 Color expressions

In addition to allowing specification of color by model and values, \LaTeX{} also supports color expressions. These are created by combining one or more color names, with the amount of each specified as a value in the range 0–100. The value should be given between ! symbols in the expression. Thus for example

\texttt{red!50!green}

is a mixture of 50\% red and 50\% green. A trailing value is interpreted as implicitly followed by \texttt{white}, and so

\texttt{red!25}

specifies 25\% red mixed with 75\% white.

Where the models for the mixed colors are different, the model of the first color is used. Thus

\texttt{red!50!cyan}

will result in a color specification using the \texttt{rgb} model, made up of 50\% red and 50\% of cyan \textit{expressed in rgb}. This may be important as color model interconversion is not exact.

The one exception to the above is where the first model in an expression is \texttt{gray}. In this case, the order of mixing is “swapped” internally, so that for example

\texttt{black!50!red}

has the same result as

\texttt{red!50!black}

(the predefined colors \texttt{black} and \texttt{white} use the \texttt{gray} model).

Where more than two colors are mixed in an expression, evaluation takes place in a stepwise fashion. Thus in

\texttt{cyan!50!magenta!10!yellow}

the sub-expression

\texttt{cyan!50!magenta}

is first evaluated to give an intermediate color specification, before the second step

\texttt{<intermediate>!10!yellow}

where \texttt{<intermediate>} represents this transitory calculated value.

Within a color expression, . may be used to represent the color active for typesetting (the current color). This allows for example

\texttt{.!50}

to mean a mixture of 50\% of current color with white.

(Color expressions supported here are a subset of those provided by the \LaTeX{} 2\epsilon xcolor package. At present, only such features as are clearly useful have been added here.)
37.4 Named colors

Color names are stored in a single namespace, which makes them accessible as part of color expressions. Whilst they are not reserved in a technical sense, the names black, white, red, green, blue, cyan, magenta and yellow have special meaning and should not be redefined. Color names should be made up of letters, numbers and spaces only: other characters are reserved for use in color expressions. In particular, . represents the current color at the start of a color expression.

\color_set:nn \color_set {\langle name\rangle} {\langle color expression\rangle}

Evaluates the \langle color expression\rangle and stores the resulting color specification as the \langle name\rangle.

\color_set:nnn \color_set:nnn {\langle name\rangle} {\langle model(s)\rangle} {\langle value(s)\rangle}

Stores the color specification equivalent to the \langle model(s)\rangle and \langle values\rangle as the \langle name\rangle.

\color_set_eq:nn \color_set_eq:nn {\langle name1\rangle} {\langle name2\rangle}

Copies the color specification in \langle name2\rangle to \langle name1\rangle. The special name . may be used to represent the current color, allowing it to be saved to a name.

\color_if_exist_p:n \color_if_exist:nTF {\langle name\rangle} {\langle true code\rangle} {\langle false code\rangle}

Tests whether \langle name\rangle is currently defined to provide a color specification.

\color_show:n \color_log:n

Displays the color specification stored in the \langle name\rangle on the terminal or log file.

37.5 Selecting colors

General selection of color is safe when split across pages: a stack is used to ensure that the correct color is re-selected on the new page.

These commands set the current color (.): other more specialised functions such as fill and stroke selectors do not adjust this value.

\color_select:n \color_select:nn {\langle color expression\rangle}

Parses the \langle color expression\rangle and then activates the resulting color specification for typeset material.

\color_select:nn \color_select:nnn {\langle model(s)\rangle} {\langle value(s)\rangle}

Activates the color specification equivalent to the \langle model(s)\rangle and \langle value(s)\rangle for typeset material.

\l_color_fixed_model_tl

When this is set to a non-empty value, colors will be converted to the specified model when they are selected. Note that included images and similar are not influenced by this setting.
37.6 Colors for fills and strokes

Colors for drawing operations and so forth are split into strokes and fills (the latter may also be referred to as non-stroke color). The fill color is used for text under normal circumstances. Depending on the backend, stroke color may use a stack, in which case it exhibits the same page breaking behavior as general color. However, dvips/dvisvgm do not support this, and so color will need to be contained within a scope, such as \draw_begin:/\draw_end:.

\color_fill:n \color_stroke:n

Parses the ⟨color expression⟩ and then activates the resulting color specification for filling or stroking.

\color_fill:nn \color_stroke:nn

Activates the color specification equivalent to the ⟨model(s)⟩ and ⟨value(s)⟩ for filling or stroking.

\color_sc

When using dvips, this PostScript variables hold the stroke color.

37.6.1 Coloring math mode material

Coloring math mode material using \color_select:nnn(n) has some restrictions and often leads to spacing issues and/or poor input syntax. Avoiding generating \mathord atoms whilst coloring only those parts of the input which are required needs careful handling. The functionality here covers this important use case.

\color_math:nn \color_math:nnn

Works as for \color_select:n(n) but applies color only to the math mode ⟨content⟩. The function does not generate a group and the ⟨content⟩ therefore retains its math atom states. Sub/superscripts are also properly handled.

\l_color_math_active_tl

This list controls which tokens are considered as math active and should therefore be replaced by their definition during searching for sub/superscripts.

37.7 Multiple color models

When selecting or setting a color with an explicit model, it is possible to give values for more than one model at one time. This is particularly useful where automated conversion between models does not give the desired outcome. To do this, the list of models and list of values are both subdivided using / characters (as for the similar function in xcolor). For example, to save a color with explicit cmyk and rgb values, one could use

\color_set:nnn { foo } { cmyk / rgb }

{ 0.1 , 0.2 , 0.3 , 0.4 / 0.1, 0.2, 0.3 }
The manually-specified conversion will be used in preference to automated calculation whenever the model(s) listed are used: both in expressions and when a fixed model is active.

Similarly, the same syntax can be applied to directly selecting a color.

\color_select:nn \{ cmymk / rgb \}
\{ 0.1 , 0.2 , 0.3 , 0.4 / 0.1 , 0.2 , 0.3 \}

Again, this list is used when a fixed model is active: the first entry is used unless there is a fixed model matching one of the other entries.

37.8 Exporting color specifications

The major use of color expressions is in setting typesetting output, but there are other places in which some form of color information is required. These may need data in a different format or using a different model to the internal representation. Thus a set of functions are available to export colors in different formats.

Valid export targets are

- **backend** Two brace groups: the first containing the model, the second containing space-separated values appropriate for the model; this is the format required by backend functions of expl3
- **comma-sep-cmyk** Comma-separated cyan-magenta-yellow-black values
- **comma-sep-rgb** Comma-separated red-green-blue values suitable for use as a PDF annotation color
- **HTML** Uppercase two-digit hexadecimal values, expressing a red-green-blue color; the digits are not separated
- **space-sep-cmyk** Space-separated cyan-magenta-yellow-black values
- **space-sep-rgb** Space-separated red-green-blue values suitable for use as a PDF annotation color

\color_export:nn \{⟨color expression⟩\} \{⟨format⟩\} \{⟨tl⟩\}

Parses the ⟨color expression⟩ as described earlier, then converts to the ⟨format⟩ specified and assigns the data to the ⟨tl⟩.

\color_export:nnn \{⟨model⟩\} \{⟨value(s)⟩\} \{⟨format⟩\} \{⟨tl⟩\}

Expresses the combination of ⟨model⟩ and ⟨value(s)⟩ in an internal representation, then converts to the ⟨format⟩ specified and assigns the data to the ⟨tl⟩.
37.9 Creating new color models

Additional color models are required to support specialist workflows, for example those involving separations (see https://helpx.adobe.com/indesign/using/spot-process-colors.html for details of the use of separations in print). Color models may be split into families; for the standard device-based color models (DeviceCMYK, DeviceRGB, DeviceGray), these are synonymous. This is not generally the case: see the PDF reference for more details. (Note that l3color uses the shorter names cmyk, etc.)

\color_model_new:nnn \color_model_new:nnn \{⟨model⟩\} \{⟨family⟩\} \{⟨params⟩\}

Creates a new ⟨model⟩ which is derived from the color model ⟨family⟩. The latter should be one of

- DeviceN
- ICCBased
- Separation

(The ⟨family⟩ may be given in mixed case as—in the PDF reference: internally, case of these strings is folded.) Depending on the ⟨family⟩, one or more ⟨params⟩ are mandatory or optional.

For a Separation space, there are three compulsory keys.

- name The name of the Separation, for example the formal name of a spot color ink. Such a ⟨name⟩ may contain spaces, etc., which are not permitted in the ⟨model⟩.

- alternative-model An alternative device colorspace, one of cmyk, rgb, gray or CIELAB. The three parameter-based models work as described above; see below for details of CIELAB colors.

- alternative-values A comma-separated list of values appropriate to the alternative-model. This information is used by the PDF application if the Separation is not available.

CIELAB color separations are created using the alternative-model = CIELAB setting. These colors must also have an illuminant key, one of a, c, e, d50, d55, d65 or d75. The alternative-values in this case are the three parameters L*, a* and b* of the CIELAB model. Full details of this device-independent color approach are given in the documentation to the colorspace package.

CIELAB colors cannot be converted into other device-dependent color spaces, and as such, mixing can only occur if colors set up using the CIELAB model are also given with an alternative parameter-based model. If that is not the case, l3color will fallback to using black as the colorant in any mixing.

For a DeviceN space, there is one compulsory key.

- names The names of the components of the DeviceN space. Each should be either the ⟨name⟩ of a Separation model, a process color name (cyan, etc.) or the special name none.

For an ICCBased space, there is one compulsory key.

- file The name of the file containing the profile.
37.9.1 Color profiles

Color profiles are used to ensure color accuracy by linking to collaboration. Applying a profile can be used to standardise color which is otherwise device-dependence.

\color_profile_apply:nn \color_profile_apply:nn \{profile\} \{model\}

This function applies a \textit{profile} to one of the device \textit{models}. The profile will then apply to all color of the selected \textit{model}. The \textit{profile} should specify an ICC profile file. The \textit{model} has to be one the standard device models: cmyk, gray or rgb.
Chapter 38

The l3pdf package
Core PDF support

38.1 Objects

\pdf_object_new:n \pdf_object_new:n \{\{object\}\}
\pdf_object_new:n \pdf_object_new:n \{\{object\}\}
\N 2022-08-23

Declares \{object\} as a PDF object. The object may be referenced from this point on, and
written later using \pdf_object_write:nn.

\pdf_object_write:nn \pdf_object_write:nn \{\{object\}\} \{\{type\}\} \{\{content\}\}
\pdf_object_write:nn \pdf_object_write:nn \{\{object\}\} \{\{type\}\} \{\{content\}\}
\N 2022-08-23

Writes the \{content\} as content of the \{object\}. Depending on the \{type\} declared for the
object, the format required for the \{data\} will vary

array A space-separated list of values

dict Key–value pairs in the form /\{key\} \{value\}

fstream Two brace groups: \{file name\} and \{file content\}

stream Two brace groups: \{attributes (dictionary)\} and \{stream contents\}

\pdf_object_ref:n \pdf_object_ref:n \{\{object\}\}
\pdf_object_ref:n \pdf_object_ref:n \{\{object\}\}
\N 2021-02-10

Inserts the appropriate information to reference the \{object\} in for example page resource
allocation
\pdf_object_unnamed_write:nn \pdf_object_unnamed_write:nn \{type\} \{content\}
\pdf_object_unnamed_write:ne

New: 2021-02-10

Writers the \{content\} as content of an anonymous object. Depending on the \{type\}, the format required for the \{data\} will vary

array A space-separated list of values

dict Key–value pairs in the form /\{key\} \{value\}

fstream Two brace groups: \{attributes (dictionary)\} and \{file name\}

stream Two brace groups: \{attributes (dictionary)\} and \{stream contents\}

\pdf_object_ref_last: \pdf_object_ref_last:

New: 2021-02-10

Inserts the appropriate information to reference the last \{object\} created. This is particularly useful for anonymous objects.

\pdf_pageobject_ref:n \pdf_pageobject_ref:n \{pageobject\}

New: 2021-02-10

Inserts the appropriate information to reference the \{pageobject\}.

\pdf_object_if_exist_p:n \pdf_object_if_exist:nTF
\pdf_object_if_exist_p:n \pdf_object_if_exist:nTF \{object\}

New: 2020-05-15

Tests whether an object with name \{object\} has been defined.

\section{38.2 Version}

\pdf_version_compare_p:Nn \pdf_version_compare_p:Nn \{comparator\} \{version\}
\pdf_version_compare:NnTF \pdf_version_compare:NnTF \{comparator\} \{version\} \{true code\} \{false code\}

New: 2021-02-10

Compares the version of the PDF being created with the \{version\} string specified, using the \{comparator\}. Either the \{true code\} or \{false code\} will be left in the output stream.

\pdf_version_gset:n \pdf_version_min_gset:n
\pdf_version_gset:n \pdf_version_min_gset:n \{version\}

New: 2021-02-10

Sets the \{version\} of the PDF being created. The min version will not alter the output version unless it is currently lower than the \{version\} requested.

This function may only be used up to the point where the PDF file is initialised. With dvips it sets \pdf_version_major: and \pdf_version_minor: and allows to compare the values with \pdf_version_compare:Nn, but the PDF version itself still has to be set with the command line option -dCompatibilityLevel of ps2pdf.

\pdf_version: \pdf_version:
\pdf_version_major: \pdf_version_major:
\pdf_version_minor: \pdf_version_minor:

New: 2021-02-10

Expands to the currently-active PDF version.
38.3 Page (media) size

\pdf_pagesize_gset:nn \pdf_pagesize_gset:nn \{\langle width\rangle\} \{\langle height\rangle\}

Sets the page size (mediabox) of the PDF being created to the \langle width\rangle and \langle height\rangle, both of which are \langle dimexpr\rangle.

38.4 Compression

\pdf_uncompress: \pdf_uncompress:

Disables any compression of the PDF, where possible.

This function may only be used up to the point where the PDF file is initialised.

38.5 Destinations

Destinations are the places a link jumped too. Unlike the name may suggest they don’t described an exact location in the PDF. Instead a destination contains a reference to a page along with an instruction how to display this page. The normally used “XYZ top left zoom” for example instructs the viewer to show the page with the given zoom and the top left corner at the top left coordinates—which then gives the impression that there is an anchor at this position.

If an instruction takes a coordinate, it is calculated by the following commands relative to the location the command is issued. So to get a specific coordinate one has to move the command to the right place.
This creates a destination. \{(type or integer)\} can be one of fit, fith, fitv, fitb, fitbh, fitbv, fitr, xyz or an integer representing a scale factor in percent. fitr here gives only a lightweight version of /FitR: The backend code defines fitr so that it will with pdflatex and LuaLaTeX use the coordinates of the surrounding box, with dvips and dvipdfmx it falls back to fit. For full control use \pdf_destination:nnnn.

The keywords match to the PDF names as described in the following tabular.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>PDF</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit</td>
<td>/Fit</td>
<td>Fits the page to the window</td>
</tr>
<tr>
<td>fith</td>
<td>/FitH top</td>
<td>Fits the width of the page to the window</td>
</tr>
<tr>
<td>fitv</td>
<td>/FitV left</td>
<td>Fits the height of the page to the window</td>
</tr>
<tr>
<td>fitb</td>
<td>/FitB</td>
<td>Fits the page bounding box to the window</td>
</tr>
<tr>
<td>fitbh</td>
<td>/FitBH top</td>
<td>Fits the width of the page bounding box to the window</td>
</tr>
<tr>
<td>fitbv</td>
<td>/FitBV left</td>
<td>Fits the height of the page bounding box to the window</td>
</tr>
<tr>
<td>fitr</td>
<td>/FitR left bottom right top</td>
<td>Fits the rectangle specified by the four coordinates to the window (see above for the restrictions)</td>
</tr>
<tr>
<td>xyz</td>
<td>/XYZ left top null</td>
<td>Sets a coordinate but doesn’t change the zoom.</td>
</tr>
<tr>
<td>{(integer)}</td>
<td>/XYZ left top zoom</td>
<td>Sets a coordinate and a zoom meaning {(integer)}%.</td>
</tr>
</tbody>
</table>

This creates a destination with /FitR type with the given dimensions relative to the current location. The destination is in a box of size zero, but it doesn’t switch to horizontal mode.
Part VII
Additions and removals
Chapter 39

The \texttt{l3candidates} package
Experimental additions to \texttt{l3kernel}

39.1 Important notice

This module provides a space in which functions can be added to \texttt{l3kernel (expl3)} while still being experimental.

As such, the functions here may not remain in their current form, or indeed at all, in \texttt{l3kernel} in the future.

In contrast to the material in \texttt{l3experimental}, the functions here are all \textit{small} additions to the kernel. We encourage programmers to test them out and report back on the \LaTeX-L mailing list.

Thus, if you intend to use any of these functions from the candidate module in a public package offered to others for productive use (e.g., being placed on CTAN) please consider the following points carefully:

- Be prepared that your public packages might require updating when such functions are being finalized.

- Consider informing us that you use a particular function in your public package, e.g., by discussing this on the \LaTeX-L mailing list. This way it becomes easier to coordinate any updates necessary without issues for the users of your package.

- Discussing and understanding use cases for a particular addition or concept also helps to ensure that we provide the right interfaces in the final version so please give us feedback if you consider a certain candidate function useful (or not).

We only add functions in this space if we consider them being serious candidates for a final inclusion into the kernel. However, real use sometimes leads to better ideas, so functions from this module are \textbf{not necessarily stable} and we may have to adjust them!
39.2 Additions to l3seq

\seq_set_filter:NNn \seq_set_filter:NNn \seq_gset_filter:NNn (sequence_1) (sequence_2) \{\texttt{inline boolexpr}\}

Evaluates the \texttt{inline boolexpr} for every \texttt{item} stored within the \texttt{sequence_2}. The \texttt{inline boolexpr} receives the \texttt{item} as \#1. The sequence of all \texttt{items} for which the \texttt{inline boolexpr} evaluated to \texttt{true} is assigned to \texttt{sequence_1}.

\textbf{\texttt{\TeX}hackers note:} Contrarily to other mapping functions, \texttt{\seq_map_break:} cannot be used in this function, and would lead to low-level \texttt{\TeX} errors.

39.3 Additions to l3tl

\lst{tl_build_get:NN}
\lst{tl_build_get:NN} \texttt{\{tl var_1\} \{tl var_2\}}

Stores the contents of the \texttt{tl var_1} in the \texttt{tl}. The \texttt{tl var_1} must have been set up with \texttt{\tl_build_begin:N} or \texttt{\tl_build_gbegin:N}. The \texttt{tl var_2} is a “normal” token list variable, assigned locally using \texttt{\tl_set:Nn}.
Part VIII
Implementation
Chapter 40

\l3bootstrap implementation

\begin{verbatim}
\langle*package\rangle
\langle@@=kernel\rangle
\end{verbatim}

40.1 The \texttt{pdfstrcmp} primitive in X\TeX

Only \texttt{pdfTeX} has a primitive called \texttt{pdfstrcmp}. The \texttt{XeTeX} version is just \texttt{strcmp}, so there is some shuffling to do. As this is still a real primitive, using the \texttt{pdfTeX} name is “safe”.

\begin{verbatim}
\begingroup\expandafter\expandafter\expandafter\endgroup
\expandafter\ifx\csname pdfstrcmp\endcsname\relax
\let\pdfstrcmp\strcmp
\fi
\end{verbatim}

40.2 Loading support Lua code

When Lua\TeX{} is used there are various pieces of Lua code which need to be loaded. The code itself is defined in \texttt{l3luatex} and is extracted into a separate file. Thus here the task is to load the Lua code both now and (if required) at the start of each job.

\begin{verbatim}
\begingroup\expandafter\expandafter\expandafter\endgroup
\expandafter\ifx\csname directlua\endcsname\relax
\else
\ifnum\luatexversion<110 %
\begingroup\expandafter\expandafter\expandafter\endgroup
\expandafter\ifx\csname newcatcodetable\endcsname\relax
\input{ltluatex}%
\fi
\endgroup\expandafter\expandafter\expandafter\endgroup
\expandafter\ifx\csname newluabytecode\endcsname\relax
\else
\directlua{require("expl3")}%
\fi
\fi
\end{verbatim}

For Lua\TeX{} we make sure the basic support is loaded: this is only necessary in plain.

\begin{verbatim}
\begingroup\expandafter\expandafter\expandafter\endgroup
\expandafter\ifx\csname directlua\endcsname\relax
\else
\ifnum\luatexversion<110 %
\begingroup\expandafter\expandafter\expandafter\endgroup
\expandafter\ifx\csname newcatcodetable\endcsname\relax
\input{ltluatex}%
\fi
\endgroup\expandafter\expandafter\expandafter\endgroup
\expandafter\ifx\csname newluabytecode\endcsname\relax
\else
\directlua{require("expl3")}%
\fi
\fi
\end{verbatim}
As the user might be making a custom format, no assumption is made about matching package mode with only loading the Lua code once. Instead, a query to Lua reveals what mode is in operation.

\ifnum 0%
\directlua{
 if status.ini_version then
 tex.write("1")
 end
}
\everyjob\expandafter{\the\expandafter\everyjob
 \csname\detokenize{lua_now:n}\endcsname{require("expl3")}}%
\fi
\fi
\fi

40.3 Engine requirements

The code currently requires \texttt{\textasciitilde\textsc{t}e\textsc{x}}, the set of “pdf\textsc{t}e\textsc{x} extensions” \textit{including} \texttt{\textbackslash expanded}, and for Unicode engines the ability to generate arbitrary character tokens by expansion. That is covered by all supported engines since \textsc{t}e\textsc{x} Live 2019, which we therefore use as a baseline for engine and \textsc{b}e\textsc{t}e\textsc{x} format support. For Lua\textsc{t}e\textsc{x}, we require at least Lua 5.3 and the \texttt{token.set_lua} function. This is available at least since Lua\textsc{t}e\textsc{x} 1.10, which again is the one in \textsc{t}e\textsc{x} Live 2019. (u)p\textsc{t}e\textsc{x} only gained \texttt{\textbackslash ifincsname} for \textsc{t}e\textsc{x} Live 2020, but at present that primitive is unused in expl3 so for the present it’s not tested. If and when that changes, we will need to revisit the code here.

\begingroup
 \def\next{\endgroup}%
 \def\ShortText{Required primitives not found}%
 \def\LongText{\%}
 \%}
 \LineBreak The L3 programming layer requires the e-\textsc{t}e\textsc{x} primitives and the \texttt{\textbackslash pdf\textsc{t}e\textsc{x} utilities’} as described in the README file.
 \LineBreak These are available in the engines:\LineBreak
 \ LineBreak - pdf\textsc{t}e\textsc{x} v1.40.20\LineBreak
 \ LineBreak - Xe\textsc{t}e\textsc{x} v0.999991\LineBreak
 \ LineBreak - Lua\textsc{t}e\textsc{x} v1.10\LineBreak
 \ LineBreak - e-(u)p\textsc{t}e\textsc{x} v3.8.2\LineBreak
 \ LineBreak - Prote (2021)\LineBreak
 \ or later.\LineBreak
 \LineBreak
 \%}
 \\ifnum0%
 \\expandafter\ifx\csname luatexversion\endcsname\relax
 \\expandafter\ifx\csname expanded\endcsname\relax\else 1\fi
 \else
 \ifnum\luatexversion<110 \else 1\fi
 \fi
 \\else
 \\newlinechar`\^^J \%
 \endgroup

330
40.4 The \texttt{\LaTeX3} code environment

The code environment is now set up.

\ExplSyntaxOff

Before changing any category codes, in package mode we need to save the situation before loading. Note the set up here means that once applied \ExplSyntaxOff becomes a “do nothing” command until \ExplSyntaxOn is used.

\protected\edef\ExplSyntaxOff
{%
 \protected\def\noexpand\ExplSyntaxOff{\%}
 \catcode\relax 9 = \the\catcode\relax
 \catcode\relax 32 = \the\catcode\relax
 \catcode\relax 34 = \the\catcode\relax
 \catcode\relax 58 = \the\catcode\relax
 \catcode\relax 94 = \the\catcode\relax
 \catcode\relax 95 = \the\catcode\relax
 \catcode\relax 124 = \the\catcode\relax
 \catcode\relax 126 = \the\catcode\relax
 \endlinechar = \the\endlinechar
 \chardef\csname\detokenize{l__kernel_expl_bool}\endcsname = 0\relax
}%

(End of definition for \ExplSyntaxOff. This function is documented on page 9.)

The code environment is now set up.

\catcode\relax 9 = 9\relax
\catcode\relax 32 = 9\relax
\catcode\relax 34 = 12\relax
\catcode\relax 58 = 11\relax
\catcode\relax 94 = 7\relax
\catcode\relax 95 = 11\relax
\l__kernel_expl_bool The status for code syntax: this is on at present.
(End of definition for \l__kernel_expl_bool.)

\ExplSyntaxOn The idea here is that multiple \ExplSyntaxOn calls are not going to mess up category codes, and that multiple calls to \ExplSyntaxOff are also not wasting time. Applying \ExplSyntaxOn alters the definition of \ExplSyntaxOff and so in package mode this function should not be used until after the end of the loading process!

\protected \def \ExplSyntaxOn
{\bool_if:NF \l__kernel_expl_bool
 { \cs_set_protected:Npe \ExplSyntaxOff
{ \char_set_catcode:nn { 9 } { \char_value_catcode:n { 9 } } }
{ \char_set_catcode:nn { 32 } { \char_value_catcode:n { 32 } } }
{ \char_set_catcode:nn { 34 } { \char_value_catcode:n { 34 } } }
{ \char_set_catcode:nn { 58 } { \char_value_catcode:n { 58 } } }
{ \char_set_catcode:nn { 94 } { \char_value_catcode:n { 94 } } }
{ \char_set_catcode:nn { 95 } { \char_value_catcode:n { 95 } } }
{ \char_set_catcode:nn { 124 } { \char_value_catcode:n { 124 } } }
{ \char_set_catcode:nn { 126 } { \char_value_catcode:n { 126 } } }
\tex_endlinechar:D = \tex_the:D \tex_endlinechar:D \scan_stop:
{ \bool_set_false:N \l__kernel_expl_bool
{ \cs_set_protected:Npn \ExplSyntaxOff { } }
}
{ \char_set_catcode_ignore:n { 9 } % tab
{ \char_set_catcode_ignore:n { 32 } % space
{ \char_set_catcode_other:n { 34 } % double quote
{ \char_set_catcode_letter:n { 58 } % colon
{ \char_set_catcode_math_superscript:n { 94 } % circumflex
{ \char_set_catcode_letter:n { 95 } % underscore
{ \char_set_catcode_other:n { 124 } % pipe
{ \char_set_catcode_space:n { 126 } % tilde
\tex_endlinechar:D = 32 \scan_stop:
{ \bool_set_true:N \l__kernel_expl_bool
}
}
(End of definition for \ExplSyntaxOn. This function is documented on page 9.)
{/package}
Chapter 41

\texttt{l3names} implementation

The prefix here is \texttt{kernel}. A few places need to be left as is; this is obtained as \texttt{\textbackslash @kernel}.

The code here simply renames all of the primitives to new, internal, names. The \texttt{\let} primitive is renamed by hand first as it is essential for the entire process to follow. This also uses \texttt{\global}, as that way we avoid leaving an unneeded csname in the hash table.

Everything is inside a (rather long) group, which keeps \texttt{__kernel_primitive:NN} trapped.

\begin{verbatim}
__kernel_primitive:NN \begin{group}
A temporary function to actually do the renaming.
\end{group}
\end{verbatim}

To allow extracting “just the names”, a bit of DocStrip fiddling.

In the current incarnation of this package, all \TeX{} primitives are given a new name of the form \texttt{\texttt{\textbackslash tex_olddname}:D}. But first three special cases which have symbolic original names. These are given modified new names, so that they may be entered without catcode tricks.

Now all the other primitives.

333
__kernel_primitive:NN \ifcat \tex_ifcat:D
__kernel_primitive:NN \ifdim \tex_ifdim:D
__kernel_primitive:NN \ifeof \tex_ifeof:D
__kernel_primitive:NN \iffalse \tex_iffalse:D
__kernel_primitive:NN \ifhbox \tex_ifhbox:D
__kernel_primitive:NN \ifhmode \tex_ifhmode:D
__kernel_primitive:NN \ifinner \tex_ifinner:D
__kernel_primitive:NN \ifmmode \tex_ifmmode:D
__kernel_primitive:NN \ifnum \tex_ifnum:D
__kernel_primitive:NN \ifodd \tex_ifodd:D
__kernel_primitive:NN \iftrue \tex_iftrue:D
__kernel_primitive:NN \ifvbox \tex_ifvbox:D
__kernel_primitive:NN \ifvmode \tex_ifvmode:D
__kernel_primitive:NN \ifvoid \tex_ifvoid:D
__kernel_primitive:NN \ifx \tex_ifx:D
__kernel_primitive:NN \ignorespaces \tex_ignorespaces:D
__kernel_primitive:NN \immediate \tex_immediate:D
__kernel_primitive:NN \indent \tex_indent:D
__kernel_primitive:NN \input \tex_input:D
__kernel_primitive:NN \inputlineno \tex_inputlineno:D
__kernel_primitive:NN \insert \tex_insert:D
__kernel_primitive:NN \insertpenalties \tex_insertpenalties:D
__kernel_primitive:NN \interlinepenalty \tex_interlinepenalty:D
__kernel_primitive:NN \jobname \tex_jobname:D
__kernel_primitive:NN \kern \tex_kern:D
__kernel_primitive:NN \language \tex_language:D
__kernel_primitive:NN \lastbox \tex_lastbox:D
__kernel_primitive:NN \lastkern \tex_lastkern:D
__kernel_primitive:NN \lastpenalty \tex_lastpenalty:D
__kernel_primitive:NN \lastskip \tex_lastskip:D
__kernel_primitive:NN \lccode \tex_lccode:D
__kernel_primitive:NN \leaders \tex_leaders:D
__kernel_primitive:NN \left \tex_left:D
__kernel_primitive:NN \lefthyphenmin \tex_lefthyphenmin:D
__kernel_primitive:NN \leftskip \tex_leftskip:D
__kernel_primitive:NN \leqno \tex_leqno:D
__kernel_primitive:NN \let \tex_let:D
__kernel_primitive:NN \limits \tex_limits:D
__kernel_primitive:NN \linepenalty \tex_linepenalty:D
__kernel_primitive:NN \lineskip \tex_lineskip:D
__kernel_primitive:NN \lineskiplimit \tex_lineskiplimit:D
__kernel_primitive:NN \long \tex_long:D
__kernel_primitive:NN \looseness \tex_looseness:D
__kernel_primitive:NN \lower \tex_lower:D
__kernel_primitive:NN \lowercase \tex_lowercase:D
__kernel_primitive:NN \mag \tex_mag:D
__kernel_primitive:NN \mark \tex_mark:D
__kernel_primitive:NN \mathaccent \tex_mathaccent:D
__kernel_primitive:NN \mathbin \tex_mathbin:D
__kernel_primitive:NN \mathchar \tex_mathchar:D
__kernel_primitive:NN \mathchardef \tex_mathchardef:D
__kernel_primitive:NN \mathchoice \tex_mathchoice:D
__kernel_primitive:NN \mathchoice \tex_mathchoice:D
__kernel_primitive:NN \mathclose \tex_mathclose:D
__kernel_primitive:NN \mathcode \tex_mathcode:D
Primitives introduced by \TeX.

___kernel_primitive:NN \beginL \tex_beginL:D
___kernel_primitive:NN \beginR \tex_beginR:D
___kernel_primitive:NN \botmarks \tex_botmarks:D
___kernel_primitive:NN \clubpenalties \tex_clubpenalties:D
___kernel_primitive:NN \currentgrouplevel \tex_currentgrouplevel:D
___kernel_primitive:NN \wd \tex_wd:D
___kernel_primitive:NN \widowpenalty \tex_widowpenalty:D
___kernel_primitive:NN \write \tex_write:D
___kernel_primitive:NN \xdef \tex_xdef:D
___kernel_primitive:NN \xleaders \tex_xleaders:D
___kernel_primitive:NN \xspace \tex_xspace:D
___kernel_primitive:NN \year \tex_year:D
Primitives introduced by \e-\TeX.

___kernel_primitive:NN \beginL \tex_beginL:D
___kernel_primitive:NN \beginR \tex_beginR:D
___kernel_primitive:NN \botmarks \tex_botmarks:D
___kernel_primitive:NN \clubpenalties \tex_clubpenalties:D
___kernel_primitive:NN \currentgrouplevel \tex_currentgrouplevel:D

339
Post-\varepsilon-\TeX primitives do not always end up with the same name in all engines, if indeed they are available cross-engine anyway. We therefore take the approach of preferring the shortest name that makes sense. First, we deal with the primitives introduced by pdf\TeX which directly relate to PDF output: these are copied with the names unchanged.
These are not related to PDF output and either already appear in other engines without the \pdf prefix, or might reasonably do so at some future stage. We therefore drop the leading pdf here.
The version primitives are not related to PDF mode but are \texttt{pdf\TeX}-specific, so again are carried forward unchanged.

These ones appear in \texttt{pdf\TeX} but don't have \texttt{pdf} in the name at all: no decisions to make.
Post pdf\TeX primitive availability gets more complex. Both X\TeX and Lua\TeX have varying names for some primitives from pdf\TeX. Particularly for Lua\TeX tracking all of that would be hard. Instead, we now check that we only save primitives if they actually exist.

Some pdf\TeX primitives are handled here because they got dropped in Lua\TeX but the corresponding internal names are emulated later. The Lua code is already loaded at this point, so we shouldn’t overwrite them.

X\TeX-specific primitives. Note that X\TeX’s \texttt{\strcmp} is handled earlier and is “rolled up” into \texttt{pdfstrcmp}. A few cross-compatibility names which lack the \texttt{pdf} of the original are handled later.
Primitives from pdfTeX that XeLaTeX renames: also helps with LuaLaTeX.

\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXfirstfontchar \texttt{\textbackslash \textbackslash tex_XeTeXfirstfontchar:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXfonttype \texttt{\textbackslash \textbackslash tex_XeTeXfonttype:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXgenerateactualtext \texttt{\textbackslash \textbackslash tex_XeTeXgenerateactualtext:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXglyph \texttt{\textbackslash \textbackslash tex_XeTeXglyph:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXglyphbounds \texttt{\textbackslash \textbackslash tex_XeTeXglyphbounds:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXglyphindex \texttt{\textbackslash \textbackslash tex_XeTeXglyphindex:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXglyphname \texttt{\textbackslash \textbackslash tex_XeTeXglyphname:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXinputencoding \texttt{\textbackslash \textbackslash tex_XeTeXinputencoding:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXinputnormalization \texttt{\textbackslash \textbackslash tex_XeTeXinputnormalization:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXinterchartokenstate \texttt{\textbackslash \textbackslash tex_XeTeXinterchartokenstate:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXinterchartoks \texttt{\textbackslash \textbackslash tex_XeTeXinterchartoks:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXisdefaultselector \texttt{\textbackslash \textbackslash tex_XeTeXisdefaultselector:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXisexclusivefeature \texttt{\textbackslash \textbackslash tex_XeTeXisexclusivefeature:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXlastfontchar \texttt{\textbackslash \textbackslash tex_XeTeXlastfontchar:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXlinebreakskip \texttt{\textbackslash \textbackslash tex_XeTeXlinebreakskip:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXlinebreaklocale \texttt{\textbackslash \textbackslash tex_XeTeXlinebreaklocale:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXlinebreakpenalty \texttt{\textbackslash \textbackslash tex_XeTeXlinebreakpenalty:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXOTcountfeatures \texttt{\textbackslash \textbackslash tex_XeTeXOTcountfeatures:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXOTcountlanguages \texttt{\textbackslash \textbackslash tex_XeTeXOTcountlanguages:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXOTcountscripts \texttt{\textbackslash \textbackslash tex_XeTeXOTcountscripts:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXOTfeaturetag \texttt{\textbackslash \textbackslash tex_XeTeXOTfeaturetag:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXOTlanguagetag \texttt{\textbackslash \textbackslash tex_XeTeXOTlanguagetag:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXOTscripttag \texttt{\textbackslash \textbackslash tex_XeTeXOTscripttag:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXpdffile \texttt{\textbackslash \textbackslash tex_XeTeXpdffile:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXpdffile \texttt{\textbackslash \textbackslash tex_XeTeXpdffile:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXpdffilecount \texttt{\textbackslash \textbackslash tex_XeTeXpdffilecount:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXpicfile \texttt{\textbackslash \textbackslash tex_XeTeXpicfile:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXrevision \texttt{\textbackslash \textbackslash tex_XeTeXrevision:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXselectorname \texttt{\textbackslash \textbackslash tex_XeTeXselectorname:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXupwardsmode \texttt{\textbackslash \textbackslash tex_XeTeXupwardsmode:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXxeglyphfonts \texttt{\textbackslash \textbackslash tex_XeTeXxeglyphfonts:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXxeglyphmetrics \texttt{\textbackslash \textbackslash tex_XeTeXxeglyphmetrics:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXxversion \texttt{\textbackslash \textbackslash tex_XeTeXxversion:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXxversiondefault \texttt{\textbackslash \textbackslash tex_XeTeXxversiondefault:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXxversionmax \texttt{\textbackslash \textbackslash tex_XeTeXxversionmax:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXxversionmin \texttt{\textbackslash \textbackslash tex_XeTeXxversionmin:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXselectorcode \texttt{\textbackslash \textbackslash tex_XeTeXselectorcode:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXinterwordsapiingshaping \texttt{\textbackslash \textbackslash tex_XeTeXinterwordsapiingshaping:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXhyphenablelength \texttt{\textbackslash \textbackslash tex_XeTeXhyphenablelength:D}}
\texttt{\textbackslash kernel_primitive:NN \textbackslash XeTeXhyphenablelength \texttt{\textbackslash \textbackslash tex_XeTeXhyphenablelength:D}}
Primitives from LuaTeX, some of which have been ported back to \TeX.

% __kernel_primitive:NN \compoundhyphenpenalty \tex_compoundhyphenpenalty:D
% % \tex_compoundhyphenpenalty:D % not documented in manual
% __kernel_primitive:NN \crampeddisplaystyle \tex_crampeddisplaystyle:D
% __kernel_primitive:NN \crampedscriptscriptstyle \tex_crampedscriptscriptstyle:D
% __kernel_primitive:NN \crampedscriptstyle \tex_crampedscriptstyle:D
% __kernel_primitive:NN \crampedtextstyle \tex_crampedtextstyle:D
% __kernel_primitive:NN \compoundhyphenpenalty \tex_compoundhyphenpenalty:D
% __kernel_primitive:NN \crampeddisplaystyle \tex_crampeddisplaystyle:D
% __kernel_primitive:NN \crampedscriptscriptstyle \tex_crampedscriptscriptstyle:D
% __kernel_primitive:NN \crampedscriptstyle \tex_crampedscriptstyle:D
% __kernel_primitive:NN \crampedtextstyle \tex_crampedtextstyle:D
% __kernel_primitive:NN \discretionaryligaturemode \tex_discretionaryligaturemode:D
% __kernel_primitive:NN \directlua \tex_directlua:D
% __kernel_primitive:NN \dvifileextension \tex_dvifileextension:D
% __kernel_primitive:NN \dvifeedback \tex_dvifeedback:D
% __kernel_primitive:NN \dvifile \tex_dvifile:D
% __kernel_primitive:NN \dvivariable \tex_dvivariable:D
% __kernel_primitive:NN \eTeXglueshrinkorder \tex_eTeXglueshrinkorder:D
% __kernel_primitive:NN \eTeXgluestretchorder \tex_eTeXgluestretchorder:D
% __kernel_primitive:NN \endlocalcontrol \tex_endlocalcontrol:D
% __kernel_primitive:NN \etoksapp \tex_etoksapp:D
% __kernel_primitive:NN \etokspre \tex_etokspre:D
% __kernel_primitive:NN \exceptionpenalty \tex_exceptionpenalty:D
% __kernel_primitive:NN \exhyphenchar \tex_exhyphenchar:D
% __kernel_primitive:NN \expanded \tex_expanded:D
% __kernel_primitive:NN \expanded \tex_expanded:D
% __kernel_primitive:NN \fixupboxsmode \tex_fixupboxsmode:D
% __kernel_primitive:NN \fontid \tex_fontid:D
% __kernel_primitive:NN \formatname \tex_formatname:D

346
Primitives from pdfTeX that LuaTeX renames.

__kernel_primitive:NN \adjustspacing \tex_adjustspacing:D
__kernel_primitive:NN \adjustwidth \tex_adjustwidth:D
__kernel_primitive:NN \᭺ \texPERTY:D
__kernel_primitive:NN \rtquote \tex_quote:D
__kernel_primitive:NN \textdir \tex_textdir:D
__kernel_primitive:NN \textdirection \tex_textdirection:D
__kernel_primitive:NN \toksapp \tex_toksapp:D
__kernel_primitive:NN \tokspre \tex_tokspre:D
__kernel_primitive:NN \tpack \tex_tpack:D
__kernel_primitive:NN \variablefam \tex_variablefam:D
__kernel_primitive:NN \vpack \tex_vpack:D
__kernel_primitive:NN \wordboundary \tex_wordboundary:D
__kernel_primitive:NN \xtoksapp \tex_xtoksapp:D
__kernel_primitive:NN \xtokspre \tex_xtokspre:D

__kernel_primitive:NN \adjustspacing \tex_adjustspacing:D
__kernel_primitive:NN \copyfont \tex_copyfont:D
__kernel_primitive:NN \draftmode \tex_draftmode:D
The set of Unicode math primitives were introduced by \texttt{Xe\LaTeX} and \texttt{Lua\LaTeX} in a somewhat complex fashion: a few first as \texttt{Xe\TeX...} which were then renamed with \texttt{Lua\TeX} having a lot more. These names now all start \texttt{\U...} and mainly \texttt{\Umath...}.
Primitives from up\TeX.

\begin{verbatim}
__kernel_primitive:NN \currentcjktoken \tex_currentcjktoken:D
__kernel_primitive:NN \disablecjktoken \tex_disablecjktoken:D
__kernel_primitive:NN \enablecjktoken \tex_enablecjktoken:D
__kernel_primitive:NN \forcecjktoken \tex_forcecjktoken:D
__kernel_primitive:NN \kchar \tex_kchar:D
__kernel_primitive:NN \kchardef \tex_kchardef:D
__kernel_primitive:NN \kuten \tex_kuten:D
__kernel_primitive:NN \uptexrevision \tex_uptexrevision:D
__kernel_primitive:NN \uptexversion \tex_uptexversion:D
__kernel_primitive:NN \odelcode \tex_odelcode:D
__kernel_primitive:NN \odelimiter \tex_odelimiter:D
__kernel_primitive:NN \omathaccent \tex_omathaccent:D
__kernel_primitive:NN \omathchar \tex_omathchar:D
__kernel_primitive:NN \omathchardef \tex_omathchardef:D
__kernel_primitive:NN \omathcode \tex_omathcode:D
__kernel_primitive:NN \oradical \tex_oradical:D
\\end{verbatim}

Omega primitives provided by \p\TeX{} (listed separately mainly to allow understanding of their source).

\begin{verbatim}
__kernel_primitive:NN \odelcode \tex_odelcode:D
__kernel_primitive:NN \odelimiter \tex_odelimiter:D
__kernel_primitive:NN \omathaccent \tex_omathaccent:D
__kernel_primitive:NN \omathchar \tex_omathchar:D
__kernel_primitive:NN \omathchardef \tex_omathchardef:D
__kernel_primitive:NN \omathcode \tex_omathcode:D
__kernel_primitive:NN \oradical \tex_oradical:D
\\end{verbatim}

Newer cross-engine primitives.

\begin{verbatim}
__kernel_primitive:NN \partokencontext \tex_partokencontext:D
__kernel_primitive:NN \partokenname \tex_partokenname:D
__kernel_primitive:NN \showstream \tex_showstream:D
__kernel_primitive:NN \tracingstacklevels \tex_tracingstacklevels:D
\\end{verbatim}

End of the “just the names” part of the source.

\begin{verbatim}
\tex_endgroup:D
\end{verbatim}

\LaTeX{} moves a few primitives, so these are sorted out. In newer versions of \LaTeX{}, expl3 is loaded rather early, so only some primitives are already renamed, so we need two tests here. At the beginning of the \LaTeX{} format, the primitives \texttt{\end} and \texttt{\input} are renamed, and only later on the other ones.

\begin{verbatim}
\tex_ifdefined:D \@@end
\tex_let:D \tex_end:D \@@end
\tex_let:D \tex_input:D \@@input
\tex_fi:D
\end{verbatim}

If \texttt{\@@@hyph} is defined, we are loading expl3 in a pre-2020/10/01 release of \LaTeX{}2e, so a few other primitives have to be tested as well.

\begin{verbatim}
\tex_ifdefined:D \@@hyph
\tex_let:D \tex_everydisplay:D \frozen@everydisplay
\tex_let:D \tex_everymath:D \frozen@everymath
\tex_let:D \tex_hyphen:D \@@hyph
\tex_let:D \tex_italiccorrection:D \@@italiccorr
\tex_let:D \tex_underline:D \@@underline
\end{verbatim}

354
The `\shipout` primitive is particularly tricky as a number of packages want to hook in here. First, we see if a sufficiently-new kernel has saved a copy: if it has, just use that. Otherwise, we need to check each of the possible packages/classes that might move it: here, we are looking for those which do not delay action to the `\AtBeginDocument` hook. (We cannot use `\primitive` as that doesn’t allow us to make a direct copy of the primitive itself.) As we know that `\LaTeX2ε` is in use, we use it’s `\@tfor` loop here.

```latex
\tex_ifdefined:D \@@shipout
\tex_let:D \tex_shipout:D \@@shipout
\tex_fi:D
\tex_begingroup:D
\tex_edef:D \l_tmpa_tl { \tex_string:D \shipout }
\tex_edef:D \l_tmpb_tl { \tex_meaning:D \shipout }
\tex_ifx:D \l_tmpa_tl \l_tmpb_tl
\tex_else:D
\tex_expandafter:D \@tfor \tex_expandafter:D \@tempa \tex_string:D :=
\CROP@shipout
\dup@shipout
\GPTorg@shipout
\LL@shipout
\mem@oldshipout
\opem@shipout
\pgfpages@originalshipout
\pr@shipout
\Shipout
\verso@orig@shipout
{ \do
\tex_edef:D \l_tmpb_tl
{ \tex_expandafter:D \tex_meaning:D \@tempa }
\tex_ifx:D \l_tmpa_tl \l_tmpb_tl
\tex_global:D \tex_expandafter:D \tex_let:D \tex_string:D \@tempa
\tex_expandafter:D \tex_shipout:D \@tempa
\tex_fi:D
\tex_fi:D
\tex_fi:D
}```

Some tidying up is needed for `\(pdf)tracingfonts`. Newer `LuaTeX` has this simply as `\tracingfonts`, but that is overwritten by the `\LaTeX2ε` kernel. So any spurious definition has to be removed, then the real version saved either from the `pdfTeX` name or from `LuaTeX`. In the latter case, we leave `\@@tracingfonts` available: this might be useful and almost all `\LaTeX2ε` users will have `expl3` loaded by `fontspec`. (We follow the usual kernel convention that `@` is used for saved primitives.)

```latex
\tex_let:D \tex_tracingfonts:D \tex_undefined:D
\tex_ifdefined:D \pdftracingfonts
\tex_let:D \tex_tracingfonts:D \pdftracingfonts
\tex_else:D\tex_ifdefined:D \pdfdirectlua:D
\tex_directlua:D \{ \tex.enableprimitives("@", \{"tracingfonts"\}) \}
\tex_let:D \tex_tracingfonts:D \@@tracingfonts
\tex_fi:D
\tex_fi:D
\tex_fi:D
\tex_fi:D
\tex_fi:D
355```
Only pdfTeX and LuaTeX define `\pdfmapfile` and `\pdfmapline`: Tidy up the fact that some format-building processes leave a couple of questionable decisions about that!

1275 \text_ifnum:D 0
1276 \text_ifdefined:D \text_pdftexversion:D 1 \text_fi:D
1277 \text_ifdefined:D \text_luatexversion:D 1 \text_fi:D
1278 = 0 \%
1279 \text_let:D \text_pdfmapfile:D \text_undefined:D
1280 \text_let:D \text_pdfmapline:D \text_undefined:D
1281 \text_fi:D

A few packages do unfortunate things to date-related primitives.

1308 \text_ifdefined:D \orieveryjob
1309 \text_let:D \text_everyjob:D \orieveryjob
1310 \text_fi:D
1311 \text_ifdefined:D \oripdfoutput
1312 \text_let:D \text_pdfoutput:D \oripdfoutput
1313 \text_fi:D

For ConTeXt, two tests are needed. Both Mark II and Mark IV move several primitives: these are all covered by the first test, again using `\end` as a marker. For Mark IV, a few more primitives are moved: they are implemented using some Lua code in the current ConTeXt.

1314 \text_ifdefined:D \normalend
1315 \text_let:D \text_end:D \normalend
1316 \text_let:D \text_everyjob:D \normaleveryjob
1317 \text_let:D \text_input:D \normalinput

\textbegingroup:D
\textedef:D \l_tmpa_tl { \textmeaning:D \texttime:D }
\textedef:D \l_tmpb_tl { \textstring:D \time }
\textifx:D \l_tmpa_tl \l_tmpb_tl
\textelse:D
\textglobal:D \textlet:D \texttime:D \textundefined:D
\textfi:D
\textedef:D \l_tmpa_tl { \textmeaning:D \textday:D }
\textedef:D \l_tmpb_tl { \textstring:D \day }
\textifx:D \l_tmpa_tl \l_tmpb_tl
\textelse:D
\textglobal:D \textlet:D \textday:D \textundefined:D
\textfi:D
\textedef:D \l_tmpa_tl { \textmeaning:D \textmonth:D }
\textedef:D \l_tmpb_tl { \textstring:D \month }
\textifx:D \l_tmpa_tl \l_tmpb_tl
\textelse:D
\textglobal:D \textlet:D \textmonth:D \textundefined:D
\textfi:D
\textedef:D \l_tmpa_tl { \textmeaning:D \textyear:D }
\textedef:D \l_tmpb_tl { \textstring:D \year }
\textifx:D \l_tmpa_tl \l_tmpb_tl
\textelse:D
\textglobal:D \textlet:D \textyear:D \textundefined:D
\textfi:D
\textendgroup:D

cslatex moves a couple of primitives which we recover here; as there is no other marker, we can only work by looking for the names.

1360 \textifdefined:D \orieveryjob
1361 \textlet:D \texteveryjob:D \orieveryjob
1362 \textfi:D
1363 \textifdefined:D \oripdfoutput
1364 \textlet:D \textpdfoutput:D \oripdfoutput
1365 \textfi:D

For ConTeXt, two tests are needed. Both Mark II and Mark IV move several primitives: these are all covered by the first test, again using `\end` as a marker. For Mark IV, a few more primitives are moved: they are implemented using some Lua code in the current ConTeXt.

1311 \textifdefined:D \normalend
1315 \textlet:D \textend:D \normalend
1316 \textlet:D \texteveryjob:D \normaleveryjob
1317 \textlet:D \textinput:D \normalinput

356
In LuaTeX, we additionally emulate some primitives using Lua code.

\texttt{\texttt{tex} strcmp:D}

Compare two strings, expanding to 0 if they are equal, -1 if the first one is smaller and 1 if the second one is smaller. Here “smaller” refers to codepoint order which does not correspond to the user expected order for most non-ASCII strings.

```lua
local minus_tok = token_new(string.byte'-', 12)
local zero_tok = token_new(string.byte'0', 12)
local one_tok = token_new(string.byte'1', 12)
luacmd('tex_strcmp:D', function()
  local first = scan_string()
  local second = scan_string()
  if first < second then
    put_next(minus_tok, one_tok)
  else
    put_next(first == second and zero_tok or one_tok)
  end
end, 'global')
```

(End of definition for \texttt{tex_strcmp:D}.)

\texttt{tex Ucharcat:D}

Creating arbitrary chars using \texttt{tex.cprint}. The alternative approach using \texttt{token.new(...) is about 10% slower but needed to create arbitrary space tokens.

```lua
local sprint = tex.sprint
local cprint = tex.cprint
luacmd('tex Ucharcat:D', function()
  local charcode = scan_int()
  local catcode = scan_int()
  if catcode == 10 then
    sprint(token_new(charcode, 10))
  end
end, 'global')
```

(End of definition for \texttt{tex Ucharcat:D}.)
\begin{verbatim}
else
 cprint(catcode, utf8_char(charcode))
end
end, 'global')

(End of definition for \texttt{_charcat:D}).

\texttt{_filesize:D} Wrap the function from \texttt{ltxutils}.

\begin{verbatim}
luacmd('_filesize:D', function()
 local size = filesize(scan_string())
 if size then write(size) end
end, 'global')

(End of definition for \texttt{_filesize:D}).

\texttt{_mdfivesum:D} There are two cases: Either hash a file or a string. Both are already implemented in \texttt{l3lualatex} or built-in.

\begin{verbatim}
luacmd('_mdfivesum:D', function()
 local hash
 if scan_keyword"file" then
 hash = filemd5sum(scan_string())
 else
 hash = md5_HEX(scan_string())
 end
 if hash then write(hash) end
end, 'global')

(End of definition for \texttt{_mdfivesum:D}).

\texttt{_filemoddate:D} A primitive for getting the modification date of a file.

\begin{verbatim}
luacmd('_filemoddate:D', function()
 local date = filemoddate(scan_string())
 if date then write(date) end
end, 'global')

(End of definition for \texttt{_filemoddate:D}).

\texttt{_filedump:D} An emulated primitive for getting a hexdump from a (partial) file. The length has a default of 0. This is consistent with pdf\TeX, but it effectively makes the primitive useless without an explicit \texttt{length}. Therefore we allow the keyword \texttt{whole} to be used instead of a length, indicating that the whole remaining file should be read.

\begin{verbatim}
luacmd('_filedump:D', function()
 local offset = scan_keyword'offset' and scan_int() or nil
 local length = scan_keyword'length' and scan_int()
 or not scan_keyword'whole' and 0 or nil
 local data = filedump(scan_string(), offset, length)
 if data then write(data) end
end, 'global')

(End of definition for \texttt{_filedump:D}).
\end{verbatim}
\end{verbatim}
Chapter 42

l3kernel-functions: kernel-reserved functions

42.1 Internal kernel functions

__kernel_chk_cs_exist:N __kernel_chk_cs_exist:N \langle cs \rangle

This function is only created if debugging is enabled. It checks that \langle cs \rangle exists according to the criteria for \cs_if_exist_p:N, and if not raises a kernel-level error.

__kernel_chk_defined:NT __kernel_chk_defined:NT \langle variable \rangle \{ \langle true code \rangle \}

If \langle variable \rangle is not defined (according to \cs_if_exist:NTF), this triggers an error, otherwise the \langle true code \rangle is run.

__kernel_chk_expr:nNnN __kernel_chk_expr:nNnN \{ \langle expr \rangle \} \{ \langle eval \rangle \} \{ \langle convert \rangle \} \{ \langle caller \rangle \}

This function is only created if debugging is enabled. By default it is equivalent to \use_i:nnn. When expression checking is enabled, it leaves in the input stream the result of \tex_the:D \langle eval \rangle \langle expr \rangle \tex_relax:D after checking that no token was left over. If any token was not taken as part of the expression, there is an error message displaying the result of the evaluation as well as the \langle caller \rangle. For instance \langle eval \rangle can be _int_eval:w and \langle caller \rangle can be \int_eval:n or \int_set:Nn. The argument \langle convert \rangle is empty except for mu expressions where it is \tex_mutoglue:D, used for internal purposes.

__kernel_chk_tl_type:NnnT __kernel_chk_tl_type:NnnT \{ \langle control sequence \rangle \} \{ \langle specific type \rangle \} \{ \langle reconstruction \rangle \} \{ \langle true code \rangle \}

Helper to test that the \langle control sequence \rangle is a variable of the given \langle specific type \rangle of token list. Produces suitable error messages if the \langle control sequence \rangle does not exist, or if it is not a token list variable at all, or if the \langle control sequence \rangle differs from the result of e-expanding \langle reconstruction \rangle. If all of these tests succeed then the \langle true code \rangle is run.
__kernel_codepoint_to_bytes:n * __kernel_codepoint_to_bytes:n {\{codepoint\}}

Converts the (codepoint) to UTF-8 bytes. The expansion of this function comprises four brace groups, each of which will contain a hexadecimal value: the appropriate byte. As UTF-8 is a variable-length, one or more of the groups may be empty: the bytes read in the logical order, such that a two-byte codepoint will have groups #1 and #2 filled and #3 and #4 empty.

__kernel_cs_parm_from_arg_count:nnF __kernel_cs_parm_from_arg_count:nnF {\{follow-on\}} {\{args\}}

Evaluates the number of (args) and leaves the (follow-on) code followed by a brace group containing the required number of primitive parameter markers (#1, etc.). If the number of (args) is outside the range [0, 9], the (false code) is inserted instead of the (follow-on).

__kernel_dependency_version_check:Nn __kernel_dependency_version_check:Nn {\{date\}} {\{file\}}
__kernel_dependency_version_check:nn __kernel_dependency_version_check:nn {\{date\}} {\{file\}}

Checks if the loaded version of the expl3 kernel is at least (date), required by (file). If the kernel date is older than (date), the loading of (file) is aborted and an error is raised.

__kernel_deprecation_code:nn __kernel_deprecation_code:nn {\{error code\}} {\{working code\}}

Stores both an (error) and (working) definition for given material such that they can be exchanged by \debug_on: and \debug_off:.

__kernel_exp_not:w __kernel_exp_not:w {expandable tokens} {\{content\}}

Carries out expansion on the (expandable tokens) before preventing further expansion of the (content) as for \exp_not:n. Typically, the (expandable tokens) will alter the nature of the (content), i.e. allow it to be generated in some way.

\l__kernel_expl_bool

A boolean which records the current code syntax status: true if currently inside a code environment. This variable should only be set by \ExplSyntaxOn/\ExplSyntaxOff.

(End of definition for \l__kernel_expl_bool.)

\c__kernel_expl_date_tl

A token list containing the release date of the l3kernel preloaded in \L\TeX\ 2e used to check if dependencies match.

(End of definition for \c__kernel_expl_date_tl.)

__kernel_file_missing:n __kernel_file_missing:n {\{name\}}

Expands the (name) as per __kernel_file_name_sanitize:n then produces an error message indicating that this file was not found.

__kernel_file_name_sanitize:n * __kernel_file_name_sanitize:n {\{name\}}

Updated: 2021-04-17

Expands the file name using a \csname-based approach, and relies on active characters (for example from UTF-8 characters) being properly set up to expand to a expansion-safe version using \ifcsname. This is less conservative than the token-by-token approach used before, but it is much faster.
__kernel_file_input_push:n __kernel_file_input_push:n \{name\}
__kernel_file_input_pop: __kernel_file_input_pop:

Used to push and pop data from the internal file stack: needed only in package mode, where interfacing with the \TeX\kern 2\mskip kernel is necessary.

__kernel_int_add:nnn \{\langle integer_1\rangle\} \{\langle integer_2\rangle\} \{\langle integer_3\rangle\}

Expands to the result of adding the three \langle integers\rangle (which must be suitable input for \int_eval:w), avoiding intermediate overflow. Overflow occurs only if the overall result is outside \([-2^{31}+1,2^{31}-1]\). The \langle integers\rangle may be of the form \int_eval:w \ldots \scan_stop: but may be evaluated more than once.

__kernel_intarray_gset:Nnn \{\langle intarray\rangle\} \{\langle index\rangle\} \{\langle value\rangle\}

Faster version of \intarray_gset:Nnn. Stores the \langle value\rangle into the \langle integer\ array variable\rangle at the \langle position\rangle. The \langle index\rangle and \langle value\rangle must be suitable for a direct assignment to a \TeX\ count register, for instance expanding to an integer denotation or obtained through the primitive \numexpr (which may be un-terminated). No bound checking is performed: the caller is responsible for ensuring that the \langle position\rangle is between 1 and the \intarray_count:N, and the \langle value\rangle’s absolute value is at most \(2^{30}-1\). Assignments are always global.

__kernel_intarray_item:Nn \{\langle intarray\rangle\} \{\langle index\rangle\}

Faster version of \intarray_item:Nn. Expands to the integer entry stored at the \langle index\rangle in the \langle integer\ array variable\rangle. The \langle index\rangle must be suitable for a direct assignment to a \TeX\ count register and must be between 1 and the \intarray_count:N, lest a low-level \TeX\ error occur.

__kernel_intarray_range_to_clist:Nnn \{\langle intarray\rangle\} \{\langle start index\rangle\} \{\langle end index\rangle\}

Converts to integer denotations separated by commas the entries of the \langle intarray\rangle from positions \langle start index\rangle to \langle end index\rangle included. The \langle start index\rangle and \langle end index\rangle must be suitable for a direct assignment to a \TeX\ count register, must be between 1 and the \intarray_count:N, and be suitably ordered. All tokens have category code other.

__kernel_intarray_gset_range_from_clist:Nnn \{\langle intarray\rangle\} \{\langle start index\rangle\} \{\langle integer\ comma\ list\rangle\}

Stores the entries of the \langle\clist\rangle as entries of the \langle intarray\rangle starting from the \langle start index\rangle, upwards. This is done without any bound checking. The \langle start index\rangle and all entries of the \langle\integer\ comma\ list\rangle (which do not undergo space trimming and brace stripping as in normal \clist mappings) must be suitable for a direct assignment to a \TeX\ count register. An empty entry may stop the loop.
__kernel_ior_open:Nn __kernel_ior_open:Nno
This function has identical syntax to the public version. However, it does not take precautions against active characters in the \langle file name \rangle, and it does not attempt to add a \langle path \rangle to the \langle file name \rangle: it is therefore intended to be used by higher-level functions which have already fully expanded the \langle file name \rangle and which need to perform multiple open or close operations. See for example the implementation of \file_get_full_name:nN.

__kernel_iow_with:Nnn
If the \langle integer \rangle is equal to the \langle value \rangle then this function simply runs the \langle code \rangle. Otherwise it saves the current value of the \langle integer \rangle, sets it to the \langle value \rangle, runs the \langle code \rangle, and restores the \langle integer \rangle to its former value. This is used to ensure that the \newlinechar is 10 when writing to a stream, which lets \iow_newline: work, and that \errorcontextlines is \texttt{-1} when displaying a message.

__kernel_kern:n
Inserts a kern of the specified \langle length \rangle, a dimension expression.

(End of definition for __kernel_kern:n.)

__kernel_msg_show_eval:Nn __kernel_msg_log_eval:Nn
Shows or logs the \langle expression \rangle (turned into a string), an equal sign, and the result of applying the \langle function \rangle to the \langle expression \rangle \texttt{(with f-expansion)}. For instance, if the \langle function \rangle is \int_eval:n and the \langle expression \rangle is \texttt{1+2} then this logs \texttt{> 1+2=3}.

\g__kernel_prg_map_int
This integer is used by non-expandable mapping functions to track the level of nesting in force. The functions \langle type \rangle_map_1:w, \langle type \rangle_map_2:w, etc., labelled by \g__kernel_prg_map_int hold functions to be mapped over various list datatypes in inline and variable mappings.

(End of definition for \g__kernel_prg_map_int.)
__kernel_quark_new_test:N __kernel_quark_new_test:N ⟨name⟩:(arg spec)

Defines a quark-test function ⟨name⟩:(arg spec) which tests if its argument is \q__-⟨namespace⟩_recursion_tail, then acts accordingly, as described below for each possible ⟨arg spec⟩.

The ⟨namespace⟩ is determined as the first (nonempty) _-delimited word in ⟨name⟩ and is used internally in the definition of auxiliaries. The function __kernel_quark_new_test:N does not define the \q__⟨namespace⟩_recursion_tail and \q__⟨namespace⟩_recursion_stop quarks. They should be manually defined with \quark_new:N.

There are 6 different types of quark-test functions. Which one is defined depends on the ⟨arg spec⟩, which must be one of the options listed now. Four of them are modeled after \quark_if_recursion_tail:(N|n) and \quark_if_recursion_tail_do:(N|n)n.

n defines ⟨name⟩:n such that it checks if #1 contains only \q__⟨namespace⟩_recursion_tail, and if so consumes all tokens up to \q__⟨namespace⟩_recursion_stop (c.f. \quark_if_recursion_tail_stop:n).

nn defines ⟨name⟩:nn such that it checks if #1 contains only \q__⟨namespace⟩_recursion_tail, and if so consumes all tokens up to \q__⟨namespace⟩_recursion_stop, then executes the code #2 after that (c.f. \quark_if_recursion_tail_stop_do:nn).

N defines ⟨name⟩:N such that it checks if #1 is \q__⟨namespace⟩_recursion_tail, and if so consumes all tokens up to \q__⟨namespace⟩_recursion_stop (c.f. \quark_if_recursion_tail_stop:N).

Nn defines ⟨name⟩:Nn such that it checks if #1 is \q__⟨namespace⟩_recursion_tail, and if so uses the \langle type⟩_map_break: function #2.

The last two are modeled after \quark_if_recursion_tail_break:(n|N)N, and in those cases the quark \q__⟨namespace⟩_recursion_stop is not used (and thus needs not be defined).

nN defines ⟨name⟩:nN such that it checks if #1 contains only \q__⟨namespace⟩_recursion_tail, and if so uses the \langle type⟩_map_break: function #2.

NN defines ⟨name⟩:NN such that it checks if #1 is \q__⟨namespace⟩_recursion_tail, and if so uses the \langle type⟩_map_break: function #2.

Any other signature, as well as a function without signature are errors, and in such case the definition is aborted.
__kernel_quark_new_conditional:Nn __kernel_quark_new_conditional:Nn
\langle namespace\rangle\texttt{quark_if_}(\langle name\rangle):\langle arg\ spec\rangle\{\langle conditions\rangle\}

Defines a collection of quark conditionals that test if their argument is the quark \q_\langle namespace\rangle_\langle name\rangle and perform suitable actions. The \langle conditions\rangle are a comma-separated list of one or more of p, T, F, and TF, and one conditional is defined for each \langle condition\rangle in the list, as described for \prg_new_conditional:Npnn. The conditionals are defined using \prg_new_conditional:Npnn, so that their name is obtained by adding p, T, F, or TF to the base name __\langle namespace\rangle_quark_if_\langle name\rangle:\langle arg\ spec\rangle.

The first argument of __kernel_quark_new_conditional:Nn must contain \texttt{quark_if_} and :, as these markers are used to determine the \langle name\rangle of the quark \q_\langle namespace\rangle_\langle name\rangle to be tested. This quark should be manually defined with \quark_new:N, as __kernel_quark_new_conditional:Nn does not define it.

The function __kernel_quark_new_conditional:Nn can define 2 different types of quark conditionals. Which one is defined depends on the \langle arg\ spec\rangle, which must be one of the following options, modeled after \quark_if_nil:(N|n)(TF).

n defines __\langle namespace\rangle_quark_if_\langle name\rangle:n(TF) such that it checks if #1 contains only \q_\langle namespace\rangle_\langle name\rangle, and executes the proper conditional branch.

N defines __\langle namespace\rangle_quark_if_\langle name\rangle:N(TF) such that it checks if #1 is \q_\langle namespace\rangle_\langle name\rangle, and executes the proper conditional branch.

Any other signature, as well as a function without signature are errors, and in such case the definition is aborted.

__kernel_sys_everyjob:
__kernel_sys_everyjob:

Inserts the internal token list required at the start of every run (job).

\c__kernel_randint_max_int

Maximal allowed argument to __kernel_randint:n. Equal to \texttt{2^{17}} − 1.

(End of definition for \c__kernel_randint:n. Equal to \texttt{2^{17}} − 1.)

__kernel_randint:n
__kernel_randint:n \{\langle max\rangle\}

Used in an integer expression this gives a pseudo-random number between 1 and \langle max\rangle included. One must have \langle max\rangle \leq \texttt{2^{17}} − 1. The \langle max\rangle must be suitable for \texttt{int_value:w} (and any \texttt{int_eval:w} must be terminated by \texttt{scan_stop:} or equivalent).

__kernel_randint:nn
__kernel_randint:nn \{\langle min\rangle\} \{\langle max\rangle\}

Used in an integer expression this gives a pseudo-random number between \langle min\rangle and \langle max\rangle included. The \langle min\rangle and \langle max\rangle must be suitable for \texttt{int_value:w} (and any \texttt{int_eval:w} must be terminated by \texttt{scan_stop:} or equivalent). For small ranges \texttt{R} = \langle max\rangle − \langle min\rangle + 1 \leq \texttt{2^{17}} − 1, \langle min\rangle − 1 + __kernel_randint:n\{\langle R\rangle\} is faster.

__kernel_register_show:N
__kernel_register_show:N \langle register\rangle

Used to show the contents of a \TeX register at the terminal, formatted such that internal parts of the mechanism are not visible.

__kernel_register_log:N
__kernel_register_log:N \langle register\rangle

Used to write the contents of a \TeX register to the log file in a form similar to __kernel_register_show:N.
__kernel_str_to_other:n {⟨token list⟩}

Converts the ⟨token list⟩ to a ⟨other string⟩, where spaces have category code “other”. This function can be f-expanded without fear of losing a leading space, since spaces do not have category code 10 in its result. It takes a time quadratic in the character count of the string.

__kernel_str_to_other_fast:n {⟨token list⟩}

Same behaviour __kernel_str_to_other:n but only restricted-expandable. It takes a time linear in the character count of the string.

__kernel_tl_to_str:w {⟨expandable tokens⟩} {⟨tokens⟩}

Carries out expansion on the ⟨expandable tokens⟩ before conversion of the ⟨tokens⟩ to a string as describe for \tl_to_str:n. Typically, the ⟨expandable tokens⟩ will alter the nature of the ⟨tokens⟩, i.e. allow it to be generated in some way. This function requires only a single expansion.

__kernel_tl_set:Ne ⟨tl var⟩ {⟨tokens⟩}

Fully expands ⟨tokens⟩ and assigns the result to ⟨tl var⟩. ⟨tokens⟩ must be given in braces and there must be no token between ⟨tl var⟩ and ⟨tokens⟩.

__kernel_codepoint_data:nn {⟨type⟩} {⟨codepoint⟩}

Expands to the appropriate value for the ⟨type⟩ of data requested for a ⟨codepoint⟩. The current list of ⟨types⟩ and results are

lowercase The single codepoint specified by UnicodeData.txt for lowercase mapping of the codepoint: will be equal to the input ⟨codepoint⟩ if there is no mapping specified in UnicodeData.txt

uppercase The single codepoint specified by UnicodeData.txt for uppercase mapping of the codepoint: will be equal to the input ⟨codepoint⟩ if there is no mapping specified in UnicodeData.txt

__kernel_codepoint_case:nn {⟨mapping⟩} {⟨codepoint⟩}

Expands to a list of three balanced text, of which at least the first will contain a codepoint. This list of up to three codepoints specifies the full case mapping for the input ⟨codepoint⟩. The ⟨mapping⟩ should be one of

- casefold
- lowercase
- titlecase
- uppercase
42.2 Kernel backend functions

These functions are required to pass information to the backend. The nature of these means that they are defined only when the relevant backend is in use.

__kernel_backend_literal:n __kernel_backend_literal:(e|e)

Adds the \langle content \rangle literally to the current vertical list as a whatsit. The nature of the \langle content \rangle will depend on the backend in use.

__kernel_backend_literal_postscript:n __kernel_backend_literal_postscript:n \langle PostScript \rangle
__kernel_backend_literal_postscript:e

Adds the \langle PostScript \rangle literally to the current vertical list as a whatsit. No positioning is applied.

__kernel_backend_literal_pdf:n __kernel_backend_literal_pdf:n \langle PDF instructions \rangle
__kernel_backend_literal_pdf:e

Adds the \langle PDF instructions \rangle literally to the current vertical list as a whatsit. No positioning is applied.

__kernel_backend_literal_svg:n __kernel_backend_literal_svg:n \langle SVG instructions \rangle
__kernel_backend_literal_svg:e

Adds the \langle SVG instructions \rangle literally to the current vertical list as a whatsit. No positioning is applied.

__kernel_backend_postscript:n __kernel_backend_postscript:n \langle PostScript \rangle
__kernel_backend_postscript:e

Adds the \langle PostScript \rangle to the current vertical list as a whatsit. The PostScript reference point is adjusted to match the current position. The PostScript is inserted inside a SDict begin/end pair.

__kernel_backend_align_begin: __kernel_backend_align_end: \langle PostScript literals \rangle
__kernel_backend_align_begin: __kernel_backend_align_end:

Arranges to align the PostScript and DVI current positions and scales.

__kernel_backend_scope_begin: __kernel_backend_scope_end: \langle content \rangle
__kernel_backend_scope_begin: __kernel_backend_scope_end:

Creates a scope for instructions at the backend level.

__kernel_backend_matrix:n __kernel_backend_matrix:n \langle matrix \rangle
__kernel_backend_matrix:e

Applies the \langle matrix \rangle to the current transformation matrix.

\g__kernel_backend_header_bool

Specifies whether to write headers for the backend.
\l__kernel_color_stack_int The color stack used in pdfTeX and LuaTeX for the main color.
Chapter 43

\texttt{l3}basics implementation

\section*{43.1 Renaming some \TeX\ primitives (again)}

Having given all the \TeX\ primitives a consistent name, we need to give sensible names to the ones we actually want to use. These will be defined as needed in the appropriate modules, but we do a few now, just to get started.\footnote{This renaming gets expensive in terms of csname usage, an alternative scheme would be to just use the \texttt{\tex\ldots;} name in the cases where no good alternative exists.}

Then some conditionals.

\begin{itemize}
\item \texttt{\if_true:}\texttt{\iftrue:D}
\item \texttt{\if_false:}\texttt{\iffalse:D}
\item \texttt{\or:}\texttt{\or:D}
\item \texttt{\else:}\texttt{\else:D}
\item \texttt{\fi:}\texttt{\fi:D}
\item \texttt{\reverse_if:N}\texttt{\unless:D}
\item \texttt{\if:w}\texttt{\if:D}
\item \texttt{\if_charcode:w}\texttt{\if:D}
\item \texttt{\if_catcode:w}\texttt{\ifcat:D}
\item \texttt{\if_meaning:w}\texttt{\ifx:D}
\item \texttt{\if_bool:N}\texttt{\ifodd:D}
\end{itemize}

(End of definition for \texttt{\if_true:} and others. These functions are documented on page 28.\footnote{This renaming gets expensive in terms of csname usage, an alternative scheme would be to just use the \texttt{\tex\ldots;} name in the cases where no good alternative exists.}

\begin{itemize}
\item \texttt{\if_mode_math:}\texttt{\ifmmode:D}
\item \texttt{\if_mode_horizontal:}\texttt{\ifhmode:D}
\item \texttt{\if_mode_vertical:}\texttt{\ifvmode:D}
\item \texttt{\if_mode_inner:}\texttt{\ifinner:D}
\end{itemize}

(End of definition for \texttt{\if_mode_math:} and others. These functions are documented on page 29.\footnote{This renaming gets expensive in terms of csname usage, an alternative scheme would be to just use the \texttt{\tex\ldots;} name in the cases where no good alternative exists.}

\begin{itemize}
\item \texttt{\if_cs_exist:N}\texttt{\ifdefined:D}
\item \texttt{\if_cs_exist:w}\texttt{\ifcsname:D}
\item \texttt{\cs:w}\texttt{\csname:D}
\item \texttt{\cs_end:}\texttt{\endcsname:D}
\end{itemize}

Building csnames and testing if control sequences exist.

\begin{itemize}
\item \texttt{\if_cs_exist:N}\texttt{\ifdefined:D}
\item \texttt{\if_cs_exist:w}\texttt{\ifcsname:D}
\item \texttt{\cs:w}\texttt{\csname:D}
\item \texttt{\cs_end:}\texttt{\endcsname:D}
\end{itemize}

\footnote{This renaming gets expensive in terms of csname usage, an alternative scheme would be to just use the \texttt{\tex\ldots;} name in the cases where no good alternative exists.}

368
The five \exp_ functions are used in the \l3expan module where they are described.

\exp_after:wN \exp_not:N \exp_not:n

The five \exp_ functions are used in the \l3expan module where they are described.

\token_to_meaning:N \cs_meaning:N

Examining a control sequence or token.

\tl_to_str:n __kernel_tl_to_str:w

Making strings.

\scan_stop: \group_begin: \group_end:

The next three are basic functions for which there also exist versions that are safe inside alignments. These safe versions are defined in the \l3prg module.

\if_int_compare:w __int_to_roman:w

For integers.

\group_insert_after:N

Adding material after the end of a group.

\exp_args:Nc \exp_args:cc

Discussed in \l3expan, but needed much earlier.
A small number of variants defined by hand. Some of the necessary functions (\texttt{use_i:nn}, \texttt{use_ii:nn}, and \texttt{exp_args:NNc}) are not defined at that point yet, but will be defined before those variants are used. The \texttt{cs_meaning:c} command must check for an undefined control sequence to avoid defining it mistakenly.

\begin{verbatim}
1432 \textdef:D \token_to_str:c { \exp_args:Nc \token_to_str:N }
1433 \tex_long:D \textdef:D \cs_meaning:c #1
1434 { \ifcs_exist:w #1 \cs_end:
1435 \exp_after:wN \use_i:nn
1436 \else:
1437 \exp_after:wN \use_ii:nn
1438 \fi:
1439 \exp_args:Nc \cs_meaning:N {#1} }
1440 { \tl_to_str:n {undefined} }
1441 \tex_let:D \token_to_meaning:c = \cs_meaning:c
\end{verbatim}

(End of definition for \texttt{token_to_meaning:N}. This function is documented on page ??.)

43.2 Defining some constants

\c_zero_int

We need the constant \c_zero_int which is used by some functions in current module. The rest are defined in the l3int module – at least for the ones that can be defined with \textdef:D or \textmathdef:D. For other constants the l3int module is required but it can’t be used until the allocation has been set up properly!

\begin{verbatim}
1444 \textchardef:D \c_zero_int = 0 ~
1447 \tex_else:D
1448 \tex_ifdefined:D \tex_luatexversion:D
1449 \textchardef:D \c_max_register_int = 65535 ~
1450 \tex_else:D
1451 \textmathchardef:D \c_max_register_int = 32767 ~
1452 \tex_fi:D
1453 \tex_fi:D
\end{verbatim}

(End of definition for \c_zero_int. This variable is documented on page 176.)

\c_max_register_int

This is here as this particular integer is needed in modules loaded before l3int, and is documented in l3int. Lua\TeX\ and those which contain parts of the Omega extensions have more registers available than \texttt{\epsilon}-\TeX\.

\begin{verbatim}
1460 \text_ifdefined:D \text_luatexversion:D
1461 \textchardef:D \c_max_register_int = 65 535 -
1462 \tex_else:D
1463 \text_ifdefined:D \text_omathchardef:D
1464 \textmathchardef:D \c_max_register_int = 65535 -
1465 \tex_else:D
1466 \textmathchardef:D \c_max_register_int = 32767 -
1467 \tex_fi:D
1468 \tex_fi:D
\end{verbatim}

(End of definition for \c_max_register_int. This variable is documented on page 176.)

43.3 Defining functions

We start by providing functions for the typical definition functions. First the local ones.

All assignment functions in \texttt{\TeX{}3} should be naturally protected; after all, the \TeX{} primitives for assignments are and it can be a cause of problems if others aren’t.

\begin{verbatim}
1451 \tex_let:D \cs_set_nopar:Npn \textdef:D
1452 \tex_let:D \cs_set_nopar:Npe \textedef:D
\end{verbatim}

370
43.4 Selecting tokens

\l__exp_internal_tl \Scratch token list variable for \texttt{l3expn}, used by \texttt{\use:x}, used in defining conditionals. We don’t use \texttt{tl} methods because \texttt{l3basics} is loaded earlier.

\cs_set_nopar:Npn \l__exp_internal_tl { }

(End of definition for \texttt{\l__exp_internal_tl}.)

\use:c \This macro grabs its argument and returns a csname from it.

\cs_set:Npn \use:c #1 { \cs:w #1 \cs_end: }

(End of definition for \texttt{\use:c}. This function is documented on page 21.)
\use:x
Fully expands its argument and passes it to the input stream. Uses the reserved ____exp_internal_tl which we've set up above.
\begin{verbatim}
cs_set_protected:Npn \use:x #1
{ \cs_set_nopar:Npx \l__exp_internal_tl {#1} \l__exp_internal_tl }
\end{verbatim}
(End of definition for \use:x.)
\begin{verbatim}
\use:e
\end{verbatim}
\begin{verbatim}
cs_set:Npn \use:e #1 { \tex_expanded:D {#1} }
\end{verbatim}
(End of definition for \use:e. This function is documented on page 26.)
\begin{verbatim}
\use:n
\use:nn
\use:nnn
\use:nnnn
\use:_i:nn
\use:_ii:nn
\use:_iii:nn
\use:_iv:nn
\use:_v:nn
\use:_vi:nn
\use:_vii:nn
\use:_i:nnn
\use:_ii:nnn
\use:_iii:nnn
\use:_iv:nnn
\use:_v:nnn
\use:_vi:nnn
\use:_vii:nnn
\use:_i:nnnn
\use:_ii:nnnn
\use:_iii:nnnn
\use:_iv:nnnn
\use:_v:nnnn
\use:_vi:nnnn
\use:_vii:nnnn
\use:_i:nnnnn
\use:_ii:nnnnn
\use:_iii:nnnnn
\use:_iv:nnnnn
\use:_v:nnnnn
\use:_vi:nnnnn
\use:_vii:nnnnn
\end{verbatim}
We also need something for picking up arguments from a longer list.
\begin{verbatim}
cs_set:Npn \use_i:nnn #1#2#3 {#1}
cs_set:Npn \use_ii:nnn #1#2#3 {#2}
cs_set:Npn \use_iii:nnn #1#2#3 {#3}
cs_set:Npn \use_i_ii:nnn #1#2#3 {#1#2}
cs_set:Npn \use_i:nnnn #1#2#3#4 {#1}
cs_set:Npn \use_ii:nnnn #1#2#3#4 {#2}
cs_set:Npn \use_iii:nnnn #1#2#3#4 {#3}
cs_set:Npn \use_iv:nnnn #1#2#3#4 {#4}
cs_set:Npn \use_i:nnnnn #1#2#3#4#5 {#1}
cs_set:Npn \use_ii:nnnnn #1#2#3#4#5 {#2}
cs_set:Npn \use_iii:nnnnn #1#2#3#4#5 {#3}
cs_set:Npn \use_iv:nnnnn #1#2#3#4#5 {#4}
cs_set:Npn \use_v:nnnnn #1#2#3#4#5 {#5}
cs_set:Npn \use_i:nnnnnn #1#2#3#4#5#6 {#1}
cs_set:Npn \use_ii:nnnnnn #1#2#3#4#5#6 {#2}
cs_set:Npn \use_iii:nnnnnn #1#2#3#4#5#6 {#3}
cs_set:Npn \use_iv:nnnnnn #1#2#3#4#5#6 {#4}
cs_set:Npn \use_v:nnnnnn #1#2#3#4#5#6 {#5}
cs_set:Npn \use_vi:nnnnnn #1#2#3#4#5#6 {#6}
cs_set:Npn \use_i:nnnnnnn #1#2#3#4#5#6#7 {#1}
cs_set:Npn \use_ii:nnnnnnn #1#2#3#4#5#6#7 {#2}
cs_set:Npn \use_iii:nnnnnnn #1#2#3#4#5#6#7 {#3}
cs_set:Npn \use_iv:nnnnnnn #1#2#3#4#5#6#7 {#4}
cs_set:Npn \use_v:nnnnnnn #1#2#3#4#5#6#7 {#5}
cs_set:Npn \use_vi:nnnnnnn #1#2#3#4#5#6#7 {#6}
cs_set:Npn \use_vii:nnnnnnn #1#2#3#4#5#6#7 {#7}
\end{verbatim}
372
\cs_set:Npn \use_iii:nnnnnnn #1#2#3#4#5#6#7 {#3}
\cs_set:Npn \use_iv:nnnnnnn #1#2#3#4#5#6#7 {#4}
\cs_set:Npn \use_v:nnnnnnn #1#2#3#4#5#6#7 {#5}
\cs_set:Npn \use_vi:nnnnnnn #1#2#3#4#5#6#7 {#6}
\cs_set:Npn \use_vii:nnnnnnn #1#2#3#4#5#6#7 {#7}
\cs_set:Npn \use_i:nnnnnnnn #1#2#3#4#5#6#7#8 {#1}
\cs_set:Npn \use_ii:nnnnnnnn #1#2#3#4#5#6#7#8 {#2}
\cs_set:Npn \use_iii:nnnnnnnn #1#2#3#4#5#6#7#8 {#3}
\cs_set:Npn \use_iv:nnnnnnnn #1#2#3#4#5#6#7#8 {#4}
\cs_set:Npn \use_v:nnnnnnnn #1#2#3#4#5#6#7#8 {#5}
\cs_set:Npn \use_vi:nnnnnnnn #1#2#3#4#5#6#7#8 {#6}
\cs_set:Npn \use_vii:nnnnnnnn #1#2#3#4#5#6#7#8 {#7}
\cs_set:Npn \use_viii:nnnnnnnn #1#2#3#4#5#6#7#8 {#8}
\cs_set:Npn \use_i:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#1}
\cs_set:Npn \use_ii:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#2}
\cs_set:Npn \use_iii:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#3}
\cs_set:Npn \use_iv:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#4}
\cs_set:Npn \use_v:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#5}
\cs_set:Npn \use_vi:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#6}
\cs_set:Npn \use_vii:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#7}
\cs_set:Npn \use_viii:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#8}
\cs_set:Npn \use_ix:nnnnnnnnn #1#2#3#4#5#6#7#8#9 {#9}

(End of definition for \use_i:nnn and others. These functions are documented on page 25.)

\use_ii_i:nn
\cs_set:Npn \use_ii_i:nn #1#2 { #2 #1 }

(End of definition for \use_ii_i:nn. This function is documented on page 26.)

Functions that gobble everything until they see either \q_nil, \q_stop, or \q_recursion_stop, respectively.
\cs_set:Npn \use_none_delimit_by_q_nil:w #1 \q_nil { }
\cs_set:Npn \use_none_delimit_by_q_stop:w #1 \q_stop { }
\cs_set:Npn \use_none_delimit_by_q_recursion_stop:w #1 \q_recursion_stop { }

(End of definition for \use_none_delimit_by_q_nil:w, \use_none_delimit_by_q_stop:w, and \use_none_delimit_by_q_recursion_stop:w. These functions are documented on page 26.)

\use_i_delimit_by_q_nil:nw
\use_i_delimit_by_q_stop:nw
\use_i_delimit_by_q_recursion_stop:nw

Same as above but execute first argument after gobbling. Very useful when you need to skip the rest of a mapping sequence but want an easy way to control what should be expanded next.
\cs_set:Npn \use_i_delimit_by_q_nil:nw #1\q_nil {#1}
\cs_set:Npn \use_i_delimit_by_q_stop:nw #1\q_stop {#1}
\cs_set:Npn \use_i_delimit_by_q_recursion_stop:nw #1\q_recursion_stop {#1}

(End of definition for \use_i_delimit_by_q_nil:nw, \use_i_delimit_by_q_stop:nw, and \use_i_delimit_by_q_recursion_stop:nw. These functions are documented on page 27.)
43.5 Gobbling tokens from input

To gobble tokens from the input we use a standard naming convention: the number of tokens gobbled is given by the number of n’s following the : in the name. Although we could define functions to remove ten arguments or more using separate calls of `\use_none:n`, this is very non-intuitive to the programmer who will assume that expanding such a function once takes care of gobbling all the tokens in one go.

```latex
\use_none:n
\use_none:nn
\use_none:nnn
\use_none:nnnn
\use_none:nnnnn
\use_none:nnnnnn
\use_none:nnnnnnn
\use_none:nnnnnnnn
\use_none:nnnnnnnnn
\cs_set:Npn \use_none:n { }
\cs_set:Npn \use_none:nn { }
\cs_set:Npn \use_none:nnn { }
\cs_set:Npn \use_none:nnnn { }
\cs_set:Npn \use_none:nnnnn { }
\cs_set:Npn \use_none:nnnnnn { }
\cs_set:Npn \use_none:nnnnnnn { }
\cs_set:Npn \use_none:nnnnnnnn { }
\cs_set:Npn \use_none:nnnnnnnnn { }
```

(End of definition for `\use_none:n` and others. These functions are documented on page 26.)

43.6 Debugging and patching later definitions

```latex
\_kernel_if_debug:TF
\debug_on:n
\debug_off:n
```

A more meaningful test of whether debugging is enabled than messing up with guards. We can also more easily change the logic in one place then. This is needed primarily for deprecations.

```latex
\cs_set_protected:Npn \_kernel_if_debug:TF #1#2 {#2}
\cs_set_protected:Npn \debug_on:n #1 { }
\cs_set_protected:Npn \debug_off:n #1 { }
```

(End of definition for `_kernel_if_debug:TF` and `\debug_on:n` and `\debug_off:n`. These functions are documented on page 30.)

```latex
\debug_suspend:
\debug_resume:
```

```latex
\cs_set_protected:Npn \debug_suspend: { }
\cs_set_protected:Npn \debug_resume: { }
```

(End of definition for `\debug_suspend:` and `\debug_resume:`. These functions are documented on page 30.)
Some commands were more recently deprecated and not yet removed; only make these into errors if the user requests it. This relies on two token lists, filled up in _l3deprecation

\cs_set_nopar:Npn \g__debug_deprecation_on_tl { }
\cs_set_nopar:Npn \g__debug_deprecation_off_tl { }
\cs_set_protected:Npn __kernel_deprecation_code:nn #1#2
{
 \tl_gput_right:Nn \g__debug_deprecation_on_tl {#1}
 \tl_gput_right:Nn \g__debug_deprecation_off_tl {#2}
}

(End of definition for _kernel_deprecation_code:nn, \g__debug_deprecation_on_tl, and \g__debug_deprecation_off_tl.)

43.7 Conditional processing and definitions

\underline{\texttt{_prg}}

Underneath any predicate function (_\texttt{p}) or other conditional forms (\texttt{TF}, etc.) is a built-in logic saying that it after all of the testing and processing must return the (\texttt{state}) this leaves \texttt{Ti\TeX} in. Therefore, a simple user interface could be something like
\begin{verbatim}
\if_meaning:w #1#2
 \prg_return_true:
\else:
 \if_meaning:w #1#3
 \prg_return_true:
 \else:
 \prg_return_false:
 \fi:
\fi:
\end{verbatim}

Usually, a \texttt{Ti\TeX} programmer would have to insert a number of \texttt{\exp_after:wN}s to ensure the state value is returned at exactly the point where the last conditional is finished. However, that obscures the code and forces the \texttt{Ti\TeX} programmer to prove that he/she knows the \(2^n - 1\) table. We therefore provide the simpler interface.

\underline{\texttt{\prg_return_true:}} \underline{\texttt{\prg_return_false:}}

The idea here is that \texttt{\exp:w} expands fully any \texttt{\else:} and \texttt{\fi:} that are waiting to be discarded, before reaching the \texttt{\exp_end:} which leaves an empty expansion. The code can then leave either the first or second argument in the input stream. This means that all of the branching code has to contain at least two tokens: see how the logical tests are actually implemented to see this.

\begin{verbatim}
\cs_set:Npn \prg_return_true:
{ \exp_after:wN \use_i:nn \exp:w }
\cs_set:Npn \prg_return_false:
{ \exp_after:wN \use_ii:nn \exp:w }
\end{verbatim}

An extended state space could be implemented by including a more elaborate function in place of \texttt{\use_i:nn/\use_ii:nn}. Provided two arguments are absorbed then the code would work.

(End of definition for \texttt{\prg_return_true:} and \texttt{\prg_return_false:}. These functions are documented on page 65.)
Private version of \use_none_delimit_by_q_recursion_stop:w.

\cs_set:Npn __prg_use_none_delimit_by_q_recursion_stop:w #1 \q__prg_recursion_stop { }

(End of definition for __prg_use_none_delimit_by_q_recursion_stop:w.)

\prg_set_conditional:Nnn \prg_gset_conditional:Nnn \prg_new_conditional:Nnn \prg_set_protected_conditional:Nnn \prg_gset_protected_conditional:Nnn \prg_new_protected_conditional:Nnn __prg_generate_conditional_parm:NNNpnn

The user functions for the types using parameter text from the programmer. The various functions only differ by which function is used for the assignment. For those \NNNN functions, we must grab the parameter text, reading everything up to a left brace before continuing. Then split the base function into name and signature, and feed \{⟨name⟩\} \{⟨signature⟩\} \{⟨set or new⟩\} \{⟨maybe protected⟩\} \{⟨parameters⟩\} \{TF,...\} \{⟨code⟩\} to the auxiliary function responsible for defining all conditionals. Note that \e stands for expandable and \p for protected.

The user functions for the types automatically inserting the correct parameter text based on the signature. The various functions only differ by which function is used for the assignment. Split the base function into name and signature. The second auxiliary generates the parameter text from the number of letters in the signature. Then feed \{⟨name⟩\} \{⟨signature⟩\} \{⟨boolean⟩\} \{⟨set or new⟩\} \{⟨maybe protected⟩\} \{⟨parameters⟩\} \{TF,...\} \{⟨code⟩\} to the auxiliary function responsible for defining all conditionals. If the \langle signature \rangle has more than 9 letters, the definition is aborted since TEX macros have at most 9 arguments. The erroneous case where the function name contains no colon is captured later.
The workhorse here is going through a list of desired forms, i.e., \p, TF, T and F. The first three arguments come from splitting up the base form of the conditional, which gives the name, signature and a boolean to signal whether or not there was a colon in the name. In the absence of a colon, we throw an error and don’t define any conditional. The fourth and fifth arguments build up the defining function. The sixth is the parameters to use (possibly empty), the seventh is the list of forms to define, the eighth is the replacement text which we will augment when defining the forms. The use of \tl_to_str:n makes the later loop more robust.

A large number of our low-level conditionals look like ⟨\code⟩ \prg_return_true: \else: \prg_return_false: \fi: so we optimize this special case by calling __prg_generate_conditional_fast:nw {⟨\code⟩}. This passes \use_i:nn instead of \use_i_i:nnn to functions such as __prg_generate_p_form:wNnNNnnN.

\cs_set_protected:Npn __prg_generate_conditional:nnNNnnn #1#2#3#4#5#6#7#8
{\if_meaning:w \c_false_bool #3
\msg_error:nne { kernel } { missing-colon }
{ \token_to_str:c { #1 : #2 } }
\exp_after:wN \use_none:nn
\fi:
\exp_after:wN \use_i:nn
\exp_not:N __prg_generate_conditional:NNnnnnNw
Looping through the list of desired forms. First are six arguments and seventh is the form. Use the form to call the correct type. If the form does not exist, the `\use:c` construction results in `\relax`, and the error message is displayed (unless the form is empty, to allow for `{T, , F}`), then `\use_none:nnnnnnnn` cleans up. Otherwise, the error message is removed by the variant form.

```
\cs_set_protected:Npn \__prg_generate_conditional:NNnnnnNw #1#2#3#4#5#6#7#8 ,
  {
    \if_meaning:w \q__prg_recursion_tail #8
      \exp_after:wN \__prg_use_none_delimit_by_q_recursion_stop:w
    \fi:
    \use:c { __prg_generate_ #8_form:wNNnnnnN }
    \tl_if_empty:nF {#8}
      { \msg_error:nnee { kernel } { conditional-form-unknown } {#8} { \token_to_str:c { #3 : #4 } } }
    \else:
      \use_none:nnnnnnnn
    \fi:
  }

\__prg_generate_p_form:wNNnnnnN
\__prg_generate_TF_form:wNNnnnN
\__prg_generate_F_form:wNNnnnN
\__prg_p_true:w
\__prg_T_true:w
\__prg_F_true:w
\__prg_TF_true:w
```

How to generate the various forms. Those functions take the following arguments: 1: junk, 2: `\cs_set:Npn` or similar, 3: p (for protected conditionals) or e, 4: function name, 5: signature, 6: parameter text, 7: replacement (possibly trimmed by `__prg_generate_conditional_fast:nw`), 8: `\use_i:ii:nnn` or `\use_i:nn` (for “fast” conditionals). Remember that the logic-returning functions expect two arguments to be present after `\exp_end::` notice the construction of the different variants relies on this, and that the TF and F variants will be slightly faster than the T version. The p form is only valid for expandable tests, we check for that by making sure that the second argument is empty. For “fast” conditionals, #7 has an extra `\if_...`. To optimize a bit further we don’t use `\exp_after:wN \use_i:ii:nnn` and similar but instead use `__prg_TF_true:w` and similar to swap out the macro after `\fi::`. It would be a tiny bit faster if we directly
grabbed the T and F arguments there, but if those are actually missing, the recovery from
the runaway argument would not insert \fi: back, messing up nesting of conditionals.

\cs_set_protected:Npn __prg_generate_p_form:wNNnnnnN
 \#1 \s__prg_stop #2#3#4#5#6\#7\#8
 {\if_meaning:w e #3
 \exp_after:wN \use_i:nn
 \else:
 \exp_after:wN \use_ii:nn
 \fi:
 {\exp_args:Nc #2 { \#4 _p: \#5 } \#6 }
 { \#7 \exp_end: \c_true Bool \c_false Bool }
 { \#7 __prg_p_true:w \fi: \c_false Bool }
 }
 \msg_error:nne { kernel } { protected-predicate }
 { \token_to_str:c { \#4 _p: \#5 } }
 }
\cs_set_protected:Npn __prg_generate_T_form:wNNnnnnN
 \#1 \s__prg_stop #2#3#4#5#6\#7\#8
 {#8
 \exp_args:Nc #2 { \#4 _p: \#5 T } \#6 }
 { \#7 \exp_end: \use:n \use_none:n }
 { \#7 __prg_T_true:w \fi: \use_none:n }
 }
\cs_set_protected:Npn __prg_generate_F_form:wNNnnnnN
 \#1 \s__prg_stop #2#3#4#5#6\#7\#8
 {#8
 \exp_args:Nc #2 { \#4 _p: \#5 F } \#6 }
 { \#7 \exp_end: { } }
 { \#7 __prg_F_true:w \fi: \use:n }
 }
\cs_set_protected:Npn __prg_generate_TF_form:wNNnnnnN
 \#1 \s__prg_stop #2#3#4#5#6\#7\#8
 {#8
 \exp_args:Nc #2 { \#4 _p: \#5 TF } \#6 }
 { \#7 \exp_end: { } }
 { \#7 __prg_TF_true:w \fi: \use_ii:nn }
\cs_set:Npn __prg_p_true:w \fi: \c_false Bool { \fi: \c_true Bool }
\cs_set:Npn __prg_T_true:w \fi: \use_none:n { \fi: \use:n }
\cs_set:Npn __prg_F_true:w \fi: \use:n { \fi: \use_none:n }
\cs_set:Npn __prg_TF_true:w \fi: \use_ii:nn { \fi: \use_i:nn }

(End of definition for __prg_generate_p_form:wNNnnnnN and others.)

The setting-equal functions. Split both functions and feed \{\langle name1\rangle\} \{\langle signature1\rangle\}
Split the function to be defined, and setup a manual clist loop over argument #6 of the first auxiliary. The second auxiliary receives twice three arguments coming from splitting the function to be defined and the function to copy. Make sure that both functions contained a colon, otherwise we don’t know how to build conditionals, hence abort. Call the looping macro, with arguments {⟨name1⟩} {⟨signature1⟩} {⟨name2⟩} {⟨signature2⟩} ⟨copying function⟩ and followed by the comma list. At each step in the loop, make sure that the conditional form we copy is defined, and copy it, otherwise abort.

(End of definition for \prg_set_eq Conditional:NNn and others. These functions are documented on page 65.)
All that is left is to define the canonical boolean true and false. I think Michael originated the idea of expandable boolean tests. At first these were supposed to expand into either \texttt{TT} or \texttt{TF} to be tested using \texttt{if:w} but this was later changed to \texttt{00} and \texttt{01}, so they could be used in logical operations. Later again they were changed to being numerical constants with values of 1 for true and 0 for false. We need this from the get-go.

\section*{43.8 Dissecting a control sequence}

\texttt{_cs_count_signature:N} \texttt{_cs_count_signature:N} \langle \texttt{function} \rangle

Splits the \langle \texttt{function} \rangle into the \langle \texttt{name} \rangle (i.e. the part before the colon) and the \langle \texttt{signature} \rangle (i.e. after the colon). The \langle \texttt{number} \rangle of tokens in the \langle \texttt{signature} \rangle is then left in the input stream. If there was no \langle \texttt{signature} \rangle then the result is the marker value -1.

\texttt{_cs_tmp:w} \texttt{_cs_to_str:N} \texttt{_cs_to_str:N} \texttt{_cs_to_str:w}

Function used for various short-term usages, for instance defining functions whose definition involves tokens which are hard to insert normally (spaces, characters with category other).

This converts a control sequence into the character string of its name, removing the leading escape character. This turns out to be a non-trivial matter as there are different cases:

\begin{itemize}
 \item The usual case of a printable escape character;
 \item the case of a non-printable escape characters, e.g., when the value of the \texttt{_escapechar} is negative;
\end{itemize}
• when the escape character is a space.

One approach to solve this is to test how many tokens result from \texttt{\token_to_str:N \a}.
If there are two tokens, then the escape character is printable, while if it is non-printable
then only one is present.

However, there is an additional complication: the control sequence itself may start
with a space. Clearly that should not be lost in the process of converting to a string.
So the approach adopted is a little more intricate still. When the escape character is printable,
\texttt{\token_to_str:N \a} yields the escape character itself and a space. The character
codes are different, thus the \texttt{\if:w test is false, and \TeX reads __cs_to_str:N after turn-
ing the following control sequence into a string; this auxiliary removes the escape char-
acter, and stops the expansion of the initial \texttt{\tex_romannumeral:D}. The second case is
that the escape character is printable. Then the \texttt{\if:w test is unfinished after reading
a space from \texttt{\token_to_str:N \a}, and the auxiliary __cs_to_str:w is expanded,
feeding – as a second character for the test; the test is false, and \TeX skips to \fi:, then
performs \texttt{\token_to_str:N \a}, and stops the \texttt{\tex_romannumeral:D} with \texttt{\c_zero_int}.
The last case is that the escape character is not printable. Then the \texttt{\if:w test is true,
and the auxiliary __cs_to_str:w comes into play, inserting \texttt{- \int_value:w},
which expands \texttt{\c_zero_int} to the character 0. The initial \texttt{\tex_romannumeral:D} then
sees 0, which is not a terminated number, followed by the escape character, a space,
which is removed, terminating the expansion of \texttt{\tex_romannumeral:D}. In all three
cases, \texttt{\cs_to_str:N} takes two expansion steps to be fully expanded.

\begin{verbatim}
\cs_set:Npn \cs_to_str:N #1 { \c_zero_int }
\cs_set:Npn __cs_to_str:w #1 __cs_to_str:N #2 __cs_to_str:w __cs_to_str:N #3 __cs_to_str:N #4 __cs_stop { \exp_after:wN \c_zero_int }
\end{verbatim}

If speed is a concern we could use \texttt{\csstring} in \LuaTeX. For the empty csname that
primitive gives an empty result while the current \texttt{\cs_to_str:N} gives incorrect results
in all engines (this is impossible to fix without huge performance hit).

\begin{footnotesize}
\begin{verbatim}
\cs_split_function:N __cs_split_function_auxi:w __cs_split_function_auxii:w
\end{verbatim}
\end{footnotesize}

This function takes a function name and splits it into name with the escape char removed
and argument specification. In addition to this, a third argument, a boolean (true) or
\texttt{(false)} is returned with (true) for when there is a colon in the function and (false) if there
is not.

First ensure that we actually get a properly evaluated string by expanding \texttt{\cs_-
to_str:N} twice. If the function contained a colon, the auxiliary takes as \#1 the function
name, delimited by the first colon, then the signature \#2, delimited by \texttt{\s__cs_mark}, then
\texttt{\c_true_bool} as \#3, and \#4 cleans up until \texttt{\s__cs_stop}. Otherwise, the \#1 contains
the function name and \texttt{\s__cs_mark \c_true_bool}, \#2 is empty, \#3 is \texttt{\c_false_bool},
and #4 cleans up. The second auxiliary trims the trailing _cs_mark from the function name if present (that is, if the original function had no colon).

\begin{verbatim}
\cs_set_protected:Npn _cs_tmp:w #1
 \exp_after:wN \exp_after:wN \exp_after:wN
 __cs_split_function_auxi:w
 \cs_to_str:N #1 _cs_mark \c_true_bool
 _cs_mark \c_false_bool _cs_stop
\cs_set:Npn __cs_split_function_auxi:w
 _cs_split_function_auxii:w _cs_mark _cs_stop {##2} ##3
\cs_set:Npn __cs_split_function_auxii:w #1 _cs_mark _cs_stop {##1}
\exp_after:wN __cs_tmp:w \token_to_str:N :\end{verbatim}

(End of definition for \texttt{_cs_split_function:N}, \texttt{_cs_split_function_auxi:w}, and \texttt{_cs_split_function_auxii:w}. This function is documented on page 22.)

43.9 Exist or free

A control sequence is said to exist (to be used) if has an entry in the hash table and its meaning is different from the primitive \texttt{\relax} token. A control sequence is said to be free (to be defined) if it does not already exist.

Two versions for checking existence. For the \texttt{N} form we firstly check for \texttt{\scan_stop:} and then if it is in the hash table. There is no problem when inputting something like \texttt{\else:} or \texttt{\fi:} as \texttt{\exp_stop:N} will only ever skip input in case the token tested against is \texttt{\scan_stop:}.

\begin{verbatim}
\prg_set_conditional:Npnn \cs_if_exist:N #1 { p , T , F , TF }
 \if_meaning:w #1 \scan_stop:
 \prg_return_false:
 \else:
 \if_cs_exist:N #1
 \prg_return_true:
 \else:
 \prg_return_false:
 \fi:
 \fi:
\end{verbatim}

For the \texttt{c} form we firstly check if it is in the hash table and then for \texttt{\scan_stop:} so that we do not add it to the hash table unless it was already there. Here we have to be careful as the text to be skipped if the first test is false may contain tokens that disturb the scanner. Therefore, we ensure that the second test is performed after the first one has concluded completely.

\begin{verbatim}
\prg_set_conditional:Npnn \cs_if_exist:c #1 { p , T , F , TF }
 \if_cs_exist:w #1 \cs_end:
 \exp_after:wN \use_i:nn
\end{verbatim}
\begin{verbatim}
\else:
 \exp_after:wN \use_ii:nn
 \fi:
 \{\exp_after:wN \if_meaning:w \cs:w #1 \cs_end: \scan_stop:
 \prg_return_false:
 \else:
 \prg_return_true:
 \fi:
 }
\prg_return_false:
\}
\end{verbatim}

(End of definition for \cs_if_exist:N. This function is documented on page 28.)

\cs_if_free_p:N The logical reversal of the above.
\cs_if_free_p:c\prg_set_conditional:Nnnn \cs_if_free:N #1 { p , T , F , TF }
\cs_if_free:N\{ \if_meaning:w #1 \scan_stop:
\prg_return_true:
\else:
 \if_cs_exist:N #1
 \prg_return_false:
 \else:
 \prg_return_true:
 \fi:
\fi:
\}
\prg_set_conditional:Nnnn \cs_if_free:c #1 { p , T , F , TF }
\{\if_cs_exist:w #1 \cs_end:
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_ii:nn
\fi:
 \{\exp_after:wN \if_meaning:w \cs:w #1 \cs_end: \scan_stop:
 \prg_return_true:
 \else:
 \prg_return_false:
 \fi:
 }
\prg_return_true:
\}
\end{verbatim}

(End of definition for \cs_if_free:N. This function is documented on page 28.)

\cs_if_exist_use:N The \cs_if_exist_use:... functions cannot be implemented as conditionals because
the true branch must leave both the control sequence itself and the true code in the input
stream. For the \texttt{c} variants, we are careful not to put the control sequence in the hash
table if it does not exist. In \LaTeX{} we could use the \texttt{\lastnamedcs} primitive.
\cs_set:Npn \cs_if_exist_use:Nf #1\#2
\cs_set:Npn \cs_if_exist_use:N #1\#2
\cs_set:Npn \cs_if_exist_use:NF #1
43.10 Preliminaries for new functions

We provide two kinds of functions that can be used to define control sequences. On the one hand we have functions that check if their argument doesn’t already exist, they are called \..._new. The second type of defining functions doesn’t check if the argument is already defined.

Before we can define them, we need some auxiliary macros that allow us to generate error messages. The next few definitions here are only temporary, they will be redefined later on.

\msg_error:nnee
\msg_error:nne
\msg_error:nn

If an internal error occurs before \LaTeX3 has loaded l3msg then the code should issue a usable if terse error message and halt. This can only happen if a coding error is made by the team, so this is a reasonable response. Setting the \newlinechar is needed, to turn \hline into a proper line break in plain \TeX.

\msg_line_context: Another one from l3msg which will be altered later.
We define a routine to write only to the log file. And a similar one for writing to both the log file and the terminal. These will be redefined later by \texttt{l3file}.

\begin{verbatim}
\cs_set_protected:Npn \iow_log:e
{ \tex_immediate:D \tex_write:D -1 }
\cs_set_protected:Npn \iow_term:e
{ \tex_immediate:D \tex_write:D 16 }
\end{verbatim}

This command is called by \texttt{\cs_new_nopar:Npn} and \texttt{\cs_new_eq:NN} \texttt{etc.} to make sure that the argument sequence is not already in use. If it is, an error is signalled. It checks if \texttt{\csname} is undefined or \texttt{\scan_stop:}. Otherwise an error message is issued. We have to make sure we don’t put the argument into the conditional processing since it may be an \texttt{\if...} type function!

\begin{verbatim}
\cs_set:Npn __kernel_chk_if_free_cs:N #1
{ \cs_if_free:NF #1
{ \msg_error:nnee { kernel } { command-already-defined }
{ \token_to_str:N #1 } { \token_to_meaning:N #1 }
}
}
\cs_set_protected:Npn __kernel_chk_if_free_cs:c
{ \exp_args:Nc __kernel_chk_if_free_cs:N }
\end{verbatim}

Function which check that the control sequence is free before defining it.

\begin{verbatim}
\cs_new_nopar:Npn \cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npe \cs_new_protected_nopar:Npx
\cs_new_nopar:Npn \cs_new_protected_nopar:Npx
\cs_new:Npn \cs_new_protected:Npn \cs_new_protected:Npe \cs_new_protected:Npx
\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npe \cs_new_protected_nopar:Npx
\cs_new_protected:Npx
\cs_new_protected:Npe \cs_new_protected:Npx
\cs_new:Npn \cs_new_protected:Npx
\cs_new_protected:Npe \cs_new_protected:Npx
\end{verbatim}

43.11 Defining new functions

Function which check that the control sequence is free before defining it.
Like \texttt{\cs_set_nopar:Npn} and \texttt{\cs_new_nopar:Npn}, except that the first argument consists of the sequence of characters that should be used to form the name of the desired control sequence (the \texttt{c} stands for \texttt{csname} argument, see the expansion module). Global versions are also provided.

\texttt{\cs_set_nopar:cpn} \texttt{(string)}(\texttt{rep-text}) turns \texttt{(string)} into a \texttt{csname} and then assigns \texttt{\{rep-text\}} to it by using \texttt{\cs_set_nopar:Npn}. This means that there might be a parameter string between the two arguments.

\begin{verbatim}
1950 \cs_set:Npn __cs_tmp:w #1#2 { \cs_new_protected_nopar:Npn #1 { \exp_args:Nc #2 } }
1951 __cs_tmp:w \cs_set_nopar:cpn \cs_set_nopar:Npn
1952 __cs_tmp:w \cs_set_nopar:cpe \cs_set_nopar:Npe
1953 __cs_tmp:w \cs_set_nopar:cpx \cs_set_nopar:Npx
1954 __cs_tmp:w \cs_gset_nopar:cpn \cs_gset_nopar:Npn
1955 __cs_tmp:w \cs_gset_nopar:cpe \cs_gset_nopar:Npe
1956 __cs_tmp:w \cs_gset_nopar:cpx \cs_gset_nopar:Npx
1957 __cs_tmp:w \cs_new_nopar:cpn \cs_new_nopar:Npn
1958 __cs_tmp:w \cs_new_nopar:cpe \cs_new_nopar:Npe
1959 __cs_tmp:w \cs_new_nopar:cpx \cs_new_nopar:Npx
\end{verbatim}

Variants of the \texttt{\cs_set:Npn} versions which make a \texttt{csname} out of the first arguments. We may also do this globally.

\begin{verbatim}
1960 \cs_set:cpn __cs_tmp:w \cs_set:Npn
1961 __cs_tmp:w \cs_set:cpe \cs_set:Npe
1962 __cs_tmp:w \cs_set:cpx \cs_set:Npx
1963 __cs_tmp:w \cs_gset:cpn \cs_gset:Npn
1964 __cs_tmp:w \cs_gset:cpe \cs_gset:Npe
1965 __cs_tmp:w \cs_gset:cpx \cs_gset:Npx
1966 __cs_tmp:w \cs_new:cpn \cs_new:Npn
1967 __cs_tmp:w \cs_new:cpe \cs_new:Npe
1968 __cs_tmp:w \cs_new:cpx \cs_new:Npx
\end{verbatim}

Variants of the \texttt{\cs_set_protected_nopar:Npn} versions which make a \texttt{csname} out of the first arguments. We may also do this globally.

\begin{verbatim}
1970 \cs_set_protected_nopar:cpn __cs_tmp:w \cs_set_protected_nopar:Npn
1971 __cs_tmp:w \cs_set_protected_nopar:cpe \cs_set_protected_nopar:Npe
1972 __cs_tmp:w \cs_set_protected_nopar:cpx \cs_set_protected_nopar:Npx
1973 __cs_tmp:w \cs_gset_protected_nopar:cpn \cs_gset_protected_nopar:Npn
1974 __cs_tmp:w \cs_gset_protected_nopar:cpe \cs_gset_protected_nopar:Npe
1975 __cs_tmp:w \cs_gset_protected_nopar:cpx \cs_gset_protected_nopar:Npx
1976 __cs_tmp:w \cs_new_protected_nopar:cpn \cs_new_protected_nopar:Npn
1977 __cs_tmp:w \cs_new_protected_nopar:cpe \cs_new_protected_nopar:Npe
1978 __cs_tmp:w \cs_new_protected_nopar:cpx \cs_new_protected_nopar:Npx
\end{verbatim}

(End of definition for \texttt{\cs_set_protected_nopar:Npn}. This function is documented on page ??.)
Variants of the \texttt{\cs_set_protected:npn} versions which make a csname out of the first arguments. We may also do this globally.

\begin{verbatim}
\texttt{\cs_set_protected:cpn} \texttt{\cs_set_protected:cpe} \texttt{\cs_set_protected:cpx}
\texttt{\cs_gset_protected:cpn} \texttt{\cs_gset_protected:cpe} \texttt{\cs_gset_protected:cpx}
\texttt{\cs_new_protected:cpn} \texttt{\cs_new_protected:cpe} \texttt{\cs_new_protected:cpx}
\end{verbatim}

(End of definition for \texttt{\cs_set_protected:npn}. This function is documented on page ??.)

43.12 Copying definitions

These macros allow us to copy the definition of a control sequence to another control sequence. The = sign allows us to define funny char tokens like = itself or \texttt{\hbox{\hglue1sp}} with this function. For the definition of \\texttt{\cs_space_char{}{}} to work we need the \texttt{~} after the =.

\begin{verbatim}
\texttt{\cs_set_eq:NN} \texttt{\cs_set_eq:cN} \texttt{\cs_set_eq:Nc} \texttt{\cs_set_eq:cc}
\texttt{\cs_gset_eq:NN} \texttt{\cs_gset_eq:cN} \texttt{\cs_gset_eq:Nc} \texttt{\cs_gset_eq:cc}
\texttt{\cs_new_eq:NN} \texttt{\cs_new_eq:cN} \texttt{\cs_new_eq:Nc} \texttt{\cs_new_eq:cc}
\end{verbatim}

(End of definition for \texttt{\cs_set_eq:NN}, \texttt{\cs_gset_eq:NN}, and \texttt{\cs_new_eq:NN}. These functions are documented on page 20.)

43.13 Undefining functions

The following function is used to free the main memory from the definition of some function that isn't in use any longer. The \texttt{c} variant is careful not to add the control sequence to the hash table if it isn't there yet, and it also avoids nesting \TeX\ conditionals in case \#1 is unbalanced in this matter.

\begin{verbatim}
\texttt{\cs_undefine:N} \texttt{\cs_undefine:c}
\end{verbatim}

388
\begin{verbatim}
\cs_new_protected:Npn \cs_undefine:c #1 2006
{ 2007 \if_cs_exist:w #1 \cs_end: 2008 \exp_after:wN \use:n 2009 \else: 2010 \exp_after:wN \use_none:n 2011 \fi:
2012 { \cs_gset_eq:cN {#1} \tex_undefined:D }
2013 }
2014
\end{verbatim}

(End of definition for \cs_undefine:c. This function is documented on page 20.)

43.14 Generating parameter text from argument count

\LaTeX{} provides shorthands to define control sequences and conditionals with a simple parameter text, derived directly from the signature, or more generally from knowing the number of arguments, between 0 and 9. This function expands to its first argument, untouched, followed by a brace group containing the parameter text \{#1...#n\}, where \textit{n} is the result of evaluating the second argument (as described in \int_eval:n). If the second argument gives a result outside the range [0, 9], the third argument is returned instead, normally an error message. Some of the functions use here are not defined yet, but will be defined before this function is called.

\begin{verbatim}
\cs_set_protected:Npn __kernel_cs_parm_from_arg_count:nnF #1#2 2016
{ 2017 \exp_args:Ne __cs_parm_from_arg_count_test:nnF 2018 {#1} 2019 } 2020
\cs_set_protected:Npn __cs_parm_from_arg_count_test:nnF #1#2 2021
{ 2022 \if_case:w \int_eval:n {#2} 2023 { } 2024 \or: { ##1 } 2025 \or: { ##1##2 } 2026 \or: { ##1##2##3 } 2027 \or: { ##1##2##3##4 } 2028 \or: { ##1##2##3##4##5 } 2029 \or: { ##1##2##3##4##5##6 } 2030 \or: { ##1##2##3##4##5##6##7 } 2031 \or: { ##1##2##3##4##5##6##7##8 } 2032 \or: { ##1##2##3##4##5##6##7##8##9 } 2033 \else: { \c_false_bool } 2034 \fi:
2035 } 2036
\end{verbatim}
43.15 Defining functions from a given number of arguments

Counting the number of tokens in the signature, i.e., the number of arguments the function should take. Since this is not used in any time-critical function, we simply use \texttt{tl_count:n} if there is a signature, otherwise \texttt{-1} arguments to signal an error. We need a variant form right away.

\begin{verbatim}
\cs_new:Npn __cs_count_signature:N #1 { \exp_args:Nf __cs_count_signature:n { \cs_split_function:N #1 } }
\cs_new:Npn __cs_count_signature:n #1 { \int_eval:n { __cs_count_signature:nnN #1 } }
\cs_new:Npn __cs_count_signature:nnN #1#2#3 {
 \if_meaning:w \c_true_bool #3 \tl_count:n {#2} \else: \tl_count:n {__cs_count_signature:c} \fi: }
\cs_new:Npn __cs_count_signature:c { \exp_args:Nc __cs_count_signature:N }
\end{verbatim}

We provide a constructor function for defining functions with a given number of arguments. For this we need to choose the correct parameter text and then use that when defining. Since \LaTeX{} supports from zero to nine arguments, we use a simple switch to choose the correct parameter text, ensuring the result is returned after finishing the conditional. If it is not between zero and nine, we throw an error.

\begin{verbatim}
\cs_new_protected:Npn \cs_generate_from_arg_count:NNnn #1#2#3#4 {
 __kernel_cs_parm_from_arg_count:nnF { \use:nnn #2 #1 } {#3}
 { \msg_error:nnee { kernel } { bad-number-of-arguments } { \token_to_str:N #1 } { \int_eval:n {#3} } \use_none:n }
 {#4}
}
\end{verbatim}

A variant form we need right away, plus one which is used elsewhere but which is most logically created here.

\begin{verbatim}
\cs_new_protected:Npn \cs_generate_from_arg_count:cNnn { \exp_args:Nc \cs_generate_from_arg_count:NNnn }
\cs_generate_from_arg_count:NNnn
\end{verbatim}
43.16 Using the signature to define functions

We can now combine some of the tools we have to provide a simple interface for defining functions, where the number of arguments is read from the signature. For instance, \texttt{\cs_set:Nn \foo_bar:nn \{#1,#2\}}.

We want to define \texttt{\cs_set:Nn} as

\begin{verbatim}
\cs_set_protected:Npn \cs_set:Nn #1#2
{ \cs_generate_from_arg_count:NNnn #1 \cs_set:Npn { \@@_count_signature:N #1 } {#2} }
\end{verbatim}

In short, to define \texttt{\cs_set:Nn} we need just use \texttt{\cs_set_protected:Npn}, everything else is the same for each variant. Therefore, we can make it simpler by temporarily defining a function to do this for us.

\begin{verbatim}
\cs_set:Npn __cs_tmp:w #1#2#3
{ \cs_new_protected:cpx { cs_ #1 : #2 } \exp_not:N __cs_generate_from_signature:NNn \exp_after:wN \exp_not:N \cs:w cs_ #1 : #3 \cs_end: }
\end{verbatim}

\begin{verbatim}
\cs_new_protected:Npn __cs_generate_from_signature:nnNNNn #1#2#3#4#5#6
{ \bool_if:NTF #3
{ \cs_set_nopar:Npx __cs_tmp:w { \tl_map_function:nN {#2} __cs_generate_from_signature:n } \tl_if_empty:oF __cs_tmp:w { \msg_error:nneee { kernel } { non-base-function } { \token_to_str:N #5 } {#2} { __cs_tmp:w } }
\cs_generate_from_arg_count:NNnn #5 #4 \tl_count:n {#2} {#6} }

\end{verbatim}
Then we define the 24 variants beginning with \texttt{N}.

\begin{verbatim}
Then we define the 24 variants beginning with \texttt{N}.
\end{verbatim}

\begin{verbatim}
The 24 \texttt{c} variants simply use \texttt{exp_args:Nc}.
\end{verbatim}
43.17 Checking control sequence equality

Check if two control sequences are identical.

\begin{Verbatim}
\cs_if_eq_p:NN \cs_if_eq_p:cN \cs_if_eq_p:cc
\cs_if_eq:NN \cs_if_eq:cN \cs_if_eq:cc
\end{Verbatim}
43.18 Diagnostic functions

__kernel_chk_defined:NT Error if the variable \#1 is not defined.

__kernel_register_show:N __kernel_register_show:c __kernel_register_log:N __kernel_register_log:c __kernel_register_show_aux:NN __kernel_register_show_aux:nNN Simply using the \texttt{\showthe} primitive does not allow for line-wrapping, so instead use \texttt{\tl_show:n} and \texttt{\tl_log:n} (defined in \texttt{l3tl} and that performs line-wrapping). This displays \texttt{\langle variable \rangle=\langle value \rangle}. We expand the value before-hand as otherwise some integers (such as \texttt{\currentgrouplevel} or \texttt{\currentgrouptype}) altered by the line-wrapping code would show wrong values.
Some control sequences have a very long name or meaning. Thus, simply using \TeX{}’s primitive \texttt{\show} could lead to overlong lines. The output of this primitive is mimicked to some extent, then the re-built string is given to \texttt{\tl_show:n} or \texttt{\tl_log:n} for line-wrapping. We must expand the meaning before passing it to the wrapping code as otherwise we would wrongly see the definitions that are in place there. To get correct escape characters, set the \texttt{\escapechar} in a group; this also localizes the assignment performed by \texttt{e-expansion}. The \texttt{\cs_show:c} and \texttt{\cs_log:c} commands convert their argument to a control sequence within a group to avoid showing \texttt{\relax} for undefined control sequences.

\begin{verbatim}
\cs_new_protected:Npn \cs_show:N { __kernel_show:NN \tl_show:n }
\cs_new_protected:Npn \cs_show:c { \group_begin: \exp_args:NNc \group_end: \cs_show:N }
\cs_new_protected:Npn \cs_log:N { __kernel_show:NN \tl_log:n }
\cs_new_protected:Npn \cs_log:c { \group_begin: \exp_args:NNc \group_end: \cs_log:N }
\cs_new_protected:Npn __kernel_show:NN #1#2 { \group_begin: \int_set:Nn \tex_escapechar:D { '\ } \exp_args:NNe \group_end: #1 \token_to_str:N #2 = \cs_meaning:N #2 }
\end{verbatim}

(End of definition for \texttt{\cs_show:N}, \texttt{\cs_log:N}, and \texttt{__kernel_show:NN}. These functions are documented on page 20.)

\begin{verbatim}
\group_show_list: \group_log_list: __kernel_group_show:NN
\cs_new_protected:Npm \group_show_list: { __kernel_group_show:NN \use_none:n 1 }
\cs_new_protected:Npm \group_log_list: { __kernel_group_show:NN \int_zero:N 0 }
\cs_new_protected:Npm __kernel_group_show:NN #1#2 { \use:e { \int_set:Nn \tex_escapechar:D { '\ } \exp_args:NNe \group_begin: \int_set:Nn \tex_tracingonline:D {#2} \exp_not:N \exp_after:wN \scan_stop: \tex_showgroups:D \int_set:Nn \tex_interactionmode:D \{ \int_use:N \tex_interactionmode:D \} \int_set:Nn \tex_tracingonline:D \{ \int_use:N \tex_tracingonline:D \} \int_set:Nn \tex_errorcontextlines:D \{ \int_use:N \tex_errorcontextlines:D \} } }
\end{verbatim}

(End of definition for \texttt{\cs_show:N}, \texttt{\cs_log:N}, and \texttt{__kernel_show:NN}. These functions are documented on page 20.)
43.19 Decomposing a macro definition

We sometimes want to test if a control sequence can be expanded to reveal a hidden value. However, we cannot just expand the macro blindly as it may have arguments and none might be present. Therefore we define these functions to pick either the prefix(es), the parameter specification, or the replacement text from a macro. All of this information is returned as characters with catcode 12. If the token in question isn’t a macro, the token \scan_stop: is returned instead.

\cs_prefix_spec:N
\cs_parameter_spec:N
\cs_replacement_spec:N
_kernel_prefix_arg_replacement:wN

\prg_do_nothing: This does not fit anywhere else!
43.21 Breaking out of mapping functions

\prg_break_point:Nn \prg_map_break:Nn

In inline mappings, the nesting level must be reset at the end of the mapping, even when the user decides to break out. This is done by putting the code that must be performed as an argument of __prg_break_point:Nn. The breaking functions are then defined to jump to that point and perform the argument of __prg_break_point:Nn, before the user’s code (if any). There is a check that we close the correct loop, otherwise we continue breaking.

\cs_new_eq:NN \prg_break_point:Nn \use_ii:nn
\cs_new:Npn \prg_map_break:Nn #1#2#3 \prg_break_point:Nn #4#5
\begin{verbatim}
{ #5 \if_meaning:w #1 #4 \exp_after:wN \use_iii:nnn \fi:
 \prg_map_break:Nn #1 {#2}
}
\end{verbatim}

(End of definition for \prg_break_point:Nn and \prg_map_break:Nn. These functions are documented on page 72.)

\prg_break_point: \prg_break: \prg_break:n

Very simple analogues of \prg_break_point:Nn and \prg_map_break:Nn, for use in fast short-term recursions which are not mappings, do not need to support nesting, and in which nothing has to be done at the end of the loop.

\cs_new_eq:NN \prg_break_point: \prg_do_nothing:
\cs_new:Npn \prg_break: #1 \prg_break_point: { }
\cs_new:Npn \prg_break:n #1#2 \prg_break_point: {#2}

(End of definition for \prg_break_point:, \prg_break:, and \prg_break:n. These functions are documented on page 73.)

43.22 Starting a paragraph

\mode_leave_vertical:

The approach here is different to that used by \LaTeX2e or plain \TeX, which unbox a void box to force horizontal mode. That inserts the \everypar tokens before the re-inserted unboxing tokens. The approach here uses a protected macro, equivalent to the \quitvmode primitive. In vertical mode, the \indent primitive is inserted: this will switch to horizontal mode and insert \everypar tokens and nothing else. Unlike the \LaTeX2e version, the availability of \eps-\TeX{} means using a mode test can be done at for example the start of an \halign.

\begin{verbatim}
\cs_new_protected:Npn \mode_leave_vertical:
\begin{verbatim}
{ \if_mode_vertical:
 \exp_after:wN \tex_indent:D \fi:
 \end{verbatim}
\end{verbatim}

(End of definition for \mode_leave_vertical:. This function is documented on page 29.)

397
Chapter 44

\textbf{l3expan implementation}

The \texttt{_exp_internal_tl} module has its private variable to temporarily store the result of \texttt{x}-type argument expansion. This is done to avoid interference with other functions using temporary variables.

(End of definition for \texttt{_exp_internal_tl}.)

These are defined in \texttt{l3basics}, as they are needed “early”. This is just a reminder of that fact!

(End of definition for \texttt{\exp_after:wN}, \texttt{\exp_not:N}, and \texttt{\exp_not:n}. These functions are documented on page 39.)

\subsection*{44.1 General expansion}

In this section a general mechanism for defining functions that handle arguments is defined. These general expansion functions are expandable unless \texttt{x} is used. (Any version of \texttt{x} is going to have to use one of the \texttt{ET\LaTeX} \texttt{X3} names for \texttt{cs_set:Npx} at some point, and so is never going to be expandable.)

The definition of expansion functions with this technique happens in section 44.7. In section 44.2 some common cases are coded by a more direct method for efficiency, typically using calls to \texttt{\exp_after:wN}.

This scratch token list variable is defined in \texttt{l3basics}.

(End of definition for \texttt{_exp_internal_tl}.)

This code uses internal functions with names that start with \texttt{\::} to perform the expansions. All macros are long since the tokens undergoing expansion may be arbitrary user input.

An argument manipulator \texttt{\::(Z)} always has signature \texttt{#1\:::\#2\#3} where \texttt{#1} holds the remaining argument manipulations to be performed, \texttt{\::} serves as an end marker for the list of manipulations, \texttt{#2} is the carried over result of the previous expansion steps and \texttt{#3} is the argument about to be processed. One exception to this rule is \texttt{\::p}, which has to grab an argument delimited by a left brace.
#1 is the result of an expansion step, #2 is the remaining argument manipulations and #3 is the current result of the expansion chain. This auxiliary function moves #1 back after #3 in the input stream and checks if any expansion is left to be done by calling #2. In by far the most cases we need to add a set of braces to the result of an argument manipulation so it is more effective to do it directly here. Actually, so far only the c of the final argument manipulation variants does not require a set of braces.

```latex
\cs_new:Npn \__exp_arg_next:nnn #1#2#3 { #2 \::: { #3 {#1} } }
\cs_new:Npn \__exp_arg_next:Nnn #1#2#3 { #2 \::: { #3 #1 } }
```

(End of definition for __exp_arg_next:nnn and __exp_arg_next:Nnn.)

\::: The end marker is just another name for the identity function.

```latex
\cs_new:Npn \::: #1 {#1}
```

(End of definition for \:::. This function is documented on page 43.)

\::n This function is used to skip an argument that doesn’t need to be expanded.

```latex
\cs_new:Npn \::n #1 \::: #2#3 { #1 \::: {#2 {#3} } }
```

(End of definition for \::n. This function is documented on page 43.)

\::N This function is used to skip an argument that consists of a single token and doesn’t need to be expanded.

```latex
\cs_new:Npn \::N #1 \::: #2#3 { #1 \::: {#2#3} }
```

(End of definition for \::N. This function is documented on page 43.)

\::p This function is used to skip an argument that is delimited by a left brace and doesn’t need to be expanded. It is not wrapped in braces in the result.

```latex
\cs_new:Npn \::p #1 \::: #2#3# { #1 \::: {#2#3} }
```

(End of definition for \::p. This function is documented on page 43.)

\::c This function is used to skip an argument that is turned into a control sequence without expansion.

```latex
\cs_new:Npn \::c #1 \::: #2#3
\{ \exp_after:wN \__exp_arg_next:Nnn \cs:w #3 \cs_end: {#1} {#2} \}
```

(End of definition for \::c. This function is documented on page 43.)

\::o This function is used to expand an argument once.

```latex
\cs_new:Npn \::o #1 \::: #2#3
\{ \exp_after:wN \__exp_arg_next:nnn \exp_after:wN {#3} {#1} {#2} \}
```

(End of definition for \::o. This function is documented on page 43.)

\::e With the \texttt{\expanded} primitive available, just expand.

```latex
\cs_new:Npn \::e #1 \::: #2#3
\{ \text\texttt{\expanded} \{ \exp_not:n \{ #1 \::: \} \{ \exp_not:n \{#2 \} \{#3 \} \} \} \}
```

(End of definition for \::e. This function is documented on page 43.)
\texttt{\::f} This function is used to expand a token list until the first unexpandable token is found. This is achieved through \texttt{\exp:w\ \exp_end_continue_f:w} that expands everything in its way following it. This scanning procedure is terminated once the expansion hits something non-expandable (if that is a space it is removed). We introduce \texttt{\exp_stop_f:} to mark such an end-of-expansion marker. For example, \texttt{f}-expanding \texttt{\cs_set_eq:Nc \aaa { b \ l_tmpa_tl b } } where \texttt{l_tmpa_tl} contains the characters \texttt{lur} gives \texttt{\tex_let:D \aaa = \blurb} which then turns out to start with the non-expandable token \texttt{\tex_let:D}. Since the expansion of \texttt{\exp:w\ \exp_end_continue_f:w} is empty, we wind up with a fully expanded list, only \TeX{} has not tried to execute any of the non-expandable tokens. This is what differentiates this function from the \texttt{e} and \texttt{x} argument type.

\begin{verbatim}
\cs_new:Npn \::f #1 \::: #2#3
 \exp_after:wN __exp_arg_next:nnn
 \exp_after:wN { \exp:w \exp_end_continue_f:w #3 } \exp_after:wN {#1} \exp_after:wN {#2}
\end{verbatim}

(End of definition for \texttt{\::f} and \texttt{\exp_stop_f:}. These functions are documented on page 43.)

\texttt{\::x} This function is used to expand an argument fully. We build in the expansion of \texttt{___exp__arg_next:nnn}.

\begin{verbatim}
\cs_new_protected:Npn \::x #1 \::: #2#3
 \cs_set_nopar:Npe \l__exp_internal_tl
 { \exp_not:n { #1 \::: } \exp_not:n {#2} \exp_not:n {#3} } \l__exp_internal_tl
\end{verbatim}

(End of definition for \texttt{\::x}. This function is documented on page 43.)

\texttt{\::v} These functions return the value of a register, i.e., one of \texttt{tl}, \texttt{clist}, \texttt{int}, \texttt{skip}, \texttt{dim}, \texttt{muskip}, or built-in \TeX{} register. The \texttt{V} version expects a single token whereas \texttt{v} like \texttt{c} creates a csname from its argument given in braces and then evaluates it as if it was a \texttt{V}. The \texttt{\exp:w} sets off an expansion similar to an \texttt{f}-type expansion, which we terminate using \texttt{\exp_end:}. The argument is returned in braces.

\begin{verbatim}
\cs_new:Npn \::v #1 \::: #2#3
 \exp_after:wN __exp_arg_next:nnn
 \exp_after:wN { \exp:w __exp_eval_register:N #3 } \exp_after:wN {#1} \exp_after:wN {#2}
\end{verbatim}

(End of definition for \texttt{\::v} and \texttt{\::V}. These functions are documented on page 43.)

400
This function evaluates a register. Now a register might exist as one of two things: A parameter-less macro or a built-in \TeX register such as \texttt{\count}. For the \TeX registers we have to utilize a \texttt{\the} whereas for the macros we merely have to expand them once. The trick is to find out when to use \texttt{\the} and when not to. What we want here is to find out whether the token expands to something else when hit with \texttt{\exp_after:wN}. The technique is to compare the meaning of the token in question when it has been prefixed with \texttt{\exp_not:N} and the token itself. If it is a macro, the prefixed \texttt{\exp_not:N} temporarily turns it into the primitive \texttt{\scan_stop:}.

If the token was not a macro it may be a malformed variable from a \texttt{c} expansion in which case it is equal to the primitive \texttt{\scan_stop:}. In that case we throw an error. We could let \TeX do it for us but that would result in the rather obscure

\begin{verbatim}
! You can't use '\relax' after \the.
\end{verbatim}

which while quite true doesn't give many hints as to what actually went wrong. We provide something more sensible.

The next bit requires some explanation. The function must be initiated by \texttt{\exp:w} and we want to terminate this expansion chain by inserting the \texttt{\exp_end:} token. However, we have to expand the register \#1 before we do that. If it is a \TeX register, we need to execute the sequence \texttt{\exp_after:wN \exp_end: \tex_the:D \#1} and if it is a macro we need to execute \texttt{\exp_after:wN \exp_end: \#1}. We therefore issue the longer of the two sequences and if the register is a macro, we remove the \texttt{\tex_the:D}.

Clean up nicely, then call the undefined control sequence. The result is an error message looking like this:

\begin{verbatim}
! Undefined control sequence.
<argument> \LaTeX3 error: Errorneous variable used!
l.55 \tl_set:Nv \l_tmpa_tl {undefined_tl}
\end{verbatim}

(End of definition for __exp_eval_register:N and __exp_eval_error_msg:w.)
44.2 Hand-tuned definitions

One of the most important features of these functions is that they are fully expandable.

\begin{verbatim}
\exp_args:Nc \exp_args:cc
(End of definition for \exp_args:Nc and \exp_args:cc. These functions are documented on page 36.)

\exp_args:NNc \exp_args:Ncc \exp_args:Nccc
Here are the functions that turn their argument into csnames but are expandable.

2390 \cs_new:Npn \exp_args:NNc #1#2#3
2391 { \exp_after:wN #1 \exp_after:wN #2 \cs:w # 3\cs_end: }
2392 \cs_new:Npn \exp_args:Ncc #1#2#3
2393 { \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: \cs:w #3 \cs_end: }
2394 \cs_new:Npn \exp_args:Nccc #1#2#3#4
2395 { \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: \cs:w #3 \exp_after:wN \cs_end: \cs:w #4 \cs_end: }
(End of definition for \exp_args:NNc, \exp_args:Ncc, and \exp_args:Nccc. These functions are documented on page 37.)

\exp_args:No \exp_args:NNo \exp_args:NNNo
Those lovely runs of expansion!

2401 \cs_new:Npn \exp_args:No #1#2 { \exp_after:wN #1 \exp_after:wN {#2} }
2402 \cs_new:Npn \exp_args:NNo #1#2#3
2403 { \exp_after:wN #1 \exp_after:wN \cs:w \exp_after:wN #2 \exp_after:wN \cs_end: \cs:w #3 \exp_after:wN \cs_end: }
2404 \cs_new:Npn \exp_args:NNNo #1#2#3#4
2405 { \exp_after:wN #1 \exp_after:wN \cs:w #2 \exp_after:wN \cs_end: \cs:w #3 \exp_after:wN \cs_end: \cs:w #4 \exp_after:wN \cs_end: }
(End of definition for \exp_args:No, \exp_args:NNo, and \exp_args:NNNo. These functions are documented on page 36.)

\exp_args:Ne
When the \texttt{expanded} primitive is available, use it.

2406 \cs_new:Npn \exp_args:Ne #1#2 { \exp_after:wN #1 \exp_after:wN {\tex_expanded:D {{#2}}} }
(End of definition for \exp_args:Ne. This function is documented on page 36.)

\exp_args:Nf \exp_args:NV \exp_args:Nv
\end{verbatim}
Some more hand-tuned function with three arguments. If we forced that an \textit{a} argument always has braces, we could implement \texttt{\exp_args:Nco} with less tokens and only two arguments.

\begin{verbatim}
\cs_new:Npn \exp_args:NNV #1#2#3
{ \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN { \exp:w __exp_eval_register:N #3 } }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \exp_args:NNv #1#2#3
{ \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN { \exp:w __exp_eval_register:c {#3} } }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \exp_args:NNe #1#2#3
{ \exp_after:wN #1 \exp_after:wN #2 \tex_expanded:D \{ \exp:w __exp_eval_register:N #3 \} }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \exp_args:NNf #1#2#3
{ \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN { \exp:w \exp_end_continue_f:w #3 } }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \exp_args:Nco #1#2#3
{ \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: \exp_after:wN {#3} }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \exp_args:NcV #1#2#3
{ \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: \exp_after:wN { \exp:w __exp_eval_register:N #3 } }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \exp_args:Ncf #1#2#3
{ \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: \exp_after:wN { \exp:w \exp_end_continue_f:w #3 } }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \exp_args:NVV #1#2#3
{ \exp_after:wN #1 \exp_after:wN \cs:w \exp_after:wN \cs_end: \exp_after:wN { \exp:w __exp_eval_register:N #3 } }
\end{verbatim}
\exp_after:wN { \exp:w \exp_after:wN ____eval_register:N \exp_after:wN #2 \exp_after:wN } \exp_after:wN { \exp:w __exp_eval_register:N #3 } \exp_after:wN { \exp:w ____eval_register:N #4 } \exp_after:wN { \exp:w ____eval_register:c {#4} } \exp_after:wN {#4} \exp_after:wN {#4}

(End of definition for \exp_args:NNV and others. These functions are documented on page 37.)

\exp_args:NNNV \exp_args:NNv \exp_args:NNNe \exp_args:NcNc \exp_args:NcNo \exp_args:Ncco

A few more that we can hand-tune.

\cs_new:Npn \exp_args:NNNV #1#2#3#4
\cs_new:Npn \exp_args:NNNv #1#2#3#4
\cs_new:Npn \exp_args:NNNe #1#2#3#4
\cs_new:Npn \exp_args:NcNc #1#2#3#4
\cs_new:Npn \exp_args:NcNo #1#2#3#4
\cs_new:Npn \exp_args:Ncco #1#2#3#4

(End of definition for \exp_args:NNNV and others. These functions are documented on page 37.)

\exp_args:Nx
There are a few places where the last argument needs to be available unbraced. First some helper macros.

```
\cs_new:Npn \__exp_arg_last_unbraced:nn #1#2 { #2#1 }
\cs_new:Npn \::o_unbraced \::: #1#2 { \exp_after:wN \__exp_arg_last_unbraced:nn \exp_after:wN {#2} {#1} }
\cs_new:Npn \::V_unbraced \::: #1#2 { \exp_after:wN \__exp_arg_last_unbraced:nn \exp_after:wN \exp:w \__exp_eval_register:N #2 \exp:w \__exp_eval_register:c {#1} }
\cs_new:Npn \::v_unbraced \::: #1#2 { \exp_after:wN \__exp_arg_last_unbraced:nn \exp_after:wN \exp:w \exp_end_continue_f:w #2 }
\cs_new:Npn \::e_unbraced \::: #1#2 { \tex_expanded:D { \exp_not:n {#1} #2 } }
\cs_new:Npn \::f_unbraced \::: #1#2 { \exp_after:wN \__exp_arg_last_unbraced:nn \exp_after:wN \exp:w \exp_end_continue_f:w #2 }
\cs_new:Npn \::x_unbraced \::: #1#2 { \cs_set_nopar:Npe \l__exp_internal_tl { \exp_not:n {#1} #2 } \l__exp_internal_tl }
```

Now the business end: most of these are hand-tuned for speed, but the general system is in place.

```
\exp_last_unbraced:No \exp_last_unbraced:NV \exp_last_unbraced:Nv \exp_last_unbraced:Ne \exp_last_unbraced:Nf \exp_last_unbraced:NNo \exp_last_unbraced:NNo \exp_last_unbraced:NfN \exp_last_unbraced:NfNf \exp_last_unbraced:NNo \exp_last_unbraced:NNo \exp_last_unbraced:NfN \exp_last_unbraced:NfNf \exp_last_unbraced:NNo \exp_last_unbraced:NNo \exp_last_unbraced:NfN \exp_last_unbraced:NfNf
```

(End of definition for __exp_arg_last_unbraced:nn and others. These functions are documented on page 43.)

44.3 Last-unbraced versions

Now the business end: most of these are hand-tuned for speed, but the general system is in place.
\exp_last_two_unbraced:Noo If \#2 is a single token then this can be implemented as
__exp_last_two_unbraced:noN
\cs_new:Npn \exp_last_two_unbraced:Noo #1 #2 #3
 { \exp_after:wN \exp_after:wN \exp_after:wN \exp_last_two_unbraced:Noo #1 #3 #2 }

However, for robustness this is not suitable. Instead, a bit of a shuffle is used to ensure that #2 can be multiple tokens.

(End of definition for \exp_last_two_unbraced:Noo and __exp_last_two_unbraced:nOo. This function is documented on page 39.)

\subsection{Preventing expansion}
__kernel_exp_not:w

At the kernel level, we need the primitive behaviour to allow expansion before the brace group.

(End of definition for __kernel_exp_not:w.)

\exp:w\exp_end:\exp_end_continue_f:w\exp_end_continue_f:nw

\subsection{Controlled expansion}

To trigger a sequence of “arbitrarily” many expansions we need a method to invoke \TeX’s expansion mechanism in such a way that (a) we are able to stop it in a controlled manner and (b) the result of what triggered the expansion in the first place is null, i.e., that we do not get any unwanted side effects. There aren’t that many possibilities in \TeX; in fact the one explained below might well be the only one (as normally the result of expansion is not null).

The trick here is to make use of the fact that \tex_romannumeral:D expands the tokens following it when looking for a number and that its expansion is null if that number
turns out to be zero or negative. So we use that to start the expansion sequence: \exp:w is set equal to \text{romannumeral}:D in l3basics. To stop the expansion sequence in a controlled way all we need to provide is a constant integer zero as part of expanded tokens. As this is an integer constant it immediately stops \text{romannumeral}:D's search for a number. Again, the definition of \exp_end: as the integer constant zero is in l3basics. (Note that according to our specification all tokens we expand initiated by \exp:w are supposed to be expandable (as well as their replacement text in the expansion) so we will not encounter a "number" that actually result in a roman numeral being generated. Or if we do then the programmer made a mistake.)

If on the other hand we want to stop the initial expansion sequence but continue with an f-type expansion we provide the alphabetic constant \texttt{^^@} that also represents 0 but this time \TeX's syntax for a \langle\text{number}\rangle continues searching for an optional space (and it continues expansion doing that) — see \TeX{}book page 269 for details.

\begin{verbatim}
\group_begin:
\tex_catcode:D '\^^@ = 13
\cs_new_protected:Npn \exp_end_continue_f:w { '^^@ }
\end{verbatim}

If the above definition ever appears outside its proper context the active character \texttt{^^@} will be executed so we turn this into an error. The test for existence covers the (unlikely) case that some other code has already defined \texttt{^^@}: this is true for example for xmltex.tex.

\begin{verbatim}
\if\cs_exist:N ^^@
\else: \cs_new:Npn ^^@ { \msg_expandable_error:nn { kernel } { bad-exp-end-f } } \fi:
\end{verbatim}

The same but grabbing an argument to remove spaces and braces.

\begin{verbatim}
\cs_new:Npn \exp_end_continue_f:nw #1 { '^^@ #1 }
\group_end:
\end{verbatim}

(End of definition for \exp:w and others. These functions are documented on page 41.)

44.6 Defining function variants

\begin{verbatim}
\s__cs_mark \s__cs_stop
\end{verbatim}

Internal scan marks. No l3quark yet, so do things by hand.

\begin{verbatim}
\cs_new_eq:NN \s__cs_mark \scan_stop:
\cs_new_eq:NN \s__cs_stop \scan_stop:
\end{verbatim}

(End of definition for \s__cs_mark and \s__cs_stop.)

\begin{verbatim}
\q__cs_recursion_stop
\end{verbatim}

Internal recursion quarks. No l3quark yet, so do things by hand.

\begin{verbatim}
\cs_new:Npn \q__cs_recursion_stop \q__cs_recursion_stop \cs_new:Npn \q__cs_recursion_stop { \q__cs_recursion_stop }
\end{verbatim}

(End of definition for \q__cs_recursion_stop.)

\begin{verbatim}
__cs_use_none_delimit_by_s_stop:w
__cs_use_i_delimit_by_s_stop:nw
__cs_use_none_delimit_by_q_recursion_stop:w
\end{verbatim}

Internal scan marks.
\cs_generate_variant:Nn \#1 \#2
\begin{description}
\item[\#1] Base form of a function; e.g., \tl_set:Nn
\item[\#2] One or more variant argument specifiers; e.g., \{Nx,c,cx\}
\end{description}

After making sure that the base form exists, test whether it is protected or not and define _cs_tmp:w as either \cs_new:Npe or \cs_new_protected:Npe, which is then used to define all the variants (except those involving x-expansion, always protected). Split up the original base function only once, to grab its name and signature. Then we wish to iterate through the comma list of variant argument specifiers, which we first convert to a string: the reason is explained later.

\begin{verbatim}
cs_new_protected:Npn \cs_generate_variant:Nn \#1\#2
{ __cs_generate_variant:N \#1 \use:e { __cs_generate_variant:nnNN \cs_split_function:N \#1 \exp_not:N \#1 \tl_to_str:n {\#2} , \exp_not:N \scan_stop: , \exp_not:N \q__cs_recursion_stop }}
cs_new_protected:Npn \cs_generate_variant:cn { \exp_args:Nc \cs_generate_variant:Nn }
\end{verbatim}

The goal here is to pick up protected parent functions. There are four cases: the parent function can be a primitive or a macro, and can be expandable or not. For non-expandable primitives, all variants should be protected; skipping the \else: branch is safe because non-expandable primitives cannot be \LaTeX{} conditionals.

The other case where variants should be protected is when the parent function is a protected macro: then \texttt{protected} appears in the meaning before the first occurrence of \texttt{macro}. The \texttt{ww} auxiliary removes everything in the meaning string after the first \texttt{ma}. We use \texttt{ma} rather than the full \texttt{macro} because the meaning of the \texttt{\firstmark{} primitive} (and four others) can contain an arbitrary string after a leading \texttt{\firstmark{}}. Then, look for \texttt{pr} in the part we extracted: no need to look for anything longer: the only strings we can have are an empty string, \texttt{\long\protected\long}, \texttt{\protected\long}, \texttt{\first}, \texttt{\top}, \texttt{\bot}, \texttt{\split\top}, or \texttt{\split\bot}, with \texttt{} replaced by the appropriate escape character. If \texttt{pr} appears in the part before \texttt{ma}, the first \texttt{s__cs_mark} is taken as an argument of the \texttt{wwNw} auxiliary, and \#3 is \texttt{cs_new_protected:Npe}, otherwise it is \texttt{cs_new:Npe}.

\begin{verbatim}
cs_new_protected:Npe _cs_generate_variant:N \#1
{ \exp_not:N \exp_after:wN \exp_not:N \if_meaning:w \exp_not:N \exp_not:N \cs_set_eq:NN \exp_not:N _cs_tmp:w \cs_new_protected:Npe \exp_not:N \else: \exp_not:N \exp_after:wN \exp_not:N _cs_generate_variant:ww \exp_not:N \token_to_meaning:N \#1 \tl_to_str:n { \ma } \s__cs_mark
\end{verbatim}

(End of definition for _cs_use_none_delimit_by_s_stop:w, _cs_use_i_delimit_by_s_stop:nw, and _cs_use_none_delimit_by_q_recursion_stop:w.)
\s_{_cs_mark}\cs_new_protected:Npe
\tl_to_str:n \{ pr \}
\s_{_cs_mark}\cs_new:Npe
\s_{_cs_stop}
\exp_not:N \fi:
\exp_last_unbraced:NNNNo
\cs_new_protected:Npn __cs_generate_variant:ww
#1 \{ \tl_to_str:n \{ ma \} \} #2 \s_{_cs_mark}
\{ __cs_generate_variant:wwNw \ #1 \}
\exp_last_unbraced:NNNNo
\cs_new_protected:Npn __cs_generate_variant:wwNw
#1 \{ \tl_to_str:n \{ pr \} \} #2 \s_{_cs_mark} #3 \s_{_cs_stop}
\{ \cs_set_eq:NN __cs_tmp:w \#3 \}
(End of definition for __cs_generate_variant:N, __cs_generate_variant:ww, and __cs_generate_variant:wwNw.)
__cs_generate_variant:nnNN
#1 : Base name.
#2 : Base signature.
#3 : Boolean.
#4 : Base function.

If the boolean is \c\false_bool, the base function has no colon and we abort with an error; otherwise, set off a loop through the desired variant forms. The original function is retained as \#4 for efficiency.
\cs_new_protected:Npn __cs_generate_variant:nnNN \ #1\ #2\ #3\ #4
\if_meaning:w \c\false_bool \ #3
\msg_error:nne \{ \kernel \} \{ missing-colon \}
\{ \token_to_str:c \{ \#1 \} \}
\exp_after:wN __cs_use__none_delimit_by__q_recursion__stop:w
\fi:
__cs_generate_variant:Nnnw \ #4 \ \{ \#1 \} \ \{ \#2 \}
(End of definition for __cs_generate_variant:nnNN.)
__cs_generate_variant:Nnnw
#1 : Base function.
#2 : Base name.
#3 : Base signature.
#4 : Beginning of variant signature.

First check whether to terminate the loop over variant forms. Then, for each variant form, construct a new function name using the original base name, the variant signature consisting of \#l letters and the last \(k - \#l \) letters of the base signature (of length \(k \)). For example, for a base function \prop_put:Nnn which needs a \cV variant form, we want the new signature to be \cVn.

There are further subtleties:

- In \cs_generate_variant:Nn \foo:nnTF \{xxTF\}, we must define \foo:xxTF using \exp_args:Nxx, rather than a hypothetical \exp_args:NxxTF. Thus, we wish to trim a common trailing part from the base signature and the variant signature.

- In \cs_generate_variant:Nn \foo:on \{ox\}, the function \foo:ox must be defined using \exp_args:Nnx, not \exp_args:Nox, to avoid double \alpha expansion.

410
Lastly, \cs_generate_variant:Nn \foo:on \{xn\} must trigger an error, because we do not have a means to replace o-expansion by x-expansion. More generally, we can only convert N to c, or convert n to V, v, o, e, f, or x.

All this boils down to a few rules. Only n and N-type arguments can be replaced by \cs_generate_variant:Nn. Other argument types are allowed to be passed unchanged from the base form to the variant: in the process they are changed to n except for N and p-type arguments. A common trailing part is ignored.

We compare the base and variant signatures one character at a time within e-expansion. The result is given to __cs_generate_variant:wwNN (defined later) in the form \langle processed variant signature \rangle \s__cs_mark \langle errors \rangle \s__cs_stop \langle base function \rangle \langle new function \rangle. If all went well, \langle errors \rangle is empty; otherwise, it is a kernel error message and some clean-up code.

Note the space after \#3 and after the following brace group. Those are ignored by \TeX when fetching the last argument for __cs_generate_variant_loop:nWwN, but can be used as a delimiter for __cs_generate_variant_loop_end:nWWWNN

The first argument is populated by __cs_generate_variant_loop_same:w when a variant letter and a base letter match. It is flushed into the input stream whenever the two letters are different: if the loop ends before, the argument is dropped, which means that trailing common letters are ignored.

The case where the two letters are different is only allowed if the base is N and the variant is c, or when the base is n and the variant is V, v, o, e, f, or x. Otherwise, call __cs_generate_variant_loop_invalid:NNwNNn to remove the end of the loop, get arguments at the end of the loop, and place an appropriate error message as a second
argument of \texttt{_cs_generate_variant:wwNN}. If the letters are distinct and the base letter is indeed \texttt{n} or \texttt{N}, leave in the input stream whatever argument \#1 was collected, and the next variant letter \#2, then loop by calling \texttt{_cs_generate_variant_loop:nNwN}.

The loop can stop in three ways.

- If the end of the variant form is encountered first, \#2 is \texttt{_cs_generate_variant_loop_end:nwwNNNnn} (expanded by the conditional \texttt{_cs_generate_variant_loop_end:nwwNNNnn}), which inserts some tokens to end the conditional; grabs the \langle base name \rangle as \#7, the \langle variant signature \rangle \#8, the \langle next base letter \rangle \#1 and the part \#3 of the base signature that wasn’t read yet; and combines those into the \langle new function \rangle to be defined.

- If the end of the base form is encountered first, \#4 is \texttt{-} which ends the conditional (with an empty expansion), followed by \texttt{_cs_generate_variant_loop_long:wNNnNn}, which places an error as the second argument of \texttt{_cs_generate_variant:wwNN}.

- The loop can be interrupted early if the requested expansion is unavailable, namely when the variant and base letters differ and the base is not the right one (\texttt{n} or \texttt{N} to support the variant). In that case too an error is placed as the second argument of \texttt{_cs_generate_variant:wwNN}.

Note that if the variant form has the same length as the base form, \#2 is as described in the first point, and \#4 as described in the second point above. The \texttt{_cs_generate_variant_loop_end:nwwNNNnn} breaking function takes the empty brace group in \#4 as its first argument: this empty brace group produces the correct signature for the full variant.

2712 \cs_new:Npn _cs_generate_variant_loop:nNwN #1#2#3 \s\cs_mark #4
2713 {
2714 \if:w #2 #4
2715 \exp_after:wN _cs_generate_variant_loop_same:w
2716 \else:
2717 \if:w #4 _cs_generate_variant_loop_base:N #2 \else:
2718 \if:w 0
2719 \if:w N #4 \else: \if:w n #4 \else: 1 \fi: \fi:
2720 \if:w \scan_stop: _cs_generate_variant_loop_base:N #2 1 \fi:
2721 0
2722 _cs_generate_variant_loop_special:NNwNNnNn #4#2
2723 \else:
2724 _cs_generate_variant_loop_invalid:NNwNNnNn #4#2
2725 \fi:
2726 \fi:
2727 \fi:
2728 \#1
2729 \prg_do_nothing:
2730 _cs_generate_variant_loop:nwwNNn { } \s\cs_mark
2731 \}
2732 \cs_new:Npn _cs_generate_variant_loop_base:N #1
2733 {
2734 \if:w c #1 N \else:
2735 \if:w o #1 n \else:
2736 \if:w V #1 n \else:
2737 \if:w v #1 n \else:

412
__cs_generate_variant_same:N

When the base and variant letters are identical, don't do any expansion. For most argument types, we can use the \texttt{n}-type no-expansion, but the \texttt{N} and \texttt{p} types require a slightly different behaviour with respect to braces. For \texttt{V}-type this function could output \texttt{N} to avoid adding useless braces but that is not a problem.

__cs_generate_variant:wwNN

If the variant form has already been defined, log its existence (provided \texttt{log-functions} is active). Otherwise, make sure that the \texttt{\exp_args:N \texttt{#3}} form is defined, and if it contains \texttt{x}, change \texttt{__cs_tmp:w} locally to \texttt{\cs_new_protected:Npe}. Then define the variant by combining the \texttt{\exp_args:N \texttt{#3}} variant and the base function.

__cs_generate_internal_variant:n

First test for the presence of \texttt{x} (this is where working with strings makes our lives easier), as the result should be protected, and the next variant to be defined using that internal variant should be protected (done by setting \texttt{__cs_tmp:w}). Then
call __cs_generate_internal_variant:NNn with arguments \cs_new_protected:cpn \use:x (for protected) or \cs_new:cpn \tex_expanded:D (expandable) and the signature. If \texttt{p} appears in the signature, or if the function to be defined is expandable and the primitive \texttt{\textbackslash exp_expanded:D} is not available, or if there are more than 8 arguments, call some fall-back code that just puts the appropriate \texttt{:\textbackslash :} commands. Otherwise, call __cs_generate_internal_one_go:NNn to construct the \texttt{\exp_args:N...} function as a macro taking up to 9 arguments and expanding them using \texttt{\use:x} or \texttt{\tex_expanded:D}.

\begin{verbatim}
\cs_new_protected:Npe _cs_generate_internal_variant:n #1
\exp_not:N _cs_generate_internal_variant:wwnNwn
__cs_mark
{ \cs_set_eq:NN \exp_not:N _cs_tmp:w \cs_new_protected:Npe }
\cs_new_protected:cpn \use:x \token_to_str:N x __cs_mark
{ }
\cs_new:cpn \exp_not:N \tex_expanded:D __cs_stop
{#1}
\exp_last_unbraced:NNNNo
\cs_new_protected:Npn _cs_generate_internal_variant:wwnNwn #1
{ \token_to_str:N x } #2 __cs_mark #3#4#5#6 __cs_stop #7
{ __csGenerate_internal_test:Nw __csGenerate_internal_test_aux:w __csGenerate_internal_test:w #2 #7}
\cs_set_protected:Npn __csGenerate_internal_test:NNn __csGenerate_internal_test:NNn #1
{ \cs_set_eq:NN \exp_not:N __cs_tmp:w \cs_new_protected:Npn __csGenerate_internal_variant:Nnn #1 #2 #3
{ \if_catcode:w X \use:none:nnnnnnnn __csMark #3 #3 #3 #3 __csMark #1 { \exp_args:N #3 }
{ __csGenerate_internal_variant_loop:n #3 { : __csMark #3 } }
} #1 __csMark #1 __csMark #1 { \exp_not:n __csGenerate_internal_one_go:NNn #1 #2 {#3} }
\end{verbatim}
\cs_new_protected:Npn __cs_generate_internal_test_aux:w
 \#1 \#2 \s__cs_mark \#3 \#4 \s__cs_stop \{\#3\}
\cs_new_eq:NN __cs_generate_internal_test:Nw
 __cs_generate_internal_test_aux:w
\exp_args:No __cs_tmp:w \{ \token_to_str:N p \}
\cs_new_protected:Npn __cs_generate_internal_test_loop:nwnnw
 \{ \exp_not:N \#1 \} \. \{ \} \{ \}
 \#3 \{ ? __cs_generate_internal_end:w \} X ;
 23456789 \{ ? __cs_generate_internal_long:w \} ;
 \#1 \#2 \{\#3\}
\cs_new_protected:Npn __cs_generate_internal_one_go:NNn #1#2#3
 \{ __cs_generate_internal_loop:nwnnw \{ \exp_not:N \#1 \} \. \{ \} \{ \}
 \#3 \{ \} \{ \}
 \{ \#3 \} \{ \#4 \#2 \}
 \#6 ;
\cs_new_protected:Npn __cs_generate_internal_N:NN #1#2
 \{ __cs_generate_internal_loop:nwnnw \{ \exp_not:N ###2 \} \}
\cs_new_protected:Npn __cs_generate_internal_c:NN #1#2
 \{ \exp_args:No __cs_generate_internal_loop:nwnnw \{ \exp_not:c {###2} \} \}
\cs_new_protected:Npn __cs_generate_internal_n:NN #1#2
 \{ __cs_generate_internal_loop:nwnnw \{ { \exp_not:n {###2} } \} \}
\cs_new_protected:Npn __cs_generate_internal_x:NN #1#2
 \{ __cs_generate_internal_loop:nwnnw \{ {###2} \} \}
\cs_new_protected:Npn __cs_generate_internal_other:NN #1#2
 \{ \exp_args:No __cs_generate_internal_loop:nwnnw
 \{ \exp:w \exp_args:NNc \exp_after:wN \exp_end: \{ exp_not:#1 \} \{###2\} \}
 \}
\cs_new_protected:Npn __cs_generate_internal_end:w #1 . #2#3#4 ; #5 ; #6#7#8
 \{ \#6 \{ \exp_args:N \#8 \} \#3 \{ \#7 \{\#2\} \} \}
\cs_new_protected:Npn __cs_generate_internal_long:w #1 \#2#3 . #4#5#6#7#8
 \{ \exp_args:Nx __cs_generate_internal_long:nnnNNn
 \{ __cs_generate_internal_variant_loop:n \#2 \#6 \{ : \use_i:nn \} \}
 \#4 \{\#5\} \}
__cs_stop
This command grabs char by char outputting \::#1 (not expanded further). We avoid tests by putting a trailing : \use_i:nn, which leaves \cs_end: and removes the looping macro. The colon is in fact also turned into \:: so that the required structure for \exp_args:N... commands is correctly terminated.

(End of definition for \cs_generate_internal_variant:n and \cs_generate_internal_variant_loop:n.)
(End of definition for \prg_generate_conditional_variant:Nnn and others. This function is documented on page 65.)

This function is not used in the kernel hence we can use functions that are defined in later modules. It also does not need to be fast so use inline mappings. For each requested variant we check that there are no characters besides \Nnpxpcofvvxx, in particular that there are no spaces. Then we just call the internal function.

(End of definition for \exp_args_generate:n. This function is documented on page 34.)

44.7 Definitions with the automated technique

Some of these could be done more efficiently, but the complexity of coding then becomes an issue. Notice that the auto-generated functions actually take no arguments themselves.

Here are the actual function definitions, using the helper functions above. The group is used because __cs_generate_internal_variant:n redefines __cs_tmp:w locally.
44.8 Held-over variant generation

A couple of variants that are from early functions.
\cs_generate_from_arg_count:Nnno
\cs_replacement_spec:c
(End of definition for \texttt{_generate_from_arg_count:\nn and \texttt{_replacement_spec:\nn. These functions are documented on page ??.)}

\texttt{\(/\text{package}\)}
Chapter 45

\textbf{l3sort implementation}

\section{Variables}

\begin{Verbatim}
\verb|\g__sort_internal_seq|\end{Verbatim}
\begin{Verbatim}
\verb|\g__sort_internal_tl|\end{Verbatim}

Sorting happens in a group; the result is stored in those global variables before being copied outside the group to the proper places. For seq and tl this is more efficient than using \texttt{\use:e} (or some \texttt{\exp_args:NNe}) to smuggle the definition outside the group since \TeX{} does not need to re-read tokens. For clist we don’t gain anything since the result is converted from seq to clist anyways.

\begin{Verbatim}
\texttt{\seq_new:N \g__sort_internal_seq}\end{Verbatim}
\begin{Verbatim}
\texttt{\tl_new:N \g__sort_internal_tl}\end{Verbatim}

\textit{(End of definition for \texttt{\g__sort_internal_seq} and \texttt{\g__sort_internal_tl}).}

\begin{Verbatim}
\verb|\l__sort_length_int|
\verb|\l__sort_min_int|
\verb|\l__sort_top_int|
\verb|\l__sort_max_int|
\verb|\l__sort_true_max_int|\end{Verbatim}

The sequence has \texttt{\l__sort_length_int} items and is stored from \texttt{\l__sort_min_int} to \texttt{\l__sort_top_int} – 1. While reading the sequence in memory, we check that \texttt{\l__sort_top_int} remains at most \texttt{\l__sort_max_int}, precomputed by \texttt{_sort_compute_range}. That bound is such that the merge sort only uses \texttt{\toks} registers less than \texttt{\l__sort_true_max_int}, namely those that have not been allocated for use in other code: the user’s comparison code could alter these.

\begin{Verbatim}
\texttt{\int_new:N \l__sort_length_int}\end{Verbatim}
\begin{Verbatim}
\texttt{\int_new:N \l__sort_min_int}\end{Verbatim}
\begin{Verbatim}
\texttt{\int_new:N \l__sort_top_int}\end{Verbatim}
\begin{Verbatim}
\texttt{\int_new:N \l__sort_max_int}\end{Verbatim}
\begin{Verbatim}
\texttt{\int_new:N \l__sort_true_max_int}\end{Verbatim}

\textit{(End of definition for \texttt{\l__sort_length_int} and others.)}

\begin{Verbatim}
\verb|\l__sort_block_int|\end{Verbatim}

Merge sort is done in several passes. In each pass, blocks of size \texttt{\l__sort_block_int} are merged in pairs. The block size starts at 1, and, for a length in the range \([2^k + 1, 2^{k+1}]\), reaches \(2^k\) in the last pass.

\begin{Verbatim}
\texttt{\int_new:N \l__sort_block_int}\end{Verbatim}

\textit{(End of definition for \texttt{\l__sort_block_int}).}
When merging two blocks, _sort_begin_int marks the lowest index in the two blocks, and _sort_end_int marks the highest index, plus 1.

\begin{verbatim}
\int_new:N \l__sort_begin_int
\int_new:N \l__sort_end_int
\end{verbatim}

(End of definition for _sort_begin_int and _sort_end_int.)

When merging two blocks (whose end-points are \texttt{beg} and \texttt{end}), _sort_A_int starts from the high end of the low block, and decreases until reaching \texttt{beg}. The index _sort_B_int starts from the top of the range and marks the register in which a sorted item should be put. Finally, _sort_C_int points to the copy of the high block in the interval of registers starting at _sort_length_int, upwards. _sort_C_int starts from the upper limit of that range.

\begin{verbatim}
\int_new:N \l__sort_A_int
\int_new:N \l__sort_B_int
\int_new:N \l__sort_C_int
\end{verbatim}

(End of definition for _sort_A_int, _sort_B_int, and _sort_C_int.)

Internal scan marks.
\begin{verbatim}
\scan_new:N \s__sort_mark
\scan_new:N \s__sort_stop
\end{verbatim}

(End of definition for \s__sort_mark and \s__sort_stop.)

\section*{45.2 Finding available \toks registers}

\begin{verbatim}
_sort_shrink_range: _sort_shrink_range_loop:
\end{verbatim}

After _sort_compute_range: (defined below) determines that \toks registers between _sort_min_int (included) and _sort_true_max_int (excluded) have not yet been assigned, _sort_shrink_range: computes _sort_max_int to reflect the need for a buffer when merging blocks in the merge sort. Given $2^n \leq A \leq 2^n + 2^{n-1}$ registers we can sort $\lceil A/2 \rceil + 2^{n-2}$ items while if we have $2^n + 2^{n-1} \leq A \leq 2^{n+1}$ registers we can sort $A - 2^n - 1$ items. We first find out a power 2^n such that $2^n \leq A \leq 2^{n+1}$ by repeatedly halving _sort_block_int, starting at 2^{15} or 2^{14} namely half the total number of registers, then we use the formulas and set _sort_max_int.

\begin{verbatim}
\cs_new_protected:Npn _sort_shrink_range:
_sort_shrink_range_loop:
\end{verbatim}
\cs_new_protected:Npn __sort_shrink_range_loop:
\{\fi:
\}
\exp_after:wN __sort_shrink_range_loop:
\)
\(End of definition for __sort_shrink_range: and __sort_shrink_range_loop:.)
\}
\cs_new_protected:Npn __sort_compute_range:
\{\int_set:Nn \l__sort_min_int { \tex_count:D 15 + 1 }
\int_set:Nn \l__sort_true_max_int { \c_max_register_int + 1 }
__sort_shrink_range:
\if_meaning:w \loctoks \tex_undefined:D \else:
\if_meaning:w \loctoks \scan_stop: \else:
__sort_redefine_compute_range:
__sort_compute_range:
\fi:
\fi:
\}
\cs_new_protected:Npn __sort_redefine_compute_range:
\{\cs_if_exist:cTF { ver@elocalloc.sty }
\{\cs_gset_protected:Npn __sort_compute_range:
\{\int_set:Nn \l__sort_min_int { \tex_count:D 265 }
\int_set_eq:NN \l__sort_true_max_int \e@alloc@top
__sort_shrink_range:
\}
\}
\{\cs_gset_protected:Npn __sort_compute_range:
\{\int_set:Nn \l__sort_min_int { \tex_count:D 275 }
\int_set:Nn \l__sort_true_max_int { \tex_count:D 275 }
__sort_shrink_range:
\}
\}
\)
_sort_compute_range:
_sort_redefine_compute_range:
\c__sort_max_length_int
First find out what \toks have not yet been assigned. There are many cases. In \LaTeX2ε with no package, available \toks range from \count15 + 1 to \c_max_register_int included (this was not altered despite the 2015 changes). When \loctoks is defined, namely in plain (e)\TeX, or when the package etex is loaded in \LaTeX2ε, redefine _sort_compute_range: to use the range \count265 to \count275 − 1. The elocalloc package also defines \loctoks but uses yet another number for the upper bound, namely \e@alloc@top (minus one). We must check for \loctoks every time a sorting function is called, as etex or elocalloc could be loaded.

In Con\TeXt MkIV the range is from \c_syst_last_allocated_toks+1 to \c_max_register_int, and in MkII it is from \lastallocatedtoks+1 to \c_max_register_int. In all these cases, call _sort_shrink_range:.
45.3 Protected user commands

Sorting happens in three steps. First store items in \toks registers ranging from \l__sort_min_int to \l__sort_top_int - 1, while checking that the list is not too long. If we reach the maximum length, that’s an error; exit the group. Secondly, sort the array of \toks registers, using the user-defined sorting function: __sort_level: calls __sort_compare:nn as needed. Finally, unpack the \toks registers (now sorted) into the target tl, or into \g__sort_internal_seq for seq and clist. This is done by __sort_seq:NNNNn and __sort_tl:NNn.

Call the main sorting function then unpack \toks registers outside the group into the target token list. The unpacking is done by __sort_tl_toks:w; registers are numbered from \l__sort_min_int to \l__sort_top_int - 1. For expansion behaviour we need
a couple of primitives. The \texttt{\tl_gclear:N} reduces memory usage. The \texttt{\prg_break_point:} is used by \texttt{__sort_main:NNNn} when the list is too long.

\begin{verbatim}
3158 \cs_new_protected:Npn \tl_sort:Nn { __sort_tl:NNn \tl_set_eq:NN }
3159 \cs_generate_variant:Nn \tl_sort:Nn { c }
3160 \cs_new_protected:Npn \tl_gsort:Nn { __sort_tl:NNn \tl_gset_eq:NN }
3161 \cs_generate_variant:Nn \tl_gsort:Nn { c }
3162 \cs_new_protected:Npn __sort_tl:NNn #1#2#3
3163 { \group_begin: __sort_main:NNNn \tl_map_inline:Nn \tl_map_break:n #2 {#3}
3164 __kernel_tl_gset:Ne \g__sort_internal_tl
3165 \{ __sort_tl_toks:w \l__sort_min_int ; \}
3166 \group_end: \#1 \#2 \g__sort_internal_tl \tl_gclear:N \g__sort_internal_tl
3167 \prg_break_point:
3168 \cs_new:Npn __sort_tl_toks:w #1 ;
3169 { \if_int_compare:w #1 < \l__sort_top_int
3170 \{ \tex_the:D \tex_toks:D #1 \}
3171 \exp_after:wN __sort_tl_toks:w
3172 \int_value:w \int_eval:n { #1 + 1 } \exp_after:wN ;
3173 \fi: }
3174 \}
3175 \cs_new:Npn __sort_tl_toks:w \#1 ;
3176 { \if_int_compare:w #1 < \l__sort_top_int
3177 \{ \tex_the:D \tex_toks:D #1 \}
3178 \exp_after:wN __sort_tl_toks:w
3179 \int_value:w \int_eval:n { #1 + 1 } \exp_after:wN ;
3180 \fi: }
\end{verbatim}

(End of definition for \texttt{\tl_sort:Nn} and others. These functions are documented on page 122.)

\seq_sort:Nn \seq_sort:cn \seq_gsort:Nn \seq_gsort:cn \clist_sort:Nn \clist_sort:cn \clist_gsort:Nn \clist_gsort:cn

Use the same general framework for \texttt{\seq_sort:nn} and \texttt{\seq_gsort:nn}. Outside the group copy or convert (for \texttt{\clist_gsort:nn}) the data to the target variable. The \texttt{\seq_gclear:N} reduces memory usage. The \texttt{\prg_break_point:} is used by \texttt{__sort_main:NNNn} when the list is too long.

\begin{verbatim}
3181 \cs_new_protected:Npn \seq_sort:Nn { __sort_seq:NNNNn \seq_map_inline:Nn \seq_map_break:n \seq_set_eq:NN }
3182 \cs_generate_variant:Nn \seq_sort:Nn { c }
3183 \cs_new_protected:Npn \seq_gsort:Nn { __sort_seq:NNNNn \seq_map_inline:Nn \seq_map_break:n \seq_gset_eq:NN }
3184 \cs_generate_variant:Nn \seq_gsort:Nn { c }
3185 \cs_new_protected:Npn \clist_sort:Nn { __sort_seq:NNNNn \clist_map_inline:Nn \clist_map_break:n \clist_set_from_seq:NN }
3186 \cs_generate_variant:Nn \clist_sort:Nn { c }
3187 \cs_new_protected:Npn \clist_gsort:Nn { __sort_seq:NNNNn \clist_map_inline:Nn \clist_map_break:n \clist_gset_from_seq:NN }
3188 \cs_generate_variant:Nn \clist_gsort:Nn { c }
\end{verbatim}

425
45.4 Merge sort

__sort_level: This function is called once blocks of size \l__sort_block_int (initially 1) are each sorted. If the whole list fits in one block, then we are done (this also takes care of the case of an empty list or a list with one item). Otherwise, go through pairs of blocks starting from 0, then double the block size, and repeat.

__sort_merge_blocks: This function is called to merge a pair of blocks, starting at the last value of \l__sort_end_int (end-point of the previous pair of blocks). If shifting by one block to the right we reach the end of the list, then this pass has ended: the end of the list is sorted already. Otherwise, store the result of that shift in \texttt{A}, which indexes the first block starting from the top end. Then locate the end-point (maximum) of the second block: shift \texttt{end} upwards by one more block, but keeping it \leq \texttt{top}. Copy this upper block of \texttt{toks} registers in registers above \texttt{length}, indexed by \texttt{C}: this is covered by __sort_copy_block: Once this is done we are ready to do the actual merger using __sort_merge_blocks_aux:, after shifting \texttt{A}, \texttt{B} and \texttt{C} so that they point to the largest index in their respective ranges rather than pointing just beyond those ranges. Of course, once that pair of blocks is merged, move on to the next pair.
__sort_copy_block: \ We wish to store a copy of the “upper” block of \toks registers, ranging between the initial value of \l__sort_B_int (included) and \l__sort_end_int (excluded) into a new range starting at the initial value of \l__sort_C_int, namely \l__sort_top_int.

\cs_new_protected:Npn __sort_copy_block: {
 \tex_toks:D \l__sort_C_int \tex_toks:D \l__sort_B_int
 \int_incr:N \l__sort_C_int
 \int_incr:N \l__sort_B_int
 \if_int_compare:w \l__sort_B_int = \l__sort_end_int
 \use_i:nn
 \fi:
 __sort_copy_block:
}__sort_copy_block:

(End of definition for __sort_copy_block:)

__sort_merge_blocks_aux: \ At this stage, the first block starts at \l__sort_begin_int, and ends at \l__sort_A_int, and the second block starts at \l__sort_top_int and ends at \l__sort_C_int. The result of the merger is stored at positions indexed by \l__sort_B_int, which starts at \l__sort_end_int – 1 and decreases down to \l__sort_begin_int, covering the full range of the two blocks. In other words, we are building the merger starting with the largest values. The comparison function is defined to return either swapped or same. Of course, this means the arguments need to be given in the order they appear originally in the list.

\cs_new_protected:Npn __sort_merge_blocks_aux: {
 \exp_after:wN __sort_compare:nn \exp_after:wN
 { \tex_the:D \tex_toks:D \exp_after:wN \l__sort_A_int \exp_after:wN \}
 \exp_after:wN { \tex_the:D \tex_toks:D \l__sort_C_int }
 \prg_do_nothing:
 __sort_return_mark:w
 __sort_return_w:
 \a__sort_mark
 __sort_return_none_error:
}__sort_merge_blocks_aux:

(End of definition for __sort_merge_blocks_aux:)

427
Each comparison should call \texttt{_sort_return_same:} or \texttt{_sort_return_swapped:} exactly once. If neither is called, \texttt{_sort_return_none_error:} is called, since the return
mark removes tokens until \texttt{\s_sort_mark}. If one is called, the return_mark auxiliary removes everything except \texttt{_sort_return_same:w} (or its swapped analogue) followed by \texttt{_sort_return_none_error:}. Finally if two or more are called, \texttt{_sort_return_two_error:} ends up before any \texttt{_sort_return_mark:w}, so that it produces an error.

\begin{verbatim}
\cs_new_protected:Npn _sort_return_same:w #1 _sort_return_mark:w #2 \s_sort_mark
{ _sort_return_two_error: _sort_return_mark:w \s_sort_mark _sort_return_same:w }
\cs_new_protected:Npn _sort_return_swapped:w #1 _sort_return_mark:w #2 \s_sort_mark
{ _sort_return_two_error: _sort_return_mark:w \s_sort_mark _sort_return_swapped:w }
\cs_new_protected:Npn _sort_return_none_error:
{ \msg_error:nnee { \texttt{sort} } { return-none } \tex_toks:D \l__sort_A_int \tex_toks:D \l__sort_C_int _sort_return_same:w _sort_return_none_error: }
\cs_new_protected:Npn _sort_return_two_error:
{ \msg_error:nnee { \texttt{sort} } { return-two } \tex_toks:D \l__sort_A_int \tex_toks:D \l__sort_C_int }
\end{verbatim}

(End of definition for \texttt{_sort_return_same:} and others. These functions are documented on page 43.)

\texttt{_sort_return_same:w} If the comparison function returns \texttt{same}, then the second argument fed to \texttt{_sort_compare:nn} should remain to the right of the other one. Since we build the merger starting from the right, we copy that \texttt{\toks} register into the allotted range, then shift the pointers \texttt{B} and \texttt{C}, and go on to do one more step in the merger, unless the second block has been exhausted: then the remainder of the first block is already in the correct registers and we are done with merging those two blocks.

\begin{verbatim}
\cs_new_protected:Npn _sort_return_same:w #1 _sort_return_none_error:
{ \tex_toks:D \l__sort_B_int \tex_toks:D \l__sort_C_int \int_decr:N \l__sort_B_int }
\end{verbatim}
\int_{\text{decr}}:N \l__sort_C_int
\if_int_compare:w \l__sort_C_int < \l__sort_top_int
\use_i:nn
\fi:
__sort_merge_blocks_aux:
}

(End of definition for __sort_return_same:w)

__sort_return_swapped:w If the comparison function returns swapped, then the next item to add to the merger is
the first argument, contents of the \toks register A. Then shift the pointers A and B
to the left, and go for one more step for the merger, unless the left block was exhausted
(A goes below the threshold). In that case, all remaining \toks registers in the second
block, indexed by C, are copied to the merger by __sort_merge_blocks_end:
\cs_new_protected:Npn __sort_return_swapped:w #1 __sort_return_none_error:
{\tex_toks:D \l__sort_B_int \tex_toks:D \l__sort_A_int
\int_{\text{decr}}:N \l__sort_B_int
\int_{\text{decr}}:N \l__sort_A_int
\if_int_compare:w \l__sort_A_int < \l__sort_begin_int
__sort_merge_blocks_end: \use_i:nn
\fi:
__sort_merge_blocks_aux:
}

(End of definition for __sort_return_swapped:w)

__sort_merge_blocks_end: This function’s task is to copy the \toks registers in the block indexed by C to the
merger indexed by B. The end can equally be detected by checking when B reaches the
threshold begin, or when C reaches top.
\cs_new_protected:Npn __sort_merge_blocks_end:
{\tex_toks:D \l__sort_B_int \tex_toks:D \l__sort_C_int
\int_{\text{decr}}:N \l__sort_B_int
\int_{\text{decr}}:N \l__sort_C_int
\if_int_compare:w \l__sort_B_int < \l__sort_begin_int
__sort_merge_blocks_end: \use_i:nn
\fi:
__sort_merge_blocks_end:
}

(End of definition for __sort_merge_blocks_end):

45.5 Expandable sorting

Sorting expandably is very different from sorting and assigning to a variable. Since tokens
cannot be stored, they must remain in the input stream, and be read through at every
step. It is thus necessarily much slower (at best $O(n^2 \ln n)$) than non-expandable sorting
functions ($O(n \ln n)$).

A prototypical version of expandable quicksort is as follows. If the argument has no
item, return nothing, otherwise partition, using the first item as a pivot (argument #4 of
__sort:nnNnn). The arguments of __sort:nnNnn are 1. items less than #4, 2. items
greater or equal to #4, 3. comparison, 4. pivot, 5. next item to test. If #5 is the tail of
the list, call \tl_sort:n on \texttt{#1} and on \texttt{#2}, placing \texttt{#4} in between; \use:ff expands the parts to make \tl_sort:n \texttt{f}-expandable. Otherwise, compare \texttt{#4} and \texttt{#5} using \texttt{#3}. If they are ordered, place \texttt{#5} amongst the “greater” items, otherwise amongst the “lesser” items, and continue partitioning.

\cs_new:Npn \tl_sort:nN #1#2
\begin{verbatim}
{ \tl_if_blank:nF {#1} {
 __sort:nnNnn { } { } #2
 \texttt{#1} \texttt{q__sort_recursion_tail} \texttt{q__sort_recursion_stop}
}
\end{verbatim}
\cs_new:Npn __sort:nnNnn #1#2#3#4#5
\begin{verbatim}
{ \quark_if_recursion_tail_stop_do:nn {#5} {
 \use:ff { \tl_sort:nN {#1} {#3} {#4} } { \tl_sort:nN {#2} {#3} }
#3 \texttt{#4} \texttt{#5}
 __sort:nnNnn {#1} {#2 \texttt{#5}} \texttt{#3} \texttt{#4}
 __sort:nnNnn { \texttt{#1} \texttt{#5}} {#2} \texttt{#3} \texttt{#4}
}
\end{verbatim}
\cs_generate_variant:Nn \use:nn { ff }

There are quite a few optimizations available here: the code below is less legible, but more than twice as fast.

In the simple version of the code, \texttt{__sort:nnNnn} is called $O(n \ln n)$ times on average (the number of comparisons required by the quicksort algorithm). Hence most of our focus is on optimizing that function.

The first speed up is to avoid testing for the end of the list at every call to \texttt{__sort:nnNnn}. For this, the list is prepared by changing each \texttt{⟨item⟩} of the original token list into \texttt{⟨command⟩{⟨item⟩}}, just like sequences are stored. We arrange things such that the \texttt{⟨command⟩} is the \texttt{⟨conditional⟩} provided by the user: the loop over the \texttt{⟨prepared tokens⟩} then looks like

\begin{verbatim}
\cs_new:Npn __sort_loop:wNn ... #6#7
\begin{verbatim}
{ #6 \texttt{⟨pivot⟩} \texttt{#7} \texttt{⟨loop big⟩} \texttt{⟨loop small⟩}
 \texttt{⟨extra arguments⟩}
} __sort_loop:wNn ... \texttt{⟨prepared tokens⟩}
\end{verbatim}
\end{verbatim}

In this example, which matches the structure of \texttt{__sort_quick_split_i:NnnnnNn} and a few other functions below, the \texttt{__sort_loop:wNn} auxiliary normally receives the user’s \texttt{⟨conditional⟩} as \texttt{#6} and an \texttt{⟨item⟩} as \texttt{#7}. This is compared to the \texttt{⟨pivot⟩} (the argument \texttt{#5}, not shown here), and the \texttt{⟨conditional⟩} leaves the \texttt{⟨loop big⟩} or \texttt{⟨loop small⟩} auxiliary, which both have the same form as \texttt{__sort_loop:wNn}, receiving the next pair \texttt{⟨conditional⟩} \texttt{⟨item⟩} as \texttt{#6} and \texttt{#7}. At the end, \texttt{#6} is the \texttt{⟨end-loop⟩} function, which terminates the loop.

The second speed up is to minimize the duplicated tokens between the \texttt{true} and \texttt{false} branches of the conditional. For this, we introduce two versions of \texttt{__sort:nnNnn},

430
which receive the new item as \texttt{#1} and place it either into the list \texttt{#2} of items less than the pivot \texttt{#4} or into the list \texttt{#3} of items greater or equal to the pivot.

\[
\texttt{\cs_new:Npn __sort_i:nnnnNn #1\#2\#3\#4\#5#6}
\{
 \#5 \{\#4\} \{\#6\} __sort_ii:nnnnNn __sort_i:nnnnNn
 \{\#6\} { \#2 \{\#1\} } \{\#3\} \{\#4\}
\}
\]

\[
\texttt{\cs_new:Npn __sort_ii:nnnnNn #1\#2\#3\#4\#5#6}
\{
 \#5 \{\#4\} \{\#6\} __sort_ii:nnnnNn __sort_i:nnnnNn
 \{\#6\} \{\#2\} \{ \#3 \{\#1\} \} \{\#4\}
\}
\]

Note that the two functions have the form of \texttt{__sort_loop:wNn} above, receiving as \texttt{#5} the conditional or a function to end the loop. In fact, the lists \texttt{#2} and \texttt{#3} must be made of pairs \texttt{⟨conditional⟩ \{⟨item⟩⟩}, so we have to replace \texttt{⟨#6⟩} above by \texttt{\{ #5 \{#6\} }, and \texttt{⟨#1⟩} by \texttt{#1}. The actual functions have one more argument, so all argument numbers are shifted compared to this code.

The third speed up is to avoid \texttt{\use:ff} using a continuation-passing style: \texttt{__sort_quick_split:NnNn} expects a list followed by \texttt{\s__sort_mark \{⟨code⟩\}}, and expands to \texttt{⟨code⟩ \{sorted list⟩}. Sorting the two parts of the list around the pivot is done with

\[
\texttt{__sort_quick_split:NnNn #2 ... \s__sort_mark}
\{
 __sort_quick_split:NnNn #1 ... \s__sort_mark \{⟨code⟩\}
\}
\]

Items which are larger than the \texttt{⟨pivot⟩} are sorted, then placed after code that sorts the smaller items, and after the (braced) \texttt{⟨pivot⟩}.

The fourth speed up is avoid the recursive call to \texttt{\tl_sort:nN} with an empty first argument. For this, we introduce functions similar to the \texttt{__sort_i:nnnnNn} of the last example, but aware of whether the list of \texttt{⟨conditional⟩ \{⟨item⟩⟩} read so far that are less than the pivot, and the list of those greater or equal, are empty or not: see \texttt{__sort_quick_split:NnNn} and functions defined below. Knowing whether the lists are empty or not is useless if we do not use distinct ending codes as appropriate. The splitting auxiliaries communicate to the \texttt{⟨end-loop⟩} function (that is initially placed after the “prepared” list) by placing a specific ending function, ignored when looping, but useful at the end. In fact, the \texttt{⟨end-loop⟩} function does nothing but place the appropriate ending function in front of all its arguments. The ending functions take care of sorting non-empty sublists, placing the pivot in between, and the continuation before.

The final change in fact slows down the code a little, but is required to avoid memory issues: schematically, when \TeX{} encounters

\[
\texttt{\use:n \{ \use:n \{ \use:n \{ ... \} ... \} ... \}}
\]

the argument of the first \texttt{\use:n} is not completely read by the second \texttt{\use:n}, hence must remain in memory; then the argument of the second \texttt{\use:n} is not completely read when grabbing the argument of the third \texttt{\use:n}, hence must remain in memory, and so on. The memory consumption grows quadratically with the number of nested \texttt{\use:n}. In
practice, this means that we must read everything until a trailing \texttt{_sort_stop} once in a while, otherwise sorting lists of more than a few thousand items would exhaust a typical \TeX's memory.

The code within the \texttt{\exp_not:f} sorts the list, leaving in most cases a leading \texttt{\exp_not:f}, which stops the expansion, letting the result be return within \texttt{\exp_not:n}. We filter out the case of a list with no item, which would otherwise cause problems. Then prepare the token list \texttt{#1} by inserting the conditional \texttt{#2} before each item. The \texttt{prepare} auxiliary receives the conditional as \texttt{#1}, the prepared token list so far as \texttt{#2}, the next prepared item as \texttt{#3}, and the item after that as \texttt{#4}. The loop ends when \texttt{#4} contains \texttt{\prg_break_point:], then the \texttt{prepare_end} auxiliary finds the prepared token list as \texttt{#4}.

The scene is then set up for \texttt{_sort_quick_split:NnNn}, which sorts the prepared list and perform the post action placed after \texttt{_sort_mark}, namely removing the trailing \texttt{_sort_stop} and \texttt{_sort_stop} and leaving \texttt{\exp_stop_f:} to stop \f-expansion.

\begin{verbatim}
\cs_new:Npn \tl_sort:nN #1#2
{ \exp_not:f
 \tl_if_blank:nF {#1}
 { __sort_quick_prepare:Nnnn #2 { } { } __sort_mark }
 \s__sort_stop
}
\cs_new:Npn __sort_quick_prepare:Nnnn #1#2#3#4
{ \prg_break: #4 \prg_break_point:
 __sort_quick_prepare:Nnnn #1 __sort_mark { __sort_mark __sort_mark \s__sort_stop
}
\cs_new:Npn __sort_quick_split:NnNn __sort_quick_only_i:NnnnnNn
__sort_quick_only_ii:NnnnnNn __sort_quick_split_i:NnnnnNn
__sort_quick_split_ii:NnnnnNn
The \texttt{only_i}, \texttt{only_ii}, \texttt{split_i} and \texttt{split_ii} auxiliaries receive a useless first argument, the new item \texttt{#2} (that they append to either one of the next two arguments), the list \texttt{#3} of items less than the pivot, bigger items \texttt{#4}, the pivot \texttt{#5}, a \langle\texttt{function}\rangle \texttt{#6}, and an item \texttt{#7}. The \texttt{function} is the user's \langle\texttt{conditional}\rangle except at the end of the list where it is \texttt{_sort_mark}. The comparison is applied to the \langle\texttt{pivot}\rangle and the \langle\texttt{item}\rangle, and calls the \texttt{only_i} or \texttt{split_i} auxiliaries if the \langle\texttt{item}\rangle is smaller, and the \texttt{only_ii} or \texttt{split_ii} auxiliaries otherwise. In both cases, the next auxiliary goes to work right away, with no intermediate expansion that would slow down operations. Note that the argument \texttt{#2} left for the next call has the form \langle\texttt{conditional}\rangle \{\langle\texttt{item}\rangle\}, so that the lists \texttt{#3} and \texttt{#4} keep the right form to be fed to the next sorting function. The \texttt{split} auxiliary
\end{verbatim}

(End of definition for \texttt{\tl_sort:nN} and others. This function is documented on page 192.)

432
differs from these in that it is missing three of the arguments, which would be empty, and its first argument is always the user's (conditional) rather than an ending function.

\cs_new:Npn __sort_quick_split:NnNn #1#2#3#4
__sort_quick_only_i:NnnnnNn
__sort_quick_single_end:nnnwnw
\{ #3 {#4} } { } { } {#2}
\}
\cs_new:Npn __sort_quick_only_i:NnnnnNn #1#2#3#4#5#6#7
\{ #6 {#5} {#7} __sort_quick_split_i:NnnnnNn
__sort_quick_split_i_end:nnnwnw
\{ #6 {#7} \} { #3 #2 } \}
\}
\cs_new:Npn __sort_quick_only_ii:NnnnnNn #1#2#3#4#5#6#7
\{ #6 {#5} {#7} __sort_quick_split_ii:NnnnnNn
__sort_quick_split_ii_end:nnnwnw
\{ #6 {#7} \} { #3 } \}
\}
\cs_new:Npn __sort_quick_split_i:NnnnnNn #1#2#3#4#5#6#7
\{ #6 {#5} {#7} __sort_quick_split_i:NnnnnNn
__sort_quick_split_i_end:nnnwnw
\{ #6 {#7} \} { #3 #2 } {#4} \}
\}
\cs_new:Npn __sort_quick_split_ii:NnnnnNn #1#2#3#4#5#6#7
\{ #6 {#5} {#7} __sort_quick_split_ii:NnnnnNn
__sort_quick_split_ii_end:nnnwnw
\{ #6 {#7} \} {#3} \}
\}
__sort_quick_end:nnTFNn
__sort_quick_single_end:nnnwnw
__sort_quick_only_i_end:nnnwnw
__sort_quick_only_ii_end:nnnwnw
__sort_quick_split_end:nnnwnw

__(End of definition for _sort_quick_split:NnNn and others.)__

The _sort_quick_end:nnTFNn appears instead of the user's conditional, and receives as its arguments the pivot \#1, a fake item \#2, a true and a false branches \#3 and \#4, followed by an ending function \#5 (one of the four auxiliaries here) and another copy \#6 of the fake item. All those are discarded except the function \#5. This function receives lists \#1 and \#2 of items less than or greater than the pivot \#3, then a continuation code \#5 just after \texttt{s__sort_mark}. To avoid a memory problem described earlier, all of the ending functions read \#6 until \texttt{s__sort_stop} and place \#6 back into the input stream. When the lists \#1 and \#2 are empty, the \texttt{single} auxiliary simply places the continuation \#5 before the pivot \{\#3\}. When \#2 is empty, \#1 is sorted and placed before the pivot \{\#3\}, taking care to feed the continuation \#5 as a continuation for the function sorting \#1. When \#1 is empty, \#2 is sorted, and the continuation argument is used to place the continuation \#5 and the pivot \{\#3\} before the sorted result. Finally, when both
lists are non-empty, items larger than the pivot are sorted, then items less than the pivot,
and the continuations are done in such a way to place the pivot in between.

\begin{verbatim}
\cs_new:Npn __sort_quick_end:nnTFNn #1#2#3#4#5#6 {#5}
\cs_new:Npn __sort_quick_single_end:nnnwnw #1#2#3#4 \s__sort_mark #5#6 \s__sort_stop
{ \s__sort_stop }
\cs_new:Npn __sort_quick_only_i_end:nnnwnw #1#2#3#4 \s__sort_mark #5#6 \s__sort_stop
{ __sort_quick_split:NnNn #1 __sort_quick_end:nnTFNn { } \s__sort_mark {#5} (#3)
#6 \s__sort_stop }
\cs_new:Npn __sort_quick_only_ii_end:nnnwnw #1#2#3#4 \s__sort_mark #5#6 \s__sort_stop
{ __sort_quick_split:NnNn #2 __sort_quick_end:nnTFNn { } \s__sort_mark {#5 {#3} }
#6 \s__sort_stop }
\cs_new:Npn __sort_quick_split_end:nnnwnw #1#2#3#4 \s__sort_mark #5#6 \s__sort_stop
{ __sort_quick_split:NnNn #2 __sort_quick_split_end:nnTFNn { \s__sort_mark } \s__sort_mark {#5}
#6 \s__sort_stop }
\end{verbatim}

(End of definition for __sort_quick_end:nnTFNn and others.)

45.6 Messages

__sort_error: Bailing out of the sorting code is a bit tricky. It may not be safe to use a delimited argument, so instead we redefine many \texttt{l3sort} commands to be trivial, with \texttt{_sort_level:} jumping to the break point. This error recovery won’t work in a group.

\begin{verbatim}
\cs_new_protected:Npn __sort_disable_toksdef:
__sort_disabled_toksdef:n
\end{verbatim}

While sorting, \texttt{\toksdef} is locally disabled to prevent users from using \texttt{\newtoks} or similar commands in their comparison code: the \texttt{\toks} registers that would be assigned are in use by \texttt{l3sort}. In format mode, none of this is needed since there is no \texttt{\toks} allocator.

434
\msg_error:nne { sort } { toksdef }
{ \token_to_str:N #1 }
__sort_error:
\tex_toksdef:D #1
}
\msg_new:nnnn { sort } { toksdef }
{ Allocation-of-\iochar:N\toks-registers-impossible-while-sorting. }
{ The-comparison-code-used-for-sorting-a-list-has-attempted-to-
define-#1-as-a-new-\iochar:N\toks-register-using-
\iochar:N\newtoks-
or-a-similar-command.-The-list-will-not-be-sorted.
}
__sort_too_long_error:NNw
When there are too many items in a sequence, this is an error, and we clean up properly
the mapping over items in the list: break using the type-specific breaking function #1.
\cs_new_protected:Npn __sort_too_long_error:NNw #1#2 \fi:
{ \fi:
\msg_error:nnee { sort } { too-large }
{ \int_eval:n { \l__sort_true_max_int - \l__sort_min_int } }
{ \int_eval:n { \l__sort_top_int - \l__sort_min_int } }
#1 __sort_error:
}
\msg_new:nnnn { sort } { too-large }
{ The-list-#1-is-too-long-to-be-sorted-by-\TeX. }
{ \TeX-has-#2-toks-registers-still-available:-
this-only-allows-to-sort-with-up-to-#3-
items.-The-list-will-not-be-sorted.
}
(End of definition for __sort_disable_toksdef: and __sort_disabled_toksdef:n.)
__sort_return-none
When sorting a list, the code to compare items #1 and #2
did not call \iochar:N\sort_return_same: or \iochar:N\sort_return_swapped:. Exactly one of these should be called.
__sort_return-two
When sorting a list, the code to compare items #1 and #2 called
\iochar:N\sort_return_same: or \iochar:N\sort_return_swapped: multiple times. Exactly one of these should be called.
\prop_gput:Nnn \g_msg_module_name_prop { sort } { LaTeX }
\prop_gput:Nnn \g_msg_module_type_prop { sort } { }
3473 ⟨/package⟩
Chapter 46

\texttt{l3tl-analysis implementation}

\section*{46.1 Internal functions}
\\texttt{\texttt{s_tl}} \hfill

The format used to store token lists internally uses the scan mark \texttt{s_tl} as a delimiter.

\texttt{(End of definition for s_tl.)}

\section*{46.2 Internal format}

The task of the \texttt{l3tl-analysis} module is to convert token lists to an internal format which
allows us to extract all the relevant information about individual tokens (category code, character code), as well as reconstruct the token list quickly. This internal format is
used in \texttt{l3regex} where we need to support arbitrary tokens, and it is used in conversion functions in \texttt{l3str-convert}, where we wish to support clusters of characters instead of single tokens.

We thus need a way to encode any \texttt{<token>} (even begin-group and end-group character tokens) in a way amenable to manipulating tokens individually. The best we can do is to find \texttt{<tokens>} which both \texttt{o}-expand and \texttt{e/x}-expand to the given \texttt{<token>}. Collecting more information about the category code and character code is also useful for regular expressions, since most regexes are catcode-agnostic. The internal format thus takes the form of a succession of items of the form

\texttt{<tokens> s_tl <catcode> <char code> s_tl}

The \texttt{<tokens>} \texttt{o}- and \texttt{e/x}-expand to the original token in the token list or to the cluster of tokens corresponding to one Unicode character in the given encoding (for \texttt{l3str-convert}). The \texttt{<catcode>} is given as a single hexadecimal digit, 0 for control sequences. The \texttt{<char code>} is given as a decimal number, –1 for control sequences.

Using delimited arguments lets us build the \texttt{<tokens>} progressively when doing an encoding conversion in \texttt{l3str-convert}. On the other hand, the delimiter \texttt{s_tl} may not appear unbraced in \texttt{<tokens>}. This is not a problem because we are careful to wrap control sequences in braces (as an argument to \texttt{\exp_not:n}) when converting from a general token list to the internal format.

The current rule for converting a \texttt{<token>} to a balanced set of \texttt{<tokens>} which both \texttt{o}-expands and \texttt{e/x}-expands to it is the following.
• A control sequence \(\texttt{\cs}\) becomes \texttt{\exp_not:n \{ \cs \} \s__tl 0 -1 \s__tl}.

• A begin-group character \{ becomes \texttt{\exp_after:wN \{ \if_false: \} \fi: \s__tl 1 \langle \text{char code} \rangle \s__tl}.

• An end-group character } becomes \texttt{\if_false: \{ \fi: \s__tl 2 \langle \text{char code} \rangle \s__tl}.

• A character with any other category code becomes \texttt{\exp_not:n \{ \langle \text{character} \rangle \} \s__tl \langle \text{hex catcode} \rangle \langle \text{char code} \rangle \s__tl}.

In contrast, for \texttt{\peek_analysis_map_inline:n} we must allow for an input stream containing \texttt{\outer} macros, so that wrapping all control sequences in \texttt{\exp_not:n} is unsafe. Instead, we write the more elaborate \texttt{__kernel_exp_not:w \exp_after:wN { \exp_not:N \cs}}. (On the other hand we make a better effort by avoiding \texttt{\exp_not:n} for characters other than active and macro parameters.)

\subsection*{46.3 Variables and helper functions}

\code{\s__tl} The scan mark \code{\s__tl} is used as a delimiter in the internal format. This is more practical than using a quark, because we would then need to control expansion much more carefully: compare \texttt{\int_value:w '1 \s__tl} with \texttt{\int_value:w '1 \exp_stop_f: \exp_not:N \q_mark} to extract a character code followed by the delimiter in an e-expansion.

\code{\l__tl_analysis_token} The tokens in the token list are probed with the \TeX primitive \texttt{\futurelet}. We use \code{\l__tl_analysis_token} in that construction. In some cases, we convert the following token to a string before probing it: then the token variable used is \code{\l__tl_analysis_char_token}. When getting tokens from the input stream we may need to look two tokens ahead, for which we use \code{\l__tl_analysis_next_token}.

\code{\l__tl_peek_code_tl} Holds some code to be run once the next token has been fully analysed in \texttt{\peek_analysis_map_inline:n}.

\code{\c__tl_peek_catcodes_tl} A token list containing the character number 32 (space) with all possible category codes except 1 and 2 (begin-group and end-group). Why 32? Because some Lua\TeX versions only allow creation of catcode 10 (space) tokens with this character code, so that we decided to make \texttt{\char_generate:nn} refuse to create such weird spaces as well. We do not include the macro parameter case (catcode 6) because it cannot be used as a macro delimiter.
\group_begin:
\char_set_active_eq:NN \scan_stop:
\tl_const:Ne \c__tl_peek_catcodes_tl
{
\char_generate:nn { 32 } { 3 } 3
\char_generate:nn { 32 } { 4 } 4
\char_generate:nn { 32 } { 7 } 7
\char_generate:nn { 32 } { 8 } 8
\c_space_tl \token_to_str:N A
\char_generate:nn { 32 } { 11 } \token_to_str:N B
\char_generate:nn { 32 } { 12 } \token_to_str:N C
\char_generate:nn { 32 } { 13 } \token_to_str:N D
}
\group_end:

__tl_analysis_normal_int The number of normal (N-type argument) tokens since the last special token.
\int_new:N \l__tl_analysis_normal_int
(End of definition for \l__tl_analysis_normal_int.)

__tl_analysis_index_int During the first pass, this is the index in the array being built. During the second pass, it is equal to the maximum index in the array from the first pass.
\int_new:N \l__tl_analysis_index_int
(End of definition for \l__tl_analysis_index_int.)

__tl_analysis_nesting_int Nesting depth of explicit begin-group and end-group characters during the first pass. This lets us detect the end of the token list without a reserved end-marker.
\int_new:N \l__tl_analysis_nesting_int
(End of definition for \l__tl_analysis_nesting_int.)

__tl_analysis_type_int When encountering special characters, we record their “type” in this integer.
\int_new:N \l__tl_analysis_type_int
(End of definition for \l__tl_analysis_type_int.)

__tl_analysis_result_tl The result of the conversion is stored in this token list, with a succession of items of the form
\langle tokens \rangle \s__tl \langle catcode \rangle \langle char code \rangle \s__tl
\int_new:N \g__tl_analysis_result_tl
(End of definition for \g__tl_analysis_result_tl.)

__tl_analysis_extract_charcode: Extracting the character code from the meaning of \l__tl_analysis_token. This has no error checking, and should only be assumed to work for begin-group and end-group character tokens. It produces a number in the form ‘\langle char \rangle’.
\cs_new:Npn __tl_analysis_extract_charcode:
{
\exp_after:wN __tl_analysis_extract_charcode_aux:w
\token_to_meaning:N \l__tl_analysis_token
}
(End of definition for __tl_analysis_extract_charcode.)

439
Counts the number of spaces in the string representation of its second argument, as well as the number of characters following the last space in that representation, and feeds the two numbers as semicolon-delimited arguments to the first argument. When this function is used, the escape character is printable and non-space.

\cs_new:Npn _tl_analysis_cs_space_count:NN \#1 \#2
\{ \exp_after:wN \#1 \int_value:w \int_eval:w 0 \exp_after:wN _tl_analysis_cs_space_count:w \token_to_str:N \#2 \fi: _tl_analysis_cs_space_count_end:w ; - ! \}
\cs_new:Npn _tl_analysis_cs_space_count:w \#1 ~ \{ \if_false: \#1 \#1 \fi: + 1 _tl_analysis_cs_space_count:w \}
\cs_new:Npn _tl_analysis_cs_space_count_end:w ; \#1 \fi: \#2 ! \{ \exp_after:wN \; \int_value:w \str_count_ignore_spaces:n {\#1} ; \}

\subsection{Plan of attack}

Our goal is to produce a token list of the form roughly

\begin{verbatim}
\token 1 \s__tl (catcode 1) (char code 1) \s__tl
\token 2 \s__tl (catcode 2) (char code 2) \s__tl
\ldots \token N \s__tl (catcode N) (char code N) \s__tl
\end{verbatim}

Most but not all tokens can be grabbed as an undelimited (N-type) argument by TEX. The plan is to have a two pass system. In the first pass, locate special tokens, and store them in various \toks registers. In the second pass, which is done within an \expanding assignment, normal tokens are taken in as N-type arguments, and special tokens are retrieved from the \toks registers, and removed from the input stream by some means. The whole process takes linear time, because we avoid building the result one item at a time.

We make the escape character printable (backslash, but this later oscillates between slash and backslash): this allows us to distinguish characters from control sequences.

A token has two characteristics: its \meaning, and what it looks like for TEX when it is in scanning mode (\emph{e.g.}, when capturing parameters for a macro). For our purposes, we distinguish the following meanings:

\begin{itemize}
 \item begin-group token (category code 1), either space (character code 32), or non-space;
 \item end-group token (category code 2), either space (character code 32), or non-space;
 \item space token (category code 10, character code 32);
\end{itemize}
• anything else (then the token is always an \texttt{N}-type argument).

The token itself can “look like” one of the following

• a non-active character, in which case its meaning is automatically that associated to its character code and category code, we call it “true” character;

• an active character;

• a control sequence.

The only tokens which are not valid \texttt{N}-type arguments are true begin-group characters, true end-group characters, and true spaces. We detect those characters by scanning ahead with \texttt{futurelet}, then distinguishing true characters from control sequences set equal to them using the \texttt{string} representation.

The second pass is a simple exercise in expandable loops.

\begin{verbatim}
__tl_analysis:n
\end{verbatim}

Everything is done within a group, and all definitions are local. We use \texttt{\group_align_safe_begin/end:} to avoid problems in case \texttt{__tl_analysis:n} is used within an alignment and its argument contains alignment tab tokens.

\begin{verbatim}
\cs_new_protected:Npn __tl_analysis:n #1
\group_begin:
\group_align_safe_begin:
__tl_analysis_a:n {#1}
__tl_analysis_b:n {#1}
\group_align_safe_end:
\group_end:
\end{verbatim}

(End of definition for \texttt{__tl_analysis:n}.)

46.5 Disabling active characters

Active characters can cause problems later on in the processing, so we provide a way to disable them, by setting them to \texttt{undefined}. Since Unicode contains too many characters to loop over all of them, we instead do this whenever we encounter a character. For \texttt{p\TeX} and \texttt{u\TeX} we skip characters beyond \texttt{[0,255]} because \texttt{lccode} only allows those values.

\begin{verbatim}
\cs_gset_protected:Npn __tl_analysis_disable:n #1
\group_begin:
\char_set_catcode_active:N \^^@ \cs_gset_protected:Npn __tl_analysis_disable:n #1
\group_begin:
\cs_gset_catcode_active:N \^^@ \cs_gset_protected:Npn __tl_analysis_disable:n #1
\group_begin:
\cs_gset_catcode_active:N \^^@ \cs_gset_protected:Npn __tl_analysis_disable:n #1
\end{verbatim}

\texttt{__tl_analysis_disable:n}
Similar to __tl_analysis_disable:n, but it receives a normal character token, tests if that token is active (by turning it into a space: the active space has been undefined at this point), and if so, disables it. Even if the character is active and set equal to a primitive conditional, nothing blows up. Again, in \texttt{pTeX} and \texttt{upTeX} we skip characters beyond \([0,255]\), which cannot be active anyways.

__tl_analysis_disable_char:N

\begin{verbatim}
\group_begin:
\char_set_catcode_active:N \^^@\char_set_catcode_active:N \^^@\cs_new_protected:Npn __tl_analysis_disable_char:N #1 \group_end:
\end{verbatim}

\section{First pass}

The goal of this pass is to detect special (non-N-type) tokens, and count how many N-type tokens lie between special tokens. Also, we wish to store some representation of each special token in a \texttt{toks} register.

We have 11 types of tokens:

1. a true non-space begin-group character;
2. a true space begin-group character;
3. a true non-space end-group character;
4. a true space end-group character;
5. a true space blank space character;
6. an active character;
7. any other true character;
8. a control sequence equal to a begin-group token (category code 1);
9. a control sequence equal to an end-group token (category code 2);
10. a control sequence equal to a space token (character code 32, category code 10);
11. any other control sequence.

Our first tool is \futurelet. This cannot distinguish case 8 from 1 or 2, nor case 9 from 3 or 4, nor case 10 from case 5. Those cases are later distinguished by applying the \string primitive to the following token, after possibly changing the escape character to ensure that a control sequence’s string representation cannot be mistaken for the true character.

In cases 6, 7, and 11, the following token is a valid \N-type argument, so we grab it and distinguish the case of a character from a control sequence: in the latter case, \str_tail:n \{\langle token\rangle\} is non-empty, because the escape character is printable.

__tl_analysis_a:n We read tokens one by one using \futurelet. While performing the loop, we keep track of the number of true begin-group characters minus the number of true end-group characters in \l__tl_analysis_nesting_int. This reaches –1 when we read the closing brace.

__tl_analysis_a_loop:w Read one character and check its type.

__tl_analysis_a_type:w At this point, \l__tl_analysis_token holds the meaning of the following token. We store in \l__tl_analysis_type_int information about the meaning of the token ahead:

- 0 space token;
- 1 begin-group token;
- -1 end-group token;
- 2 other.
The values 0, 1, −1 correspond to how much a true such character changes the nesting level (2 is used only here, and is irrelevant later). Then call the auxiliary for each case. Note that nesting conditionals here is safe because we only skip over \l__tl_analysis_token if it matches with one of the character tokens (hence is not a primitive conditional).

\cs_new_protected:Npn __tl_analysis_a_type:w
\{ \l__tl_analysis_type_int = \if_meaning:w \l__tl_analysis_token \c_space_token 0 \else: \if_catcode:w \exp_not:N \l__tl_analysis_token \c_group_begin_token 1 \else: \if_catcode:w \exp_not:N \l__tl_analysis_token \c_group_end_token - 1 \else: 2 \fi: \fi: \fi: \exp_stop_f: \fi_case:w \l__tl_analysis_type_int \exp_after:wN __tl_analysis_a_space:w \or: \exp_after:wN __tl_analysis_a_bgroup:w \or: \exp_after:wN __tl_analysis_a_safe:N \else: \exp_after:wN __tl_analysis_a_egroup:w \fi: \fi: \exp_stop_f: \\}

(End of definition for __tl_analysis_a_type:w.)

__tl_analysis_a_space:w In this branch, the following token’s meaning is a blank space. Apply \string to that token: a true blank space gives a space, a control sequence gives a result starting with the escape character, an active character gives something else than a space since we disabled the space. We grab as \l__tl_analysis_char_token the first character of the string representation then test it in __tl_analysis_a_space_test:w. Also, since __tl_analysis_a_store: expects the special token to be stored in the relevant \toks register, we do that. The extra \exp_not:n is unnecessary of course, but it makes the treatment of all tokens more homogeneous. If we discover that the next token was actually a control sequence or an active character instead of a true space, then we step the counter of normal tokens. We now have in front of us the whole string representation of the control sequence, including potential spaces; those will appear to be true spaces later in this pass. Hence, all other branches of the code in this first pass need to consider the string representation, so that the second pass does not need to test the meaning of tokens, only strings.

\cs_new_protected:Npn __tl_analysis_a_space:w
\{ \tex_afterassignment:D __tl_analysis_a_space_test:w \exp_after:wN \cs_set_eq:NN \exp_after:wN \l__tl_analysis_char_token \token_to_str:N \}

(End of definition for __tl_analysis_a_space:w.)
The token is most likely a true character token with catcode 1 or 2, but it might be a control sequence, or an active character. Optimizing for the first case, we store in a toks register some code that expands to that token. Since we will turn what follows into a string, we make sure the escape character is different from the current character code (by switching between solidus and backslash). To detect the special case of an active character let to the catcode 1 or 2 character with the same character code, we disable the active character with that character code and re-test: if the following token has become undefined we can in fact safely grab it. We are finally ready to turn what follows to a string and test it. This is one place where we need ___tl_analysis_a_space\:w to be a separate control sequence from ___tl_analysis_token to be compared.
\cs_new_protected:Npn __tl_analysis_a_group_test:w
\{
 \if_charcode:w \l__tl_analysis_token \l__tl_analysis_char_token
 __tl_analysis_a_store:
 \else:
 \int_incr:N \l__tl_analysis_normal_int
 \fi:
__tl_analysis_a_loop:w
\}

(End of definition for __tl_analysis_a_bgroup:w and others.)

__tl_analysis_a_store: This function is called each time we meet a special token; at this point, the \ttoks register \l__tl_analysis_index_int holds a token list which expands to the given special token. Also, the value of \l__tl_analysis_type_int indicates which case we are in:

- -1 end-group character;
- 0 space character;
- 1 begin-group character.

We need to distinguish further the case of a space character (code 32) from other character codes, because those behave differently in the second pass. Namely, after testing the \lccode of 0 (which holds the present character code) we change the cases above to

- -2 space end-group character;
- -1 non-space end-group character;
- 0 space blank space character;
- 1 non-space begin-group character;
- 2 space begin-group character.

This has the property that non-space characters correspond to odd values of \l__tl_analysis_type_int. The number of normal tokens until here and the type of special token are packed into a \skip register. Finally, we check whether we reached the last closing brace, in which case we stop by disabling the looping function (locally).
This should be the simplest case: since the upcoming token is safe, we can simply grab it in a second pass. If the token is a single character (including space), the \if_charcode:w test yields true; we disable a potentially active character (that could otherwise masquerade as the true character in the next pass) and we count one “normal” token. On the other hand, if the token is a control sequence, we should replace it by its string representation for compatibility with other code branches. Instead of slowly looping through the characters with the main code, we use the knowledge of how the second pass works: if the control sequence name contains no space, count that token as a number of normal tokens equal to its string length. If the control sequence contains spaces, they should be registered as special characters by increasing \l__tl_analysis_index_int (no need to carefully count character between each space), and all characters after the last space should be counted in the following sequence of “normal” tokens.

\cs_new_protected:Npn __tl_analysis_a_safe:N #1
__tl_analysis_a_loop:w
Start the loop with the index 0. No need for an end-marker: the loop stops by itself when the last index is read. We repeatedly oscillate between reading long stretches of normal tokens, and reading special tokens.

46.7 Second pass

The second pass is an exercise in expandable loops. All the necessary information is stored in \skip and \toks registers.
The first argument is the number of normal tokens which remain to be read, and the second argument is the index in the array produced in the first step. A character’s string representation is always one character long, while a control sequence is always longer (we have set the escape character to a printable value). In both cases, we leave \exp_not:n \langle\text{token}\rangle \s__tl\ in the input stream (after e-expansion). Here, \exp_not:n is used rather than \exp_not:N because \#3 could be a macro parameter character or could be \s__tl (which must be hidden behind braces in the result).

This function is called here with arguments __tl_analysis_b_char:NN and a normal character, while in the peek analysis code it is called with \use_none:n and possibly a space character, which is why the function has signature NN. If the normal token we grab is a character, leave \langle\text{catcode}\rangle \langle\text{charcode}\rangle followed by \s__tl in the input stream, and call __tl_analysis_b_normals:ww with its first argument decremented.
\texttt{\exp_not:N \if_meaning:w #2 \exp_not:N \tex_undefined:D}
\texttt{\token_to_str:N D \exp_not:N \else:}
\texttt{\exp_not:N \if_catcode:w #2 \c_catcode_other_token}
\texttt{\token_to_str:N C \exp_not:N \else:}
\texttt{\exp_not:N \if_catcode:w #2 \c_catcode_letter_token}
\texttt{\token_to_str:N B \exp_not:N \else:}
\texttt{\exp_not:N \if_catcode:w #2 \c_math_toggle_token 3}
\texttt{\else:}
\texttt{\exp_not:N \if_catcode:w #2 \c_alignment_token 4}
\texttt{\else:}
\texttt{\exp_not:N \if_catcode:w #2 \c_math_superscript_token 7}
\texttt{\else:}
\texttt{\exp_not:N \if_catcode:w #2 \c_math_subscript_token 8}
\texttt{\else:}
\texttt{\exp_not:N \if_catcode:w #2 \c_space_token}
\texttt{\token_to_str:N A \exp_not:N \else:}
\texttt{6}
\texttt{\exp_not:n { \fi: \fi: \fi: \fi: \fi: \fi: \fi: \fi: }
\texttt{#1 {#2}}
\texttt{\cs_new:Npn __tl_analysis_b_char_aux:nww #1}{
\int_value:w '#1 \s__tl
\exp_after:wN __tl_analysis_b_normals:ww
\int_value:w \int_eval:w - 1 +}
\texttt{\cs_new:Npn __tl_analysis_b_char:Nn __tl_analysis_b_char_aux:nww #1}{
\int_value:w \int_eval:w \if_int_compare:w #1 = \c_zero_int
#3 \else:
\tex_skip:D \int_eval:n { #4 + #1 } \exp_stop_f:
\fi:
\fi: \fi: \fi: \fi: \fi: \fi: \fi: }
\texttt{__tl_analysis_b_cs:Nww __tl_analysis_b_cs_test:ww}
\texttt{\cs_new:Npn __tl_analysis_b_cs:Nww #1}{
0 -1 \s__tl
__tl_analysis_cs_space_count:NN __tl_analysis_b_cs_test:ww #1}
\texttt{\cs_new:Npn __tl_analysis_b_cs_test:ww #1 ; #2 ; #3 ; #4 ;}{
\exp_after:wN __tl_analysis_b_normals:ww
\int_value:w \int_eval:w \if_int_compare:w #1 = \c_zero_int
#3 \else:
\tex_skip:D \int_eval:n { #4 + #1 } \exp_stop_f:
\fi:
\fi: \fi: \fi: \fi: \fi: \fi: \fi: }
\texttt{__tl_analysis_b_special:w __tl_analysis_b_special_char:wN __tl_analysis_b_special_space:w}
\texttt{__tl_analysis_b_special:w __tl_analysis_b_special_char:wN __tl_analysis_b_special_space:w}
\texttt{__tl_analysis_b_special:w __tl_analysis_b_special_char:wN __tl_analysis_b_special_space:w}

(End of definition for __tl_analysis_b_char:Nn and __tl_analysis_b_char_aux:nww.)

If the token we grab is a control sequence, leave 0 -1 (as category code and character code) in the input stream, followed by \s__tl, and call __tl_analysis_b_normals:ww with updated arguments.

(End of definition for __tl_analysis_b_cs:Nww and __tl_analysis_b_cs_test:ww.)

Here, \#1 is the current index in the array built in the first pass. Check now whether we reached the end (we shouldn’t keep the trailing end-group character that marked the
end of the token list in the first pass). Unpack the \toks register: when e/x-expanding again, we will get the special token. Then leave the category code in the input stream, followed by the character code, and call __tl_analysis_b_loop:w with the next index.

46.8 Mapping through the analysis

First obtain the analysis of the token list into \g__tl_analysis_result_tl. To allow nested mappings, increase the nesting depth \g__kernel_prg_map_int (shared between all modules), then define the payload macro, which runs the user code and has a name specific to that nesting depth. The looping macro grabs the ⟨tokens⟩, ⟨catcode⟩ and ⟨char code⟩; it checks for the end of the loop with \use_none:n ##2, normally empty, but which becomes \tl_map_break: at the end; it then calls the payload macro with the arguments in the correct order (this is the reason why we cannot directly use the same macro for
looping and payload), and loops by calling itself. When the loop ends, remember to
decrease the nesting depth.

\begin{verbatim}
\cs_new_protected:Npn \tl_analysis_map_inline:Nn #1
\exp_args:No \tl_analysis_map_inline:nn #1 \\
\cs_new_protected:Npn \tl_analysis_map_inline:nn #1
__tl_analysis:n {#1} \\
\int_gincr:N \g__kernel_prg_map_int \\
\exp_args:Nc __tl_analysis_map:Nn \\
{ __tl_analysis_map_inline_ \int_use:N \g__kernel_prg_map_int :wNw } \\
\cs_new_protected:Npn __tl_analysis_map:Nn #1#2 \\
{ \cs_gset_protected:Npn #1 ##1##2##3 {#2} \\
\exp_after:wN __tl_analysis_map:NwNw \exp_after:wN #1 \\
\g__tl_analysis_result_tl \s__tl { ? \tl_map_break: } \s__tl \\
\prg_break_point:Nn \tl_map_break: \\
{ \int_gdecr:N \g__kernel_prg_map_int } \\
} \\
\cs_new_protected:Npn __tl_analysis_map:NwNw #1 #2 \s__tl #3 #4 \s__tl \\
{ \tl_if_exist:NTF #3 \\
\exp_args:No __tl_analysis:n {#3} \\
\use_none:n #3 \\
\use_none:n \#3 \\
\#1 {\#2} {\#4} {\#3} \\
__tl_analysis_map:Nn \g__kernel_prg_map_int :wNw \\
} \\
\\end{verbatim}

\textbf{(End of definition for $\text{\ttfamily \tl_analysis_map_inline:Nn}$ and others. These functions are documented on page 46.)}

\subsection{46.9 Showing the results}

\textbf{$\text{\ttfamily \tl_analysis_show:N}$} \par
\textbf{$\text{\ttfamily \tl_analysis_log:N}$} \par
\textbf{$\text{\ttfamily __tl_analysis_show:NNN}$} \par

Add to $__\text{\ttfamily \tl_analysis_show:N}$ a third pass to display tokens to the terminal. If the token list variable is not defined, throw the same error as $\text{\ttfamily \tl_show:N}$ by simply calling that function.

\begin{verbatim}
\cs_new_protected:Npn \tl_analysis_show:N \\
__\text{\ttfamily \tl_analysis_show:NNN} \\
\cs_gset_protected:Npn __\text{\ttfamily \tl_analysis_show:NNN} #1 #2 #3 #4 \s__tl \\
__\text{\ttfamily \tl_analysis_show:NNN} \msg_show:nneeee \tl_show:N \\
\cs_new_protected:Npn \tl_analysis_log:N \\
__\text{\ttfamily \tl_analysis_show:NNN} \msg_log:nneeee \tl_log:N \\
\cs_new_protected:Npn __\text{\ttfamily \tl_analysis_show:NNN} \msg_log:nneeee \tl_log:N \\
\\end{verbatim}

\textbf{(End of definition for $\text{\ttfamily \tl_analysis_show:N}$, $\text{\ttfamily \tl_analysis_log:N}$, and $\text{\ttfamily __\tl_analysis_show:NNN}$. These functions are documented on page 46.)}
No existence test needed here.

Here, #1 o- and e/x-expands to the token; #2 is the category code (one uppercase hexadecimal digit), 0 for control sequences; #3 is the character code, which we ignore. In the cases of control sequences and active characters, the meaning may overflow one line, and we want to truncate it. Those cases are thus separated out.

Non-active characters are a simple matter of printing the character, and its meaning. Our test suite checks that begin-group and end-group characters do not mess up \TeX's alignment status.
__tl_analysis_show_value:N This expands to the value of \#1 if it has any.
__tl_analysis_show_cs:n __tl_analysis_show_active:n __tl_analysis_show_long:nn __tl_analysis_show_long_aux:nnnn

Control sequences and active characters are printed in the same way, making sure not to go beyond the \l_iow_line_count_int. In case of an overflow, we replace the last characters by \c__tl_analysis_show_etc_str.
__tl_analysis_show_cs:n __tl_analysis_show_active:n __tl_analysis_show_long:nn __tl_analysis_show_long_aux:nnnn

(End of definition for __tl_analysis_show_value:N.)

(End of definition for __tl_analysis_show_value:N.)
46.10 Peeking ahead

The break statements use the general \texttt{\textbackslash prg_map_break:Nn}.

\begin{verbatim}
\peek_analysis_map_break:
\peek_analysis_map_break:n
The break statements use the general \texttt{\textbackslash prg_map_break:Nn}.
\cs_new:Npn \peek_analysis_map_break: { \prg_map_break:Nn \peek_analysis_map_break: { } }
\cs_new:Npn \peek_analysis_map_break:n { \prg_map_break:Nn \peek_analysis_map_break: }
\end{verbatim}

(End of definition for \texttt{\peek_analysis_map_break:} and \texttt{\peek_analysis_map_break:n}. These functions are documented on page 204.)

\begin{verbatim}
\l__tl_peek_charcode_int
\int_new:N \l__tl_peek_charcode_int
\end{verbatim}

After a call to \texttt{\futurelet \l__tl_analysis_token} followed by a stringified character token (either explicit space or catcode other character), grab the argument and pass it to \#1. We only need to do anything in the case of a space.

\begin{verbatim}
\cs_new:Npn __tl_analysis_char_arg:Nw #1 ~ { #1 { ~ } }
\end{verbatim}

(End of definition for \texttt{__tl_analysis_char_arg:Nw} and \texttt{__tl_analysis_char_arg_aux:Nw}.)

\begin{verbatim}
\peek_analysis_map_inline:n
__tl_peek_analysis_loop:NNn
__tl_peek_analysis_test:
__tl_peek_analysis_exp:N
__tl_peek_analysis_exp_active:N
__tl_peek_analysis_nonexp:N
__tl_peek_analysis_char:N
__tl_peek_analysis_char:w
__tl_peek_analysis_special:
__tl_peek_analysis_retest:
__tl_peek_analysis_next:
__tl_peek_analysis_nextii:
__tl_peek_analysis_str:w
__tl_peek_analysis_str:n
__tl_peek_analysis_active_str:w
__tl_peek_analysis_active_str:n
__tl_peek_analysis_explicit:n
__tl_peek_analysis_escape:
__tl_peek_analysis_collect:w
__tl_peek_analysis_collect:n
__tl_peek_analysis_collect:NN
__tl_peek_analysis_collect_loop:
__tl_peek_analysis_collect_test:
__tl_peek_analysis_collect_end:NNN
\end{verbatim}

Save the user’s code in a control sequence that is suitable for nested maps. We may wish to pass to this function an \texttt{outer} control sequence or active character; for this we will undefine potentially-\texttt{outer} tokens within a group, closed after the function reads its arguments (for an \texttt{outer} active character there is no good alternative). This user’s code function also calls the loop auxiliary, and includes the trailing \texttt{\prg_break_point:Nn} for when the user wants to stop the loop. The loop auxiliary must remove that break point because it must look at the input stream.

\begin{verbatim}
\cs_new_protected:Npn \peek_analysis_map_inline:n #1
{ \group_align_safe_begin:
\int_gincr:N \g__kernel_prg_map_int
\cs_set_protected:cpn { __tl_analysis_map_ \int_use:N \g__kernel_prg_map_int :nnN } ##1##2##3
\group_end: #1
__tl_peek_analysis_loop:NNn
 \prg_break_point:Nn \peek_analysis_map_break:
 { \group_align_safe_end: } }
\end{verbatim}

(End of definition for \texttt{__tl_analysis_char_arg:Nw} and \texttt{__tl_analysis_char_arg_aux:Nw}.)

454
The loop starts a group (closed by the user-code function defined above) with a normalized escape character, and checks if the next token is special or N-type (distinguishing expandable from non-expandable tokens).

```
\cs_new_protected:Npn \_\_tl_peek_analysis_loop:NNn #1#2#3
    \group_begin:
    \tl_set:Ne \l__tl_peek_code_tl
    \exp_not:c
        { \_\_tl_analysis_map_ \int_use:N \g__kernel_prg_map_int :nnN }
    \int_set:Nn \tex_escapechar:D { '\'}
    \peek_after:Nw \_\_tl_peek_analysis_test:
\cs_new_protected:Npn \_\_tl_peek_analysis_test:
    \if_case:w
        \if_catcode:w \exp_not:N \l_peek_token { \c_max_int \fi:
        \if_catcode:w \exp_not:N \l_peek_token } \c_max_int \fi:
        \if_meaning:w \l_peek_token \c_space_token \c_max_int \fi:
        \exp_after:wN \if_meaning:w \exp_not:N \l_peek_token \l_peek_token
        \c_one_int
        \fi:
        \c_zero_int
        \exp_after:wN \exp_after:wN \exp_after:wN \__tl_peek_analysis_exp:N
        \exp_after:wN \exp_not:N
        \else:
        \exp_after:wN \_\_tl_peek_analysis_nonexp:N
        \fi:
```

Expandable tokens (which are automatically N-type) can be \texttt{\textbackslash outer} macros, hence the need for \texttt{\exp_after:wN} and \texttt{\exp_not:N} in the code above, which allows the next function to safely grab the token as an argument. We run some code that is expanded using the primitive \texttt{\cs_set_nopar:Npe} rather than \texttt{\tl_set:Ne} to avoid grabbing it as an argument as \#1 may be \texttt{\textbackslash outer}. To allow \#1 as an argument of the user’s function (stored in \texttt{\l__tl_peek_code_tl}), we set it equal to \texttt{\scan_stop;} at the last minute because \#1 may be some pretty important function such as \texttt{\exp_after:wN}. Then we put the user’s function and the elaborate first argument \texttt{__kernel_exp_not:w \exp_after:wN \exp_not:w \exp_after:wN ___tl_peek_analysis_special:} indeed we cannot use \texttt{\exp_not:n \#1} as this breaks for an \texttt{\textbackslash outer} macro and we cannot use \texttt{\exp_not:N \#1}, as o-expanding this yields a “notexpanded” token equal to (a weird) \texttt{\relax}, which would have the wrong value for primitive \TeX{} conditionals such as \texttt{\if_meaning:w}.

Then we must add \texttt{-1\charcode{\textbackslash}}0 if the token is a control sequence and \texttt{\langle \texttt{\charcode{\textbackslash}} \rangle D} otherwise. Distinguishing the two cases is easy: since we have made the escape character printable, \texttt{\token_to_str:N} gives at least two characters for a control sequence versus a single one for an active character (possibly being a space). Producing the right outcome is trickier, as \#1 cannot appear in either branch of the conditional (it could be \texttt{\textbackslash outer}, or simply a \TeX{} conditional), and can only be safely discarded by \texttt{\use_none:n} if it is
first hit with \exp_not:N.

For normal non-expandable tokens we must distinguish characters (including active ones
and macro parameter characters) from control sequences (whose string representation is
more than one character because we made the escape character printable). For a control
sequence call the user code with suitable arguments, wrapping #1 within \exp_not:n
just in case it happens to be equal to a macro parameter character. We do not skip
\exp_not:n when unnecessary, because there might be situations where the argument
could be used by the user after further redefinitions of the token, and it seems more
convenient to know that \exp_not:n is always used.

For normal characters we must determine their catcode. The main difficulty is that the
character may be an active character masquerading as (i.e., set equal to) itself with a
different catcode. Two approaches based on \lowercase can detect this. One could make

456
an active character with the same catcode as #1 and change its definition before testing the catcode of #1, but in some Unicode engine this fills up the hash table uselessly. Instead, we lowercase #1 itself, changing its character code to 32, namely space (because LuaTeX cannot turn catcode 10 characters to anything else than character code 32), then we apply _tl_analysis_b_char:Nn, which detects active characters by comparing them to \tex_undefined:D, and we must have undefined the active space for this test to work—we use an e-expanding assignment to get the active space in the right place. Finally _tl_peek_analysis_char:w puts the arguments in the correct order, including \exp_not:n for macro parameter characters and active characters (the latter could be macro parameter characters, and it seems more uniform to always put \exp_not:n).

\begin{verbatim}
\group_begin:
\char_set_active_eq:NN \ \scan_stop:
\cs_new_protected:Npe _tl_peek_analysis_char:N #1
{\cs_set_eq:NN \char_generate:nn 32 \{ 13 \}
\exp_not:N \tex_undefined:D
\tex_lccode:D '#1 = 32 \exp_stop_f:
\tex_lowercase:D
{
\tl_put_right:Ne \exp_not:N \l__tl_peek_code_tl
{ \exp_not:n { __tl_analysis_b_char:Nn \use_none:n } {#1} }
}
\exp_not:n
{\exp_after:wN __tl_peek_analysis_char:w
\int_value:w
'} #1
\exp_not:n { \exp_after:wN \s__tl \l__tl_peek_code_tl }
#1
}
\group_end:
\cs_new_protected:Npn _tl_peek_analysis_special:
{\if_charcode:w 6 #3
\else:
\if_charcode:w D #3
\else:
\exp_args:NNNo
\fi:
\fi:
#2 { \exp_not:n {#4} } {#1} #3
}
\end{verbatim}

For special characters the idea is to eventually act with \token_to_str:N, then pick up one by one the characters of this string representation until hitting the token that follows. First determine the character code of (the meaning of) the (token) (which we know is a special token), make sure the escape character is different from it, normalize the meanings of two active characters and the empty control sequence, and filter out these cases in _tl_peek_analysis_retest:.

\begin{verbatim}
\cs_new_protected:Npn _tl_peek_analysis_special:
{ }
\end{verbatim}
At this point we know the meaning of the \l_peek_token in the input stream is \l_peek_token, either a space (32, 10) or a begin-group or end-group token (catcode 1 or 2), and we excluded a few cases that would be difficult later (empty control sequence, active character with the same character code as its meaning or as the escape character). Now look at the next token following it using a combination of \afterassignment and \futurelet. (In fact look twice to reset an internal \TeX flag in case the next token had been hit with \exp_not:N.) The syntax of this primitive is \futurelet \l_peek_token \l_first_token \l_next_token, and it sets \l_peek_token equal to \l_next_token. Traditionally, one takes \l_first_token to be some macro that regains control of the code and, e.g., analyses \l_peek_token. Here, both \l_first_token and \l_next_token are mostly unknown tokens in the input stream (but we know the \l_first_token has catcode 1, 2 or 10), where \l_first_token was already stored as \l_peek_token, and we regain control using \afterassignment, which inserts its argument after the assignment, hence after \l_peek_token but before \l_first_token.

We then hit the \l_first_token with \token_to_str:N and grab characters until finding \l_next_token. More precisely, by looking at the first character in the string representation of the \l_first_token we distinguish three cases: a stringified control sequence starts with the escape character; for an explicit character we find that same character; for an explicit character we find anything else (we made sure to exclude the
case of an active character whose string representation coincides with the other two cases).

When \#1 is a stringified active character we pass appropriate arguments to the user’s
code; thankfully \char_generate:nn can make active characters.

When \#1 matches the character we had extracted from the meaning of \l_peek_token,
the token was an explicit character, which can be a standard space, or a begin-group or
end-group character with some character code. In the latter two cases we call \char_generate:nn with suitable arguments and put suitable \if_false: \fi: constructions
to make the result balanced and such that o-expanding or e/x-expanding gives back a
single (unbalanced) begin-group or end-group character.
Finally there is the case of a special token whose string representation starts with an escape character, namely the token was a control sequence. In that case we could have grabbed the token directly as an \texttt{N}-type argument, but of course we couldn’t know that until we had run all the various tests including stringifying the token. We are thus left with the hard work of picking up one by one the characters in the csname (being careful about spaces), until finding a token that matches the \texttt{⟨next token⟩} picked up earlier (which was not stringified), such that the control sequence that we found so far indeed has the expected meaning \texttt{l_peek_token}. This comparison with \texttt{l_peek_token} catches a reasonably common case like \texttt{\c_group_begin_token} in which the trailing \texttt{_} has category code other: without comparison of the constructed csname with \texttt{l_peek_token} collection would stop at \texttt{\c}, which is wrong.
End by calling the user code with suitable arguments (here \#1, \#2 are \texttt{\endgroup}), which closes the group begun early on.

\begin{verbatim}
\cs_new_protected:Npn __tl_peek_analysis_collect_end:NNN #1#2#3
define code for __tl_peek_analysis_collect:ww end by calling the user code with suitable arguments (here \#1, \#2 are \texttt{\endgroup}), which closes the group begun early on.

46.11 Messages

When a control sequence (or active character) and its meaning are too long to fit in one line of the terminal, the end is replaced by this token list.

\begin{verbatim}
\tl_const:N \c__tl_analysis_show_etc_str \end{verbatim}

When a control sequence (or active character) and its meaning are too long to fit in one line of the terminal, the end is replaced by this token list.

\begin{verbatim}
\msg_new:nnn { tl } { show-analysis } \end{verbatim}

When a control sequence (or active character) and its meaning are too long to fit in one line of the terminal, the end is replaced by this token list.
Chapter 47

l3regex implementation

47.1 Plan of attack

Most regex engines use backtracking. This allows to provide very powerful features (back-references come to mind first), but it is costly, and raises the problem of catastrophic backtracking. Since \TeX is not first and foremost a programming language, complicated code tends to run slowly, and we must use faster, albeit slightly more restrictive, techniques, coming from automata theory.

Given a regular expression of n characters, we do the following:

- (Compiling.) Analyse the regex, finding invalid input, and convert it to an internal representation.

- (Building.) Convert the compiled regex to a non-deterministic finite automaton (NFA) with $O(n)$ states which accepts precisely token lists matching that regex.

- (Matching.) Loop through the query token list one token (one “position”) at a time, exploring in parallel every possible path (“active thread”) through the NFA, considering active threads in an order determined by the quantifiers’ greediness.

We use the following vocabulary in the code comments (and in variable names).

- **Group**: index of the capturing group, -1 for non-capturing groups.

- **Position**: each token in the query is labelled by an integer $\langle \text{position} \rangle$, with $\text{min_pos} - 1 \leq \langle \text{position} \rangle \leq \text{max_pos}$. The lowest and highest positions $\text{min_pos} - 1$ and max_pos correspond to imaginary begin and end markers (with non-existent category code and character code). max_pos is only set quite late in the processing.

- **Query**: the token list to which we apply the regular expression.

- **State**: each state of the NFA is labelled by an integer $\langle \text{state} \rangle$ with $\text{min_state} \leq \langle \text{state} \rangle < \text{max_state}$.

- **Active thread**: state of the NFA that is reached when reading the query token list for the matching. Those threads are ordered according to the greediness of quantifiers.
• *Step:* used when matching, starts at 0, incremented every time a character is read, and is not reset when searching for repeated matches. The integer `\l__regex_step_int` is a unique id for all the steps of the matching algorithm.

We use `l3intarray` to manipulate arrays of integers. We also abuse TeX’s `\toks` registers, by accessing them directly by number rather than tying them to control sequence using the `\nevtoks` allocation functions. Specifically, these arrays and `\toks` are used as follows. When building, `\toks(state)` holds the tests and actions to perform in the `⟨state⟩` of the NFA. When matching,

- `\g__regex_state_active_intarray` holds the last `⟨step⟩` in which each `⟨state⟩` was active.

- `\g__regex_thread_info_intarray` consists of blocks for each `⟨thread⟩` (with `min_thread ≤ ⟨thread⟩ < max_thread`). Each block has `1+2\l__regex_capturing_group_int` entries: the `⟨state⟩` in which the `⟨thread⟩` currently is, followed by the beginnings of all submatches, and then the ends of all submatches. The `⟨threads⟩` are ordered starting from the best to the least preferred.

- `\g__regex_submatch_prev_intarray`, `\g__regex_submatch_begin_intarray` and `\g__regex_submatch_end_intarray` hold, for each submatch (as would be extracted by `\regex_extract_all:nnN`), the place where the submatch started to be looked for and its two end-points. For historical reasons, the minimum index is twice `max_state`, and the used registers go up to `\l__regex_submatch_int`. They are organized in blocks of `\l__regex_capturing_group_int` entries, each block corresponding to one match with all its submatches stored in consecutive entries.

When actually building the result,

- `\toks⟨position⟩` holds `⟨tokens⟩` which o- and e-expand to the `⟨position⟩`-th token in the query.

- `\g__regex_balance_intarray` holds the balance of begin-group and end-group character tokens which appear before that point in the token list.

The code is structured as follows. Variables are introduced in the relevant section. First we present some generic helper functions. Then comes the code for compiling a regular expression, and for showing the result of the compilation. The building phase converts a compiled regex to NFA states, and the automaton is run by the code in the following section. The only remaining brick is parsing the replacement text and performing the replacement. We are then ready for all the user functions. Finally, messages, and a little bit of tracing code.

47.2 Helpers

\texttt{__regex_int_eval:w} Access the primitive: performance is key here, so we do not use the slower route via `\int_eval:n`.

4221 \texttt{\cs_new_eq:NN __regex_int_eval:w \tex_numexpr:D}

(End of definition for `__regex_int_eval:w`.)

\texttt{__regex_standard_escapechar:} Make the `\escapechar` into the standard backslash.

4222 \texttt{\cs_new_protected:Npn __regex_standard_escapechar:}
4223 \texttt{\{ \int_set:Nn \tex_escapechar:D \{ ‘\\ } \}}
Unpack a \toks given its number.
\cs_new:Npn __regex_toks_use:w \{ \tex_the:D \tex_toks:D \}

Empty a \toks or set it to a value, given its number.
\cs_new_protected:Npn __regex_toks_clear:N #1 \{ __regex_toks_set:Nn #1 { } \}
\cs_new_eq:NN __regex_toks_set:Nn \tex_toks:D
\cs_new_protected:Npn __regex_toks_set:No #1 \{ \tex_toks:D #1 \exp_after:wN \}

Copy \#3 \toks registers from \#2 onwards to \#1 onwards, like C's memcpy.
\cs_new_protected:Npn __regex_toks_memcpy:NNn #1#2#3 \{ \prg_replicate:nn {#3} \bs { \tex_toks:D #1 = \tex_toks:D #2 \int_incr:N #1 \int_incr:N #2 } \}
\cs_new_protected:Npn __regex_toks_put_left:Ne #1#2 \{ \cs_set_nopar:Npe __regex_tmp:w { #2 } \tex_toks:D #1 \exp_after:wN \exp_after:wN \exp_after:wN { \exp_after:wN __regex_tmp:w \tex_the:D \tex_toks:D #1 } \}
\cs_new_protected:Npn __regex_toks_put_right:Ne #1#2 \{ \cs_set_nopar:Npe __regex_tmp:w {#2} \tex_toks:D #1 \exp_after:wN \{ \tex_the:D \tex_toks:D \exp_after:wN #1 __regex_tmp:w \} \}
\cs_new_protected:Npn __regex_toks_put_right:Nn #1#2 \{ \tex_toks:D #1 \exp_after:wN { \tex_the:D \tex_toks:D #1 #2 } \}

During the building phase we wish to add e-expanded material to \toks, either to the left or to the right. The expansion is done “by hand” for optimization (these operations are used quite a lot). The Nn version of __regex_toks_put_right:Ne is provided because it is more efficient than e-expanding with \exp_not:n.
\cs_new_protected:Npn __regex_toks_put_left:Ne #1#2 \{ \cs_set_nopar:Npe __regex_tmp:w \{ #2 \} \tex_toks:D #1 \exp_after:wN \exp_after:wN \exp_after:wN \{ \exp_after:wN __regex_tmp:w \tex_the:D \tex_toks:D #1 \} \}
\cs_new_protected:Npn __regex_toks_put_right:Ne #1#2 \{ \cs_set_nopar:Npe __regex_tmp:w \{#2\} \tex_toks:D #1 \exp_after:wN \{ \tex_the:D \tex_toks:D \exp_after:wN #1 __regex_tmp:w \} \}
\cs_new_protected:Npn __regex_toks_put_right:Nn #1#2 \{ \tex_toks:D #1 \exp_after:wN \{ \tex_the:D \tex_toks:D \exp_after:wN #1 __regex_tmp:w \} \}

Expands to the string representation of the token (known to be a control sequence) at the current position __regex_curr_pos_int. It should only be used in e/x-expansion to avoid losing a leading space.
\cs_new:Npn __regex_curr_cs_to_str:
\texttt{__regex_intarray_item:NnF} Item of intarray, with a default value.

\begin{verbatim}
\cs_new:Npn __regex_intarray_item:NnF #1#2 { \exp_args:Nf __regex_intarray_item_aux:nNF { \int_eval:n {#2} } #1 }
\cs_new:Npn __regex_intarray_item_aux:nNF #1#2 {
 \if_int_compare:w #1 > \c_zero_int
 \use_i:nn
 \else:
 \use_ii:nn
 \fi:
 { __kernel_intarray_item:Nn #2 {#1} }
}\end{verbatim}

\texttt{__regex_maplike_break:} Analogous to \texttt{\tl_map_break:}, this correctly exits \texttt{\tl_map_inline:nn} and similar constructions and jumps to the matching \texttt{\prg_break_point:Nn} \texttt{__regex_maplike_break:}.

\begin{verbatim}
\cs_new:Npn __regex_maplike_break: { \prg_map_break:Nn __regex_maplike_break: { } }
\end{verbatim}

\texttt{__regex_tl_odd_items:n, __regex_tl_even_items:n, and __regex_tl_even_items_loop:nn} Map through a token list one pair at a time, leaving the odd-numbered or even-numbered items (the first item is numbered 1).

\begin{verbatim}
\cs_new:Npn __regex_tl_odd_items:n #1 { __regex_tl_even_items:n { ? #1 } }
\cs_new:Npn __regex_tl_even_items:n #1 {
 __regex_tl_even_items_loop:nn #1 \q__regex_nil \q__regex_nil
 \prg_break_point:
}
\cs_new:Npn __regex_tl_even_items_loop:nn #1#2 {
 __regex_use_none_delimit_by_q_nil:w #2 \prg_break: \q__regex_nil
 { \exp_not:n (#2) }
 __regex_tl_even_items_loop:nn}
\end{verbatim}

\subsection{47.2.1 Constants and variables}

\texttt{__regex_tmp:w} Temporary function used for various short-term purposes.

\begin{verbatim}
\cs_new:Npn __regex_tmp:w { }
\end{verbatim}
Temporary variables used for various purposes.
\l__regex_internal_a_tl\tl_new:N \l__regex_internal_a_tl
\l__regex_internal_b_tl\tl_new:N \l__regex_internal_b_tl
\l__regex_internal_a_int\tl_new:N \l__regex_internal_a_int
\l__regex_internal_b_int\tl_new:N \l__regex_internal_b_int
\l__regex_internal_c_int\int_new:N \l__regex_internal_c_int
\l__regex_internal_bool\int_new:N \l__regex_internal_c_int
\l__regex_internal_seq\seq_new:N \l__regex_internal_seq
\g__regex_internal_tl\tl_new:N \g__regex_internal_tl

(End of definition for \l__regex_internal_a_tl and others.)

\l__regex_build_tl\tl_new:N \l__regex_build_tl

(End of definition for \l__regex_build_tl.)

\c__regex_no_match_regex This regular expression matches nothing, but is still a valid regular expression. We could use a failing assertion, but I went for an empty class. It is used as the initial value for regular expressions declared using \regex_new:N.
\tl_const:Nn \c__regex_no_match_regex
{ __regex_branch:n
{ __regex_class:NnnnN \c_true_bool { } { 1 } { 0 } \c_true_bool }
}

(End of definition for \c__regex_no_match_regex.)

\l__regex_balance_int During this phase, \l__regex_balance_int counts the balance of begin-group and end-group character tokens which appear before a given point in the token list. This variable is also used to keep track of the balance in the replacement text.
\int_new:N \l__regex_balance_int

(End of definition for \l__regex_balance_int.)

\c__regex_ascii_min_int
\int_const:Nn \c__regex_ascii_min_int { 0 }
\c__regex_ascii_max_int
\int_const:Nn \c__regex_ascii_max_int { 127 }
\c__regex_ascii_max_control_int
\int_const:Nn \c__regex_ascii_max_control_int { 31 }

(End of definition for \c__regex_ascii_min_int, \c__regex_ascii_max_control_int, and \c__regex_ascii_max_int.)

\c__regex_ascii_lower_int
\int_const:Nn \c__regex_ascii_lower_int { 'a - 'A }

(End of definition for \c__regex_ascii_lower_int.)

47.2.2 Testing characters
47.2.3 Internal auxiliaries

\q__regex_recursion_stop
Internal recursion quarks.
\q__regex_recursion_stop
(End of definition for \q__regex_recursion_stop.)

\q__regex_nil
Internal quarks.
\q__regex_nil
(End of definition for \q__regex_nil.)

Functions to gobble up to a quark.
\q__regex_recursion_stop:w
#1 \q__regex_recursion_stop { }
\q__regex_recursion_stop:nw
#1 #2 \q__regex_recursion_stop {#1}
\q__regex_recursion_stop:nil:w #1 \q__regex_recursion_stop { }
(End of definition for \q__regex_recursion_stop:w, \q__regex_recursion_stop:nw, and \q__regex_recursion_stop:nil:w.)

__regex_quark_if_nil:p:n
__regex_quark_if_nil:nTF
Branching quark conditional.
__regex_quark_if_nil:nTF
(End of definition for __regex_quark_if_nil:p:n, __regex_quark_if_nil:nTF.)

__regex_break_point:TF
__regex_break_true:w
When testing whether a character of the query token list matches a given character class in the regular expression, we often have to test it against several ranges of characters, checking if any one of those matches. This is done with a structure like
\langle test1 \rangle \ldots \langle test_n \rangle
__regex_break_point:TF \{ (true code) \} \{ (false code) \}

If any of the tests succeeds, it calls __regex_break_true:w, which cleans up and leaves \langle true code \rangle in the input stream. Otherwise, __regex_break_point:TF leaves the \langle false code \rangle in the input stream.
__regex_break_point:TF and __regex_break_true:w)

__regex_item_reverse:n
This function makes showing regular expressions easier, and lets us define \D in terms of \d for instance. There is a subtlety: the end of the query is marked by \ −2, and thus matches \D and other negated properties; this case is caught by another part of the code.
__regex_item_reverse:n
(End of definition for __regex_item_reverse:n.)
Simple comparisons triggering __regex_break_true:w when true.

\cs_new_protected:Npn __regex_item_caseful_equal:n #1
\{\if_int_compare:w #1 = \l__regex_curr_char_int
\exp_after:wN __regex_break_true:w
\fi:\}
\cs_new_protected:Npn __regex_item_caseful_range:nn #1 #2
\{\reverse_if:N \if_int_compare:w #1 > \l__regex_curr_char_int
\reverse_if:N \if_int_compare:w #2 < \l__regex_curr_char_int
\exp_after:wN \exp_after:wN \exp_after:wN __regex_break_true:w
\fi:\}
\cs_new_protected:Npn __regex_item_caseless_equal:n #1
\{\if_int_compare:w #1 = \l__regex_curr_char_int
\exp_after:wN __regex_break_true:w
\fi:
__regex_maybe_compute_ccc:\if_int_compare:w #1 = \l__regex_case_changed_char_int
\exp_after:wN __regex_break_true:w
\fi:\}
\cs_new_protected:Npn __regex_item_caseless_range:nn #1 #2
\{\reverse_if:N \if_int_compare:w #1 > \l__regex_curr_char_int
\reverse_if:N \if_int_compare:w #2 < \l__regex_curr_char_int
\exp_after:wN \exp_after:wN \exp_after:wN __regex_break_true:w
\fi:\}
__regex_maybe_compute_ccc:\reverse_if:N \if_int_compare:w #1 > \l__regex_case_changed_char_int
\reverse_if:N \if_int_compare:w #2 < \l__regex_case_changed_char_int
\exp_after:wN \exp_after:wN \exp_after:wN __regex_break_true:w
\fi:\}
\cs_new_protected:Npn __regex_item_caseless_equal:n #1
\{\if_int_compare:w #1 = \l__regex_case_changed_char_int
\exp_after:wN __regex_break_true:w
\fi:
__regex_maybe_compute_ccc:\if_int_compare:w #1 = \l__regex_case_changed_char_int
\exp_after:wN __regex_break_true:w
\fi:\}
\cs_new_protected:Npn __regex_item_caseless_range:nn #1 #2
\{\reverse_if:N \if_int_compare:w #1 > \l__regex_case_changed_char_int
\reverse_if:N \if_int_compare:w #2 < \l__regex_case_changed_char_int
\exp_after:wN \exp_after:wN \exp_after:wN __regex_break_true:w
\fi:\}
__regex_maybe_compute_ccc:\reverse_if:N \if_int_compare:w #1 > \l__regex_case_changed_char_int
\reverse_if:N \if_int_compare:w #2 < \l__regex_case_changed_char_int
\exp_after:wN \exp_after:wN \exp_after:wN __regex_break_true:w
\fi:\}
\cs_new_protected:Npn __regex_compute_case_changed_char:
\{\int_set_eq:NN \l__regex_case_changed_char_int \l__regex_curr_char_int
\\}`
\if_int_compare:w \l__regex_curr_char_int > 'Z \exp_stop_f:
 \if_int_compare:w \l__regex_curr_char_int > 'z \exp_stop_f: \else:
 \l_int_sub:Nn \l__regex_case_changed_char_int { \c__regex_ascii_lower_int }
 \fi:
\fi:
\else:
 \if_int_compare:w \l__regex_curr_char_int < 'A \exp_stop_f: \else:
 \l_int_add:Nn \l__regex_case_changed_char_int { \c__regex_ascii_lower_int }
 \fi:
\fi:
\cs_set_eq:NN __regex_maybe_compute_ccc: \prg_do_nothing:
\cs_new_eq:NN __regex_maybe_compute_ccc: __regex_compute_case_changed_char:

(End of definition for __regex_compute_case_changed_char:)

__regex_item_equal:n
__regex_item_range:nn
Those must always be defined to expand to a {caseful} (default) or {caseless} version,
and not be protected: they must expand when compiling, to hard-code which tests are
caseless or caseful.
\cs_new_eq:NN __regex_item_equal:n ?
\cs_new_eq:NN __regex_item_range:nn ?
(End of definition for __regex_item_equal:n and __regex_item_range:nn)

__regex_item_catcode:nT
__regex_item_catcode_reverse:nT
__regex_item_catcode:
The argument is a sum of powers of 4 with exponents given by the allowed category codes
(between 0 and 13). Dividing by a given power of 4 gives an odd result if and only if that
category code is allowed. If the catcode does not match, then skip the character code
tests which follow.
\cs_new_protected:Npn __regex_item_catcode:
 \begin{verbatim}
 " \if_case:w \l__regex_curr_catcode_int
 1 \or: 4 \or: 10 \or: 40 \\
 \or: 100 \or: 1000 \or: 4000 \\
 \or: 10000 \or: 100000 \or: 400000 \\
 \or: 1000000 \or: 4000000 \else: 1*0
 \fi:
 \end{verbatim}
\cs_new_protected:Npn __regex_item_catcode:nT #1
 \if_int_odd:w \int_eval:n { #1 / __regex_item_catcode: } \exp_stop_f:
 \exp_after:wN \use:n
\else:
 \exp_after:wN \use_none:n
\fi:
\cs_new_protected:Npn __regex_item_catcode_reverse:nT #1#2
 \{ __regex_item_catcode:nT {#1} __regex_item_catcode_reverse:n {#2} \}
(End of definition for __regex_item_catcode:nT, __regex_item_catcode_reverse:nT, and __regex_item_catcode:)

469
This matches an exact ⟨category⟩-⟨character code⟩ pair, or an exact control sequence, more precisely one of several possible control sequences, separated by \scan_stop:.

 \cs_new_protected:Npn __regex_item_exact:nn #1#2
 {\if_int_compare:w #1 = \l__regex_curr_catcode_int
 \if_int_compare:w #2 = \l__regex_curr_char_int
 \exp_after:wN \exp_after:wN \exp_after:wN __regex_break_true:w
 \fi:
 \fi:}

 \cs_new_protected:Npn __regex_item_exact_cs:n #1
 {\int_compare:nNnTF \l__regex_curr_catcode_int = 0
 {__kernel_tl_set:Ne \l__regex_internal_a_tl
 { \scan_stop: __regex_curr_cs_to_str: \scan_stop: }
 \tl_if_in:noTF { \scan_stop: #1 \scan_stop: }
 \l__regex_internal_a_tl
 { __regex_break_true:w } { }
 { }
 }

(End of definition for __regex_item_exact:nn and __regex_item_exact_cs:n.)

__regex_item_cs:n

Match a control sequence (the argument is a compiled regex). First test the catcode of the current token to be zero. Then perform the matching test, and break if the csname indeed matches.

 \cs_new_protected:Npn __regex_item_cs:n #1
 {\int_compare:nNnT \l__regex_curr_catcode_int = 0
 {\group_begin:
 __regex_single_match:
 __regex_disable_submatches:
 __regex_build_for_cs:n {#1}
 \bool_set_eq:NN \l__regex_saved_success_bool
 \g__regex_success_bool
 \exp_args:Ne __regex_match_cs:n { __regex_curr_cs_to_str: }
 \if_meaning:w \c_true_bool \g__regex_success_bool
 \group_insert_after:N __regex_break_true:w
 \fi:
 \bool_gset_eq:NN \g__regex_success_bool
 \l__regex_saved_success_bool
 \group_end:
 }
 }

(End of definition for __regex_item_cs:n.)

__regex_prop_d:
__regex_prop_h:
__regex_prop_s:
__regex_prop_v:
__regex_prop_w:
__regex_prop_N:

Character property tests for \d, \W, etc. These character properties are not affected by the (?i) option. The characters recognized by each one are as follows: \d=[0-9],

470
\w=[0-9A-Z_a-z], \s=[\n\r\t\v\l\f\m], \h=[\n\r\t], \v=[\v\l\f\c], and the upper case counterparts match anything that the lower case does not match. The order in which the various tests appear is optimized for usual mostly lower case letter text.

4438 \cs_new_protected:Npn __regex_prop_d:
4439 \{ __regex_item_caseful_range:nn \{ \0 \} \{ \9 \} \}
4440 \cs_new_protected:Npn __regex_prop_h:
4441 \{ __regex_item_caseful_equal:n \{ \} \}
4442 __regex_item_caseful_equal:n \{ \^^I \}
4443 \}
4444 \cs_new_protected:Npn __regex_prop_s:
4445 \{ __regex_item_caseful_equal:n \{ \} \}
4446 __regex_item_caseful_equal:n \{ \^^I \}
4447 __regex_item_caseful_equal:n \{ \^^J \}
4448 __regex_item_caseful_equal:n \{ \^^L \}
4449 __regex_item_caseful_equal:n \{ \^^M \}
4450 \}
4451 \cs_new_protected:Npn __regex_prop_v:
4452 \{ __regex_item_caseful_equal:n \{ \} \}
4453 __regex_item_caseful_equal:n \{ \^^I \}
4454 __regex_item_caseful_equal:n \{ \^^J \}
4455 __regex_item_caseful_equal:n \{ \^^L \}
4456 __regex_item_caseful_equal:n \{ \^^M \}
4457 \}
4458 \cs_new_protected:Npn __regex_prop_w:
4459 \{ __regex_item_caseful_equal:n \{ \} \}
4460 __regex_item_caseful_equal:n \{ \^^I \}
4461 __regex_item_caseful_equal:n \{ \^^J \}
4462 __regex_item_caseful_equal:n \{ \^^L \}
4463 __regex_item_caseful_equal:n \{ \^^M \}
4464 \}
4465 \cs_new_protected:Npn __regex_prop_N:
4466 \{ __regex_item_reverse:n \{ __regex_item_caseful_equal:n \{ \} \} \}
4467 \}
4468 (End of definition for __regex_prop_d: and others.)

__regex_posix_alnum: POSIX properties. No surprise.
__regex_posix_alpha: __regex_posix_alnum:
__regex_posix_ascii: \{ __regex_posix_alpha: __regex_posix_alnum: \}
__regex_posix_blank: \{ __regex_posix_alpha: __regex_posix_digit: \}
__regex_posix_cntrl: \{ __regex_posix_alpha: __regex_posix_digit: \}
__regex_posix_digit: \{ __regex_posix_alpha: __regex_posix_digit: \}
__regex_posix_graph: \{ __regex_posix_alpha: __regex_posix_digit: \}
__regex_posix_lower: \{ __regex_posix_alpha: __regex_posix_digit: \}
__regex_posix_punct: \{ __regex_posix_alpha: __regex_posix_digit: \}
__regex_posix_space: \{ __regex_posix_alpha: __regex_posix_digit: \}
__regex_posix_upper: \{ __regex_posix_alpha: __regex_posix_digit: \}
__regex_posix_word: \{ __regex_posix_alpha: __regex_posix_digit: \}
__regex_posix_xdigit: \{ __regex_posix_alpha: __regex_posix_digit: \}

471
47.2.5 Simple character escape

Before actually parsing the regular expression or the replacement text, we go through
them once, converting \n to the character 10, etc. In this pass, we also convert any special
character (*, ?, {, etc.) or escaped alphanumeric character into a marker indicating that
this was a special sequence, and replace escaped special characters and non-escaped
alphanumeric characters by markers indicating that those were “raw” characters. The
rest of the code can then avoid caring about escaping issues (those can become quite
complex to handle in combination with ranges in character classes).

Usage: __regex_escape_use:nnnn \(inline 1\) \(inline 2\) \(inline 3\) \{\token list\}
The \token list is converted to a string, then read from left to right, interpreting back-
slashes as escaping the next character. Unescaped characters are fed to the function
\(inline 1\), and escaped characters are fed to the function \(inline 2\) within an e-expansion
context (typically those functions perform some tests on their argument to decide how
to output them). The escape sequences \a, \e, \f, \n, \r, \t and \x are recognized, and
those are replaced by the corresponding character, then fed to \(inline 3\). The result is
then left in the input stream. Spaces are ignored unless escaped.

The conversion is done within an e-expanding assignment.

__regex_escape_use:nnnn

The result is built in __regex_internal_a_tl, which is then left in the input stream.
Tracing code is added as appropriate inside this token list. Go through #4 once, applying
#1, #2, or #3 as relevant to each character (after de-escaping it).
\cs_new_protected:Npn \regex_use:nnnn \#1 \#2 \#3 \#4
{
\group_begin:
\tl_clear:N \l__regex_internal_a_tl
\cs_set:Npn \regex_unescaped:NNN #1 { #1 }
\cs_set:Npn \regex_escaped:NNN #1 { #2 }
\cs_set:Npn \regex_raw:NNN #1 { #3 }
\regex_standard_escapechar:
\group_end:
\l__regex_internal_a_tl
}

(End of definition for \regex_use:nnnn.)

\regex_loop:N \regex_\:w \regex_loop:N
\regex_loop:N reads one character: if it is special (space, backslash, or end-marker), perform the associated action, otherwise it is simply an unescaped character. After a backslash, the same is done, but unknown characters are “escaped”.

\cs_new:Npn \regex_loop:N \#1
{
\cs_if_exist_use:cF { \regex_\token_to_str:N #1:w }
{ \regex_unescaped:N #1 }
\regex_loop:N
}

(End of definition for \regex_loop:N and \regex_\:w.)

Those functions are never called before being given a new meaning, so their definitions here don’t matter.

\cs_new_eq:NN \regex_unescaped:N ?
\cs_new_eq:NN \regex_escaped:N ?
\cs_new_eq:NN \regex_raw:N ?

(End of definition for \regex_unescaped:N, \regex_escaped:N, and \regex_raw:N.)

\regex_loop:NN \regex_\:w
\regex_loop:NN \regex_\:w
\regex_\:w \regex_\:w \regex_\:w
\regex_\:w \regex_\:w
\regex_\:w
\regex_\:w
\regex_\:w
\regex_\:w
\regex_\:w
\regex_\:w
\regex_\:w
\regex_\:w
\regex_\:w

The loop is ended upon seeing the end-marker “break”, with an error if the string ended in a backslash. Spaces are ignored, and \a, \e, \f, \n, \r, \t take their meaning here.

\cs_new_eq:NN \regex_\ :w \io\char\:w
\cs_new_eq:NN \regex_/\:w \io\char\:w
\cs_new_eq:NN \regex_/\:w \io\char\:w
\cs_new_eq:NN \regex_/\:w \io\char\:w
\cs_new_eq:NN \regex_/\:w \io\char\:w

473
When \textbackslash{}x is encountered, \texttt{__regex_escape_x:w} is responsible for grabbing some hexadecimal digits, and feeding the result to \texttt{__regex_escape_x_end:w}. If the number is too big interrupt the assignment and produce an error, otherwise call \texttt{__regex_escape_raw:N} on the corresponding character token.

\begin{verbatim}
\cs_new:cpn { __regex_escape_/x:w } __regex_escape_loop:N
\cs_new:Npn __regex_escape_x_end:w #1 ;
\cs_new:Npn __regex_escape_x_test:N #1
\cs_new:Npn __regex_escape_x_testii:N #1
\end{verbatim}

(End of definition for \texttt{__regex_escape_scan_stop:w} and others.)
\use:n
{
 \if_charcode:w \c_space_token #1
 \exp_after:wN __regex_escape_x_test:N
 \else:
 \exp_after:wN __regex_escape_x_testii:N
 \exp_after:wN #1
 \fi:
}
cs_new:Npn __regex_escape_x_testii:N #1
{
 \if_charcode:w \c_left_brace_str #1
 \exp_after:wN __regex_escape_x_loop:N
 \else:
 __regex_hexadecimal_use:NTF #1
 \{ \exp_after:wN __regex_escape_x:N \}
 \{ ; \exp_after:wN __regex_escape_loop:N \exp_after:wN #1 \}
 \fi:
}
(End of definition for __regex_escape_x_test:N and __regex_escape_x_testii:N.)

__regex_escape_x:N
This looks for the second digit in the unbraced case.
\cs_new:Npn __regex_escape_x:N #1
{
 \if_meaning:w \scan_stop: #1
 \exp_after:wN \use_i:nnn \exp_after:wN ;
 \fi:
 \use:n
 {
 __regex_hexadecimal_use:NTF #1
 \{ ; __regex_escape_loop:N \}
 \{ ; __regex_escape_loop:N #1 \}
 }
}(End of definition for __regex_escape_x:N.)

__regex_escape_x_loop:N
__regex_escape_x_loop_error:
Grab hexadecimal digits, skip spaces, and at the end, check that there is a right brace, otherwise raise an error outside the assignment.
\cs_new:Npn __regex_escape_x_loop:N #1
{
 \if_meaning:w \scan_stop: #1
 \exp_after:wN \use_i:nnn \exp_after:wN ;
 \fi:
 \use_i:nn
 {
 ; __regex_escape_x_loop_error:n \{ \} \#1 \}
 {
 __regex_hexadecimal_use:NTF #1
 \{ ; __regex_escape_loop:N \}
 \{ ; __regex_escape_loop:N #1 \}
 }
 \token_if_eq_charcode:NNTF \c_space_token:N \c_space_token #1
 \{ __regex_escape_x_loop:N \}
}
\cs_new:Npn __regex_escape_x_loop_error:n #1
\msg_expandable_error:nnn { regex } { x-missing-rbrace } {#1}
__regex_escape_loop:N #1
\prg_return_true:
\fi:
\prg_return_true:
\fi:
}

(End of definition for __regex_escape_x_loop:N and __regex_escape_x_loop_error:n.)

__regex_hexadecimal_use:NTF \TeX detects uppercase hexadecimal digits for us but not the lowercase letters, which we need to detect and replace by their uppercase counterpart.
\prg_new_conditional:Npn __regex_hexadecimal_use:N #1 { TF }
\if_int_compare:w 1 < "1 \token_to_str:N #1 \exp_stop_f:
\#1 \prg_return_true:
\else:
\if_case:w \int_eval:n { \exp_after:wN ' \token_to_str:N #1 - 'a } A \or: B \or: C \or: D \or: E \or: F \else:
\prg_return_false:
\exp_after:wN \use_none:n \fi:
\prg_return_true:
\fi:
\fi:

(End of definition for __regex_hexadecimal_use:NTF.)

__regex_char_if_alphanumeric:NTF __regex_char_if_special:NTF

These two tests are used in the first pass when parsing a regular expression. That pass is responsible for finding escaped and non-escaped characters, and recognizing which ones have special meanings and which should be interpreted as “raw” characters. Namely,

- alphanumerics are “raw” if they are not escaped, and may have a special meaning when escaped;
- non-alphanumeric printable ascii characters are “raw” if they are escaped, and may have a special meaning when not escaped;
- characters other than printable ascii are always “raw”.

476
The code is ugly, and highly based on magic numbers and the ascii codes of characters. This is mostly unavoidable for performance reasons. Maybe the tests can be optimized a little bit more. Here, “alphanumeric” means 0–9, A–Z, a–z; “special” character means non-alphanumeric but printable ascii, from space (hex 20) to del (hex 7E).

```
\prg_new_conditional:Npnn \__regex_char_if_special:N #1 { TF }
\{ \if_int_compare:w '#1 > 'Z \exp_stop_f: \if_int_compare:w '#1 > 'z \exp_stop_f: \if_int_compare:w '#1 < \c__regex_ascii_max_int \prg_return_true: \else: \prg_return_false: \fi: \else: \if_int_compare:w '#1 < 'a \exp_stop_f: \prg_return_true: \else: \prg_return_false: \fi: \fi: \else: \if_int_compare:w '#1 > '9 \exp_stop_f: \if_int_compare:w '#1 < 'A \exp_stop_f: \prg_return_true: \else: \prg_return_false: \fi: \else: \if_int_compare:w '#1 < '0 \exp_stop_f: \prg_return_false: \else: \prg_return_true: \fi: \fi: \fi: \} ; \prg_new_conditional:Npnn \__regex_char_if_alphanumeric:N #1 { TF }
\{ \if_int_compare:w '#1 > 'Z \exp_stop_f: \if_int_compare:w '#1 > 'z \exp_stop_f: \prg_return_false: \else: \if_int_compare:w '#1 < 'a \exp_stop_f: \prg_return_false: \else: \prg_return_true: \fi: \fi: \else: \if_int_compare:w '#1 > '9 \exp_stop_f: \if_int_compare:w '#1 < 'A \exp_stop_f: \prg_return_false: \else: \prg_return_true: \fi: \else: \if_int_compare:w '#1 < '0 \exp_stop_f: \prg_return_false: \else: \prg_return_true: \fi: \fi: \} ;
(End of definition for \__regex_char_if_alphanumeric:N and \__regex_char_if_special:N.)
```

47.3 Compiling

A regular expression starts its life as a string of characters. In this section, we convert it to internal instructions, resulting in a “compiled” regular expression. This compiled
expression is then turned into states of an automaton in the building phase. Compiled
regular expressions consist of the following:

- __regex_class:NnnnN \{\langle boolean \rangle \{\langle tests \rangle \} \{\langle min \rangle \} \{\langle more \rangle \} \{lazyness\}
- __regex_group:nnnN \{\langle branches \rangle \{\langle min \rangle \} \{\langle more \rangle \} \{lazyness\}, also __regex_group_no_capture:nnnN and __regex_group_resetting:nnnN with the same syntax.
- __regex_branch:n \{\langle contents \rangle \}
- __regex_command_K:
 - __regex_assertion:Nn \{\langle boolean \rangle \{\langle assertion test \rangle \}
 - __regex_b_test: or __regex_Z_test: or __regex_A_test: or __regex_G_test:

Tests can be the following:

- __regex_item_caseful_equal:n \{\langle char code \rangle \}
- __regex_item_caseless_equal:n \{\langle char code \rangle \}
- __regex_item_caseful_range:nn \{\langle min \rangle \} \{\langle max \rangle \}
- __regex_item_caseless_range:nn \{\langle min \rangle \} \{\langle max \rangle \}
- __regex_item_catcode:nT \{\langle catcode bitmap \rangle \} \{\langle tests \rangle \}
- __regex_item_catcode_reverse:nT \{\langle catcode bitmap \rangle \} \{\langle tests \rangle \}
- __regex_item_reverse:n \{\langle tests \rangle \}
- __regex_item_exact:nn \{\langle catcode \rangle \} \{\langle char code \rangle \}
- __regex_item_exact_cs:n \{csnames\}, more precisely given as \langle csname \rangle \scan_{stop}: \langle csname \rangle \scan_{stop}: \langle csname \rangle and so on in a brace group.
- __regex_item_cs:n \{\langle compiled regex \rangle \}

47.3.1 Variables used when compiling

We make sure to open the same number of groups as we close.

\int_new:N \l__regex_group_level_int
(End of definition for __regex_group_level_int.)

While compiling, ten modes are recognized, labelled \(-63, -23, -6, -2, 0, 2, 3, 6, 23, 63\).
See section 47.3.3. We only define some of these as constants.

\int_new:N \l__regex_mode_int
\int_const:Nn \c__regex_cs_in_class_mode_int { -6 }
\int_const:Nn \c__regex_cs_mode_int { -2 }
\int_const:Nn \c__regex_outer_mode_int { 0 }
\int_const:Nn \c__regex_catcode_mode_int { 2 }
\int_const:Nn \c__regex_class_mode_int { 3 }
\int_const:Nn \c__regex_catcode_in_class_mode_int { 6 }

478
We wish to allow constructions such as \texttt{\[^{\texttt{BE}}\] (. . \texttt{[a-z]} . .)}, where the outer catcode test applies to the whole group, but is superseded by the inner catcode test. For this to work, we need to keep track of lists of allowed category codes: \texttt{____regex_catcodes_int} and \texttt{____regex_default_catcodes_int} are bitmaps, sums of 4^c, for all allowed catcodes c. The latter is local to each capturing group, and we reset \texttt{____regex_catcodes_int} to that value after each character or class, changing it only when encountering a \texttt{\c}. The boolean records whether the list of categories of a catcode test has to be inverted: compare \texttt{\c}[^{\texttt{BE}}] and \texttt{\c[BE]}.

\begin{verbatim}
\int_new:N ____regex_catcodes_int
\int_new:N ____regex_default_catcodes_int
\bool_new:N ____regex_catcodes_bool
\end{verbatim}

Constants: 4^c for each category, and the sum of all powers of 4.

\begin{verbatim}
\int_const:Nn ____regex_catcode_C_int { 1 }
\int_const:Nn ____regex_catcode_B_int { 4 }
\int_const:Nn ____regex_catcode_E_int { 10 }
\int_const:Nn ____regex_catcode_M_int { 40 }
\int_const:Nn ____regex_catcode_T_int { 100 }
\int_const:Nn ____regex_catcode_P_int { 1000 }
\int_const:Nn ____regex_catcode_U_int { 4000 }
\int_const:Nn ____regex_catcode_D_int { 10000 }
\int_const:Nn ____regex_catcode_S_int { 100000 }
\int_const:Nn ____regex_catcode_L_int { 400000 }
\int_const:Nn ____regex_catcode_O_int { 1000000 }
\int_const:Nn ____regex_catcode_A_int { 4000000 }
\int_const:Nn ____regex_all_catcodes_int { 5515155 }
\end{verbatim}

The compilation step stores its result in this variable.

\begin{verbatim}
\cs_new_eq:NN ____regex_internal_regex ____regex_no_match_regex
\end{verbatim}

This sequence holds the prefix that makes up the line displayed to the user. The various items must be removed from the right, which is tricky with a token list, hence we use a sequence.

\begin{verbatim}
\seq_new:N ____regex_show_prefix_seq
\end{verbatim}

A hack. To know whether a given class has a single item in it or not, we count the number of lines when showing the class.

\begin{verbatim}
\int_new:N ____regex_show_lines_int
\end{verbatim}
47.3.2 Generic helpers used when compiling

Used to compare pairs of things like __regex_compile_special:N \? together. It’s often inconvenient to get the catcodes of the character to match so we just compare the character code. Besides, the expanding behaviour of \if:w is very useful as that means we can use \c_left_brace_str and the like.

__regex_two_if_eq:NNNNTF

\prg_new_conditional:Nppnn __regex_two_if_eq:NNNN #1#2#3#4 { TF }

{ \if_meaning:w #1 #3
 \if:w #2 #4
 \prg_return_true:
 \else:
 \prg_return_false:
 \fi:
 \else:
 \prg_return_false:
 \fi:
}

(End of definition for __regex_two_if_eq:NNNNTF.)

__regex_get_digits:NTFw __regex_get_digits_loop:w

If followed by some raw digits, collect them one by one in the integer variable #1, and take the true branch. Otherwise, take the false branch.

\cs_new_protected:Npn __regex_get_digits:NTFw #1#2#3#4#5

{ __regex_if_raw_digit:NNTF #4 #5
 { #1 = #5 __regex_get_digits_loop:nw {#2} }
 { #3 #4 #5 }
}
\cs_new:Npn __regex_get_digits_loop:nw #1#2#3

{ __regex_if_raw_digit:NNTF #2 #3
 { #3 __regex_get_digits_loop:nw {#1} }
 \scan_stop: #1 #2 #3 }

(End of definition for __regex_get_digits:NTFw and __regex_get_digits_loop:w.)

__regex_if_raw_digit:NTF

Test used when grabbing digits for the \{m,n\} quantifier. It only accepts non-escaped digits.

\prg_new_conditional:Nppnn __regex_if_raw_digit:NN #1#2 { TF }

{ \if_meaning:w __regex_compile_raw:N #1
 \if_int_compare:w 1 < 1 #2 \exp_stop_f:
 \prg_return_true:
 \else:
 \prg_return_false:
 \fi:
 \else:
 \prg_return_false:
 \fi:
}

(End of definition for __regex_if_raw_digit:NTF.)
47.3.3 Mode

When compiling the NFA corresponding to a given regex string, we can be in ten distinct modes, which we label by some magic numbers:

-6 \[\c{...}] control sequence in a class,
-2 \c{...} control sequence,
0 ... outer,
2 \c... catcode test,
6 [\c...] catcode test in a class,
-63 [\c{[...]}] class inside mode −6,
-23 \c{[...]} class inside mode −2,
3 [... class inside mode 0,
23 \c[...] class inside mode 2,
63 [\c[...]] class inside mode 6.

This list is exhaustive, because \c escape sequences cannot be nested, and character classes cannot be nested directly. The choice of numbers is such as to optimize the most useful tests, and make transitions from one mode to another as simple as possible.

- Even modes mean that we are not directly in a character class. In this case, a left bracket appends 3 to the mode. In a character class, a right bracket changes the mode as $m \rightarrow (m - 15)/13$, truncated.

- Grouping, assertion, and anchors are allowed in non-positive even modes (0, −2, −6), and do not change the mode. Otherwise, they trigger an error.

- A left bracket is special in even modes, appending 3 to the mode; in those modes, quantifiers and the dot are recognized, and the right bracket is normal. In odd modes (within classes), the left bracket is normal, but the right bracket ends the class, changing the mode from m to $(m - 15)/13$, truncated; also, ranges are recognized.

- In non-negative modes, left and right braces are normal. In negative modes, however, left braces trigger a warning; right braces end the control sequence, going from −2 to 0 or −6 to 3, with error recovery for odd modes.

- Properties (such as the \d character class) can appear in any mode.

_regex_if_in_class:TF Test whether we are directly in a character class (at the innermost level of nesting). There, many escape sequences are not recognized, and special characters are normal. Also, for every raw character, we must look ahead for a possible raw dash.

\cs_new:Npn _regex_if_in_class:TF
\{\if_int_odd:w \l__regex_mode_int
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_ii:nn
\fi:
\}
_\texttt{regex_if_in_cs:TF} Right braces are special only directly inside control sequences (at the inner-most level of nesting, not counting groups).

\begin{verbatim}
\cs_new:Npn _\regex_if_in_cs:TF
{\if_int_odd:w \l__regex_mode_int \exp_after:wN \use_i:nn \else:\if_int_compare:w \l__regex_mode_int < \c__regex_outer_mode_int \exp_after:wN \exp_after:wN \exp_after:wN \use_i:nn \else:\exp_after:wN \exp_after:wN \exp_after:wN \use_ii:nn \fi:\fi:}
\end{verbatim}

\textit{(End of definition for _\texttt{regex_if_in_cs:TF})}

_\texttt{regex_if_in_class_or_catcode:TF} Assertions are only allowed in modes 0, −2, and −6, \textit{i.e.}, even, non-positive modes.

\begin{verbatim}
\cs_new:Npn _\regex_if_in_class_or_catcode:TF
{\if_int_odd:w \l__regex_mode_int \exp_after:wN \use_i:nn \else:\if_int_compare:w \l__regex_mode_int > \c__regex_outer_mode_int \exp_after:wN \exp_after:wN \exp_after:wN \use_i:nn \else:\exp_after:wN \exp_after:wN \exp_after:wN \use_ii:nn \fi:\fi:}
\end{verbatim}

\textit{(End of definition for _\texttt{regex_if_in_class_or_catcode:TF})}

_\texttt{regex_if_within_catcode:TF} This test takes the true branch if we are in a catcode test, either immediately following it (modes 2 and 6) or in a class on which it applies (modes 23 and 63). This is used to tweak how left brackets behave in modes 2 and 6.

\begin{verbatim}
\cs_new:Npn _\regex_if_within_catcode:TF
{\if_int_compare:w \l__regex_mode_int > \c__regex_outer_mode_int \exp_after:wN \use_i:nn \else:\exp_after:wN \use_ii:nn \fi:}
\end{verbatim}

\textit{(End of definition for _\texttt{regex_if_within_catcode:TF})}

_\texttt{regex_chk_c_allowed:T} The \texttt{c} escape sequence is only allowed in modes 0 and 3, \textit{i.e.}, not within any other \texttt{c} escape sequence.

\begin{verbatim}
\cs_new_protected:Npn _\regex_chk_c_allowed:T
{\if_int_compare:w \l__regex_mode_int = \c__regex_outer_mode_int}
\end{verbatim}

\textit{(End of definition for _\texttt{regex_chk_c_allowed:T})}
4816 \exp_after:wN \use:n
4817 \else:
4818 \if_int_compare:w \l__regex_mode_int = \c__regex_class_mode_int
4819 \exp_after:wN \exp_after:wN \exp_after:wN \use:n
4820 \else:
4821 \msg_error:nn { regex } { c-bad-mode }
4822 \exp_after:wN \exp_after:wN \exp_after:wN \use_none:n
4823 \fi:
4824 \fi:
4825 \}

(End of definition for __regex_chk_c_allowed:T)

__regex_mode_quit_c: This function changes the mode as it is needed just after a catcode test.
4826 \cs_new_protected:Npn __regex_mode_quit_c:
4827 { \if_int_compare:w \l__regex_mode_int = \c__regex_catcode_mode_int
4828 \int_set_eq:NN \l__regex_mode_int \c__regex_outer_mode_int
4829 \else:
4830 \if_int_compare:w \l__regex_mode_int = \c__regex_catcode_in_class_mode_int
4831 \int_set_eq:NN \l__regex_mode_int \c__regex_class_mode_int
4832 \fi:
4833 \fi:
4834 \}

(End of definition for __regex_mode_quit_c:)

47.3.4 Framework
__regex_compile:w
__regex_compile_end: Used when compiling a user regex or a regex for the \c{...} escape sequence within
another regex. Start building a token list within a group (with e-expansion at the outset),
and set a few variables (group level, catcodes), then start the first branch. At the end,
make sure there are no dangling classes nor groups, close the last branch: we are done
building \l__regex_internal_regex.
4837 \cs_new_protected:Npn __regex_compile:w
4838 { \group_begin:
4839 \tl_build_begin:N \l__regex_build_tl
4840 \int_zero:N \l__regex_group_level_int
4841 \int_set_eq:NN \l__regex_default_catcodes_int \c__regex_all_catcodes_int
4842 \int_set_eq:NN \l__regex_catcodes_int \l__regex_default_catcodes_int
4843 \cs_set:Npn __regex_all_catcodes_int \l__regex_default_catcodes_int
4844 \cs_set:Npn __regex_catcodes_int \l__regex_default_catcodes_int
4845 \cs_set:Npn __regex_item_equal:n \l__regex_item_equal:n \l__regex_caseful_equal:n
4846 \cs_set:Npn __regex_item_range:nn \l__regex_item_range:nn \l__regex_caseful_range:nn
4847 \tl_build_put_right:Nn \l__regex_build_tl \l__regex_internal_regex
4848 \{ __regex_branch:n \l__regex_branch:n \l__regex_item_equal:n \l__regex_item_range:nn \}
4849 \}
4850 \cs_new_protected:Npn __regex_compile_end:
4851 { __regex_if_in_class:TF
4852 { \msg_error:nn { regex } { missing-rbrack }
4853 \use:c __regex_compile_: }

483
\prg_do_nothing: \prg_do_nothing: \\
\if_int_compare:w \l__regex_group_level_int > \c_zero_int \\
\msg_error:nne { regex } { missing-rparen } \\
{ \int_use:N \l__regex_group_level_int } \\
\prg_replicate:nn \\
{ \l__regex_group_level_int } \\
\tl_build_put_right:Nn \l__regex_build_tl \\
{ \\
 \if_false: { \fi: } \\
 \if_false: { \fi: } { 1 } { 0 } \c_true_bool \\
} \\
\tl_build_end:N \l__regex_build_tl \\
\exp_args:NNNo \\
\group_end: \\
\tl_build_put_right:Nn \l__regex_build_tl { \l__regex_build_tl } \\
\fi: \\
\tl_build_put_right:Nn \l__regex_build_tl { \if_false: { \fi: } } \\
\tl_build_end:N \l__regex_build_tl \\
\exp_args:NNNe \\
\group_end: \\
\tl_set:Nn \l__regex_internal_regex { \l__regex_build_tl } \\
\fi: \\
\tl_build_put_right:Nn \l__regex_build_tl { \if_false: { \fi: } } \\
\tl_build_end:N \l__regex_build_tl \\
\exp_args:NNNn \\
\group_end: \\
\cs_new_protected:Npn __regex_compile:n #1 \\
__regex_compile:w \\
__regex_standard_escapechar: \\
\int_set_eq:NN \l__regex_mode_int \c__regex_outer_mode_int \\
__regex_escape_use:nmmn \\
\{ \\
 __regex_char_if_special:NTF ##1 \\
 __regex_compile_special:N __regex_compile_raw:N ##1 \\
\} \\
\{ \\
 __regex_char_if_alphanumeric:NTF ##1 \\
 __regex_compile_escaped:N __regex_compile_raw:N ##1 \\
\} \\
\{ __regex_compile_raw:N ##1 \} \\
\prg_do_nothing: \prg_do_nothing:

(End of definition for __regex_compile:w and __regex_compile_end:)

__regex_compile:n

The compilation is done between __regex_compile:w and __regex_compile_end:, starting in mode 0. Then __regex_escape_use:nmmn distinguishes special characters, escaped alphanumerics, and raw characters, interpreting \a, \x and other sequences. The 4 trailing \prg_do_nothing: are needed because some functions defined later look up to 4 tokens ahead. Before ending, make sure that any \c {...} is properly closed. No need to check that brackets are closed properly since __regex_compile_end: does that. However, catch the case of a trailing \cL construction.

\cs_new_protected:Npm __regex_compile:n #1 \\
{ \\
 __regex_compile:w \\
 __regex_standard_escapechar: \\
 \int_set_eq:NN \l__regex_mode_int \c__regex_outer_mode_int \\
 __regex_escape_use:nmmn \\
 \{ \\
 __regex_char_if_special:NTF ##1 \\
 __regex_compile_special:N __regex_compile_raw:N ##1 \\
 \} \\
 \{ \\
 __regex_char_if_alphanumeric:NTF ##1 \\
 __regex_compile_escaped:N __regex_compile_raw:N ##1 \\
 \} \\
 \{ __regex_compile_raw:N ##1 \} \\
 \prg_do_nothing: \prg_do_nothing:

484
__regex_compile_one:n

This is used after finding one “test”, such as \d, or a raw character. If that followed a catcode test (e.g., \cL), then restore the mode. If we are not in a class, then the test is
“standalone”, and we need to add __regex_class:NnnnN and search for quantifiers. In any case, insert the test, possibly together with a catcode test if appropriate.

\cs_new_protected:Npn __regex_compile_one:n #1
__regex_mode_quit_c:
__regex_if_in_class:TF { }
\tl_build_put_right:Nn \l__regex_build_tl
\{ __regex_class:NnnnN \c_true_bool { \if_false: } \fi: }
\tl_build_put_right:Ne \l__regex_build_tl
\if_int_compare:w \l__regex_catcodes_int < \c__regex_all_catcodes_int
__regex_item_catcode:nT { \int_use:N \l__regex_catcodes_int }
\{ \exp_not:N \exp_not:n {#1} }
\else:
\exp_not:N \exp_not:n {#1}
\fi:
\int_set_eq:NN \l__regex_catcodes_int \l__regex_default_catcodes_int
__regex_if_in_class:TF { } { __regex_compile_quantifier:w }
\}

(End of definition for __regex_compile_one:n.)

__regex_compile_abort_tokens:n
__regex_compile_abort_tokens:e
This function places the collected tokens back in the input stream, each as a raw character. Spaces are not preserved.
\cs_new_protected:Npn __regex_compile_abort_tokens:n #1
\use:e
\{ \exp_args:No \tl_map_function:nN { \tl_to_str:n {#1} } __regex_compile_raw:N
\}
\cs_generate_variant:Nn __regex_compile_abort_tokens:n { e }

(End of definition for __regex_compile_abort_tokens:n.)

47.3.5 Quantifiers
__regex_compile_if_quantifier:TFw
This looks ahead and checks whether there are any quantifier (special character equal to either of \?++\}). This is useful for the \u and \ur escape sequences.
\cs_new_protected:Npn __regex_compile_if_quantifier:TFw #1#2#3#4
\{ \token_if_eq_meaning:NNTF #3 __regex_compile_special:N
\{ \cs_if_exist:cTF { __regex_compile_quantifier:#4:w } \}
\{ \use_ii:nn }
\{#1} \{#2\} #3 #4
\}

(End of definition for __regex_compile_if_quantifier:TFw.)
This looks ahead and finds any quantifier (special character equal to either of \texttt{?}+,\texttt{*}, \texttt{+}).

\begin{verbatim}
\cs_new_protected:Npn __regex_compile_quantifier:w \#1\#2
 { \token_if_eq_meaning:NNTF \#1 __regex_compile_special:N
 { \cs_if_exist_use:cF { __regex_compile_quantifier_\#2:w } }
 { __regex_compile_quantifier_none: \#1 \#2 }
 }
\end{verbatim}

(End of definition for \texttt{__regex_compile_quantifier:w}.)

\texttt{__regex_compile_quantifier_none:}

Those functions are called whenever there is no quantifier, or a braced construction is invalid (equivalent to no quantifier, and whatever characters were grabbed are left raw).

\begin{verbatim}
\cs_new_protected:Npn __regex_compile_quantifier_abort:eNN \#1\#2\#3
 { __regex_compile_quantifier_none:
 \msg_warning:nnee { regex } { invalid-quantifier } {\#1} {\#3}
 __regex_compile_abort_tokens:e {\#1} \#2 \#3 }
\end{verbatim}

(End of definition for \texttt{__regex_compile_quantifier_none:} and \texttt{__regex_compile_quantifier_abort:eNN}.)

\texttt{__regex_compile_quantifier_lazyness:nnNN}

Once the “main” quantifier (\texttt{?}, \texttt{*}, \texttt{+} or a braced construction) is found, we check whether it is lazy (followed by a question mark). We then add to the compiled regex a closing brace (ending \texttt{__regex_class:NnnnN} and friends), the start-point of the range, its end-point, and a boolean, \texttt{true} for lazy and \texttt{false} for greedy operators.

\begin{verbatim}
\cs_new_protected:Npn __regex_compile_quantifier_lazyness:nnNN \#1\#2\#3\#4
 { __regex_two_if_eq:NNNNTF \#3 \#4 __regex_compile_special:N ?
 { \tl_build_put_right:Nn \l__regex_build_tl
 { \if_false: { \fi: } { \#1 } { \#2 } \c_false_bool }
 }
 { \tl_build_put_right:Nn \l__regex_build_tl
 { \if_false: { \fi: } { \#1 } { \#2 } \c_true_bool }
 \#3 \#4 }
\end{verbatim}

(End of definition for \texttt{__regex_compile_quantifier_lazyness:nnNN}.)

\texttt{__regex_compile_quantifier_?:w}
\texttt{__regex_compile_quantifier_*:w}
\texttt{__regex_compile_quantifier_+:w}

For each “basic” quantifier, \texttt{?}, \texttt{*}, \texttt{+}, feed the correct arguments to \texttt{__regex_compile_quantifier_lazyness:nnNN}, \texttt{-1} means that there is no upper bound on the number of repetitions.
(End of definition for __regex_compile_quantifier_?:w, __regex_compile_quantifier_*:w, and __regex_compile_quantifier_+:w.)

Three possible syntaxes: \texttt{\{\langle \text{int} \rangle\}}, \texttt{\{\langle \text{int} \rangle,\}}, or \texttt{\{\langle \text{int} \rangle,\langle \text{int} \rangle\}}. Any other syntax causes us to abort and put whatever we collected back in the input stream, as raw characters, including the opening brace. Grab a number into \l__regex_internal_a_int. If the number is followed by a right brace, the range is \([a,a]\). If followed by a comma, grab one more number, and call the _ii or _iii auxiliary. Those auxiliaries check for a closing brace, leading to the range \([a,\infty)\) or \([a,b]\), encoded as \(\{a\}^{-1}\) and \(\{a\}^{b-a}\).

\begin{verbatim}
\cs_new_protected:Npn __regex_compile_quantifier_braced_auxi:w #1#2
__regex_two_if_eq:NNNNTF #1 #2 __regex_compile_special:N \c_right_brace_str
\exp_args:No __regex_compile_quantifier_lazyness:nnNN { \int_use:N \l__regex_internal_a_int } { -1 }
__regex_compile_quantifier_abort:eNN { __regex_compile_quantifier_braced_auxii:w }
__regex_compile_quantifier_braced_auxiii:w
\end{verbatim}

\begin{verbatim}
\cs_new_protected:Npn __regex_compile_quantifier_braced_auxii:w #1#2
\exp_args:No __regex_compile_quantifier_lazyness:nnNN { \int_use:N \l__regex_internal_a_int } { 0 }
__regex_compile_quantifier_braced_auxiii:w
\end{verbatim}

\begin{verbatim}
\cs_new_protected:Npn __regex_compile_quantifier_braced_auxiii:w #1#2
__regex_two_if_eq:NNNNTF #1 #2 __regex_compile_special:N \c_right_brace_str
\exp_args:No __regex_compile_quantifier_lazyness:nnNN { \int_use:N \l__regex_internal_a_int } { 0 }
__regex_compile_quantifier_braced_auxii:w
\end{verbatim}
47.3.6 Raw characters

Within character classes, and following catcode tests, some escaped alphanumeric sequences such as \b do not have any meaning. They are replaced by a raw character, after spitting out an error.

__regex_compile_raw_error:N

If we are in a character class and the next character is an unescaped dash, this denotes a range. Otherwise, the current character \#1 matches itself.

__regex_compile_raw:N
We have just read a raw character followed by a dash; this should be followed by an end-point for the range. Valid end-points are: any raw character; any special character, except a right bracket. In particular, escaped characters are forbidden.

__regex_if_end_range:NNTF
__regex_compile_range:Nw

(End of definition for __regex_compile_raw:N.)
47.3.7 Character properties

_regex_compile_.: _regex_prop_.: In a class, the dot has no special meaning. Outside, insert _regex_prop_.:, which matches any character or control sequence, and refuses −2 (end-marker).

\cs_new_protected:cpe { __regex_compile_.: } \{ \exp_not:N __regex_if_in_class:TF \{ __regex_compile_raw:N . \} \{ __regex_compile_one:n \exp_not:c { __regex_prop_: } \} \}
\cs_new_protected:cpn { __regex_prop_: } \{ \if_int_compare:w \l__regex_curr_char_int > - 2 \exp_stop_f: \exp_after:wN __regex_break_true:w \fi: \}

(End of definition for _regex_compile_.: and _regex_prop_.:)

_regex_compile_/d: The constants _regex_prop_d:, etc. hold a list of tests which match the corresponding character class, and jump to the _regex_break_point:TF marker. As for a normal character, we check for quantifiers.

\cs_set_protected:Npn __regex_temp:w #1#2 \{ \cs_new_protected:cpe { __regex Compile_/#1: } \{ __regex_compile_one:n \exp_not:c { __regex_prop_#1: } \} \}
\cs_new_protected:cpn { __regex Compile_/#1: } \{ __regex_compile_one:n \exp_not:c { __regex_prop_#1: } \} \}
\cs_new_protected:cpn { __regex Compile_/#2: } \{ __regex_compile_one:n \exp_not:c { __regex_prop_#2: } \} \}
\cs_new_protected:cpn { __regex Compile_/#N: } \{ __regex_compile_one:n \exp_not:c { __regex_prop_#N: } \} \}
\cs_new_protected:cpn { __regex Compile_/D: } \{ __regex_compile_one:n \exp_not:c { __regex_prop_D: } \} \}
\cs_new_protected:cpn { __regex Compile_/H: } \{ __regex_compile_one:n \exp_not:c { __regex_prop_H: } \} \}
\cs_new_protected:cpn { __regex Compile_/S: } \{ __regex_compile_one:n \exp_not:c { __regex_prop_S: } \} \}
\cs_new_protected:cpn { __regex Compile_/W: } \{ __regex_compile_one:n \exp_not:c { __regex_prop_W: } \} \}
\cs_new_protected:cpn { __regex Compile_/N: } \{ __regex_compile_one:n \exp_not:c { __regex_prop_N: } \} \}

(End of definition for _regex_compile_/d: and others.)
47.3.8 Anchoring and simple assertions

In modes where assertions are forbidden, anchors such as \A produce an error (\A is invalid in classes); otherwise they add an __regex_assertion:Nn test as appropriate (the only negative assertion is \B). The test functions are defined later. The implementation for $ and ^ is only different from \A etc because these are valid in a class.

\cs_new_protected:Npn __regex_compile_anchor_letter:NNN #1#2#3
__regex_if_in_class_or_catcode:TF { __regex_compile_raw_error:N #1 }
\tl_build_put_right:Nn \l__regex_build_tl __regex_assertion:Nn \c_true_bool {#2} \{#3\}
\}
\cs_new_protected:cpn { __regex_compile_/A: }
{ __regex_compile_anchor_letter:NNN A \c_true_bool __regex_A_test: }
\cs_new_protected:cpn { __regex_compile_/G: }
{ __regex_compile_anchor_letter:NNN G \c_true_bool __regex_G_test: }
\cs_new_protected:cpn { __regex_compile_/Z: }
{ __regex_compile_anchor_letter:NNN Z \c_true_bool __regex_Z_test: }
\cs_new_protected:cpn { __regex_compile_/z: }
{ __regex_compile_anchor_letter:NNN z \c_true_bool __regex_Z_test: }
\cs_new_protected:cpn { __regex_compile_/b: }
{ __regex_compile_anchor_letter:NNN b \c_true_bool __regex_b_test: }
\cs_new_protected:cpn { __regex_compile_/B: }
{ __regex_compile_anchor_letter:NNN b \c_false_bool __regex_b_test: }
\cs_set_protected:Npn __regex_tmp:w #1#2
{ \cs_new_protected:cpn { __regex_compile_#1: }
__regex_if_in_class_or_catcode:TF { __regex_compile_raw:N #1 }
\tl_build_put_right:Nn \l__regex_build_tl __regex_assertion:Nn \c_true_bool {#2} \}
\}
\exp_args:Ne __regex_tmp:w { \iow_char:N \^ } { __regex_A_test: }
\exp_args:Ne __regex_tmp:w { \iow_char:N \$ } { __regex_Z_test: }

(End of definition for __regex_compile_anchor_letter:NNN and others.)

47.3.9 Character classes

Outside a class, right brackets have no meaning. In a class, change the mode \(m \rightarrow (m - 15)/13 \), truncated to reflect the fact that we are leaving the class. Look for quantifiers, unless we are still in a class after leaving one (the case of \[\ldots \cL \ldots \ldots \]). quantifiers.
__regex Compile [[: In a class, left brackets might introduce a POSIX character class, or mean nothing. Immediately following \textlangle\textrangle, we must insert the appropriate catcode test, then parse the class; we pre-expand the catcode as an optimization. Otherwise (modes 0, \textminus2 and \textminus6) just parse the class. The mode is updated later.

\cs_new_protected:cpn { __regex Compile [: }

__regex If In Class:TF
\{ __regex Compile Class POSIX Test:w \}
\{ __regex If Within Catcode:TF
\{ \exp_after:wN __regex Compile Class Catcode:w
\int_use:N \l__regex Catcodes_int ;
\}
\}
\{ __regex Compile Class Normal:w \}
\}

(End of definition for __regex Compile [:)

__regex Compile Class Normal:w In the “normal” case, we insert __regex Class:NnnnN \langle boolean \rangle in the compiled code. The \langle boolean \rangle is true for positive classes, and false for negative classes, characterized by a leading \textasciitilde. The auxiliary __regex Compile Class:TFNN also checks for a leading \textbackslash] which has a special meaning.

\cs_new_protected:npm __regex Compile Class Normal:w
\{ __regex Compile Class:TFNN
\{ __regex Class:NnnnN \c_true bool \}
\{ __regex Class:NnnnN \c_false bool \}
\}

(End of definition for __regex Compile Class Normal:w)

__regex Compile Class Catcode:w This function is called for a left bracket in modes 2 or 6 (catcode test, and catcode test within a class). In mode 2 the whole construction needs to be put in a class (like single character). Then determine if the class is positive or negative, inserting __regex-item Catcode:nT or the reverse variant as appropriate, each with the current catcodes bitmap \#1 as an argument, and reset the catcodes.

\cs_new_protected:npm __regex Compile Class Catcode:w \#1;
\{ \if_int_compare:w \l__regex_mode_int = \c_regex Catcode Mode_int
\tl_build_put_right:Nn \l__regex_build_tl
__regex_compile_class:TFNN
__regex_compile_class:NN

If the first character is ^, then the class is negative (use #2), otherwise it is positive (use #1). If the next character is a right bracket, then it should be changed to a raw one.

\cs_new_protected:Npn __regex_compile_class:TFNN #1#2#3#4
 { \l__regex_mode_int = \int_value:w \l__regex_mode_int 3 \exp_stop_f:
 __regex_two_if_eq:NNNNTF #3 #4 __regex_compile_special:N ^
 { \tl_build_put_right:Nn \l__regex_build_tl { #2 { \if_false: } \fi: }
 __regex_compile_class:NN
 }
 { \tl_build_put_right:Nn \l__regex_build_tl { #1 { \if_false: } \fi: }
 __regex_compile_class:NN #3 #4
 }
 }
\cs_new_protected:Npn __regex_compile_class:NN #1#2
 { \token_if_eq_meaning:NNT __regex_compile_special:N #1
 \str_case:nn { #2 }
 { __regex_compile_raw:N #2 }
 \msg_warning:nne { regex } { posix-unsupported } { . }
 }

(End of definition for __regex_compile_class:TFNN and __regex_compile_class:NN.)

__regex_compile_class_posix_test:w
__regex_compile_class_posix:NNNNw
__regex_compile_class_posix_loop:w
__regex_compile_class_posix_end:w

Here we check for a syntax such as [:alpha:]. We also detect [= and [, which have a meaning in POSIX regular expressions, but are not implemented in l3regex. In case we see [:, grab raw characters until hopefully reaching :]. If that’s missing, or the POSIX class is unknown, abort. If all is right, add the test to the current class, with an extra __regex_item_reverse:n for negative classes (we make sure to wrap its argument in braces otherwise \regex_show:N would not recognize the regex as valid).

\cs_new_protected:Npm __regex_compile_class_posix_test:w #1#2
 \token_if_eq_meaning:NNT __regex_compile_special:N #1
 \str_case:nn { #2 }
 { __regex_compile_class_posix:NNNNw }
 \msg_warning:nne { regex } { posix-unsupported } { = }
 \msg_warning:nne { regex } { posix-unsupported } { . }

494
__regex_compile_raw:N [#1 #2
\cs_new_protected:Npn __regex_compile_class_posix:NNNNw #1#2#3#4#5#6
{__regex_two_if_eq:NNNNTF #5 #6 __regex_compile_special:N ^
 \bool_set_false:N \l__regex_internal_bool
 __kernel_tl_set:Ne \l__regex_internal_a_tl { \if_false: } \fi:
 __regex_compile_class_posix_loop:w
}
{\bool_set_true:N \l__regex_internal_bool
 __kernel_tl_set:Ne \l__regex_internal_a_tl { \if_false: } \fi:
 __regex_compile_class_posix_loop:w #5 #6
}
\cs_new:Npn __regex_compile_class_posix_loop:w #1#2
{\token_if_eq_meaning:NNTF __regex_compile_raw:N #1
{ #2 __regex_compile_class_posix_loop:w }
{ \if_false: { \fi: } __regex_compile_class_posix_end:w #1 #2 }
\cs_new_protected:Npn __regex_compile_class_posix_end:w #1#2#3#4
{__regex_two_if_eq:NNNNTF #1 #2 __regex_compile_special:N :
{ __regex_two_if_eq:NNNNTF #3 #4 __regex_compile_special:N] }
{ \use_ii:nn }
{\cs_if_exist:cTF { __regex_posix_ \l__regex_internal_a_tl : }
{ __regex_compile_one:n
{ \bool_if:NTF \l__regex_internal_bool \use:n __regex_item_reverse:n
{ \exp_not:c { __regex_posix_ \l__regex_internal_a_tl : } }
}
{ \msg_warning:nne { regex } { posix-unknown }
{ \l__regex_internal_a_tl }
__regex_compile_abort_tokens:e
{ [\bool_if:NF \l__regex_internal_bool { ^ }
{ \l__regex_internal_a_tl :]
}
}
{ \msg_error:nnee { regex } { posix-missing-close }
{ [\l__regex_internal_a_tl } { #2 #4 }
__regex_compile_abort_tokens:e { [\l__regex_internal_a_tl }
#1 #2 #3 #4

495
The contents of a regex group are turned into compiled code in `__regex_build_tl`, which ends up with items of the form `__regex_branch:n { ⟨concatenation⟩ }`. This construction is done using `\tl_build_...` functions within a TeX group, which automatically makes sure that options (case-sensitivity and default catcode) are reset at the end of the group. The argument #1 is `__regex_group:nnN` or a variant thereof. A small subtlety to support `\cL(abc)` as a shorthand for `(\cL\cLb\cLc)`: exit any pending catcode test, save the category code at the start of the group as the default catcode for that group, and make sure that the catcode is restored to the default outside the group.

```
cs_new_protected:Npn \__regex_compile_group_begin:N #1
{ \tl_build_put_right:Nn \l__regex_build_tl { #1 { \if_false: } \fi: } \__regex_mode_quit_c: \group_begin: \tl_build_begin:N \l__regex_build_tl \int_set_eq:NN \l__regex_default_catcodes_int \l__regex_catcodes_int \int_incr:N \l__regex_group_level_int \tl_build_put_right:Nn \l__regex_build_tl \__regex_branch:n { \if_false: } \fi: }
cs_new_protected:Npn \__regex_compile_group_end:
{ \if_int_compare:w \l__regex_group_level_int > \c_zero_int \tl_build_put_right:Nn \l__regex_build_tl { \if_false: { \fi: } \fi: } \tl_build_end:N \l__regex_build_tl \exp_args:NNNe \group_end: \tl_build_put_right:Nn \l__regex_build_tl \__regex_branch:n { \if_false: \exp_after:wN \l__regex_build_tl \exp_after:wN \exp_after:wN ) \fi: } \fi: }
```

(End of definition for `__regex_compile_group_begin:N` and `__regex_compile_group_end:`.)

In a class, parentheses are not special. In a catcode test inside a class, a left parenthesis gives an error, to catch `[a\cL(bcd)e]`. Otherwise check for a `?`, denoting special groups, and run the code for the corresponding special group.

```
cs_new_protected:cpn { \__regex_compile_(): }
{ \__regex_if_in_class:TF { \__regex_compile_raw:N ( ) \fi: \fi: \fi: }
```

(End of definition for `__regex_compile_group_begin:N` and `__regex_compile_group_end:`.)
In a class, the pipe is not special. Otherwise, end the current branch and open another one.

Within a class, parentheses are not special. Outside, close a group.

Non-capturing, and resetting groups are easy to take care of during compilation; for those groups, the harder parts come when building.
the match can be made case-insensitive by setting the option with (?i); the original behaviour is restored by (?!). This is the only supported option.

\cs_new_protected:Npn __regex_compile_special_group_i:w #1#2
{
__regex_two_if_eq:NNNNTF #1 #2 __regex_compile_special:N)
{
\cs_set:Npn __regex_item_equal:n { __regex_item_caseless_equal:n }
\cs_set:Npn __regex_item_range:nn { __regex_item_caseless_range:nn }
}
{ \msg_warning:nne { regex } { unknown-option } { (?i #2 }
__regex_compile_raw:N (__regex_compile_raw:N ? __regex_compile_raw:N i #1 #2
}
\cs_new_protected:cpn { __regex_compile_special_group_-:w } #1#2#3#4
{
__regex_two_if_eq:NNNNTF #1 #2 __regex_compile_raw:N i { __regex_two_if_eq:NNNNTF #3 #4 __regex_compile_special:N) }
{ \use_ii:nn }
{ \cs_set:Npn __regex_item_equal:n { __regex_item_caseful_equal:n }
\cs_set:Npn __regex_item_range:nn { __regex_item_caseful_range:nn }
}
{ \msg_warning:nne { regex } { unknown-option } { (?-#2#4 }
__regex_compile_raw:N (__regex_compile_raw:N ? __regex_compile_raw:N - #1 #2 #3 #4

(End of definition for __regex_compile_special_group_i:w and __regex_compile_special_group_-:w.)

47.3.11 Catcodes and csnames

The \c escape sequence can be followed by a capital letter representing a character category, by a left bracket which starts a list of categories, or by a brace group holding a regular expression for a control sequence name. Otherwise, raise an error.

\cs_new_protected:cpn { __regex_compile_/c: }
__regex_compile_c_C:NN
If \cC is not followed by \ or (...) then complain because that construction cannot
match anything, except in cases like \cC[^...], where it has no effect.

__regex_compile_c_[[:w]
__regex_compile_c_lbrack_loop:N
__regex_compile_c_lbrack_add:N
__regex_compile_c_lbrack_end:
When encountering \c[, the task is to collect uppercase letters representing character
categories. First check for ^ which negates the list of category codes.
The case of a left brace is easy, based on what we have done so far: in a group, compile the regular expression, after changing the mode to forbid nesting \c. Additionally, disable submatch tracking since groups don’t escape the scope of \c{...}.

\cs_new_protected:cpn { __regex_compile_c_{ \c_left_brace_str :w and others.} }

(End of definition for __regex_compile_c_{...})
We forbid unescaped left braces inside a \{...\} escape because they otherwise lead to the confusing question of whether the first right brace in \{\}x should end \} or whether one should match braces.

Non-escaped right braces are only special if they appear when compiling the regular expression for a csname, but not within a class: \{\} matches the control sequences \{ and \}. So, end compiling the inner regex (this closes any dangling class or group). Then insert the corresponding test in the outer regex. As an optimization, if the control sequence test simply consists of several explicit possibilities (branches) then use __regex_item_exact_cs:n with an argument consisting of all possibilities separated by \scan_stop:
\cs_new:Npn __regex_compile_cs_aux:Nn #1#2 {
\cs_if_eq:NNTF #1 __regex_branch:n {
\scan_stop:
__regex_compile_cs_aux:NNnnnN #2
__regex_compile_cs_aux:NNnnnN }
__regex_quark_if_nil:NF #1 { \flag_ensure_raised:n { __regex_cs } }
__regex_use none_delimit_by_q_recursion_stop:w }
\cs_new:Npn __regex_compile_cs_aux:NNnnnN #1#2#3#4#5#6 {
\bool_lazy_all:nTF {
__regex_if_in_class_or_catcode:TF { __regex_compile_raw_error:N u #1 #2 }
\tl_if_head_eq_meaning_p:nN {#3} __regex_item_caseful_equal:n {
\int_compare_p:nNn { \tl_count:n {#3} } = { 2 } }
\int_compare_p:nNn {#5} = { 0 }
}\prg_replicate:nn {#4}
__regex_quark_if_nil:NF #1 { \flag_ensure_raised:n { __regex_cs } }
__regex_use i_delimit_by_q_recursion_stop:nw
__regex_use none_delimit_by_q_recursion_stop:w
}
\cs_new_protected:cpn { __regex_compile_/u: } #1#2 {
__regex_if_in_class_or_catcode:TF { __regex_compile_/u: #1#2 } #1#2
__regex_item_caseful_equal:n {
\int_compare_p:nNn { #3 } = { 2 } }
\int_compare_p:nNn { #5 } = { 0 }
\prg_replicate:nn { #4 }
__regex_quark_if_nil:NF #1 { \flag_ensure_raised:n { __regex_cs } }
__regex_use i_delimit_by_q_recursion_stop:nw
__regex_use none_delimit_by_q_recursion_stop:w
}
\cs_new_protected:cpn { __regex_compile_/u: } #1#2
__regex_if_in_class_or_catcode:TF { __regex_compile_/u: #1#2 }
__regex_item_caseful_equal:n {
\int_compare_p:nNn { #3 } = { 2 } }
\int_compare_p:nNn { #5 } = { 0 }
\prg_replicate:nn { #4 }
__regex_quark_if_nil:NF #1 { \flag_ensure_raised:n { __regex_cs } }
__regex_use i_delimit_by_q_recursion_stop:nw
__regex_use none_delimit_by_q_recursion_stop:w

(End of definition for __regex_compile_/u: and others.)

47.3.12 Raw token lists with \u

__regex_compile_/u: The \u escape is invalid in classes and directly following a catcode test. Otherwise test for a following r (for \ur), and call an auxiliary responsible for finding the variable name.
This enforces the presence of a left brace, then starts a loop to find the variable name.

\cs_new:Npn __regex_compile_u_brace:NNN #1#2#3
\begin{verbatim}
 __regex_two_if_eq:NNNNTF #2 #3 __regex_compile_special:N \c_left_brace_str
 \tl_set:Nn \l__regex_internal_b_tl {#1}___regex_compile_u_loop:NN\l__regex_internal_a_tl {\if_false: } \fi:
\end{verbatim}

(End of definition for __regex_compile_u_brace:NNN.)

__regex_compile_u_loop:NN

We collect the characters for the argument of \texttt{\textbackslash u} within an \texttt{e}-expanding assignment. In principle we could just wait to encounter a right brace, but this is unsafe: if the right brace was missing, then we would reach the end-markers of the regex, and continue, leading to obscure fatal errors. Instead, we only allow raw and special characters, and stop when encountering a special right brace, any escaped character, or the end-marker.

\cs_new:Npn __regex_compile_u_loop:NN \l__regex_internal_b_tl {\if_false: } \fi:
\begin{verbatim}
\token_if_eq_meaning:NNTF #1 __regex_compile_raw:N \l__regex_internal_b_tl {#1}___regex_compile_u_loop:NN \l__regex_internal_a_tl {\if_false: } \fi:
\end{verbatim}

(End of definition for __regex_compile_u_loop:NN.)
For the `\ur{...}` construction, once we have extracted the variable's name, we replace all groups by non-capturing groups in the compiled regex (passed as the argument of `__regex_compile_ur:n`). If that has a single branch (namely `\tl_if_empty:oTF` is false) and there is no quantifier, then simply insert the contents of this branch (obtained by `\use_i:nn`, which is expanded later). In all other cases, insert a non-capturing group and look for quantifiers to determine the number of repetition etc.

Once we have extracted the variable's name, we check for quantifiers, in which case we set up a non-capturing group with a single branch. Inside this branch (we omit it and the group if there is no quantifier), `__regex_compile_u_payload:` puts the right tests corresponding to the contents of the variable, which we store in `\l__regex_internal_a_tl`. The behaviour of `\u` then depends on whether we are within a `\c{...}` escape (in this case, the variable is turned to a string), or not.
__regex_branch:n { \if_false: } \fi:

__regex_compile_u_payload:
\tl_build_put_right:Nn \l__regex_build_tl { \if_false: { \fi: } }
__regex_compile_quantifier:w

{ __regex_compile_u_payload: }

\cs_new_protected:Npn __regex_compile_u_payload:
{ \tl_set:Nv \l__regex_internal_a_tl { \l__regex_internal_a_tl }
 \if_int_compare:w \l__regex_mode_int = \c__regex_outer_mode_int
 __regex_compile_u_not_cs:
 \else:
 __regex_compile_u_in_cs:
 \fi:
}

(End of definition for __regex_compile_u_end: and __regex_compile_u_payload:)

__regex_compile_u_in_cs:
When \u appears within a control sequence, we convert the variable to a string with escaped spaces. Then for each character insert a class matching exactly that character, once.

\cs_new_protected:Npn __regex_compile_u_in_cs:
{ \tl_analysis_map_inline:Nn \l__regex_internal_a_tl
 \tl_build_put_right:Ne \l__regex_build_tl
 \tl_map_function:NN \g__regex_internal_tl __regex_compile_u_in_cs_aux:n
}

\cs_new:Npn __regex_compile_u_in_cs_aux:n #1
{ __regex_class:NnnnN \c_true_bool
 __regex_item_caseful_equal:n \int_value:w '#1'
 { 1 } { 0 } \c_false_bool
}

(End of definition for __regex_compile_u_in_cs:)

__regex_compile_u_not_cs:
In mode 0, the \u escape adds one state to the NFA for each token in \l__regex_internal_a_tl. If a given (token) is a control sequence, then insert a string comparison test, otherwise, __regex_item_exact:nn which compares catcode and character code.

\cs_new_protected:Npn __regex_compile_u_not_cs:
{ \tl_analysis_map_inline:Nn \l__regex_internal_a_tl
 \tl_build_put_right:Ne \l__regex_build_tl
}

505
47.3.13 Other

The \texttt{\K} control sequence is currently the only “command”, which performs some action, rather than matching something. It is allowed in the same contexts as \texttt{\b}. At the compilation stage, we leave it as a single control sequence, defined later.

\begin{verbatim}
\cs_new_protected:cpn { __regex_compile_/K: }
\{ \int_compare:nNnTF \l__regex_mode_int = \c__regex_outer_mode_int
{ \tl_build_put_right:Nn \l__regex_build_tl { __regex_command_K: } }
{ __regex_compile_raw_error:N K }
\}
\end{verbatim}

(End of definition for \texttt{__regex_compile_/K:})

47.3.14 Showing regexes

Before showing a regex we check that it is “clean” in the sense that it has the correct internal structure. We do this (in the implementation of \texttt{\regex_show:N} and \texttt{\regex_log:N}) by comparing it with a cleaned-up version of the same regex. Along the way we also need similar functions for other types: all \texttt{__regex_clean_⟨type⟩:n} functions produce valid \texttt{⟨type⟩} tokens (bool, explicit integer, etc.) from arbitrary input, and the output coincides with the input if that was valid.

\begin{verbatim}
\cs_new:Npn __regex_clean_bool:n #1
{ \tl_if_single:nTF {#1} { \bool_if:NTF #1 \c_true_bool \c_false_bool } { \c_true_bool } }
\cs_new:Npn __regex_clean_int:n #1
{ \tl_if_head_eq_meaning:nNTF {#1} - { - \exp_args:No __regex_clean_int:n { \use_none:n #1 } } \int_eval:n { 0 \str_map_function:nN {#1} __regex_clean_int_aux:N } }
\cs_new:Npn __regex_clean_int_aux:N #1
{ \tl_if_int_compare:w 1 < 1 #1 - }
\end{verbatim}

506
\begin{verbatim}
#1 \else:
 \exp_after:wN \str_map_break:
 \fi:
\cs_new:Npn __regex_clean_regex:n #1
 { __regex_clean_regex_loop:w #1 __regex_branch:n { \q_recursion_tail } \q_recursion_stop }
\cs_new:Npn __regex_clean_regex_loop:w #1 __regex_branch:n #2
 { \quark_if_recursion_tail_stop:n {#2} __regex_branch:n { __regex_clean_branch:n {#2} } __regex_clean_regex_loop:w }
\cs_new:Npn __regex_clean_branch:n #1
 { __regex_clean_branch_loop:n #1 ? ? ? ? ? \prg_break_point:
 \cs_new:Npn __regex_clean_branch_loop:n #1
 { \tl_if_single:nF {#1} { \prg_break: } \token_case_meaning:NnF #1 { __regex_clean_bool:n {#1} } { __regex_clean_class:n {#2} } __regex_clean_command_K: { #1 __regex_clean_branch_loop:n } __regex_assertion:Nn { #1 __regex_clean_assertion:Nn } __regex_class:NnnnN { #1 __regex_clean_class:NnnnN } __regex_group:nnnN { #1 __regex_clean_group:nnnN } __regex_group_no_capture:nnnN { #1 __regex_clean_group:nnnN } __regex_group_resetting:nnnN { #1 __regex_clean_group:nnnN } { \prg_break: } } __regex_clean_class:NnnnN #1#2#3#4#5
 { __regex_clean_branch_loop:n #1 } __regex_cleanสะอาด: #5
\end{verbatim}
When cleaning a class there are many cases, including a dozen or so like __regex_prop_-
d: or __regex_posix_alpha:. To avoid listing all of them we allow any command that
starts with the 13 characters __regex_prop_ or __regex_posix (handily these have the
same length, except for the trailing underscore).

```latex
\cs_new:Npn \_\_regex_clean_class:n #1
\cs_new:Npn \_\_regex_clean_class_loop:nnn #1#2#3
\tl_if_single:nF {#1} { \prg_break: }
\token_case_meaning:NnTF #1
\_\_regex_item_cs:n { #1 { \_\_regex_clean_regex:n {#2} } }
\_\_regex_item_exact_cs:n { #1 { \_\_regex_clean_exact_cs:n {#2} } }
\_\_regex_item_caseful_equal:n { #1 { \_\_regex_clean_int:n {#2} } }
\_\_regex_item_caseless_equal:n { #1 { \_\_regex_clean_int:n {#2} } }
\_\_regex_item_reverse:n { #1 { \_\_regex_clean_class:n {#2} } }
\_\_regex_item_caseful_range:nn { }{#1} { \_\_regex_clean_int:n {#2} }{ \_\_regex_clean_int:n {#3} }
\_\_regex_item_exact:nn { }{#1} { \_\_regex_clean_class_loop:nnn {#2} }
\token_case_meaning:NnTF #1
\_\_regex_item_catcode:nT { }
\_\_regex_item_catcode_reverse:nT { }
\_\_regex_item_catcode:nT { #1 { \_\_regex_clean_int:n {#2} } { \_\_regex_clean_class:n {#3} }
\_\_regex_clean_class_loop:nnn {#4} }

\int_max:nn { 0 } { \_\_regex_clean_int:n {#3} } }
\int_max:nn { -1 } { \_\_regex_clean_int:n {#4} } }
\_\_regex_clean_bool:n {#5}
\_\_regex_clean_branch_loop:n
\__regex_clean_bool:n {#5}
\__regex_clean_branch_loop:n
\cs_new:Npn \__regex_clean_group:nnnN #1#2#3#4
\__regex_clean_regex:n {#1}
\int_max:nn { 0 } { \_\_regex_clean_int:n {#2} }
\int_max:nn { -1 } { \_\_regex_clean_int:n {#3} }
\__regex_clean_bool:n {#4}
\__regex_clean_branch_loop:n
\cs_new:Npn \__regex_clean_class:n #1
\cs_new:Npn \__regex_clean_class_loop:nnn #1 ????? \prg_break_point: }
```

508
\exp_args:Nf \str_case:nnTF
\exp_args:Nf \str_range:nnn
 \{ \cs_to_str:N #1 \} \{ 1 \} \{ 13 \}
\}
\{
 __regex_prop_ \}
\{
 __regex_posix \}
\}
\{
 \#1
 __regex_clean_class_loop:nnn \{#2\} \{#3\}
\}
\{ \prg_break: \}

\cs_new:Npn __regex_clean_exact_cs:n #1
\exp_last_unbraced:Nf \use_none:n
 __regex_clean_exact_cs:w #1
\scan_stop: \q_recursion_tail \scan_stop:
\q_recursion_stop
\}

\cs_new:Npn __regex_clean_exact_cs:w #1 \scan_stop:
 \quark_if_recursion_tail_stop:n {#1}
\scan_stop: \tl_to_str:n {#1}
__regex_clean_exact_cs:w
\}

(End of definition for __regex_clean_bool:n and others.)

__regex_show:N Within a group and within \tl_build_begin:N . . . \tl_build_end:N we redefine all
the function that can appear in a compiled regex, then run the regex. The result stored
in \l__regex_internal_a_tl is then meant to be shown.
\cs_new_protected:Npn __regex_show:N #1
\group_begin:
\tl_build_begin:N \l__regex_build_tl
\cs_set_protected:Npn __regex_branch:n
 \seq_pop_right:NN \l__regex_show_prefix_seq
 \l__regex_internal_a_tl
 __regex_show_one:n { ++branch }
 \seq_put_right:Nn \l__regex_show_prefix_seq
 \l__regex_internal_a_tl
 \use:n
\}
\cs_set_protected:Npn __regex_group:nnnN
 \{ __regex_show_group_aux:nnnnN \} \{

509
Show a single character, together with its ascii representation if available. This could be
extended to beyond ascii. It is not ideal for parentheses themselves.

\cs_new:Npn __regex_show_char:n #1
\int_eval:n {#1}
\int_compare:nT { 32 <= #1 <= 126 }
\{ \char_generate:nn {#1} {12} \} \}

(End of definition for __regex_show_char:n)

__regex_show_one:n Every part of the final message go through this function, which adds one line to the output, with the appropriate prefix.

\cs_new_protected:Npn __regex_show_one:n #1
\int_incr:N \l__regex_show_lines_int
\tl_build_put_right:Ne \l__regex_build_tl
\exp_not:N \iow_newline:
\seq_map_function:NN \l__regex_show_prefix_seq \use:n
\l__regex_internal_a_tl
\}

(End of definition for __regex_show_one:n)

__regex_show_push:n Enter and exit levels of nesting. The scope function prints its first argument as an \textit{introduction}, then performs its second argument in a deeper level of nesting.

\cs_new_protected:Npn __regex_show_push:n #1
\seq_put_right:Ne \l__regex_show_prefix_seq { #1 ~ }
\cs_new_protected:Npn __regex_show_pop:
\seq_pop_right:NN \l__regex_show_prefix_seq \l__regex_internal_a_tl
\}

(End of definition for __regex_show_push:n, __regex_show_pop:, and __regex_show_scope:nn)

__regex_show_group_aux:nnnnN We display all groups in the same way, simply adding a message, (\textit{no capture}) or (resetting), to special groups. The odd \use_ii:nn avoids printing a spurious +-branch for the first branch.

\cs_new_protected:Npn __regex_show_group_aux:nnnnN #1#2#3#4#5
\seq_put_right:Ne \l__regex_show_prefix_seq { #1 } \}
\cs_new_protected:Npn __regex_show_pop:
\use_ii:nn #2
\}
__regex_show_pop:
\}

(End of definition for __regex_show_group_aux:nnnnN)
I’m entirely unhappy about this function: I couldn’t find a way to test if a class is a single test. Instead, collect the representation of the tests in the class. If that had more than one line, write Match or Don’t match on its own line, with the repeating information if any. Then the various tests on lines of their own, and finally a line. Otherwise, we need to evaluate the representation of the tests again (since the prefix is incorrect). That’s clunky, but not too expensive, since it’s only one test.

__regex_show_class:NnnnN

(End of definition for __regex_show_class:NnnnN.)

__regex_show_item_catcode:NnT

Produce a sequence of categories which the catcode bitmap #2 contains, and show it, indenting the tests on which this catcode constraint applies.
categories-
\seq_map_function:NN \l__regex_internal_seq \use:n
\bool_if:NF #1 { negative- } class
}

(End of definition for _regex_show_item_catcode:NnT.)
_regex_show_item_exact_cs:n
\cs_new_protected:Npn _regex_show_item_exact_cs:n #1
{
\seq_set_split:Nnn \l__regex_internal_seq { \scan_stop: } {#1}
\seq_set_map_e:NNn \l__regex_internal_seq
\iow_char:N\##1
__regex_show_one:n
{ control-sequence- \seq_use:Nn \l__regex_internal_seq { -or- } }
}
(End of definition for _regex_show_item_exact_cs:n.)

47.4 Building

47.4.1 Variables used while building
_regex_min_state_int
_regex_max_state_int
The last state that was allocated is _regex_max_state_int − 1, so that _regex_max_state_int always points to a free state. The min_state variable is 1 to begin with, but gets shifted in nested calls to the matching code, namely in \c{...} constructions.
\int_new:N \l__regex_min_state_int
\int_set:Nn \l__regex_min_state_int { 1 }
\int_new:N \l__regex_max_state_int
(End of definition for _regex_min_state_int and _regex_max_state_int.)
_regex_left_state_int
_regex_right_state_int
_regex_left_state_seq
_regex_right_state_seq
Alternatives are implemented by branching from a left state into the various choices, then merging those into a right state. We store information about those states in two sequences. Those states are also used to implement group quantifiers. Most often, the left and right pointers only differ by 1.
\int_new:N \l__regex_left_state_int
\int_new:N \l__regex_right_state_int
\seq_new:N \l__regex_left_state_seq
\seq_new:N \l__regex_right_state_seq
(End of definition for _regex_left_state_int and others.)
_regex_capturing_group_int
_regex_capturing_group_int
is the next id number to be assigned to a capturing group. This starts at 0 for the group enclosing the full regular expression, and groups are counted in the order of their left parenthesis, except when encountering resetting groups.
\int_new:N \l__regex_capturing_group_int
(End of definition for _regex_capturing_group_int.)

513
47.4.2 Framework

This phase is about going from a compiled regex to an NFA. Each state of the NFA is stored in a \toks. The operations which can appear in the \toks are

- __regex_action_start_wildcard:N \langle boolean \rangle inserted at the start of the regular expression, where a true \langle boolean \rangle makes it unanchored.
- __regex_action_success: marks the exit state of the NFA.
- __regex_action_cost:n \{ \langle shift \rangle \} is a transition from the current \langle state \rangle to \langle state \rangle + \langle shift \rangle, which consumes the current character: the target state is saved and will be considered again when matching at the next position.
- __regex_action_free:n \{ \langle shift \rangle \}, and __regex_action_free_group:n \{ \langle shift \rangle \} are free transitions, which immediately perform the actions for the state \langle state \rangle + \langle shift \rangle of the NFA. They differ in how they detect and avoid infinite loops. For now, we just need to know that the group variant must be used for transitions back to the start of a group.
- __regex_action_submatch:nN \{ \langle group \rangle \} \langle key \rangle where the \langle key \rangle is < or > for the beginning or end of group numbered \langle group \rangle. This causes the current position in the query to be stored as the \langle key \rangle submatch boundary.

- One of these actions, within a conditional.

We strive to preserve the following properties while building.

- The current capturing group is capturing_group – 1, and if a group opened now it would be labelled capturing_group.
- The last allocated state is max_state – 1, so max_state is a free state.
- The left_state points to a state to the left of the current group or of the last class.
- The right_state points to a newly created, empty state, with some transitions leading to it.
- The left/right sequences hold a list of the corresponding end-points of nested groups.

The n-type function first compiles its argument. Reset some variables. Allocate two states, and put a wildcard in state 0 (transitions to state 1 and 0 state). Then build the regex within a (capturing) group numbered 0 (current value of capturing_group). Finally, if the match reaches the last state, it is successful. A false boolean for argument #1 for the auxiliaries will suppress the wildcard and make the match anchored: used for \peek_regex:nTF and similar.
__regex_build_aux:Nn \l__regex_internal_regex
\cs_new_protected:Npn __regex_build_aux:NN #1 #2
{
__regex_standard_escapechar:
\int_zero:N \l__regex_capturing_group_int
\int_set_eq:NN \l__regex_max_state_int \l__regex_min_state_int
__regex_build_new_state:
__regex_build_new_state:
\regex_toks_put_right:Nn \l__regex_left_state_int
\l__regex_toks_put_right:Nn \l__regex_right_state_int
\{ __regex_action_start_wildcard:N #1 \}
\regex_group:nnnN {#2} { 1 } { 0 } \c_false_bool
\regex_toks_put_right:Nn \l__regex_right_state_int
\{ __regex_action_success: \}
}

(End of definition for __regex_build:n and others.)

\g__regex_case_int Case number that was successfully matched in \regex_match_case:nn and related functions.
\int_new:N \g__regex_case_int

(End of definition for \g__regex_case_int.)

\l__regex_case_max_group_int The largest group number appearing in any of the ⟨regex⟩ in the argument of \regex_match_case:nn and related functions.
\int_new:N \l__regex_case_max_group_int

(End of definition for \l__regex_case_max_group_int.)

__regex_case_build:n See __regex_build:n, but with a loop.
__regex_case_build:e
__regex_case_build_loop:n

__regex_case_build:n __regex_case_build:e
__regex_case_build_loop:n

The matching code relies on some global intarray variables, but only uses a range of their entries. Specifically,

- \texttt{\textbackslash g_regex_state_active_intarray} from \texttt{\textbackslash l_regex_min_state_int} to \texttt{\textbackslash l_regex_max_state_int} - 1;

Here, in this nested call to the matching code, we need the new versions of this range to involve completely new entries of the intarray variables, so we begin by setting (the new) \texttt{\textbackslash l_regex_min_state_int} to (the old) \texttt{\textbackslash l_regex_max_state_int} to use higher entries.

When using a regex to match a cs, we don’t insert a wildcard, we anchor at the end, and since we ignore submatches, there is no need to surround the expression with a group. However, for branches to work properly at the outer level, we need to put the appropriate left and right states in their sequence.
47.4.3 Helpers for building an nfa

When building the regular expression, we keep track of pointers to the left-end and right-end of each group without help from TeX’s grouping.

\cs_new_protected:Npn __regex_push_lr_states:
\{\seq_push:No \l__regex_left_state_seq { \int_use:N \l__regex_left_state_int } \seq_push:No \l__regex_right_state_seq { \int_use:N \l__regex_right_state_int }\}
\cs_new_protected:Npn __regex_pop_lr_states:
\{\seq_pop:NN \l__regex_left_state_seq \l__regex_internal_a_tl \int_set:Nn \l__regex_left_state_int \l__regex_internal_a_tl \seq_pop:NN \l__regex_right_state_seq \l__regex_internal_a_tl \int_set:Nn \l__regex_right_state_int \l__regex_internal_a_tl \}

(End of definition for __regex_push_lr_states: and __regex_pop_lr_states:)
This function creates a new state, and puts two transitions starting from the old current state. The order of the transitions is controlled by \#1, true for lazy quantifiers, and false for greedy quantifiers.

\begin{verbatim}
\cs_new_protected:Npn _regex_build_transitions_lazyness:NNNNN #1#2#3#4#5
{ _regex_build_new_state:
 _regex_toks_put_right:Ne \l__regex_left_state_int
 \begin{cs_set:Npe} _regex_tests_action_cost:n ##1
 \exp_not:n { \exp_not:n {#2} }
 \bool_if:NTF #1
 { _regex_break_point:TF { _regex_action_cost:n {##1} } } { }
 \else:
 _regex_break_point:TF { } { _regex_action_cost:n {##1} }
 \fi:
\end{cs_set:Npe}

\end{verbatim}

(End of definition for _regex_build_transitions_lazyness:NNNNN.)

4.4.4 Building classes

The arguments are: \langle boolean \rangle \{ \langle tests \rangle \} \{ \langle min \rangle \} \{ \langle more \rangle \} \{ lazyness \}. First store the tests with a trailing _regex_action_cost:n, in the true branch of _regex_break_point:TF for positive classes, or the false branch for negative classes. The integer \langle more \rangle is 0 for fixed repetitions, −1 for unbounded repetitions, and \langle max \rangle − \langle min \rangle for a range of repetitions.

\begin{verbatim}
\cs_new_protected:Npn _regex_class:NnnnN #1#2#3#4#5
{ \cs_set:Npe _regex_tests_action_cost:n ##1
 \begin{cs_set:Npe} _regex_actions_action_cost:n #1#2#3#4#5
 \exp_not:n { \exp_not:n {#2} }
 \bool_if:NTF #1
 { _regex_break_point:TF { _regex_action_cost:n {##1} } } { }
 \else:
 _regex_break_point:TF { } { _regex_action_cost:n {##1} }
 \fi:
\end{cs_set:Npe}

\if_case:w - #4 \exp_stop_f:
 _regex_class_repeat:n {#3}
\or: _regex_class_repeat:nN {#3} #5
\else: _regex_class_repeat:nnN {#3} {#4} #5
\fi:
\end{verbatim}

(End of definition for _regex_class:NnnnN and _regex_tests_action_cost:n.)

This is used for a fixed number of repetitions. Build one state for each repetition, with a transition controlled by the tests that we have collected. That works just fine for \#1 = 0 repetitions: nothing is built.

\begin{verbatim}
\cs_new_protected:Npn _regex_class_repeat:n #1
{ \prg_replicate:nn {#1} }
\end{verbatim}

518
This implements unbounded repetitions of a single class (e.g. the * and + quantifiers). If the minimum number #1 of repetitions is 0, then build a transition from the current state to itself governed by the tests, and a free transition to a new state (hence skipping the tests). Otherwise, call __regex_class_repeat:n for the code to match #1 repetitions, and add free transitions from the last state to the previous one, and to a new one. In both cases, the order of transitions is controlled by the lazyness boolean #2.

\cs_new_protected:Npn __regex_class_repeat:nN #1#2
\newcommand{__regex_class_repeat:nN}{\if_int_compare:w #1 = \c_zero_int
__regex_build_transitions_lazyness:NNNNN #2 __regex_action_free:n \l__regex_right_state_int __regex_tests_action_cost:n \l__regex_left_state_int
\else:
__regex_class_repeat:n {#1}
\int_set_eq:NN \l__regex_internal_a_int \l__regex_left_state_int
__regex_build_transitions_lazyness:NNNNN #2 __regex_action_free:n \l__regex_right_state_int
__regex_action_free:n \l__regex_internal_a_int
\fi:}

(End of definition for __regex_class_repeat:nN.)

We want to build the code to match from #1 to #1 + #2 repetitions. Match #1 repetitions (can be 0). Compute the final state of the next construction as a. Build #2 > 0 states, each with a transition to the next state governed by the tests, and a transition to the final state a. The computation of a is safe because states are allocated in order, starting from max_state.

\cs_new_protected:Npn __regex_class_repeat:nnN #1#2#3
\newcommand{__regex_class_repeat:nnN}{__regex_class_repeat:n {#1}
\int_set:Nn \l__regex_internal_a_int \l__regex_max_state_int + #2 - 1 }
\prg_replicate:nn { #2 }
{ __regex_build_transitions_lazyness:NNNNN #3 __regex_action_free:n \l__regex_internal_a_int __regex_tests_action_cost:n \l__regex_right_state_int
}

(End of definition for __regex_class_repeat:nnN.)
47.4.5 Building groups

Arguments: {⟨label⟩} {⟨contents⟩} {⟨min⟩} {⟨more⟩} {⟨lazyness⟩}. If ⟨min⟩ is 0, we need to add a state before building the group, so that the thread which skips the group does not also set the start-point of the submatch. After adding one more state, the left_state is the left end of the group, from which all branches stem, and the right_state is the right end of the group, and all branches end their course in that state. We store those two integers to be queried for each branch, we build the NFA states for the contents #2 of the group, and we forget about the two integers. Once this is done, perform the repetition: either exactly #3 times, or #3 or more times, or between #3 and #3 + #4 times, with lazyness #5. The ⟨label⟩ #1 is used for submatch tracking. Each of the three auxiliaries expects left_state and right_state to be set properly.

\cs_new_protected:Npn __regex_group_aux:nnnnN #1#2#3#4#5
\if_int_compare:w #3 = \c_zero_int
__regex_build_new_state:
__regex_build_transition_right:nNn __regex_action_free_group:n
\l__regex_left_state_int \l__regex_right_state_int
\fi:
__regex_build_new_state:
__regex_push_lr_states:
#2
__regex_pop_lr_states:
\if_case:w - #4 \exp_stop_f:
__regex_group_repeat:nn {#1} {#3}
\or: __regex_group_repeat:nnN {#1} {#3} #5
\else: __regex_group_repeat:nnnN {#1} {#3} {#4} #5
\fi:
\}

(End of definition for __regex_group_aux:nnnnN.)

__regex_group:nnnN __regex_group_no_capture:nnnN
Hand to __regex_group_aux:nnnnN the label of that group (expanded), and the group itself, with some extra commands to perform.

\cs_new_protected:Npn __regex_group:nnnN #1
\exp_args:No __regex_group_aux:nnnnN
{ \int_use:N \l__regex_capturing_group_int }
\{ \int_incr:N \l__regex_capturing_group_int #1
}\}
\cs_new_protected:Npn __regex_group_no_capture:nnnN
\{ __regex_group_aux:nnnnN \{ -1 \} }

(End of definition for __regex_group:nnnN and __regex_group_no_capture:nnnN.)

Again, hand the label −1 to __regex_group_aux:nnnnN, but this time we work a little bit harder to keep track of the maximum group label at the end of any branch, and to reset the group number at each branch. This relies on the fact that a compiled regex always is a sequence of items of the form __regex_branch:n {⟨branch⟩}.

\cs_new_protected:Npn __regex_group_reseting:nnnN __regex_group_reseting_loop:nnNn

520
_\regex_group_repeat:nn\ Add a free transition from the left state of the current group to a brand new state, starting point of this branch. Once the branch is built, add a transition from its last state to the right state of the group. The left and right states of the group are extracted from the relevant sequences.

\cs_new_protected:Npn _\regex_branch:n\ Add a free transition from the left state of the current group to a brand new state, starting point of this branch. Once the branch is built, add a transition from its last state to the right state of the group. The left and right states of the group are extracted from the relevant sequences.

_\regex_group_repeat:nn\ This function is called to repeat a group a fixed number of times \#2; if this is 0 we remove the group altogether (but don’t reset the \hbox{\texttt{\textbackslash capturing_group}} label). Otherwise, the auxiliary _\regex_group_repeat_aux:n copies \#2 times the \hbox{\texttt{\textbackslash toks}} for the group, and leaves \hbox{\texttt{\textbackslash internal_a}} pointing to the left end of the last repetition. We only record the submatch information at the last repetition. Finally, add a state at the end (the transition to it has been taken care of by the replicating auxiliary).
\else:
 __regex_group_repeat_aux:n {#2}
 __regex_group_submatches:nNN {#1}
 \l__regex_internal_a_int \l__regex_right_state_int
 __regex_build_new_state:
 \fi:
 \}

(End of definition for __regex_group_repeat:nn.)

__regex_group_submatches:nNN
This inserts in states #2 and #3 the code for tracking submatches of the group #1, unless inhibited by a label of −1.
\cs_new_protected:Npn __regex_group_submatches:nNN #1#2#3
{\fi:}
\}

(End of definition for __regex_group_submatches:nNN.)

__regex_group_repeat_aux:n
Here we repeat \toks ranging from left_state to max_state, #1 > 0 times. First add a transition so that the copies “chain” properly. Compute the shift c between the original copy and the last copy we want. Shift the right_state and max_state to their final values. We then want to perform c copy operations. At the end, b is equal to the max_state, and a points to the left of the last copy of the group.
\cs_new_protected:Npn __regex_group_repeat_aux:n #1
{\fi:}
\}

(End of definition for __regex_group_repeat_aux:n.)

__regex_group_repeat:nnN
This function is called to repeat a group at least n times; the case n = 0 is very different from n > 0. Assume first that n = 0. Insert submatch tracking information at the start and end of the group, add a free transition from the right end to the “true” left state a
\cs_new_protected:Npn __regex_group_repeat:nnN #1#2
{\fi:}
\}

(End of definition for __regex_group_repeat:nnN.)
(remember: in this case we had added an extra state before the left state). This forms the loop, which we break away from by adding a free transition from a to a new state.

Now consider the case \(n > 0 \). Repeat the group \(n \) times, chaining various copies with a free transition. Add submatch tracking only to the last copy, then add a free transition from the right end back to the left end of the last copy, either before or after the transition to move on towards the rest of the NFA. This transition can end up before submatch tracking, but that is irrelevant since it only does so when going again through the group, recording new matches. Finally, add a state; we already have a transition pointing to it from _regex_group_repeat_aux:n.

\begin{verbatim}
6371 \cs_new_protected:Npn _regex_group_repeat:nnN #1#2#3
6372 { \iff_int_compare:w #2 = \c_zero_int
6373 _regex_group_submatches:nNN \#1
6374 \l__regex_left_state_int \l__regex_right_state_int
6375 \int_set:Nn \l__regex_internal_a_int
6376 { \l__regex_left_state_int - 1 }
6377 _regex_build_transition_right:nNn _regex_action_free:n
6378 \l__regex_right_state_int \l__regex_internal_a_int
6379 _regex_build_new_state:
6380 \fi:
6381 \else:
6382 _regex_group_repeat_aux:n \#2
6383 _regex_group_submatches:nNN \#1
6384 \l__regex_internal_a_int \l__regex_right_state_int
6385 \fi:
6386 \else:
6387 _regex_group_repeat_aux:n \#2
6388 _regex_group_submatches:nNN \#1
6389 \l__regex_internal_a_int \l__regex_right_state_int
6390 \fi:
6391 \else:
6392 _regex_group_submatches:nNN \#1
6393 \l__regex_right_state_int \l__regex_internal_a_int
6394 _regex_group_repeat_aux:n \#2
6395 _regex_group_submatches:nNN \#1
6396 \l__regex_right_state_int \l__regex_internal_a_int
6397 \l__regex_right_state_int \l__regex_internal_a_int
6398 \fi:
6399 _regex_build_new_state:
6400 \fi:
6401 }
\end{verbatim}

\textbf{End of definition for _regex_group_repeat:nnN.}

We wish to repeat the group between \#2 and \#2 + \#3 times, with a lazyness controlled by \#4. We insert submatch tracking up front: in principle, we could avoid recording submatches for the first \#2 copies of the group, but that forces us to treat specially the case \#2 = 0. Repeat that group with submatch tracking \#2 + \#3 times (the maximum number of repetitions). Then our goal is to add \#3 transitions from the end of the \#2-th group, and each subsequent groups, to the end. For a lazy quantifier, we add those transitions to the left states, before submatch tracking. For the greedy case, we add the transitions to the right states, after submatch tracking and the transitions which go on with more repetitions. In the greedy case with \#2 = 0, the transition which skips over all
copies of the group must be added separately, because its starting state does not follow
the normal pattern: we had to add it "by hand" earlier.

\cs_new_protected:Npn __regex_group_repeat:nnnN #1#2#3#4
__regex_group_submatches:nNN {#1}
\l__regex_left_state_int \l__regex_right_state_int
__regex_group_repeat_aux:n { #2 + #3 }
\if_meaning:w \c_true_bool #4
\int_set_eq:NN \l__regex_left_state_int \l__regex_max_state_int
\prg_replicate:nn { #3 }
{ \int_sub:Nn \l__regex_left_state_int
{ \l__regex_internal_b_int - \l__regex_internal_a_int }
__regex_build_transition_left:NNN __regex_action_free:n
\l__regex_left_state_int \l__regex_max_state_int
}
\else:
\prg_replicate:nn { #3 - 1 }
{ \int_sub:Nn \l__regex_right_state_int
{ \l__regex_internal_b_int - \l__regex_internal_a_int }
__regex_build_transition_right:nNn __regex_action_free:n
\l__regex_right_state_int \l__regex_max_state_int
{ \int_compare:w #2 = \c_zero_int
\int_set:Nn \l__regex_right_state_int
{ \l__regex_left_state_int - 1 }
\else:
\int_sub:Nn \l__regex_right_state_int
{ \l__regex_internal_b_int - \l__regex_internal_a_int }
\fii:
__regex_build_transition_right:nNn __regex_action_free:n
\l__regex_right_state_int \l__regex_max_state_int
\fii:
__regex_build_new_state:
}
(End of definition for __regex_group_repeat:nnnN.)

47.4.6 Others

Usage: __regex_assertion:Nn \langle boolean \rangle \{\langle test \rangle\}
__regex_b_test: __regex_A_test: __regex_G_test: __regex_Z_test:
where the \langle test \rangle is either of the two other functions. Add a free transition
__cs_new_protected:Npn __regex_assertion:Nn \#1\#2
\{ __regex_build_new_state:
__regex_toks_put_right:Ne \l__regex_left_state_int
\exp_not:n \#2
__regex_break_point:TF
524
\bool_if:NF #1 { { } }

__regex_action_free:n
\int_eval:n
\{ \l__regex_right_state_int - \l__regex_left_state_int \}
\}
\bool_if:NT #1 { { } }
\}
\cs_new_protected:Npn __regex_b_test:
\group_begin:
\int_set_eq:NN \l__regex_curr_char_int \l__regex_last_char_int
__regex_prop_w:
__regex_break_point:TF
\{ \group_end: __regex_item_reverse:n \{ __regex_prop_w: \} \}
\{ \group_end: __regex_prop_w: \}
\}
\cs_new_protected:Npn __regex_Z_test:
\if_int_compare:w -2 = \l__regex_curr_char_int
\exp_after:wN __regex_break_true:w
\fi:
\}
\cs_new_protected:Npn __regex_A_test:
\if_int_compare:w -2 = \l__regex_last_char_int
\exp_after:wN __regex_break_true:w
\fi:
\}
\cs_new_protected:Npn __regex_G_test:
\if_int_compare:w \l__regex_curr_pos_int = \l__regex_start_pos_int
\exp_after:wN __regex_break_true:w
\fi:
\}
\end{definition}

(End of definition for _regex_assertion:Nn and others.)

_regex_command_K: Change the starting point of the 0-th submatch (full match), and transition to a new state, pretending that this is a fresh thread.

\cs_new_protected:Npn _regex_command_K:
\{ _regex_build_new_state:
_regex_toks_put_right:Ne \l__regex_left_state_int
\{ _regex_action_submatch:nN \{ 0 \} <
\bool_set_true:N \l__regex_fresh_thread_bool
_regex_action_free:n
\{ \int_eval:n
\{ \l__regex_right_state_int - \l__regex_left_state_int \}
47.5 Matching

We search for matches by running all the execution threads through the NFA in parallel, reading one token of the query at each step. The NFA contains “free” transitions to other states, and transitions which “consume” the current token. For free transitions, the instruction at the new state of the NFA is performed immediately. When a transition consumes a character, the new state is appended to a list of “active states”, stored in \g__regex_thread_info_intarray (together with submatch information): this thread is made active again when the next token is read from the query. At every step (for each token in the query), we unpack that list of active states and the corresponding submatch props, and empty those.

If two paths through the NFA “collide” in the sense that they reach the same state after reading a given token, then they only differ in how they previously matched, and any future execution would be identical for both. (Note that this would be wrong in the presence of back-references.) Hence, we only need to keep one of the two threads: the thread with the highest priority. Our NFA is built in such a way that higher priority actions always come before lower priority actions, which makes things work.

The explanation in the previous paragraph may make us think that we simply need to keep track of which states were visited at a given step: after all, the loop generated when matching (a?)* against a is broken, isn’t it? No. The group first matches a, as it should, then repeats; it attempts to match a again but fails; it skips a, and finds out that this state has already been seen at this position in the query: the match stops. The capturing group is (wrongly) a. What went wrong is that a thread collided with itself, and the later version, which has gone through the group one more times with an empty match, should have a higher priority than not going through the group.

We solve this by distinguishing “normal” free transitions __regex_action_free:n from transitions __regex_action_free_group:n which go back to the start of the group. The former keeps threads unless they have been visited by a “completed” thread, while the latter kind of transition also prevents going back to a state visited by the current thread.

47.5.1 Variables used when matching

The tokens in the query are indexed from min_pos for the first to max_pos – 1 for the last, and their information is stored in several arrays and \toks registers with those numbers. We match without backtracking, keeping all threads in lockstep at the curr_pos in the query. The starting point of the current match attempt is start_pos, and success_pos, updated whenever a thread succeeds, is used as the next starting position.
The character and category codes of the token at the current position and a token list expanding to that token; the character code of the token at the previous position; the character code of the token just before a successful match; and the character code of the result of changing the case of the current token (A-Z↔a-z). This last integer is only computed when necessary, and is otherwise \texttt{\c_max_int}. The \texttt{curr_char} variable is also used in various other phases to hold a character code.

\begin{verbatim}
\int_new:N \l__regex_curr_char_int
\int_new:N \l__regex_curr_catcode_int
\tl_new:N \l__regex_curr_token_tl
\int_new:N \l__regex_last_char_int
\int_new:N \l__regex_last_char_success_int
\int_new:N \l__regex_case_changed_char_int
\end{verbatim}

For every character in the token list, each of the active states is considered in turn. The variable \texttt{\l__regex_curr_state_int} holds the state of the \texttt{nfa} which is currently considered: transitions are then given as shifts relative to the current state.

\begin{verbatim}
\int_new:N \l__regex_curr_state_int
\end{verbatim}

The submatches for the thread which is currently active are stored in the \texttt{curr_submatches} list, which is almost a comma list, but ends with a comma. This list is stored by \texttt{__regex_store_state:n} into an intarray variable, to be retrieved when matching at the next position. When a thread succeeds, this list is copied to \texttt{\l__regex_success_submatches_tl}: only the last successful thread remains there.

\begin{verbatim}
\tl_new:N \l__regex_curr_submatches_tl
\tl_new:N \l__regex_success_submatches_tl
\end{verbatim}

This integer, always even, is increased every time a character in the query is read, and not reset when doing multiple matches. We store in \texttt{\g__regex_state_active_intarray} the last step in which each \langle state\rangle in the \texttt{nfa} was encountered. This lets us break infinite loops by not visiting the same state twice in the same step. In fact, the step we store is equal to \texttt{step} when we have started performing the operations of \texttt{\toks\langle state\rangle}, but not finished yet. However, once we finish, we store \texttt{step + 1} in \texttt{\g__regex_state_active_intarray}. This is needed to track submatches properly (see building phase). The \texttt{step} is also used to attach each set of submatch information to a given iteration (and automatically discard it when it corresponds to a past step).

\begin{verbatim}
\int_new:N \l__regex_step_int
\end{verbatim}

All the currently active threads are kept in order of precedence in \texttt{\g__regex_thread_info_intarray} together with the corresponding submatch information. Data in this intarray is organized as blocks from \texttt{min_thread} (included) to \texttt{max_thread} (excluded). At the start of every step, the whole array is unpacked, so that the space can immediately be reused, and \texttt{max_thread} is reset to \texttt{min_thread}, effectively clearing the array.

\begin{verbatim}
\int_new:N \l__regex_min_thread_int
\int_new:N \l__regex_max_thread_int
\end{verbatim}
\g__regex_state_active_intarray stores the last \textit{step} in which each \textit{state} was active. \g__regex_thread_info_intarray stores threads to be considered in the next step, more precisely the states in which these threads are.

\begin{verbatim}
\intarray_new:Nn \g__regex_state_active_intarray { 65536 }
\intarray_new:Nn \g__regex_thread_info_intarray { 65536 }
\end{verbatim}

\begin{verbatim}
The list \l__regex_curr_analysis_tl consists of a brace group containing three brace groups corresponding to the current token, with the same syntax as \tl_analysis_map_inline:nn. The list \l__regex_matched_analysis_tl (constructed under the \tl_build machinery) has one item for each token that has already been treated so far in a given match attempt: each item consists of three brace groups with the same syntax as \tl_analysis_map_inline:nn.
\end{verbatim}

\begin{verbatim}
\tl_new:N \l__regex_matched_analysis_tl
\tl_new:N \l__regex_curr_analysis_tl
\end{verbatim}

\begin{verbatim}
Every time a match is found, this token list is used. For single matching, the token list is empty. For multiple matching, the token list is set to repeat the matching, after performing some operation which depends on the user function. See __regex_single_match: and __regex_multi_match:n.
\end{verbatim}

\begin{verbatim}
\bool_new:N \l__regex_every_match_tl
\end{verbatim}

\begin{verbatim}
When doing multiple matches, we need to avoid infinite loops where each iteration matches the same empty token list. When an empty token list is matched, the next successful match of the same empty token list is suppressed. We detect empty matches by setting \l__regex_fresh_thread_bool to \texttt{true} for threads which directly come from the start of the regex or from the \texttt{K} command, and testing that boolean whenever a thread succeeds. The function __regex_if_two_empty_matches:F is redefined at every match attempt, depending on whether the previous match was empty or not: if it was, then the function must cancel a purported success if it is empty and at the same spot as the previous match; otherwise, we definitely don't have two identical empty matches, so the function is \texttt{use:n}.
\end{verbatim}

\begin{verbatim}
\bool_new:N \l__regex_fresh_thread_bool
\bool_new:N \l__regex_empty_success_bool
\cs_new_eq:NN __regex_if_two_empty_matches:F \use:n
\end{verbatim}

\begin{verbatim}
The boolean \l__regex_match_success_bool is true if the current match attempt was successful, and \g__regex_success_bool is true if there was at least one successful match. This is the only global variable in this whole module, but we would need it to be local when matching a control sequence with \c{...}. This is done by saving the global variable into \l__regex_saved_success_bool, which is local, hence not affected by the changes due to inner regex functions.
\end{verbatim}

\begin{verbatim}
\bool_new:N \g__regex_success_bool
\bool_new:N \l__regex_saved_success_bool
\bool_new:N \l__regex_match_success_bool
\end{verbatim}
End of definition for \g__regex_success_bool, \l__regex_saved_success_bool, and \l__regex_match_success_bool.

47.5.2 Matching: framework

Initialize the variables that should be set once for each user function (even for multiple matches). Namely, the overall matching is not yet successful; none of the states should be marked as visited (\g__regex_state_active_intarray), and we start at step 0; we pretend that there was a previous match ending at the start of the query, which was not empty (to avoid smothering an empty match at the start). Once all this is set up, we are ready for the ride. Find the first match.

\cs_new_protected:Npn __regex_match:n #1
__regex_match_init:
__regex_match_once_init:
\tl_analysis_map_inline:nn {#1}
__regex_match_one_token:nnN {##1} {##2} ##3
__regex_match_one_token:nN { } { -2 } F
\prg_break_point:Nn __regex_maplike_break: { }

\cs_new_protected:Npn __regex_match_cs:n #1
__regex_match_init:
__regex_match_once_init:
\str_map_inline:nn {#1}
\tl_if_blank:nTF {##1}{__regex_match_one_token:nN {##1} {'##1} A }{__regex_match_one_token:nN {##1} {'##1} C }
__regex_match_one_token:nN { } { -2 } F
\prg_break_point:Nn __regex_maplike_break: { }

\cs_new_protected:Npn __regex_match_init:
{\bool_gset_false:N \g__regex_success_bool
\int_step_inline:nnn \l__regex_min_thread_int \l__regex_max_thread_int
__regex_match_init:
__regex_match_once_init:
\str_map_inline:nn {#1}
\tl_if_blank:nTF {##1}{__regex_match_one_token:nN {##1} {'##1} A }{__regex_match_one_token:nN {##1} {'##1} C }
__regex_match_one_token:nN { } { -2 } F
\prg_break_point:Nn __regex_maplike_break: { }

\cs_new_protected:Npn __regex_match_init:
{\bool_gset_false:N \g__regex_success_bool
\int_step_inline:nnn \l__regex_min_state_int \l__regex_max_state_int - 1
{_kernel_intarray_gset:Nnn \g__regex_state_active_intarray {##1} 1
\int_zero:N \l__regex_step_int
\int_set:Nn \l__regex_min_pos_int 2
\int_set:Nn \l__regex_min_pos_int \l__regex_max_pos_int
\int_set:Nn \l__regex_last_char_success_int -2
\tl_build_begin:N \l__regex_matched_analysis_tl
\tl_clear:N \l__regex_curr_analysis_tl
\tl_set:Nn \l__regex_min_submatch_int 1
\int_set:Nn \l__regex_min_submatch_int \l__regex_min_submatch_int
\bool_gset_false:N \l__regex_empty_success Bool
}
_regex_match_once_init: This function resets various variables used when finding one match. It is called before the loop through characters, and every time we find a match, before searching for another match (this is controlled by the every_match token list).

First initialize some variables: set the conditional which detects identical empty matches; this match attempt starts at the previous success_pos, is not yet successful, and has no submatches yet; clear the array of active threads, and put the starting state 0 in it. We are then almost ready to read our first token in the query, but we actually start one position earlier than the start because _regex_match_one_token:nnN increments __regex_curr_pos_int and saves __regex_curr_char_int as the last_char so that word boundaries can be correctly identified.

_regex_single_match: For a single match, the overall success is determined by whether the only match attempt is a success. When doing multiple matches, the overall matching is successful as soon as any match succeeds. Perform the action \#1, then find the next match.
At each new position, set some variables and get the new character and category from the query. Then unpack the array of active threads, and clear it by resetting its length (\texttt{max_thread}). This results in a sequence of __regex_use_state_and_submatches: w \langle state \rangle, \langle submatch_clist \rangle; and we consider those states one by one in order. As soon as a thread succeeds, exit the step, and, if there are threads to consider at the next position, and we have not reached the end of the string, repeat the loop. Otherwise, the last thread that succeeded is the match. We explain the \texttt{fresh_thread} business when describing __regex_action_wildcard:.

\begin{verbatim}
cs_new_protected:Npn __regex_multi_match:n #1
 \{\tl_set:Nn \l__regex_every_match_tl
 \{\if_meaning:w \c_false_bool \l__regex_match_success_bool
 \exp_after:wN __regex_maplike_break:
 \fi:
 \bool_gset_true:N \g__regex_success_bool #1
 __regex_match_once_init:
 \}
\}
__regex_match_one_token:nnN
__regex_match_one_active:n
\end{verbatim}
\exp_after:wN \exp_after:wN \exp_after:wN \use_none:n
\fi:
\fi:
\l__regex_every_match_tl
\cs_new:Npn __regex_match_one_active:n #1
{
__regex_use_state_and_submatches:w
__kernel_intarray_range_to_clist:Nnn
\g__regex_thread_info_intarray
{ 1 + #1 * (\l__regex_capturing_group_int * 2 + 1) }
{ (1 + #1) * (\l__regex_capturing_group_int * 2 + 1) }
;
}

(End of definition for __regex_match_one_token:nnN and __regex_match_one_active:n.)

47.5.3 Using states of the nfa

__regex_use_state: Use the current NFA instruction. The state is initially marked as belonging to the current step: this allows normal free transition to repeat, but group-repeating transitions won’t. Once we are done exploring all the branches it spawned, the state is marked as step + 1: any thread hitting it at that point will be terminated.
\cs_new_protected:Npn __regex_use_state:
{
__kernel_intarray_gset:Nnn \g__regex_state_active_intarray
{ \l__regex_curr_state_int } { \l__regex_step_int }
__regex_toks_use:w \l__regex_curr_state_int
__kernel_intarray_gset:Nnn \g__regex_state_active_intarray
{ \l__regex_curr_state_int }
{ \int_eval:n { \l__regex_step_int + 1 } }
}

(End of definition for __regex_use_state:.)

__regex_use_state_and_submatches:w This function is called as one item in the array of active threads after that array has been unpacked for a new step. Update the curr_state and curr_submatches and use the state if it has not yet been encountered at this step.
\cs_new_protected:Npn __regex_use_state_and_submatches:w #1 \#1 , \#2 ;
{
\int_set:Nn \l__regex_curr_state_int \#1
\if_int_compare:w
__kernel_intarray_item:Nn \g__regex_state_active_intarray
{ \l__regex_curr_state_int }
< \l__regex_step_int
\tl_set:Nn \l__regex_curr_submatches_tl \#2 ,
\exp_after:wN __regex_use_state:
\fi:
\scan_stop:
}

(End of definition for __regex_use_state_and_submatches:w.)
47.5.4 Actions when matching

For an unanchored match, state 0 has a free transition to the next and a costly one to itself, to repeat at the next position. To catch repeated identical empty matches, we need to know if a successful thread corresponds to an empty match. The instruction resetting \l__regex_fresh_thread_bool may be skipped by a successful thread, hence we had to add it to \l__regex_match_one_token too.

These functions copy a thread after checking that the NFA state has not already been used at this position. If not, store submatches in the new state, and insert the instructions for that state in the input stream. Then restore the old value of \l__regex_curr_state_int and of the current submatches. The two types of free transitions differ by how they test that the state has not been encountered yet: the group version is stricter, and will not use a state if it was used earlier in the current thread, hence forcefully breaking the loop, while the “normal” version will revisit a state even within the thread itself.

A transition which consumes the current character and shifts the state by \#1. The resulting state is stored in the appropriate array for use at the next position, and we also store the current submatches.
\cs_new_protected:Npn __regex_action_cost:n \#1
{
 \exp_args:Ne __regex_store_state:n
 { \int_eval:n { \l__regex_curr_state_int + \#1 } }
}

(End of definition for __regex_action_cost:n.)

__regex_store_state:n
__regex_store_submatches:

Put the given state and current submatch information in \g__regex_thread_info_intarray; and increment the length of the array.

\cs_new_protected:Npn __regex_store_state:n \#1
{
 \exp_args:No __regex_store_submatches:nn
 \l__regex_curr_submatches_tl \l__regex_max_thread_int
}
\cs_new_protected:Npn __regex_store_submatches:nn \#1\#2
{
 __kernel_intarray_gset_range_from_clist:Nnn
 \g__regex_thread_info_intarray
 \l__regex_int_eval:w 1 + \l__regex_max_thread_int *
 \l__regex_capturing_group_int * 2 + 1)
 \{ \#2 \#1 \}
}

(End of definition for __regex_store_state:n and __regex_store_submatches.)

__regex_disable_submatches:

Some user functions don’t require tracking submatches. We get a performance improvement by simply defining the relevant functions to remove their argument and do nothing with it.

\cs_new_protected:Npn __regex_disable_submatches:
{
 \cs_set_protected:Npn __regex_store_submatches:n \#1 { }
 \cs_set_protected:Npn __regex_action_submatch:nN \#1\#2 { }
}

(End of definition for __regex_disable_submatches.)

__regex_action_submatch:nN
__regex_action_submatch_aux:w
__regex_action_submatch_auxii:w
__regex_action_submatch_auxiii:w
__regex_action_submatch_auxiv:w

Update the current submatches with the information from the current position. Maybe a bottleneck.

\cs_new_protected:Npn __regex_action_submatch:nN \#1\#2
{
 \exp_after:wN __regex_action_submatch_aux:w
 \l__regex_curr_submatches_tl \l__regex_max_thread_int
 \{ \#1 \#2 \}
}
\cs_new_protected:Npn __regex_action_submatch_aux:w \#1 \#2\#3
{
 \tl_set:Ne \l__regex_curr_submatches_tl \l__regex_capturing_group_int \fi:
}

534
__regex_action_success: \par

There is a successful match when an execution path reaches the last state in the NFA, unless this marks a second identical empty match. Then mark that there was a successful match; it is empty if it is “fresh”; and we store the current position and submatches. The current step is then interrupted with \prg_break:, and only paths with higher precedence are pursued further. The values stored here may be overwritten by a later success of a path with higher precedence.

__regex_action_success: \par

{ __regex_if_two_empty_matches:F
 \bool_set_true:N \l__regex_match_success_bool
 \bool_set_eq:NN \l__regex_empty_success_bool \l__regex_fresh_thread_bool
 \int_set_eq:NN \l__regex_success_pos_int \l__regex_curr_pos_int
 \int_set_eq:NN \l__regex_last_char_success_int \l__regex_last_char_int
 \tl_build_begin:N \l__regex_matched_analysis_tl
 \tl_set_eq:NN \l__regex_success_submatches_tl \l__regex_curr_submatches_tl
 \prg_break:
}

(End of definition for __regex_action_success:.)

47.6 Replacement

47.6.1 Variables and helpers used in replacement

\l__regex_replacement_csnames_int

The behaviour of closing braces inside a replacement text depends on whether a sequences \c{ or \u{ has been encountered. The number of “open” such sequences that should be closed by } is stored in \l__regex_replacement_csnames_int, and decreased by 1 by each }.

\int_new:N \l__regex_replacement_csnames_int

(End of definition for \l__regex_replacement_csnames_int.)

\l__regex_replacement_category_tl
\l__regex_replacement_category_seq

This sequence of letters is used to correctly restore categories in nested constructions such as \cL(abc)cD(_d).

\tl_new:N \l__regex_replacement_category_tl
\seq_new:N \l__regex_replacement_category_seq
This token list holds the replacement text for ____________replacement_balance_one_match:n while it is being built incrementally.
\tl_new:N \g__regex_balance_tl

This expects as an argument the first index of a set of entries in \g__regex_submatch_begin_intarray (and related arrays) which hold the submatch information for a given match. It can be used within an integer expression to obtain the brace balance incurred by performing the replacement on that match. This combines the braces lost by removing the match, braces added by all the submatches appearing in the replacement, and braces appearing explicitly in the replacement. Even though it is always redefined before use, we initialize it as for an empty replacement. An important property is that concatenating several calls to that function must result in a valid integer expression (hence a leading + in the actual definition).
\cs_new:Npn __regex_replacement_balance_one_match:n #1 { - __regex_submatch_balance:n {#1} }

The input is the same as ____________replacement_balance_one_match:n. This function is redefined to expand to the part of the token list from the end of the previous match to a given match, followed by the replacement text. Hence concatenating the result of this function with all possible arguments (one call for each match), as well as the range from the end of the last match to the end of the string, produces the fully replaced token list. The initialization does not matter, but (as an example) we set it as for an empty replacement.
\cs_new:Npn __regex_replacement_do_one_match:n #1 { __regex_query_range:nn { __kernel_intarray_item:Nn \g__regex_submatch_prev_intarray {#1} } { __kernel_intarray_item:Nn \g__regex_submatch_begin_intarray {#1} } }

This function lets us navigate around the fact that the primitive \exp_not:n requires a braced argument. As far as I can tell, it is only needed if the user tries to include in the replacement text a control sequence set equal to a macro parameter character, such as \c_parameter_token. Indeed, within an e/x-expanding assignment, \exp_not:N # behaves as a single #, whereas \exp_not:n {#} behaves as a doubled ##.
\cs_new:Npn __regex_replacement_exp_not:n #1 \exp_not:n {#1}

This is used for the implementation of \u, and it gets redefined for \peek_regex_replace_once:nnTF.
\cs_new_eq:NN __regex_replacement_exp_not:n \exp_not:V
47.6.2 Query and brace balance

When it is time to extract submatches from the token list, the various tokens are stored in \texttt{\toks} registers numbered from \texttt{\l__regex_min_pos_int} inclusive to \texttt{\l__regex_max_pos_int} exclusive. The function \texttt{__regex_query_range:nn \{\langle min\rangle\} \{\langle max\rangle\}} unpacks registers from the position \langle \texttt{min} \rangle\rangle to \langle \texttt{max} \rangle\rangle – 1 included. Once this is expanded, a second \texttt{e}-expansion results in the actual tokens from the query. That second expansion is only done by user functions at the very end of their operation, after checking (and correcting) the brace balance first.

\begin{verbatim}
\cs_new:Npn __regex_query_range:nn #1#2
\{\exp_after:wN __regex_query_range_loop:ww
\int_value:w __regex_int_eval:w #1 \exp_after:wN ;
\int_value:w __regex_int_eval:w #2 ;
\prg_break_point:
\}
\cs_new:Npn __regex_query_range_loop:ww #1 ; #2 ;
\{
\if_int_compare:w #1 < #2 \exp_stop_f:
\else:
\exp_after:wN \prg_break:
\fi:
__regex_toks_use:w #1 \exp_stop_f:
\exp_after:wN __regex_query_range_loop:ww
\int_value:w __regex_int_eval:w #1 + 1 ; #2 ;
\}
\end{verbatim}

(End of definition for \texttt{__regex_query_range:nn} and \texttt{__regex_query_range_loop:ww}.)

\texttt{__regex_query_submatch:n} Find the start and end positions for a given submatch (of a given match).

\begin{verbatim}
\cs_new:Npn __regex_query_submatch:n #1
\{ __regex_query_range:nn
{ __kernel_intarray_item:Nn \g__regex_submatch_begin_intarray {#1} }
{ __kernel_intarray_item:Nn \g__regex_submatch_end_intarray {#1} }
\}
\end{verbatim}

(End of definition for \texttt{__regex_query_submatch:n}.)

\texttt{__regex_submatch_balance:n} Every user function must result in a balanced token list (unbalanced token lists cannot be stored by TeX). When we unpacked the query, we kept track of the brace balance, hence the contribution from a given range is the difference between the brace balances at the \langle \texttt{max pos} \rangle and \langle \texttt{min pos} \rangle. These two positions are found in the corresponding “submatch” arrays.

\begin{verbatim}
\cs_new_protected:Npn __regex_submatch_balance:n #1
\{ \int_eval:n
\{ __regex_intarray_item:NnF \g__regex_balance_intarray
\{ __kernel_intarray_item:Nn \g__regex_submatch_begin_intarray {#1} \}
\{ __kernel_intarray_item:Nn \g__regex_submatch_end_intarray {#1} \}
\}
\end{verbatim}

537
47.6.3 Framework

The replacement text is built incrementally. We keep track in __regex_balance_int of the balance of explicit begin- and end-group tokens and we store in __regex_balance_tl some code to compute the brace balance from submatches (see its description). Detect unescaped right braces, and escaped characters, with trailing \texttt{\textbackslash prg_do_nothing}: because some of the later function look-ahead. Once the whole replacement text has been parsed, make sure that there is no open csname. Finally, define the balance_one_match and do_one_match functions.

\begin{verbatim}
\cs_new_protected:Npn __regex_replacement:n { __regex_replacement_apply:Nn __regex_replacement_set:n }
\cs_new_protected:Npn __regex_replacement_apply:Nn #1#2 { __regex_replace_escaped:N #1 }{ __regex_replacement_normal:n #1 }{#2}
\prg_do_nothing: \prg_do_nothing:
\if_int_compare:w \l__regex_replacement_csnames_int > \c_zero_int \msg_error:nne { regex } { replacement-missing-rbrace } \tl_build_put_right:Ne \l__regex_build_tl { \prg_replicate:nn \l__regex_replacement_csnames_int \cs_end: }
\fi:
\seq_if_empty:NF \l__regex_replacement_category_seq
\end{verbatim}
{
\msg_error:nne { regex } { replacement-missing-rparen }
\seq_count:N \l__regex_replacement_category_seq
\seq_clear:N \l__regex_replacement_category_seq
}
\tl_gput_right:Ne \g__regex_balance_tl
{ + \int_use:N \l__regex_balance_int }
\tl_build_end:N \l__regex_build_tl
\exp_args:NNo
\group_end:
#1 \l__regex_build_tl
}
\cs_generate_variant:Nn __regex_replacement:n { e }
\cs_new_protected:Npn __regex_replacement_set:n #1
{
\cs_set:Npn __regex_replacement_do_one_match:n ##1
{__regex_query_range:nn
{__kernel_intarray_item:Nn
\g__regex_submatch_prev_intarray {##1}}
{__kernel_intarray_item:Nn
\g__regex_submatch_begin_intarray {##1}}
#1
}
\exp_args:Nno \use:n
{\cs_gset:Npn __regex_replacement_balance_one_match:n ##1 }
\exp_args:Nno \use:n
{\cs_gset:Npn __regex_replace_case_balance_one_match:n ##1 }
}
(End of definition for __regex_replacement:n, __regex_replacement_apply:Nn, and __regex_replacement_set:n.)
__regex_case_replacement:n
__regex_case_replacement:e

\exp_args:No __regex_replacement_set:n \g__regex_case_replacement_tl \fi: }
\cs_generate_variant:Nn __regex_case_replacement:n { e }
\cs_new_protected:Npn __regex_case_replacement_aux:n #1
{ \tl_gput_right:Nn \g__regex_case_replacement_tl { \or: #1 }
\tl_gput_right:No \g__regex_case_balance_tl
{ \exp_after:wN \or: \g__regex_balance_tl }
}

(End of definition for __regex_case_replacement:n.)

__regex_replacement_put:n
This gets redefined for \peek_regex_replace_once:nnTF.
\cs_new_protected:Npn __regex_replacement_put:n
{ \tl_build_put_right:Nn \l__regex_build_tl }

(End of definition for __regex_replacement_put:n.)

__regex_replacement_normal:n
__regex_replacement_normal_aux:N
Most characters are simply sent to the output by \tl_build_put_right:Nn, unless a particular category code has been requested: then __regex_replacement_c_A:w or a similar auxiliary is called. One exception is right parentheses, which restore the category code in place before the group started. Note that the sequence is non-empty there: it contains an empty entry corresponding to the initial value of \l__regex_replacement_category_tl. The argument #1 is a single character (including the case of a catcode-other space). In case no specific catcode is requested, we take into account the current catcode regime (at the time the replacement is performed) as much as reasonable, with all impossible catcodes (escape, newline, etc.) being mapped to “other”.
\cs_new_protected:Npn __regex_replacement_normal:n #1
{ \int_compare:nNnTF { \l__regex_replacement_csnames_int } > 0
{ \exp_args:No __regex_replacement_put:n { \token_to_str:N #1 } }
{ \tl_if_empty:NTF \l__regex_replacement_category_tl
{ __regex_replacement_normal_aux:N #1 }
{ %
\use:c { __regex_replacement_c_ \l__regex_replacement_category_tl :w } #1
}\seq_pop:NN \l__regex_replacement_category_seq
\l__regex_replacement_category_tl }
\use:c { __regex_replacement_c_ \l__regex_replacement_category_tl :w } #1
}
\cs_new_protected:Npn __regex_replacement_normal_aux:N #1
{ \token_if_eq_charcode:NNTF #1 \c_space_token
{ __regex_replacement_c_S:w } #1
}
\cs_new_protected:Npn __regex_replacement_normal_aux:N #1
{ \token_if_eq_charcode:NNTF #1 \c_space_token
{ __regex_replacement_c_S:w } #1
}

540
As in parsing a regular expression, we use an auxiliary built from \#1 if defined. Otherwise, check for escaped digits (standing from submatches from 0 to 9): anything else is a raw character.

\cs_new_protected:Npn __regex_replacement_put_submatch:n __regex_replacement_put_submatch_aux:n

Insert a submatch in the replacement text. This is dropped if the submatch number is larger than the number of capturing groups. Unless the submatch appears inside a \c{...} or \u{...} construction, it must be taken into account in the brace balance. Later on, \#1 will be replaced by a pointer to the 0-th submatch for a given match.
\fi:

\cs_new_protected:Npn _\regex_replacement_put_submatch_aux:n #1
{\tl_build_put_right:Nn \l__regex_build_tl
\if_int_compare:w \l__regex_query_submatch:n \{ \int_eval:n \{ #1 + ##1 \} \} \fi:
\tl_gput_right:Nn \g__regex_balance_tl \{ + _\regex_submatch_balance:n \{ \int_eval:n \{ #1 + ##1 \} \} \} \fi:

(End of definition for _\regex_replacement_put_submatch:n and _\regex_replacement_put_submatch_-
aux:n.)

_\regex_replacement_g:w
_\regex_replacement_g_digits:NN
Grab digits for the \texttt{g} escape sequence in a primitive assignment to the integer \texttt{l_regex_internal_a_int}. At the end of the run of digits, check that it ends with a right brace.

\cs_new_protected:Npn _\regex_replacement_g:w #1#2
{\token_if_eq_meaning:NNTF #1 __regex_replacement_lbrace:N { \l__regex_internal_a_int = _\regex_replacement_g_digits:NN }
_\regex_replacement_error:NNN g #1 #2 }
\cs_new:Npn _\regex_replacement_g_digits:NN #1#2
{\token_if_eq_meaning:NNTF #1 __regex_replacement_normal:n { \if_int_compare:w 1 < 1#2 \exp_stop_f: #2
\exp_after:wN \use_i:nnn \exp_after:wN _\regex_replacement_g_digits:NN \else:
\exp_stop_f:
\exp_after:wN _\regex_replacement_error:NNN \exp_after:wN g
\fi:
}
{\exp_stop_f:
\if_meaning:w __regex_replacement_rbrace:N #1 \exp_args:No _\regex_replacement_put_submatch:n
\{ \int_use:N \l__regex_internal_a_int \}
\exp_after:wN \use_none:nn \exp_after:wN g
\fi:
}
\token_if_eq_meaning:NNTF #1 _\regex_replacement_rbrace:N #1 _\regex_replacement_normal:n

(End of definition for _\regex_replacement_g:w and _\regex_replacement_g_digits:NN.)
47.6.5 Csnames in replacement

__regex_replacement_c:w

\c may only be followed by an unescaped character. If followed by a left brace, start a control sequence by calling an auxiliary common with \u. Otherwise test whether the category is known; if it is not, complain.

\cs_new_protected:Npm __regex_replacement_c:w \#1\#2
\{
 \token_if_eq_meaning:NNTF \#1 __regex_replacement_normal:n
 \{
 \cs_if_exist:cTF { __regex_replacement_c_\#2:w }
 \{
 __regex_replacement_cat:NNN \#2
 \}
 \{
 __regex_replacement_error:NNN c \#1\#2
 \}
 \}
 \{
 \token_if_eq_meaning:NNTF \#1 __regex_replacement_lbrace:N
 \{
 __regex_replacement_cu_aux:Nw __regex_replacement_exp_not:N
 \}
 \{
 __regex_replacement_error:NNN c \#1\#2
 \}
 \}
\}

(End of definition for __regex_replacement_c:w.)

__regex_replacement_cu_aux:Nw

Start a control sequence with \cs:w, protected from expansion by \#1 (either __regex_replacement_exp_not:N or \exp_not:V), or turned to a string by \tl_to_str:V if inside another csnames construction \c or \u. We use \tl_to_str:V rather than \tl_to_str:N to deal with integers and other registers.

\cs_new_protected:Npm __regex_replacement_cu_aux:Nw \#1
\{
 \if_case:w \l__regex_replacement_csnames_int
 \tl_build_put_right:Nn \l__regex_build_tl
 \{
 \exp_not:n { \exp_after:wN \#1 \cs:w }
 \}
 \else:
 \tl_build_put_right:Nn \l__regex_build_tl
 \{
 \exp_not:n { \exp_after:wN \tl_to_str:V \cs:w }
 \}
 \fi:
 \int_incr:N \l__regex_replacement_csnames_int
\}

(End of definition for __regex_replacement_cu_aux:Nw.)

__regex_replacement_u:w

Check that \u is followed by a left brace. If so, start a control sequence with \cs:w, which is then unpacked either with \exp_not:V or \tl_to_str:V depending on the current context.

\cs_new_protected:Npm __regex_replacement_u:w \#1\#2
\{
 \token_if_eq_meaning:NNTF \#1 __regex_replacement_lbrace:N
 \{
 __regex_replacement_cu_aux:Nw __regex_replacement_exp_not:V
 \}
 \{
 __regex_replacement_error:NNN u \#1\#2
 \}
\}

(End of definition for __regex_replacement_u:w.)
Within a `\{...` or `\u{...}` construction, end the control sequence, and decrease the brace count. Otherwise, this is a raw right brace.

\begin{verbatim}
\cs_new_protected:Npn __regex_replacement_rbrace:N #1
\{\if_int_compare:w \l__regex_replacement_csnames_int > \c_zero_int
\tl_build_put_right:Nn \l__regex_build_tl \{ \cs_end: \}
\int_decr:N \l__regex_replacement_csnames_int
\else:
__regex_replacement_normal:n \{#1\}
\fi:
\}
\end{verbatim}

(End of definition for `__regex_replacement_rbrace:N`.)

Within a `\{...` or `\u{...}` construction, this is forbidden. Otherwise, this is a raw left brace.

\begin{verbatim}
\cs_new_protected:Npn __regex_replacement_lbrace:N #1
\{\if_int_compare:w \l__regex_replacement_csnames_int > \c_zero_int
\msg_error:nnn { regex } { cu-lbrace } \{ u \}
\else:
__regex_replacement_normal:n \{#1\}
\fi:
\}
\end{verbatim}

(End of definition for `__regex_replacement_lbrace:N`.)

47.6.6 Characters in replacement

Here, #1 is a letter among `BEMTPUSDLOA` and #2#3 denote the next character. Complain if we reach the end of the replacement or if the construction appears inside `\{...` or `\u{...}`, and detect the case of a parenthesis. In that case, store the current category in a sequence and switch to a new one.

\begin{verbatim}
\cs_new_protected:Npn __regex_replacement_cat:NNN #1#2#3
\{\token_if_eq_meaning:NNTF \prg_do_nothing: #3
\{ \msg_error:nn { regex } { replacement-catcode-end } \}
\{ \int_compare:nNnTF { \l__regex_replacement_csnames_int } > 0
\{ \msg_error:nnnn { regex } \{ replacement-catcode-in-cs \} \{#1\} \{#3\} #2 \#3
\}
\}
__regex_two_if_eq:NNNTF #2 #3 __regex_replacement_normal:n \{
\seq_push:NV \l__regex_replacement_category_seq
\l__regex_replacement_category_tl
\tl_set:Nn \l__regex_replacement_category_tl \{#1\}
\}
\{ \token_if_eq_meaning:NNT __regex_replacement_escaped:N
\}
\end{verbatim}

544
We now need to change the category code of the null character many times, hence work in a group. The catcode-specific macros below are defined in alphabetical order; if you are trying to understand the code, start from the end of the alphabet as those categories are simpler than active or begin-group.

The only way to produce an arbitrary character–catcode pair is to use the `\lowercase` or `\uppercase` primitives. This is a wrapper for our purposes. The first argument is the null character with various catcodes. The second and third arguments are grabbed from the input stream: \#3 is the character whose character code to reproduce. We could use `\char_generate:nn` but only for some catcodes (active characters and spaces are not supported).

For an active character, expansion must be avoided, twice because we later do two e-expansions, to unpack `\toks` for the query, and to expand their contents to tokens of the query.

An explicit begin-group token increases the balance, unless within a `\c{...}` or `\u{...}` construction. Add the desired begin-group character, using the standard `\if_false:` trick. We eventually e-expand twice. The first time must yield a balanced token list, and the second one gives the bare begin-group token. The `\exp_after:wN` is not strictly needed, but is more consistent with \l3tl-analysis.
This is not quite catcode-related: when the user requests a character with category “control sequence”, the one-character control symbol is returned. As for the active character, we prepare for two e-expansions.

This is not quite catcode-related: when the user requests a character with category “control sequence”, the one-character control symbol is returned. As for the active character, we prepare for two e-expansions.

\cs_new_protected:Npn __regex_replacement_c:D:w { \lowercase \char_set_catcode_math_subscript:N \^^@ __regex_replacement_char:nnn \l__regex_build_tl \cs_new_protected:Npn __regex_replacement_c:D:w { \if_int_compare:w \l__regex_replacement_csnames_int = \c_zero_int \int_decr:N \l__regex_balance_int \fi: __regex_replacement_char:nnn \exp_not:n { \iffalse: } \fi: \^^@ } }

__regex_replacement_c:E:w

Similar to the begin-group case, the second e-expansion produces the bare end-group token.

\cs_new_protected:Npn __regex_replacement_c:E:w { \lowercase \char_set_catcode_group_end:N \^^@ __regex_replacement_char:nnn \l__regex_build_tl \cs_new_protected:Npn __regex_replacement_c:E:w { \if_int_compare:w \l__regex_replacement_csnames_int = \c_zero_int \int_decr:N \l__regex_balance_int \fi: __regex_replacement_char:nnn { \iffalse: \^^@ } \fi: \^^@ } }

__regex_replacement_c:L:w

Simply \lowercase a letter null byte to produce an arbitrary letter.

\cs_new_protected:Npn __regex_replacement_c:L:w { \lowercase \char_set_catcode_letter:N \^^@ __regex_replacement_char:nnn \l__regex_build_tl \cs_new_protected:Npn __regex_replacement_c:L:w { \if_int_compare:w \l__regex_replacement_csnames_int = \c_zero_int \int_decr:N \l__regex_balance_int \fi: __regex_replacement_char:nnn { \iffalse: \^^@ } \fi: \^^@ } }

__regex_replacement_c:M:w

No surprise here, we lowercase the null math toggle.

\cs_new_protected:Npn __regex_replacement_c:M:w { \lowercase \char_set_catcode_math_toggle:N \^^@ __regex_replacement_char:nnn \l__regex_build_tl \cs_new_protected:Npn __regex_replacement_c:M:w { \if_int_compare:w \l__regex_replacement_csnames_int = \c_zero_int \int_decr:N \l__regex_balance_int \fi: __regex_replacement_char:nnn { \iffalse: \^^@ } \fi: \^^@ } }

(End of definition for __regex_replacement_c:M:w.)
Lowercase an other null byte.

```
define \__regex_replacement_c_O:w
    \char_set_catcode_other:n \^^@
    \cs_new_protected:Npn \__regex_replacement_c_O:w
        { \__regex_replacement_char:nNN { ^^@ } }
(End of definition for \__regex_replacement_c_O:w.)
```

For macro parameters, expansion is a tricky issue. We need to prepare for two e-expansions and passing through various macro definitions. Note that we cannot replace one \exp_not:n by doubling the macro parameter characters because this would misbehave if a mischievous user asks for \c{\cP\#}, since that macro parameter character would be doubled.

```
define \__regex_replacement_c_P:w
    \char_set_catcode_parameter:n \^^@
    \cs_new_protected:Npn \__regex_replacement_c_P:w
        { \__regex_replacement_char:nNN { \exp_not:n { \exp_not:n { ^^@^^@^^@^^@ } } } }
(End of definition for \__regex_replacement_c_P:w.)
```

Spaces are normalized on input by \TeX{} to have character code 32. It is in fact impossible to get a token with character code 0 and category code 10. Hence we use 32 instead of 0 as our base character.

```
define \__regex_replacement_c_S:w
    \cs_new_protected:Npn \__regex_replacement_c_S:w #1#2
        { \if_int_compare:w '#2 = \c_zero_int
            \msg_error:nn { regex } { replacement-null-space }
        \fi:
            \tex_lccode:D '\ = '#2 \scan_stop:
            \tex_lowercase:D { \__regex_replacement_put:n {~} }
        }
(End of definition for \__regex_replacement_c_S:w.)
```

No surprise for alignment tabs here. Those are surrounded by the appropriate braces whenever necessary, hence they don’t cause trouble in alignment settings.

```
define \__regex_replacement_c_T:w
    \char_set_catcode_alignment:n \^^@
    \cs_new_protected:Npn \__regex_replacement_c_T:w
        { \__regex_replacement_char:nNN { ^^@ } }
(End of definition for \__regex_replacement_c_T:w.)
```

Simple call to __regex_replacement_char:nNN which lowercases the math superscript \^^@.

```
define \__regex_replacement_c_U:w
    \char_set_catcode_math_superscript:n \^^@
    \cs_new_protected:Npn \__regex_replacement_c_U:w
        { \__regex_replacement_char:nNN { ^^@ } }
(End of definition for \__regex_replacement_c_U:w.)
```

Restore the catcode of the null byte.

```
\group_end:
```
47.6.7 An error

Simple error reporting by calling one of the messages replacement-c, replacement-g, or replacement-u.

\begin{verbatim}
\cs_new_protected:Npn __regex_replacement_error:NNN #1#2#3
\{ \msg_error:nne { regex } { \text{replacement-#1} } {#3} \}
\end{verbatim}

(End of definition for __regex_replacement_error:NNN.)

47.7 User functions

\begin{verbatim}
\regex_new:N \l_tmpa_regex \l_tmpb_regex \g_tmpa_regex \g_tmpb_regex
\end{verbatim}

The usual scratch space.

(End of definition for \l_tmpa_regex and others. These variables are documented on page 60.)

\begin{verbatim}
\regex_set:Nn \regex_gset:Nn \regex_const:Nn
\end{verbatim}

Compile, then store the result in the user variable with the appropriate assignment function.

\begin{verbatim}
\cs_new_protected:Npn \regex_set:Nn { __regex_show:Nn \msg_show:nneeee }
\cs_new_protected:Npn \regex_gset:Nn { __regex_show:Nn \msg_log:nneeee }
\cs_new_protected:Npn __regex_show:Nn #1#2
\end{verbatim}

User functions: the \text{n} variant requires compilation first. Then show the variable with some appropriate text. The auxiliary __regex_show:N is defined in a different section.

\begin{verbatim}
\regex_show:n \regex_log:n __regex_show:Nn \regex_show:N \regex_log:N
\end{verbatim}
\regex_match:nnTF \regex_match:nVTF \regex_match:NnTF \regex_match:NVTF Those conditionals are based on a common auxiliary defined later. Its first argument builds the NFA corresponding to the regex, and the second argument is the query token list. Once we have performed the match, convert the resulting boolean to \prg_return_true: or false.

\prg_new_protected_conditional:Npnn \regex_match:nn #1#2 { T , F , TF } { __regex_if_match:nn { __regex_build:n {#1} } {#2} __regex_return: } \prg_generate_conditional_variant:Nnn \regex_match:nn { nV } { T , F , TF } \prg_new_protected_conditional:Npnn \regex_match:Nn #1#2 { T , F , TF } { __regex_if_match:nn { __regex_build:N #1 } {#2} __regex_return: } \prg_generate_conditional_variant:Nnn \regex_match:Nn { NV } { T , F , TF } (End of definition for \regex_match:nnTF and \regex_match:NnTF. These functions are documented on page 56.)

\regex_count:nnN \regex_count:nVN \regex_count:NnN \regex_count:NVN Again, use an auxiliary whose first argument builds the NFA.

\cs_new_protected:Npn \regex_count:nnN \regex_count:nVN \regex_count:NnN \regex_count:NVN (End of definition for \regex_count:nnN and \regex_count:nVN. These functions are documented on page 56.)

549
The auxiliary errors if #1 has an odd number of items, and otherwise it sets \texttt{g_regex_case_int} according to which case was found (zero if not found). The \texttt{true} branch leaves the corresponding code in the input stream.

We define here 40 user functions, following a common pattern in terms of \texttt{nnN} auxiliaries, defined in the coming subsections. The auxiliary is handed \texttt{_regex_build:n} or \texttt{_regex_build:N} with the appropriate regex argument, then all other necessary arguments (replacement text, token list, \textit{etc.}) The conditionals call \texttt{_regex_return:} to return either \texttt{true} or \texttt{false} once matching has been performed.

If the input is bad (odd number of items) then take the false branch. Otherwise, use the same auxiliary as \texttt{_regex_replace_once:nN}, but with more complicated code to
build the automaton, and to find what replacement text to use. The \tl_item:nn is only expanded once we know the value of \g__regex_case_int, namely which case matched.

\cs_new_protected:Npn \regex_replace_case_once:nNTF #1#2
\int_if_odd:nTF { \tl_count:n (#1) }
\msg_error:nneeee { regex } { case-odd }
{ \token_to_str:N \regex_replace_case_once:nN(TF) } { code }
{ \tl_count:n (#1) } { \tl_to_str:n (#1) }
\use_ii:nn
__regex_replace_once_aux:nnN
__regex_case_build:e { __regex_tl_odd_items:n (#1) }
__regex_case_replacement:e { \tl_item:nn {#1} { 2 * \g__regex_case_int } }
#2
\bool_if:NTF \g__regex_success_bool
\cs_new_protected:Npn \regex_replace_case_once:nN #1#2
{ \regex_replace_case_once:nNTF {#1} {#2} { } { } }
\cs_new_protected:Npn \regex_replace_case_once:nNT #1#2#3
{ \regex_replace_case_once:nNTF {#1} {#2} {#3} { } }
\cs_new_protected:Npn \regex_replace_case_once:nNF #1#2
{ \regex_replace_case_once:nNTF {#1} {#2} { } }

(End of definition for \regex_replace_case_once:nNTF. This function is documented on page 59.)

\regex_replace_case_all:nN \regex_replace_case_all:nNTF
If the input is bad (odd number of items) then take the false branch. Otherwise, use the same auxiliary as \regex_replace_all:nnN, but with more complicated code to build the automaton, and to find what replacement text to use.

\cs_new_protected:Npn \regex_replace_case_all:nNTF #1#2
\int_if_odd:nTF { \tl_count:n (#1) }
\msg_error:nneeee { regex } { case-odd }
{ \token_to_str:N \regex_replace_case_all:nN(TF) } { code }
{ \tl_count:n (#1) } { \tl_to_str:n (#1) }
\use_ii:nn
__regex_replace_all_aux:nnN
__regex_case_build:e { __regex_tl_odd_items:n (#1) }
__regex_case_replacement:e { __regex_tl_even_items:n (#1) }
#2
\bool_if:NTF \g__regex_success_bool
\cs_new_protected:Npn \regex_replace_case_all:nN #1#2
{ \regex_replace_case_all:nNTF {#1} {#2} { } { } }
\cs_new_protected:Npn \regex_replace_case_all:nNT #1#2#3
{ \regex_replace_case_all:nNTF {#1} {#2} {#3} { } }
\cs_new_protected:Npn \regex_replace_case_all:nNF #1#2
{ \regex_replace_case_all:nNTF {#1} {#2} { } }

551
47.7.1 Variables and helpers for user functions

\l__regex_match_count_int
The number of matches found so far is stored in \l__regex_match_count_int. This is only used in the \regex_count:nnN functions.
\int_new:N \l__regex_match_count_int
(End of definition for \l__regex_match_count_int.)

__regex_begin
__regex_end
Those flags are raised to indicate begin-group or end-group tokens that had to be added when extracting submatches.
\flag_new:n { __regex_begin }
\flag_new:n { __regex_end }
(End of definition for __regex_begin and __regex_end.)

\l__regex_min_submatch_int
\l__regex_submatch_int
\l__regex_zeroth_submatch_int
The end-points of each submatch are stored in two arrays whose index \texttt{⟨submatch⟩} ranges from \l__regex_min_submatch_int (inclusive) to \l__regex_submatch_int (exclusive). Each successful match comes with a 0-th submatch (the full match), and one match for each capturing group: submatches corresponding to the last successful match are labelled starting at zeroth_submatch. The entry \l__regex_zeroth_submatch_int in \g__regex_submatch_prev_intarray holds the position at which that match attempt started: this is used for splitting and replacements.
\int_new:N \l__regex_min_submatch_int
\int_new:N \l__regex_submatch_int
\int_new:N \l__regex_zeroth_submatch_int
(End of definition for \l__regex_min_submatch_int, \l__regex_submatch_int, and \l__regex_zeroth_submatch_int.)

\g__regex_submatch_prev_intarray
\g__regex_submatch_begin_intarray
\g__regex_submatch_end_intarray
\g__regex_submatch_case_intarray
Hold the place where the match attempt begun, the end-points of each submatch, and which regex case the match corresponds to, respectively.
\intarray_new:Nn \g__regex_submatch_prev_intarray { 65536 }
\intarray_new:Nn \g__regex_submatch_begin_intarray { 65536 }
\intarray_new:Nn \g__regex_submatch_end_intarray { 65536 }
\intarray_new:Nn \g__regex_submatch_case_intarray { 65536 }
(End of definition for \g__regex_submatch_prev_intarray and others.)

\g__regex_balance_intarray
The first thing we do when matching is to store the balance of begin-group/end-group characters into \g__regex_balance_intarray.
\intarray_new:Nn \g__regex_balance_intarray { 65536 }
(End of definition for \g__regex_balance_intarray.)

\l__regex_added_begin_int
\l__regex_added_end_int
Keep track of the number of left/right braces to add when performing a regex operation such as a replacement.
\int_new:N \l__regex_added_begin_int
\int_new:N \l__regex_added_end_int
(End of definition for \l__regex_added_begin_int and \l__regex_added_end_int.)
__regex_return: This function triggers either \texttt{prg_return_false}: or \texttt{prg_return_true}: as appropriate to whether a match was found or not. It is used by all user conditionals.

\begin{verbatim}
cs_new_protected:Npn __regex_return:
 { \if_meaning:w \c_true_bool \g__regex_success_bool
 \prg_return_true:
 \else:
 \prg_return_false:
 \fi:
}
\end{verbatim}

(End of definition for __regex_return:.)

__regex_query_set:n __regex_query_set_aux:n\N
To easily extract subsets of the input once we found the positions at which to cut, store the input tokens one by one into successive \texttt{toks} registers. Also store the brace balance (used to check for overall brace balance) in an array.

\begin{verbatim}
cs_new_protected:Npn __regex_query_set:n #1
 { \int_zero:N \l__regex_balance_int
 \int_zero:N \l__regex_curr_pos_int
 __regex_query_set_aux:n\N { } F
 \tl_analysis_map_inline:nn {#1} {#1}
 { __regex_query_set_aux:n\N {#1} \#3 }
 __regex_query_set_aux:n\N { } F
 \int_set_eq:NN \l__regex_max_pos_int \l__regex_curr_pos_int
 }

cs_new_protected:Npn __regex_query_set_aux:nN #1#2
 { \int_incr:N \l__regex_curr_pos_int
 __regex_toks_set:Nn \l__regex_curr_pos_int {#1}
 __kernel_intarray_gset:Nnn \g__regex_balance_intarray
 { \l__regex_curr_pos_int } { \l__regex_balance_int }
 \if_case:w "#2 \exp_stop_f:
 \or: \int_incr:N \l__regex_balance_int
 \or: \int_decr:N \l__regex_balance_int
 \fi:
 }
\end{verbatim}

(End of definition for __regex_query_set:n and __regex_query_set_aux:n\N.)

47.7.2 Matching

__regex_if_match:nn We don’t track submatches, and stop after a single match. Build the NFA with \#1, and perform the match on the query \#2.

\begin{verbatim}
cs_new_protected:Npn __regex_if_match:nn #1#2
 { \group_begin:
 __regex_disable_submatches:
 __regex_single_match:
 \#1
 __regex_match:n \#2
 \group_end:
}
\end{verbatim}
The code would get badly messed up if the number of items in \#1 were not even, so we catch this case, then follow the same code as \regex_match:nnTF but using __regex_case_build:n and without returning a result.

\begin{verbatim}
cs_new_protected:Npn __regex_match_case:nnTF #1#2
definition
{\int_if_odd:nTF { \tl_count:n {#1} } {
 \msg_error:nneeee { regex } { case-odd }
 \{ \tl_count:n {#1} \} \{ \tl_to_str:n {#1} \}
 \use_ii:nn
}
{ __regex_if_match:nn
 \{ __regex_case_build:e { __regex_tl_odd_items:n {#1} } \}
 {#2}
 \bool_if:NTF \g__regex_success_bool
}
}
cs_new:Npn __regex_match_case_aux:nn #1#2 { \exp_not:n { {#1} } }
\end{verbatim}

Again, we don’t care about submatches. Instead of aborting after the first “longest match” is found, we search for multiple matches, incrementing \l__regex_match_count_int every time to record the number of matches. Build the NFA and match. At the end, store the result in the user’s variable.

\begin{verbatim}
cs_new_protected:Npn __regex_count:nnN #1#2#3
definition
{\group_begin:
 __regex_disable_submatches:
 \int_zero:N \l__regex_match_count_int
 __regex_multi_match:n { \int_incr:N \l__regex_match_count_int } \#1
 __regex_match:n {#2}
 \exp_args:NNNo
 \group_end:
 \int_set:Nn \#3 { \int_use:N \l__regex_match_count_int }
}
\end{verbatim}

47.7.3 Extracting submatches

\begin{verbatim}
cs_new_protected:Npn __regex_extract_once:nnN \#3
{\group_begin:
 __regex_disable_submatches:
 \int_zero:N \l__regex_match_count_int
 __regex_multi_match:n { \int_incr:N \l__regex_match_count_int } \#1
 __regex_match:n \#2
 \exp_args:NNNo
 \group_end:
 \int_set:Nn \#3 { \int_use:N \l__regex_match_count_int }
}
\end{verbatim}

47.7.3 Extracting submatches

\begin{verbatim}
cs_new_protected:Npn __regex_extract_all:nnN
{\group_begin:
 __regex_disable_submatches:
 \int_zero:N \l__regex_match_count_int
 __regex_multi_match:n { \int_incr:N \l__regex_match_count_int } \#1
 __regex_match:n \#2
 \exp_args:NNNo
 \group_end:
 __regex_single_match:
}
\end{verbatim}

554
__regex_split:nnN

Splitting at submatches is a bit more tricky. For each match, extract all submatches, and replace the zeroth submatch by the part of the query between the start of the match attempt and the start of the zeroth submatch. This is inhibited if the delimiter matched an empty token list at the start of this match attempt. After the last match, store the last part of the token list, which ranges from the start of the match attempt to the end of the query. This step is inhibited if the last match was empty and at the very end: decrement \l__regex_submatch_int, which controls which matches will be used.
The end-points of submatches are stored as entries of two arrays from \l__regex_min_submatch_int to \l__regex_submatch_int (exclusive). Extract the relevant ranges into \g__regex_internal_tl, separated by __regex_tmp:w \{ \}. We keep track in the two flags __regex_begin and __regex_end of the number of begin-group or end-group tokens added to make each of these items overall balanced. At this step, \} is counted as being balanced (same number of begin-group and end-group tokens). This problem is caught by __regex_extract_check:w, explained later. After complaining about any begin-group or end-group tokens we had to add, we are ready to construct the user’s sequence outside the group.
The :n auxiliary builds one item of the sequence of submatches. First compute the brace balance of the submatch, then extract the submatch from the query, adding the appropriate braces and raising a flag if the submatch is not balanced.

In __regex_group_end_extract_seq:N we had to expand \g__regex_internal_tl to turn \if_false: constructions into actual begin-group and end-group tokens. This is done with a __kernel_tl_gset:Ne assignment, and __regex_extract_check:w is run immediately after this assignment ends, thanks to the \afterassignment primitive. If all of the items were properly balanced (enough begin-group tokens before end-group tokens, so \{ is not) then __regex_extract_check:w is called just before the closing brace of the __kernel_tl_gset:N e (thanks to our sneaky \if_false: { \fi: } construction), and finds that there is nothing left to expand. If any of the items is unbalanced, the
assignment gets ended early by an extra end-group token, and our check finds more tokens needing to be expanded in a new \texttt{_kernel_tl_gset:Ne} assignment. We need to add a begin-group and an end-group tokens to the unbalanced item, namely to the last item found so far, which we reach through a loop.

\begin{verbatim}
cs_new_protected:Npn _regex_extract_check:w
{
 \exp_after:wN _regex_extract_check:n
 \exp_after:wN { \if_false: } \fi:
}
cs_new_protected:Npn _regex_extract_check:n #1
{
 \tl_if_empty:nF {#1}
 {
 \int_incr:N \l__regex_added_begin_int
 \int_incr:N \l__regex_added_end_int
 \tex_afterassignment:D _regex_extract_check:w
 _kernel_tl_gset:Ne \g__regex_internal_tl
 {
 \exp_after:wN _regex_extract_check_loop:w
 \g__regex_internal_tl
 _regex_tmp:w _regex_extract_check_end:w
 \prg_do_nothing:
 #1
 }
}
cs_new:Npn _regex_extract_check_loop:w #1 _regex_tmp:w #2
{
 \if_false: { \fi: }
 _regex_tmp:w
}
_regex_extract:
_regex_extract_aux:w
\end{verbatim}

Arguments of \texttt{_regex_extract_check_end:w} are: #1 is the part of the item before the extra end-group token; #2 is junk; #3 is \texttt{\prg_do_nothing:} followed by the not-yet-expanded part of the item after the extra end-group token. In the replacement text, the first brace and the \texttt{\if_false: { \fi: }} construction are the added begin-group and end-group tokens (the latter being not-yet expanded, just like #3), while the closing brace after \texttt{\exp_not:o {#1}} replaces the extra end-group token that had ended the assignment early. In particular this means that the character code of that end-group token is lost.

\begin{verbatim}
cs_new:Npn _regex_extract_check:end:w
\exp_not:o #1_regex_extract_check_loop:w _regex_tmp:w #2
{
 _regex_extract_check_loop:w \prg_do_nothing:
}
\end{verbatim}

(End of definition for \texttt{_regex_extract_check:w} and others.)
We extract the rest from the comma list \l_regex_success_submatches_tl, which starts with entries to be stored in \g_regex_submatch_begin_intarray and continues with entries for \g_regex_submatch_end_intarray.

\cs_new_protected:Npn \regex_extract:
\begin{verbatim}
 {
 \if_meaning:w \c_true_bool \g_regex_success_bool
 \int_set_eq:NN \l_regex_zeroth_submatch_int \l_regex_submatch_int
 \prg_replicate:nn \l_regex_capturing_group_int
 \{ __kernel_intarray_gset:Nnn \g_regex_submatch_prev_intarray
 \{ \l_regex_submatch_int \} \{ 0 \}
 \}
 __kernel_intarray_gset:Nnn \g_regex_submatch_case_intarray
 \{ \l_regex_submatch_int \} \{ 0 \}
 \int_incr:N \l_regex_submatch_int
 __kernel_intarray_gset:Nnn \g_regex_submatch_prev_intarray
 \{ \l_regex_zeroth_submatch_int \} \{ \l_regex_start_pos_int \}
 __kernel_intarray_gset:Nnn \g_regex_submatch_case_intarray
 \{ \l_regex_zeroth_submatch_int \} \{ \g_regex_case_int \}
 \int_zero:N \l_regex_internal_a_int
 \exp_after:wN __regex_extract_aux:w \l_regex_success_submatches_tl
 \prg_break_point: \regex_use_none_delimit_by_q_recursion_stop:w,
 \q_regex_recursion_stop
 \fi:
 }
\end{verbatim}

\cs_new_protected:Npn \regex_extract_aux:w #1 ,
\begin{verbatim}
 { \prg_break: #1 \prg_break_point:
 \if_int_compare:w \l_regex_internal_a_int < \l_regex_capturing_group_int
 __kernel_intarray_gset:Nnn \g_regex_submatch_begin_intarray
 \{ \l_regex_zeroth_submatch_int \} \{ \l_regex_start_pos_int \}
 \{ \l_regex_zeroth_submatch_int \} \{ \g_regex_case_int \}
 \int_zero:N \l_regex_internal_a_int
 \exp_after:wN __regex_extract_aux:w \l_regex_success_submatches_tl
 \prg_break_point: \regex_use_none_delimit_by_q_recursion_stop:w,
 \q_regex_recursion_stop
 \else:
 __kernel_intarray_gset:Nnn \g_regex_submatch_begin_intarray
 \{ \l_regex_zeroth_submatch_int \} \{ \l_regex_capturing_group_int \}
 \{ \l_regex_zeroth_submatch_int \} \{ \g_regex_case_int \}
 \int_incr:N \l_regex_internal_a_int
 __regex_extract_aux:w
 \fi:
 }
\end{verbatim}

(End of definition for \regex_extract: and \regex_extract_aux:w.)

47.7.4 Replacement

Build the NFA and the replacement functions, then find a single match. If the match failed, simply exit the group. Otherwise, we do the replacement. Extract submatches. Compute the brace balance corresponding to replacing this match by the replacement (this depends on submatches). Prepare the replaced token list: the replacement function produces the tokens from the start of the query to the start of the match and the replacement text for this match; we need to add the tokens from the end of the match to the end of the query. Finally, store the result in the user’s variable after closing the group: this step involves an additional e-expansion, and checks that braces are balanced in the final result.

\cs_new_protected:Npn \regex_replace_once:nnN \regex_replace_once_aux:nnN
\begin{verbatim}
 { \regex_replace_once_aux:nnN \{ \regex_replacement:n {#2} \}
 \prg_break_point: \regex_use_none_delimit_by_q_recursion_stop:w,
 \q_regex_recursion_stop
 }
\end{verbatim}

559
\cs_new_protected:Npn __regex_replace_once_aux:nnN \#1\#2\#3
 {
 __regex_single_match:
 \exp_args:No __regex_match:n \#3
 \bool_if:NTF \g__regex_success_bool
 {
 __regex_extract:
 \exp_args:No __regex_query_set:n \#3
 \int_set:Nn \l__regex_balance_int
 {
 __regex_replacement_balance_one_match:n
 \{ \l__regex_zeroth_submatch_int \}
 }
 __kernel_tl_set:Ne \l__regex_internal_a_tl
 {
 __regex_replacement_do_one_match:n
 \{ \l__regex_zeroth_submatch_int \}
 __regex_query_range:nn
 { \g__regex_submatch_end_intarray }{ \l__regex_max_pos_int }
 }
 __regex_group_end_replace:N \#3
 }
 }

(End of definition for __regex_replace_once:nnN and __regex_replace_once_aux:nnN.)

__regex_replace_all:nnN Match multiple times, and for every match, extract submatches and additionally store the position at which the match attempt started. The entries from __regex_min_submatch_int to __regex_submatch_int hold information about submatches of every match in order; each match corresponds to __regex_capturing_group_int consecutive entries. Compute the brace balance corresponding to doing all the replacements: this is the sum of brace balances for replacing each match. Join together the replacement texts for each match (including the part of the query before the match), and the end of the query.

\cs_new_protected:Npn __regex_replace_all:nnN \#1\#2
 {
 __regex_replace_all_aux:nnN \#1\{ __regex_replacement:n \#2 \}
 }
\cs_new_protected:Npn __regex_replace_all:nnN \#1\#2\#3
 {
 __regex_multi_match:n \{ __regex_extract: \}
 \exp_args:No __regex_match:n \#3
 \exp_args:No __regex_query_set:n \#3
 \int_set:Nn \l__regex_balance_int
 {
 }
\texttt{\int_step_function:nnnN}
\{ \l__regex_min_submatch_int \}
\l__regex_capturing_group_int
\{ \l__regex_submatch_int \}
\l__regex_replacement_balance_one_match:n
\}
_kernel_tl_set:Ne \l__regex_internal_a_tl
\{ \int_step_function:nnnN \{ \l__regex_min_submatch_int \}
\l__regex_capturing_group_int
\{ \l__regex_submatch_int \}
\l__regex_replacement_do_one_match:n
\l__regex_query_range:nn
\l__regex_start_pos_int \l__regex_max_pos_int
\}
_regex_group_end_replace:N #3
\}
\cs_new_protected:Npn _regex_group_end_replace:N #1
\{ \int_set:Nn \l__regex_added_begin_int { \int_max:nn { - \l__regex_balance_int } { 0 } }
\int_set:Nn \l__regex_added_end_int { \int_max:nn { \l__regex_balance_int } { 0 } }
_regex_group_end_replace_try:
\int_compare:nNnT { \l__regex_added_begin_int + \l__regex_added_end_int } > 0
\}
\msg_error:nneee { regex } { result-unbalanced } { replacing }
\{ \int_use:N \l__regex_added_begin_int \}
\{ \int_use:N \l__regex_added_end_int \}
\}
_group_end:
\tl_set_eq:NN #1 \g__regex_internal_tl
\cs_new_protected:Npm _regex_group_end_replace_try:
\{ \tex_afterassignment:D _regex_group_end_replace_check:w \}
_kernel_tl_gset:Ne \g__regex_internal_tl
(End of definition for _regex_replace_all:nnN.)

At this stage \l__regex_internal_a_tl (e-expands to the desired result). Guess from \l__regex_balance_int the number of braces to add before or after the result then try expanding. The simplest case is when \l__regex_internal_a_tl together with the braces we insert via \texttt{prg_replicate:nn} give a balanced result, and the assignment ends at the \texttt{\iffalse: { \fi: }} construction: then _regex_group_end_replace_check:w sees that there is no material left and we successfully found the result. The harder case is that expanding \l__regex_internal_a_tl may produce extra closing braces and end the assignment early. Then we grab the remaining code using; importantly, what follows has not yet been expanded so that _regex_group_end_replace_check:n grabs everything until the last brace in _regex_group_end_replace_try:, letting us try again with an extra surrounding pair of braces.
Peeking ahead

\texttt{l_regex_peek_true_tl} True/false code arguments of \texttt{peek_regex:nTF} or similar.
\texttt{l_regex_peek_false_tl}

\texttt{l_regex_replacement_tl} When peeking in \texttt{peek_regex_replace_once:nnTF} we need to store the replacement text.
\texttt{l_regex_input_tl} Stores each token found as \texttt{_regex_input_item:n \{\langle tokens\rangle\}}, where the \texttt{\langle tokens\rangle} o-
expand to the token found, as for \texttt{tl_analysis_map_inline:nn}.

The \texttt{T} and \texttt{F} functions just call the corresponding \texttt{TF} function. The four \texttt{TF} functions differ
along two axes: whether to remove the token or not, distinguished by using \texttt{_regex_\-_peek_end:} or \texttt{_regex_peek_remove_end:n} (the latter case needs an argument, as we
will see), and whether the regex has to be compiled or is already in an \texttt{N}-type variable, distinguished by calling \texttt{_regex_build_aux:NN} or \texttt{_regex_build_aux:NN}. The first
argument of these functions is \texttt{c_false_bool} to indicate that there should be no implicit
insertion of a wildcard at the start of the pattern: otherwise the code would keep looking
further into the input stream until matching the regex.

(End of definition for \texttt{_regex_group_end_replace:N} and others.)
Store the user’s true/false codes (plus \texttt{\textbackslash group_end:}) into two token lists. Then build the automaton with \#1, without submatch tracking, and aiming for a single match. Then start matching by setting up a few variables like for any regex matching like \texttt{\textbackslash regex_match:nnTF}, with the addition of \texttt{__regex_input_tl} that keeps track of the tokens seen, to reinser them at the end. Instead of \texttt{\tl_analysis_map_inline:nn} on the input, we call \texttt{\peek_analysis_map_inline:n} to go through tokens in the input stream. Since \texttt{__regex_match_one_token:nnN} calls \texttt{__regex_map_like_break}: we need to catch that and break the \texttt{\peek_analysis_map_inline:n} loop instead.

(End of definition for \texttt{\peek_regex:nTF} and others. These functions are documented on page 205.)
\cs_new_protected:Npn __regex_peek_aux:nnTF \#1\#2\#3\#4
{
 \group_begin:
 \tl_set:Nn \l__regex_peek_true_tl { \group_end: \#3 }
 \tl_set:Nn \l__regex_peek_false_tl { \group_end: \#4 }
 __regex_single_match:
 \#1
 __regex_match_init:
 \tl_build_begin:N \l__regex_input_tl
 __regex_match_once_init:
 \peek_analysis_map_inline:n
 {
 \tl_build_put_right:Nn \l__regex_input_tl { __regex_input_item:n {##1} }
 __regex_match_one_token:nnN {##1} {##2} \#3
 \use_none:nn
 \prg_break_point:Nn __regex_maplike_break:
 { \peek_analysis_map_break:n {\#2} }
 }
}
__regex_match_end:
__regex_peek_remove_end:n \#1
\cs_new_protected:Npn __regex_peek_end:
{
 \bool_if:NTF \g__regex_success_bool
 { __regex_peek_reinsert:N \l__regex_peek_true_tl }
 { __regex_peek_reinsert:N \l__regex_peek_false_tl }
}
\cs_new_protected:Npn __regex_peek_remove_end:n \#1
{
 \bool_if:NTF \g__regex_success_bool
 { \exp_args:NNo \use:nn \l__regex_peek_true_tl {\#1} }
 { __regex_peek_reinsert:N \l__regex_peek_false_tl }
}
__regex_peek_reinsert:N __regex_reinsert_item:n
Insert the true/false code \#1, followed by the tokens found, which were stored in \l__-regex_input_tl. For this, loop through that token list using __regex_reinsert_item:n, which expands \#1 once to get a single token, and jumps over it to expand what follows, with suitable \exp:w and \exp_end:. We cannot just use \use:e on the end of definition for __regex_peek:nnTF and __regex_peek_aux:nnTF.

(End of definition for __regex_peek:nnTF and __regex_peek_aux:nnTF.)

__regex_peek_end: __regex_peek_remove_end:n
Once the regex matches (or permanently fails to match) we call __regex_peek_end:, or __regex_peek_remove_end:n with argument the last token seen. For \peek_regex:nTF we reinsert tokens seen by calling __regex_peek_reinsert:N regardless of the result of the match. For \peek_regex_remove_once:nTF we reinsert the tokens seen only if the match failed; otherwise we just reinsert the tokens \#1, with one expansion. To be more precise, \#1 consists of tokens that o-expand and e-expand to the last token seen, for example it is \exp_not:N \langle cs \rangle for a control sequence. This means that just doing \exp_after:wN \l__regex_peek_true_tl \#1 would be unsafe because the expansion of \langle cs \rangle would be suppressed.

\cs_new_protected:Npn __regex_peek_end:
{
 \bool_if:NTF \g__regex_success_bool
 { __regex_peek_reinsert:N \l__regex_peek_true_tl }
 { __regex_peek_reinsert:N \l__regex_peek_false_tl }
}
\cs_new_protected:Npn __regex_peek_remove_end:n \#1
{
 \bool_if:NTF \g__regex_success_bool
 { \exp_args:NNo \use:nn \l__regex_peek_true_tl {\#1} }
 { __regex_peek_reinsert:N \l__regex_peek_false_tl }
}
(End of definition for __regex_peek_end: and __regex_peek_remove_end:n.)

__regex_peek_reinsert:N __regex_reinsert_item:n
whole token list because the result may be unbalanced, which would stop the primitive prematurely, or let it continue beyond where we would like.

\begin{verbatim}
\cs_new_protected:Npn _regex_peek_reinsert:N #1
\tl_build_end:N \l__regex_input_tl
\cs_set_eq:NN _regex_input_item:n _regex_reinsert_item:n
\exp_after:wN #1 \exp:w \l__regex_input_tl \exp_end:
\end{verbatim}

(End of definition for _regex_peek_reinsert:N and _regex_reinsert_item:n.)

Similar to \peek_regex:nTF above.

\begin{verbatim}
\cs_new_protected:Npn \peek_regex_replace_once:nnTF #1 #2 #3
\cs_new_protected:Npn \peek_regex_replace_once:nnT #1 #2 #3
\cs_new_protected:Npn \peek_regex_replace_once:nnF #1 #2
\cs_new_protected:Npn \peek_regex_replace_once:NnTF #1
\cs_new_protected:Npn \peek_regex_replace_once:NnT #1 #2 #3
\cs_new_protected:Npn \peek_regex_replace_once:NnF #1 #2
\cs_new_protected:Npn \peek_regex_replace_once:Nn #1 #2
\end{verbatim}

(End of definition for \peek_regex_replace_once:nnTF and \peek_regex_replace_once:NnTF. These functions are documented on page 206.)

Same as _regex_peek:nTF (used for \peek_regex:nTF above), but without disabling submatches, and with a different end. The replacement text #2 is stored, to be analyzed later.

\begin{verbatim}
\cs_new_protected:Npn _regex_peek_replace:nnTF #1
\tl_set:Nn \l__regex_replacement_tl {#2}
_regex_peek_aux:nTF \{ _regex_peek_replace_end: \}
\end{verbatim}

(End of definition for _regex_peek_replace:nTF.)

If the match failed _regex_peek_reinsert:N reinserts the tokens found. Otherwise, finish storing the submatch information using _regex_extract:, and store the input into \toks. Redefine a few auxiliaries to change slightly their expansion behaviour as
explained below. Analyse the replacement text with _regex_replacement:n, which as usual defines _regex_replacement_do_one_match:n to insert the tokens from the start of the match attempt to the beginning of the match, followed by the replacement text. The \use:e expands for instance the trailing _regex_query_range:nn down to a sequence of _regex_reinsert_item:n \{⟨tokens⟩\} where ⟨tokens⟩ e-expand to a single token that we want to insert. After e-expansion, \use:e does \use:n, so we have \exp_:\exp_end: This is set up such as to obtain \l__regex_peek_true_tl \exp:w ... \exp_end:. This is set up such as to obtain \l__regex_peek_true_tl followed by the replaced tokens (possibly unbalanced) in the input stream.

\cs_new_protected:Npn __regex_peek_replace_end:
\bool_if:NTF \g__regex_success_bool
__regex_extract:
__regex_query_set_from_input_tl:
\cs_set_eq:NN __regex_replacement_put:n __regex_peek_replacement_put:n
\cs_set_eq:NN __regex_replacement_put_submatch_aux:n __regex_peek_replacement_put_submatch_aux:n
\cs_set_eq:NN __regex_input_item:n __regex_reinsert_item:n
\cs_set_eq:NN __regex_replacement_exp_not:N __regex_peek_replacement_token:n
\cs_set_eq:NN __regex_replacement_exp_not:V __regex_peek_replacement_var:N
\exp_args:No __regex_replacement:n \{ \l__regex_replacement_tl \}
\use:e
\exp_not:n \{ \exp_after:wN \l__regex_peek_true_tl \exp:w \}
__regex_replacement_do_one_match:n
\{ \l__regex_zeroth_submatch_int \}
__regex_query_range:nn
\{ __kernel_intarray_item:Nn \g__regex_submatch_end_intarray
\{ \l__regex_zeroth_submatch_int \}
\}
\{ \l__regex_max_pos_int \}
\exp_end:
\}
\{ __regex_peek_reinsert:N \l__regex_peek_false_tl \}
\)

\cs_new_protected:Npn __regex_query_set_from_input_tl:
__regex_query_set_item:n
(End of definition for _regex_peek_replace_end:)

The input was stored into \l__regex_input_tl as successive items _regex_input_-item:n \{⟨tokens⟩\}. Store that in successive \toks. It’s not clear whether the empty entries before and after are both useful.

\cs_new_protected:Npm __regex_query_set_from_input_tl:
\tl_build_end:N \l__regex_input_tl
\int_zero:N \l__regex_curr_pos_int
\cs_set_eq:NN \l__regex_input_item:n \l__regex_query_set_item:n
\{ \}
\l__regex_input_tl
__regex_query_set_item:n \{ \}
\int_set_eq:NN \l__regex_max_pos_int \l__regex_curr_pos_int
__regex_query_set_from_input_tl: and __regex_query_set_item:n)

While building the replacement function __regex_replacement_do_one_match:n, we
often want to put simple material, given as \#1, whose e-expansion o-expands to a single
token. Normally we can just add the token to \l__regex_build_tl, but for \peek_-
regex_replace_once:nnTF we eventually want to do some strange expansion that is
basically using \exp_after:wN to jump through numerous tokens (we cannot use e-
expansion like for \regex_replace_once:nnNTF because it is ok for the result to be
unbalanced since we insert it in the input stream rather than storing it. When within
a csname we don’t do any such shenanigan because \cs:w \cs_end: does all the
expansion we need.

(End of definition for __regex_peek_replacement_put:n.)

__regex_peek_replacement_token:n

When hit with \exp:w, __regex_peek_replacement_token:n {⟨token⟩} stops \exp_-
end: and does \exp_after:wN ⟨token⟩ \exp:w to continue expansion after it.

(End of definition for __regex_peek_replacement_token:n.)

__regex_peek_replacement_put_submatch_aux:n

While analyzing the replacement we also have to insert submatches found in the query.
Since query items __regex_input_item:n {⟨tokens⟩} expand correctly only when sur-
rounded by \exp:w ... \exp_end:, and since these expansion controls are not there
within csnames (because \cs:w ... \cs_end: make them unnecessary in most cases), we
have to put \exp:w and \exp_end: by hand here.

(End of definition for __regex_peek_replacement_put_submatch_aux:n.)
_regex_peek_replacement_var:N

This is used for \u outside csnames. It makes sure to continue expansion with \exp:w before expanding the variable \#1 and stopping the \exp:w that precedes.

\begin{verbatim}
cs_new_protected:Npn __regex_peek_replacement_var:N \#1
{
\exp_after:wN \exp_last_unbraced:NV
\exp_after:wN \exp_end:
\exp_after:wN \#1
\exp:w
}
\end{verbatim}

(End of definition for __regex_peek_replacement_var:N.)

47.8 Messages

Messages for the pre-parsing phase.

\begin{verbatim}
\use:e
{
\msg_new:nnn { regex } { trailing-backslash }
{ Trailing-`\iow_char:N\\'-in-regex-or-replacement. }
\msg_new:nnn { regex } { x-missing-rbrace }
{ Missing-brace-`\iow_char:N\}'-in-regex-`...\iow_char:N\x\iow_char:N\{...\#1'. }
\msg_new:nnn { regex } { x-overflow }
{ Character-code-\#1-too-large-in- `\iow_char:N\x\iow_char:N\{\#2\iow_char:N\}-regex. }
}
\end{verbatim}

Invalid quantifier.

\begin{verbatim}
\msg_new:nnnn { regex } { invalid-quantifier }
{ Braced-quantifier-`\#1'-may-not-be-followed-by-`\#2'. }
{ The-character-`\#2'-is-invalid-in-the-braced-quantifier-`\#1'.- The-only-valid-quantifiers-are-`*','?','?+','{<int'}}>,- '{<min>},'}-and-`{<min>,<max}>}',-optionally-followed-by-`?'. }
\end{verbatim}

Messages for missing or extra closing brackets and parentheses, with some fancy singular/plural handling for the case of parentheses.

\begin{verbatim}
\msg_new:nnnn { regex } { missing-rbrack }
{ Missing-right-bracket-inserted-in-regular-expression. }
{ LaTeX-was-given-a-regular-expression-where-a-character-class- was-started-with-`[','-but-the-matching-']'-is-missing. }
\msg_new:nnnn { regex } { missing-rparen }
{ Missing-right-
\int_compare:nTF { \#1 = 1 } { parenthesis } { parentheses } - inserted-in-regular-expression. }
\end{verbatim}

568
\LaTeX\ was given a regular expression with \int_eval:n \{#1\} - more left parentheses than right parentheses.
\msg_new:nnnn { regex } { extra-rparen } { Extra-right-parenthesis-ignored-in-regular-expression. }
\LaTeX\ came across a closing parenthesis when no submatch group was open. The parenthesis will be ignored.

Some escaped alphanumerics are not allowed everywhere.
\msg_new:nnnn { regex } { bad-escape } { Invalid escape '\iow_char:N\#1' ~__regex_if_in_cs:TF { within-a-control-sequence. }
__regex_if_in_class:TF { in-a-character-class. }
{ following-a-category-test. }
}
__regex_if_in_cs:TF { within-a-control-sequence-test-introduced-by- '\iow_char:N\c\iow_char:N\{'. }
__regex_if_in_class:TF { within-a-character-class- }
{ following-a-category-test-such-as- '\iow_char:N\cL'~ } because it does not match exactly one character.

Range errors.
\msg_new:nnnn { regex } { range-missing-end } { Invalid-end-point-for-range- '\#1-\#2' in character-class. }
__regex_if_in_class:TF { within-a-character-class- }
The end point '\#2' of the range \{\#1-\#2\} may not serve as an end point for a range: alphanumeric characters should not be escaped, and non-alphanumeric characters should be escaped.

\msg_new:nnnn { regex } { range-backwards } { Range- '\#1-\#2' out of order in character-class. }
{ In ranges of characters- '[x-y]' appearing in character classes, the first character code must not be larger than the second. Here, '\#1' has character code \int_eval:n \{\#1\}, while '\#2' has character code \int_eval:n \{\#2\}. }
Errors related to \c and \u.

\msg_new:nnnn { regex } { c-bad-mode }
{ Invalid-nested-`\iow_char:N\c'-escape-in-regular-expression. }
{ The-`\iow_char:N\c'-escape-cannot-be-used-within-a-control-sequence-test-`\iow_char:N\c{...}'.
 nor-another-category-test.-
 To-combine-several-category-tests,-use-`\iow_char:N\c[...]'.
}

\msg_new:nnnn { regex } { c-C-invalid }
{ `\iow_char:N\cC'-should-be-followed-by-.or-'.not-'\#1'. }
{ The-`\iow_char:N\cC'-construction-restricts-the-next-item-to-be-a-control-sequence-or-the-next-group-to-be-made-of-control-sequences.-It-only-makes-sense-to-follow-it-by-.or-by-a-group.
}

\msg_new:nnnn { regex } { cu-lbrace }
{ Left-braces-must-be-escaped-in-`\iow_char:N\#1{...}'. }
{ Constructions-such-as-`\iow_char:N\#1{...\iow_char:N\{...}'-are-not-allowed-and-should-be-replaced-by-`\iow_char:N\#1{...\token_to_str:N\{...}'.
}

\msg_new:nnnn { regex } { c-lparen-in-class }
{ Catcode-test-cannot-apply-to-group-in-character-class }
{ Construction-such-as-`\iow_char:N\c{abc}'-are-not-allowed-inside-a-class-`[...,]'-because-classes-do-not-match-multiple-characters-at-once.
}

\msg_new:nnnn { regex } { c-missing-rbrace }
{ Missing-right-brace-inserted-for-`\iow_char:N\c'-escape. }
{ LaTeX-was-given-a-regular-expression-where-a-`\iow_char:N\c{...}'-construction-was-not-ended-with-a-closing-brace-`\iow_char:N\}'.

\msg_new:nnnn { regex } { c-missing-rbrack }
{ Missing-right-bracket-inserted-for-`\iow_char:N\c'-escape. }
{ A-construction-`\iow_char:N\c[...'-appears-in-a-regular-expression,-but-the-closing-']'-is-not-present.
}

\msg_new:nnnn { regex } { c-missing-category }
{ Invalid-character-'\#1'-following-`\iow_char:N\c'-escape. }
{ In-regular-expressions,-the-`\iow_char:N\c'-escape-sequence-may-only-be-followed-by-a-left-brace,-a-left-bracket,-or-a-capital-letter-representing-a-character-category,-namely-one-of-'ABCDLMPSU'.
}

\msg_new:nnnn { regex } { c-trailing }
{ Trailing-category-code-escape-`\iow_char:N\c...'}
{ A-regular-expression-ends-with-`\iow_char:N\c'-followed-
by-a-letter.-It-will-be-ignored.
}
\msg_new:nnnn { regex } { u-missing-lbrace }
{ Missing-left-brace-following-`\iow_char:N\u`-escape. }
{ The-`\iow_char:N\u`-escape-sequence-must-be-followed-by-
a-brace-group-with-the-name-of-the-variable-to-use. }
\msg_new:nnnn { regex } { u-missing-rbrace }
{ Missing-right-brace-inserted-for-`\iow_char:N\u`-escape. }
{ LaTeX-\str_if_eq:eeTF { } {#2}
 { reached-the-end-of-the-string- }
 { encountered-an-escaped-alphanumeric-character `\iow_char:N\#2`- }
 when-parsing-the-argument-of-an-
 `\iow_char:N\iow_char:N\{...\}`-escape. }

Errors when encountering the POSIX syntax [:...:].
\msg_new:nnnn { regex } { posix-unsupported }
{ POSIX-collating-element-`[#1 - #1]`-not-supported. }
{ The-`[.foo.]`-and-`[=bar=]`-syntaxes-have-a-special-meaning-
in-POSIX-regular-expressions.-This-is-not-supported-by-LaTeX.-
Maybe-you-forgot-to-escape-a-left-bracket-in-a-character-class? }
\msg_new:nnnn { regex } { posix-unknown }
{ POSIX-class-`[:#1:]`-unknown. }
{ `[:#1:]`-is-not-among-the-known-POSIX-classes-
 `[:alnum:]`, `[:alpha:]`, `[:ascii:]`, `[:blank:]`, `-`
 `[:cntrl:]`, `[:digit:]`, `[:graph:]`, `[:lower:]`, `-`
 `[:print:]`, `[:punct:]`, `[:space:]`, `[:upper:]`, `-`
 `[:word:]`, `[:xdigit:]`. }
\msg_new:nnnn { regex } { posix-missing-close }
{ Missing-closing-`:]`-for-POSIX-class. }
{ The-POSIX-syntax-`#1`-must-be-followed-by-`]`,-not-`#2`. }

In various cases, the result of a \regex operation can leave us with an unbalanced
token list, which we must re-balance by adding begin-group or end-group character to-
kens.
\msg_new:nnnn { regex } { result-unbalanced }
{ Missing-brace-inserted-when-`#1`. }
{ LaTeX-was-asked-to-do-some-regular-expression-operation,-
 and-the-resulting-token-list-would-not-have-the-same-number-
of-begin-group-and-end-group-tokens.-Braces-were-inserted:-
 `#2`-left,-`#3`-right. }

Error message for unknown options.
\msg_new:nnnn { regex } { unknown-option }
{ Unknown-option-`#1`-for-regular-expressions. }
The only available option is ‘case-insensitive’, toggled by ‘(?i)`-and ‘(?-i)`.

Unknown-special-group ‘#1-...’ in a regular expression.

The only valid constructions starting with ‘(?‘ are ‘(?:-...)’, ‘(?|-...)’, ‘(?i)’, and ‘(?-i)`.

Errors in the replacement text.

Misused ‘\iow_char:N\c’-command in a replacement text.

Misused ‘\iow_char:N\u’-command in a replacement text.

Missing brace for the ‘\iow_char:N\g’-construction in a replacement text.

Missing character for the ‘\iow_char:N\c<category><character>’-construction in a replacement text.

Escaped letter or digit after category code in replacement text.

572
\`\iow_char:N\#2\'.
\msg_new:nnnn { regex } { replacement-catcode-in-cs }
{ Category-code-\`\iow_char:N\c\#1\#3\'-ignored-inside-
 \`\iow_char:N\c\{\ldots\}\'-in-a-replacement-text.
}
{ In-a-replacement-text,-the-category-codes-of-the-argument-of-
 \`\iow_char:N\c\{\ldots\}\'-are-ignored-when-building-the-control-
 sequence-name.
}
\msg_new:nnnn { regex } { replacement-null-space }
{ \TeX\ cannot-build-a-space-token-with-character-code-0. }
{ You-asked-for-a-character-token-with-category-space,-
 and-character-code-0,-for-instance-through-
 \`\iow_char:N\cS\iow_char:N\x00\'.-
 This-specific-case-is-impossible-and-will-be-replaced-
 by-a-normal-space.
}
\msg_new:nnnn { regex } { replacement-missing-rbrace }
{ Missing-right-brace-inserted-in-replacement-text. }
{ There- \\int_compare:nTF { \#1 = 1 } { was } { were } - \#1-
 missing-right-\\int_compare:nTF { \#1 = 1 } { brace } { braces } .
}
\msg_new:nnnn { regex } { replacement-missing-rparen }
{ Missing-right-parenthesis-inserted-in-replacement-text. }
{ There- \\int_compare:nTF { \#1 = 1 } { was } { were } - \#1-
 missing-right-\\int_compare:nTF { \#1 = 1 } { parenthesis } { parentheses } .
}
\msg_new:nnnn { regex } { submatch-too-big }
{ Submatch-\#1-used-but-regex-only-has-\#2-group(s) }
 Some escaped alphanumerics are not allowed everywhere.
\msg_new:nnnn { regex } { backwards-quantifier }
{ Quantifier-"\#1,\#2"-is-backwards. }
{ The-values-given-in-a-quantifier-must-be-in-order. }
 Used in user commands, and when showing a regex.
\msg_new:nnnn { regex } { case-odd }
{ \#1-with-odd-number-of-items }
{ There-must-be-a-\#2-part-for-each-regex:-
 found-odd-number-of-items-(\#3)-in\ \\
 \iow_indent:n {\#4}
}
\msg_new:nnnn { regex } { show }
{ \\tl_if_empty:nTF {\#1} { variable- \#2 } { {\#1} } :
 \#3

573
This is not technically a message, but seems related enough to go there. The arguments are: \#1 is the minimum number of repetitions; \#2 is the number of allowed extra repetitions (−1 for infinite number), and \#3 tells us about lazyness.

\cs_new:Npn __regex_msg_repeated:nnN \#1\#2\#3
\{\str_if_eq:eeF { \#1 \#2 } { 1 0 } \{
\int_case:nnF {\#2} \{
\{ -1 \} \#1-or-more-times,-\bool_if:NTF \#3 \{ lazy \} \{ greedy \}\}
\{ 0 \} \#1-times\}
\}
between-\#1-and-\int_eval:n {\#1+\#2}-times,-\bool_if:NTF \#3 \{ lazy \} \{ greedy \}\}
\}
\}
\}

(End of definition for __regex_msg_repeated:nnN.)

47.9 Code for tracing

There is a more extensive implementation of tracing in the l3trial package l3trace. Function names are a bit different but could be merged.

\cs_new_protected:Npn __regex_trace_push:nnN \#1\#2\#3
\{ __regex_trace:nne \#1 \#2 \token_to_str:N \#3 \}
\cs_new_protected:Npn __regex_trace_pop:nnN \#1\#2\#3
\{ __regex_trace:nne \#1 \#2 \token_to_str:N \#3 \}
\cs_new_protected:Npn __regex_trace:nne \#1\#2\#3
\{ \int_compare:nNnF \{ \int_use:c { g__regex_trace_\#1_int } \} < \#2 \{
\iow_term:e { Trace:~\#3 } \}
\}

(End of definition for __regex_trace_push:nnN, __regex_trace_pop:nnN, and __regex_trace:nne.)

\g__regex_trace_regex_int
No tracing when that is zero.
\int_new:N \g__regex_trace_regex_int

(End of definition for \g__regex_trace_regex_int.)
This function lists the contents of all states of the NFA, stored in \toks from 0 to _\regex_max_state_int (excluded).

\cs_new_protected:Npn _regex_trace_states:n #1
\int_step_inline:nnn _\regex_min_state_int { _\regex_max_state_int - 1 } { _\regex_trace:nne { regex } {#1} \{ _\iow_char:N \toks ##1 = { ___regex_toks_use:w ##1 } \} _\regex_trace:nme { regex } {#1} \{ _\iow_char:N \toks ##1 = { ___regex_toks_use:w ##1 } \} }

(End of definition for _regex_trace_states:n)

\endinput
Chapter 48

\texttt{l3prg implementation}

The following test files are used for this code: \texttt{m3prg001.lvt,m3prg002.lvt,m3prg003.lvt}.

48.1 Primitive conditionals

Those two primitive \TeX\ conditionals are synonyms. \texttt{\texttt{\textbackslash \textit{if_bool:N}}} is defined in \texttt{l3basics}, as it's needed earlier to define quark test functions.

48.2 Defining a set of conditional functions

These are all defined in \texttt{l3basics}, as they are needed “early”. This is just a reminder!

48.3 The boolean data type

Boolean variables have to be initiated when they are created. Other than that there is not much to say here.

A merger between \texttt{\texttt{\textit{tl_const:Nn}}} and \texttt{\texttt{\textit{bool_set:Nn}}}.
Setting is already pretty easy. When check-declarations is active, the definitions are patched to make sure the boolean exists. This is needed because booleans are not based on token lists nor on \TeX{} registers.

\begin{verbatim}
\cs_new_protected:Npn \bool_set_true:N #1 { \cs_set_eq:NN #1 \c_true_bool }
\cs_new_protected:Npn \bool_set_false:N #1 { \cs_set_eq:NN #1 \c_false_bool }
\cs_new_protected:Npn \bool_gset_true:N #1 { \cs_gset_eq:NN #1 \c_true_bool }
\cs_new_protected:Npn \bool_gset_false:N #1 { \cs_gset_eq:NN #1 \c_false_bool }
\cs_generate_variant:Nn \bool_set_true:N { c }
\cs_generate_variant:Nn \bool_set_false:N { c }
\cs_generate_variant:Nn \bool_gset_true:N { c }
\cs_generate_variant:Nn \bool_gset_false:N { c }
\end{verbatim}

The usual copy code. While it would be cleaner semantically to copy the \cs_set_eq:N family of functions, we copy \t1_set_eq:N because that has the correct checking code.

\begin{verbatim}
\cs_new_eq:NN \bool_set_eq:NN \tl_set_eq:NN
\cs_new_eq:NN \bool_gset_eq:NN \tl_gset_eq:NN
\cs_generate_variant:Nn \bool_set_eq:NN { Nc, cN, cc }
\cs_generate_variant:Nn \bool_gset_eq:NN { Nc, cN, cc }
\end{verbatim}

This function evaluates a boolean expression and assigns the first argument the meaning \c_true_bool or \c_false_bool. Again, we include some checking code. It is important to evaluate the expression before applying the \chardef{} primitive, because that primitive sets the left-hand side to \scan_stop: before looking for the right-hand side.

\begin{verbatim}
\cs_new_protected:Npn \bool_set:Nn #1#2 { \exp_last_unbraced:NNNf \tex_chardef:D #1 = { \bool_if_p:n {#2} } }
\cs_new_protected:Npn \bool_gset:Nn #1#2 { \exp_last_unbraced:NNNNf \tex_global:D \tex_chardef:D #1 = { \bool_if_p:n {#2} } }
\cs_generate_variant:Nn \bool_set:Nn { c }
\cs_generate_variant:Nn \bool_gset:Nn { c }
\end{verbatim}

Set to false or true locally or globally.

\begin{verbatim}
\cs_new_protected:Npn \bool_set_inverse:N #1 { \bool_if:NtF #1 { \bool_set_false:N } { \bool_set_true:N } #1 }
\cs_new_protected:Npn \bool_gset_inverse:N #1 { \bool_if:NtF #1 { \bool_gset_false:N } { \bool_gset_true:N } #1 }
\end{verbatim}
48.4 Internal auxiliaries

__bool_recursion_tail
__bool_recursion_stop

Internal recursion quarks.

\quark_new:N __bool_recursion_tail
\quark_new:N __bool_recursion_stop

(End of definition for __bool_recursion_tail and __bool_recursion_stop.)

_bool_use_i_delimit_by_q_recursion_stop:nw

Functions to gobble up to a quark.

\cs_new:Npn _bool_use_i_delimit_by_q_recursion_stop:nw
___kernel_quark_new_test:N _bool_if_recursion_tail_stop_do:nn

(End of definition for _bool_use_i_delimit_by_q_recursion_stop:nw.)

\bool_if_recursion_tail_stop_do:nn

Functions to query recursion quarks.

__kernel_quark_new_test:N _bool_if_recursion_tail_stop_do:nn

(End of definition for _bool_if_recursion_tail_stop_do:nn.)

\bool_if_p:N \bool_if_p:c \bool_if:N \bool_if:c

Straight forward here. We could optimize here if we wanted to as the boolean can just
be input directly.

\prg_new_conditional:Npnn \bool_if:N #1 { p , T , F , TF }
\prg_generate_conditional_variant:Nnn \bool_if:N { c } { p , T , F , TF }

(End of definition for \bool_if:NTF. This function is documented on page 67.)

\bool_to_str:N \bool_to_str:c \bool_to_str:n

Expands to string literal true or false.

\cs_new:Npe \bool_to_str:N #1
\cs_generate_variant:Nn \bool_to_str:N \bool_to_str:n #1
\cs_new:Npe \bool_to_str:n #1

(End of definition for \bool_to_str:N and \bool_to_str:n. These functions are documented on page
67.)
\bool_show:n Show the truth value of the boolean.
\bool_log:n

\bool_show:N \bool_show:c \bool_log:N \bool_log:c __bool_show:NN
Show the truth value of the boolean, as true or false.

\bool_if_exist_p:N \bool_if_exist_p:c \bool_if_exist:N \bool_if_exist:c
Copies of the cs functions defined in l3basics.

\l_tmpa_bool \l_tmpb_bool \g_tmpa_bool \g_tmpb_bool
A few booleans just if you need them.

\bool_if_exist:NTF \bool_if_exist:NTF
(End of definition for \bool_if_exist:NTF. This function is documented on page 67.)
48.5 Boolean expressions

Evaluating the truth value of a list of predicates is done using an input syntax somewhat similar to the one found in other programming languages with (and) for grouping, ! for logical “Not”, & & for logical “And” and | | for logical “Or”. However, they perform eager evaluation. We shall use the terms Not, And, Or, Open and Close for these operations.

Any expression is terminated by a Close operation. Evaluation happens from left to right in the following manner using a GetNext function:

- If an Open is seen, start evaluating a new expression using the Eval function and call GetNext again.
- If a Not is seen, remove the ! and call a GetNext function with the logic reversed.
- If none of the above, reinsert the token found (this is supposed to be a predicate function) in front of an Eval function, which evaluates it to the boolean value ⟨true⟩ or ⟨false⟩.

The Eval function then contains a post-processing operation which grabs the instruction following the predicate. This is either And, Or or Close. In each case the truth value is used to determine where to go next. The following situations can arise:

- ⟨true⟩And Current truth value is true, logical And seen, continue with GetNext to examine truth value of next boolean (sub-)expression.
- ⟨false⟩And Current truth value is false, logical And seen, stop using the values of predicates within this sub-expression until the next Close. Then return ⟨false⟩.
- ⟨true⟩Or Current truth value is true, logical Or seen, stop using the values of predicates within this sub-expression until the nearest Close. Then return ⟨true⟩.
- ⟨false⟩Or Current truth value is false, logical Or seen, continue with GetNext to examine truth value of next boolean (sub-)expression.
- ⟨true⟩Close Current truth value is true, Close seen, return ⟨true⟩.
- ⟨false⟩Close Current truth value is false, Close seen, return ⟨false⟩.

```
\prg_new_conditional:Npnn \bool_if:n { T , F , TF } {#1}
{ \if_predicate:w \bool_if_p:n {#1} \prg_return_true: \else: \prg_return_false: \fi: }
```

(End of definition for \bool_if:nTF. This function is documented on page 69.)

To speed up the case of a single predicate, f-expand and check whether the result is one token (possibly surrounded by spaces), which must be \c_true_bool or \c_false_bool. We use a version of \tl_if_single:nTF optimized for speed since we know that an empty #1 is an error. The auxiliary _\bool_if_p_aux:w removes the trailing parenthesis and gets rid of any space, then returns \c_true_bool or \c_false_bool as appropriate. This extra work around is because in a \bool_set:Nn, the underlying \chardef turns
the bool being set temporarily equal to `\relax`, thus assigning a boolean to itself would fail (gh/1055). For the general case, first issue a `\group_align_safe_begin`: as we are using `&&` as syntax shorthand for the And operation and we need to hide it for \TeX. This group is closed after `__bool_get_next:NN` returns `\c_true_bool` or `\c_false_bool`. That function requires the trailing parenthesis to know where the expression ends.

\begin{verbatim}
\cs_new:Npn \bool_if_p:n { \exp_args:Nf __bool_if_p:n }
\cs_new:Npn __bool_if_p:n #1
\tl_if_empty:oT { \use_none:nn #1 . } { __bool_if_p_aux:w }
\group_align_safe_begin:
\exp_after:wN \group_align_safe_end:
\exp:w \exp_end_continue_f:w % (__bool_get_next:NN \use_i:nnnn #1)
\cs_new:Npn __bool_if_p_aux:w #1 \use_i:nnnn #2#3
{ \bool_if:NTF #2 \c_true_bool \c_false_bool }
\end{verbatim}

(End of definition for `\bool_if_p:n`, `__bool_if_p:n`, and `__bool_if_p aux:w`. This function is documented on page 69.)

\begin{verbatim}
__bool_get_next:NN
\end{verbatim}

The GetNext operation. Its first argument is `\use_i:nnnn`, `\use_ii:nnnn`, `\use_iii:nnnn`, or `\use_iv:nnnn` (we call these “states”). In the first state, this function eventually expand to the truth value `\c_true_bool` or `\c_false_bool` of the expression which follows until the next unmatched closing parenthesis. For instance “`__bool_get_next:NN \use_i:nnnn \c_true_bool \& \c_true_bool`” (including the closing parenthesis) expands to `\c_true_bool`. In the second state (after a `!`) the logic is reversed. We call these two states “normal” and the next two “skipping”. In the third state (after `\c_true_bool||`) it always returns `\c_true_bool`. In the fourth state (after `\c_false_bool&&`) it always returns `\c_false_bool` and also stops when encountering `||`, not only parentheses. This code itself is a switch: if what follows is neither `!` nor `|`, we assume it is a predicate.

\begin{verbatim}
\cs_new:Npn __bool_get_next:NN #1#2
{ \use:c
{ __bool_
\if_meaning:w !#2 \else: \if_meaning:w (#2 \else: p \fi: \fi:
:Nw
\else: #1 #2
}
(End of definition for `__bool_get_next:NN`.)
\end{verbatim}

\begin{verbatim}
__bool_!:Nw
\end{verbatim}

The Not operation reverses the logic: it discards the `!` token and calls the GetNext operation with the appropriate first argument. Namely the first and second states are interchanged, but after `\c_true_bool||` or `\c_false_bool&&` the `!` is ignored.

\begin{verbatim}
\cs_new:cpn { __bool_!:Nw } #1#2
\exp_after:wN __bool_get_next:NN #1 \use_ii:nnnn #2#3
{ \bool_if:NTF 2 \c_true_bool \c_false_bool }
581
\end{verbatim}
The Open operation starts a sub-expression after discarding the open parenthesis. This is done by calling GetNext (which eventually discards the corresponding closing parenthesis), with a post-processing step which looks for And, Or or Close after the group.

```latex
\cs_new:cpn { __bool_(:Nw } #1#2
\exp_after:wN \__bool_choose:NNN \exp_after:wN #1
\int_value:w \__bool_get_next:NN \use_i:nnnn
\)
```

The arguments are #1: a function such as \use_i:nnnn, #2: 0 or 1 encoding the current truth value, #3: the next operation, And, Or or Close. We distinguish three cases:

- _bool_():0: according to a combination of #1 and #2. Case 2 is when #1 is \use_iii:nnnn (state 3), namely after \c_true_bool ||. Case 1 is when #1 is \use_i:nnnn and #2 is true or _bool_&:0: when #1 is \use_i:nnnn and #2 is false, for instance for !\c_false_bool. Case 0 _bool_&:1: includes the same with true/false interchanged and the case where #1 is \use_iv:nnnn _bool_&:2: namely after \c_false_bool &&.

- _bool_p:0: When seeing) the current subexpression is done, leave the appropriate boolean.

- _bool_p:1: When seeing & in case 0 go into state 4, equivalent to having seen \c_false_bool &&.

- _bool_p:2: In case 1, namely when the argument is true and we are in a normal state continue in the normal state 1. In case 2, namely when skipping alternatives in an Or, continue in the same state. When seeing | in case 0, continue in a normal state; in particular stop skipping for \c_false_bool && because that binds more tightly than ||. In the other two cases start skipping for \c_true_bool ||.

```latex
\cs_new:Npn \__bool_choose:NNN #1#2#3
\use:c
\{\__bool_ \token_to_str:N #3 _ #1 #2 { \if_meaning:w 0 #2 1 \else: 0 \fi: } 2 0 :\}
```

_bool_p:0:

_bool_p:1:

_bool_p:2:
Go through the list of expressions, stopping whenever an expression is false. If the end is reached without finding any false expression, then the result is true.

\bool_lazy_all_p:n Go through the list of expressions, stopping whenever an expression is false. If the end is reached without finding any false expression, then the result is true.

\bool_lazy_all:nTF Only evaluate the second expression if the first is true. Note that #2 must be removed as an argument, not just by skipping to the else: branch of the conditional since #2 may contain unbalanced \TeX conditionals.

\bool_lazy_any_p:n Go through the list of expressions, stopping whenever an expression is true. If the end is reached without finding any true expression, then the result is false.
\bool_lazy_or_p:nn \bool_lazy_or:nnTF

Only evaluate the second expression if the first is false.

\bool_not_p:n
The Not variant just reverses the outcome of \bool_if_p:n. Can be optimized but this is nice and simple and according to the implementation plan. Not even particularly useful to have it when the infix notation is easier to use.

\bool_xor_p:nn \bool_xor:nnTF
Exclusive or. If the boolean expressions have same truth value, return false, otherwise return true.

48.6 Logical loops

A while loop where the boolean is tested before executing the statement. The “while” version executes the code as long as the boolean is true; the “until” version executes the code as long as the boolean is false.

A do-while loop where the body is performed at least once and the boolean is tested after executing the body. Otherwise identical to the above functions.

```
cs_new:Npn \bool_do_while:Nn #1#2  
{ #2 \bool_if:NT #1 { \bool_do_while:Nn #1 {#2} } }
cs_new:Npn \bool_do_until:Nn #1#2  
{ #2 \bool_if:NF #1 { \bool_do_until:Nn #1 {#2} } }
cs_generate_variant:Nn \bool_do_while:Nn { c }  
cs_generate_variant:Nn \bool_do_until:Nn { c }
```

Loop functions with the test either before or after the first body expansion.

```
cs_new:Npn \bool_while_do:nn #1#2  
{ \bool_if:nT {#1} { \bool_while_do:nn {#1} {#2} } }
cs_new:Npn \bool_do_while:nn #1#2  
{ \bool_if:nT {#1} { \bool_do_while:nn {#1} {#2} } }
cs_new:Npn \bool_until_do:nn #1#2  
{ \bool_if:nF {#1} { \bool_until_do:nn {#1} {#2} } }
cs_new:Npn \bool_do_until:nn #1#2  
{ \bool_if:nF {#1} { \bool_do_until:nn {#1} {#2} } }
```

For boolean cases the overall idea is the same as for \str_case:nnTF as described in \l3str.

```
cs_new:Npn \bool_case:nTF  
\exp:w \__bool_case:nTF
```

(End of definition for \bool_case:nTF and others. These functions are documented on page 71.)

\s__bool_mark
\s__bool_stop

(End of definition for \s__bool_mark and \s__bool_stop.)

\s__bool_mark
\s__bool_stop

(End of definition for \s__bool_mark and \s__bool_stop.)
\cs_new:Npn \bool_case:nTF #1#2#3
\{ \exp:w __bool_case:nTF {#1} {#2} {#3} \}
\cs_new:Npn \bool_case:nF #1
\{ \exp:w __bool_case:nTF {#1} { } \}
\cs_new:Npn \bool_case:n #1
\{ \exp:w __bool_case:nTF {#1} { } { } \}
\cs_new:Npn __bool_case:nTF #1#2#3
\{ __bool_case:w #1 \c_true_bool { } \s__bool_mark {#2} \s__bool_mark {#3} \s__bool_stop \}
\cs_new:Npn __bool_case:w #1#2
\{ \bool_if:nTF {#1} { __bool_case_end:nw {#2} } { __bool_case:w } \}
\cs_new:Npn __bool_case_end:nw #1#2#3 \s__bool_mark #4#5 \s__bool_stop
\{ \exp_end: #1 #4 \}
(End of definition for \bool_case:nTF and others. This function is documented on page 71.)

48.7 Producing multiple copies

\prg_replicate:nn
__prg_replicate:N
__prg_replicate_first:N
__prg_replicate_0:n
__prg_replicate_1:n
__prg_replicate_2:n
__prg_replicate_3:n
__prg_replicate_4:n
__prg_replicate_5:n
__prg_replicate_6:n
__prg_replicate_7:n
__prg_replicate_8:n
__prg_replicate_9:n
__prg_replicate_first_-:n
__prg_replicate_first_0:n
__prg_replicate_first_1:n
__prg_replicate_first_2:n
__prg_replicate_first_3:n
__prg_replicate_first_4:n
__prg_replicate_first_5:n
__prg_replicate_first_6:n
__prg_replicate_first_7:n
__prg_replicate_first_8:n
__prg_replicate_first_9:n

This function uses a cascading csname technique by David Kastrup (who else :-)

The idea is to make the input 25 result in first adding five, and then 20 copies of the code to be replicated. The technique uses cascading csnames which means that we start building several csnames so we end up with a list of functions to be called in reverse order. This is important here (and other places) because it means that we can for instance make the function that inserts five copies of something to also hand down ten to the next function in line. This is exactly what happens here: in the example with 25 then the next function is the one that inserts two copies but it sees the ten copies handed down by the previous function. In order to avoid the last function to insert say, 100 copies of the original argument just to gobble them again we define separate functions to be inserted first. These functions also close the expansion of \exp:w, which ensures that \prg_replicate:nn only requires two steps of expansion.

This function has one flaw though: Since it constantly passes down ten copies of its previous argument it severely affects the main memory once you start demanding hundreds of thousands of copies. Now I don’t think this is a real limitation for any ordinary use, and if necessary, it is possible to write \prg_replicate:nn \{1000\} \{\prg__replicate:nn \{1000\} \{(code)\} \}. An alternative approach is to create a string of m’s with \exp:w which can be done with just four macros but that method has its own problems since it can exhaust the string pool. Also, it is considerably slower than what we use here so the few extra csnames are well spent I would say.
Then comes all the functions that do the hard work of inserting all the copies. The first function takes \texttt{:n} as a parameter.

Then comes all the functions that do the hard work of inserting all the copies. The first function takes \texttt{:n} as a parameter.

Users shouldn’t ask for something to be replicated once or even not at all but...

Users shouldn’t ask for something to be replicated once or even not at all but...

48.8 Detecting \TeX’s mode

\texttt{\mode_if_vertical_p:} For testing vertical mode. Strikes me here on the bus with David, that as long as we are just talking about returning true and false states, we can just use the primitive

\texttt{\mode_if_vertical:TF}
conditionals for this and gobbling the \exp_end: in the input stream. However this requires knowledge of the implementation so we keep things nice and clean and use the return statements.

\begin{verbatim}
\prg_new_conditional:Nnpnn \mode_if_vertical: { p , T , F , TF }
\{ \if_mode_vertical: \prg_return_true: \else: \prg_return_false: \fi: \}
\end{verbatim}
(End of definition for \mode_if_vertical:TF. This function is documented on page 72.)

For testing horizontal mode.

\begin{verbatim}
\prg_new_conditional:Nnpnn \mode_if_horizontal: { p , T , F , TF }
\{ \if_mode_horizontal: \prg_return_true: \else: \prg_return_false: \fi: \}
\end{verbatim}
(End of definition for \mode_if_horizontal:TF. This function is documented on page 71.)

For testing inner mode.

\begin{verbatim}
\prg_new_conditional:Nnpnn \mode_if_inner: { p , T , F , TF }
\{ \if_mode_inner: \prg_return_true: \else: \prg_return_false: \fi: \}
\end{verbatim}
(End of definition for \mode_if_inner:TF. This function is documented on page 72.)

For testing math mode. At the beginning of an alignment cell, this should be used only inside a non-expandable function.

\begin{verbatim}
\prg_new_conditional:Nnpnn \mode_if_math: { p , T , F , TF }
\{ \if_mode_math: \prg_return_true: \else: \prg_return_false: \fi: \}
\end{verbatim}
(End of definition for \mode_if_math:TF. This function is documented on page 72.)

48.9 Internal programming functions

\TeX{}'s alignment structures present many problems. As Knuth says himself in \TeX{}: The Program: “It’s sort of a miracle whenever \halign or \valign work, […]” One problem relates to commands that internally issue a \cr but also peek ahead for the next character for use in, say, an optional argument. If the next token happens to be a \& with category code 4 we get some sort of weird error message because the underlying \futurelet stores the token at the end of the alignment template. This could be a \& causing a message like ! Misplaced \cr. or even worse: it could be the \endtemplate token causing even more trouble! To solve this we have to open a special group so that \TeX{} still thinks it’s on safe ground but at the same time we don’t want to introduce any brace group that may find its way to the output. The following functions help with this by using behaviour documented only in Appendix D of \TeX{}book... In short evaluating ‘{ and ‘} as numbers will not change the counter \TeX{} uses to keep track of its state in an alignment, whereas gobbling a brace using \if_false: will affect \TeX{}'s state without producing any real group. We place the \if_false: \{ \fi: part at that place so that the successive expansions of \group_align_safe_begin/end: are always brace balanced.

\begin{verbatim}
\group_begin:
\tex_catcode:D \^^@ = 2 \exp_stop_f:
\cs_new:Npn \group_align_safe_begin:
\{ \exp:w \if_false: \{ \fi: \}:}
\end{verbatim}
\g__kernel_prg_map_int \par
A nesting counter for mapping.
\begin{verbatim}
\int_new:N \g__kernel_prg_map_int
\end{verbatim}
(End of definition for \g__kernel_prg_map_int.)

\prg_break_point:Nn \prg_map_break:Nn \par
These are defined in \texttt{l3basics}, as they are needed “early”. This is just a reminder that is the case!
\begin{verbatim}
\prg_break_point:Nn \prg_map_break:Nn
\end{verbatim}
(End of definition for \prg_break_point:Nn and \prg_map_break:Nn. These functions are documented on page 72.)

\prg_break_point: \prg_break: \prg_break:n \par
Also done in \texttt{l3basics}.
\begin{verbatim}
\prg_break_point: \prg_break: \prg_break:n
\end{verbatim}
(End of definition for \prg_break_point:, \prg_break:, and \prg_break:n. These functions are documented on page 73.)
Chapter 49

l3sys implementation

49.1 Kernel code

49.1.1 Detecting the engine

___sys_const:nn

Set the T, F, TF, p forms of \#1 to be constants equal to the result of evaluating the boolean expression \#2.

\cs_new_protected:Npn ___sys_const:nn \#1\#2
\{\bool_if:nTF {\#2} {\cs_new_eq:cN { \#1 :T } \use:n \cs_new_eq:cN { \#1 :F } \use_none:n \cs_new_eq:cN { \#1 :TF } \use_i:nn \cs_new_eq:cN { \#1 _p: } \c_true_bool } {\cs_new_eq:cN { \#1 :T } \use_none:n \cs_new_eq:cN { \#1 :F } \use:n \cs_new_eq:cN { \#1 :TF } \use_ii:nn \cs_new_eq:cN { \#1 _p: } \c_false_bool }\}\}

(End of definition for ___sys_const:nn.)

\sys_if_engine_luatex_p:\ sys_if_engine_luatex:TF \sys_if_engine_pdftex:p:\ sys_if_engine_pdftex:TF \sys_if_engine_pptex:p:\ sys_if_engine_pptex:TF \sys_if_engine_uptex:p:\ sys_if_engine_uptex:TF \sys_if_engine_xetex:p:\ sys_if_engine_xetex:TF \c_sys_engine_str

Set up the engine tests on the basis exactly one test should be true. Mainly a case of looking for the appropriate marker primitive.
\c_sys_engine_exec_str \
c_sys_engine_format_str

Take the functions defined above, and set up the engine and format names. \c_sys_engine_exec_str differs from \c_sys_engine_str as it is the actual engine name, not a "filtered" version. It differs for \ptex{} and \uptex{}, which have a leading e, and for \latex{}, because LaTeX uses the LuaHBTeX engine.

\c_sys_engine_format_str is quite similar to \c_sys_engine_str, except that it differentiates \pdflatex{} from \latex{} (which is \pdfTeX{} in DVI mode). This differentiation, however, is reliable only if the user doesn’t change \tex_pdfoutput:D before loading this code.

\begin{verbatim}
\group_begin:
\cs_set_eq:NN \lua_now:e \tex_directlua:D
\str_const:Ne \c_sys_engine_exec_str
\group_end:
\cs_if_exist:NT \fmtname
\bool_lazy_or:nnTF
\{ \str_if_eq_p:Vn \fmtname \plain \}
\{ \str_if_eq_p:Vn \fmtname \LaTeX2e \}
\sys_if_engine_pdftex:T \{ pdf \}
\sys_if_engine_xetex:T \{ xe \}
\sys_if_engine_ptex:T \{ ep \}
\sys_if_engine_uptex:T \{ eup \}
\sys_if_engine_luaTeX:T
\{ lua \lua_now:e
\{ if (pcall(require, 'luaharfbuzz')) then ~
tex.print("hb") ~
end
\}
\end
\group_end:
\cs_if_exist:NTF \fmtname
\{ \bool_lazy_or:nnTF
\{ \str_if_eq_p:Vn \fmtname \plain \}
\{ \str_if_eq_p:Vn \fmtname \LaTeX2e \}
\sys_if_engine_pdftex:T \{ pdf \}
\sys_if_engine_xetex:T \{ xe \}
\end
\end
\end{verbatim}

(End of definition for \sys_if_engine_luaTeX:T and others. These functions are documented on page 75.)
Various different engines, various different ways to extract the data!

\c_sys_engine_version_str

 ситуация различной

\c_sys_engine_version_str

 Different engines, different ways to extract the data!
49.1.2 Platform

Setting these up requires the file module (file lookup), so is actually implemented there.

(End of definition for \sys_if_platform_unix:TF, \sys_if_platform_windows:TF, and \c_sys_platform_str. These functions are documented on page 76.)

49.1.3 Configurations

Loading the backend code is pretty simply: check that the backend is valid, then load it up.

(End of definition for \c_sys_engine_version_str. This variable is documented on page 75.)
\sys_load_backend_check:N \sys_backend_tl
\str_const:N \sys_backend_str { \sys_backend_tl }
\kernel_sys_configuration_load:n
 \l3backend- \sys_backend_str }
}
cs_new_protected:Npn \sys_load_backend_check:N #1
{
 \sys_if_engine_xetex:TF
 {
 \str_case:VnF #1
 {
 { dvisvgm } { }
 { xdvipdfmx } { \tl_gset:Nn #1 { xetex } }
 { xetex } { }
 }
 {
 \msg_error:nnee { sys } { wrong-backend }
 #1 { xetex }
 \tl_gset:Nn #1 { xetex }
 }
 }
 {
 \sys_if_output_pdf:TF
 {
 \str_if_eq:VnTF #1 { pdfmode }
 {
 \sys_if_engine_luatex:TF
 { \tl_gset:Nn #1 { luatex } }
 { \tl_gset:Nn #1 { pdftex } }
 }
 {
 \bool_lazy_or:nnF
 { \str_if_eq_p:Vn #1 { luatex } }
 { \str_if_eq_p:Vn #1 { pdftex } }
 {
 \msg_error:nnee { sys } { wrong-backend }
 #1 { \sys_if_engine_luatex:TF { luatex } { pdftex } }
 \sys_if_engine_luatex:TF
 { \tl_gset:Nn #1 { luatex } }
 { \tl_gset:Nn #1 { pdftex } }
 }
 }
 }
 }
 {
 \str_case:VnF #1
 {
 { dvipdfmx } { }
 { dvips } { }
 { dvisvgm } { }
 }
 {
 \msg_error:nnee { sys } { wrong-backend }
 #1 { dvips }
 }
 }
}
49.1.4 Access to the shell

(sys_get_shell::nnTF
(sys_get_shell::nnN
(sys_get:NN
(sys_get_do:Nw
Setting using a shell is at this level just a slightly specialised file operation, with an additional check for quotes, as these are not supported.
\exp_args:No _sys_get:nnN \tl_to_str:n \{#1\} \{#2\} \#3
\{ \prg_return_false: \}
\cs_new_protected:Npn _sys_get:nnN #1#2#3
{ \tl_if_in:nnTF {#1} { " } { \msg_error:nne \{ kernel \} \{ quote-in-shell \} \{#1\} \prg_return_false: \}
{ \group_begin:
\if_false: { \fi:
\int_set_eq:NN \tex_tracingnesting:D \c_zero_int
\exp_args:No \tex_everyeof:D \{ \c__sys_marker_tl \}
\#2 \scan_stop:
\exp_after:wN _sys_get_do:Nw
\exp_after:wN \#3
\exp_after:wN \prg_do_nothing:
\tex_input:D | "#1" \scan_stop:
\if_false: } \fi:
\prg_return_true:
}
\exp_args:Nno \use:nn
{ \cs_new_protected:Npn _sys_get_do:Nw #1#2
{ \c__sys_marker_tl
\group_end:
\tl_set:No #1 \{#2\}
}
\exp_args:Nno \use:nn
\exp_args:Nno \cs_new_protected:Npn _sys_get_do:Nw \c__sys_marker_tl
{ \group_end:
\tl_set:No \#1 \{\#2\}
}

(End of definition for \sys_get_shell:nnNTF and others. These functions are documented on page 77.)

\c__sys_shell_stream_int
This is not needed for Lua\TeX: shell escape there isn’t done using a \TeX interface.
\sys_if_engine_luatex:F
{ \int_const:Nn \c__sys_shell_stream_int { 18 } }

(End of definition for \c__sys_shell_stream_int.)

\sys_shell_now:n
\sys_shell_now:e
\sys_shell_now:x
_sys_shell_now:e
_sys_shell_stream_int
Execute commands through shell escape immediately.
For Lua\TeX, we use a pseudo-primitive to do the actual work.
\langle/tex\rangle
\langlelua\rangle
do
local os_exec = os.execute
local function shellescape(cmd)
 local status,msg = os_exec(cmd)
 if status == nil then
 write_nl("log","runsystem(" .. cmd .. ")...(.. msg .. ")\n")
 elseif status == 0 then
 write_nl("log","runsystem(" .. cmd .. ")...executed\n")
 end
end

596
else
write_nl("log","runsystem(" .. cmd .. ")...failed " .. (msg or ")") ..
end
end
luacmd("__sys_shell_now:e", function()
shellescape(scan_string())
end, "global", "protected")
</lua>
</tex>
\sys_if_engine_luatex:TF
{
\cs_new_protected:Npn \sys_shell_now:n #1
 { __sys_shell_now:e { \exp_not:n {#1} } }
}
{
\cs_new_protected:Npn \sys_shell_now:n #1
 { \iow_now:Nn \c__sys_shell_stream_int {#1} }
}
\cs_generate_variant:Nn \sys_shell_now:n { e, x }
</tex>
(End of definition for \sys_shell_now:n and __sys_shell_now:e. This function is documented on page 78.)

\sys_shell_shipout:n
\sys_shell_shipout:e
\sys_shell_shipout:x
__sys_shell_shipout:e

Execute commands through shell escape at shipout.

For LuaTeX, we use the same helper as above but delayed using a late Lua whatsit.

Creating a late Lua whatsit works a bit different if we are running under ConTeXt.

local new_latelua = nodes and nodes.nuts and nodes.nuts.pool and nodes.nuts.pool.latelua or (function()
 local whatsit_id = node.id'whatsit'
 local latelua_sub = node.subtype'late_lua'
 local node_new = node.direct.new
 local setfield = node.direct.setwhatsitfield or node.direct.setfield
 return function(f)
 local n = node_new(whatsit_id, latelua_sub)
 setfield(n, 'data', f)
 return n
 end
end)()
local node_write = node.direct.write
luacmd("__sys_shell_shipout:e", function()
local cmd = scan_string()
node_write(new_latelua(function() shellescape(cmd) end))
end, "global", "protected")
</lua>
</tex>
\sys_if_engine_luatex:TF
{
\cs_new_protected:Npn \sys_shell_shipout:n #1
 { __sys_shell_shipout:e { \exp_not:n {#1} } }
}

597
49.2 Dynamic (every job) code

_kernel_sys_everyjob:
 _sys_everyjob:n
 _kernel_sys_everyjob:
 \cs_new_protected:Npn _kernel_sys_everyjob:
 \tl_use:N \texttt{_sys_everyjob:n _kernel_sys_everyjob:}
 \tl_gclear:N \texttt{_sys_everyjob:n _kernel_sys_everyjob:
 \cs_new_protected:Npn _sys_everyjob:n _kernel_sys_everyjob:n
 \tl_gput_right:N \texttt{_sys_everyjob:n _kernel_sys_everyjob:n
 \tl_new:N \texttt{_sys_everyjob:n _kernel_sys_everyjob:n
(End of definition for _kernel_sys_everyjob:, _sys_everyjob:n, and _sys_everyjob_tl.)

49.2.1 The name of the job

\c_sys_jobname_str
Inherited from the \LaTeX3 name for the primitive. This has to be the primitive as it’s
set in \everyjob. If the user does
 \pdf\texttt{latex \texttt{\textbackslash input \texttt{some_file_name}}}
then \everyjob is inserted before \jobname is changed form \texttt{texput}, and thus we would
have the wrong result.
__sys_everyjob:n
 \cs_new_eq:NN \texttt{\c_sys_jobname_str \texttt{\texttt{\texttt{\tex_jobname:}}}}
(End of definition for \c_sys_jobname_str. This variable is documented on page 74.)

49.2.2 Time and date

\c_sys_minute_int
\c_sys_hour_int
\c_sys_day_int
\c_sys_month_int
\c_sys_year_int
Copies of the information provided by \TeX. There is a lot of defensive code in package
mode: someone may have moved the primitives, and they can only be recovered if we
have \texttt{primitive} and it is working correctly. For \texttt{IniT\TeX} of course that is all redundant
but does no harm.
__sys_everyjob:n
 \group_begin:\n \cs_set:Npn __sys_tmp:w \texttt{_sys_everyjob:n
 \str_if_eq:eeTF \texttt{\cs_meaning:N _sys_everyjob:n _token_to_str:N _sys_everyjob:n
 __sys_everyjob:n
 __sys_everyjob:n

598
\bool_lazy_and:nnTF{\sys_if_engine_xetex_p:}{\int_compare_p:nNn{\exp_after:wN \use_none:n \tex_XeTeXrevision:D}{<}{99999}\{0\}\{\tex_primitive:D \#1\}\{0\}}\int_const:Nn \c_sys_minute_int{\int_mod:nn{__sys_tmp:w \time}{60}}\int_const:Nn \c_sys_hour_int{\int_div_truncate:nn{__sys_tmp:w \time}{60}}\int_const:Nn \c_sys_day_int{__sys_tmp:w \day}\int_const:Nn \c_sys_month_int{__sys_tmp:w \month}\int_const:Nn \c_sys_year_int{__sys_tmp:w \year}\group_end:}

(End of definition for \c_sys_minute_int and others. These variables are documented on page 74.)

\c_sys_timestamp_str
A simple expansion: LuaTeX chokes if we use \pdffeedback here, hence the direct use of Lua. Notice that the function there is in the pdf library but is not actually tied to PDF.
__sys_everyjob:n\str_const:Ne \c_sys_timestamp_str\cs_if_exist:NTF \tex_directlua:D\{\tex_directlua:D \{ tex.print(pdf.getcreationdate()) \} \}\{ \tex_creationdate:D \}

(End of definition for \c_sys_timestamp_str. This variable is documented on page 74.)

49.2.3 Random numbers
\sys_rand_seed:
Unpack the primitive.
__sys_everyjob:n\cs_new:Npn \sys_rand_seed: \{ \tex_the:D \tex_randomseed:D \}

(End of definition for \sys_rand_seed:. This function is documented on page 76.)

\sys_gset_rand_seed:n
The primitive always assigns the seed globally.
__sys_everyjob:n\cs_new_protected:Npn \sys_gset_rand_seed:n #1\{ \tex_setrandomseed:D \int_eval:n {#1} \exp_stop_f: \}
In LuaTeX, create a pseudo-primitive, otherwise try to locate the real primitive. The elapsed time will be available if this succeeds.

```latex
\sys_if_engine_luatex:TF
\{ \cs_new:Npn \sys_timer:\ { \__sys_elapsedtime: } \}
\{ \cs_if_exist:NTF \tex_elapsedtime:D \{ \cs_new:Npn \sys_timer:\ { \int_value:w \tex_elapsedtime:D } \} \{ \cs_new:Npn \sys_timer:\ { \int_value:w \msg_error:n { \kernel } { no-elapsed-time } \{ \sys_timer:\ } \c_zero_int \} \} \}
\__sys_const:nn { \sys_if_timer_exist: } \{ \cs_if_exist_p:N \tex_elapsedtime:D \| \cs_if_exist_p:N \__sys_elapsedtime: \}
```

(End of definition for \sys_gset_rand_seed:n. This function is documented on page 77.)

49.2.4 Access to the shell

`\c_sys_shell_escape_int`

Expose the engine’s shell escape status to the user.

```latex
\__sys_everyjob:n
\{ \int_const:Nn \c_sys_shell_escape_int \}
\__sys_if_engine_luatex:TF
\{ \tex_directlua:D
\{ \tex_sprint(status.shell_escape-or-os.execute()) \} \}
```

(End of definition for \sys_timer:, __sys_elapsedtime:, and \sys_if_timer_exist:TF. These functions are documented on page 75.)
Performs a check for whether shell escape is enabled. The first set of functions returns true if either of restricted or unrestricted shell escape is enabled, while the other two sets of functions return true in only one of these two cases.

49.2.5 Held over from l3file

See comments about \c_sys_jobname_str: here, as soon as there is file input/output, things get “tied up”.

49.3 Last-minute code

A simple hook to finalise the system-dependent layer. This is forced by the backend loader, which is forced by the main loader, so we do not need to include that here.
49.3.1 Detecting the output

This is a simple enough concept: the two views here are complementary.

\sys_if_output_dvi_p: \sys_if_output_dvi:TF
\sys_if_output_pdf_p: \sys_if_output_pdf:TF
\c_sys_output_str

(End of definition for \sys_if_output_dvi:TF, \sys_if_output_pdf:TF, and \c_sys_output_str. These functions are documented on page 76.)

49.3.2 Configurations

\g__sys_backend_tl As the backend has to be checked and possibly adjusted, the approach here is to create a variable and use that in a one-shot to set a constant.

\tl_new:N \g__sys_backend_tl
__sys_finalise:n
 __kernel_tl_gset:Ne \g__sys_backend_tl
 \sys_if_engine_xetex:TF
 { xetex }
 \sys_if_output_pdf:TF
 { \sys_if_engine_pdf:TF
 { pdftex }
 \luatex
 }
 { dvips }
 }

If there is a class option set, and recognised, we pick it up: these will over-ride anything set automatically but will themselves be over-written if there is a package option.
\str_case:nN \{\#1\}
{
 { dvipdfmx }
 { \tl_set:Nn \g__sys_backend_tl { dvipdfmx } }
 { dvips }
 { \tl_set:Nn \g__sys_backend_tl { dvips } }
 { dvisvgm }
 { \tl_set:Nn \g__sys_backend_tl { dvisvgm } }
 { pdftex }
 { \tl_set:Nn \g__sys_backend_tl { pdfmode } }
 { xetex }
 { \tl_set:Nn \g__sys_backend_tl { xdvipdfmx } }
}
\clist_remove_all:Nn \@unusedoptionlist \{\#1\}
\}
\}

(End of definition for \g__sys_backend_tl.)

(/tex)

(/package)
Chapter 50

\l3msg implementation

\l__msg_internal_tl A general scratch for the module.
\tl_new:N \l__msg_internal_tl

(End of definition for \l__msg_internal_tl.)

\l__msg_name_str Used to save module info when creating messages.
\l__msg_text_str
\str_new:N \l__msg_name_str
\str_new:N \l__msg_text_str

(End of definition for \l__msg_name_str and \l__msg_text_str.)

50.1 Internal auxiliaries

\s__msg_mark Internal scan marks.
\s__msg_stop
\scan_new:N \s__msg_mark
\scan_new:N \s__msg_stop

(End of definition for \s__msg_mark and \s__msg_stop.)

__msg_use_none_delimit_by_s_stop:w Functions to gobble up to a scan mark.
\cs_new:Npn __msg_use_none_delimit_by_s_stop:w #1 \s__msg_stop { }

(End of definition for __msg_use_none_delimit_by_s_stop:w.)

50.2 Creating messages

Messages are created and used separately, so there two parts to the code here. First, a mechanism for creating message text. This is pretty simple, as there is not actually a lot to do.

\c__msg_text_prefix_tl
\c__msg_more_text_prefix_tl
\tl_const:Nn \c__msg_text_prefix_tl { msg~text~>~ }
\tl_const:Nn \c__msg_more_text_prefix_tl { msg~extra~text~>~ }

604
\msg_if_exist:p:nn Test whether the control sequence containing the message text exists or not.
\msg_if_exist:nnTF
{ \prg_new_conditional:Npnn \msg_if_exist:nn #1#2 { p , T , F , TF }
 \cs_if_exist:cTF { \c__msg_text_prefix_tl #1 / #2 }
 \{ \prg_return_true: \} \{ \prg_return_false: \}
}\}

(End of definition for \c__msg_text_prefix_tl and \c__msg_more_text_prefix_tl.)

__msg_chk_if_free:nn This auxiliary is similar to __kernel_chk_if_free_cs:N, and is used when defining
messages with \msg_new:nnnn.
\cs_new_protected:Npn __msg_chk_free:nn #1 #2
{ \msg_if_exist:nnT {#1} {#2}
 \msg_error:nnnn { msg } { already-defined }
 (#1) (#2)
}\}

(End of definition for __msg_chk_if_free:nn.

\msg_new:nnnn
\msg_new:nnee
\msg_new:nxx
\msg_new:nnx
\msg_gset:nnnn
\msg_gset:nnn
\msg_set:nnnn
\msg_set:nnn
Setting a message simply means saving the appropriate text into two functions. A sanity
check first.
\cs_new_protected:Np \msg_new:nnnn #1#2
{ __msg_chk_free:nn {#1} {#2}
 \msg_gset:nnnn {#1} {#2}
}\}

__msg_chk_if_free:nn

(End of definition for \msg_new:nnnn and others. These functions are documented on page 81.)
50.3 Messages: support functions and text

Simple pieces of text for messages.

\c__msg_coding_error_text_tl
\c__msg_continue_text_tl
\c__msg_critical_text_tl
\c__msg_fatal_text_tl
\c__msg_help_text_tl
\c__msg_no_info_text_tl
\c__msg_on_line_text_tl
\c__msg_return_text_tl
\c__msg_trouble_text_tl

\tl_const:Nn \c__msg_coding_error_text_tl
\{ This-is-a-coding-error. \} \tl_const:Nn \c__msg_continue_text_tl
\{ Type\textless \textasciireturn\textgreater \textendash to-continue \}
\tl_const:Nn \c__msg_critical_text_tl
\{ Reading-the-current-file\textasciigrave \textasciitilde\g_file_curr_name_str\textasciigrave will-stop. \}
\tl_const:Nn \c__msg_fatal_text_tl
\{ This-is-a-fatal-error\textendash LaTeX-will-abort. \}
\tl_const:Nn \c__msg_help_text_tl
\{ For-immediate-help-type-H\textless \textasciireturn\textgreater \}
\tl_const:Nn \c__msg_no_info_text_tl
\{ LaTeX-does-not-know-anything-more-about-this-error,-sorry. \}
\tl_const:Nn \c__msg_return_text_tl
\{ on\textendash line \}
\tl_const:Nn \c__msg_on_line_text_tl
\{ Try-typing\textless \textasciireturn\textgreater \textendash to-proceed. \}
\tl_const:Nn \c__msg_return_text_tl
\{ If-that-doesn’t-work,-type-X\textless \textasciireturn\textgreater \textendash to-quit. \}
\tl_const:Nn \c__msg_trouble_text_tl
\{ More-errors-will-almost-certainly-follow: \}
\tl_const:Nn \c__msg_trouble_text_tl
\{ the-LaTeX-run-should-be-aborted. \}

(End of definition \c__msg_coding_error_text_tl and others.)

\msg_line_number: For writing the line number nicely. \msg_line_context: was set up earlier, so this is not new.

\cs_new:Npn \msg_line_number: \{ \int_use:N \tex_inputlineno:D \}
\cs_gset:Npn \msg_line_context: \{ \}
\c__msg_on_line_text_tl \c_space_tl \msg_line_number:

(End of definition \msg_line_number: and \msg_line_context: These functions are documented on page 82.)
50.4 Showing messages: low level mechanism

The low-level interruption macro is rather opaque, unfortunately. Depending on the availability of more information there is a choice of how to set up the further help. We feed the extra help text and the message itself to a wrapping auxiliary, in this order because we must first setup \TeX’s {\texttt{\textbackslash errhelp}} register before issuing an {\texttt{\textbackslash errmessage}}. To deal with the various cases of critical or fatal errors with and without help text, there is a bit of argument-passing to do.

\begin{verbatim}
\cs_new_protected:Npn __msg_interrupt:Nnnn #1#2#3#4#5
\str_set:Ne \l__msg_text_str { #1 {#2} }
\str_set:Ne \l__msg_name_str { \msg_module_name:n {#2} }
\cs_if_eq:cNTF
{ \c__msg_more_text_prefix_tl #2 / #3 }
__msg_no_more_text:nnnn
{ \use:c { \c__msg_text_prefix_tl #2 / #3 } #4 }
{ \c__msg_continue_text_tl }
{ \use:c { \c__msg_help_text_tl }
\tl_if_empty:NF #5
{ \ \ \ #5 }
}
{ __msg_interrupt_wrap:nnn
{ \use:c { \c__msg_text_prefix_tl #2 / #3 } #4 }
{ \c__msg_no_info_text_tl }
{ \tl_if_empty:NF #5
{ \ \ \ #5 }
}
}
\cs_new:Npn __msg_no_more_text:nnnn #1#2#3#4 { }
\end{verbatim}

(End of definition for \texttt{__msg_interrupt:Nnnn} and \texttt{__msg_no_more_text:nnnn}.)

First setup \TeX’s \texttt{\textbackslash errhelp} register with the extra help \#1, then build a nice-looking error message with \#2. Everything is done using \texttt{e}-type expansion as the new line markers are different for the two type of text and need to be correctly set up. The auxiliary \texttt{__msg_interrupt_more_text:n} receives its argument as a line-wrapped string, which is thus unaffected by expansion. We ave to split the main text into two parts as only the “message” itself is wrapped with a leader: the generic help is wrapped at full width. We also have to allow for the two characters used by \texttt{\textbackslash errmessage} itself.

\begin{verbatim}
\cs_new_protected:Npn __msg_interrupt_wrap:nnn #1#2#3
\iow_wrap:nnnN { \ #3 } { } { } __msg_interrupt_more_text:n
\group_begin:
\int_sub:Nn \l_iow_line_count_int { 2 }
\iow_wrap:nenN { \l__msg_text_str : ~ #1 }
\end{verbatim}

607
The business end of the process starts by producing some visual separation of the message from the main part of the log. The error message needs to be printed with everything made “invisible”: TeX’s own information involves the macro in which `\errmessage` is called, and the end of the argument of the `\errmessage`, including the closing brace. We use an active `!` to call the `\errmessage` primitive, and end its argument with `\usenone:n {⟨spaces⟩}` which fills the output with spaces. Two trailing closing braces are turned into spaces to hide them as well. The group in which we alter the definition of the active `!` is closed before producing the message: this ensures that tokens inserted by typing `I` in the command-line are inserted after the message is entirely cleaned up.

The `__kernel_iow_with:Nnn` auxiliary, defined in `13file`, expects an `⟨integer variable⟩`, an integer `⟨value⟩`, and some `⟨code⟩`. It runs the `⟨code⟩` after ensuring that the `⟨integer variable⟩` takes the given `⟨value⟩`, then restores the former value of the `⟨integer variable⟩` if needed. We use it to ensure that the `\newlinechar` is 10, as needed for `\iow_newline:` to work, and that `\errorcontextlines` is −1, to avoid showing irrelevant context. Note that restoring the former value of these integers requires inserting irrelevant tokens after the `\errmessage`, which go in the way of tokens which could be inserted by the user. This is unavoidable.
50.5 Displaying messages

\textsc{B}\texttt{eiT}\textsc{eX} is handling error messages and so the \textsc{T}\texttt{eX} ones are disabled.

A function for issuing messages: both the text and order could in principle vary. The module name may be empty for kernel messages, hence the slightly contorted code path for space.

\begin{verbatim}
\cs_new:Npn \msg_fatal_text:n #1
{ Fatal ~ \msg_error_text:n {#1} }
\cs_new:Npn \msg_critical_text:n #1
{ Critical ~ \msg_error_text:n {#1} }
\cs_new:Npn \msg_error_text:n #1
{ __msg_text:nn {#1} { Error } }
\cs_new:Npn \msg_warning_text:n #1
{ __msg_text:nn {#1} { Warning } }
\cs_new:Npn \msg_info_text:n #1
{ __msg_text:nn {#1} { Info } }
\cs_new:Npn __msg_text:nn #1#2
{ \exp_args:Nf __msg_text:n { \msg_module_type:n {#1} } \exp_args:Nf __msg_text:n { \msg_module_name:n {#1} } }
\end{verbatim}
For storing public module information: the kernel data is set up in advance.

\prop_new:N \g_msg_module_name_prop
\prop_new:N \g_msg_module_type_prop
\prop_gput:Nnn \g_msg_module_type_prop { LaTeX } { }

(End of definition for \g_msg_module_name_prop and \g_msg_module_type_prop. These variables are documented on page 81.)

\msg_module_type:n
Contextual footer information, with the potential to give modules an alternative name.

\prop_if_in:NnTF \g_msg_module_type_prop {#1}
{ \prop_item:Nn \g_msg_module_type_prop {#1} }
{ Package }

(End of definition for \msg_module_type:n. This function is documented on page 81.)

\msg_module_name:n
\msg_see_documentation_text:n
Contextual footer information, with the potential to give modules an alternative name.

\prop_if_in:NnTF \g_msg_module_name_prop {#1}
{ \prop_item:Nn \g_msg_module_name_prop {#1} }
{#1}

\prop_if_in:NnTF \g_msg_module_name_prop {#1}
{ \prop_item:Nn \g_msg_module_name_prop {#1} }
{ Package }

(End of definition for \msg_module_name:n and \msg_see_documentation_text:n. These functions are documented on page 81.)

__msg_class_new:nn
\group_begin:
\cs_set_protected:Npn __msg_class_new:nn #1#2
{ \prop_new:c { l__msg_redirect_ #1 _prop } \cs_new_protected:cpn { __msg_ #1 _code:nnnnnn } ##1##2##3##4##5##6 {#2} \cs_new_protected:cpn { msg_ #1 :nnnnnn } ##1##2##3##4##5##6 {#2} \cs_new_protected:cpn { msg_ #1 :nnnnnn } ##1##2##3##4##5##6 {#2} \use:e
{ }

610
\exp_not:n { \msg_use:nnnnnn {##1} {##2} }
{ \tl_to_str:n {##3} } { \tl_to_str:n {##4} }
{ \tl_to_str:n {##5} } { \tl_to_str:n {##6} }
}
\cs_new_protected:cpe { msg_ #1 :nnnnn } ##1##2##3##4##5
{ \exp_not:c { msg_ #1 :nnnnnn } {##1} {##2} {##3} {##4} {##5} { } }
\cs_new_protected:cpe { msg_ #1 :nnnn } ##1##2##3##4##5
{ \exp_not:c { msg_ #1 :nnnnn } {##1} {##2} {##3} {##4} {##5} { } }
\cs_new_protected:cpe { msg_ #1 :nnn } ##1##2##3##4##5
{ \exp_not:c { msg_ #1 :nnnn } {##1} {##2} {##3} {##4} {##5} { } }
\cs_new_protected:cpe { msg_ #1 :nn } ##1##2##3##4##5
{ \exp_not:c { msg_ #1 :nnn } {##1} {##2} {##3} {##4} {##5} { } }
\cs_generate_variant:cn { msg_ #1 :nnn } { nnV , nne , nnx }
\cs_generate_variant:cn { msg_ #1 :nnnn } { nnVV , nnVn , nnnV , nnne , nnnx , nnee , nnxx }
\cs_generate_variant:cn { msg_ #1 :nnnnn } { nnee , nxxx , nneee , nnnxx }
\cs_generate_variant:cn { msg_ #1 :nnnnnn } { nneee , nxxxx }

(End of definition for __msg_class_new:nn.)
\msg_fatal:nnnnn
\msg_fatal:nnnee
\msg_fatal:nnnxn
\msg_fatal:nnnxx
\msg_fatal:nnvnn
\msg_fatal:nnvnn
\msg_fatal:nvn
\msg_fatal:nnx
\msg_fatal:nne
\msg_fatal:nnn
(End of definition for \msg_fatal:nnnnnn and others. These functions are documented on page 84.)

Not quite so bad: just end the current file.
\msg_critical:nnnnn
\msg_critical:nnnee
\msg_critical:nnnxx
\msg_critical:nnnxx
\msg_critical:nnnnn
\msg_critical:nnnxx
\msg_critical:nnnxx
\msg_critical:nnnnn
\msg_critical:nnnnn
(End of definition for \msg_critical:nnnnnn and others. These functions are documented on page 84.)

611
For an error, the interrupt routine is called. We check if there is a “more text” by comparing that control sequence with a permanently empty text. We have to undefine the bootstrap versions here.

\cs_undefine:N \msg_error:nnee
\cs_undefine:N \msg_error:nne
\cs_undefine:N \msg_error:nn
__msg_class_new:nn { error }

\msg_error:nnee
\msg_error:nne
\msg_error:nn
\msg_error:nnee
\msg_error:nnn
\msg_error:nn
\msg_error:nne
\msg_error:nn

\msg_error:nnnnnn
\msg_error:nnneee
\msg_error:nnxxxx
\msg_error:nnnnn
\msg_error:nneee
\msg_error:nnxxx
\msg_error:nnnee
\msg_error:nnnxx
\msg_error:nnnn
\msg_error:nnVV
\msg_error:nnVn
\msg_error:nnnV
\msg_error:nnee
\msg_error:nnxx
\msg_error:nnnx
\msg_error:nnne
\msg_error:nnn
\msg_error:nnV
\msg_error:nne
\msg_error:nnx
\msg_error:nn

\msg_note:nnnnnn
\msg_note:nneeee
\msg_note:nnxxxx
\msg_note:nnnnn
\msg_note:nneee
\msg_note:nnxxx
\msg_note:nnnee
\msg_note:nnnxx
\msg_note:nnnn
\msg_note:nnVV
\msg_note:nnVn
\msg_note:nnnV
\msg_note:nnee
\msg_note:nnxx
\msg_note:nnnx
\msg_note:nnne
\msg_note:nnn
\msg_note:nnV
\msg_note:nne
\msg_note:nnx
\msg_note:nn
\msg_info:nnnnnn
\msg_info:nneeee
\msg_info:nnxxxx
\msg_info:nnnnn
\msg_info:nneee
\msg_info:nnxxx
\msg_info:nnnee
\msg_info:nnnxx
\msg_info:nnnn
\msg_info:nnVV
\msg_info:nnVn
\msg_info:nnnV
\msg_info:nnee
\msg_info:nnxx
\msg_info:nnnx
\msg_info:nnne
\msg_info:nnn
\msg_info:nnV
\msg_info:nne
\msg_info:nnx
\msg_info:nn

Warnings and information messages have no decoration. Warnings are printed to the terminal while information can either go to the log or both log and terminal.

\cs_new_protected:Npn __msg_info_aux:NNnnnnnn #1#2#3#4#5#6#7#8
{ \str_set:Ne \l__msg_text_str { #2 {#3} } \str_set:Ne \l__msg_name_str { \msg_module_name:n {#3} } #1 { } \iow_wrap:nenN { \l__msg_text_str : ~ \use:c { \c__msg_text_prefix_tl #3 / #4 } {#5} {#6} {#7} {#8} } { } #1 { } __msg_class_new:nn { warning } \msg_warning:nnnnnn \msg_warning:nneee
\msg_warning:nnxxxx
\msg_warning:nnnn
\msg_warning:nnVV
\msg_warning:nnVn
\msg_warning:nnnV
\msg_warning:nnee
\msg_warning:nnn
\msg_warning:nn
\msg_warning:nnnnnn
\msg_warning:nnneee
\msg_warning:nnxxxx
\msg_warning:nnnnn
\msg_warning:nneee
\msg_warning:nnxxx
\msg_warning:nnnee
\msg_warning:nnnxx
\msg_warning:nnnn
\msg_warning:nnVV
\msg_warning:nnVn
\msg_warning:nnnV
\msg_warning:nnee
\msg_warning:nnxx
\msg_warning:nnnx
\msg_warning:nnne
\msg_warning:nnn
\msg_warning:nnV
\msg_warning:nne
\msg_warning:nnx
\msg_warning:nn
\msg_info:nnnnnn
\msg_info:nneeee
\msg_info:nnxxxx
\msg_info:nnnnn
\msg_info:nneee
\msg_info:nnxxx
\msg_info:nnnee
\msg_info:nnnxx
\msg_info:nnnn
\msg_info:nnVV
\msg_info:nnVn
\msg_info:nnnV
\msg_info:nnee
\msg_info:nnxx
\msg_info:nnnx
\msg_info:nnne
\msg_info:nnn
\msg_info:nnV
\msg_info:nne
\msg_info:nnx
\msg_info:nn

(End of definition for \msg_error:nnnnnnn and others. These functions are documented on page 84.)

612
Log" data is very similar to information, but with no extras added. "Term" is used for communicating with the user through the terminal, like diagnostic messages, and debugging. This is similar to "log" messages, but uses the terminal output.

The none message type is needed so that input can be gobbled.

The show message type is used for \texttt{seq_show:N} and similar complicated data structures. Wrap the given text with a trailing dot (important later) then pass it to \texttt{_msg_class_new:nn \{ show \}}. If there is \texttt{\textasciitilde \textasciitilde} (or if the whole thing starts with \texttt{\textasciitilde \textasciitilde}) we split there, print the first part and show the second part using \texttt{showtokens} (the \texttt{\exp_after:wN} ensure a nice display). Note that this primitive adds a leading \texttt{\textasciitilde \textasciitilde} and trailing dot. That is why we included a trailing dot before wrapping and removed it afterwards. If there is no \texttt{\textasciitilde \textasciitilde} do the same but with an empty second part which adds a spurious but inevitable \texttt{\textasciitilde \textasciitilde}.

\texttt{\msg_class_new:nn \{ none \} \{ \}}

(End of definition for \texttt{_msg_none:nnnnnn} and others. These functions are documented on page 86.)
{ _msg_show:nn {#1} {#2} }
\cs_new_protected:Npn _msg_show:nn #1\#2
{
 \tl_if_empty:nF {#1}
 { \exp_args:No \iow_term:n { \use_none:n #1 } }
 \tl_set:Nn \l__msg_internal_tl {#2}
 __kernel_iow_with:Nnn \tex_newlinechar:D { 10 }
 __kernel_iow_with:Nnn \tex_errorcontextlines:D { -1 }
 \tex_showtokens:D \exp_after:wN \exp_after:wN \exp_after:wN
 \exp_after:wN \l__msg_internal_tl
}
(End of definition for \msg_show:nnnnnn and others. These functions are documented on page 87.)
End the group to eliminate _msg_class_new:nn.
\group_end:
__msg_class_chk_exist:nT
Checking that a message class exists. We build this from \cs_if_free:cTF rather than \cs_if_exist:cTF because that avoids reading the second argument earlier than necessary.
\cs_new:Npn __msg_class_chk_exist:nT #1
{
 \cs_if_free:cTF { __msg_ #1 _code:nnnnnn }
 \msg_error:nnn { msg } { class-unknown } {#1}
}
(End of definition for \msg_show_item:n and others. These functions are documented on page 87.)
\msg_show_item:n
\msg_show_item_unbraced:n
\msg_show_item:nn
\msg_show_item_unbraced:nn
Each item in the variable is formatted using one of the following functions. We cannot use \ and so on because these short-hands cannot be used inside the arguments of messages, only when defining the messages. We need to use ^^J here directly as l3file is not yet loaded.
\cs_new:Npe \msg_show_item:n #1
{ ^^J > ~ \c_space_tl \exp_not:N \tl_to_str:n { {#1} } }
\cs_new:Npe \msg_show_item_unbraced:n #1
{ ^^J > ~ \c_space_tl \exp_not:N \tl_to_str:n {#1} }
\cs_new:Npe \msg_show_item:nn #1#2
{ ^^J > \use:nn { ~ } { ~ }
 \exp_not:N \tl_to_str:n { {#1} }
 \use:nn { ~ } { ~ } => \use:nn { ~ } { ~ }
 \exp_not:N \tl_to_str:n {#2} }
\cs_new:Npe \msg_show_item_unbraced:nn #1#2
{ ^^J > \use:nn { - } { - }
 \exp_not:N \tl_to_str:n { {#1} }
 \use:nn { - } { - } => \use:nn { - } { - }
 \exp_not:N \tl_to_str:n { {#2} } }
(End of definition for \msg_show_item:n and others. These functions are documented on page 87.)
__msg_class_tl \l__msg_class_tl
\tl_new:N \l__msg_class_tl
\tl_new:N \l__msg_current_class_tl

(End of definition for \l__msg_class_tl and \l__msg_current_class_tl.)

\l__msg_current_class_tl \l__msg_redirect_prop
\prop_new:N \l__msg_redirect_prop

(End of definition for \l__msg_redirect_prop.)

\l__msg_hierarchy_seq \l__msg_hierarchy_seq
\seq_new:N \l__msg_hierarchy_seq

(End of definition for \l__msg_hierarchy_seq.)

\l__msg_class_loop_seq \l__msg_class_loop_seq
\seq_new:N \l__msg_class_loop_seq

(End of definition for \l__msg_class_loop_seq.)

__msg_use:nnnnnnn __msg_use_redirect_name:n __msg_use_hierarchy:nwwN __msg_use_redirect_module:n __msg_use_code:

Actually using a message is a multi-step process. First, some safety checks on the message
and class requested. The code and arguments are then stored to avoid passing them
around. The assignment to __msg_use_code: is similar to \tl_set:Nn. The message
is eventually produced with whatever \l__msg_class_tl is when __msg_use_code: is
called. Here is also a good place to suppress tracing output if the trace package is loaded
since all (non-expandable) messages go through this auxiliary.

\cs_if_exist_use:N \conditionally@traceoff
\msg_if_exist:nnTF {#2} {#3}
{
__msg_class_chk_exist:nT {#1}
{
\tl_set:Nn \l__msg_current_class_tl {#1}
\cs_set_protected:Npe __msg_use_code:
{
\exp_not:n
{
\use:c { _msg_ \l__msg_class_tl _code:nnnnnn }
{#2} {#3} {#4} {#5} {#6} {#7}
}
\}
__msg_use_redirect_name:n { #2 / #3 }
}
{ \msg_error:nnnn { msg } { unknown } {#2} {#3} }
\cs_if_exist_use:N \conditionally@traceon
\}
\cs_new_protected:Npn __msg_use_code: { }

615
The first check is for an individual message redirection. If this applies then no further redirection is attempted. Otherwise, split the message name into ⟨module⟩, ⟨submodule⟩ and ⟨message⟩ (with an arbitrary number of slashes), and store {/module/submodule}, {/module} and {}/ into _msg_hierarchy_seq. We then map through this sequence, applying the most specific redirection.

\cs_new_protected:Npn __msg_use_redirect_name:n #1
\prop_get:NnNTF \l__msg_redirect_prop { / #1 } \l__msg_class_tl
\seq_clear:N \l__msg_hierarchy_seq
__msg_use_hierarchy:nwwN { }
#1 \s__msg_mark __msg_use_hierarchy:nwwN
/ \s__msg_mark __msg_use_none_delimit_by_s_stop:w
\s__msg_stop
__msg_use_redirect_module:n { }
\cs_new_protected:Npn __msg_use_hierarchy:nwwN #1#2 / #3 \s__msg_mark #4
\seq_map_inline:Nn \l__msg_hierarchy_seq
\prop_get:cnNTF { l__msg_redirect_ \l__msg_current_class_tl _prop } {##1} \l__msg_class_tl
\seq_map_break:n
\tl_if_eq:NNTF \l__msg_current_class_tl \l__msg_class_tl
{__msg_use_code: } {#1}
\tl_set_eq:NN \l__msg_current_class_tl \l__msg_class_tl
__msg_use_redirect_module:n {##1}
\cs_new_protected:Npn __msg_use_redirect_module:n #1
\seq_map_inline:Nn \l__msg_hierarchy_seq
\prop_get:cnNTF { l__msg_redirect_ \l__msg_current_class_tl _prop } {##1} \l__msg_class_tl
{##1} \l__msg_class_tl
\seq_map_break:n
\tl_if_eq:NNTF \l__msg_current_class_tl \l__msg_class_tl
{__msg_use_code: }
\tl_set_eq:NN \l__msg_current_class_tl \l__msg_class_tl
__msg_use_redirect_module:n {##1}
\str_if_eq:nnT {##1} {#1}

At this point, the items of _msg_hierarchy_seq are the various levels at which we should look for a redirection. Redirections which are less specific than the argument of __msg_use_redirect_module:n are not attempted. This argument is empty for a class redirection, /module for a module redirection, etc. Loop through the sequence to find the most specific redirection, with module ##1. The loop is interrupted after testing for a redirection for ##1 equal to the argument #1 (least specific redirection allowed). When a redirection is found, break the mapping, then if the redirection targets the same class, output the code with that class, and otherwise set the target as the new current class, and search for further redirections. Those redirections should be at least as specific as ##1.

\cs_new_protected:Npn __msg_use_redirect_module:n #1
\seq_map_inline:Nn \l__msg_hierarchy_seq
\prop_get:cnNTF { l__msg_redirect_ \l__msg_current_class_tl _prop } {##1} \l__msg_class_tl
{##1} \l__msg_class_tl
\seq_map_break:n
\tl_if_eq:NNTF \l__msg_current_class_tl \l__msg_class_tl
{__msg_use_code: }
\tl_set_eq:NN \l__msg_current_class_tl \l__msg_class_tl
__msg_use_redirect_module:n {##1}
\str_if_eq:nnT {##1} {#1}
\msg_redirect_name:nnn

Named message always use the given class even if that class is redirected further. An empty target class cancels any existing redirection for that message.

\msg_redirect_class:nn
\msg_redirect_module:nn
_msg_redirect:nnn
_msg_redirect_loop_chk:nnn
_msg_redirect_loop_list:n

If the target class is empty, eliminate the corresponding redirection. Otherwise, add the redirection. We must then check for a loop: as an initialization, we start by storing the initial class in __msg_current_class_tl.

Since multiple redirections can only happen with increasing specificity, a loop requires that all steps are of the same specificity. The new redirection can thus only create a loop with other redirections for the exact same module, \#1, and not submodules. After some initialization above, follow redirections with __msg_current_class_tl, and keep track in __msg_class_loop_seq of the various classes encountered. A redirection from a class to
itself, or the absence of redirection both mean that there is no loop. A redirection to the initial class marks a loop. To break it, we must decide which redirection to cancel. The user most likely wants the newly added redirection to hold with no further redirection. We thus remove the redirection starting from \#2, target of the new redirection. Note that no message is emitted by any of the underlying functions: otherwise we may get an infinite loop because of a message from the message system itself.

\begin{verbatim}
cs_new_protected:Npn __msg_redirect_loop_chk:nnn #1#2#3
\{
 \seq_put_right:Nn \l__msg_class_loop_seq {#1}
 \prop_get:cnNT { l__msg_redirect_ #1_prop } {#3} \l__msg_class_tl
 \{
 \str_if_eq:VnF \l__msg_class_tl {#1}
 \{
 \tl_if_eq:NNTF \l__msg_class_tl \l__msg_current_class_tl
 \{
 \prop_put:cnn { l__msg_redirect_ #2_prop } {#3} {#2}
 \msg_warning:nneee
 \{ \seq_item:Nn \l__msg_class_loop_seq { 1 } \}
 \{ \seq_item:Nn \l__msg_class_loop_seq { 2 } \}
 \{#3\}
 \}
 \}
 \{ \seq_map_function:NN \l__msg_class_loop_seq __msg_redirect_loop_list:n \}
 \seq_map_function:NN \l__msg_class_loop_seq __msg_redirect_loop_list:n
 \}
 \}
\}
\cs_generate_variant:Nn __msg_redirect_loop_chk:nnn { o }
\cs_new:Npn __msg_redirect_loop_list:n #1 { {#1} \rightarrow }
\end{verbatim}

(End of definition for \msg_redirect_class:nn and others. These functions are documented on page 89.)

50.6 Kernel-specific functions

A short-hand used for \int_show:n and similar functions that passes to \tl_show:n the result of applying \#1 (a function such as \vint_eval:n) to the expression \#2. The use of f-expansion ensures that \#1 is expanded in the scope in which the show command is called, rather than in the group created by \iow_wrap:nnn. This is only important for expressions involving the \currentgrouplevel or \currentgrouptype. On the other hand we want the expression to be converted to a string with the usual escape character, hence within the wrapping code.
These are all retained purely for older \texttt{xparse} support.

(End of definition for \texttt{__kernel_msg_shov_eval:Nn}, \texttt{__kernel_msg_log_eval:Nn}, and \texttt{__msg_shov_eval:nnN}.)

\texttt{__kernel_msg_new:nnnn}
\texttt{__kernel_msg_new:nnn}

\begin{verbatim}
9627 \cs_new_protected:Npn __kernel_msg_new:nnnn #1
9628 { \msg_new:nnnn { LaTeX / #1 } }
9629 \cs_new_protected:Npn __kernel_msg_new:nnn #1
9630 { \msg_new:nnn { LaTeX / #1 } }
\end{verbatim}

(End of definition for \texttt{__kernel_msg_new:nnnn} and \texttt{__kernel_msg_new:nnn}.)

\texttt{__kernel_msg_info:nnee}
\texttt{__kernel_msg_warning:nne}
\texttt{__kernel_msg_warning:nnee}
\texttt{__kernel_msg_error:nne}
\texttt{__kernel_msg_error:nnee}
\texttt{__kernel_msg_error:nneee}

\begin{verbatim}
9631 \cs_new_protected:Npn __kernel_msg_info:nnee #1
9632 { \msg_info:nnee { LaTeX / #1 } }
9633 \cs_new_protected:Npn __kernel_msg_warning:nne #1
9634 { \msg_warning:nne { LaTeX / #1 } }
9635 \cs_new_protected:Npn __kernel_msg_warning:nnee #1
9636 { \msg_warning:nnee { LaTeX / #1 } }
9637 \cs_new_protected:Npn __kernel_msg_error:nne #1
9638 { \msg_error:nne { LaTeX / #1 } }
9639 \cs_new_protected:Npn __kernel_msg_error:nnee #1
9640 { \msg_error:nnee { LaTeX / #1 } }
9641 \cs_new_protected:Npn __kernel_msg_error:nneee #1
9642 { \msg_error:nneee { LaTeX / #1 } }
\end{verbatim}

(End of definition for \texttt{__kernel_msg_info:nnee} and others.)

\texttt{__kernel_msg_expandable_error:nnn}
\texttt{__kernel_msg_expandable_error:nnf}
\texttt{__kernel_msg_expandable_error:nnff}

\begin{verbatim}
9643 \cs_new:Npn __kernel_msg_expandable_error:nnn #1
9644 { \msg_expandable_error:nnn { LaTeX / #1 } }
9645 \cs_new:Npn __kernel_msg_expandable_error:nnf #1
9646 { \msg_expandable_error:nnf { LaTeX / #1 } }
9647 \cs_new:Npn __kernel_msg_expandable_error:nnff #1
9648 { \msg_expandable_error:nnff { LaTeX / #1 } }
\end{verbatim}

(End of definition for \texttt{__kernel_msg_expandable_error:nnn} and \texttt{__kernel_msg_expandable_error:nnff}.)

50.7 Internal messages

Error messages needed to actually implement the message system itself.

\begin{verbatim}
9649 \msg_new:nnnn { msg } { already-defined }
9650 { Message-"#2"-for-module-"#1"-already-defined. }
9651 { \c__msg_coding_error_text_tl
9652 LaTeX-was-asked-to-define-a-new-message-called-"#2"
9653 by-the-module-"#1":-this-message-already-exists.
9654 \c__msg_return_text_tl
9655 }
9656 \msg_new:nnnn { msg } { unknown }
9657 { Unknown-message-"#2"-for-module-"#1". }
9658 { \c__msg_coding_error_text_tl
\end{verbatim}

619
LaTeX was asked to display a message called ‘#2’
by the module ‘#1’: this message does not exist.
\c__msg_return_text_tl
\msg_new:nnnn { msg } { class-unknown }
{ Unknown-message-class-‘#1’. }
\msg_new:nnnn { msg } { redirect-loop }
{ Message-redirection-loop-caused-by- {#1} \Rightarrow- {#2}
\tl_if_empty:nF {#3} { -for-module- ‘\use_none:n #3’ } . }
\msg_new:nnnn { msg } { bad-number-of-arguments }
{ Function-‘#1’ cannot be defined with #2 arguments. }
\msg_new:nnnn { msg } { command-already-defined }
{ Control-sequence ‘#1’ already defined. }
\msg_new:nnnn { msg } { empty-search-pattern }
{ Empty-search-pattern. }
\msg_new:nnnn { msg } { command-not-defined }
{ Control-sequence ‘#1’ undefined. }
\msg_new:nnnn { msg } { command-already-defined }
{ Control-sequence ‘#1’ already defined. }
\msg_new:nnnn { msg } { class-unknown }
{ Unknown-message-class-‘#1’. }
\msg_new:nnnn { msg } { redirect-loop }
{ Message-redirection-loop-caused-by- {#1} \Rightarrow- {#2}
\tl_if_empty:nF {#3} { -for-module- ‘\use_none:n #3’ } . }
\msg_new:nnnn { msg } { bad-number-of-arguments }
{ Function-‘#1’ cannot be defined with #2 arguments. }
\msg_new:nnnn { msg } { command-already-defined }
{ Control-sequence ‘#1’ already defined. }
\msg_new:nnnn { msg } { empty-search-pattern }
{ Empty-search-pattern. }
\cs_if_exist:NF \tex_elapsedtime:D
\{
 \msg_new:nnnn { kernel } { no-elapsed-time }
 \{ No-clock-detected-for-#1. \}
 \{ The-current-engine-provides-no-way-to-access-the-system-time. \}
\}
\msg_new:nnn { kernel } { non-base-function }
\{ Function-'#1'-is-not-a-base-function \}
\{
 \\c__msg_coding_error_text_tl
 Functions-defined-through-\iow_char:N\cs_new:Nn-must-have-
 a-signature-consisting-of-only-normal-arguments-'N'-and-'n'.-
 The-signature-'#2'-of-'#1'-contains-other-arguments-'#3'.-
 To-define-variants-use-\iow_char:N\cs_generate_variant:Nn-
 and-to-define-other-functions-use-\iow_char:N\cs_new:Npn.
\}
\msg_new:nnn { kernel } { missing-colon }
\{ Function-'#1'-contains-no-':' \}
\{
 \\c__msg_coding_error_text_tl
 Code-level-functions-must-contain-':'-to-separate-the-
 argument-specification-from-the-function-name.-This-is-
 needed-when-defining-conditionals-or-variants,-or-when-building-a-
 parameter-text-from-the-number-of-arguments-of-the-function.
\}
\msg_new:nnn { kernel } { overflow }
\{ Integers-larger-than-2^{30}-1-cannot-be-stored-in-arrays. \}
\{
 \An-attempt-was-made-to-store-#3-
 \tl_if_empty:nF {#2} { at-position-#2- } in-the-array-#1.-
 \The-largest-allowed-value-#4-will-be-used-instead.
\}
\msg_new:nnn { kernel } { out-of-bounds }
\{ Access-to-an-entry-beyond-an-array’s-bounds. \}
\{
 \An-attempt-was-made-to-access-or-store-data-at-position-#2-of-the-
 array-#1,-but-this-array-has-entries-at-positions-from-1-to-#3.
\}
\msg_new:nnn { kernel } { protected-predicate }
\{ Predicate-‘#1’-must-be-expandable. \}
\{
 \\c__msg_coding_error_text_tl
 LaTeX-has-been-asked-to-define-‘#1’-as-a-protected-predicate.-
 Only-expandable-tests-can-have-a-predicate-version.
\}
\msg_new:nnn { kernel } { randint-backward-range }
\{ Wrong-order-of-bounds-in-\iow_char:N\int_rand:nn{#1}{#2}. \}
\msg_new:nnn { kernel } { conditional-form-unknown }
\{ Conditional-form-‘#1’-for-function-‘#2’-unknown. \}
\{
 \\c__msg_coding_error_text_tl
 LaTeX-has-been-asked-to-define-the-conditional-form-‘#1’-of-
 the-function-‘#2’,-but-only-‘TF’,-’T’,-’F’,-and-’p’-forms-exist.
\}

621
\msg_new:nnnn { kernel } { variant-too-long }
\{ Variant-form-'#1'-longer-than-base-signature-of-'#2'. \ }
\{ \c__msg_coding_error_text_tl \LaTeX\-has\-been\-asked\-to\-create\-a\-variant\-of\-the\-function-'#2'-
with\-a\-signature\-starting\-with-'#1',\-but\-that\-is\-longer\-than-
the\-signature\-(part\-after\-the\-colon)\-of\-'#2'. \ }
\msg_new:nnnn { kernel } { invalid-variant }
\{ Variant-form-'#1'-invalid-for-base-form-'#2'. \ }
\{ \c__msg_coding_error_text_tl \LaTeX\-has\-been\-asked\-to\-create\-a\-variant\-of\-the\-function-'#2'-
with\-a\-signature\-starting\-with-'#1',\-but\-cannot\-change\-an\-argument-
from\-type-'#3'-to-type-'#4'. \ }
\msg_new:nnnn { kernel } { invalid-exp-args }
\{ Invalid-variant-specifier-'#1'-in-'#2'. \ }
\{ \c__msg_coding_error_text_tl \LaTeX\-has\-been\-asked\-to\-create\-an-\iow_char:N\exp_args:N...-
function\-with\-signature-\'N#2'-but-'#1'-is\-not\-a\-valid-argument-
specifier. \ }
\msg_new:nnnn { kernel } { deprecated-variant }
\{ Variant-form-'#1'-deprecated-for-base-form-'#2'.-
One\-should\-not\-change\-an\-argument\-from\-type-'#3'-to-type-'#4'
\str_case:nnF \(#3 \)
\{ \n \} \{ :\-use\-a-\'\token_if_eq_charcode:NNTF #4 c v V'-variant? \ }
\{ N \} \{ :\-base\-form\-only\-accepts\-a\-single\-token\-argument. \ }
\{ #4 \} \{ :\-base\-form\-is\-already\-a\-variant. \ }
\} \{ . \ }
\msg_new:nnnn { char } { active }
\{ Cannot\-generate\-active\-chars. \ }
\msg_new:nnnn { char } { invalid-catcode }
\{ Invalid\-catcode\-for\-char\-generation. \ }
\msg_new:nnnn { char } { null-space }
\{ Cannot\-generate\-null\-char\-as\-a\-space. \ }
\msg_new:nnnn { char } { out-of-range }
\{ Character\-requested\-out\-of\-engine\-range. \ }
\msg_new:nnnn { dim } { zero-of-range }
\{ Zero-unit\-in\-conversion. \ }
\msg_new:nnnn { kernel } { quote-in-shell }
\{ Quotes\-in\-shell\-command-\'#1'. \ }
\msg_new:nnnn { keys } { no-property }
\{ No\-property\-given\-in\-definition\-of\-key-\'#1'. \ }
\{ \c__msg_coding_error_text_tl \Inside\-'keys_define:nn each-key-name-
needs-a-property: \\

622
\msg_new:nnnn { kernel } { variable-not-defined }{ Variable~#1~undefined. }
{ \c__msg_coding_error_text_tl \LaTeX~has~been~asked~to~show~a~variable~#1,~but~this~has~not~been~defined-yet. }

\msg_new:nnnn { kernel } { bad-type }{ Variable~’#1’~is~not~a~valid~#3. }
{ \c__msg_coding_error_text_tl \LaTeX~has~been~asked~to~show~a~variable~#1,~but~this~has~not~been~defined-yet. }

\msg_new:nnnn { clist } { non-clist }{ Variable~’#1’~is~not~a~valid~clist. }
{ \c__msg_coding_error_text_tl \LaTeX~has~been~asked~to~show~a~variable~#1,~but~this~has~not~been~defined-yet. }

Some errors only appear in expandable settings, hence don’t need a “more-text” argument.
Messages used by the “show” functions.

\msg_new:nnn { kernel } { zero-step }
{ Zero-step-size-for-function-#1. }

\msg_new:nnn { clist } { show }
{ The-comma-list- \tl_if_empty:nF {#1} { #1 - } \tl_if_empty:nTF {#2}
Is-empty \lparen newline \}\rparen . }
{ contains-the-items-(without-outer-braces): #2 . }

\msg_new:nnn { intarray } { show }
{ The-integer-array-#1-contains-#2-items: \lparen newline \} #3 \} .

\msg_new:nnn { prop } { show }
{ The-property-list-#1-
\tl_if_empty:nTF {#2}
Is-empty \lparen newline \}\rparen . }
{ contains-the-pairs-(without-outer-braces): #2 . }

\msg_new:nnn { seq } { show }
{ The-sequence-#1-
\tl_if_empty:nTF {#2}
Is-empty \lparen newline \}\rparen . }
{ contains-the-items-(without-outer-braces): #2 . }

\msg_new:nnn { kernel } { show-streams }
\tl_if_empty:nTF {#2} { No- } { The-following- }
\str_case:nn {#1}
{ { ior } { input - } }
{ iow } { output - } }

streams-are-
\tl_if_empty:nTF {#2} { open } { in-use: #2 . }

System layer messages
\msg_new:nnnn { sys } { backend-set }
{ Backend-configuration-already-set. }
\str_case:nn {#1}
{ ior } { input - }
{ iow } { output - } }

streams-are-
\tl_if_empty:nTF {#2} { open } { in-use: #2 . }

\msg_new:nnnn { sys } { wrong-backend }
{ Backend-request-inconsistent-with-engine:-using-’#2’-backend. }
{ You-have-requested-backend-’#1’,-but-this-is-not-suitable-for-use-with-the-
active-engine.-LaTeX-will-use-the-’#2’-backend-instead. }

625
50.8 Expandable errors

In expansion only context, we cannot use the normal means of reporting errors. Instead, we rely on a low-level \TeX error caused by expanding a macro `??` with parameter text “?” (this could be any token) which we used followed by something else (here, a space). This shows the context, which thanks to the odd-looking `\use:n` is

```latex
<argument> \??

! mypkg Error: The error message.
```

In other words, \TeX is processing the argument of `\use:n`, which is `?? <space> ! <error type> : <error message>`. The command built from the csnames `{\c__msg_text_prefix_tl #1 / #2}` takes four arguments and builds the error text, which is fed to `__msg_expandable_error:n` with appropriate expansion: just as for usual messages the arguments are first turned to strings, then the message is fully expanded. The module name also has to be determined.

```latex
\exp_args:Ne \__msg_expandable_error:n
\exp_args:Ne \__msg_text_prefix_tl #1 / #2
\exp_args:Ne \tl_to_str:n {#3}
\exp_args:Ne \tl_to_str:n {#4}
\exp_args:Ne \tl_to_str:n {#5}
\exp_args:Ne \tl_to_str:n {#6}
\msg_error_text:n {#1}
```

(End of definition for `__msg_expandable_error:nn`)
50.9 Message formatting
Chapter 51

l3file implementation

The following test files are used for this code: m3file001.

51.1 Input operations

51.1.1 Variables and constants

\l__ior_internal_tl Used as a short-term scratch variable.
\tl_new:N \l__ior_internal_tl
(End of definition for \l__ior_internal_tl.)

\c__ior_term_ior Reading from the terminal (with a prompt) is done using a positive but non-existent stream number. Unlike writing, there is no concept of reading from the log.
\int_const:Nn \c__ior_term_ior { 16 }
(End of definition for \c__ior_term_ior.)

\g__ior_streams_seq A list of the currently-available input streams to be used as a stack.
\seq_new:N \g__ior_streams_seq
(End of definition for \g__ior_streams_seq.)

\l__ior_stream_tl Used to recover the raw stream number from the stack.
\tl_new:N \l__ior_stream_tl
(End of definition for \l__ior_stream_tl.)

\g__ior_streams_prop The name of the file attached to each stream is tracked in a property list. To get the correct number of reserved streams in package mode the underlying mechanism needs to be queried. For \ lòng\TeX\ 2ε and plain \TeX\ this data is stored in \count16: with the etex package loaded we need to subtract 1 as the register holds the number of the next stream to use. In Con\TeX\, we need to look at \count38 but there is no subtraction: like the original plain \TeX\/l\ongaTEX\ 2ε mechanism it holds the value of the last stream allocated.
\prop_new:N \g__ior_streams_prop
51.1.2 Stream management

\ior_new:N Reserving a new stream is done by defining the name as equal to using the terminal.
\ior_new:c
\cs_new_protected:Npn \ior_new:N \cs_new_eq:NN \cs__ior_term_ior
\cs_generate_variant:Nn \ior_new:N { c }

(End of definition for \ior_new:N. This function is documented on page 91.)

\g_tmpa_ior \g_tmpb_ior The usual scratch space.
\ior_new:N \g_tmpa_ior
\ior_new:N \g_tmpb_ior

(End of definition for \g_tmpa_ior and \g_tmpb_ior. These variables are documented on page 98.)

\ior_open:Nn Use the conditional version, with an error if the file is not found.
\ior_open:cn
\file_get_full_name:nNTF __kernel_file_missing:n {#2} \prg_return_true:
\prg_return_false:

(End of definition for \ior_open:Nn. This function is documented on page 91.)

\l__ior_file_name_tl Data storage.
\tl_new:N \l__ior_file_name_tl

(End of definition for \l__ior_file_name_tl.)

\ior_open:NnTF An auxiliary searches for the file in the \TeX, \LaTeX2ε and \LaTeX3 paths. Then pass the file found to the lower-level function which deals with streams. The full_name is empty when the file is not found.
\ior_open:cnTF
\file_get_full_name:nNTF __kernel_ior_open:No \prg_return_true:
\prg_return_false:

(End of definition for \ior_open:NnTF. This function is documented on page 91.)
Streams are reserved using \texttt{\newread} before they can be managed by \texttt{ior}. To prevent \texttt{ior} from being affected by redefinitions of \texttt{\newread} (such as done by the third-party package \texttt{morewrites}), this macro is saved here under a private name. The complicated code ensures that \texttt{__ior_new:N} is not \texttt{\outer} despite plain \TeX’s \texttt{\newread} being \texttt{\outer}. For Con\TeXt, we have to deal with the fact that \texttt{\newread} works like our own: it actually checks before altering definition.

\begin{verbatim}
\cs_new_protected:Nn __ior_new:N { \cs_new_protected:Nn __ior_new:N \cs_if_exist:NT \contextversion {
\cs_new_eq:NN __ior_new_aux:N __ior_new:N
\cs_gset_protected:Npn __ior_new:N #1 {\cs_undefine:N #1 __ior_new_aux:N #1}
}
\cs_new_protected:Np __kernel_ior_open:Nn #1#2{
\ior_close:N #1 \seq_gpop:NNTF \g__ior_streams_seq \l__ior_stream_tl { __ior_open_stream:Nn #1 {#2} }
{ __ior_new:N #1 __kernel_tl_set:Ne \l__ior_stream_tl \int_eval:n {#1} __ior_open_stream:Nn #1 {#2} }
}
\cs_generate_variant:Nn __kernel_ior_open:Nn { No }
\end{verbatim}

Here, we act defensively in case \LaTeX{} is in use with an extensionless file name.

\begin{verbatim}
\cs_new_protected:Npe __kernel_ior_open:Nn { No }
\end{verbatim}

(End of definition for \texttt{__ior_open:NNTF}.)

__ior_open_stream:Nn

The stream allocation itself uses the fact that there is a list of all of those available. Life gets more complex as it’s important to keep things in sync. That is done using a two-part approach: any streams that have already been taken up by \texttt{ior} but are now free are tracked, so we first try those. If that fails, ask plain \TeX{} or \LaTeX{} for a new stream and use that number (after a bit of conversion).

\begin{verbatim}
\cs_new_protected:Nn __kernel_ior_open:Nn \l__ior_stream_tl
{ __ior_open_stream:Nn \l__ior_stream_tl { \int_eval:n {#1} } __ior_open_stream:Nn \l__ior_stream_tl {#2} }
\end{verbatim}

Here, we act defensively in case \LaTeX{} is in use with an extensionless file name.

\begin{verbatim}
\cs_new_protected:Npe __kernel_ior_open:Nn { No }
\end{verbatim}

(End of definition for \texttt{__kernel_ior_open:Nn} and \texttt{__ior_open_stream:Nn}.)
Actually much easier than either the standard open or input versions! When calling _kernel_ior_open:Nn the file the pipe is added to signal a shell command, but the quotes are not added yet—they are added later by _kernel_file_name_quote:n.

\ior_shell_open:Nn
_ior_shell_open:Nn
_ior_shell_open:oN

\cs_new_protected:Npn \ior_shell_open:Nn \#1\#2
 \sys_if_shell:TF
 _ior_shell_open:oN { \tl_to_str:n {\#2} } \#1
 \msg_error:nn { kernel } { pipe-failed }
\}
\cs_new_protected:Npm _ior_shell_open:oN \#1\#2
 { \tl_if_in:nnTF {\#1} { " } { }
 \msg_error:nne
 _kernel_ior_open:Nn \#2 { \#1]
 \}
\cs_generate_variant:Nn _ior_shell_open:oN { o }
\msg_new:nnnn { kernel } { pipe-failed }
\{ Cannot-run-piped-system-commands. \}
\LaTeX-tried-to-call-a-system-process-but-this-was-not-possible."
 Try-the--shell-escape-(or--enable-pipes)-option.
\}

(End of definition for \ior_shell_open:Nn and _ior_shell_open:oN. This function is documented on page 91.)

\ior_close:N
\ior_close:c

Closing a stream means getting rid of it at the \TeX level and removing from the various data structures. Unless the name passed is an invalid stream number (outside the range [0,15]), it can be closed. On the other hand, it only gets added to the stack if it was not already there, to avoid duplicates building up.

\cs_new_protected:Npm \ior_close:N \#1
 \int_compare:nT { -1 < \#1 < \c__ior_term_ior }
 \tex_closein:D \#1
 \prop_gremove:NV \g__ior_streams_prop \#1
\msg_new:nnnn { kernel } { pipe-failed }
\{ Cannot-run-piped-system-commands. \}
\LaTeX-tried-to-call-a-system-process-but-this-was-not-possible."
 Try-the--shell-escape-(or--enable-pipes)-option.
\}
\cs_generate_variant:Nn \ior_close:N { c }

(End of definition for \ior_close:N. This function is documented on page 92.)

\ior_show:N
\ior_log:N
_ior_show:NN

Seek the stream in the \g__ior_streams_prop list, then show the stream as open or closed accordingly.

\cs_new_protected:Npm \ior_show:N _ior_show:N \tl_show:n
\cs_generate_variant:Nn \ior_show:N \{ c \}
\cs_new_protected:Npm \ior_log:N _ior_log:N \tl_log:n
\cs_generate_variant:Nn \ior_log:N \{ c \}

631
The primitive conditional \cs_new_eq:NN \if_eof:w \tex_ifeof:D

(End of definition for \if_eof:w. This function is documented on page 98.)

\ior_if_eof_p:N \ior_if_eof:NTF

To test if some particular input stream is exhausted the following conditional is provided. The primitive test can only deal with numbers in the range [0,15] so we catch outliers (they are exhausted).

51.1.3 Reading input

\ior_show_list: \ior_log_list: __ior_list:N

Show the property lists, but with some “pretty printing”. See the l3msg module. The first argument of the message is ior (as opposed to iow) and the second is empty if no read stream is open and non-empty (the list of streams formatted using \msg_show_item_unbraced:nn) otherwise. The code of the message show-streams takes care of translating ior/iow to English.

(End of definition for \ior_show_list:, \ior_log_list:, and __ior_list:N. These functions are documented on page 92.)
\begin{verbatim}
\prg_return_false:
 \fi:
\else:
 \prg_return_true:
 \fi:
\else:
 \prg_return_true:
 \fi:
}
\end{verbatim}

(End of definition for \ior_if_eof:NTF. This function is documented on page 95.)

\ior_get:NN
__ior_get:NN
\ior_get:NN
\ior_get:NNTF

And here we read from files.

\begin{verbatim}
\cs_new_protected:Npn \ior_get:NN #1#2
 { \ior_get:NNF #1 #2 { \tl_set:Nn #2 { \q_no_value } } }
\cs_new_protected:Npn __ior_get:NN #1#2
 { \tex_read:D #1 to #2 }
\prg_new_protected_conditional:Npnn \ior_get:NN #1#2 { T , F , TF }
 { \ior_if_eof:NTF #1
 \ior_get:NN #1#2
 \prg_return_true:
 }
\end{verbatim}

(End of definition for \ior_get:NN, __ior_get:NN, and \ior_get:NNTF. These functions are documented on page 93.)

\ior_str_get:NN
__ior_str_get:NN
\ior_str_get:NN
\ior_str_get:NNTF

Reading as strings is a more complicated wrapper, as we wish to remove the endline character and restore it afterwards.

\begin{verbatim}
\cs_new_protected:Npn \ior_str_get:NN #1#2
 { \ior_str_get:NNF #1 #2 { \tl_set:Nn #2 { \q_no_value } } }
\cs_new_protected:Npn __ior_str_get:NN #1#2
 { \exp_args:Nno \use:n
 \int_set:Nn \tex_endlinechar:D { -1 }
 \tex_readline:D #1 to #2
 \int_set:Nn \tex_endlinechar:D
 \int_use:N \tex_endlinechar:D
 }
\prg_new_protected_conditional:Npnn \ior_str_get:NN #1#2 { T , F , TF }
 { \ior_if_eof:NTF #1
 \ior_str_get:NN #1#2
 \prg_return_true:
 }
\end{verbatim}

(End of definition for \ior_str_get:NN, __ior_str_get:NN, and \ior_str_get:NNTF. These functions are documented on page 93.)
Getting from the terminal is better with pretty-printing.

\begin{verbatim}
\cs_new_protected:Npn \ior_get_term:nN #1#2
{ __ior_get_term:NnN __ior_get:NN {#1} #2 }
\cs_new_protected:Npn \ior_str_get_term:nN #1#2
{ __ior_get_term:NnN __ior_str_get:NN {#1} #2 }
\cs_new_protected:Npn __ior_get_term:NnN #1#2#3
{ \group_begin: \tex_escapechar:D = -1 \scan_stop:
 \tl_if_blank:nTF {#2}
 { \exp_args:NNc #1 \c__ior_term_noprompt_ior }
 { \exp_args:NNc #1 \c__ior_term_ior }
 {#2} \tl_set:Nn #3 {#2} \group_end: }
\end{verbatim}

(End of definition for \ior_get_term:nN, \ior_str_get_term:nN, and __ior_get_term:NnN. These functions are documented on page 95.)

\begin{verbatim}
\cs_new:Npn \ior_map_break:
{ \prg_map_break:Nn \ior_map_break: { } }
\cs_new:Npn \ior_map_break:n
{ \prg_map_break:Nn \ior_map_break: }
\end{verbatim}

(End of definition for \ior_map_break: and \ior_map_break:n. These functions are documented on page 94.)

Mapping over an input stream can be done on either a token or a string basis, hence the set up. Within that, there is a check to avoid reading past the end of a file, hence the two applications of \ior_if_eof:N and its lower-level analogue \if_eof:w. This mapping cannot be nested with twice the same stream, as the stream has only one "current line".

\begin{verbatim}
\cs_new_protected:Npm \ior_map_inline:Nn
{ __ior_map_inline:NNn __ior_get:NN }
\cs_new_protected:Npm \ior_str_map_inline:Nn
{ __ior_map_inline:NNn __ior_str_get:NN }
\cs_new_protected:Npm __ior_map_inline:NNn #1#2#3#4
{ \cs_gset_protected:Npn #1 __ior_map_inline:NNn
 \ior_if_eof:NF #3
 { __ior_map_inline_loop:NNN #1#2#3 }
 \prg_break_point:Nn \ior_map_break:
 { \int_gdecr:N \g__kernel_prg_map_int } }
\end{verbatim}
}\cs_new_protected:Npn \ior_map_inline_loop:NNN \s#1 \l__ior_internal_tl
\if_eof:w \s3 \exp_after:wN \ior_map_break:
\fi:
\exp_args:No \s1 \l__ior_internal_tl
\ior_map_inline_loop:NNN \s#1 \s2 \s3
\end{definition_for \ior_map_inline:Nn and others. These functions are documented on page 94.}

\ior_map_variable:NNn
\ior_str_map_variable:NNn
__ior_map_variable:NNn
__ior_map_variable_loop:NNn

Since the \TeX\ primitive (\texttt{\read} or \texttt{\readline}) assigns the tokens read in the same way
as a token list assignment, we simply call the appropriate primitive. The end-of-loop is
checked using the primitive conditional for speed.
\cs_new_protected:Npn \ior_map_variable:NNn { __ior_map_variable:NNn \ior_get:NN }
\cs_new_protected:Npn \ior_str_map_variable:NNn { __ior_map_variable:NNn \ior_str_get:NN }
\cs_new_protected:Npn __ior_map_variable:NNn \s#1 \l__ior_internal_tl
\if_eof:w \s3 { __ior_map_variable_loop:NNn \s#1 \s#2 \s3 {#4} }
\prg_break_point:Nn \ior_map_break: { }
\end{definition_for \ior_map_variable:NNn and others. These functions are documented on page 94.}

51.2 Output operations

\langle \texttt{@@=iow} \rangle

There is a lot of similarity here to the input operations, at least for many of the
basics. Thus quite a bit is copied from the earlier material with minor alterations.

51.2.1 Variables and constants

\l__iow_internal_tl

Used as a short-term scratch variable.
\tl_new:N \l__iow_internal_tl

(End of definition for \l__iow_internal_tl.)

\c_log_iow \c_term_iow

Here we allocate two output streams for writing to the transcript file only (\texttt{\c_log_iow})
and to both the terminal and transcript file (\texttt{\c_term_iow}). Recent \LaTeX\ provides 128
write streams; we also use \texttt{\c_term_iow} as the first non-allowed write stream so its value depends on the engine.

\begin{verbatim}
\int_const:Nn \c_log_iow { -1 }
\int_const:Nn \c_term_iow
{
 \bool_lazy_and:nnTF
 { \sys_if_engine_luatex_p: }
 { \int_compare_p:nNn \tex_luatexversion:D > { 80 } }
 { 128 }
 { 16 }
}
\end{verbatim}

(End of definition for \texttt{\c_log_iow} and \texttt{\c_term_iow}. These variables are documented on page 98.)

\texttt{\g__iow_streams_seq} A list of the currently-available output streams to be used as a stack.

\begin{verbatim}
\seq_new:N \g__iow_streams_seq
\end{verbatim}

(End of definition for \texttt{\g__iow_streams_seq}.)

\texttt{\l__iow_stream_tl} Used to recover the raw stream number from the stack.

\begin{verbatim}
\tl_new:N \l__iow_stream_tl
\end{verbatim}

(End of definition for \texttt{\l__iow_stream_tl}.)

\texttt{\g__iow_streams_prop} As for reads with the appropriate adjustment of the register numbers to check on.

\begin{verbatim}
\prop_new:N \g__iow_streams_prop
\int_step_inline:nnn
{ 0 }
{ \cs_if_exist:NTF \contextversion
{ \tex_count:D 39 ~ }
{ \tex_count:D 17 ~
\cs_if_exist:NT \loccount { - 1 }
}
}
{ \prop_gput:Nnn \g__iow_streams_prop {#1} { Reserved-by-format }
}
\end{verbatim}

(End of definition for \texttt{\g__iow_streams_prop}.)

51.2.2 Internal auxiliaries

\texttt{\s__iow_mark} Internal scan marks.

\begin{verbatim}
\scan_new:N \s__iow_mark
\scan_new:N \s__iow_stop
\end{verbatim}

(End of definition for \texttt{\s__iow_mark} and \texttt{\s__iow_stop}.)

\texttt{_iow_use_i_delimit_by_s_stop:nw} Functions to gobble up to a scan mark.

\begin{verbatim}
\cs_new:Npn _iow_use_i_delimit_by_s_stop:nw #1 #2 \s__iow_stop {#1}
\end{verbatim}

(End of definition for \texttt{_iow_use_i_delimit_by_s_stop:nw}.)
51.3 Stream management

Reserving a new stream is done by defining the name as equal to writing to the terminal:

odd but at least consistent.

(End of definition for \texttt{iow_new:N}.)

The usual scratch space.

(End of definition for \texttt{g_tma_p_iow} and \texttt{g_tmb_p_iow}. These variables are documented on page 98.)

As for read streams, copy \texttt{newwrite}, making sure that it is not \texttt{outer}. For ConTeXt,
we have to deal with the fact that \texttt{newwrite} works like our own: it actually checks
before altering definition.

(End of definition for \texttt{__iow_new:N}.)

Data storage.

(End of definition for \texttt{l__iow_file_name_tl}.)

The same idea as for reading, but without the path and without the need to allow for a
conditional version.

(End of definition for \texttt{l__iow_file_name_tl}.)
__kernel_tl_set:N \l__iow_stream_tl \int_eval:n { #1 } __iow_open_stream:NV \#1 \l__iow_file_name_tl
\cs_generate_variant:Nn \iow_open:Nn { NV , c , cV } \cs_new_protected:Npn __iow_open_stream:Nn #1 #2 {
\tex_global:D \tex_chardef:D #1 = \l__iow_stream_tl \scan_stop:
\prop_gput:NVn \g__iow_streams_prop #1 { #2 } \tex_immediate:D \tex_openout:D
#1 __kernel_file_name_quote:n { #2 } \scan_stop:
} \cs_generate_variant:Nn __iow_open_stream:Nn { NV }

(End of definition for \iow_open:Nn and __iow_open_stream:Nn. This function is documented on page 91.)

\iow_shell_open:Nn __iow_shell_open:nN __iow_shell_open:oN

Very similar to the ior version
\cs_new_protected:Npn \iow_shell_open:Nn #1 #2 {
\sys_if_shell:TF {
__iow_shell_open:nN \tl_to_str:n { #2 } #1 }
{ \msg_error:nn { kernel } { pipe-failed } }
} \cs_new_protected:Npn __iow_shell_open:nN #1 #2 {
\tl_if_in:nnTF { #1 } { " } {
\msg_error:nne { kernel } { quote-in-shell } { #1 }
} { __kernel_iow_open:Nn #2 { | #1 } }
} \cs_generate_variant:Nn __iow_shell_open:nN { o }

(End of definition for \iow_shell_open:Nn and __iow_shell_open:nN. This function is documented on page 91.)

\iow_close:N \iow_close:c

Closing a stream is not quite the reverse of opening one. First, the close operation is
easier than the open one, and second as the stream is actually a number we can use it
directly to show that the slot has been freed up.
\cs_new_protected:Npn \iow_close:N #1 {
\int_compare:nT { \c_log_iow < #1 < \c_term_iow }
{ \tex_immediate:D \tex_closeout:D \#1 \prop_gremove:NV \g__iow_streams_prop \#1 \seq_if_in:NVF \g__iow_streams_seq \#1
\seq_gpush:NV \g__iow_streams_seq \#1 { \#1 } \cs_gset_eq:NN \#1 \c_term_iow }
} \cs_generate_variant:Nn \iow_close:N { c }

(End of definition for \iow_close:N. This function is documented on page 92.)
Seek the stream in the `__iow_streams_prop` list, then show the stream as open or closed accordingly.

```latex
\cs_new_protected:Npn \iow_show:N { \__iow_show:NN \tl_show:n }
\cs_generate_variant:Nn \iow_show:N { c }
\cs_new_protected:Npn \iow_log:N { \__iow_show:NN \tl_log:n }
\cs_generate_variant:Nn \iow_log:N { c }
\cs_new_protected:Npn \__iow_show:NN #1#2
{ \__kernel_chk_defined:NT #2
  { \prop_get:NVNTF \g__iow_streams_prop #2 \l__iow_internal_tl
    { \exp_args:Ne #1
      { \token_to_str:N #2 ~ open: ~ \l__iow_internal_tl }
    }
    { \exp_args:Ne #1
      { \token_to_str:N #2 ~ closed } }
  }
}
```

(End of definition for `\iow_show:N`, `\iow_log:N`, and `__iow_show:NN`. These functions are documented on page 92.)

\begin{itemize}
\item `\iow_show_list:`
\item `\iow_log_list:`
\item `__iow_list:N`
\end{itemize}

Done as for input, but with a copy of the auxiliary so the name is correct.

```latex
\cs_new_protected:Npn \iow_show_list: { \__iow_list:N \msg_show:nneeee }
\cs_new_protected:Npn \iow_log_list: { \__iow_list:N \msg_log:nneeee }
\cs_new_protected:Npn \__iow_list:N #1
{ #1 { kernel } { show-streams }
  { iow }
  { \prop_map_function:NN \g__iow_streams_prop
    \msg_show_item_unbraced:nn }
}
```

(End of definition for `\iow_show_list:`, `\iow_log_list:`, and `__iow_list:N`. These functions are documented on page 92.)

51.3.1 Deferred writing

\begin{itemize}
\item `\iow_shipout_e:Nn`
\item `\iow_shipout_e:Ne`
\item `\iow_shipout_e:cn`
\item `\iow_shipout_e:ce`
\item `\iow_shipout:e`
\item `\iow_shipout:e:Ne`
\item `\iow_shipout:e:cn`
\item `\iow_shipout:e:ce`
\item `\iow_shipout:e:cx`
\end{itemize}

First the easy part, this is the primitive, which expects its argument to be braced.

```latex
\cs_new_protected:Npn \iow_shipout_e:Nn #1#2
{ \tex_write:D #1 {\exp_not:n {#2} } }
\cs_generate_variant:Nn \iow_shipout_e:Nn { Ne , c, ce }
```

(End of definition for `\iow_shipout_e:Nn`. This function is documented on page 96.)

With \TeX available deferred writing without expansion is easy.

```latex
\cs_new_protected:Npn \iow_shipout:Nn #1#2
{ \tex_write:D #1 { \exp_not:n { #2 } } }
\cs_generate_variant:Nn \iow_shipout:Nn { Ne , c, ce }
\cs_generate_variant:Nn \iow_shipout:Nn { Nx , cx }
```

(End of definition for `\iow_shipout:Nn`. This function is documented on page 96.)
51.3.2 Immediate writing

If the integer \#1 is equal to \#2, just leave \#3 in the input stream. Otherwise, pass the old value to an auxiliary, which sets the integer to the new value, runs the code, and restores the integer.

```latex
\cs_new_protected:Npn \__kernel_iow_with:Nnn #1#2
\begin{Verbatim}
\int_compare:nNnTF {#1} = {#2}
\{ \use:n \}
\{ \__iow_with:oNnn \{ \int_use:N #1 \} #1 {#2} \}
\end{Verbatim}
\end{Verbatim}
\cs_new_protected:Npn \__iow_with:nNnn #1#2#3#4
\begin{Verbatim}
\int_set:Nn #2 {#3}
#4
\int_set:Nn #2 {#1}
\end{Verbatim}
\cs_generate_variant:Nn \__iow_with:nNnn { o }
```

(End of definition for __kernel_iow_with:Nnn and __iow_with:nNnn.)

\iow_now:Nn
This routine writes the second argument onto the output stream without expansion. If this stream isn’t open, the output goes to the terminal instead. If the first argument is no output stream at all, we get an internal error. We don’t use the expansion done by \write to get the \texttt{Nx} variant, because it differs in subtle ways from \texttt{x}-expansion, namely, macro parameter characters would not need to be doubled. We set the \newlinechar to 10 using __kernel_iow_with:Nnn to support formats such as plain \TeX; otherwise, \iow_newline would not work. We do not do this for \iow_edge, \iow_shipout:Nn or \iow_shipout_x:Nn, as \TeX looks at the value of the \newlinechar at shipout time in those cases.

```latex
\cs_new_protected:Npn \iow_now:Nn #1#2
\begin{Verbatim}
\__kernel_iow_with:Nnn \tex_newlinechar:D { '^J ' }
\{ \tex_immediate:D \tex_write:D #1 { \exp_not:n {#2} } \}
\end{Verbatim}
\cs_generate_variant:Nn \iow_now:Nn { NV , Ne , c , cV , ce }
\cs_generate_variant:Nn \iow_now:Nn { Nx , cx }
```

(End of definition for \iow_now:Nn. This function is documented on page 95.)

\iow_log:n
Writing to the log and the terminal directly are relatively easy; as we need the two \texttt{e}-type variants for bootstrapping, they are redefinitions here.

```latex
\cs_new_protected:Npn \iow_log:n \cs_set_protected:Npn \iow_log:e \cs_generate_variant:Nn \iow_log:n { x }
```

(End of definition for \iow_log:n and \iow_term:n. These functions are documented on page 95.)
51.3.3 Special characters for writing

\iow_newline: Global variable holding the character that forces a new line when something is written to an output stream.
\cs_new:Npn \iow_newline: { ^^J }

(End of definition for \iow_newline:. This function is documented on page 96.)

\iow_char:N Function to write any escaped char to an output stream.
\cs_new_eq:NN \iow_char:N \cs_to_str:N

(End of definition for \iow_char:N. This function is documented on page 96.)

51.3.4 Hard-wrapping lines to a character count

The code here implements a generic hard-wrapping function. This is used by the messaging system, but is designed such that it is available for other uses.

\l_iow_line_count_int This is the “raw” number of characters in a line which can be written to the terminal. The standard value is the line length typically used by \TeX\ Live and \MiKTeX.\int_new:N \l_iow_line_count_int\int_set:Nn \l_iow_line_count_int { 78 }

(End of definition for \l_iow_line_count_int. This variable is documented on page 98.)

\l__iow_newline_tl The token list inserted to produce a new line, with the \langle run-on text \rangle.\tl_new:N \l__iow_newline_tl

(End of definition for \l__iow_newline_tl.)

\l__iow_line_target_int This stores the target line count: the full number of characters in a line, minus any part for a leader at the start of each line.\int_new:N \l__iow_line_target_int

(End of definition for \l__iow_line_target_int.)

__iow_set_indent:n __iow_unindent:w \l__iow_one_indent_tl \l__iow_one_indent_int

The one_indent variables hold one indentation marker and its length. The __iow_unindent:w auxiliary removes one indentation. The function __iow_set_indent:n (that could possibly be public) sets the indentation in a consistent way. We set it to four spaces by default.
\tl_new:N \l__iow_one_indent_tl\int_new:N \l__iow_one_indent_int\cs_new:Npn __iow_unindent:w \l__iow_one_indent_tl \int_set:Nn \l__iow_one_indent_int { 0 }\cs_new_protected:Npn __iow_set_indent:n \l__iow_one_indent_int \{ __kernel_tl_set:Ne \l__iow_one_indent_tl \exp_args:No __kernel_str_to_other_fast:n \tl_to_str:n \l__iow_one_indent_tl \int_set:Nn \l__iow_one_indent_int \str_count:N \l__iow_one_indent_tl \exp_last_unbraced:NNo \cs_set:Npn __iow_unindent:w \l__iow_one_indent_tl \}
\exp_args:Ne __iow_set_indent:n \prg_replicate:nn \l__iow_one_indent:int { 4 } { - }

(End of definition for __iow_set_indent:n and others.)
The current indentation (some copies of _iow_one_indent_tl) and its number of characters.

(End of definition for _iow_indent_tl and _iow_indent_int.)

These hold the current line of text and a partial line to be added to it, respectively.

(End of definition for _iow_line_tl and _iow_line_part_tl.)

Indicates whether the line was broken precisely at a chunk boundary.

(End of definition for _iow_line_break_bool.)

Used for the expansion step before detokenizing, and for the output from wrapping text: fully expanded and with lines which are not overly long.

(End of definition for _iow_wrap_tl.)

Every special action of the wrapping code is starts with the same recognizable string, \c__iow_wrap_marker_tl. Upon seeing that “word”, the wrapping code reads one space-delimited argument to know what operation to perform. The setting of \text_escapechar here is not very important, but makes \c__iow_wrap_marker_tl look marginally nicer.

(End of definition for \c__iow_wrap_marker_tl and others.)

We set \iow_wrap_allow_break:n to produce an error when outside messages. Within wrapped message, it is set to _iow_wrap_allow_break: when valid and otherwise to _iow_wrap_allow_break_error:. The second produces an error expandably.
\texttt{\cs_new:Npe __iow_wrap_allow_break: { \c__iow_wrap_allow_break_marker_tl }}
\texttt{\cs_new:Npn __iow_wrap_allow_break_error:}
\texttt{\msg_expandable_error:nnnn { kernel } { iow-indent }}
\texttt{\{ \iow_wrap:nnn \} \{ \iow_wrap_allow_break: \}}
\texttt{}}

(End of definition for \iow_wrap_allow_break:, __iow_wrap_allow_break:, and __iow_wrap_allow_break_error:. This function is documented on page 97.)

\texttt{\iow_indent:n __iow_indent:n __iow_indent_error:n}

We set \iow_indent:n to produce an error when outside messages. Within wrapped message, it is set to __iow_indent:n when valid and otherwise to __iow_indent_error:n.

The first places the instruction for increasing the indentation before its argument, and the instruction for unindenting afterwards. The second produces an error expandably. Note that there are no forced line-break, so the indentation only changes when the next line is started.

\texttt{\cs_new_protected:Npn \iow_indent:n #1}
\texttt{\msg_error:nnnnn { kernel } { iow-indent }}
\texttt{\{ \iow_wrap:nnn \} \{ \iow_indent:n \} \{#1\}}
\texttt{\}}
\texttt{\cs_new:Npe __iow_indent:n #1}
\texttt{\c__iow_wrap_indent_marker_tl #1}
\texttt{\c__iow_wrap_unindent_marker_tl}
\texttt{\cs_new:Npn __iow_indent_error:n #1}
\texttt{\msg_expandable_error:nnnnn { kernel } { iow-indent }}
\texttt{\{ \iow_wrap:nnn \} \{ \iow_indent:n \} \{#1\}}
\texttt{\}}

(End of definition for \iow_indent:n, __iow_indent:n, and __iow_indent_error:n. This function is documented on page 97.)

\texttt{\iow_wrap:nnn \iow_wrap:nenN}

The main wrapping function works as follows. First give \textbackslash\textbackslash, \textbackslash\textbackslash\textendash, and other formatting commands the correct definition for messages and perform the given setup \#3.

The definition of \textbackslash\textendash uses an “other” space rather than a normal space, because the latter might be absorbed by \TeX to end a number or other \textbackslash-type expansions. Use \texttt{\conditionally@traceoff} if defined; it is introduced by the \texttt{trace} package and suppresses uninteresting tracing of the wrapping code.

\texttt{\cs_new_protected:Npn \iow_wrap:nnnN #1#2#3#4}
\texttt{\{\group_begin:\}}
\texttt{\cs_if_exist_use:N \conditionally@traceoff}
\texttt{\int_set:Nn \tex_escapechar:D { -1 }}
\texttt{\cs_set:Npe \{ { \token_to_str:N } \}
\texttt{\cs_set:Npe \# { \token_to_str:N \#}}
\texttt{\cs_set:Npe \\textbackslash { \token_to_str:N \\textbackslash}}
\texttt{\cs_set:Npe \% { \token_to_str:N \%}}
\texttt{\cs_set:Npe \textendash { \token_to_str:N \textendash}}

643
Then fully-expand the input: in package mode, the expansion uses \LaTeX{}’s \texttt{\protect} mechanism in the same way as \texttt{\typeout}. In generic mode this setting is useless but harmless. As soon as the expansion is done, reset \texttt{\iow_indent:n} to its error definition: it only works in the first argument of \texttt{\iow_wrap:nnnN}.

Afterwards, set the newline marker (two assignments to fully expand, then convert to a string) and initialize the target count for lines (the first line has target count \texttt{l_iow_line_target_int} instead).

There is then a loop over the input, which stores the wrapped result in \texttt{l_iow_wrap_tl}. After the loop, the resulting text is passed on to the function which has been given as a post-processor. The \texttt{\tl_to_str:N} step converts the “other” spaces back to normal spaces. The \texttt{\f_expansion} removes a leading space from \texttt{l_iow_wrap_tl}.

Escape spaces and change newlines to \texttt{c_iow_wrap_newline_marker_tl}. Set up a few variables, in particular the initial value of \texttt{l_iow_wrap_tl}: the space stops the f-expansion of the main wrapping function and \texttt{\use_none:n} removes a newline marker inserted by later code. The main loop consists of repeatedly calling the \texttt{chunk} auxiliary to wrap chunks delimited by (newline or indentation) markers.
__kernel_tl_set:\Ne \l__iow_wrap_tl
\exp_after:wN __iow_wrap_fix_newline:w \l__iow_wrap_tl
\exp_after:wN __iow_wrap_start:w \l__iow_wrap_tl
\cs_new:Npn __iow_wrap_fix_newline:w \s__iow_stop
\exp_after:wN __iow_wrap_start:w \l__iow_wrap_tl
\cs_new:Npn __iow_wrap_start:w
\boolexpr:ftF { \l__iow_line_break_bool }
\tl_clear:N \l__iow_line_tl
\tl_clear:N \l__iow_line_part_tl
\tl_set:Nn \l__iow_wrap_tl \l\use_none:n
\int_zero:N \l__iow_indent_int
\tl_clear:N \l__iow_indent_tl
__iow_wrap_chunk:nw \l__iow_line_count_int
\cs_set_protected:Npn __iow_tmp:w #1 #2
__iow_wrap_chunk:nw __iow_wrap_next:nw

The chunk and next auxiliaries are defined indirectly to obtain the expansions of \c_catcode_other_space_tl and \c__iow_wrap_marker_tl in their definition. The next auxiliary calls a function corresponding to the type of marker (its ##2), which can be newline or indent or unindent or end. The first argument of the chunk auxiliary is a target number of characters and the second is some string to wrap. If the chunk is empty simply call next. Otherwise, set up a call to __iow_wrap_line:nw, including the indentation if the current line is empty, and including a trailing space (#1) before the __iow_wrap_end_chunk:w auxiliary.
This is followed by \{\langle string\rangle \} \langle int \text{ expr} \rangle ;. It stores the \langle string\rangle and up to \langle int \text{ expr} \rangle characters from the current chunk into \l__iow_line_part_tl. Characters are grabbed 8 at a time and left in \l__iow_line_part_tl by the _iow_line_loop auxiliary. When \(k < 8 \) remain to be found, the _iow_line_aux auxiliary calls the _iow_line_end auxiliary followed by (the single digit) \(k \), then \(7 - k \) empty brace groups, then the chunk's remaining characters. The _iow_line_end auxiliary leaves \(k \) characters from the chunk in the line part, then ends the assignment. Ignore the \texttt{\use:nnnnn} line for now. If the next character is a space the line can be broken there: store what we found into the result and get the next line. Otherwise some work is needed to find a break-point. So far we have ignored what happens if the chunk is shorter than the requested number of characters: this is dealt with by the _iow_line_aux auxiliary, which gets treated like a character by the rest of the code. It ends up being called either as one of the arguments \#2–\#9 of the _iow_line_loop auxiliary or as one of the arguments \#2–\#8 of the _iow_line_end auxiliary. In both cases stop the assignment and work out how many characters are still needed. Notice that when we have exactly seven arguments to clean up, a \texttt{\exp_stop_f:} has to be inserted to stop the \texttt{\exp:w}. The weird \texttt{\use:nnnnn} ensures that the required data is in the right place.
\prg_do_nothing:
\or: \use_none:n
\or: \use_none:nn
\or: \use_none:mm
\or: \use_none:nnn
\or: \use_none:nnnn
\or: __iow_wrap_line seven:nnnnnn
\fi:
\{ } { } { } { } { } { } #3
\}
\cs_new:Npn __iow_wrap_line_seven:nnnnnnn #1#2#3#4#5#6#7 { \exp_stop_f: }
\cs_new:Npn __iow_wrap_line_end:NnnnnnnN #1#2#3#4#5#6#7#8#9
{ #2 #3 #4 #5 #6 #7 #8 \use_none:nnnn \int_eval:w 8 - ; #9 \token_if_eq_charcode:NNTF \c_space_token #9 { __iow_wrap_line_end:nw } { \if_false: { \fi: } __iow_wrap_break:w #9 } }
\cs_new:Npn __iow_wrap_line_end:nw #1
{ __iow_wrap_store_do:n {#1} __iow_wrap_next_line:w }
\cs_set_protected:Npn __iow_tmp:w #1
{ \cs_new:Npn __iow_wrap_break:w
{ \tex_edef:D \l__iow_line_part_tl { \if_false: } \fi: } __iow_wrap_break_first:w __iow_wrap_break_loop:w __iow_wrap_break_end:w
(End of definition for __iow_wrap_line:nw and others.)

Functions here are defined indirectly: __iow_tmp:w is eventually called with an “other” space as its argument. The goal is to remove from \l__iow_line_part_tl the part after the last space. In most cases this is done by repeatedly calling the break_loop auxiliary, which leaves “words” (delimited by spaces) until it hits the trailing space: then its argument ##3 is ? __iow_wrap_break_end:w instead of a single token, and that break_end auxiliary leaves in the assignment the line until the last space, then calls __iow_wrap_line_end:nw to finish up the line and move on to the next. If there is no space in \l__iow_line_part_tl then the break_first auxiliary calls the break_none auxiliary. In that case, if the current line is empty, the complete word (including ##4, characters beyond what we had grabbed) is added to the line, making it over-long. Otherwise, the word is used for the following line (and the last space of the line so far is removed because it was inserted due to the presence of a marker).
\exp_after:wN __iow_wrap_break_first:w
\l__iow_line_part_tl
#1
{ ? __iow_wrap_break_end:w }
\s__iow_mark
}
cs_new:Npn __iow_wrap_break_first:w ##1 #1 ##2
{
\use_none:nn ##2 __iow_wrap_break_none:w
__iow_wrap_break_loop:w ##1 #1 ##2
}
cs_new:Npn __iow_wrap_break_none:w ##1##2 #1 ##3 \s__iow_mark ##4 #1
{
\tl_if_empty:NTF \l__iow_line_tl
{ ##2 ##4 __iow_wrap_line_end:nw { } }
{ __iow_wrap_line_end:nw { __iow_wrap_trim:N } ##2 ##4 #1 }
}
cs_new:Npn __iow_wrap_break_loop:w ##1 #1 ##2 #1 ##3
{
\use_none:n ##3
##1 #1
__iow_wrap_break_loop:w ##2 #1 ##3
}
cs_new:Npn __iow_wrap_break_end:w ##1 #1 ##2 ##3 #1 ##4 \s__iow_mark
{
##1 __iow_wrap_line_end:nw { }
}
\exp_args:NV __iow_tmp:w \c_catcode_other_space_tl
__iow_wrap_next_line:w
The special case where the end of a line coincides with the end of a chunk is detected here, to avoid a spurious empty line. Otherwise, call __iow_wrap_line:nw to find characters for the next line (remembering to account for the indentation).
cs_new_protected:Npn __iow_wrap_next_line:w #1#2 \s__iow_stop
{
\tl_clear:N \l__iow_line_tl
\token_if_eq_meaning:NNTF #1 __iow_wrap_end_chunk:w
{
\tl_clear:N \l__iow_line_part_tl
\bool_set_true:N \l__iow_line_break_bool
__iow_wrap_next:nw { \l__iow_line_target_int }
}
{ \l__iow_line_line:nw
{ \l__iow_indent_tl }
\l__iow_line_target_int - \l__iow_indent_int ;
#1 #2 \s__iow_stop
}
}
__iow_wrap_allow_break:n
This is called after a chunk has been wrapped. The \l__iow_line_part_tl typically ends with a space (except at the beginning of a line?), which we remove since the allow_-

648
break marker should not insert a space. Then move on with the next chunk, making sure to adjust the target number of characters for the line in case we did remove a space.

\cs_new_protected:Npn __iow_wrap_allow_break:n #1
\{__kernel_tl_set:Ne \l__iow_line_tl \l__iow_line_tl __iow_wrap_trim:N \l__iow_line_part_tl \}
\bool_set_false:N \l__iow_line_break_bool
\tl_if_empty:NTF \l__iow_line_part_tl
\{ __iow_wrap_chunk:nw {#1} \}
\{ \exp_args:Nf __iow_wrap_chunk:nw { \int_eval:n { #1 + 1 } } \}
\}

(End of definition for __iow_wrap_allow_break:n.)

__iow_wrap_indent:n __iow_wrap_unindent:n
These functions are called after a chunk has been wrapped, when encountering indent/unindent markers. Add the line part (last line part of the previous chunk) to the line so far and reset a boolean denoting the presence of a line-break. Most importantly, add or remove one indent from the current indent (both the integer and the token list). Finally, continue wrapping.

\cs_new_protected:Npn __iow_wrap_indent:n #1
\{\tl_put_right:Ne \l__iow_line_tl \l__iow_line_part_tl \}
\bool_set_false:N \l__iow_line_break_bool
\int_add:Nn \l__iow_indent_int { \l__iow_one_indent_int }
\tl_put_right:No \l__iow_indent_tl \l__iow_one_indent_tl \l__iow_line_part_tl
__iow_wrap_chunk:nw {#1}
\}

\cs_new_protected:Npn __iow_wrap_unindent:n #1
\{\tl_put_right:Ne \l__iow_line_tl \l__iow_line_part_tl \}
\bool_set_false:N \l__iow_line_break_bool
\int_sub:Nn \l__iow_indent_int { \l__iow_one_indent_int }
__kernel_tl_set:Ne \l__iow_indent_tl \exp_after:wN __iow_unindent:w \l__iow_indent_tl \l__iow_line_target_int
__iow_wrap_chunk:nw {#1}
\}

(End of definition for __iow_wrap_indent:n and __iow_wrap_unindent:n.)

__iow_wrap_newline:n __iow_wrap_end:n
These functions are called after a chunk has been line-wrapped, when encountering a newline/end marker. Unless we just took a line-break, store the line part and the line so far into the whole \l__iow_wrap_tl, trimming a trailing space. In the newline case look for a new line (of length \l__iow_line_target_int) in a new chunk.

\cs_new_protected:Npn __iow_wrap_newline:n #1
\{\bool_if:NF \l__iow_line_break_bool
\{ __iow_wrap_store_do:n { __iow_wrap_trim:N } \}
\bool_set_false:N \l__iow_line_break_bool
__iow_wrap_chunk:nw { \l__iow_line_target_int }
\}

\cs_new_protected:Npn __iow_wrap_end:n #1
\{\bool_if:NF \l__iow_line_break_bool
\{ __iow_wrap_store_do:n { __iow_wrap_trim:N } \}
\}

649
\bool_set_false:N \l__iow_line_break_bool

__iow_wrap_store_do:n

First add the last line part to the line, then append it to \l__iow_wrap_tl with the appropriate new line (with “run-on” text), possibly with its last space removed (#1 is empty or __iow_wrap_trim:N).

\cs_new_protected:Npn __iow_wrap_store_do:n #1

__kernel_tl_set:Ne \l__iow_line_tl { \l__iow_line_tl \l__iow_line_part_tl }
__kernel_tl_set:Ne \l__iow_wrap_tl {
\l__iow_wrap_tl \l__iow_newline_tl #1 \l__iow_line_tl }
\tl_clear:N \l__iow_line_tl

__iow_wrap_trim:N
__iow_wrap_trim:w
__iow_wrap_trim_aux:w

Remove one trailing “other” space from the argument if present.

\cs_set_protected:Npn __iow_tmp:w #1
\cs_new:Npn __iow_wrap_trim:N ##1
{ \exp_after:wN __iow_wrap_trim:w ##1 \s__iow_mark #1 \s__iow_mark \s__iow_stop }
\cs_new:Npn __iow_wrap_trim:w ##1 #1 \s__iow_mark
{ __iow_wrap_trim_aux:w ##1 \s__iow_mark }
\cs_new:Npn __iow_wrap_trim_aux:w ##1 \s__iow_mark ##2 \s__iow_stop {##1}
\exp_args:NV __iow_tmp:w \c_catcode_other_space_tl

__iow_wrap_trim:w, __iow_wrap_trim_aux:w

\tl_new:N \l__file_internal_tl
\str_new:N \g_file_curr_dir_str
\str_new:N \g_file_curr_ext_str
\str_new:N \g_file_curr_name_str

51.4 File operations

\l__file_internal_tl

Used as a short-term scratch variable.

\tl_new:N \l__file_internal_tl

\g_file_curr_dir_str \g_file_curr_ext_str \g_file_curr_name_str

The name of the current file should be available at all times: the name itself is set dynamically.

\str_new:N \g_file_curr_dir_str
\str_new:N \g_file_curr_ext_str
\str_new:N \g_file_curr_name_str

These variables are documented on page 98.
The input list of files is stored as a sequence stack. In package mode we can recover the
information from the details held by \LaTeX\ (we must be in the preamble and loaded
using \usepackage or \RequirePackage). As \LaTeX\ doesn’t store directory and name separately, we stick to the same convention here. In pre-loading, \@currnamestack is empty so is skipped.

\seq_new:N \g__file_stack_seq
\group_begin:
\cs_set_protected:Npn __file_tmp:w #1#2#3
{\tl_if_blank:nTF {#1}
{\cs_set:Npn __file_tmp:w ##1 " ##2 " ##3 \s__file_stop
{ { } {##2} { } }
\seq_gput_right:Ne \g__file_stack_seq
{ \exp_after:wN __file_tmp:w \tex_jobname:D
" \tex_jobname:D " \s__file_stop
}
}
{\seq_gput_right:Nn \g__file_stack_seq { { } {#1} {#2} }
__file_tmp:w
}
\cs_if_exist:NT \@currnamestack
{\tl_if_empty:NF \@currnamestack
{ \exp_after:wN __file_tmp:w \@currnamestack }
}
\group_end:
(End of definition for \g__file_stack_seq.)

The total list of files used is recorded separately from the current file stack, as nothing is
ever popped from this list. The current file name should be included in the file list! We
will eventually copy the contents of \@filelist.

\seq_new:N \g__file_record_seq
(End of definition for \g__file_record_seq.)

For storing the basename and full path whilst passing data internally.

\tl_new:N \l__file_base_name_tl
\tl_new:N \l__file_full_name_tl
(End of definition for \l__file_base_name_tl and \l__file_full_name_tl.)

Used in parsing a path into parts: in contrast to the above, these are never used outside
of the current module.

\str_new:N \l__file_dir_str
\str_new:N \l__file_ext_str
\str_new:N \l__file_name_str
(End of definition for \l__file_dir_str, \l__file_ext_str, and \l__file_name_str.)
\l_file_search_path_seq \seq_new:N \l_file_search_path_seq
(End of definition for \l_file_search_path_seq. This variable is documented on page 99.)
\l_file_tmp_seq Scratch space for comma list conversion.
\seq_new:N \l_file_tmp_seq
(End of definition for \l_file_tmp_seq.)

51.4.1 Internal auxiliaries
\s_file_stop Internal scan marks.
\scan_new:N \s_file_stop
(End of definition for \s_file_stop.)
\q_file_nil Internal quarks.
\quark_new:N \q_file_nil
(End of definition for \q_file_nil.)
__file_quark_if_nil_p:n Branching quark conditional.
__file_quark_if_nil:nTF
__kernel_quark_new_conditional:Nn __file_quark_if-nil:n { TF }
(End of definition for __file_quark_if-nil:nTF.)
\q_file_recursion_tail Internal recursion quarks.
\q_file_recursion_stop
\quark_new:N \q_file_recursion_tail
\quark_new:N \q_file_recursion_stop
(End of definition for \q_file_recursion_tail and \q_file_recursion_stop.)
__file_if_recursion_tail_break:NN Functions to query recursion quarks.
__file_if_recursion_tail_stop_do:Nn
__kernel_file_name_sanitize:n
__file_name_expand:n
__file_name_expand_cleanup:Nw
__file_name_expand_cleanup:w
__file_name_expand_end:
__file_name_expand_error:Nw
__file_name_strip_quotes:n
__file_name_strip_quotes_aux:Nw
__file_name_strip_quotes_aux:w
__file_name_trim_spaces:n
__file_name_trim_spaces:w
__file_name_trim_spaces_aux:n
__file_name_trim_spaces_aux:w
Expanding the file name uses a \csname-based approach, and relies on active characters (for example from UTF-8 characters) being properly set up to expand to an expansion-safe version using \ifcsname. This is less conservative than the token-by-token approach used before, but it is much faster.
We’ll use \texttt{\cs:w} to start expanding the file name, and to avoid creating csnames equal to \texttt{\relax} with “common” names, there’s a prefix \texttt{_file_name=} to the csnames. There’s also a guard token at the end so we can check if there was an error during the process and (try to) clean up gracefully.

\begin{verbatim}
10812 \cs_new:Npn _file_name_expand:n #1
10813 { \exp_after:wN _file_name_expand_cleanup:Nw \cs:w _file_name = #1 \cs_end:
10814 _file_name_expand_end: }

With the csnames built, we grab it, and grab the remaining tokens delimited by \texttt{_file_name_expand_end:}. If there are any remaining tokens, something bad happened, so we’ll call the error procedure \texttt{_file_name_expand_error:Nw}. If everything went according to plan, then use \texttt{\token_to_str:N} on the csnames built, and call \texttt{_file_name_expand_cleanup:w} to remove the prefix we added a while back. \texttt{_file_name_expand_cleanup:w} takes a leading argument so we don’t have to bother about the value of \texttt{\tex_escapechar:D}.

\end{verbatim}

\begin{verbatim}
10817 \exp_last_unbraced:NNNNo \cs_new:Npn _file_name_expand_cleanup:w #1 \tl_to_str:n { _file_name = } { }

In non-error cases \texttt{_file_name_expand_end:} should not expand. It will only do so in case there is a \texttt{\csname} too much in the file name, so it will throw an error (while expanding), then insert the missing \csend: and yet another \texttt{_file_name_expand_end:} that will be used as a delimiter by \texttt{_file_name_expand_cleanup:w} (or that will expand again if yet another \texttt{\endcsname} is missing).

\end{verbatim}

\begin{verbatim}
10826 \cs_new:Npn _file_name_expand_end:
10827 { \msg_expandable_error:nn { kernel } { filename-missing-endcsname } \cs_end: _file_name_expand_end: }

Now to the error case. \texttt{_file_name_expand_error:Nw} adds an extra \csend: so that in case there was an extra \csname in the file name, then \texttt{_file_name_expand_error_aux:Nw} throws the error.

\end{verbatim}

\begin{verbatim}
10834 \cs_new:Npn _file_name_expand_error_aux:Nw #1 #2 \cs_end:

Quoting file name uses basically the same approach as for \texttt{luaquotejobname}: count the " tokens and remove them.

653
Spaces need to be trimmed from the start of the name and from the end of any extension. However, the name we are passed might not have an extension: that means we have to look for one. If there is no extension, we still use the standard trimming function but deliberately prevent any spaces being removed at the end.

(End of definition for __kernel_file_name_sanitize:n and others.)
\c__file_marker_tl

The same idea as the marker for rescanning token lists: this pair of tokens cannot appear in a file that is being input.

\tl_const:Nw \c__file_marker_tl { \token_to_str:N \}

(End of definition for \c__file_marker_tl.)

\file_get:nnN\TF
\file_get:VnN\TF
\file_get:nnN
_file_get_aux:nnN
_file_get_do:Nw

The approach here is similar to that for \tl_set_rescan:Nnn. The file contents are grabbed as an argument delimited by \c__file_marker_tl. A few subtleties: braces in \if_false: ... \fi: to deal with possible alignment tabs, \tracingnesting to avoid a warning about a group being closed inside the \scantokens, and \prg_return_true: is placed after the end-of-file marker.

\cs_new_protected:Npn \file_get:nnN #1#2#3
\cs_generate_variant:Nn \file_get:nnN { V }
\prg_new_protected_conditional:Npnn \file_get:nnN #1#2#3 { T , F , TF }
\prg_generate_conditional_variant:Nnn \file_get:nnN { V } { T , F , TF }
\cs_new_protected:Npe __file_get_aux:nnN #1#2#3
\exp_not:N \if_false: { \exp_not:N \fi: \group_begin: \int_set_eq:NN \tex_tracingnesting:D \c_zero_int \exp_not:N \exp_args:No \tex_everyeof:D \exp_not:N \c__file_marker_tl #2 \scan_stop: \exp_not:N \exp_after:wN \exp_after:wN \exp_not:N __file_get_do:Nw \exp_not:N \tex_input:D \sys_if_engine_luatex:TF \{ \{#1\} \}
\exp_not:N \if_false: \exp_not:N \fi: \exp_not:N \if_false: \exp_not:N \fi: \group_end: \tl_set:No #1 {#2} \exp_not:N \if_false: { \exp_not:N \fi: \group_end: \tl_set:No \l__file_full_name_tl #3 \prg_return_true: \prg_return_true: \exp_not:N \exp_after:wN \exp_after:wN \exp_not:N __file_get_aux:nnN \exp_not:N \c__file_marker_tl\{ \token_to_str:N \}

(End of definition for _kernel_file_name_quote:n and _file_name_quote:nw.)
(End of definition for \file_get:nnTF and others. These functions are documented on page 102.)

A copy of the primitive where it’s available.

(End of definition for \file_size:n.)

File searching can be carried out if the \pdffilesize primitive or an equivalent is available. That of course means we need to arrange for everything else to here to be done by expansion too. We start off by sanitizing the name and quoting if required: we may need to remove those quotes, so the raw name is passed too.

First, we check of the file is just here: no mapping so we do not need the break part of the broader auxiliary. We are using the fact that the primitive here returns nothing if the file is entirely absent. To avoid unnecessary filesystem lookups, the result of \pdffilesize is kept available as an argument. For package mode, \input@path is a token list not a sequence.

To avoid repeated reading of files we need to cache the loading: this is important as the code here is used by all file checks. The same marker is used in the \LaTeX kernel, meaning that we get a double-saving with for example \IfFileExists. As this is all about performance, we use the low-level approach for the conditionals. For a file already seen, the size is reported as −1 so it’s distinct from any non-cached ones.
\cs_new:Npn __file_full_name_auxii:nn #1 #2
\begin{verbatim}
{ \tl_if_blank:nTF {#2}
 \seq_map_tokens:Nn \l_file_search_path_seq
 { __file_full_name_aux:Nnn \seq_map_break:n {#1} }
 \cs_if_exist:NT \input@path
 { \tl_map_tokens:Nn \input@path
 { __file_full_name_aux:Nnn \tl_map_break:n {#1} } }
 __file_name_end:
}{ __file_ext_check:nn {#1} {#2} }
\end{verbatim}

Two pars to the auxiliary here so we can avoid doing quoting twice in the event we find
the right file.

\cs_new:Npn __file_full_name_aux:Nnn #1#2#3
\begin{verbatim}
{ \exp_args:Ne __file_full_name_aux:nN
 { __file_full_name_slash:n {#3} #2 } #1
\end{verbatim}

As \TeX{} automatically adds \texttt{.tex} if there is no extension, there is a little clean up to do
here. First, make sure we are not in the directory part, saving that. Then check for an
extension.
\file_get_full_name:nN \file_get_full_name:VN \file_get_full_name:nNF \file_get_full_name:VNF

These functions pre-date using \text_filesize:D for file searching, so are get functions with protection. To avoid having different search set ups, they are simply wrappers around the code above.

(End of definition for \file_full_name:n and others. This function is documented on page 101.)
\g__file_internal_ior

A reserved stream to test for opening a shell.

\ior_new:N \g__file_internal_ior

(End of definition for \g__file_internal_ior.)

\file_mdfive_hash:n
\file_mdfive_hash:V
\file_size:n
\file_size:V
\file_timestamp:n
\file_timestamp:V
__file_details:nn
__file_details_aux:nn
__file_mdfive_hash:n

Getting file details by expansion is relatively easy if a bit repetitive. As the MD5 function
has a slightly different syntax from the other commands, there is a little cleaning up to
do.

\cs_new:Npn \file_size:n #1
 { __file_details:nn {#1} { size } }
\cs_generate_variant:Nn \file_size:n { V }
\cs_new:Npn \file_timestamp:n #1
 { __file_details:nn {#1} { moddate } }
\cs_generate_variant:Nn \file_timestamp:n { V }
\cs_new:Npn __file_details:nn #1#2
 { \exp_args:Ne __file_details_aux:nn
 { \file_full_name:n {#1} } {#2} }
\cs_new:Npn __file_details_aux:nn #1#2
 { \tl_if_blank:nF {#1}
 { \use:c { tex_file #2 :D } {#1} } {#2} }
\cs_new:Npn \file_mdfive_hash:n #1
 { \exp_args:Ne __file_mdfive_hash:n
 { \file_full_name:n {#1} } }
\cs_generate_variant:Nn \file_mdfive_hash:n { V }
\cs_new:Npn __file_mdfive_hash:n #1
 { \tex_mdfivesum:D file {#1} }

(End of definition for \file_mdfive_hash:n and others. These functions are documented on page 100.)

\file_hex_dump:nnn
\file_hex_dump:Vnn
__file_hex_dump_auxi:nnnn
__file_hex_dump_auxii:nnnn
__file_hex_dump_auxiii:nnnn
__file_hex_dump_auxiv:nnnn
__file_hex_dump:n
__file_hex_dump:V
__file_hex_dump:n

These are separate as they need multiple arguments or the file size. For LuaTEX, the
emulation does not need the file size so we save a little on expansion.
(End of definition for \file_hex_dump:nnn and others. These functions are documented on page 99.)

Non-expandable wrappers around the above in the case where appropriate primitive
support exists.

\begin{verbatim}
\cs_new_protected:Npn \file_get_hex_dump:nN #1#2
\{ \file_get_hex_dump:nNF {#1} #2 { \tl_set:Nn #2 { \q_no_value } } \}
\cs_generate_variant:Nn \file_get_hex_dump:nN { V }
\cs_new_protected:Npn \file_get_mdfive_hash:nN #1#2
\{ \file_get_mdfive_hash:nNF {#1} #2 { \tl_set:Nn #2 { \q_no_value } } \}
\cs_generate_variant:Nn \file_get_mdfive_hash:nN { V }
\cs_new_protected:Npn \file_get_size:nN #1#2
\{ \file_get_size:nNF {#1} #2 { \tl_set:Nn #2 { \q_no_value } } \}
\cs_generate_variant:Nn \file_get_size:nN { V }
\cs_new_protected:Npn \file_get_timestamp:nN #1#2
\{ \file_get_timestamp:nNF {#1} #2 { \tl_set:Nn #2 { \q_no_value } } \}
\cs_generate_variant:Nn \file_get_timestamp:nN { V }
\prg_new_protected_conditional:Npnn \file_get_hex_dump:nN #1#2 { T , F , TF }
\{ __file_get_details:nnN {#1} { hex_dump } #2 \}
\prg_generate_conditional_variant:Nnn \file_get_hex_dump:nN
\{ V \} { T , F , TF }
\prg_new_protected_conditional:Npnn \file_get_mdfive_hash:nN #1#2 { T , F , TF }
\{ __file_get_details:nN {#1} { mdfive_hash } #2 \}
\prg_generate_conditional_variant:Nnn \file_get_mdfive_hash:nN
\{ V \} { T , F , TF }
\prg_new_protected_conditional:Npnn \file_get_size:nN #1#2 { T , F , TF }
\{ __file_get_details:nN {#1} { size } #2 \}
\prg_generate_conditional_variant:Nnn \file_get_size:nN
\{ V \} { T , F , TF }
\prg_new_protected_conditional:Npnn \file_get_timestamp:nN #1#2 { T , F , TF }
\{ __file_get_details:nN {#1} { timestamp } #2 \}
\prg_generate_conditional_variant:Nnn \file_get_timestamp:nN
\{ V \} { T , F , TF }
\cs_new_protected:Npn __file_get_details:nnN #1#2#3
\{ __kernel_tl_set:Ne #3
\{ \use:c { file_ #2 :n } {#1} \}
\tl_if_empty:NTF #3
\{ \prg_return_false: \}
\{ \prg_return_true: \}
\}

(End of definition for \file_get_hex_dump:nNTF and others. These functions are documented on page 99.)
\end{verbatim}

Custom code due to the additional arguments.

\begin{verbatim}
\file_get_hex_dump:nnN
\file_get_hex_dump:VnnN
\file_get_hex_dump:nnNTF
\file_get_hex_dump:VnnNTF
\end{verbatim}
\ps@{\{ \prg_return_false: \}\
\prg_generate_conditional_variant:Nnn \file_get_hex_dump:nnnN { V } { T , F , TF }
__file_str_cmp:nn}
\cs_new_eq:NN __file_str_cmp:nn \tex_strcmp:D
(End of definition for __file_str_cmp:nn. This function is documented on page 99.)
\file_compare_timestamp_p:nNn \file_compare_timestamp_p:nNV \file_compare_timestamp_p:VNn \file_compare_timestamp_p:VNV
\file_compare_timestamp:nNn \file_compare_timestamp:nNV \file_compare_timestamp:VNn \file_compare_timestamp:VNV
__file_compare_timestamp:nnN __file_timestamp:n
Comparison of file date can be done by using the low-level nature of the string comparison functions.
\cs_new:Npn __file_compare_timestamp:nnN #1#2#3
\tl_if_blank:nTF {#1}
\if_charcode:w #3 <
\prg_return_true:
\else:
\prg_return_false:
\fi:
\tl_if_blank:nTF {#2}
\if_charcode:w #3 >
\prg_return_true:
\else:
\prg_return_false:
\fi:
{\if_int_compare:w
__file_str_cmp:nn
\tl_if_blank:n {#1}
\tl_if_blank:n {#2}
\tl_if_blank:n {#3}
\if_charcode:w \c_zero_int
\prg_return_true:
\else:
\prg_return_false:
The test for the existence of a file is a wrapper around the function to add a path to a file. If the file was found, the path contains something, whereas if the file was not located then the return value is empty.

\begin{verbatim}
prg_new_conditional:Npnn \file_if_exist:n #1 { p , T , F , TF }
{
 tl_if_blank:eTF { \file_full_name:n {#1} }
 { \prg_return_false: }
 { \prg_return_true: }
}
prg_generate_conditional_variant:Nnn \file_if_exist:n { V } { p , T , F , TF }
\end{verbatim}

(End of definition for \file_if_exist:nTF. This function is documented on page 99.)

Input of a file with a test for existence. We do not define the T or TF variants because the most useful place to place the \textit{true code} would be inconsistent with other conditionals.

\begin{verbatim}
cs_new_protected:Npn \file_if_exist_input:n #1
{\file_get_full_name:nNT {#1} \l__file_full_name_tl
{ __file_input:V \l__file_full_name_tl }
}
cs_generate_variant:Nn \file_if_exist_input:n { V }
cs_new_protected:Npm \file_if_exist_input:nF #1#2
{\file_get_full_name:nNTF {#1} \l__file_full_name_tl
{ __file_input:V \l__file_full_name_tl }
{#2}}
cs_generate_variant:Nn \file_if_exist_input:nF { V }
\end{verbatim}

(End of definition for \file_if_exist_input:n and \file_if_exist_input:nF. These functions are documented on page 102.)

\begin{verbatim}
cs_new_protected:Npm \file_input_stop: \tex_endinput:D
\end{verbatim}

(End of definition for \file_input_stop:. This function is documented on page 103.)

An error message for a missing file, also used in \ior_open:NNn.

\begin{verbatim}
cs_new_protected:Npm __kernel_file_missing:n
\msg_error:nne { kernel } { file-not-found }
{ __kernel_file_name_sanitize:n {#1} }
\end{verbatim}

(End of definition for __kernel_file_missing:n.)
Loading a file is done in a safe way, checking first that the file exists and loading only if it does. Push the file name on the \texttt{__file_stack_seq}, and add it to the file list, either \texttt{__file_record_seq}, or \texttt{@filelist} in package mode.

```
\cs_new_protected:Npn \file_input:n #1
  \file_get_full_name:nNTF {#1} \l__file_full_name_tl
  \__file_input:V \l__file_full_name_tl
  \__kernel_file_missing:n {#1}
\endcsname
\cs_generate_variant:Nn \file_input:n { V }
\cs_new_protected:Npe \__file_input:n #1
  \exp_not:N \clist_if_exist:NTF \exp_not:N \@filelist
  \exp_not:N \@addtofilelist {#1}
  \seq_gput_right:Nn \exp_not:N \g__file_record_seq {#1}
  \__file_input_push:n {#1}
  \tex_input:D
  \sys_if_engine_luatex:TF
    {#1}
  \exp_not:N \__kernel_file_name_quote:n {#1} \scan_stop:
  \__file_input_pop:
\endcsname
\cs_generate_variant:Nn \__file_input:n { V }
```

Keeping a track of the file data is easy enough: we store the separated parts so we do not need to parse them twice.

```
\cs_new_protected:Npm \__file_input_push:n #1
  \seq_gpush:Ne \g__file_stack_seq
  \__file_parse_full_name:nNNN {#1}
  \l__file_dir_str \l__file_name_str \l__file_ext_str
  \str_gset_eq:NN \g_file_curr_dir_str \l__file_dir_str
  \str_gset_eq:NN \g_file_curr_name_str \l__file_name_str
  \str_gset_eq:NN \g_file_curr_ext_str \l__file_ext_str
\endcsname
```

```
\cs_new_eq:NN \__kernel_file_input_push:n \__file_input_push:n
\cs_new_protected:Npn \__file_input_pop:
  \seq_gpop:NN \g__file_stack_seq \l__file_internal_tl
  \__file_input_pop:nnn \l__file_internal_tl
\endcsname
```

(End of definition for \texttt{\file_input:n} and others. This function is documented on page 102.)
No error checking, no tracking.

\cs_new:Npn \file_input_raw:n #1
\{ \exp_args:Ne __file_input_raw:nn \file_full_name:n {#1} {#1} \}
\cs_generate_variant:Nn \file_input_raw:n { V }
\cs_new:Npe __file_input_raw:nn #1#2
\{ \exp_not:N \tl_if_blank:nTF {#1} { \exp_not:N \exp_args:Nnne \exp_not:N \msg_expandable_error:nnn
\{ kernel \} \{ file-not-found \}
\{ \exp_not:N __kernel_file_name_sanitize:n {#2} \}
\}
\exp_not:N \tex_input:D
\sys_if_engine_luatex:TF
{ {#1} }
\{ \exp_not:N __kernel_file_name_quote:n {#1} \scan_stop: \}
\exp_args_generate:n { nne }

\file_parse_full_name:n
\file_parse_full_name:V
\file_parse_full_name_apply:n
\file_parse_full_name_apply:VN

The main parsing macro \file_parse_full_name_apply:nN passes the file name #1 through __kernel_file_name_sanitize:n so that we have a single normalised way to treat files internally. \file_parse_full_name:n uses the former, with \prg_do_nothing: to leave each part of the name within a pair of braces.

__file_parse_full_name_area:nw

splits the file name into chunks separated by /, until the last one is reached. The last chunk is the file name plus the extension, and everything before that is the path. When __file_parse_full_name_area:nw is done, it leaves the path within braces after the scan mark \s__file_stop and proceeds parsing the actual file name.
__file_parse_full_name_base:nw does roughly the same as above, but it separates
the chunks at each period. However here there’s some extra complications: In case #1
is empty, it is assumed that the extension is actually empty, and the file name is #2.
Besides, an extra . has to be added to #2 because it is later removed in __file_parse_full_name_tidy:nnnN. In any case, if there’s an extension, it is returned with a
leading ..

__file_parse_full_name_base:nw

\cs_new:Npn __file_parse_full_name_base:nw #1 #2 . #3 \s__file_stop
{
 \tl_if_empty:nTF {#3}
 { \tl_if_empty:nTF {#1}
 { \tl_if_empty:nTF {#2}
 { __file_parse_full_name_tidy:nnnN { } { } }
 { __file_parse_full_name_tidy:nnnN { #1 } { } }
 }
 { __file_parse_full_name_tidy:nnnN {#1} { #2 } }
 }
 { __file_parse_full_name_base:nw { #1 . #2 } #3 \s__file_stop }
}

Now we just need to tidy some bits left loose before. The loop used in the two macros
above start with a leading / and . in the file path an name, so here we need to remove
them, except in the path, if it is a single /, in which case it’s left as is. After all’s done,
pass to #4.

\cs_new:Npn __file_parse_full_name_tidy:nnnN #1 #2 #3 #4
{
 \exp_args:Nee #4
 { \str_if_eq:nnF {#3} { / } { \use_none:n } #3 \prg_do_nothing:
 \use_none:n #1 \prg_do_nothing: }
 {#2}
}

(End of definition for \file_parse_full_name:n and others. These functions are documented on page 102.)
\file_show_list: A function to list all files used to the log, without duplicates. In package mode, if \@filelist is still defined, we need to take this list of file names into account (we capture it \AtBeginDocument into \g__file_record_seq, turning it to a string (this does not affect the commas of this comma list).

\file_log_list: (End of definition for \file_parse_full_name:nNNN. This function is documented on page 101.)

__file_list:N When used as a package, there is a need to hold onto the standard file list as well as the new one here. File names recorded in \@filelist must be turned to strings before being added to \g__file_record_seq.

(End of definition for \file_show_list: and others. These functions are documented on page 103.)

51.5 GetIdInfo

As documented in expl3.dtx this function extracts file name etc from an SVN Id line. This used to be how we got version number and so on in all modules, so it had to be defined in l3bootstrap. Now it’s more convenient to define it after we have set up quite a lot of tools, and l3file seems the least unreasonable place for it.
The idea here is to extract out the information needed from a standard SVN Id line, but to avoid a line that would get changed when the file is checked in. Hence the fact that none of the lines here include both a dollar sign and the Id keyword!

```
cs_new_protected:Npn\GetIdInfo
  {
    \tl_clear_new:N\ExplFileDescription
    \tl_clear_new:N\ExplFileDate
    \tl_clear_new:N\ExplFileName
    \tl_clear_new:N\ExplFileExtension
    \tl_clear_new:N\ExplFileVersion
    \group_begin:
    \char_set_catcode_space:n { 32 }
    \exp_after:wN
    \group_end:
    \__file_id_info_auxi:w
  }

A first check for a completely empty SVN field. If that is not the case, there is a second case when a file created using SVN cp but has not been checked in. That leaves a special marker -1 version, which has no further data. Dealing correctly with that is the reason for the space in the line to use \__file_id_info_auxii:w.

```
cs_new_protected:Npn__file_id_info_auxi:w #1 #2 #3 #4 #5 #6 \s__file_stop
 {
 \tl_set:Nn\ExplFileDescription{#2}
 \str_if_eq:nnTF{#1}{Id}{
 \tl_set:Nn\ExplFileDate{0000/00/00}
 \tl_set:Nn\ExplFileName{[unknown]}
 \tl_set:Nn\ExplFileExtension{[unknown-extension]}
 \tl_set:Nn\ExplFileVersion{-1}
 }
 {__file_id_info_auxii:w #1 ~ #2.#3 ~ #4 ~ #5 ~ #6 ~ \s__file_stop}
 }

Here, #1 is Id, #2 is the file name, #3 is the extension, #4 is the version, #5 is the check in date and #6 is the check in time and user, plus some trailing spaces. If #4 is the marker -1 value then #5 and #6 are empty.

```
cs_new_protected:Npn\__file_id_info_auxii:w #1 - #2 - #3 - #4 - #5 - #6 \s__file_stop
  {
    \tl_set:Nn\ExplFileName{#2}
    \tl_set:Nn\ExplFileExtension{#3}
    \tl_set:Nn\ExplFileVersion{#4}
    \str_if_eq:nTF{#4}{-1}{
      \tl_set:Nn\ExplFileDate{0000/00/00}
    }
    {\__file_id_info_auxiii:w #5 - 0 - 0 - \s__file_stop}
  }

Convert an SVN-style date into a LaTeX-style one.

```
cs_new_protected:Npn__file_id_info_auxiii:w #1 - #2 - #3 - #4 \s__file_stop
 {\tl_set:Nn\ExplFileDate{#1/#2/#3}}
```

(End of definition for \GetIdInfo and others. This function is documented on page 10.)
51.6 Checking the version of kernel dependencies

This function is responsible for checking if dependencies of the LaTeX3 kernel match the
version preloaded in the LaTeX2ε kernel. If versions don’t match, the function attempts
to tell why by searching for a possible stray format file.

The function starts by checking that the kernel date is defined, and if not zero is used
to force the error route. The kernel date is then compared with the argument requested
date (usually the packaging date of the dependency). If the kernel date is less than the
required date, it’s an error and the loading should abort.

\cs_new_protected:Npn \__kernel_dependency_version_check:Nn #1
{ \exp_args:NV \__kernel_dependency_version_check:nn #1 }
\cs_new_protected:Npn \__kernel_dependency_version_check:nn #1
{ \cs_if_exist:NTF \c__kernel_expl_date_tl
\exp_args:NV \__file_kernel_dependency_compare:nnn
\c__kernel_expl_date_tl {#1}
\}
\cs_if_exist:NTF \c__kernel_expl_date_tl
\exp_args:NV \__file_kernel_dependency_compare:nnn
\c__kernel_expl_date_tl {0000-00-00} {#1}
\}
\cs_new_protected:Npn \__file_kernel_dependency_compare:nnn #1 #2 #3
{ \int_compare:nNnT \__file_parse_version:w #1 \s__file_stop < \__file_parse_version:w #2 \s__file_stop
{ \__file_mismatched_dependency_error:nn {#2} {#3} }
}
\cs_new_protected:Npn \__file_mismatched_dependency_error:nn #1 #2
{ \exp_args:NNe \ior_shell_open:Nn \g__file_internal_ior
kpsewhich \--all \--engine=⟨engine⟩ ⟨format⟩-dev.fmt
\ior_map_inline:Nn \g__file_internal_ior
{ \seq_put_right:Nn \l__file_tmp_seq {##1} }
\ior_close:N \g__file_internal_ior
\msg_error:nnnn \{kernel\} \{mismatched-support-file\} {#1} {#2}
}
\cs_new_protected:Npn \__file_parse_version:w #1 - #2 - #3 \s__file_stop
\cs_new_protected:Npn \__file_parse_version:w #1 - #2 - #3 \s__file_stop
And finish by ending the current file.
Now define the actual error message:

```
\msg_new:nnnn { kernel } { mismatched-support-file }
{ Mismatched-LaTeX-support-files-detected. \}
\c__kernel_expl_date_tl may not exist, due to an older format, so only print the dates
when the sentinel token list exists:
```

The sequence containing the format files should have exactly one item: the format file
currently being run. If that’s the case, the cause of the error is not that, so print a generic
help with some possible causes. If more than one format file was found, then print the
list to the user, with appropriate indications of what’s in the system and what’s in the
user tree.

```
\int_compare:nNnTF { \seq_count:N \l__file_tmp_seq } > 1
{ The-cause-seems-to-be-an-old-format-file-in-the-user-tree. \}
LaTeX-found-these-files:
\seq_map_tokens:Nn \l__file_tmp_seq { \use:n } \}
Try-deleting-the-file-in-the-user-tree-then-run-LaTeX-again.
}
{ The-most-likely-causes-are:
\---A-recent-format-generation-failed;
\---A-stray-format-file-in-the-user-tree-which-needs-
to-be-removed-or-rebuilt;
\---You-are-running-a-manually-installed-version-of-#2 \}
\ \ \ \which-is-incompatible-with-the-version-in-LaTeX. \}
\LaTeX-will-abort-loading-the-incompatible-support-files-
but-this-may-lead-to \ later-errors.-Please-ensure-that-
your-LaTeX-format-is-correctly-regenerated.
}
```

(End of definition for \c__dependency_updates_version_check:n and others.)

### 51.7 Messages

```
\msg_new:nnnn { kernel } { file-not-found }
{ File-‘#1’-not-found. }
```
The requested file could not be found in the current directory, in the TeX search path or in the LaTeX search path.

\msg_new:nnn { kernel } { file-list }
{ \> File-List <\>
#1 \n
\msg_new:nnn { kernel } { filename-chars-lost }
{ #1 invalid in file name. Lost: #2. }
{ There was an invalid token in the file name that caused the characters following it to be lost. }
\msg_new:nnn { kernel } { filename-missing-endcsname }
{ Missing \iow_char:N\endcsname inserted in filename. }
{ The file name had more \iow_char:N\csname commands than \iow_char:N\endcsname ones. LaTeX will add the missing \iow_char:N\endcsname and try to continue as best as it can. }
\msg_new:nnn { kernel } { unbalanced-quote-in-filename }
{ Unbalanced quotes in file name '#1'. }
{ File names must contain balanced numbers of quotes ("). }
\msg_new:nnn { kernel } { iow-indent }
{ Only #1 allows #2 }
{ The command #2 can only be used in messages which will be wrapped using #1.
\tl_if_empty:nF { #3 } { - It was called with argument '#3'. }
}

51.8 Functions delayed from earlier modules

Detecting the platform on LuaTeX is easy: for other engines, we use the fact that the two common cases have special null files. It is possible to probe further (see package platform), but that requires shell escape and seems unlikely to be useful. This is set up here as it requires file searching.

\sys_if_engine_luatex:TF
{ \str_const:Ne \c_sys_platform_str
{ \tex_directlua:D { \tex.print(os.type) } }
}
\file_if_exist:nTF { nul: }
{ \file_if_exist:nF { /dev/null }
{ \str_const:Nn \c_sys_platform_str { windows } }
}
\{ \texttt{\_file\_if\_exist:Nt} \{/dev/null\} \}
\{ \texttt{\_str\_const:Nn} \texttt{\_\_c\_sys\_platform\_str} \{ \texttt{unix} \} \}
\}
\}
\texttt{\_cs\_if\_exist:NF} \texttt{\_\_c\_sys\_platform\_str}
\{ \texttt{\_str\_const:Nn} \texttt{\_\_c\_sys\_platform\_str} \{ \texttt{unknown} \} \}

(End of definition for \texttt{\_\_c\_sys\_platform\_str}. This variable is documented on page 76.)

\texttt{\_sys\_if\_platform\_unix:p:}
\texttt{\_sys\_if\_platform\_unix:TF}
\texttt{\_sys\_if\_platform\_windows:p:}
\texttt{\_sys\_if\_platform\_windows:TF}
\langle/<\texttt{package}⟩

We can now set up the tests.
\texttt{\_clist\_map\_inline:nn} \{ \texttt{unix}, \texttt{windows} \}
\{ \texttt{\_\_file\_const:nn} \texttt{sys\_if\_platform\_ #1} \}
\{ \texttt{\_str\_if\_eq\_p:Vn} \texttt{\_\_c\_sys\_platform\_str} \{ \texttt{#1} \} \}

(End of definition for \texttt{sys\_if\_platform\_unix:TF} and \texttt{sys\_if\_platform\_windows:TF}. These functions are documented on page 76.)

(/package)
Chapter 52

l3luatex implementation

52.1 Breaking out to Lua

\__lua_escape:n
\__lua_now:n
\__lua_shipout:n

Copies of primitives.

\cs_new_eq:NN \__lua_escape:n \tex_luaescapestring:D
\cs_new_eq:NN \__lua_now:n \tex_directlua:D
\cs_new_eq:NN \__lua_shipout:n \tex_lateluad:D

(End of definition for \__lua_escape:n, \__lua_now:n, and \__lua_shipout:n.)

These functions are set up in \l3str for bootstrapping: we want to replace them with a “proper” version at this stage, so clean up.

\cs_undefine:N \lua_escape:e
\cs_undefine:N \lua_now:e

\lua_now:n
\lua_now:e
\lua_shipout_e:n
\lua_shipout:n
\lua_escape:n
\lua_escape:e

Wrappers around the primitives.

\lua_now:n
\cs_new:Npn \lua_now:e #1 { \__lua_now:n {#1} }
\cs_new:Npn \lua_now:n #1 { \lua_now:e { \exp_not:n {#1} } }
\cs_new_protected:Npn \lua_shipout_e:n #1 { \__lua_shipout:n {#1} }
\cs_new_protected:Npn \lua_shipout:n #1 { \lua_shipout_e:n { \exp_not:n {#1} } }
\cs_new:Npn \lua_escape:e #1 { \__lua_escape:n {#1} }
\cs_new:Npn \lua_escape:n #1 { \lua_escape:e { \exp_not:n {#1} } }

(End of definition for \lua_now:n and others. These functions are documented on page 104.)

\lua_load_module:n
\str_new:N \l__lua_err_msg_str
\cs_new_protected:Npn \lua_load_module:n #1
\bool_if:nF { \__lua_load_module_p:n { #1 } }
\msg_error:nnnV { luatex } { module-not-found } { #1 } \l__lua_err_msg_str

\lua_load_module:n
\str_new:N \l__lua_err_msg_str
\cs_new_protected:Npn \lua_load_module:n #1
\bool_if:nF { \__lua_load_module_p:n { #1 } }
\msg_error:nnnV { luatex } { module-not-found } { #1 } \l__lua_err_msg_str

673
As with engines other than \luatex these have to be macros, we give them the same status in all cases. When \luatex is not in use, simply give an error message:

\begin{verbatim}
\sys_if_engine_luatex:F
{ \clist_map_inline:nn
  { \lua_escape:n , \lua_escape:e , \\
    \lua_now:n , \lua_now:e }
  { \cs_set:Npn #1 ##1
    { \msg_expandable_error:nnn { luatex } { luatex-required } { #1 } }
  }
} \clist_map_inline:nn
{ \lua_shipout_e:n , \lua_shipout:n , \lua_load_module:n }
{ \cs_set_protected:Npn #1 ##1
  { \msg_error:nnn { luatex } { luatex-required } { #1 } }
}
\end{verbatim}

52.2 Messages

\begin{verbatim}
\msg_new:nnnn { luatex } { luatex-required }
{ LuaTeX-engine-not-in-use!-Ignoring-#1. }
{ The-feature-you-are-using-is-only-available-with-the-Luatex-engine.-LaTeX3-ignored-‘#1’. }
\msg_new:nnnn { luatex } { module-not-found }
{ Lua-module-‘#1’-not-found. }
{ The-file-‘#1.lua’-could-not-be-found.-Please-ensure-that-the-file-was-properly-installed-and-that-the-filename-database-is-current. \ \ \ \The-Lua-loader-provided-this-additional-information: \ \ #2 }
\prop_gput:Nnn \g_msg_module_name_prop { luatex } { LaTeX }
\prop_gput:Nnn \g_msg_module_type_prop { luatex } { }
\end{verbatim}

52.3 Lua functions for internal use
Most of the emulation of pdfTeX here is based heavily on Heiko Oberdiek’s pdftex-cmds package.

**ltx.utils** Create a table for the kernel’s own use.

```lua
ltx = ltx or {utils={}}
ltx.utils = ltx.utils or { }
local ltxutils = ltx.utils

(End of definition for ltx.utils. This function is documented on page 105.)
```

Local copies of global tables.

```lua
local io = io
local kpse = kpse
local lfs = lfs
local math = math
local md5 = md5
local os = os
local string = string
local tex = tex
local texio = texio
local tonumber = tonumber
local texio = texio

Local copies of standard functions.

```lua
local abs = math.abs
local byte = string.byte
local floor = math.floor
local format = string.format
local gsub = string.gsub
local lfs_attr = lfs.attributes
local open = io.open
local os_date = os.date
local setcatcode = tex.setcatcode
local sprint = tex.sprint
local cprint = tex.cprint
local write = tex.write
local write_nl = texio.write
local utf8_char = utf8.char
local package_loaded = package.loaded
local package_searchers = package.searchers
local table_concat = table.concat

local scan_int = token.scan_int or token.scan_integer
local scan_string = token.scan_string
local scan_keyword = token.scan_keyword
local put_next = token.put_next
local token_create = token.create
local token_new = token.new
local set_macro = token.set_macro
```

Since `token.create` only returns useful values after the tokens has been added to TeX’s hash table, we define a variant which defines it first if necessary.

```lua
local token_create_safe =
do local is_defined = token.is_defined
local set_char = token.set_char
```
local runtoks = tex.runtoks
local let_token = token_create('let'

function token_create_safe(s)
 local orig_token = token_create(s)
 if is_defined(s, true) then
 return orig_token
 end
 set_char(s, 0)
 local new_token = token_create(s)
 runtoks(function()
 put_next(let_token, new_token, orig_token)
 end)
 return new_token
end

local true_tok = token_create_safe('prg_return_true:
local false_tok = token_create_safe('prg_return_false:

In ConTeXt lmtx token.command_id does not exist, but it can easily be emulated with ConTeXt’s tokens.commands.

local command_id = token.command_id
if not command_id and tokens and tokens.commands then
 local id_map = tokens.commands
 function command_id(name)
 return id_map[name]
 end
end

Deal with ConTeXt: doesn’t use kpse library.
local kpse_find = (resolvers and resolvers.findfile) or kpse.find_file

escapehex An internal auxiliary to convert a string to the matching hex escape. This works on a byte basis: extension to handled UTF-8 input is covered in pdftexcmds but is not currently required here.

local function escapehex(str)
 return (gsub(str, ".",
 function (ch) return format("%02X", byte(ch)) end))
end

(End of definition for escapehex.)

ltx.utils.filedump Similar comments here to the next function: read the file in binary mode to avoid any line-end weirdness.

local function filedump(name,offset,length)
 local file = kpse_find(name,"tex",true)
 if not file then return end
 local f = open(file,"rb")
 if not f then return end
 if offset and offset > 0 then
 f:seek("set", offset)
 end
 local data = f:read(length or 'a')
 f:close()
return escapehex(data)
end
ltxutils.filedump = filedump

(End of definition for ltx.utils.filedump. This function is documented on page 105.)

md5.HEX
Hash a string and return the hash in uppercase hexadecimal format. In some engines, this is build-in. For traditional LuaTeX, the conversion to hexadecimal has to be done by us.

local md5_HEX = md5.HEX
if not md5_HEX then
 local md5_sum = md5.sum
 function md5_HEX(data)
 return escapehex(md5_sum(data))
 end
 md5.HEX = md5_HEX
end

(End of definition for md5.HEX.)

ltx.utils.filemd5sum
Read an entire file and hash it: the hash function itself is a built-in. As Lua is byte-based there is no work needed here in terms of UTF-8 (see pdftexcmds and how it handles strings that have passed through LuaTeX). The file is read in binary mode so that no line ending normalisation occurs.

local function filemd5sum(name)
 local file = kpse_find(name, "tex", true)
 if not file then return end
 local f = open(file, "rb")
 if not f then return end
 local data = f:read("*a")
 f:close()
 return md5_HEX(data)
end
ltxutils.filemd5sum = filemd5sum

(End of definition for ltx.utils.filemd5sum. This function is documented on page 105.)

ltx.utils.filemoddate
There are two cases: If the C standard library is C99 compliant, we can use %z to get the timezone in almost the right format. We only have to add primes and replace a zero or missing offset with Z.

Of course this would be boring, so Windows does things differently. There we have to manually calculate the offset. See procedure makepdftime in utils.c of pdftex.

local filemoddate
if os_date('%z'):match'^[-+]%d%d%d%d\$' then
 local pattern = lpeg.Cs(16 *
 (lpeg.Cg(lpeg.S'\+\-') * '0000' * lpeg.Cc'Z')
 + 3 * lpeg.Cc'\Z' * 2 * lpeg.Cc'\Z"
 + lpeg.Cc'Z\Z')
 * -1)
 function filemoddate(name)
 local file = kpse_find(name, "tex", true)
 if not file then return end
 local date = lfs_attr(file, "modification")
 if not date then return end
 return pattern:match(os_date("D:%Y%m%d%H%M%S%z", date))
 end

677
local function filemoddate(name)
 local file = kpse_find(name, "tex", true)
 if not file then return end
 local date = lfs_attr(file, "modification")
 if not date then return end
 local d = os_date("%t", date)
 local u = os_date("%!*t", date)
 local off = 60 * (d.hour - u.hour) + d.min - u.min
 if d.year ~= u.year then
 if d.year > u.year then
 off = off + 1440
 else
 off = off - 1440
 end
 elseif d.yday ~= u.yday then
 if d.yday > u.yday then
 off = off + 1440
 else
 off = off - 1440
 end
 end
 local timezone
 if off == 0 then
 timezone = "Z"
 else
 if off < 0 then
 timezone = "-"
 off = -off
 else
 timezone = "+"
 end
 timezone = format("%s%02d'\%02d'", timezone, hours // 60, hours % 60)
 end
 return format("D:%04d%02d%02d%02d%02d%02d%s", d.year, d.month, d.day, d.hour, d.min, d.sec, timezone)
end

ltxutils.filemoddate = filemoddate

(End of definition for ltx.utils.filemoddate. This function is documented on page 105.)

ltx.utilsfilesize A simple disk lookup.
local function filesize(name)
 local file = kpse_find(name, "tex", true)
 if file then
 local size = lfs_attr(file, "size")
 if size then
 return size
 end
 end
end
ltxutils.filesize = filesize

678
End of definition for \texttt{ltx.utils.filesize}. This function is documented on page \pageref{def:ltx.utils.filesize}.

\textbf{luadef}
An internal function for defining control sequences form Lua which behave like primitives. This acts as a wrapper around \texttt{token.set_lua} which accepts a function instead of an index into the functions table.

11825 local luacmd do
11826 local set_lua = token.set_lua
11827 local undefined_cs = command_id’undefined_cs’
11828
11829 if not context and not luatexbase then require’ltluatex’ end
11830 if luatexbase then
11831 local new_luafunction = luatexbase.new_luafunction
11832 local functions = lua.get_functions_table()
11833 function luacmd(name, func, ...)
11834 local id
11835 local tok = token_create(name)
11836 if tok.command == undefined_cs then
11837 id = new_luafunction(name)
11838 set_lua(name, id, ...)
11839 else
11840 id = tok.index or tok.mode
11841 end
11842 functions[id] = func
11843 end
11844 elseif context then
11845 local register = context.functions.register
11846 local functions = context.functions.known
11847 function luacmd(name, func, ...)
11848 local tok = token_create(name)
11849 if tok.command == undefined_cs then
11850 token.set_lua(name, register(func), ...)
11851 else
11852 functions[tok.index or tok.mode] = func
11853 end
11854 end
11855 end

(End of definition for \texttt{luadef}.)

\textbf{try_require}
Loads a Lua module. This function loads the module similarly to the standard Lua global function \texttt{require}, with a few differences. On success, \texttt{try_require} returns \texttt{true, module}. If the module cannot be found, it returns \texttt{false, err_msg}. If the module is found, but something goes wrong when loading it, the function throws an error.

11857 local function try_require(name)
11858 if package_loaded[name] then
11859 return true, package_loaded[name]
11860 end
11861
11862 local failure_details = {}
11863 for _, searcher in ipairs(package_searchers) do
11864 local loader, data = searcher(name)
11865 if type(loader) == ’function’ then
11866 package_loaded[name] = loader(name, data) or true
11867 end
11868 end

679
Check to see if we can load a module using require. If we can load the module, then we load it immediately. Otherwise, we save the error message in l__lua_err_msg_str.

\end{definition_for \texttt{__lua_load_module_p:n}}

The Lua state is not dumped when a forat is written, therefore any Lua variables filled doing format building need to be restored in order to be accessible during normal runs.

We provide some kernel-internal helpers for this. They will only be available if \texttt{luatexbase} is available. This is not a big restriction though, because ConTeXt (which does not use \texttt{luatexbase}) does not load expl3 in the format.

\begin{verbatim}
local register_luadata, get_luadata

if luatexbase then
 local register = token_create('@expl@luadata@bytecode'.index
 if status.ini_version then
 register_luadata
 else
 local luafile, luafile_order = {}, {}
 function register_luadata(name, func)

\end{verbatim}

\texttt{register_luadata} is only available during format generation. It accept a string which uniquely identifies the data object and has to be provided to retrieve it later. Additionally it accepts a function which is called in the \texttt{pre_dump} callback and which has to return a string that evaluates to a valid Lua object to be preserved.

\begin{verbatim}
local luafile, luafile_order = {}, {}
function register_luadata(name, func)
if luadata[name] then
 error(format("LaTeX error: data name %q already in use", name))
end
luadata[name] = func
luadata_order[#luadata_order + 1] = func and name
end

(End of definition for register_luadata.)

The actual work is done in pre_dump. The luadata_order is used to ensure that
the order is consistent over multiple runs.

lua.module.add_to_callback("pre_dump", function()
 if next(luadata) then
 local str = "return {"
 for i=1, #luadata_order do
 local name = luadata_order[i]
 str = format('%s[%q]=%s,', str, name, luadata[name]())
 end
 lua.bytecode[register] = assert(load(str .. "}")
 end
end, "ltx.luadata")
else
get_luadata

get_luadata is only available if data should be restored. It accept the identifier which
was used when the data object was registered and returns the associated object. Every
object can only be retrieved once.

local luadata = lua.bytecode[register]
if luadata then
 lua.bytecode[register] = nil
 luadata = lua.lua()
end
function get_luadata(name)
 if not luadata then return end
 local data = luadata[name]
 luadata[name] = nil
 return data
end
end

(End of definition for get_luadata.)

⟨/lua⟩

⟨/package⟩
Chapter 53

\textbf{l3}legacy implementation

\begin{verbatim}
\texttt{\legacy_if_p:n} \texttt{\legacy_if:nTF}

A friendly wrapper. We need to use the \texttt{\if:w} approach here, rather than testing against \texttt{\iftrue/\iffalse} as the latter approach fails for primitive conditionals such as \texttt{\ifmmode}. The \texttt{\reverse_if:N} here means that we get a slightly more useful error if the name is undefined.

\prg_new_conditional:Npnn \legacy_if:n #1 { p , T , F , TF } \{ \exp_after:wN \reverse_if:N \cs:w if#1 \cs_end: \prg_return_false: \else: \prg_return_true: \fi: \}

(End of definition for \texttt{\legacy_if:nTF}. This function is documented on page 107.)

\texttt{\legacy_if_set_true:n} \texttt{\legacy_if_set_false:n} \texttt{\legacy_if_gset_true:n} \texttt{\legacy_if_gset_false:n}

A friendly wrapper.

\cs_new_protected:Npn \legacy_if_set_true:n #1 \{ \cs_set_eq:cN { if#1 } \if_true: \}
\cs_new_protected:Npn \legacy_if_set_false:n #1 \{ \cs_set_eq:cN { if#1 } \if_false: \}
\cs_new_protected:Npn \legacy_if_gset_true:n #1 \{ \cs_gset_eq:cN { if#1 } \if_true: \}
\cs_new_protected:Npn \legacy_if_gset_false:n #1 \{ \cs_gset_eq:cN { if#1 } \if_false: \}

(End of definition for \texttt{\legacy_if_set_true:n} and others. These functions are documented on page 107.)

\texttt{\legacy_if_set:nn} \texttt{\legacy_if_gset:nn}

A more elaborate wrapper.

\cs_new_protected:Npn \legacy_if_set:nn #1#2 \{ \bool_if:nTF {#2} \legacy_if_set_true:n \legacy_if_set_false:n (#1) \legacy_if_set:nn {#1} \}
\end{verbatim}
\cs_new_protected:Npn \legacy_if_gset:nn #1#2
 {
 \bool_if:nTF {#2} \legacy_if_gset_true:n \legacy_if_gset_false:n
 (#1)
 }

(End of definition for \legacy_if_set:nn and \legacy_if_gset:nn. These functions are documented on page 107.)

\endinput
Chapter 54

\l3tl implementation

A token list variable is a \TeX macro that holds tokens. By using the e-\TeX primitive \unexpanded inside a \TeX \edef it is possible to store any tokens, including \#, in this way.

54.1 Functions

These two are supplied to get better performance for macros which would otherwise use \tl_set:Ne or \tl_gset:Ne internally.

\cs_new_eq:NN __kernel_tl_set:Ne \cs_set_nopar:Npe
\cs_new_eq:NN __kernel_tl_gset:Ne \cs_gset_nopar:Npe

(End of definition for __kernel_tl_set:Ne and __kernel_tl_gset:Ne.)

Creating new token list variables is a case of checking for an existing definition and doing the definition.

\cs_new_protected:Npm \tl_new:N #1
__kernel_chk_if_free_cs:N #1
\cs_gset_eq:NN #1 \c_empty_tl
\cs_generate_variant:Nn \tl_new:N { c }

(End of definition for \tl_new:N. This function is documented on page 109.)

Constants are also easy to generate. They use \cs_gset_nopar:Npe instead of __kernel_tl_gset:Ne so that the correct scope checking for c, instead of for g, is applied when \debug_on:n \{ check-declarations \} is used. Constant assignment functions are patched specially in l3debug to apply such checks.

\cs_new_protected:Npm \tl_const:Nn \tl_const:Ne \tl_const:Nx \tl_const:cn \tl_const:ce \tl_const:cx
__kernel_chk_if_free_cs:N #1
\cs_gset_nopar:Npe #1 \{ __kernel_exp_not:w \{ #2 \} \}
\cs_generate_variant:Nn \tl_const:Nn \tl_const:Ne \tl_const:Nx \tl_const:cn \tl_const:ce \tl_const:cx

684
Clearing a token list variable means setting it to an empty value. Error checking is sorted out by the parent function.

```
\cs_new_protected:Npn \tl_clear:N #1
  { \tex_let:D #1 = ~ \c_empty_tl }
\cs_new_protected:Npn \tl_gclear:N #1
  { \tex_global:D \tex_let:D #1 = ~ \c_empty_tl }
\cs_generate_variant:Nn \tl_clear:N { c }
\cs_generate_variant:Nn \tl_gclear:N { c }
```

Clearing a token list variable means setting it to an empty value. Error checking is sorted out by the parent function.

```
\cs_new_protected:Npn \tl_clear_new:N #1
  { \tl_if_exist:NTF #1 { \tl_clear:N #1 } { \tl_new:N #1 } }
\cs_new_protected:Npn \tl_gclear_new:N #1
  { \tl_if_exist:NTF #1 { \tl_gclear:N #1 } { \tl_new:N #1 } }
\cs_generate_variant:Nn \tl_clear_new:N { c }
\cs_generate_variant:Nn \tl_gclear_new:N { c }
```

For setting token list variables equal to each other. To allow for patching, the arguments have to be explicit. In addition this ensures that a braced second argument will not cause problems.

```
\cs_new_protected:Npn \tl_set_eq:NN #1#2
  { \tl_if_exist:NTF #1 { \tl_clear:N #1 } { \tl_new:N #1 } }
\cs_new_protected:Npn \tl_gset_eq:NN #1#2
  { \tl_if_exist:NTF #1 { \tl_gclear:N #1 } { \tl_new:N #1 } }
\cs_generate_variant:Nn \tl_set_eq:NN { cN, Nc, cc }
\cs_generate_variant:Nn \tl_gset_eq:NN { cN, Nc, cc }
```

Concatenating token lists is easy. When checking is turned on, all three arguments must be checked: a token list \#2 or \#3 equal to \scan_stop: would lead to problems later on.

```
\cs_new_protected:Npn \tl_concat:NNN #1#2#3
  { \tl_if_exist:NTF #1 { \tl_clear:N #1 } { \tl_new:N #1 } }
\cs_new_protected:Npn \tl_gconcat:NNN #1#2#3
  { \tl_if_exist:NTF #1 { \tl_gclear:N #1 } { \tl_new:N #1 } }
\cs_generate_variant:Nn \tl_concat:NNN { cN, Nc, cc }
\cs_generate_variant:Nn \tl_gconcat:NNN { cN, Nc, cc }
```
54.2 Constant token lists

\c_empty_tl Never full. We need to define that constant before using \tl_new:N.

(End of definition for \c_empty_tl. This variable is documented on page 124.)

\c_novalue_tl A special marker: as we don’t have \char_generate:nn yet, has to be created the old-fashioned way.

(End of definition for \c_novalue_tl. This variable is documented on page 125.)

\c_space_tl A space as a token list (as opposed to as a character).

(End of definition for \c_space_tl. This variable is documented on page 125.)

54.3 Adding to token list variables

By using \exp_not:n token list variables can contain # tokens, which makes the token list registers provided by \TeX more or less redundant. The \tl_set:No version is done by hand as it is used quite a lot.
Adding to the left is done directly to gain a little performance.

\begin{verbatim}
\cs_new_protected:Npn \tl_put_left:Nn #1#2
\tl_put_left:Nv #1#2
\tl_put_left:Ne #1#2
\tl_put_left:No #1#2
\tl_put_left:cn #1#2
\tl_put_left:cv #1#2
\tl_put_left:ce #1#2
\tl_put_left:co #1#2
\tl_gput_left:Nn #1#2
\tl_gput_left:NV #1#2
\tl_gput_left:Nv #1#2
\tl_gput_left:Ne #1#2
\tl_gput_left:No #1#2
\tl_gput_left:cn #1#2
\tl_gput_left:cv #1#2
\tl_gput_left:ce #1#2
\tl_gput_left:co #1#2
\end{verbatim}

(End of definition for \tl_set:Nn and \tl_gset:Nn. These functions are documented on page 110.)
(End of definition for \texttt{\tl_put_left:Nn} and \texttt{\tl_gput_left:Nn}. These functions are documented on page 110.)

\texttt{\tl_put_right:Nn}
\texttt{\tl_put_right:NV}
\texttt{\tl_put_right:Nv}
\texttt{\tl_put_right:Ne}
\texttt{\tl_put_right:No}
\texttt{\tl_put_right:Nx}
\texttt{\tl_put_right:cn}
\texttt{\tl_put_right:cV}
\texttt{\tl_put_right:cv}
\texttt{\tl_put_right:ce}
\texttt{\tl_put_right:cx}
\texttt{\tl_gput_right:Nn}
\texttt{\tl_gput_right:NV}
\texttt{\tl_gput_right:Nv}
\texttt{\tl_gput_right:Ne}
\texttt{\tl_gput_right:No}
\texttt{\tl_gput_right:Nx}
\texttt{\tl_gput_right:cn}
\texttt{\tl_gput_right:cV}
\texttt{\tl_gput_right:cv}
\texttt{\tl_gput_right:ce}
\texttt{\tl_gput_right:cx}

The same on the right.
\cs_new_protected:Npn \tl_gput_right:Nn #1#2
\{
__kernel_tl_gset:Ne #1 { __kernel_exp_not:w \exp_after:wN { #1 #2 } }
\}
\cs_new_protected:Npm \tl_gput_right:Nn #1#2
\{
__kernel_tl_gset:Ne #1 { __kernel_exp_not:w \exp_after:wN {#1} \exp_not:V #2 }
\}
\cs_new_protected:Npm \tl_gput_right:Nv #1#2
\{
__kernel_tl_gset:Ne #1 { __kernel_exp_not:w \exp_after:wN {#1} \exp_not:v {#2} }
\}
\cs_new_protected:Npm \tl_gput_right:Ne #1#2
\{
__kernel_tl_gset:Ne #1 { __kernel_exp_not:w \exp_after:wN {#1} __kernel_exp_not:w \tex_expanded:D { {#2} } }
\}
\cs_new_protected:Npm \tl_gput_right:No #1#2
\{
__kernel_tl_gset:Ne #1 { __kernel_exp_not:w \exp_after:wN {#1} __kernel_exp_not:w \exp_after:wN {#2} }
\}
\cs_generate_variant:Nn \tl_put_right:Nn { c }
\cs_generate_variant:Nn \tl_put_right:NV { c }
\cs_generate_variant:Nn \tl_put_right:Nv { c }
\cs_generate_variant:Nn \tl_put_right:Ne { c }
\cs_generate_variant:Nn \tl_put_right:No { c }
\cs_generate_variant:Nn \tl_gput_right:Nn { Nx , cx }
\cs_generate_variant:Nn \tl_gput_right:NV { c }
\cs_generate_variant:Nn \tl_gput_right:Nv { c }
\cs_generate_variant:Nn \tl_gput_right:Ne { c }
\cs_generate_variant:Nn \tl_gput_right:No { c }
\cs_generate_variant:Nn \tl_gput_right:Nn { Nx , cx }

(End of definition for \tl_put_right:Nn and \tl_gput_right:Nn. These functions are documented on page 111.)

54.4 Internal quarks and quark-query functions

\q__tl_nil Internal quarks.
\q__tl_mark
\q__tl_stop
54.5 Reassigning token list category codes

The rescanning code needs a special token list containing the same character (chosen here to be a colon) with two different category codes: it cannot appear in the tokens being rescanned since all colons have the same category code.

In a group, after some initial setup explained below and the user setup #3 (followed by \scan_stop: to be safe), there is a call to __tl_set_rescan:nNN. This shared auxiliary defined later distinguishes single-line and multi-line “files”. In the simplest case of multi-line files, it calls (with the same arguments) __tl_set_rescan_multi:nNN, whose code is included here to help understand the approach. This function rescans its argument #1, closes the group, and performs the assignment.

One difficulty when rescanning is that \scantokens treats the argument as a file, and without the correct settings a \TeX{} error occurs:

! File ended while scanning definition of ...

A related minor issue is a warning due to opening a group before the \scantokens and closing it inside that temporary file; we avoid that by setting \texttt{tracingnesting}. The standard solution to the “File ended” error is to grab the rescanned tokens as a delimited argument of an auxiliary, here __tl_rescan:NNW, that performs the assignment, then let \TeX{} “execute” the end of file marker. As usual in delimited arguments we use \texttt{prg_do_-nothing:} to avoid stripping an outer set braces: this is removed by using \texttt{o-expanding} assignments. The delimiter cannot appear within the rescanned token list because it contains twice the same character, with different catcodes.

For __tl_rescan:nn we cannot simply call __tl_set_rescan:NNnn \texttt{prg_do_-nothing:} because that would leave the end-of-file marker after the result of rescanning. If that rescanned result is code that looks further in the input stream for arguments, it would break.

For multi-line files the only subtlety is that \texttt{\newlinechar} should be equal to \texttt{\endlinechar} because \texttt{\newlinechar} characters become new lines and then become
\endlinechar characters when writing to an abstract file and reading back. This equality is ensured by setting \texttt{\newlinechar} equal to \texttt{\endlinechar}. Prior to this, \texttt{\endlinechar} is set to \texttt{1} if it was \texttt{32} (in particular true after \texttt{\ExplSyntaxOn}) to avoid unreasonable line-breaks at every space for instance in error messages triggered by the user setup.

Another side effect of reading back from the file is that spaces (catcode 10) are ignored at the beginning of lines, and spaces and tabs (character code 32 and 9) are ignored at the end of lines.

The two \texttt{\if\false:} \ldots \texttt{\fi:} are there to prevent alignment tabs to cause a change of tabular cell while rescanning. We put the “opening” one after \texttt{\group_begin:} so that if one accidentally \texttt{f}-expands \texttt{\tl_set_rescan:Nnn} braces remain balanced. This is essential in \texttt{e}-type arguments when \texttt{\expanded} is not available.

\begin{verbatim}
\cs_new_protected:Npn \tl_rescan:nn #1#2
\tl_set_rescan:NNnn \l__tl_internal_a_tl #1 \{#2\}
\exp_after:wN __tl_rescan_aux:\l__tl_internal_a_tl
\{} \#1 \#2
\end{verbatim}

\begin{verbatim}
\cs_new_protected:Npn \tl_set_rescan:NNnn
\group_begin:
\if\false: \fi:
\int_set_eq:NN \tex_tracingnesting:D \c_zero_int
\int_compare:nNnT \tex_endlinechar:D = { 32 }
{ \int_set:Nn \tex_endlinechar:D { -1 } }
\int_set_eq:NN \tex_newlinechar:D \tex_endlinechar:D
\scan_stop:
\exp_after:wN \c__tl_rescan_marker_tl
\exp_after:wN __tl_rescan:NNw
\exp_after:wN \prg_do_nothing:
\tex_scantokens:D \{#1\}
\group_end:
\if\false: \fi:
\}
\cs_new_protected:Npn __tl_set_rescan_multi:nNN #1#2#3
\tex_everyeof:D \exp_after:wN \c__tl_rescan_marker_tl
\exp_after:wN __tl_rescan:NNw
\exp_after:wN \#2
\exp_after:wN \#3
\exp_after:wN \prg_do_nothing:
\tex_scantokens:D \{#1\}
\exp_args:Nno \use:nn
\c_new_protected:Npn ___tl_rescan:nnw \c__tl_rescan_marker_tl
\group_end:
\c__tl_rescan_marker_tl
\cs_new_protected:Npn \tl_gset_rescan:NNnn \tl_set:No
\cs_new_protected:Npn \tl_gset_rescan:NNnn\tl_set:No
\cs_new_protected:Npn \group_begin:
\\if\false: \fi:
\int_set_eq:NN \tex_tracingnesting:D \c_zero_int
\int_compare:nNnT \tex_endlinechar:D = { 32 }
{ \int_set:Nn \tex_endlinechar:D { -1 } }
\int_set_eq:NN \tex_newlinechar:D \tex_endlinechar:D
\scan_stop:
\exp_after:wN \c__tl_rescan_marker_tl
\exp_after:wN __tl_rescan:NNw
\exp_after:wN \prg_do_nothing:
\tex_scantokens:D \{#1\}
\group_end:
\if\false: \fi:
\}
\cs_new_protected:Npn __tl_set_rescan_multi:nNN #1#2#3
\tex_everyeof:D \exp_after:wN \c__tl_rescan_marker_tl
\exp_after:wN __tl_rescan:NNw
\exp_after:wN \exp_after:wN \c__tl_rescan_marker_tl
\exp_after:wN \prg_do_nothing:
\tex_scantokens:D \{#1\}
\exp_args:Nno \use:nn
\c_new_protected:Npn ___tl_rescan:nnw \c__tl_rescan_marker_tl
\group_end:
\c__tl_rescan_marker_tl
\cs_new_protected:Npn \tl_set_rescan:NNnn \tl_set:No
\class_error:NNnn \tl_set:No
\cs_new_protected:Npn \tl_set_rescan:NNnn\tl_set:No
\cs_new_protected:Npn \group_begin:
\\if\false: \fi:
\int_set_eq:NN \tex_tracingnesting:D \c_zero_int
\int_compare:nNnT \tex_endlinechar:D = { 32 }
{ \int_set:Nn \tex_endlinechar:D { -1 } }
\int_set_eq:NN \tex_newlinechar:D \tex_endlinechar:D
\scan_stop:
\exp_after:wN \c__tl_rescan_marker_tl
\exp_after:wN __tl_rescan:NNw
\exp_after:wN \prg_do_nothing:
\tex_scantokens:D \{#1\}
\group_end:
\if\false: \fi:
\}
\cs_new_protected:Npn __tl_set_rescan_multi:nNN #1#2#3
\end{verbatim}
The function __tl_set_rescan:nNN calls __tl_set_rescan_multi:nNN or __tl_set_rescan_single:nNN { ' } depending on whether its argument is a single-line fragment of code/data or is made of multiple lines by testing for the presence of a \texttt{newlinechar} character. If \texttt{newlinechar} is out of range, the argument is assumed to be a single line.

For a single line, no \texttt{\textbackslash{endlinechar}} should be added, so it is set to \texttt{-1}, and spaces should not be removed. Trailing spaces and tabs are a difficult matter, as \TeX removes these at a very low level. The only way to preserve them is to rescan not the argument but the argument followed by a character with a reasonable category code. Here, 11 (letter) and 12 (other) are accepted, as these are convenient, suitable for delimiting an argument, and it is very unlikely that none of the ASCII characters are in one of these categories. To avoid selecting one particular character to put at the end, whose category code may have been modified, there is a loop through characters from \texttt{'} (ASCII 39) to \texttt{-} (ASCII 127). The choice of starting point was made because this is the start of a very long range of characters whose standard category is letter or other, thus minimizing the number of steps needed by the loop (most often just a single one). If no valid character is found (very rare), fall-back on __tl_set_rescan_multi:nNN.

Otherwise, once a valid character is found (let us use \texttt{'} in this explanation) run some code very similar to __tl_set_rescan_multi:nNN but with \texttt{'} added at both ends of the input. Of course, we need to define the auxiliary __tl_set_rescan_single:nNNw on the fly to remove the additional \texttt{'} that is just before :: (by which we mean \texttt{__tl_rescan_marker_tl}). Note that the argument must be delimited by \texttt{'} with the current catcode; this is done thanks to \texttt{\char_generate:nn}. Yet another issue is that the rescanned token list may contain a comment character, in which case the \texttt{'} we expected is not there. We fix this as follows: rather than just :: we set \texttt{\everyeof} to ::\{\texttt{(code1)}\}\texttt{'}::\{\texttt{(code2)}\}\texttt{__tl_stop}. The auxiliary __tl_set_rescan_single:nNNw runs the c-expanding assignment, expanding either \texttt{(code1)} or \texttt{(code2)} before its the main argument \#3. In the typical case without comment character, \texttt{(code1)} is expanded, removing the leading \texttt{'}. In the rarer case with comment character, \texttt{(code2)} is expanded, calling __tl_set_rescan_single_aux:w, which removes the trailing ::\{\texttt{(code1)}\} and the leading \texttt{'}.
All of the replace functions call \texttt{__tl_replace:NnNNnn} with appropriate arguments. The first two arguments are explained later. The next controls whether the replacement function calls itself \texttt{__tl_replace_next:w} or stops \texttt{__tl_replace_wrap:w} after the first replacement. Next comes an e-type assignment function \texttt{\tl_set:Ne} or \texttt{\tl_gset:Ne} for local or global replacements. Finally, the three arguments \texttt{⟨tl var⟩ ⟨{pattern}⟩ ⟨{replacement}⟩} provided by the user. When describing the auxiliary functions below, we denote the contents of the \texttt{⟨tl var⟩} by \texttt{⟨token list⟩}.

\texttt{\tl_replace_once:Nnn} \texttt{\tl_replace_once:NVn} \texttt{\tl_replace_once:NnV} \texttt{\tl_replace_once:Nen} \texttt{\tl_replace_once:Nne} \texttt{\tl_replace_once:Nee} \texttt{\tl_replace_once:Nxx} \texttt{\tl_greplace_once:Nnn} \texttt{\tl_greplace_once:NVn} \texttt{\tl_greplace_once:NnV} \texttt{\tl_greplace_once:Nen} \texttt{\tl_greplace_once:Nne} \texttt{\tl_greplace_once:Nee} \texttt{\tl_greplace_once:Nxx} \texttt{\tl_replace_all:Nnn} \texttt{\tl_replace_all:NVn} \texttt{\tl_replace_all:NnV} \texttt{\tl_replace_all:Nen} \texttt{\tl_replace_all:Nne} \texttt{\tl_replace_all:Nee} \texttt{\tl_replace_all:Nxx} \texttt{\tl_greplace_all:Nnn} \texttt{\tl_greplace_all:NVn} \texttt{\tl_greplace_all:NnV} \texttt{\tl_greplace_all:Nen} \texttt{\tl_greplace_all:Nne} \texttt{\tl_greplace_all:Nee} \texttt{\tl_greplace_all:Nxx}
To implement the actual replacement auxiliary \tl_replace_auxii:nNNnn we need a \texttt{(delimiter)} with the following properties:

- all occurrences of the \texttt{(pattern)} \#6 in “\texttt{(token list)} \texttt{(delimiter)}” belong to the \texttt{(token list)} and have no overlap with the \texttt{(delimiter)};
- the first occurrence of the \texttt{(delimiter)} in “\texttt{(token list)} \texttt{(delimiter)}” is the trailing \texttt{(delimiter)}.

We first find the building blocks for the \texttt{(delimiter)}, namely two tokens \texttt{(A)} and \texttt{(B)} such that \texttt{(A)} does not appear in \#6 and \#6 is not \texttt{(B)} (this condition is trivial if \#6 has more than one token). Then we consider the delimiters “\texttt{(A)}” and “\texttt{(A)} \texttt{(A)} \texttt{(B)} \texttt{(A)} \texttt{(B)}”, for \(n \geq 1 \), where \(\texttt{(A)}^n \) denotes \(n \) copies of \texttt{(A)}, and we choose as our \texttt{(delimiter)} the first one which is not in the \texttt{(token list)}.

Every delimiter in the set obeys the first condition: \#6 does not contain \texttt{(A)} hence cannot be overlapping with the \texttt{(token list)} and the \texttt{(delimiter)}, and it cannot be within the \texttt{(delimiter)} since it would have to be in one of the two \texttt{(B)} hence be equal to this single token (or empty, but this is an error case filtered separately). Given the particular form of these delimiters, for which no prefix is also a suffix, the second condition is actually a consequence of the weaker condition that the \texttt{(delimiter)} we choose does not appear in the \texttt{(token list)}. Additionally, the set of delimiters is such that a \texttt{(token list)} of \(n \) tokens can contain at most \(O(n^{1/2}) \) of them, hence we find a \texttt{(delimiter)} with at most \(O(n^{1/2}) \) tokens in a time at most \(O(n^{3/2}) \). Bear in mind that these upper bounds are reached only in very contrived scenarios: we include the case “\texttt{(A)}” in the list of delimiters to try, so that the \texttt{(delimiter)} is simply \texttt{\tl_replace:NNn} in the most common situation where neither the \texttt{(token list)} nor the \texttt{(pattern)} contains \texttt{\tl_replace:NNn}.

Let us now ahead, optimizing for this most common case. First, two special cases: an empty \texttt{(pattern)} \#6 is an error, and if \#1 is absent from both the \texttt{(token list)} \#5
and the \texttt{pattern} \#6 then we can use it as the \texttt{delimiter} through \texttt{__tl_replace_auxii:nNNNnn \{\#1\}}. Otherwise, we end up calling \texttt{__tl_replace:NnNNNnn} repeatedly with the first two arguments \texttt{\q__tl_mark \{?\}}, \texttt{\q\{??\}}, \texttt{\q\texttt{??} \{???\}}, and so on, until \#6 does not contain the control sequence \#1, which we take as our \langle A \rangle. The argument \#2 only serves to collect ? characters for \#1. Note that the order of the tests means that the first two are done every time, which is wasteful (for instance, we repeatedly test for the emptiness of \#6). However, this is rare enough not to matter. Finally, choose \langle B \rangle to be \texttt{\q__tl_nil} or \texttt{\q__tl_stop} such that it is not equal to \#6.

The \texttt{__tl_replace_auxi:nNNNnn} auxiliary receives \{\langle A \rangle\} and \{(A)^n\langle B \rangle\} as its arguments, initially with \(n = 1\). If \((A)\langle A \rangle^n\langle B \rangle\) is in the \langle token list \rangle then increase \(n\) and try again. Once it is not anymore in the \langle token list \rangle we take it as our \langle delimiter \rangle and pass this to the auxii auxiliary.

The auxiliary \texttt{__tl_replace_auxi:nNNNnn} receives the following arguments:

\begin{verbatim}
{(delimiter)} \{function\} \{assignment\} \{tl var\} \{(pattern)\} \{(replacement)\}
\end{verbatim}

All of its work is done between \texttt{\group_align_safe_begin:} and \texttt{\group_align_safe_end:} to avoid issues in alignments. It does the actual replacement within \#3 \#4 \{\ldots\}, an e-expanding \langle assignment \rangle \#3 to the \langle tl var \rangle \#4. The auxiliary \texttt{__tl_replace_next:w} is called, followed by the \langle token list \rangle, some tokens including the \langle delimiter \rangle \#1, followed by the \langle pattern \rangle \#5. This auxiliary finds an argument delimited by \#5 (the presence of a trailing \#5 avoids runaway arguments) and calls \texttt{__tl_replace_wrap:w} to test whether this \#5 is found within the \langle token list \rangle or is the trailing one.
If on the one hand it is found within the \langle token list \rangle, then \#1 cannot contain the \langle delimiter \rangle \#1 that we worked so hard to obtain, thus __tl_replace_wrap:w gets \#1 as its own argument \#1, and protects it against the e-expanding assignment. It also finds \exp_not:n as \#2 and does nothing to it, thus letting through \exp_not:n \langle (replacement) \rangle into the assignment. Note that __tl_replace_next:w and __tl_replace_wrap:w are always called followed by two empty brace groups. These are safe because no delimiter can match them. They prevent losing braces when grabbing delimited arguments, but require the use of \exp_not:o and \use_none:nn, rather than simply \exp_not:n. Afterwards, __tl_replace_next:w is called to repeat the replacement, or __tl_replace_wrap:w if we only want a single replacement. In this second case, \#1 is the \langle (remaining tokens) \rangle in the \langle token list \rangle and \#2 is some \langle (ending code) \rangle which ends the assignment and removes the trailing tokens \#5 using some \if_false: { \fi: } trickery because \#5 may contain any delimiter.

If on the other hand the argument \#1 of __tl_replace_next:w is delimited by the trailing \langle pattern \rangle \#5, then \#1 is \{ \} \langle token list \rangle \langle delimiter \rangle \{ \langle ending code \rangle \}”, hence __tl_replace_wrap:w finds \{ \} \langle token list \rangle as \#1 and the \langle (ending code) \rangle as \#2. It leaves the \langle token list \rangle into the assignment and unbraces the \langle (ending code) \rangle which removes what remains (essentially the \langle (delimiter) \rangle and \langle (replacement) \rangle).

\begin{verbatim}
\cs_new_protected:Npn __tl_replace:Nnnn #1#2#3#4#5#6
\group_align_safe_begin:
\cs_set:Npn __tl_replace_wrap:w #1 #1 #2
{ __kernel_exp_not:w \exp_after:wN { \use_none:nn \#1 } \#2 }
\cs_set:Npe __tl_replace_next:w #1 #5
{ \exp_not:N __tl_replace_wrap:w \#1 }
\exp_not:n \{ \#1 \}
\exp_not:n \{ \exp_not:n \{ \#6 \} \}
\exp_not:n \{ \#2 \} \}
\group_align_safe_end:
\cs_new:Npn __tl_replace_next_aux:w { __tl_replace_next:w { } { } }
\cs_new_eq:NN __tl_replace_wrap:w ?
\cs_new_eq:NN __tl_replace_next:w ?
\end{verbatim}

Removal is just a special case of replacement.
Removal is just a special case of replacement.

These functions check whether the token list in the argument is empty and execute the proper code from their argument(s).

The \if:w triggers the expansion of \tl_to_str:n which converts the argument to a string: this is empty if and only if the argument is. Then \if:w \scan_stop: ... \scan_stop: is true if and only if the string ... is empty. It could be tempting to use \if:w \scan_stop: #1 \scan_stop: directly. But this fails on a token list expanding to anything starting with \scan_stop: leaving everything that follows in the input stream.

(End of definition for \tl_remove_all:Nn and \tl_gremove_all:Nn. These functions are documented on page 123.)
The auxiliary function `_tl_if_empty_if:o` is for use in various token list conditionals which reduce to testing if a given token list is empty after applying a simple function to it. The test for emptiness is based on `\tl_if_empty:nTF`, but the expansion is hard-coded for efficiency, as this auxiliary function is used in several places. We don’t put `\prg_return_true:` and so on in the definition of the auxiliary, because that would prevent an optimization applied to conditionals that end with this code. Also the `__tl_if_empty_if:o` is expanded once in `\tl_if_empty:oTF` for efficiency as well (and to reduce code doubling).

```
\cs_new:Npn \__tl_if_empty_if:o #1
\begin{verbatim}
\if:w \scan_stop: \__kernel_tl_to_str:w \exp_after:wN {#1} \scan_stop:
\end{verbatim}
\exp_args:Nno \use:n
\prg_new_conditional:Npnn \tl_if_empty:o #1 { p , TF , T , F } 
\begin{verbatim}
\__tl_if_empty_if:o { \use_none:n #1 ? }
\end{verbatim}
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:
\end{verbatim}
```

(End of definition for `\tl_if_empty:nTF` and `__tl_if_empty_if:o`. This function is documented on page ??.)

ToX skips spaces when reading a non-delimited arguments. Thus, a ⟨token list⟩ is blank if and only if `\use_none:n ⟨token list⟩` is empty after one expansion. The auxiliary `__tl_if_empty_if:o` is a fast emptiness test, converting its argument to a string (after one expansion) and using the test `\if:w \scan_stop: ... \scan_stop:`.

```
\exp_args:Nno \use:n
\begin{verbatim}
\__tl_if_empty_if:o #1
\end{verbatim}
\prg_return_true:
\else:
\prg_return_false:
\fi:
```

(End of definition for `\tl_if_empty:nTF` and `__tl_if_empty_if:o`. This function is documented on page ??.)

Returns `\c_true_bool` if and only if the two token list variables are equal.

```
\begin{verbatim}
\prg_new_eq_conditional:NNn \tl_if_eq:NN \cs_if_eq:NN { p , T , F , TF }
\end{verbatim}
```

(End of definition for `\tl_if_eq:NNTF`. This function is documented on page ??.)
Temporary storage.

A simple store and compare routine.

(End of definition for \l__tl_internal_a_tl and \l__tl_internal_b_tl.)

A simple store and compare routine.

(End of definition for \tl_if_eq:nnTF. This function is documented on page 111.)

See \tl_if_in:nnTF for further comments. Here we simply expand the token list variable and pass it to \tl_if_in:nnTF.

(End of definition for \tl_if_in:nnTF. This function is documented on page 112.)
Once more, the test relies on the emptiness test for robustness. The function __tl_tmp:w removes tokens until the first occurrence of \#2. If this does not appear in \#1, then the final \#2 is removed, leaving an empty token list. Otherwise some tokens remain, and the test is false. See _tie:v for details on the emptiness test.

Treating correctly cases like \tl_if_in:nnTF \{a state\}(states), where \#1#2 contains \#2 before the end, requires special care. To cater for this case, we insert \{\} between the two token lists. This marker may not appear in \#2 because of \TeX{} limitations on what can delimit a parameter, hence we are safe. Using two brace groups makes the test work also for empty arguments. The \if_false: constructions are a faster way to do \group_align_safe_begin: and \group_align_safe_end:. The \scan_stop: ensures that f-expanding _tie:v does not lead to unbalanced braces.

\begin{verbatim}
\prg_new_protected_conditional:Nppnn \tl_if_in:nn #1#2 { T , F , TF } { \scan_stop: \if_false: { \fi: \cs_set:Npn __tl_tmp:w ##1 #2 { } \tl_if_empty:oTF { __tl_tmp:w #1 {} {} #2 } { \prg_return_false: } { \prg_return_true: } \if_false: } \fi: } \prg_generate_conditional_variant:Nnn \tl_if_in:nn \{ V , VV , o , oo , nV , no \} { T , F , TF } \end{verbatim}

(End of definition for _tie:v. This function is documented on page 112.)

\begin{verbatim}
\prg_new_protected_conditional:Nppnn \tl_if_novaluen:no \{ p , T , F , TF \} \{ \cs_set_protected:Npn __tl_tmp:w #1 \{ \prg_new_conditional:Nppnn \tl_if_novaluen #1 \{ \p , \T , \F , \TF \} \{ __tl_if_empty_if:o { __tl_if_novaluen:w {} #1 {} ? ! #1 ? ? ! } \prg_return_true: \else: \prg_return_false: \fi: \} \cs_new:Npn __tl_if_novaluen:w #1 #2 ? #3 ? ! { #1 #2 } \} \exp_args:No __tl_tmp:w \{ \c_novaluen_tl \} \end{verbatim}

(End of definition for \tl_if_novaluen:no and __tl_if_novaluen:w. This function is documented on page 112.)

\begin{verbatim}
\cs_new:Npn \tl_if_single_p:n \{ \exp_args:No \tl_if_single_p:n \} \cs_new:Npn \tl_if_single_p:c \{ \exp_args:No \tl_if_single_p:n \} \cs_new:Npn \tl_if_single:nT \{ \exp_args:No \tl_if_single:nT \} \cs_new:Npn \tl_if_single:nF \{ \exp_args:No \tl_if_single:nF \} \end{verbatim}

(End of definition for \tl_if_single_nT and \tl_if_single_nF. This function is documented on page 112.)

Expand the token list and feed it to \tl_if_single:nF.
This test is similar to \tl_if_empty:nTF. Expanding \use_none:n #1 ?? once yields an empty result if #1 is blank, a single ? if #1 has a single item, and otherwise yields some tokens ending with ?? . Then, __kernel_tl_to_str:w makes sure there are no odd category codes. An earlier version would compare the result to a single ? using string comparison, but the Lua call is slow in LuaTeX. Instead, __tl_if_single:nnw picks the second token in front of it. If #1 is empty, this token is the trailing ? and the \if:w test yields false . If #1 has a single item, the token is \scan_stop: and the \if:w test yields true . Otherwise, it is one of the characters resulting from \tl_to_str:n , and the \if:w test yields false . Note that \if:w and __kernel_tl_to_str:w are primitives that take care of expansion.

There are four cases: empty token list, token list starting with a normal token, with a brace group, or with a space token. If the token list starts with a normal token, remove it and check for emptiness. For the next case, an empty token list is not a single token. Finally, we have a non-empty token list starting with a space or a brace group. Applying f-expansion yields an empty result if and only if the token list is a single space.

(End of definition for \tl_if_single:nTF and __tl_if_single:nnw. This function is documented on page 112.)
Expandable loop macro for token lists. We use the internal scan mark \s__tl_stop (defined later), which is not allowed to show up in the token list \#1 since it is internal to \l3tl. This allows us a very fast test of whether some ⟨item⟩ is the end-marker \s__tl_stop, namely call __tl_use_none_delimit_by_s_stop:w ⟨item⟩ ⟨function⟩ \s__tl_stop, which calls ⟨function⟩ if the ⟨item⟩ is the end-marker. To speed up the loop even more, only test one out of eight items, and once we hit one of the eight end-markers, go more slowly through the last few items of the list using __tl_map_function_end:w.

\cs_new:Npn \tl_map_function:nN #1#2
__tl_map_function:Nnnnnnnnn #2 #1
__tl_stop __tl_stop __tl_stop __tl_stop __tl_stop
\prg_break_point:Nn \tl_map_break: { }
\}
\cs_new:Npn \tl_map_function:NN
{ \exp_args:No \tl_map_function:nN }
\cs_generate_variant:Nn \tl_map_function:NN { c }
\cs_new:Npn __tl_map_function:Nnnnnnnnn #1#2#3#4#5#6#7#8#9
__tl_use_none_delimit_by_s_stop:w #9 __tl_map_function_end:w \s__tl_stop
__tl_map_function:Nnnnnnnnnn #1
\}
\cs_new:Npn __tl_map_function_end:w \s__tl_stop #1#2
__tl_use_none_delimit_by_s_stop:w #2 \tl_map_break: \s__tl_stop #1 \{#2\}
__tl_map_function_end:w \s__tl_stop
\}
\cs_new:Npn __tl_use_none_delimit_by_s_stop:w \s__tl_stop #1 \s__tl_stop { }

End of definition for \tl_map_function:nN and others. These functions are documented on page 117.}

The inline functions are straight forward by now. We use a little trick with the counter \g__kernel_prg_map_int to make them nestable. We can also make use of __tl_map_function:Nnnnnnnnn from before.

\cs_new_protected:Npn \tl_map_inline:nn \tl_map_inline:Nn \tl_map_inline:cn
(End of definition for \texttt{\tl_map_inline:nn} and \texttt{\tl_map_inline:Nn}. These functions are documented on page 117.)

Much like the function mapping.

(End of definition for \texttt{\tl_map_tokens:nn} and others. These functions are documented on page 117.)

(End of definition for \texttt{\tl_map_tokens:nn} and \texttt{\tl_map_tokens:Nn}. These functions are documented on page 118.)

(End of definition for \texttt{\tl_map_variable:nNn}, \texttt{\tl_map_variable:NNn}, and \texttt{__tl_map_variable:Nnn}. These functions are documented on page 118.)

(End of definition for \texttt{\tl_map_break:} and \texttt{\tl_map_break:n}. These functions are documented on page 118.)
54.9 Using token lists

\tl_to_str:n

Another name for a primitive: defined in l3basics.

\tl_to_str:o\tl_to_str:V\tl_to_str:v\tl_to_str:e

(End of definition for \tl_to_str:n. This function is documented on page 114.)

These functions return the replacement text of a token list as a string.

\tl_to_str:N\tl_to_str:c

(End of definition for \tl_to_str:n. This function is documented on page 114.)

\tl_use:N\tl_use:c

Token lists which are simply not defined give a clear \TeX error here. No such luck for ones equal to \texttt{\scan_stop}: so instead a test is made and if there is an issue an error is forced.

\tl_count:n\tl_count:V\tl_count:v\tl_count:e\tl_count:o\tl_count:N\tl_count:c

__tl_count:n

Count number of elements within a token list or token list variable. Brace groups within the list are read as a single element. Spaces are ignored. \texttt{__tl_count:n} grabs the element and replaces it by +1. The 0 ensures that it works on an empty list.

\tl_count:N\tl_count:c

(End of definition for \tl_to_str:n. This function is documented on page 114.)

54.10 Working with the contents of token lists

\tl_count:n\tl_count:V\tl_count:v\tl_count:e\tl_count:o\tl_count:N\tl_count:c

(End of definition for \tl_to_str:n, \tl_to_str:N, and __tl_count:n. These functions are documented on page 115.)
The token count is computed through an \texttt{\int_eval:n} construction. Each \texttt{1+} is output to the left, into the integer expression, and the sum is ended by the \texttt{\exp_end:} inserted by \texttt{___tl_act_end:wn} (which is technically implemented as \texttt{_c_zero_int}). Somewhat a hack!

\begin{verbatim}
\cs_new:Npn ___tl_count_tokens:n #1
{ ____tl_act:NNNn ___tl_act_count_normal:N ___tl_act_count_group:n ___tl_act_count_space: {#1} }
\end{verbatim}

(End of definition for ___tl_count_tokens:n and others. This function is documented on page 115.)

Reversal of a token list is done by taking one item at a time and putting it after \texttt{\s__-tl_stop}.

\begin{verbatim}
\cs_new:Npn ____tl_reverse_items:nwNwn #1 ?
\s__tl_mark ____tl_reverse_items:nwNwn #1 ? \s__tl_mark ____tl_reverse_items:wn
\s__tl_stop \{ \}
\end{verbatim}

(End of definition for ___tl_reverse_items:n, ____tl_reverse_items:nwNwn, and ____tl_reverse_items:wn. This function is documented on page 115.)

Trimming spaces from around the input is deferred to an internal function whose first argument is the token list to trim, augmented by an initial \texttt{____tl_trim_mark:}, and whose second argument is a \texttt{____tl_trim_mark:} (trimmed token list). The control sequence \texttt{____tl_trim_mark:} expands to nothing in a single expansion. In the case at hand, we take \texttt{____kernel_exp_not:w \exp_after:wN \use_none:nn} as our continuation, so that space trimming behaves correctly within an \texttt{e}-type or \texttt{x}-type expansion.

\begin{verbatim}
\cs_new:Npn ____tl_trim_spaces:n #1
{ ____tl_trim_spaces:nn \{ ____tl_trim_mark: #1 \} }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn ____tl_gtrim_spaces:N #1
\end{verbatim}

705
Trimming spaces from around the input is done using delimited arguments and quarks, and to get spaces at odd places in the definitions, we nest those in __tl_tmp:w, which then receives a single space as its argument: \#1 is \$. Removing leading spaces is done with __tl_trim_spaces_auxi:w, which loops until __tl_trim_mark:\$ matches the end of the token list: then \#1 is the token list and \#3 is __tl_trim_spaces_auxii:w. This hands the relevant tokens to the loop __tl_trim_spaces_auxii:w, responsible for trimming trailing spaces. The end is reached when \$ __tl_nil matches the one present in the definition of __tl_trim_spaces:n. Then __tl_trim_spaces_auxiv:w puts the token list into a group, with a lingering __tl_trim_mark:\$ at the start (which will expand to nothing in one step of expansion), and feeds this to the ⟨continuation⟩.
54.11 The first token from a token list

Finding the head of a token list expandably always strips braces, which is fine as this is consistent with for example mapping over a list. The empty brace groups in \texttt{\tl_head:n} ensure that a blank argument gives an empty result. The result is returned within the \texttt{\unexpanded} primitive. The approach here is to use \texttt{\if_false:} to allow us to use } as the closing delimiter: this is the only safe choice, as any other token would not be able to parse it's own code. More detail in \url{http://tex.stackexchange.com/a/70168}.

To correctly leave the tail of a token list, it’s important \textbf{not} to absorb any of the tail part as an argument. For example, the simple definition

\begin{Verbatim}
\texttt{\cs_new:Npn \tl_tail:n #1 \tl_tail:w #1 \q_stop}
\end{Verbatim}

would give the wrong result for \texttt{\tl_tail:n \{ a \{ bc \} \}} (the braces would be stripped). Thus the only safe way to proceed is to first check that there is an item to grab \textit{i.e.} that the argument is not blank) and assuming there is to dispose of the first item. As with \texttt{\tl_head:n}, the result is protected from further expansion by \texttt{\unexpanded}. While we could optimise the test here, this would leave some tokens “banned” in the input, which we do not have with this definition.
Accessing the first token of a token list is tricky in three cases: when it has category code 1 (begin-group token), when it is an explicit space, with category code 10 and character code 32, or when the token list is empty (obviously).

Forgetting temporarily about this issue we would use the following test in \tl_if_head_eq_charcode:nN. Here, \tl_head:w yields the first token of the token list, then passed to \exp_not:N.\if_charcode:w \exp_after:wN \exp_not:N \tl_head:w #1 \q_nil \q_stop \exp_not:N #2 \prg_return_true:\else:\prg_return_false:\fi:

The two first special cases are detected by testing if the token list starts with an N-type token (the extra ? sends empty token lists to the true branch of this test). In those cases, the first token is a character, and since we only care about its character code, we can use \str_head:n to access it (this works even if it is a space character). An empty argument results in \tl_head:w leaving two tokens: ^ and __tl_if_head_eq_empty_arg:w which will result in the \if_charcode:w test being false and remove \exp_not:N and #2.

For \tl_if_head_eq_catcode:nN, again we detect special cases with a __tl_head_is_N_type:n. Then we need to test if the first token is a begin-group token or an explicit space token, and produce the relevant token, either \c_group_begin_token or \c_space_token. Again, for an empty argument, a hack is used, removing the token given by the user and leaving two tokens in the input stream which will make the \if_catcode:w test return false.

For \tl_if_head_eq_catcode:nN, again we detect special cases with a __tl_head_is_N_type:n. Then we need to test if the first token is a begin-group token or an explicit space token, and produce the relevant token, either \c_group_begin_token or \c_space_token. Again, for an empty argument, a hack is used, removing the token given by the user and leaving two tokens in the input stream which will make the \if_catcode:w test return false.
For \tl_if_head_eq_meaning:nN, again, detect special cases. In the normal case, use \tl_head:w, with no \exp_not:N this time, since \if_meaning:w causes no expansion. With an empty argument, the test is true, and \use_none:nnn removes #2 and \prg_return_true: and \else: (it is safe this way here as in this case \prg_new_-conditional:Nnn didn’t optimize these two away). In the special cases, we know that the first token is a character, hence \if_charcode:w and \if_catcode:w together are enough. We combine them in some order, hopefully faster than the reverse. Tests are not nested because the arguments may contain unmatched primitive conditionals.
Both \texttt{tl_if_head_eq_charcode:nN} and \texttt{tl_if_head_eq_catcode:nN} will need to get the first token of their argument and apply \texttt{\exp_not:N} to it. \texttt{__tl_head_exp_not:w} does exactly that.

If the argument of \texttt{tl_if_head_eq_charcode:nN} and \texttt{tl_if_head_eq_catcode:nN} was empty \texttt{__tl_if_head_eq_empty_arg:w} will be left in the input stream. This macro has to remove \texttt{\exp_not:N} and the following token from the input stream to make sure no unbalanced if-construct is created and leave tokens there which make the two tests return \texttt{false}.

A token list can be empty, can start with an explicit space character (catcode 10 and charcode 32), can start with a begin-group token (catcode 1), or start with an N-type argument. In the first two cases, the line involving \texttt{__tl_if_head_is_N_type_auxi:w} produces \texttt{f} (and otherwise nothing). In the third case (begin-group token), the lines involving \texttt{\token_to_str:N} produce a single closing brace. The category code test is thus true exactly in the fourth case, which is what we want. One cannot optimize by moving one of the \texttt{\scan_stop:} to the beginning: if \texttt{#1} contains primitive conditionals, all of its occurrences must be dealt with before the \texttt{\if:w} tries to skip the \texttt{true} branch of the conditional.
Pass the first token of \#1 through \token_to_str:N, then check for the brace balance. The extra ? caters for an empty argument. This could be made faster, but we need all brace tricks to happen in one step of expansion, keeping the token list brace balanced at all times.

\begin{verbatim}
12821 \prg_new_conditional:Npnn \tl_if_head_is_group:n #1 { p , T , F , TF }
12822 { 12823 \if:w 12824 \exp_after:wN \use_none:n 12825 \exp_after:wN { \exp_after:wN { \token_to_str:N #1 ? } } 12826 \scan_stop: \scan_stop: 12827 __tl_if_head_is_group_fi_false:w 12828 \fi: 12829 \if_true: 12830 \prg_return_true: 12831 \else: 12832 \prg_return_false: 12833 \fi: 12834 }
12835 \cs_new:Npn __tl_if_head_is_group_fi_false:w \fi: \if_true: { \fi: \if_false: { \fi: __tl_if_head_is_group_fi_false:w }

(End of definition for \tl_if_head_is_group:nTF and others. This function is documented on page 113.)
\end{verbatim}

The auxiliary’s argument is all that is before the first explicit space in \prg_do_nothing:#1?. If that is a single \prg_do_nothing: the test yields true. Otherwise, that is more than one token, and the test yields false. The work is done within braces (with an \if_false: { \fi: ... } construction) both to hide potential alignment tab characters from \TeX{} in a table, and to allow for removing what remains of the token list after its first space. The use of \if:w ensures that the result of a single step of expansion directly yields a balanced token list (no trailing closing brace).

\begin{verbatim}
12836 \prg_new_conditional:Npnn \tl_if_head_is_space:n #1 { p , T , F , TF }
12837 { 12838 \if:w 12839 \if_false: { \fi: __tl_if_head_is_space:w \prg_do_nothing: #1 ? ~ } 12840 \scan_stop: \scan_stop: 12841 __tl_if_head_is_space:w 12842 \prg_return_true: 12843 \else: 12844 \prg_return_false: 12845 \fi: 12846 }
12847 \exp_args:Nno \use:n { \cs_new:Npn __tl_if_head_is_space:w #1 - } 12848 { 12849 __tl_if_empty_if:o {#1} \else: f \fi: 12850 \exp_after:wN \use_none:n \exp_after:wN { \if_false: } \fi: }

(End of definition for \tl_if_head_is_space:nTF and __tl_if_head_is_space:w. This function is documented on page 114.)
\end{verbatim}
Token by token changes

The __tl_act:NNN functions may be applied to any token list. Hence, we use a private quark, to allow any token, even quarks, in the token list. Only \s__tl_act_stop may not appear in the token lists manipulated by __tl_act:NNN functions.

(End of definition for \s__tl_act_stop.)

To help control the expansion, __tl_act:NNN should always be preceded by \exp:w and ends by producing \exp_end: once the result has been obtained. This way no internal token of it can be accidentally end up in the input stream. Because \s__tl_act_stop can’t appear without braces around it in the argument #1 of __tl_act_loop:w, we can use this marker to set up a fast test for leading spaces.

We expand the definition __tl_act_if_head_is_space:nTF when setting up __tl_act_loop:w, so we can then undefine the auxiliary.) In the loop, we check how the token list begins and act accordingly. In the “group” case, we may have reached \s__tl_act_stop, the end of the list. Then leave \exp_end: and the result in the input stream, to terminate the expansion of \exp:w. Otherwise, apply the relevant function to the “arguments”, #3 and to the head of the token list. Then repeat the loop. The scheme is the same if the token list starts with an N-type or with a space, making sure that __tl_act_space:wwNNN gobbles the space.

712
__tl_act:NNN loops over tokens, groups, and spaces in \#4. \{\s_@@_act_stop\} serves as the end of token list marker, the ? after it avoids losing outer braces. The result is stored as an argument for the dummy function __tl_act_result:n.

Typically, the output is done to the right of what was already output, using __tl_act_output:n, but for the __tl_act_reverse functions, it should be done to the left.

\begin{verbatim}
\tl_reverse:n \tl_reverse:o \tl_reverse:V \tl_reverse:f \tl_reverse:e
\end{verbatim}

The goal here is to reverse without losing spaces nor braces. This is done using the general internal function __tl_act:NNN. Spaces and “normal” tokens are output on the left of the current output. Grouped tokens are output to the left but without any reversal within the group.
This reverses the list, leaving \exp_stop_f: in front, which stops the f-expansion.

\tl_reverse:N
\tl_reverse:c
\tl_greverse:N
\tl_greverse:c

(End of definition for \tl_reverse:N and others. These functions are documented on page 115.)

54.13 Using a single item

The idea here is to find the offset of the item from the left, then use a loop to grab the correct item. If the resulting offset is too large, then __tl_if_recursion_tail_break:nN terminates the loop, and returns nothing at all.

\tl_item:nn
\tl_item:Nn
\tl_item:cn
\tl_item_aux:nn
__tl_item:nn

(End of definition for \tl_item:nn and others. These functions are documented on page 115.)
Importantly \item:nn only evaluates its argument once.

To avoid checking for the end of the token list at every step, start by counting the number \l of items and “normalizing” the bounds, namely clamping them to the interval \([0, \ell]\) and dealing with negative indices. More precisely, __tl_range_items:nnNn receives the number of items to skip at the beginning of the token list, the index of the last item to keep, a function which is either __tl_range:w or the token list itself. If nothing should be kept, leave {}: this stops the \texttt{f}\-expansion of \item{f} and that function produces an empty result. Otherwise, repeatedly call __tl_range_skip:w to delete \#1 items from the input stream (the extra brace group avoids an off-by-one shift). For the braced version __tl_range_braced:w sets up __tl_range_collect_braced:w which stores items one by one in an argument after the semicolon. Depending on the first token of the tail, either just move it (if it is a space) or also decrement the number of items left to find. Eventually, the result is a brace group followed by the rest of the token list, and \item{f} cleans up and gives the result in \exp_not:n.
__tl_range_normalize:nn _tl_range_normalize:nn This function converts an \textit{index} argument into an explicit position in the token list.

(End of definition for \texttt{tl_range:nn} and others. These functions are documented on page 121.)
(a result of 0 denoting “out of bounds”). Expects two explicit integer arguments: the \langle index\rangle #1 and the string count #2. If #1 is negative, replace it by #1 + #2 + 1, then limit to the range \[0, #2\].

```
\cs_new:Npn \__tl_range_normalize:nn #1 #2
\int_eval:n
\{ 
\if_int_compare:w #1 < \c_zero_int
  \if_int_compare:w #1 < -#2 \exp_stop_f:
    0
  \else:
    #1 + #2 + 1
  \fi:
\else:
  \if_int_compare:w #1 < #2 \exp_stop_f:
    #1
  \else:
    #2
  \fi:
\fi:
\}
```

(End of definition for __tl_range_normalize:nn.)

54.14 Viewing token lists

Showing token list variables is done after checking that the variable is defined (see \cs_new_protected:Npn \tl_show:N, \cs_new_protected:Npn \tl_log:N, \cs_new_protected:Npn \tl_show:c, \cs_new_protected:Npn \tl_log:c, \cs_new_protected:Npn __tl_show:NN).

```
\cs_new_protected:Npn \tl_show:N { \__tl_show:NN \tl_show:n }
\cs_generate_variant:Nn \tl_show:N { c }
\cs_new_protected:Npn \tl_log:N { \__tl_show:NN \tl_log:n }
\cs_generate_variant:Nn \tl_log:N { c }
\cs_new_protected:Npn \__tl_show:NN #1 #2
\{ 
\__kernel_chk_defined:NT #2
\exp_args:Nf \tl_if_empty:nTF
\{ \cs_prefix_spec:N #2 \cs_parameter_spec:N #2 \}
\exp_args:Ne #1
\{ \token_to_str:N #2 \exp_after:wN \exp_not:w \exp_after:wN \{\}
\}
\}
```

(End of definition for \tl_show:N, \tl_log:N, and __tl_show:NN. These functions are documented on page 116.)
Many `show` functions are based on `\tl_show:n`. The argument of `\tl_show:n` is line-wrapped using `\iow_wrap:nnnN` but with a leading `>`-and trailing period, both removed before passing the wrapped text to the `\showtokens` primitive. This primitive shows the result with a leading `>->` and trailing period.

The token list `_tl_internal_a_tl` containing the result of all these manipulations is displayed to the terminal using `\tex_showtokens:D` and an odd `\exp_after:wN` which expand the closing brace to improve the output slightly. The calls to `_kernel_iow_with:Nnn` ensure that the `\newlinechar` is set to 10 so that the `\iownewline` inserted by the line-wrapping code are correctly recognized by \TeX, and that `\errorcontextlines` is \texttt{-1} to avoid printing irrelevant context.

```
\cs_new_protected:Npn \tl_show:n \#1
\{ \iow_wrap:nnnN \{ \textgreater~ \tl_to_str:n \{\#1\} \textperiodcentered \} \} \_tl_show:n \}
\cs_generate_variant:Nn \tl_show:n { e , x }
```

```
\cs_new_protected:Npn \__tl_show:n \#1
\{ \tl_set:Nf \l__tl_internal_a_tl \{ \__tl_show:w \#1 \s__tl_stop \} \}
\__kernel_iow_with:Nnn \tex_newlinechar:D \{ 10 \}
\{ \__kernel_iow_with:Nnn \tex_errorcontextlines:D \{ \texttt{-1} \}
\{ \\tex_showtokens:D \exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN \l__tl_internal_a_tl \}
\}
```

```
\cs_new:Npn \__tl_show:w \#1 \textgreater \textperiodcentered \s__tl_stop \{\#2\}
```

```
(End of definition for `\tl_show:n`, `\_tl_show:n`, and `\_tl_show:w`. This function is documented on page \texttt{116}.)
```

Logging is much easier, simply line-wrap. The `>`- and trailing period is there to match the output of `\tl_show:n`.

```
\cs_new_protected:Npn \tl_log:n \#1
\{ \iow_wrap:nnnN \{ \textgreater~ \tl_to_str:n \{\#1\} \textperiodcentered \} \} \tl_log:n \}
\cs_generate_variant:Nn \tl_log:n { e , x }
```

```
(End of definition for `\tl_log:n`. This function is documented on page \texttt{116}.)
```

Helper for checking that \#1 has the correct internal structure to be of a certain type. Make sure that it is defined and that it is a token list, namely a macro with no `\long` nor `\protected` prefix. Then compare \#1 to an attempt at reconstructing a valid structure of the given type using \#2 (see implementation of `\seq_show:N` for instance). If that is successful run the requested code \#4.

```
\cs_new_protected:Npn \__kernel_chk_tl_type:NnnT \#1\#2\#3\#4
\{ \__kernel_chk_defined:NT \#1
\}
\exp_args:Nf \tl_if_empty:nTF
\{ \cs_prefix_spec:N \#1 \cs_parameter_spec:N \#1 \}
\{ \tl_set:Ne \_tl_internal_a_tl \{\#3\}
\tl_if_eq:NNTF \#1 \_tl_internal_a_tl \{\#4\}
```

718
\msg_error:nnee { kernel } { bad-type }
{ \token_to_str:N #1 } { \token_to_meaning:N #1 } {#2} { \tl_to_str:N \l__tl_internal_a_tl }
}\}
\msg_error:nnee { kernel } { bad-type }
{ \token_to_str:N #1 } { \token_to_meaning:N #1 } {#2}
\}
\}

(End of definition for _kernel_chk_tl_type:NnnT.)

54.15 Internal scan marks
\s__tl_nil
\s__tl_mark
\s__tl_stop
Internal scan marks. These are defined here at the end because the code for \scan_new:N
depends on some l3tl functions.
\scan_new:N \s__tl_nil
\scan_new:N \s__tl_mark
\scan_new:N \s__tl_stop
(End of definition for \s__tl_nil, \s__tl_mark, and \s__tl_stop.)

54.16 Scratch token lists
\g_tmpa_tl
\g_tmpb_tl
Global temporary token list variables. They are supposed to be set and used immediately,
with no delay between the definition and the use because you can’t count on other macros
not to redefine them from under you.
\tl_new:N \g_tmpa_tl
\tl_new:N \g_tmpb_tl
(End of definition for \g_tmpa_tl and \g_tmpb_tl. These variables are documented on page 125.)
\l_tmpa_tl
\l_tmpb_tl
These are local temporary token list variables. Be sure not to assume that the value you
put into them will survive for long—see discussion above.
\tl_new:N \l_tmpa_tl
\tl_new:N \l_tmpb_tl
(End of definition for \l_tmpa_tl and \l_tmpb_tl. These variables are documented on page 125.)
We finally clean up a temporary control sequence that we have used at various points
to set up some definitions.
\cs_undefine:N __tl_tmp:w
⟨/package⟩
Chapter 55

l3tl-build implementation

Between \tl_build_begin:N (\tl var) and \tl_build_end:N (\tl var), the (\tl var) has the structure
\exp_end: ... \exp_end: __tl_build_last:NNn \langle assignment \rangle \langle next tl \rangle
{\langle left \rangle} \langle right \rangle

where \langle right \rangle is not braced. The “data” it represents is \langle left \rangle followed by the “data” of \langle next tl \rangle followed by \langle right \rangle. The \langle next tl \rangle is a token list variable whose name is that of \langle tl var \rangle followed by ‘. There are between 0 and 4 \exp_end: to keep track of when \langle left \rangle and \langle right \rangle should be put into the \langle next tl \rangle. The \langle assignment \rangle is \cs_set_nopar:Npe if the variable is local, and \cs_gset_nopar:Npe if it is global.

First construct the \langle next tl \rangle: using a prime here conflicts with the usual expl3 convention but we need a name that can be derived from #1 without any external data such as a counter. Empty that \langle next tl \rangle and setup the structure. The local and global versions only differ by a single function \cs_(g)set_nopar:Npe used for all assignments: this is important because only that function is stored in the \langle tl var \rangle and \langle next tl \rangle for subsequent assignments. In principle __tl_build_begin:NNN could use \tl_(g)clear_new:N to empty #1 and make sure it is defined, but logging the definition does not seem useful so we just do #3 #1 {} to clear it locally or globally as appropriate.

\cs_new_protected:Npn \tl_build_begin:N #1
{ __tl_build_begin:NN \cs_set_nopar:Npe #1 }
\cs_new_protected:Npn \tl_build_gbegin:N #1
{ __tl_build_begin:NN \cs_gset_nopar:Npe #1 }
\cs_new_protected:Npn __tl_build_begin:NN #1#2
{ \exp_args:Nc __tl_build_begin:NNN { \cs_to_str:N #2 ' } #2 #1 }
\cs_new_protected:Npn __tl_build_begin:NNN #1#2#3
{ #3 #1 {} }
#3 #2
{ \exp_not:n { \exp_end: \exp_end: \exp_end: \exp_end: } }
\exp_not:n { __tl_build_last:NNn #3 #1 {} }
}
Similar to `\tl_put_right:Nn`, but apply `\exp:w` to #1. Most of the time this just removes one `\exp_end:`. When there are none left, `__tl_build_last:NNn` is expanded instead. It resets the definition of the ⟨tl var⟩ by ending the `\exp_not:n` and the definition early. Then it makes sure the ⟨next tl⟩ (its argument #1) is set-up and starts a new definition. Then `__tl_build_put:nw` and `__tl_build_put:nn` place the (left) part of the original ⟨tl var⟩ as appropriate for the definition of the ⟨next tl⟩ (the ⟨right⟩ part is left in the right place without ever becoming a macro argument). We use `\exp_after:wN` rather than some `\exp_args:Nn` to avoid reading arguments that are likely very long token lists. We use `\cs_gset_nopar:Npe` rather than `\tl_gset:Ne` partly for the same reason and partly because the assignments are interrupted by brace tricks, which implies that the assignment does not simply set the token list to an e-expansion of the second argument.

```
\cs_new_protected:Npn \tl_build_put_right:Nn #1#2
\cs_set_nopar:Npe #1
{ \__kernel_exp_not:w \exp_after:wN { \exp:w #1 #2 } }
\cs_generate_variant:Nn \tl_build_put_right:Nn { Ne , Nx }
\cs_new_protected:Npn \tl_build_gput_right:Nn #1#2
\cs_gset_nopar:Npe #1
{ \__kernel_exp_not:w \exp_after:wN { \exp:w #1 #2 } }
\cs_generate_variant:Nn \tl_build_gput_right:Nn { Ne , Nx }
\cs_new_protected:Npn \__tl_build_last:NNn #1#2
{ \if_false: { \fi:
\exp_end: \exp_end: \exp_end: \exp_end: \exp_end:
\__tl_build_last:NNn #1 #2 { }
}
\if_meaning:w \c_empty_tl #2
\__tl_build_begin:NN #1 #2
\fi:
#1 #2
{ \__kernel_exp_not:w \exp_after:wN
\exp:w \if_false: } \fi:
\exp_after:wN \__tl_build_put:nn \exp_after:wN {#2}
\cs_new_protected:Npn \__tl_build_put_left:NNn #1#2 #3 #4 #5
\__tl_build_put_left:Nn #1
{ #2 \__tl_build_last:NNn #3 #4 #5 { #1 #5 } }
```

(End of definition for `\tl_build_put_right:Nn` and others. These functions are documented on page 126.)
The idea is to expand the \textlangle tl\ var\rangle then the \textlangle next tl\rangle and so on, all within an \texttt{e}-expanding assignment, and wrap as appropriate in \texttt{\exp_not:n}. The various \textlangle left\rangle parts are left in the assignment as we go, which enables us to expand the \textlangle next tl\rangle at the right place. The various \textlangle right\rangle parts are eventually picked up in one last \texttt{\exp_not:n}, with a brace trick to wrap all the \textlangle right\rangle parts together.

\begin{verbatim}
\cs_new_protected:Npn __tl_build_get:NNN #1#2#3
 { \if_meaning:w \c_empty_tl #1
 \exp_after:wN __tl_build_get:w #2 #3
 \else
 \exp_after:wN __tl_build_put:nn #2 {#3}
 \fi
 }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn __tl_build_get:w #1 __tl_build_last:NNn #2#3#4
 { \if_meaning:w \c_empty_tl #1
 \exp_after:wN __tl_build_get:w #2 #3 #4
 \else
 \exp_after:wN __tl_build_put:nn __tl_build_last:NNn #2#3#4
 \fi
 }
\end{verbatim}

Get the data then clear the \textlangle next tl\rangle recursively until finding an empty one. It is perhaps wasteful to repeatedly use \texttt{\cs_to_str:N}. The local/global scope is checked by \texttt{\tl_set:Ne} or \texttt{\tl_gset:Ne}.

\begin{verbatim}
\cs_new_protected:Npn \tl_build_end:N #1
 { __tl_build_get:NNN __kernel_tl_set:Ne #1 #1
 \exp_args:Nc __tl_build_end_loop:NN { \cs_to_str:N #1 ' } \tl_clear:N
 }
\end{verbatim}

\begin{verbatim}
\cs_new_protected:Npn \tl_build_gend:N #1
 { __tl_build_get:NNN __kernel_tl_gset:Ne #1 #1
 \exp_args:Nc __tl_build_end_loop:NN { \cs_to_str:N #1 ' } \tl_gclear:N
 }
\end{verbatim}

\begin{verbatim}
\cs_new_protected:Npn __tl_build_end_loop:NN #1#2
 { \if_meaning:w \c_empty_tl #1
 \exp_after:wN \use_none:nnnnnn \fi:
 \exp_after:wN __tl_build_put:nnn #2
 \exp_after:wN __tl_build_put_left:NNn \cs_set_nopar:Npe #1
 }
\end{verbatim}

\begin{verbatim}
\cs_generate_variant:Nn \tl_build_put_left:Nn { Ne , Nx }
\cs_new_protected:Npn \tl_build_gput_left:Nn #1
 { __tl_build_put_left:NNn \cs_gset_nopar:Npe #1
 \cs_generate_variant:Nn \tl_build_gput_left:Nn { Ne , Nx }
 }
\end{verbatim}

\begin{verbatim}
__tl_build_end_loop:NN \\
__tl_build_get:NNN \\
__tl_build_get:w \\
__tl_build_get_end:w
\end{verbatim}

(End of definition for \texttt{\tl_build_put_left:Nn}, \texttt{\tl_build_gput_left:Nn}, and \texttt{__tl_build_put_left:NNn}. These functions are documented on page 126.)
\exp_not:n \{#4\}
\if_meaning:w \c_empty_tl #3
\exp_after:wN __tl_build_get_end:w
\fi:
\exp_after:wN __tl_build_get:w #3
}
\cs_new:Npn __tl_build_get_end:w #1#2#3
{ __kernel_exp_not:w \exp_after:wN { \if_false: } \fi: }

(End of definition for __tl_build_get:NNN, __tl_build_get:w, and __tl_build_get_end:w.)

{/package}
Chapter 56

13str implementation

56.1 Internal auxiliaries

\s__str_mark Internal scan marks.
\s__str_stop

\scan_new:N \s__str_mark
\scan_new:N \s__str_stop

(End of definition for \s__str_mark and \s__str_stop.)

__str_use_none_delimit_by_s_stop:w Functions to gobble up to a scan mark.
__str_use_i_delimit_by_s_stop:nw
\cs_new:Npn __str_use_none_delimit_by_s_stop:w #1 \s__str_stop { }
\cs_new:Npn __str_use_i_delimit_by_s_stop:nw #1 #2 \s__str_stop {#1}

(End of definition for __str_use_none_delimit_by_s_stop:w and __str_use_i_delimit_by_s_stop:nw.)

\q__str_recursion_tail Internal recursion quarks.
\q__str_recursion_stop
\quark_new:N \q__str_recursion_tail
\quark_new:N \q__str_recursion_stop

(End of definition for \q__str_recursion_tail and \q__str_recursion_stop.)

__str_if_recursion_tail_break:NN Functions to query recursion quarks.
__str_if_recursion_tail_stop_do:Nn
__kernel_quark_new_test:N __str_if_recursion_tail_break:NN
__kernel_quark_new_test:N __str_if_recursion_tail_stop_do:Nn

(End of definition for __str_if_recursion_tail_break:NN and __str_if_recursion_tail_stop_do:Nn.)
56.2 Creating and setting string variables

\str_new:N
\str_new:c
\str_use:N
\str_use:c
\str_clear:N
\str_clear:c
\str_gclear:N
\str_gclear:c
\str_clear_new:N
\str_clear_new:c
\str_gclear_new:N
\str_gclear_new:c
\str_set_eq:NN
\str_set_eq:cN
\str_set_eq:Nc
\str_set_eq:cc
\str_gset_eq:NN
\str_gset_eq:cN
\str_gset_eq:Nc
\str_gset_eq:cc
\str_concat:NNN
\str_concat:ccc
\str_gconcat:NNN
\str_gconcat:ccc

A string is simply a token list. The full mapping system isn’t set up yet so do things by hand.

\begin{verbatim}
\group_begin:
\cs_set_protected:Npn __str_tmp:n #1
\{ \tl_if_blank:nF {#1} \{
\cs_new_eq:cc { str_ #1 :N } { tl_ #1 :N }
\exp_args:Nc \cs_generate_variant:Nn { str_ #1 :N } { c }
__str_tmp:n \}
\}
__str_tmp:n \{ new \}
__str_tmp:n \{ use \}
__str_tmp:n \{ clear \}
__str_tmp:n \{ gclear \}
__str_tmp:n \{ clear_new \}
__str_tmp:n \{ gclear_new \}
__str_tmp:n \}
\group_end:
\cs_new_eq:NN \str_set_eq:NN \tl_set_eq:NN
\cs_new_eq:NN \str_gset_eq:NN \tl_gset_eq:NN
\cs_generate_variant:Nn \str_set_eq:NN { c , Nc , cc }
\cs_generate_variant:Nn \str_gset_eq:NN { c , Nc , cc }
\cs_new_eq:NN \str_concat:NNN \tl_concat:NNN
\cs_new_eq:NN \str_gconcat:NNN \tl_gconcat:NNN
\cs_generate_variant:Nn \str_concat:NNN { ccc }
\cs_generate_variant:Nn \str_gconcat:NNN { ccc }
\end{verbatim}

\begin{verbatim}
(End of definition for \str_new:N and others. These functions are documented on page 128.)
\end{verbatim}

\str_set:Nn
\str_set:NV
\str_set:Ne
\str_set:Nx
\str_set:cn
\str_set:cV
\str_set:ce
\str_set:cx
\str_gset:Nn
\str_gset:NV
\str_gset:Ne
\str_gset:Nx
\str_gset:Nc
\str_gset:cc
\str_gset:cn
\str_gset:cV
\str_gset:ce
\str_gset:cx
\str_gput_left:Nn
\str_gput_left:NV
\str_gput_left:Ne
\str_gput_left:Nx
\str_gput_left:cn
\str_gput_left:cV
\str_gput_left:ce
\str_gput_left:cx
\str_gput_right:Nn
\str_gput_right:NV
\str_gput_right:Ne
\str_gput_right:Nx
\str_gput_right:cn
\str_gput_right:cV
\str_gput_right:ce
\str_gput_right:cx
\str_const:Nn
\str_const:NV
\str_const:Ne
\str_const:Nx
\str_const:cn
\str_const:cV
\str_const:ce
\str_const:cx
\str_put_left:Nn
\str_put_left:NV
\str_put_left:Ne
\str_put_left:Nx
\str_put_left:cn
\str_put_left:cV
\str_put_left:ce
\str_put_left:cx
\str_put_right:Nn
\str_put_right:NV
\str_put_right:Ne
\str_put_right:Nx
\str_put_right:cn
\str_put_right:cV
\str_put_right:ce
\str_put_right:cx
\str_concat:NN
\str_concat:cc
\str_gconcat:NN
\str_gconcat:cc
\end{verbatim}

Similar to corresponding l3tl base functions, except that __kernel_exp_not:w is replaced with __kernel_tl_to_str:w. Just like token list, string constants use \cs_gset_nopar:Npe instead of __kernel_tl_gset:Ne so that the scope checking for c is applied when l3debug is used. To maintain backward compatibility, in \str__ kernels (g)put_left:Nn and \str_(g)put_right:Nn, contents of string variables are wrapped in __kernel_exp_not:w to prevent further expansion.

\begin{verbatim}
\group_begin:
\cs_new_protected:Npn \str_set:Nn #1#2
\{ __kernel_tl_set:Ne #1 \{ __kernel_tl_to_str:w \#2 \} \}
\cs_gset_protected:Npn \str_gset:Nn #1#2
\{ __kernel_tl_gset:Ne \#1 \{ __kernel_tl_to_str:w \#2 \} \}
\cs_new_protected:Npn \str_set:N #1 \#2
\{ __kernel_chk_if_free_cs:N \#1
\cs_gset_nopar:Npe \#1 \{ __kernel_tl_to_str:w \#2 \}
\}
\cs_new_protected:Npn \str_set:Ne \#1 \#2
\{ __kernel_tl_set:Ne \#1 \{ __kernel_tl_to_str:w \#2 \}
\}
\cs_new_protected:Npn \str_set:Nx \#1 \#2
\{ __kernel_tl_set:Nx \#1 \{ __kernel_tl_to_str:w \#2 \}
\}
\cs_new_protected:Npn \str_set:Nc \#1 \#2
\{ __kernel_tl_set:Nc \#1 \{ __kernel_tl_to_str:w \#2 \}
\}
\cs_new_protected:Npn \str_set:cn \#1 \#2
\{ __kernel_tl_set:cn \#1 \{ __kernel_tl_to_str:w \#2 \}
\}
\cs_new_protected:Npn \str_set:cV \#1 \#2
\{ __kernel_tl_set:cV \#1 \{ __kernel_tl_to_str:w \#2 \}
\}
\end{verbatim}

725
56.3 Modifying string variables

Start by applying \texttt{tl_to_str:n} to convert the old and new token lists to strings, and also apply \texttt{tl_to_str:N} to avoid any issues if we are fed a token list variable. Then the code is a much simplified version of the token list code because neither the delimiter nor the replacement can contain macro parameters or braces. The delimiter \texttt{_str__mark} cannot appear in the string to edit so it is used in all cases. Some e-expansion is unnecessary. There is no need to avoid losing braces nor to protect against expansion. The ending code is much simplified and does not need to hide in braces.
\use:e

\exp_not:n { __str_replace_aux:NNNnnn #1 \#2 \#3 }
\{ \tl_to_str:N \#3 \}
\{ \tl_to_str:n \{\#4\} \}
\{ \tl_to_str:n \{\#5\} \}

\cs_new_protected:Npn __str_replace_next:w ##1 \#5
{ ##1 \#6 \#1 }
__str_replace_next:w \#4
__str_use_none_delimit_by_s_stop:w \#5
\s__str_stop

\cs_new_eq:NN __str_replace_next:w ?

(End of definition for \str_replace_all:Nnn and others. These functions are documented on page 136.)

\str_remove_once:Nn \str_gremove_once:Nn
\str_remove_once:cn \str_gremove_once:cn

Removal is just a special case of replacement.

\begin{verbatim}
\cs_new_protected:Npn \str_remove_vonce:Nn \str_gremove_vonce:Nn
\cs_new_protected:Npn \str_remove_vonce:cn \str_gremove_vonce:cn
\end{verbatim}

(End of definition for \str_remove_vonce:Nn and \str_gremove_vonce:Nn. These functions are documented on page 136.)

\str_remove_all:Nn \str_gremove_all:Nn
\str_remove_all:cn \str_gremove_all:cn

Removal is just a special case of replacement.

\begin{verbatim}
\cs_new_protected:Npn \str_remove_vall:Nn \str_gremove_vall:Nn
\cs_new_protected:Npn \str_remove_vall:cn \str_gremove_vall:cn
\end{verbatim}

(End of definition for \str_remove_vall:Nn and \str_gremove_vall:Nn. These functions are documented on page 136.)

56.4 String comparisons

\str_if_empty_p:N \str_if_empty_p:c
\str_if_empty:NP \str_if_empty:CF
\str_if_empty:cF \str_if_empty:nF \str_if_empty:pF \str_if_empty:pC
\str_if_exist:NP \str_if_exist:CF \str_if_exist:FN \str_if_exist:CN
\str_if_exist:c \str_if_exist:nF \str_if_exist:pF \str_if_exist:pC

More copy-paste!

\prg_new_eq:pp\cs_new_protected:Nn \str_exist:N \tl_if_exist:N
\{ p , T , F , TF \}
\prg_new_eq:pp\cs_new_protected:Nn \str_exist:c \tl_if_exist:c
\{ p , T , F , TF \}
\prg_new_eq:pp\cs_new_protected:Nn \str_empty:N \tl_if_empty:N

727
\prg_new_eq_conditional:NNn \str_if_empty:c \tl_if_empty:c
\prg_new_eq_conditional:NNn \str_if_empty:n \tl_if_empty:n
\prg_new_eq_conditional:NNn \str_if_exist:NTF
\str_if_exist:nTF
\str_if_exist:NTF
\str_if_exist:TF

End of definition for \str_if_empty:NTF, \str_if_empty:nTF, and \str_if_exist:NTF. These functions are documented on page 129.

\cs_new_eq:NN __str_if_eq:nn \tex_strcmp:D

\str_compare_p:nNn \str_compare_p:eNe \str_compare:nNn \str_compare:eNe

Simply rely on __str_if_eq:nn, which expands to -1, 0 or 1. The ee version is created directly because it is more efficient.

\prg_new_conditional:Npnn \str_compare:nNn #1#2#3 { p , T , F , TF }
\prg_new_conditional:Npnn \str_compare:eNe #1#2#3 { p , T , F , TF }

End of definition for __str_if_eq:nnTF. This function is documented on page 131.

\str_if_eq_p:nn \str_if_eq_p:Vn \str_if_eq_p:on \str_if_eq_p:nV \str_if_eq_p:VV \str_if_eq_p:ee
\str_if_eq:nn \str_if_eq:Vn \str_if_eq:on \str_if_eq:nV \str_if_eq:VV \str_if_eq:ee

Note that \str_if_eq:NNTF is different from \tl_if_eq:NNTF because it needs to ignore category codes.

\prg_new_conditional:Npnn \str_if_eq:NN #1#2 { p , TF , T , F }

Modern engines provide a direct way of comparing two token lists, but returning a number. This set of conditionals therefore makes life a bit clearer. The nn and ee versions are created directly as this is most efficient. Since __str_if_eq:nn will expand to 0 as an explicit character with category 12 if the two lists match (and either -1 or 1 if they don’t) we can use \if:w here which is faster than using \if_int_compare:w.

\prg_new_conditional:Npnn \str_if_eq:NN #1#2 { p , TF , T , F }

(End of definition for __str_if_eq:nn. This function is documented on page 131.)

\prg_new_conditional:Npnn \str_if_eq:NNn \str_if_eq:Vn \str_if_eq:on \str_if_eq:nV \str_if_eq:VV \str_if_eq:ee
\prg_new_conditional:Npnn \str_if_eq:NN #1#2 { p , T , F , TF }
\prg_new_conditional:Npnn \str_if_eq:NNn \str_if_eq:nV \str_if_eq:VV
\prg_new_conditional:Npnn \str_if_eq:NN #1#2 { p , T , F , TF }

(End of definition for __str_if_eq:nn. This function is documented on page 129.)

String comparisons rely on the primitive \(\text{pdf}strcmp\), so we define a new name for it.

\prg_new_eq_conditional:NNn \str_if_empty:n \tl_if_empty:n
\prg_new_eq_conditional:NNn \str_if_exist:NTF

End of definition for \str_if_empty:NTF, \str_if_empty:nTF, and \str_if_exist:NTF. These functions are documented on page 129.

String comparisons rely on the primitive \(\text{pdf}strcmp\), so we define a new name for it.

\prg_new_eq_conditional:NNn \str_if_empty:c \tl_if_empty:c
\prg_new_eq_conditional:NNn \str_if_empty:n \tl_if_empty:n

(End of definition for \str_if_empty:NTF, \str_if_empty:nTF, and \str_if_exist:NTF. These functions are documented on page 129.)
Everything here needs to be detokenized but beyond that it is a simple token list test. It would be faster to fine-tune the \texttt{T}, \texttt{F}, \texttt{TF} variants by calling the appropriate variant of \texttt{_str_case:nn_TF} directly but that takes more code.

The aim here is to allow the case statement to be evaluated using a known number of expansion steps (two), and without needing to use an explicit “end of recursion” marker. That is achieved by using the test input as the final case, as this is always true. The trick is then to tidy up the output such that the appropriate case code plus either the \texttt{true} or \texttt{false} branch code is inserted.
To tidy up the recursion, there are two outcomes. If there was a hit to one of the cases searched for, then #1 is the code to insert, #2 is the next case to check on and #3 is all of the rest of the cases code. That means that #4 is the true branch code, and #5 tidies up the spare \s__str_mark and the false branch. On the other hand, if none of the cases matched then we arrive here using the “termination” case of comparing the search with itself. That means that #1 is empty, #2 is the first \s__str_mark and so #4 is the false code (the true code is mopped up by #3).

\cs_new:Npn __str_case:nnTF #1#2#3#4#5
{ __str_case:nn {#1} #2 {#1} \s__str_mark {#3} \s__str_mark {#4} \s__str_stop }
\cs_generate_variant:Nn \str_case:nn { V , o , e , nV , nv }
\prg_generate_conditional_variant:Nnn \str_case:nn { V , o , e , nV , nv } { T , F , TF }
\cs_new_eq:NN \str_case:Nn \str_case:Vn
\cs_new_eq:NN \str_case:NnT \str_case:VnT
\cs_new_eq:NN \str_case:NnF \str_case:VnF
\cs_new_eq:NN \str_case:NnTF \str_case:VnTF
\cs_new:Npn __str_case:nw #1#2#3
{ \str_if_eq:nnTF {#1} {#2}
{ __str_case_end:nw {#3} }
{ __str_case:nw {#1} }
}
\cs_new:Npn \str_case_e:nn #1#2
{ \exp:w __str_case_e:nnTF {#1} {#2} { } }
\cs_new:Npn \str_case_e:nnT #1#2#3
{ \exp:w __str_case_e:nnTF {#1} {#2} {#3} }
\cs_new:Npn \str_case_e:nnF #1#2
{ \exp:w __str_case_e:nnTF {#1} {#2} { } }
\cs_new:Npn \str_case_e:nnTF #1#2
{ \exp:w __str_case_e:nnTF {#1} {#2} }
\cs_new:Npn __str_case_end:nw #1#2#3#4#5 \s__str_mark #6#7 \s__str_stop
730
56.5 Mapping over strings

The inline and variable mappings are similar to the usual token list mappings but start out by turning the argument to an “other string”. Doing the same for the expandable function mapping would require __kernel_str_to_other:n, quadratic in the string length. To deal with spaces in that case, __str_map_function:w replaces the following space by a braced space and a further call to itself. These are received by __str_map_function:nn, which passes the space to \#1 and calls __str_map_function:w to deal with the next space. The space before the braced space allows to optimize the \texttt{q__str_recursion_tail} test. Of course we need to include a trailing space (the question mark is needed to avoid losing the space when \TeX{} tokenizes the line). At the cost of about three more auxiliaries this code could get a 9 times speed up by testing only every 9-th character for whether it is \texttt{q__str_recursion_tail} (also by converting 9 spaces at a time in the \texttt{str_map_function:n} case).

For the \texttt{map_variable} functions we use a string assignment to store each character because spaces are made catcode 12 before the loop.
\prg_break_point:Nn \str_map_break:
{ \int_gdecr:N \g__kernel_prg_map_int }
\cs_new_protected:Npn \str_map_inline:Nn
{ \exp_args:No \str_map_inline:nn }
\cs_generate_variant:Nn \str_map_inline:Nn { c }
\cs_new:Npn __str_map_inline:NN #1#2
{ __str_if_recursion_tail_break:NN #2 \str_map_break:
\exp_args:No #1 \{ \token_to_str:N #2 \}
__str_map_inline:NN #1
}
\cs_new_protected:Npn \str_map_variable:nNn #1#2#3
{ \use:e
{ \exp_not:n { __str_map_variable:NnN #2 {#3} }
__kernel_str_to_other_fast:n {#1}
}
\q__str_recursion_tail
\prg_break_point:Nn \str_map_break: { }
\cs_new_protected:Npn \str_map_variable:NNn
{ \exp_args:No \str_map_variable:nNn }
\cs_new_protected:Npn __str_map_variable:NnN #1#2#3
{ __str_if_recursion_tail_break:NN #3 \str_map_break:
\str_set:Nn #1 {#3}
\use:n {#2}
__str_map_variable:NnN #1 {#2}
}
\cs_generate_variant:Nn \str_map_variable:NNn { c }
\cs_new:Npn \str_map_break: { \prg_map_break:Nn \str_map_break: { } }
\cs_new:Npn \str_map_tokens:Nn { \exp_args:No \str_map_tokens:nn }
\cs_generate_variant:Nn \str_map_tokens:Nn { c }
\str_map_tokens:Nn\str_map_tokens:cn\str_map_tokens:nn
(End of definition for \str_map_function:NN and others. These functions are documented on page 131.)
\str_map_tokens:Nn\str_map_tokens:cn\str_map_tokens:nn
Uses an auxiliary of \str_map_function:NN.
\str_map_tokens:Nn\str_map_tokens:cn\str_map_tokens:nn
(End of definition for \str_map_tokens:Nn and \str_map_tokens:nn. These functions are documented on page 132.)
56.6 Accessing specific characters in a string

First apply \texttt{__str_to_other:n}, then replace all spaces by “other” spaces, 8 at a time, storing the converted part of the string between the \texttt{__str_mark} and \texttt{__str_stop} markers. The end is detected when \texttt{__str_to_other_loop:w} finds one of the trailing A, distinguished from any contents of the initial token list by their category. Then \texttt{__str_to_other_end:w} is called, and finds the result between \texttt{__str_mark} and the first A (well, there is also the need to remove a space).

\begin{verbatim}
\cs_new:Npn __kernel_str_to_other:n #1
 \exp_after:wN __str_to_other_loop:w
 \tl_to_str:n {#1} \- \- \- \- \- \- \- \- \- \- \- \- \texttt{__str_mark} \texttt{__str_stop}
\group_begin:
 \tex_lccode:D '* = '/' \%
 \tex_lccode:D '\A = '\A \%
 \tex_lowercase:D
 \group_end:
\cs_new:Npn __str_to_other_loop:w #1 \- #2 \- #3 \- #4 \- #5 \- #6 \- #7 \- #8 \- #9 \texttt{__str_stop}
 \if_meaning:w A #8
 __str_to_other_end:w
 \fi:
 __str_to_other_loop:w
 #9 #1 * #2 * #3 * #4 * #5 * #6 * #7 * #8 * \texttt{__str_stop}
 \}
\cs_new:Npn __str_to_other_end:w \fi: #1 \texttt{__str_mark} #2 * A #3 \texttt{__str_stop}
 \fi: #2
\}
\end{verbatim}

(End of definition for __kernel_str_to_other:n, __str_to_other_loop:w, and __str_to_other_end:w.)

The difference with __kernel_str_to_other:n is that the converted part is left in the input stream, making these commands only restricted-expandable.

\begin{verbatim}
\cs_new:Npn __kernel_str_to_other_fast:n #1
 \exp_after:wN __str_to_other_fast_loop:w
 \tl_to_str:n {#1} \- \- \- \- \- \- \- \- \- \- \- \- \texttt{__str_stop}
\group_begin:
 \tex_lccode:D '* = '/' \%
 \tex_lccode:D '\A = '\A \%
 \tex_lowercase:D
 \group_end:
\cs_new:Npn __str_to_other_fast_loop:w #1 \- #2 \- #3 \- #4 \- #5 \- #6 \- #7 \- #8 \- #9 \-
 \if_meaning:w A #9
 __str_to_other_fast_end:w
 \fi:
 __str_to_other_fast_loop:w
 \fi: #2
\}
\end{verbatim}

733
__str_to_other_fast_loop:w *
}\cs_new:Npn __str_to_other_fast_end:w #1 * A #2 \s__str_stop {#1}
}\}

\end{definition_for __kernel_str_to_other_fast:n, __kernel_str_to_other_fast_loop:w, and
__str_to_other_fast_end:w.}

\str_item:Nn
\str_item:cn
\str_item:nn
\str_item_ignore_spaces:nn
__str_item:nn
__str_item:w

The \str_item:nn hands its argument with spaces escaped to __str_item:nn, and
makes sure to turn the result back into a proper string (with category code 10 spaces)
eventually. The \str_item_ignore_spaces:nn function does not escape spaces, which
are thus ignored by __str_item:nn since everything else is done with undelimited arguments.
Evaluate the \langle index \rangle argument \#2 and count characters in the string, passing
those two numbers to __str_item:w for further analysis. If the \langle index \rangle is negative, shift
it by the \langle count \rangle to know the how many character to discard, and if that is still negative give
an empty result. If the \langle index \rangle is larger than the \langle count \rangle, give an empty result, and
otherwise discard \langle index \rangle – 1 characters before returning the following one. The shift by
–1 is obtained by inserting an empty brace group before the string in that case: that
brace group also covers the case where the \langle index \rangle is zero.

\csc\cs_generate_variant:Nn \str_item:Nn{c}
\cs_new:Npn \str_item:nn #1#2
{\exp_after:wN __str_item:w
\int_value:w \int_eval:n {#2};
\int_value:w __str_count:n {#1};
#1 \s__str_stop}
\cs_new:Npn __str_item:w #1; #2;
{\int_compare:nNnTF {#1} < 0
{__str_use_none_delimit_by_s_stop:w }
{__str_use_i_delimit_by_s_stop:nw
\exp:w \exp_after:wN __str_skip_exp_end:w
\int_value:w \int_eval:n { #1 + #2 };}
}
\cs_new:Npn __str_item:w #1; #2;
{__str_use_none_delimit_by_s_stop:w }
\cs_new:Npn __str_item:n {__kernel_str_to_other:n {#1}}
\cs_new:Npn __str_item:n #1
{__str_item:w #1; #2;
{\int_compare:nNnTF {#1} > {#2}
{__str_use_none_delimit_by_s_stop:w }
}}
Removes \texttt{max(#1,0)} characters from the input stream, and then leaves \texttt{\exp_end}. This should be expanded using \texttt{\exp:w}. We remove characters 8 at a time until there are at most 8 to remove. Then we do a dirty trick: the \texttt{\if_case:w} construction leaves between 0 and 8 times the \texttt{\or:} control sequence, and those \texttt{\or:} become arguments of \texttt{__str_skip_end:NNNNNNNNN}. If the number of characters to remove is 6, say, then there are two \texttt{\or:} left, and the 8 arguments of \texttt{__str_skip_end:NNNNNNNNN} are the two \texttt{\or:}, and 6 characters from the input stream, exactly what we wanted to remove. Then close the \texttt{\if_case:w} conditional with \texttt{\fi:}, and stop the initial expansion with \texttt{\exp_end}: (see places where \texttt{__str_skip_exp_end:w} is called).

Sanitize the string. Then evaluate the arguments. At this stage we also decrement the \texttt{\langle start index \rangle}, since our goal is to know how many characters should be removed. Then limit the range to be non-negative and at most the length of the string (this avoids needing to check for the end of the string when grabbing characters), shifting negative numbers by the appropriate amount. Afterwards, skip characters, then keep some more, and finally drop the end of the string.
This function converts an \(\langle\text{index}\rangle\) argument into an explicit position in the string (a result of 0 denoting “out of bounds”). Expects two explicit integer arguments: the \(\langle\text{index}\rangle\) \#1 and the string count \#2. If \#1 is negative, replace it by \#1 + \#2 + 1, then limit to the range \([0, \#2]\).

\begin{verbatim}
\cs_new:Npn __str_range_normalize:nn #1#2
\{
 \int_eval:n { \if_int_compare:w #1 < \c_zero_int
 \if_int_compare:w #1 < -#2 \exp_stop_f:
 0
 \else:
 #1 + \#2 + 1
 \fi:
 \else:
 \if_int_compare:w #1 < \#2 \exp_stop_f:
 #1
 \else:
 \#2
 \fi:
 \fi:
\}
\end{verbatim}

(End of definition for \texttt{__str_range_normalize:nn}.)
Collects max(#1,0) characters, and removes everything else until \s_str_stop. This is somewhat similar to __str_skip_exp_end:w, but accepts integer expression arguments. This time we can only grab 7 characters at a time. At the end, we use an \if_case:w trick again, so that the 8 first arguments of __str_collect_end:nnnnnnnnw are some \or:, followed by an \fi:, followed by #1 characters from the input stream. Simply leaving this in the input stream closes the conditional properly and the \or: disappear.

\cs_new:Npn __str_collect_delimit_by_q_stop:w #1; \exp_after:wN __str_collect_loop:wn #1 ; { } \\
\cs_new:Npn __str_collect_loop:wn #1 ; \\
\exp_after:wN __str_collect_loop:wnNNNNNNN \if_int_compare:w #1 > 7 \exp_stop_f:
\else:
\exp_after:wN __str_collect_end:wn \fi:
#1 ; \\
\cs_new:Npn __str_collect_loop:wnNNNNNNN #1; #2 #3#4#5#6#7#8#9 \\
\exp_after:wN __str_collect_loop:wn \int_value:w \int_eval:n { #1 - 7 } ; { #2 #3#4#5#6#7#8#9 } \\
\cs_new:Npn __str_collect_end:wn #1 ; \\
\exp_after:wN __str_collect_end:nnnnnnnnw \if_case:w \if_int_compare:w #1 > \c_zero_int #1 \else: 0 \fi: \exp_stop_f:
\or: \or: \or: \or: \or: \or: \fi: \\
\cs_new:Npn __str_collect_end:nnnnnnnnw #1#2#3#4#5#6#7#8 #9 \s_str_stop \\
\tl_to_str:n {#1#2#3#4#5#6#7#8 }

(End of definition for __str_collect_delimit_by_q_stop:w and others.)

\str_count_spaces:N \str_count_spaces:c \str_count_spaces:n __str_count_spaces_loop:w

56.7 Counting characters

To speed up this function, we grab and discard 9 space-delimited arguments in each iteration of the loop. The loop stops when the last argument is one of the trailing X\langle number\rangle, and that \langle number\rangle is added to the sum of 9 that precedes, to adjust the result.
To count characters in a string we could first escape all spaces using _kernel_str-
to_other:n, then pass the result to \tl_count:n. However, the escaping step would be quadratic in the number of characters in the string, and we can do better. Namely, sum the number of spaces (\str_count_spaces:n) and the result of \tl_count:n, which ignores spaces. Since strings tend to be longer than token lists, we use specialized functions to count characters ignoring spaces. Namely, loop, grabbing 9 non-space characters at each step, and end as soon as we reach one of the 9 trailing items. The internal function __str_count:n, used in \str_item:nn and \str_range:nnn, is similar to \str_count_ignore_spaces:n but expects its argument to already be a string or a string with spaces escaped.
The first character in a string

The _ignore_spaces variant applies _tl_to_str:n then grabs the first item, thus skipping spaces. As usual, \str_head:N expands its argument and hands it to \str_head:n. To circumvent the fact that \TeX{} skips spaces when grabbing undelimited macro parameters, __str_head:w takes an argument delimited by a space. If \#1 starts with a non-space character, __str_use_i_delimit_by_s_stop:nw leaves that in the input stream. On the other hand, if \#1 starts with a space, the __str_head:w takes an empty argument, and the single (initially braced) space in the definition of __str_head:w makes its way to the output. Finally, for an empty argument, the (braced) empty brace group in the definition of \str_head:n gives an empty result after passing through __str_use_i_delimit_by_s_stop:nw.

Getting the tail is a little bit more convoluted than the head of a string. We hit the front of the string with \reverse_if:N \if_charcode:w \scan_stop:. This removes the first character, and necessarily makes the test true, since the character cannot match \scan_stop:. The auxiliary function then inserts the required \fi: to close the conditional, and leaves the tail of the string in the input stream. The details are such that an empty string has an empty tail (this requires in particular that the end-marker \s__str_mark be unexpandable and not a control sequence). The _ignore_spaces is rather simpler: after converting the input to a string, __str_tail_auxii:w removes one undelimited argument and leaves everything else until an end-marker \s__str_mark. One can check that an empty (or blank) string yields an empty tail.
Case changing for programmatic reasons is done by first detokenizing input then doing a simple loop that only has to worry about spaces and everything else. The output is detokenized to allow data sharing with text-based case changing. Similarly, for 8-bit engines the multi-byte information is shared.

```latex
\cs_new:Npn \str_casefold:n #1 { \__str_change_case:nn {#1} { casefold } }
\cs_new:Npn \str_lowercase:n #1 { \__str_change_case:nn {#1} { lowercase } }
\cs_new:Npn \str_uppercase:n #1 { \__str_change_case:nn {#1} { uppercase } }
\cs_generate_variant:Nn \str_casefold:n { V }
\cs_generate_variant:Nn \str_lowercase:n { f }
\cs_generate_variant:Nn \str_uppercase:n { f }
```

56.9 String manipulation

Case changing for programmatic reasons is done by first detokenizing input then doing a simple loop that only has to worry about spaces and everything else. The output is detokenized to allow data sharing with text-based case changing. Similarly, for 8-bit engines the multi-byte information is shared.
\int_eval:n
\{ ('#2 - "E0) * "1000 + ('#3 - "80) * "40 + ' #4 - "80 \}
\{ #1 \} {#2#3#4}
\}
\cs_new:Npn _str_change_case_codepoint:nNNNN #1#2#3#4#5
\{ _str_change_case_char:fnn \}
\int_eval:n
\{ ('#2 - "F0) * "40000
+ ('#3 - "80) * "1000
+ ('#4 - "80) * "40
+ ' #5 - "80 \}
\{ #1 \} {#2#3#4#5}
\fi:
\cs_new:Npn _str_change_case_char:nnn #1#2#3
\{ _str_change_case_output:fw
\exp_args:Ne _str_change_case_char_aux:nnn
\{ _kernel_codepoint_case:nn {#2} {#1} \} {#1} \}
\}
\cs_generate_variant:Nn _str_change_case_char:nnn { f }
\cs_new:Npn _str_change_case_char_aux:nnn #1#2#3
\{ _str_change_case_loop:nw {#2} \}
\cs_new:Npn _str_change_case_output:fw
\{ \exp_args:Ne _str_change_case_char_char:nnnnn
\{ _kernel_codepoint_case:nnnnn \}
\{ #1 \} {#2} \}
\}
\cs_new:Npn _str_change_case_char_char:nnnnn #1#2#3#4#5
\{ \int_compare:nNnTF {#1} = {#4} \{ \tl_to_str:n \}
\}
\{ \codepoint_str_generate:n \}
\tl_if_blank:nF \{ \codepoint_str_generate:n \}
\}
\cs_new:Npn \str_mdfive_hash:n #1 { \tex_mdfivesum:D \{ \tl_to_str:n \} }
\cs_new:Npn \str_mdfive_hash:e #1 { \tex_mdfivesum:D \{ \} }

(End of definition for \str_casefold:n and others. These functions are documented on page 158.)
\texttt{c_ampersand_str}
\texttt{c_atsign_str}
\texttt{c_backslash_str}
\texttt{c_left_brace_str}
\texttt{c_right_brace_str}
\texttt{c_circumflex_str}
\texttt{c_colon_str}
\texttt{c_dollar_str}
\texttt{c_hash_str}
\texttt{c_percent_str}
\texttt{c_tilde_str}
\texttt{c_underscore_str}
\texttt{c_zero_str}

For all of those strings, use \texttt{cs_to_str:N} to get characters with the correct category code without worries.

\texttt{c_empty_str}

An empty string is simply an empty token list.

\texttt{\str_show:n}
\texttt{\str_show:N}
\texttt{\str_show:c}
\texttt{\str_log:n}
\texttt{\str_log:N}
\texttt{\str_log:c}

Displays a string on the terminal.

\texttt{\cs_new_eq:NN}
\texttt{\c_empty_str}
\texttt{\c_empty_tl}

Scratch strings.

\texttt{\l_tmpa_str}
\texttt{\l_tmpb_str}
\texttt{\g_tmpa_str}
\texttt{\g_tmpb_str}

Scratch strings.

\texttt{\l_tmpa_str}
\texttt{\l_tmpb_str}
\texttt{\g_tmpa_str}
\texttt{\g_tmpb_str}

56.10 Viewing strings

\texttt{\str_show:n}
\texttt{\str_show:N}
\texttt{\str_show:c}
\texttt{\str_log:n}
\texttt{\str_log:N}
\texttt{\str_log:c}

(End of definition for \texttt{\str_show:n} and others. These functions are documented on page 138.)

\texttt{\cs_generate_variant:Nn}
\texttt{\str_show:N}
\texttt{\c}

(End of definition for \texttt{\str_show:n} and others. These functions are documented on page 138.)
Chapter 57

\texttt{l3str-convert} implementation

\section*{57.1 Helpers}

\subsection*{57.1.1 Variables and constants}

\texttt{__str_tmp:w}
\texttt{__str_internal_tl}

- Internal scratch space for some functions.
- \texttt{__str_tmp:w}

\texttt{__str_result_tl}

- The \texttt{__str_result_tl} variable is used to hold the result of various internal string operations (mostly conversions) which are typically performed in a group. The variable is global so that it remains defined outside the group, to be assigned to a user-provided variable.

\texttt{\c__str_replacement_char_int}

- When converting, invalid bytes are replaced by the Unicode replacement character \texttt{"FFFD}.

\texttt{\c__str_max_byte_int}

- The maximal byte number.

\texttt{\s__str}

- Internal scan marks.
\q__str_nil Internal quarks.

(End of definition for \q__str_nil.)

\g__str_alias_prop To avoid needing one file per encoding/escaping alias, we keep track of those in a property list.

\prop_new:N \g__str_alias_prop
\prop_gput:Nnn \g__str_alias_prop { latin1 } { iso88591 }
\prop_gput:Nnn \g__str_alias_prop { latin2 } { iso88592 }
\prop_gput:Nnn \g__str_alias_prop { latin3 } { iso88593 }
\prop_gput:Nnn \g__str_alias_prop { latin4 } { iso88594 }
\prop_gput:Nnn \g__str_alias_prop { latin5 } { iso88599 }
\prop_gput:Nnn \g__str_alias_prop { latin6 } { iso885910 }
\prop_gput:Nnn \g__str_alias_prop { latin7 } { iso885913 }
\prop_gput:Nnn \g__str_alias_prop { latin8 } { iso885914 }
\prop_gput:Nnn \g__str_alias_prop { latin9 } { iso885915 }
\prop_gput:Nnn \g__str_alias_prop { latin10 } { iso885916 }
\prop_gput:Nnn \g__str_alias_prop { utf16le } { utf16 }
\prop_gput:Nnn \g__str_alias_prop { utf16be } { utf16 }
\prop_gput:Nnn \g__str_alias_prop { utf32le } { utf32 }
\prop_gput:Nnn \g__str_alias_prop { utf32be } { utf32 }
\prop_gput:Nnn \g__str_alias_prop { hexadecimal } { hex }
\bool_lazy_any:nTF
{
\sys_if_engine_luatex_p:
\sys_if_engine_xetex_p:
}{
\prop_gput:Nnn \g__str_alias_prop { default } { }
}
\prop_gput:Nnn \g__str_alias_prop { default } { utf8 }

(End of definition for \g__str_alias_prop.)

\g__str_error_bool In conversion functions with a built-in conditional, errors are not reported directly to the user, but the information is collected in this boolean, used at the end to decide on which branch of the conditional to take.
\bool_new:N \g__str_error_bool

(End of definition for \g__str_error_bool.)

__str_byte Conversions from one \encoding\slash\escaping pair to another are done within e-expanding assignments. Errors are signalled by raising the relevant flag.
\flag_new:n { __str_byte }
\flag_new:n { __str_error }

(End of definition for __str_byte and __str_error.)
57.2 String conditionals

_str_if_contains_char:NnT
_str_if_contains_char:NnTF
_str_if_contains_char:nnTF
_str_if_contains_char_aux:nn
_str_if_contains_char_auxi:nN
_str_if_contains_char_true:

Expects the \langle\textit{token list}\rangle to be an \langle\textit{other string}\rangle: the caller is responsible for ensuring that no (too-)special catcodes remain. Loop over the characters of the string, comparing character codes. The loop is broken if character codes match. Otherwise we return “false”.

\prg_new_conditional:Npn _str_if_contains_char:Nn \#1\#2 \{ T , TF \}
{
\exp_after:wN _str_if_contains_char_aux:nn \exp_after:wN \{#1\} \{#2\}
{ \prg_break:n \{ ? \fi: \} }
\prg_break_point:
\prg_return_false:
}
\cs_new:Npn _str_if_contains_char_aux:nn \#1\#2
{ _str_if_contains_char_auxi:nN \{#2\} \#1 \{ \prg_break:n \{ ? \fi: \} \}
\prg_break_point:
\prg_return_false:
}
\cs_new:Npn _str_if_contains_char_auxi:nN \#1\#2
{
\if_charcode:w #1 #2
\exp_after:wN _str_if_contains_char_true:
\fi:
_str_if_contains_char_auxi:nN \{#1\}
}
\cs_new:Npn _str_if_contains_char_true:
{ \prg_break:n \{ \prg_return_true: \use_none:n \} }

(End of definition for _str_if_contains_char:NnT and others.)

_str_octal_use:NTF
_str_octal_use:NTF \langle\textit{token}\rangle \{\langle\textit{true code}\rangle\} \{\langle\textit{false code}\rangle\}

If the \langle\textit{token}\rangle is an octal digit, it is left in the input stream, followed by the \langle\textit{true code}\rangle. Otherwise, the \langle\textit{false code}\rangle is left in the input stream.

\TeXhackers\ note: This function will fail if the escape character is an octal digit. We are thus careful to set the escape character to a known value before using it. \TeX dutifully detects octal digits for us: if #1 is an octal digit, then the right-hand side of the comparison is ’1#1, greater than 1. Otherwise, the right-hand side stops as ’1, and the conditional takes the \textit{false} branch.

\prg_new_conditional:Npn _str_octal_use:N \#1 \{ TF \}
{
\if_int_compare:w 1 < ’1 \token_to_str:N \#1 \exp_stop_f:
 \#1 \prg_return_true:
\else:
\prg_return_false:
\fi:
}

(End of definition for _str_octal_use:NTF.)

746
__str_hexadecimal_use:NTF \TeX detects uppercase hexadecimal digits for us (see __str_octal_use:NTF), but not the lowercase letters, which we need to detect and replace by their uppercase counterpart.

\begin{verbatim}
\prg_new_conditional:Npnn __str_hexadecimal_use:N #1 { TF }
\{ \if_int_compare:w 1 < "1 \token_to_str:N #1 \exp_stop_f:
\#1 \prg_return_true: \else:
\if_case:w \int_eval:n { \exp_after:wN ' \token_to_str:N #1 - 'a }
A \or: B \or: C \or: D \or: E \or: F \else:
\prg_return_false:
\exp_after:wN \use_none:n \fi:
\prg_return_true:
\fi:
\}
\end{verbatim}

(End of definition for __str_hexadecimal_use:NTF.)

57.3 Conversions

57.3.1 Producing one byte or character

For each integer \(N\) in the range \([0, 255]\), we create a constant token list which holds three character tokens with category code other: the character with character code \(N\), followed by the representation of \(N\) as two hexadecimal digits. The value \(-1\) is given a default token list which ensures that later functions give an empty result for the input \(-1\).

\begin{verbatim}
\group_begin:
__kernel_tl_set:Ne \l__str_internal_tl { \tl_to_str:n { 0123456789ABCDEF } }
\tl_map_inline:Nn \l__str_internal_tl \{ \tl_map_inline:Nn \l__str_internal_tl \{ \tl_const:ce { c__str_byte_ \int_eval:n { "##1##1} _tl } { \char_generate:nn { "##1##1} { 12 } #1 ##1 } \}
\group_end:
\tl_const:cn { c__str_byte_-1_tl } { { } \use_none:n { } }
\end{verbatim}

(End of definition for _c__str_byte_0_tl and others.)

Those functions must be used carefully: feeding them a value outside the range \([-1, 255]\) will attempt to use the undefined token list variable _c__str_byte_\langle number\rangle_tl. Assuming that the argument is in the right range, we expand the corresponding token list, and pick either the byte (first token) or the hexadecimal representations (second and third tokens). The value \(-1\) produces an empty result in both cases.

747
14101 \cs_new:Npn __str_output_byte:n #1
14102 { __str_output_byte:w #1 __str_output_end: }
14103 \cs_new:Npn __str_output_byte:w
14104 {
14105 \exp_after:wN \exp_after:wN
14106 \exp_after:wN \use_i:nnn
14107 \cs:w c__str_BYTE_ \int_eval:w
14108 }
14109 \cs_new:Npn __str_output_hexadecimal:n #1
14110 { \exp_after:wN \exp_after:wN
14111 \exp_after:wN \use_none:n
14112 \cs:w c__str_BYTE_ \int_eval:n {#1} _tl \cs_end:
14113 }
14114 \cs_new:Npn __str_output_end:
14115 { \scan_stop: _tl \cs_end: }
14116

(End of definition for __str_output_byte:n and others.)

__str_output_byte_pair_be:n
__str_output_byte_pair_le:n
__str_output_byte_pair:nnN

Convert a number in the range [0, 65535] to a pair of bytes, either big-endian or little-endian.

14117 \cs_new:Npn __str_output_byte_pair_be:n #1
14118 { \exp_args:Nf __str_output_byte_pair:nnN
14119 { \int_div_truncate:nn { #1 } { "100 } } {#1} \use:nn
14120 }
14121 \cs_new:Npn __str_output_byte_pair_le:n #1
14122 { \exp_args:Nf __str_output_byte_pair:nnN
14123 { \int_div_truncate:nn { #1 } { "100 } } {#1} \use_ii_i:nn
14124 }
14125 \cs_new:Npn __str_output_byte_pair:nnN #1#2#3
14126 { #3
14127 { __str_output_byte:n { #1 } }
14128 { __str_output_byte:n { #2 - #1 * "100 } }
14129 }
14130

(End of definition for __str_output_byte_pair_be:n, __str_output_byte_pair_le:n, and __str_output_byte_pair:nnN.)

57.3.2 Mapping functions for conversions

This maps the function \#1 over all characters in \g__str_result_tl, which should be a byte string in most cases, sometimes a native string.

14131 \cs_new_protected:Npn __str_convert_gmap:N #1
14132 { __kernel_tl_gset:Ne \g__str_result_tl
14133 { \exp_after:wN __str_convert_gmap_loop:NN
14134 \exp_after:wN \g__str_result_tl
14135 \exp_after:wN \g__str_result_tl
14136 \exp_after:wN \g__str_result_tl
14137 \g__str_result_tl { ? \prg_break: }
14138 \prg_break_point:
14139 }
14140 }

748
This maps the function \#1 over all character codes in \texttt{\g__str_result_tl}, which must be in the internal representation.

\begin{verbatim}
\cs_new_protected:Npn _\str_convert_gmap_internal:N #1
{ _\kernel_tl_gset:Ne \g__str_result_tl
\exp_after:wN _\str_convert_gmap_internal_loop:Nww
\exp_after:wN #1
\g__str_result_tl \s__str \s__str_stop \prg_break: \s__str
\prg_break_point: }
\end{verbatim}

(End of definition for _\str_convert_gmap_internal:N and _\str_convert_gmap_internal_loop:Nw.)

57.3.3 Error-reporting during conversion

When converting using the function \str_set_convert:Nnnn, errors should be reported to the user after each step in the conversion. Errors are signalled by raising some flag (typically \texttt{@@_error}), so here we test that flag: if it is raised, give the user an error, otherwise remove the arguments. On the other hand, in the conditional functions \str_set_convert:NnnnTF, errors should be suppressed. This is done by changing _\str_if_flag_error:nne into _\str_if_flag_no_error:nne locally.

\begin{verbatim}
\cs_new_protected:Npn _\str_if_flag_error:nne #1 #2 #3 #4
{ \flag_if_raised:nT {#1} \bool_gset_true:N \g__str_error_bool }
\end{verbatim}

(End of definition for _\str_if_flag_error:nne and _\str_if_flag_no_error:nne.)

At the end of each conversion step, we raise all relevant errors as one error message, built on the fly. The height of each flag indicates how many times a given error was encountered. This function prints \#2 followed by the number of occurrences of an error if it occurred, nothing otherwise.
57.3.4 Framework for conversions

Most functions in this module expect to be working with “native” strings. Strings can also be stored as bytes, in one of many encodings, for instance UTF8. The bytes themselves can be expressed in various ways in terms of \TeX{} tokens, for instance as pairs of hexadecimal digits. The questions of going from arbitrary Unicode code points to bytes, and from bytes to tokens are mostly independent.

Conversions are done in four steps:

- “unescape” produces a string of bytes;
- “decode” takes in a string of bytes, and converts it to a list of Unicode characters in an internal representation, with items of the form

 \begin{align*}
 \text{(bytes)} \
 \text{\textbackslash s\textunderscore str (Unicode code point)} \
 \text{\textbackslash s\textunderscore str}
 \end{align*}

 where we have collected the \textit{(bytes)} which combined to form this particular Unicode character, and the \textit{(Unicode code point)} is in the range \([0, \text{10FFFF}]\);
- “encode” encodes the internal list of code points as a byte string in the new encoding;
- “escape” escapes bytes as requested.

The process is modified in case one of the encoding is empty (or the conversion function has been set equal to the empty encoding because it was not found): then the unescape or escape step is ignored, and the decode or encode steps work on tokens instead of bytes. Otherwise, each step must ensure that it passes a correct byte string or internal string to the next step.

The input string is stored in \texttt{\g__str_result_tl}, then we: unescape and decode; encode and escape; exit the group and store the result in the user’s variable. The various conversion functions all act on \texttt{\g__str_result_tl}. Errors are silenced for the conditional functions by redefining \texttt{__str_if_flag_error:nne} locally.

\begin{verbatim}
\cs_new:Npn __str_if_flag_times:nT #1#2
 \{ \flag_if_raised:nT (#1) \{ #2\} \} \\
\end{verbatim}
\begin{verbatim}
{ \bool_gset_false:N \g__str_error_bool
 __str_convert:nNNnnn
 { \cs_set_eq:NN __str_if_flag_error:nne __str_if_flag_no_error:nne }
 \tl_gset_eq:NN #1 {#2} {#3} {#4}
 \bool_if:NTF \g__str_error_bool \prg_return_false: \prg_return_true:
}
\cs_new_protected:Npn __str_convert:nNNnnn #1#2#3#4#5#6
{ \group_begin:
 #1
 __kernel_tl_gset:Ne \g__str_result_tl { __kernel_str_to_other_fast:n {#4} }
 \exp_after:wN __str_convert:wwwnn
 \tl_to_str:n {#5} /// \s__str_stop
 { decode } { unescape }
 \prg_do_nothing:
 __str_convert_decode_:
 \exp_after:wN __str_convert:wwwnn
 \tl_to_str:n {#6} /// \s__str_stop
 { encode } { escape }
 \use_ii_i:nn
 __str_convert_encode_:
 __kernel_tl_gset:Ne \g__str_result_tl
 \{ \tl_to_str:V \g__str_result_tl \}
\group_end:
#2 #3 \g__str_result_tl
\end{verbatim}

(End of definition for \str_set_convert:Nnnn and others. These functions are documented on page 142.)

__str_convert:wwwnn __str_convert:NNNNN

The task of __str_convert:wwwnn is to split \langle encoding\rangle/\langle escaping\rangle pairs into their components, \#1 and \#2. Calls to __str_convert:nnn ensure that the corresponding conversion functions are defined. The third auxiliary does the main work.

- \#1 is the encoding conversion function;
- \#2 is the escaping function;
- \#3 is the escaping name for use in an error message;
- \#4 is \prg_do_nothing: for unescaping/decoding, and \use_ii_i:nn for encoding/escaping;
- \#5 is the default encoding function (either “decode” or “encode”), for which there should be no escaping.

Let us ignore the native encoding for a second. In the unescaping/decoding phase, we want to do \#2\#1 in this order, and in the encoding/escaping phase, the order should be reversed: \#4\#2\#1 does exactly that. If one of the encodings is the default (native), then the escaping should be ignored, with an error if any was given, and only the encoding, \#1, should be performed.

\begin{verbatim}
\cs_new_protected:Npn __str_convert:wwwnn
#1 / #2 // #3 \as__str_stop #4#5
\end{verbatim}

751
The arguments of _\str_convert:nnn are: \texttt{enc} or \texttt{esc}, used to build filenames, the type of the conversion (unescape, decode, encode, escape), and the encoding or escaping name. If the function is already defined, no need to do anything. Otherwise, filter out all non-alphanumerics in the name, and lowercase it. Feed that, and the same three arguments, to _\str_convert:nnnn. The task is then to make sure that the conversion function \texttt{#3}_{#1} corresponding to the type \texttt{#3} and filtered name \texttt{#1} is defined, then set our initial conversion function \texttt{#3}_{#4} equal to that.

How do we get the \texttt{#3}_{#1} conversion to be defined if it isn’t? Two main cases.

First, if \texttt{#1} is a key in \texttt{\g__str_alias_prop}, then the value \texttt{\l__str_internal_tl} tells us what file to load. Loading is skipped if the file was already read, \textit{i.e.}, if the conversion command based on \texttt{\l__str_internal_tl} already exists. Otherwise, try to load the file; if that fails, there is an error, use the default empty name instead.

Second, \texttt{#1} may be absent from the property list. The \texttt{\cs_if_exist:cF} test is automatically false, and we search for a file defining the encoding or escaping \texttt{#1} (this should allow third-party \texttt{.def} files). If the file is not found, there is an error, use the default empty name instead.

In all cases, the conversion based on \texttt{\l__str_internal_tl} is defined, so we can set the \texttt{#3}_{#1} function equal to that. In some cases (\textit{e.g.}, utf16be), the \texttt{#3}_{#1} function is actually defined within the file we just loaded, and it is different from the \texttt{\l__str_internal_tl}-based function: we mustn’t clobber that different definition.
\cs_if_exist:cF { __str_convert_#3_ \l__str_internal_tl : } {
 \file_if_exist:nTF { l3str-#2- \l__str_internal_tl .def } {
 \group_begin:
 \cctab_select:N \c_code_cctab
 \file_input:n { l3str-#2- \l__str_internal_tl .def }
 \group_end:
 } {
 \tl_clear:N \l__str_internal_tl
 \msg_error:nnee { str } { unknown-#2 } {#4} {#1}
 }
}
\cs_if_exist:cF { __str_convert_#3_#1: } {
 \cs_gset_eq:cc { __str_convert_#3_#1: } { __str_convert_#3_ \l__str_internal_tl : }
}
\cs_gset_eq:cc { __str_convert_#3_#4: } { __str_convert_#3_#1: }

(End of definition for __str_convert:nnn and __str_convert:nnnn.)

This function keeps only letters and digits, with upper case letters converted to lower
case.
\cs_new:Npn __str_convert_lowercase_alphanum:n __str_convert_lowercase_alphanum_loop:N
\cs_new:Npn __str_convert_lowercase_alphanum_loop:N #1 {
 \exp_after:wN __str_convert_lowercase_alphanum_loop:N \tl_to_str:n {#1} { ? \prg_break: }
 \prg_break_point:
}
\cs_new:Npn __str_convert_lowercase_alphanum_loop:N #1 {
 \use_none:n #1
 \if_int_compare:w '#1 > 'Z \exp_stop_f:
 \if_int_compare:w '#1 > 'z \exp_stop_f: \else:
 __str_output_byte:n { '#1 + 'a - 'A }
 \fi:
 \else:
 \if_int_compare:w '#1 < 'a \exp_stop_f:
 \if_int_compare:w 1 < 1#1 \exp_stop_f: \else:
 #1
 \fi:
 \fi:
 \else:
 \if_int_compare:w '#1 < 'A \exp_stop_f:
 \if_int_compare:w 1 < #1 \exp_stop_f:
 #1
 \fi:
 \fi:
 \else:
 __str_output_byte:n { '#1 + 'a - 'A }
 \fi:
}
__str_convert_lowercase_alphanum_loop:N

753
57.3.5 Byte unescape and escape

Strings of bytes may need to be stored in auxiliary files in safe “escaping” formats. Each such escaping is only loaded as needed. By default, on input any non-byte is filtered out, while the output simply consists in letting bytes through.

In the case of 8-bit engines, every character is a byte. For Unicode-aware engines, test the character code; non-bytes cause us to raise the flag \texttt{__str_byte}. Spaces have already been given the correct category code when this function is called.

\begin{verbatim}
\bool_lazy_any:nTF
{ \sys_if_engine_luatex_p: \sys_if_engine_xetex_p: }
{ \cs_new:Npn __str_filter_bytes:n #1
{ __str_filter_bytes_aux:N #1 { ? \prg_break: }
\prg_break_point: }
\cs_new:Npn __str_filter_bytes_aux:N #1
{ \use_none:n #1 \if_int_compare:w '#1 < 256 \exp_stop_f: #1 \else: \flag_raise:n { __str_byte } \fi:
__str_filter_bytes_aux:N }
\cs_new:Npn __str_filter_bytes:n \use:n }
\end{verbatim}

The simplest unescaping method removes non-bytes from \texttt{__str_result_tl}.

\begin{verbatim}
\bool_lazy_any:nTF
{ \sys_if_engine_luatex_p: \sys_if_engine_xetex_p: }
{ \cs_new_protected:Npn __str_convert_unescape_: __str_convert_unescape_bytes:
{ \flag_clear:n { __str_byte }
\kernel_tl_gset:Ne \g__str_result_tl __exp_args:N __str_filter_bytes:n \g__str_result_tl }
__str_if_flag_error:nne { __str_byte } { non-byte } { bytes }
}
\end{verbatim}

\textit{(End of definition for \texttt{__str_convert_lowercase_alphanum:n} and \texttt{__str_convert_lowercase_alphanum_-loop:N}).}
The simplest form of escape leaves the bytes from the previous step of the conversion unchanged.

The conversion from an internal string to native character tokens basically maps \texttt{char_generate:nn} through the code-points, but in non-Unicode-aware engines we use a fallback character \texttt{?} rather than nothing when given a character code outside [0,255]. We detect the presence of bad characters using a flag and only produce a single error after the e-expanding assignment.
\msg_new:nnnn { str } { native-overflow }
{ Character-code-too-large-for-this-engine. }
{ This-engine-only-support-8-bit-characters:-
 valid-character-codes-are-in-the-range-[0,255].-
 To-manipulate-arbitrary-Unicode,-use-LuLaTeX-or-XeTeX.
}

(End of definition for __str_convert_encode: and __str_encode_native_char:n.)

57.3.7 \clist
__str_convert_decode_clist:
__str_decode_clist_char:n
Convert each integer to the internal form. We first turn \g__str_result_tl into a clist variable, as this avoids problems with leading or trailing commas.
\cs_new_protected:Npn __str_convert_decode_clist:
{ \clist_gset:No \g__str_result_tl \g__str_result_tl
 __kernel_tl_gset:Ne \g__str_result_tl
 \exp_args:No \clist_map_function:nN \g__str_result_tl __str_decode_clist_char:n
}
\cs_new:Npn __str_decode_clist_char:n #1
{ #1 \s__str \int_eval:n {#1} \s__str }

(End of definition for __str_convert_decode_clist: and __str_decode_clist_char:n.)
__str_convert_encode_clist:
__str_encode_clist_char:n
Convert the internal list of character codes to a comma-list of character codes. The first line produces a comma-list with a leading comma, removed in the next step (this also works in the empty case, since \tl_tail:N does not trigger an error in this case).
\cs_new_protected:Npn __str_convert_encode_clist:
{ __str_convert_gmap_internal:N __str_encode_clist_char:n
 __kernel_tl_gset:Ne \g__str_result_tl \tl_tail:N \g__str_result_tl }
\cs_new:Npn __str_encode_clist_char:n #1
{ , #1 }

(End of definition for __str_convert_encode_clist: and __str_encode_clist_char:n.)

57.3.8 8-bit encodings
It is not clear in what situations 8-bit encodings are used, hence it is not clear what should be optimized. The current approach is reasonably efficient to convert long strings, and it scales well when using many different encodings.

The data needed to support a given 8-bit encoding is stored in a file that consists of a single function call

__str_declare_eight_bit_encoding:nnnn {name} {modulo} {mapping} {missing}
This declares the encoding \(\text{name} \) to map bytes to Unicode characters according to the \(\text{mapping} \), and map those bytes which are not mentioned in the \(\text{mapping} \) either to the replacement character (if they appear in \(\text{missing} \)), or to themselves. The \(\text{mapping} \) argument is a token list of pairs \(\{(byte)\} \) \(\{(Unicode)\} \) expressed in uppercase hexadecimal notation. The \(\text{missing} \) argument is a token list of \(\{(byte)\} \). Every \(\text{byte} \) which does not appear in the \(\text{mapping} \) nor the \(\text{missing} \) lists maps to itself in Unicode, so for instance the \text{latin1} encoding has empty \(\text{mapping} \) and \(\text{missing} \) lists. The \(\text{modulo} \) is a (decimal) integer between 256 and 558 inclusive, modulo which all Unicode code points supported by the encodings must be different.

We use two integer arrays per encoding. When decoding we only use the \text{decode} integer array, with entry \(n + 1 \) (offset needed because integer array indices start at 1) equal to the Unicode code point that corresponds to the \(n \)-th byte in the encoding under consideration, or \(-1\) if the given byte is invalid in this encoding. When encoding we use both arrays: upon seeing a code point \(n \), we look up the entry (1 plus) \(n \) modulo some \(M \) in the \text{encode} array, which tells us the byte that might encode the given Unicode code point, then we check in the \text{decode} array that indeed this byte encodes the Unicode code point we want. Here, \(M \) is an encoding-dependent integer between 256 and 558 (it turns out), chosen so that among the Unicode code points that can be validly represented in the given encoding, no pair of code points have the same value modulo \(M \).

Loop through both lists of bytes to fill in the \text{decode} integer array, then fill the \text{encode} array accordingly. For bytes that are invalid in the given encoding, store \(-1\) in the \text{decode} array.

\begin{verbatim}
\cs_new_protected:Npn __str_declare_eight_bit_encoding:nnnn #1
\tl_set:Nn \l__str_internal_tl {#1}
\cs_new_protected:cpn { __str_convert_decode_#1: } { __str_convert_decode_eight_bit:n {#1} }
\cs_new_protected:cpn { __str_convert_encode_#1: } { __str_convert_encode_eight_bit:n {#1} }
\exp_args:Ncc __str_declare_eight_bit_aux:NNnnn
\prg_break_point:
__str_declare_eight_bit_loop:Nn #1 #4 { \s__str_stop \prg_break: } { }
\prg_break_point:
__str_declare_eight_bit_loop:Nn #1 #5 { \s__str_stop \prg_break: }
\prg_break_point:
\intarray_new:Nn #2 {#3}
\int_step_inline:nnn { 0 } { 255 }
\int_compare:nNnF { \intarray_item:Nn { 1 + ##1 } } = { -1 }
\intarray_gset:Nnn #2 { 1 + #2 } 1
\intarray_gset:Nnn #2 { 1 + #2 } 2
\end{verbatim}
\int_mod:nn \{ \intarray_item:Nn #1 \{ 1 + #1 \} \}
{ \intarray_count:N \#2 }
\}
{##1}
\}
\}
}
\cs_new_protected:Npn __str_declare_eight_bit_loop:Nnn \#1\#2\#3
{ __str_use_none_delimit_by_s_stop:w \#2 \s__str_stop
\intarray_gset:Nnn \#1 \{ 1 + "#2 \} \{ "#3 \}
__str_declare_eight_bit_loop:Nnn \#1
}
\}
\cs_new_protected:Npn __str_declare_eight_bit_loop:Nn \#1\#2
{ __str_use_none_delimit_by_s_stop:w \#2 \s__str_stop
\intarray_gset:Nnn \#1 \{ 1 + "#2 \} \{-1 \}
__str_declare_eight_bit_loop:Nn \#1
}
\}
(End of definition for __str_declare_eight_bit_encoding:nnnn and others.)
__str_convert_decode_eight_bit:n
__str_decode_eight_bit_aux:n
__str_decode_eight_bit_aux:Nn
The map from bytes to Unicode code points is in the decode array corresponding to the
given encoding. Define __str_tmp:w and pass it successively all bytes in the string. It
produces an internal representation with suitable \s__str inserted, and the correspon-
ding code point is obtained by looking it up in the integer array. If the entry is −1 then
issue a replacement character and raise the flag indicating that there was an error.
\cs_new_protected:Npn __str_convert_decode_eight_bit:n \#1
{ \cs_set:Npe __str_tmp:w
{ \exp_not:N __str_decode_eight_bit_aux:Nn
\exp_not:c \{ g__str_decode_#1_intarray \}
}
\flag_clear:n __str_error
__str_convert_gmap:N __str_tmp:w
__str_if_flag_error:nne __str_error \{ decode-8-bit \} \#1
}
\cs_new:Npn __str_decode_eight_bit_aux:Nn \#1\#2
{ \#2 \s__str
\exp_args:Nf __str_decode_eight_bit_aux:n\#1\#2
{ \intarray_item:Nn \#1 \{ 1 + \#2 \} }
\s__str
}
\cs_new:Npn __str_decode_eight_bit_aux:Nn \#1\#2
{ \#2 \s__str
\exp_args:Nf __str_decode_eight_bit_aux:n\#1\#2
{ \intarray_item:Nn \#1 \{ 1 + \#2 \} }
\s__str
}
\cs_new:Npn __str_decode_eight_bit_aux:n \#1
{ \if_int_compare:w \#1 < \c_zero_int
\flag_raise:n __str_error
\int_value:w \c__str_replacement_char_int
\else:
\#1
\fi:
}
758
It is not practical to make an integer array with indices in the full Unicode range, so we work modulo some number, which is simply the size of the encode integer array for the given encoding. This gives us a candidate byte for representing a given Unicode code point. Of course taking the modulo leads to collisions so we check in the decode array that the byte we got is indeed correct. Otherwise the Unicode code point we started from is simply not representable in the given encoding.

```
\int_new:N \l__str_modulo_int
\cs_new_protected:Npn \__str_convert_encode_eight_bit:n #1
{\cs_set:Npe \__str_tmp:w
\exp_not:N \__str_encode_eight_bit_aux:NNn \exp_not:c { g__str_encode_#1_intarray }
\exp_not:c { g__str_decode_#1_intarray }
\flag_clear:n { __str_error }
\__str_convert_gmap_internal:N \__str_tmp:w
\__str_if_flag_error:nne { __str_error } { encode-8-bit } {#1}
}
\cs_new:Npn \__str_encode_eight_bit_aux:NNn #1#2#3
{\exp_args:Nf \__str_encode_eight_bit_aux:nnN
{\intarray_item:Nn #1 { 1 + \int_mod:nn {#3} { \intarray_count:N #1 } }
{#3}
#2}}
\cs_new:Npn \__str_encode_eight_bit_aux:nnN #1#2#3
{\int_compare:nNnTF { \intarray_item:Nn #3 { 1 + #1 } } = {#2}
{ \__str_output_byte:n {#1} }
{ \flag_raise:n { __str_error } }}
```

(End of definition for __str_convert_encode_eight_bit:n, __str_encode_eight_bit_aux:n, and __str_decode_eight_bit_aux:Nn.)

57.4 Messages

General messages, and messages for the encodings and escapings loaded by default ("native", and "bytes").

```
\msg_new:nnn { str } { unknown-esc }
\msg_new:nnn { str } { unknown-enc }
\msg_new:nnnn { str } { native-escaping }
```

759
Since native strings do not consist in bytes, none of the escaping methods make sense.
The specified escaping, '‘#1’, will be ignored.

\msg_new:nnn { str } { file-not-found }
{ File ‘l3str-#1.def’ not found. }

Message used when the “bytes” unescaping fails because the string given to \str_set_convert:NNnn contains a non-byte. This cannot happen for the -8-bit engines. Messages used for other escapings and encodings are defined in each definition file.

\bool_lazy_any:nT

{ \sys_if_engine_luatex_p; \sys_if_engine_xetex_p; }
{ \msg_new:nnnn { str } { non-byte }
{ String invalid in escaping ‘‘#1’’: it may only contain bytes. }
{ Some characters in the string you asked to convert are not 8-bit characters. Perhaps the string is a ‘native’-Unicode string?
If it is, try using \}
\}
{ \iow-indent:n }
{ \iow-char:N \str_set_convert:NNnn \}
{ \<str-var>-\{<-string>-\}-\{<-native>-\}-\{<-target-encoding>-\} }
}

Those messages are used when converting to and from 8-bit encodings.

\msg_new:nnnn { str } { decode-8-bit }
{ Invalid string in encoding ‘‘#1’. }
{ LaTeX came across a byte which is not defined to represent any character in the encoding ‘‘#1’. }

\msg_new:nnnn { str } { encode-8-bit }
{ Unicode string cannot be converted to encoding ‘‘#1’. }
{ The encoding ‘‘#1’’ only contains a subset of all Unicode characters.
LaTeX was asked to convert a string to that encoding, but that string contains a character that ‘‘#1’’ does not support. }

57.5 Escaping definitions

Several of those encodings are defined by the pdf file format. The following byte storage methods are defined:

- **bytes** (default), non-bytes are filtered out, and bytes are left untouched (this is defined by default);
• hex or hexadecimal, as per the pdfTeX primitive \pdfescapehex
• name, as per the pdfTeX primitive \pdfescapename
• string, as per the pdfTeX primitive \pdfescapestring
• url, as per the percent encoding of urls.

57.5.1 Unescape methods

Take chars two by two, and interpret each pair as the hexadecimal code for a byte. Anything else than hexadecimal digits is ignored, raising the flag. A string which contains an odd number of hexadecimal digits gets 0 appended to it: this is equivalent to appending a 0 in all cases, and dropping it if it is alone.

__str_convert_unescape_hex:\n__str_unescape_hex_auxi:N \n__str_unescape_hex_auxii:N
__str_convert_unescape_hex:
{\group_begin: \flag_clear:n { __str_error }
 \int_set:Nn \tex_escapechar:D { 92 } \n__kernel_tl_gset:Ne \g__str_result_tl
 { __str_output_byte:w " \n\exp_last_unbraced:Nf __str_unescape_hex_auxi:N
 \{ \tl_to_str:N \g__str_result_tl } \n0 { ? 0 - 1 \prg_break: }
 \prg_break_point:
 __str_output_end:
 __str_if_flag_error:nne { __str_error } { unescape-hex } { }
 \group_end:}
\cs_new_protected:Npn __str_unescape_hex_auxi:N #1
{ \use_none:n #1 \n__str_hexadecimal_use:NTF #1
 { __str_unescape_hex_auxii:N }
 { \flag_raise:n { __str_error }
 __str_unescape_hex_auxii:N }
}
\cs_new_protected:Npn __str_unescape_hex_auxii:N #1
{ \use_none:n #1 \n__str_hexadecimal_use:NTF #1
 { __str_output_end:
 __str_output_byte:w " \n__str_unescape_hex_auxi:N
 }
 { \flag_raise:n { __str_error }
 __str_unescape_hex_auxii:N }
}
\cs_new:Npn __str_unescape_hex_auxi:N #1
{ \use_none:n #1 \n__str_hexadecimal_use:NTF #1
 { __str_output_end:
 __str_output_byte:w " \n__str_unescape_hex_auxii:N
 }
 { \flag_raise:n { __str_error }
 __str_unescape_hex_auxii:N }
}

761
\msg_new:\nnnn \{ str \} \{ unescape-hex \}
\{ String-invalid-in-escaping-\'hex\':-only-hexadecimal-digits-allowed. \}
\{ Some-characters-in-the-string-you-asked-to-convert-are-not-
 hexadecimal-digits-(0-9,\-A-F,\-a-f)-nor-spaces. \}
\}

(End of definition for __str_convert_unescape_hex:, __str_unescape_hex_auxi:N, and __str_unescape_hex_auxii:N.)

The __str_convert_unescape_name: function replaces each occurrence of \# followed
by two hexadecimal digits in \g__str_result_tl by the corresponding byte. The \url
function is identical, with escape character \% instead of \#. Thus we define the two-together. The arguments of __str_tmp:w are the character code of \# or \% in hexadecimal,
the name of the main function to define, and the name of the auxiliary which performs
the loop.

The looping auxiliary \#3 finds the next escape character, reads the following two
characters, and tests them. The test __str_hexadecimal_use:NTF leaves the upper-case digit in the input stream, hence we surround the test with __str_output_byte:w \^ and __str_output_end: . If both characters are hexadecimal digits, they should be
removed before looping: this is done by \use_i:nnn. If one of the characters is not
a hexadecimal digit, then feed \#1 to __str_output_byte:w to produce the escape
caracter, raise the flag, and call the looping function followed by the two characters
(remove \use_i:nnn).

\cs_set_protected:Npn __str_tmp:w \#1\#2\#3
\{\cs_new_protected:cpn { __str_convert_unescape_#2: } \}
\{\group_begin:\flag_clear:n { __str_byte } \flag_clear:n { __str_error } \int_set:Nn \tex_escapechar:D { 92 } __kernel_tl_gset:Ne \g__str_result_tl
\exp_after:wN \#3 \g__str_result_tl \#1 ? { ? \prg_break: } \prg_break_point: __str_if_flag_error:nne { __str_byte } { non-byte } { \#2 } __str_if_flag_error:nne { __str_error } { unescape-\#2 } { } \group_end: \}
\cs_new:Npn \#3 \##1\#2\#3
\{__str_filter_bytes:n {\##1} \use_none:n \#1 __str_output_byte:w \^ __str_hexadecimal_use:NTF \#2 __str_hexadecimal_use:NTF \#3 \}
\{ \flag_raise:n { __str_error } \}

\%_\str_convert_unescape_name: \%_\str_unescape_name_loop:w\NN \%_\str_convert_unescape_url: \%_\str_unescape_url_loop:w\NN

762
The string escaping is somewhat similar to the name and url escapings, with escape character \. The first step is to convert all three line endings, ^{}J, ^{}M, and ^{}M^{}J to the common \^{}J, as per the PDF specification. This step cannot raise the flag.

Then the following escape sequences are decoded.

\n Line feed (10)
\r Carriage return (13)
\t Horizontal tab (9)
\b Backspace (8)
\f Form feed (12)
\(Left parenthesis
\) Right parenthesis
\ Backslash
\ddd (backslash followed by 1 to 3 octal digits) Byte \ddd (octal), subtracting 256 in case of overflow.

If followed by an end-of-line character, the backslash and the end-of-line are ignored. If followed by anything else, the backslash is ignored, raising the error flag.
\{
\group_begin:
\flag_clear:n \{ __str_byte \}
\flag_clear:n \{ __str_error \}
\int_set:Nn \tex_escapechar:D \{ 92 \}
__kernel_tl_gset:Ne \g__str_result_tl
{
\exp_after:wN __str_unescape_string_newlines:wN
\g__str_result_tl \prg_break: ^\M \prg_break_point:
}
__kernel_tl_gset:Ne \g__str_result_tl
{
\exp_after:wN __str_unescape_string_loop:wNNN
\g__str_result_tl \#1 \#2 \#3 \#4 \prg_break_point:
}
__str_if_flag_error:nne { __str_byte } { non-byte } { string }
__str_if_flag_error:nne { __str_error } { unescape-string } { }
\group_end:
\}
\exp_args:No __str_tmp:w \{ \c_backslash_str \}
\exp_last_unbraced:NNNNo
\cs_new:Npn __str_unescape_string_loop:wNNN \#1 \c_backslash_str \#2\#3\#4
{
__str_filter_bytes:n \{#1\}
\use_none:n \#4
__str_output_byte:w \,
__str_octal_use:NTF \#2
{
__str_octal_use:NTF \#3
{
__str_octal_use:NTF \#4
{
\if_int_compare:w \#2 > 3 \exp_stop_f:
- 256
\fi:
__str_unescape_string_repeat:NNNNNN
}
__str_unescape_string_repeat:NNNNNN \? \}
}
__str_unescape_string_repeat:NNNNNN \? \}
\str_case_e:nnF \{#2\}
{
\{ \c_backslash_str \} \{ 134 \}
{ \{ \} \{ 50 \}
{ \} \} \{ 51 \}
{ r } \{ 15 \}
{ f } \{ 14 \}
{ n } \{ 12 \}
{ t } \{ 11 \}
764
57.5.2 Escape methods

Currently, none of the escape methods can lead to errors, assuming that their input is made out of bytes.

Loop and convert each byte to hexadecimal.

```
\__str_convert_escape_hex: \__str_escape_hex_char:N
\cs_new:Npn \__str_convert_escape_hex: { \__str_convert_gmap:N \__str_escape_hex_char:N }
\cs_new:Npn \__str_escape_hex_char:n #1 { \__str_output_hexadecimal:n { '#1 } }
```

(End of definition for __str_convert_escape_hex: and __str_escape_hex_char:N.)

For each byte, test whether it should be output as is, or be “hash-encoded”. Roughly, bytes outside the range `["2A,"7E]` are hash-encoded. We keep two lists of exceptions: characters in \c__str_escape_name_not_str are not hash-encoded, and characters in the \c__str_escape_name_str are encoded.

```
\str_const:Nn \c__str_escape_name_not_str { ! $ & ' } %$
\str_const:Nn \c__str_escape_name_str { \{\}/<>[] }$
\cs_new_protected:Npn \__str_convert_escape_name: { \__str_convert_gmap:N \__str_escape_name_char:n \c__str_escape_name_str }
\cs_new:Npn \__str_escape_name_char:n #1 { \__str_output_hexadecimal:n { '#1 } }
```

(End of definition for __str_convert_escape_name: and __str_escape_name_char:n.)
Any character below (and including) space, and any character above (and including) del, are converted to octal. One backslash is added before each parenthesis and backslash.

End of definition for _str_convert_escape_name: and others.
57.6 Encoding definitions

The native encoding is automatically defined. Other encodings are loaded as needed. The following encodings are supported:

- UTF-8;
- UTF-16, big-, little-endian, or with byte order mark;
- UTF-32, big-, little-endian, or with byte order mark;
- the iso 8859 code pages, numbered from 1 to 16, skipping the inexistent ISO 8859-12.

57.6.1 utf-8 support

Loop through the internal string, and convert each character to its UTF-8 representation. The representation is built from the right-most (least significant) byte to the left-most (most significant) byte. Continuation bytes are in the range [128, 191], taking 64 different values, hence we roughly want to express the character code in base 64, shifting the first digit in the representation by some number depending on how many continuation bytes there are. In the range [0, 127], output the corresponding byte directly. In the range [128, 2047], output the remainder modulo 64, plus 128 as a continuation byte, then output the quotient (which is in the range [0, 31]), shifted by 192. In the next range, [2048, 65535], split the character code into residue and quotient modulo 64, output the...
residue as a first continuation byte, then repeat; this leaves us with a quotient in the range \([0, 15]\), which we output shifted by 224. The last range, \([65536, 111411]\), follows the same pattern: once we realize that dividing twice by 64 leaves us with a number larger than 15, we repeat, producing a last continuation byte, and offset the quotient by 240 for the leading byte.

How is that implemented? \texttt{__str_encode_utf_vii_loop:wwnnw} takes successive quotients as its first argument, the quotient from the previous step as its second argument (except in step 1), the bound for quotients that trigger one more step or not, and finally the offset used if this step should produce the leading byte. Leading bytes can be in the ranges \([0, 127]\), \([192, 223]\), \([224, 239]\), and \([240, 247]\) (really, that last limit should be 244 because Unicode stops at the code point 111411). At each step, if the quotient \#1 is less than the limit \#3 for that range, output the leading byte (\#1 shifted by \#4) and stop. Otherwise, we need one more step: use the quotient of \#1 by 64, and \#1 as arguments for the looping auxiliary, and output the continuation byte corresponding to the remainder \#2 − 64\#1 + 128. The bizarre construction \(-1 + 0 *\) removes the spurious initial continuation byte (better methods welcome).

When decoding a string that is purportedly in the utf-8 encoding, four different errors can occur, signalled by a specific flag for each (we define those flags using \texttt{\flag_clear_new:n} rather than \texttt{\flag_new:n}, because they are shared with other encoding definition files).

- “Missing continuation byte”: a leading byte is not followed by the right number of continuation bytes.
- “Extra continuation byte”: a continuation byte appears where it was not expected, \textit{i.e.}, not after an appropriate leading byte.
• “Overlong”: a Unicode character is expressed using more bytes than necessary, for instance, "C0*80 for the code point 0, instead of a single null byte.

• “Overflow”: this occurs when decoding produces Unicode code points greater than 1114111.

We only raise one \LaTeX error message, combining all the errors which occurred. In the short message, the leading comma must be removed to get a grammatically correct sentence. In the long text, first remind the user what a correct UTF-8 string should look like, then add error-specific information.

```latex
\begin{verbatim}
\flag_clear_new:n { __str_missing }
\flag_clear_new:n { __str_extra }
\flag_clear_new:n { __str_overlong }
\flag_clear_new:n { __str_overflow }
\msg_new:n { str } { utf8-decode }
{
  Invalid-UTF-8-string:
  \exp_last_unbraced:Nf \use_none:n
  {
    \str_if_flag_times:nT { __str_missing } { ,missing-continuation-byte }
    \str_if_flag_times:nT { __str_extra } { ,extra-continuation-byte }
    \str_if_flag_times:nT { __str_overlong } { ,overlong-form }
    \str_if_flag_times:nT { __str_overflow } { ,code-point-too-large }
  }
},
{ In-the-UTF-8-encoding,-each-Unicode-character-consists-in-
  1-to-4-bytes,-with-the-following-bit-pattern: \}
\low_indent:n
{
  Code-point-\ <\ <128: -0xxxxxx \ \ 
  Code-point-\ <\ <2048: -110xxxxx-10xxxxxx \\
  Code-point-\ <\ <65536: -1110xxx-1xxxxxx-1xxxxxx \\
  Code-point-\ <\ <1114112: -11110xxx-11xxxxxx-10xxxxxx \\
}

Bytes-of-the-form-10xxxxxxx-are-called-continuation-bytes.
\flag_if_raised:nT { __str_missing }
{
  \\\
  A-leading-byte-(in-the-range-\{192,255\})-was-not-followed-by-
  the-appropriate-number-of-continuation-bytes.
}
\flag_if_raised:nT { __str_extra }
{
  \\\
  LaTeX-came-across-a-continuation-byte-when-it-was-not-expected.
}
\flag_if_raised:nT { __str_overlong }
{
  \\\
  Every-Unicode-code-point-must-be-expressed-in-the-shortest-
  possible-form.-For-instance,-"0xC0"-"0x83"-is-not-a-valid-
  representation-for-the-code-point-3.
\end{verbatim}
```
Decoding is significantly harder than encoding. As before, lower some flags, which are tested at the end (in bulk, to trigger at most one \TeX error, as explained above). We expect successive multi-byte sequences of the form \textit{(start byte) (continuation bytes)}. The _start auxiliary tests the first byte:

- [0,*7F]: the byte stands alone, and is converted to its own character code;
- [*80,*BF]: unexpected continuation byte, raise the appropriate flag, and convert that byte to the replacement character *FFFD;
- [*C0,*FF]: this byte should be followed by some continuation byte(s).

In the first two cases, \texttt{\use:none_delimit_by_q_stop:w} removes data that only the third case requires, namely the limits of ranges of Unicode characters which can be expressed with 1, 2, 3, or 4 bytes.

We can now concentrate on the multi-byte case and the _continuation auxiliary. We expect \#3 to be in the range [*80,*BF]. The test for this goes as follows: if the character code is less than *80, we compare it to −*C0, yielding false; otherwise to *C0, yielding true in the range [*80,*BF] and false otherwise. If we find that the byte is not a continuation range, stop the current slew of bytes, output the replacement character, and continue parsing with the _start auxiliary, starting at the byte we just tested. Once we know that the byte is a continuation byte, leave it behind us in the input stream, compute what code point the bytes read so far would produce, and feed that number to the _aux function.

The _aux function tests whether we should look for more continuation bytes or not. If the number it receives as \#1 is less than the maximum \#4 for the current range, then we are done: check for an overlong representation by comparing \#1 with the maximum \#3 for the previous range. Otherwise, we call the _continuation auxiliary again, after shifting the “current code point” by \#4 (maximum from the range we just checked).

Two additional tests are needed: if we reach the end of the list of range maxima and we are still not done, then we are faced with an overflow. Clean up, and again insert the code point *FFFD for the replacement character. Also, every time we read a byte, we need to check whether we reached the end of the string. In a correct UTF-8 string, this happens automatically when the _start auxiliary leaves its first argument in the input stream: the end-marker begins with \texttt{\prg:break:}, which ends the loop. On the other hand, if the end is reached when looking for a continuation byte, the \texttt{\use:none_n \#3} construction removes the first token from the end-marker, and leaves the _end auxiliary, which raises the appropriate error flag before ending the mapping.
\flag_clear:n { __str_error }
\flag_clear:n { __str_missing }
\flag_clear:n { __str_extra }
\flag_clear:n { __str_overlong }
\flag_clear:n { __str_overflow }
__kernel_tl_gset:N \g__str_result_tl

{ \exp_after:wN __str_decode_utf_viii_start:N \g__str_result_tl
 { \prg_break: __str_decode_utf_viii_end: }
 \prg_break_point: }

__str_if_flag_error:nne { __str_error } { utf8-decode } { }
\cs_new:Npn __str_decode_utf_viii_start:N #1
{ #1 \if_int_compare:w '#1 < "C0 \exp_stop_f:
 \s__str
 \if_int_compare:w '#1 < "80 \exp_stop_f:
 \int_value:w '#1
 \else:
 \flag_raise:n { __str_extra }
 \flag_raise:n { __str_error }
 \int_use:N \c__str_replacement_char_int
 \fi:
 \else:
 \exp_after:wN __str_decode_utf_viii_continuation:wwN
 \int_value:w \int_eval:n { '#1 - "C0 } \exp_after:wN
 \fi:
 \s__str
 __str_use_none_delimit_by_s_stop:w {"80} {"800} {"10000} {"110000} \s__str_stop
__str_decode_utf_viii_start:N }

\cs_new:Npn __str_decode_utf_viii_continuation:wwN #1 \s__str #2 __str_decode_utf_viii_start:N #3
{ \use_none:n #3
 \if_int_compare:w '#3 <
 \if_int_compare:w '#3 < "80 \exp_stop_f: - \fi:
 "C0 \exp_stop_f:
 \fi:
 \s__str
 __str_use_none_delimit_by_s_stop:w {"80} "{800} "{10000} "{110000} \s__str_stop
 __str_decode_utf_viii_start:N }
\cs_new:Npn __str_decode_utf_viii_continuation:wwN #1 \s__str #2 __str_decode_utf_viii_start:N #3
{ \use_none:n #3
 \if_int_compare:w '#3 <
 \if_int_compare:w '#3 < "80 \exp_stop_f: - \fi:
 "C0 \exp_stop_f:
 \fi:
 \s__str
 __str_use_none_delimit_by_s_stop:w {"80} "{800} "{10000} "{110000} \s__str_stop
 __str_decode_utf_viii_start:N }
\cs_new:Npn __str_decode_utf_viii_aux:wNwwN
\int_value:w \int_eval:n { #1 + "40 + '#3 - "80 } \exp_after:wN
\else:
\s__str
\flag_raise:n { __str_missing }
\flag_raise:n { __str_error }
\int_use:N \c__str_replacement_char_int
\fi:
\s__str
#2
__str_decode_utf_viii_start:N #3
\cs_new:Npn __str_decode_utf_viii_aux:wNwwN
57.6.2 utf-16 support

The definitions are done in a category code regime where the bytes 254 and 255 used by
the byte order mark have catcode 12.

When the endianness is not specified, it is big-endian by default, and we add a byte-order
mark. Convert characters one by one in a loop, with different behaviours depending on
the character code.

- [0, "D7FF]: converted to two bytes;

(End of definition for _str_convert_decode_utf8: and others.)
• \"D800, DFFF\" are used as surrogates: they cannot be converted and are replaced by the replacement character;
• \"E000, FFFF\": converted to two bytes;
• \"10000, 10FFFF\": converted to a pair of surrogates, each two bytes. The magic \"D7C0 is \"D800 – \"10000/400.

For the duration of this operation, __str_tmp:w is defined as a function to convert a number in the range \[0, \"FFF\] to a pair of bytes (either big endian or little endian), by feeding the quotient of the division of \#1 by \"100, followed by \#1 to __str_encode_utf_xvi_be:n or its le analog: those compute the remainder, and output two bytes for the quotient and remainder.

(End of definition for __str_convert_encode_utf16: and others.)

When encoding a Unicode string to UTF-16, only one error can occur: code points in the range \[\"D800, DFFF\], corresponding to surrogates, cannot be encoded. We use the all-purpose flag __error to signal that error.

\l__str_missing_flag
\l__str_extra_flag
\l__str_end_flag
When decoding a Unicode string which is purportedly in UTF-16, three errors can occur: a missing trail surrogate, an unexpected trail surrogate, and a string containing an odd number of bytes.

```latex
\flag_clear_new:n { __str_missing }
\flag_clear_new:n { __str_extra }
\flag_clear_new:n { __str_end }
\msg_new:nnnn { str } { utf16-encode }
{ Unicode-string-cannot-be-expressed-in-UTF-16:-surrogate. }
{ Surrogate-code-points-(in-the-range-[U+D800,-U+DFFF])-can-be-expressed-in-the-UTF-8-and-UTF-32-encodings,-but-not-in-the-UTF-16-encoding. }
\msg_new:nnnn { str } { utf16-decode }
{ Invalid-UTF-16-string: }
\exp_last_unbraced:Nf \use_none:n
{ \__str_if_flag_times:nT { __str_missing } { ,missing-trail-surrogate } \__str_if_flag_times:nT { __str_extra } { ,extra-trail-surrogate } \__str_if_flag_times:nT { __str_end } { ,odd-number-of-bytes } }
\flag_if_raised:nT { __str_missing }
\\
A-lead-surrogate-was-not-followed-by-a-trail-surrogate.
\flag_if_raised:nT { __str_extra }
\\
LaTeX-came-across-a-trail-surrogate-when-it-was-not-expected.
\flag_if_raised:nT { __str_end }
\\
The-string-contained-an-odd-number-of-bytes.-This-is-invalid:-the-basic-code-unit-for-UTF-16-is-16-bits-(2-bytes).
}```
As for UTF-8, decoding UTF-16 is harder than encoding it. If the endianness is unknown, check the first two bytes: if those are \texttt{\textasciitilde FE} and \texttt{\textasciitilde FF} in either order, remove them and use the corresponding endianness, otherwise assume big-endianness. The three endianness cases are based on a common auxiliary whose first argument is 1 for big-endian and 2 for little-endian, and whose second argument, delimited by the scan mark \texttt{\_\_\_str_stop}, is expanded once (the string may be long; passing \texttt{\_\_\_str_result_tl} as an argument before expansion is cheaper).

The \texttt{\_\_\_str_decode_utf_xvi:Nw} function defines \texttt{\_\_\_tmp:w} to take two arguments and return the character code of the first one if the string is big-endian, and the second one if the string is little-endian, then loops over the string using \texttt{\_\_\_str_decode_utf_xvi_pair:NN} described below.

Bytes are read two at a time. At this stage, \texttt{\_\_\_tmp:w #1#2} expands to the character code of the most significant byte, and we distinguish cases depending on which range it lies in:

\begin{verbatim}
\_\_\_str_decode_utf_xvi_pair:NN \_\_\_str_decode_utf_xvi_quad:NNwNN \_\_\_str_decode_utf_xvi_pair_end:Nw \_\_\_str_decode_utf_xvi_extra:NNw
\end{verbatim}
• [*D8, "DB"] signals a lead surrogate, and the integer expression yields 1 \((\varepsilon-\text{TeX rounds ties away from zero})\);

• [*DC, "DF"] signals a trail surrogate, unexpected here, and the integer expression yields 2;

• any other value signals a code point in the Basic Multilingual Plane, which stands for itself, and the \texttt{\_case} construction expands to nothing (cases other than 1 or 2), leaving the relevant material in the input stream, followed by another call to the \_pair auxiliary.

The case of a lead surrogate is treated by the \_quad auxiliary, whose arguments \#1, \#2, \#4 and \#5 are the four bytes. We expect the most significant byte of \#4\#5 to be in the range [*DC, "DF"] (trail surrogate). The test is similar to the test used for continuation bytes in the UTF-8 decoding functions. In the case where \#4\#5 is indeed a trail surrogate, leave \_str (code point) \_str, and remove the pair \#4\#5 before looping with \_str_decode_utf_xvi_pair:NN. Otherwise, of course, complain about the missing surrogate.

The magic number "D7F7 is such that "D7F7\#400 = "D800\#400+"DC00--"10000.

Every time we read a pair of bytes, we test for the end-marker \texttt{\q__str_nil}. When reaching the end, we additionally check that the string had an even length. Also, if the end is reached when expecting a trail surrogate, we treat that as a missing surrogate.

```latex
\cs_new:Npn _str_decode_utf_xvi_pair:NN #1#2
\begin{verbatim}
 \if_meaning:w \q__str_nil #2
 _str_decode_utf_xvi_pair_end:Nw #1
 \fi:
 \if_case:w
 \int_eval:n { (_str_tmp:w #1#2 - "D6) / 4 } \scan_stop:
 \or: \exp_after:wN _str_decode_utf_xvi_quad:NNwNN
 \or: \exp_after:wN _str_decode_utf_xvi_extra:NNw
 \fi:
 _str_decode_utf_xvi_pair:NN #1#2 _str
 \int_eval:n { 100 * _str_tmp:w #1#2 + _str_tmp:w #2#1 } _str
 _str_decode_utf_xvi_pair:NN
\end{verbatim}
\cs_new:Npn _str_decode_utf_xvi_quad:NNwNN #1#2 #3 _str_decode_utf_xvi_pair:NN #4#5
\begin{verbatim}
 \if_meaning:w \q__str_nil #5
 _str_decode_utf_xvi_quad:NNwNN { missing } #1#2
 _str_decode_utf_xvi_quad:NN #4#5
 \fi:
 \if_int_compare:w
 _str_decode_utf_xvi_error:nNN { missing } #1#2
 _str_decode_utf_xvi_quad:NN #4#5
 \fi:
 \if_int_compare:w
 _str_decode_utf_xvi_quad:NNwNN \exp_stop_f:
 0 = 1
 \else:
 _str_decode_utf_xvi_quad:NNwNN \exp_stop_f:
 _str_decode_utf_xvi_quad:NNwNN _str #1 #2 #5 _str
 \int_eval:n
\end{verbatim}
```

776
( "100 * \__str_tmp:w #1#2 + \__str_tmp:w #2#1 - "D7F7 ) * "400
+ "100 * \__str_tmp:w #4#5 + \__str_tmp:w #5#4
}
\s__str
\exp_after:wN \use_i:nnn
\else:
\__str_decode_utf_xvi_error:nNN { missing } #1#2
\fi:
\__str_decode_utf_xvi_pair:NN #4#5
\cs_new:Npn \__str_decode_utf_xvi_pair_end:Nw #1 \fi:
{
\fi:
\if_meaning:w \q__str_nil #1
\else:
\__str_decode_utf_xvi_error:nNN { end } #1 \prg_do_nothing:
\fi:
\prg_break:
}
\cs_new:Npn \__str_decode_utf_xvi_extra:NNw #1#2 \s__str #3 \s__str
{ \__str_decode_utf_xvi_error:nNN { extra } #1#2 }
\cs_new:Npn \__str_decode_utf_xvi_error:nNN #1#2#3
{
\flag_raise:n { __str_error }
\flag_raise:n { str_#1 }
#2 #3 \s__str
\int_use:N \c__str_replacement_char_int \s__str
}
(End of definition for \__str_decode_utf_xvi_pair:NN and others.)

Restore the original catcodes of bytes 254 and 255.

57.6.3 utf-32 support

The definitions are done in a category code regime where the bytes 0, 254 and 255 used
by the byte order mark have catcode “other”.

Convert each integer in the comma-list \g__str_result_tl to a sequence of four
bytes. The functions for big-endian and little-endian encodings are very similar, but
the \__str_output_byte:n instructions are reversed.

\cs_new_protected:cpn { __str_convert_encode_utf32: }
{
\__str_convert_gmap_internal:N \__str_encode_utf_xxxii_be:n
\tl_gput_left:Ne \g__str_result_tl { ^^00 ^^00 ^^fe ^^ff }
}
\cs_new_protected:cpn { __str_convert_encode_utf32be: }
{ \__str_encode_utf_xxxii_be:n \tl_gput_left:Ne \g__str_result_tl { ^^fe ^^ff ^^^0 ^^^0 }
}
\cs_new_protected:cpn { __str_convert_encode_utf32le: }
{ \tl_gput_left:Ne \g__str_result_tl { ^^^0 ^^^0 ^^fe ^^ff }
}

777
There can be no error when encoding in UTF-32. When decoding, the string may not have length $4n$, or it may contain code points larger than $\times 10FFFF$. The latter case often happens if the encoding was in fact not UTF-32, because most arbitrary strings are not valid in UTF-32.

:\flag_clear_new:n { __str_overflow }
:\flag_clear_new:n { __str_end }
\msg_new:nnnn { str } { utf32-decode }
{\Invalid-UTF-32-string:
\exp_last_unbraced:Nf \use_none:n\{\__str_if_flag_times:nT { __str_overflow } { ,code-point-too-large }
\__str_if_flag_times:nT { __str_end } { ,truncated-string }
\}}.
\{\In-the-UTF-32-encoding,-every-Unicode-character-
(in-the-range-[U+0000,-U+10FFFF])-is-encoded-as-4-bytes.
\flag_if_raised:nT { __str_overflow }
{\LaTeX-came-across-a-code-point-larger-than-1114111,-
the-maximum-code-point-defined-by-Unicode.-
Perhaps-the-string-was-not-encoded-in-the-UTF-32-encoding?
}\}
\flag_if_raised:nT { __str_end }
 {
The length of the string is not a multiple of 4. Perhaps the string was truncated?

(End of definition for __str_overflow and __str_end.)

The structure is similar to UTF-16 decoding functions. If the endianness is not given, test the first 4 bytes of the string (possibly __str_stop if the string is too short) for the presence of a byte-order mark. If there is a byte-order mark, use that endianness, and remove the 4 bytes, otherwise default to big-endian, and leave the 4 bytes in place. The __str_decode_utf_xxxii:Nw auxiliary receives 1 or 2 as its first argument indicating endianness, and the string to convert as its second argument (expanded or not). It sets __str_tmp:w to expand to the character code of either of its two arguments depending on endianness, then triggers the __loop auxiliary inside an e-expanding assignment to \g__str_result_tl. The __loop auxiliary first checks for the end-of-string marker __str_stop, calling the __end auxiliary if appropriate. Otherwise, leave the ⟨4 bytes⟩ __str behind, then check that the code point is not overflowing: the leading byte must be 0, and the following byte at most 16.

In the ending code, we check that there remains no byte: there should be nothing left until the first __str_stop. Break the map.

The structure is similar to UTF-16 decoding functions. If the endianness is not given, test the first 4 bytes of the string (possibly __str_stop if the string is too short) for the presence of a byte-order mark. If there is a byte-order mark, use that endianness, and remove the 4 bytes, otherwise default to big-endian, and leave the 4 bytes in place. The __str_decode_utf_xxxii:Nw auxiliary receives 1 or 2 as its first argument indicating endianness, and the string to convert as its second argument (expanded or not). It sets __str_tmp:w to expand to the character code of either of its two arguments depending on endianness, then triggers the __loop auxiliary inside an e-expanding assignment to \g__str_result_tl. The __loop auxiliary first checks for the end-of-string marker __str_stop, calling the __end auxiliary if appropriate. Otherwise, leave the ⟨4 bytes⟩ __str behind, then check that the code point is not overflowing: the leading byte must be 0, and the following byte at most 16.
To convert to PDF names by expansion, we work purely on UTF-8 input. The first step is to make a string with “other” spaces, after which we use a simple token-by-token approach. In Unicode engines, we break down everything before one-byte codepoints, but for 8-bit engines there is no need to worry. Actual escaping is covered by the same code as used in the non-expandable route.

```latex
\str_convert_pdfname:n
\str_convert_pdfname:nn
\str_convert_pdfname_bytes:n
\str_convert_pdfname_bytes_aux:n
\str_convert_pdfname_bytes_aux:nnn
```

(End of definition for \_\_str_convert_decode_utf32: and others.)

Restore the original catcodes of bytes 0, 254 and 255.

```
\group_end:
```

57.7 PDF names and strings by expansion

To convert to PDF names by expansion, we work purely on UTF-8 input. The first step is to make a string with “other” spaces, after which we use a simple token-by-token approach. In Unicode engines, we break down everything before one-byte codepoints, but for 8-bit engines there is no need to worry. Actual escaping is covered by the same code as used in the non-expandable route.

```
\cs_new:Npn \str_convert_pdfname:n #1 { #1 \tl_to_str:n }
```

780
57.7.1 iso 8859 support

The iso-8859-1 encoding exactly matches with the 256 first Unicode characters. For other 8-bit encodings of the iso-8859 family, we keep track only of differences, and of unassigned bytes.
\__str_declare_eight_bit_encoding::nnnn { iso88593 } { 384 }
{
  { A1 } { 0126 }
  { A2 } { 02D8 }
  { A6 } { 0124 }
  { A9 } { 0130 }
  { AA } { 013E }
  { AB } { 011E }
  { AC } { 0134 }
  { AF } { 017B }
  { B1 } { 0127 }
  { B6 } { 0125 }
  { B9 } { 0131 }
  { BA } { 015F }
  { BB } { 011F }
  { BC } { 0135 }
  { BF } { 017C }
  { C5 } { 010A }
  { C6 } { 0108 }
  { D5 } { 0120 }
  { D8 } { 011C }
  { DD } { 016C }
  { DE } { 018C }
  { E5 } { 010B }
  { E6 } { 0109 }
  { F5 } { 0121 }
  { F8 } { 011D }
  { FD } { 016D }
  { FE } { 015D }
  { FF } { 02D9 }
}
{
  { A5 }
  { AE }
  { BE }
  { C3 }
  { DO }
  { E3 }
  { FO }
}
\}(/iso88593)
\__str_declare_eight_bit_encoding::nnnn { iso88594 } { 383 }
{
  { A1 } { 0104 }

783
\langle iso88594 \rangle
\langle * iso88595 \rangle
784
\__str_declare_eight_bit_encoding:nnnn { iso88595 } { 374 }
{
  { A1 } { 0401 }
  { A2 } { 0402 }
  { A3 } { 0403 }
  { A4 } { 0404 }
  { A5 } { 0405 }
  { A6 } { 0406 }
  { A7 } { 0407 }
  { A8 } { 0408 }
  { A9 } { 0409 }
  { AA } { 040A }
  { AB } { 040B }
  { AC } { 040C }
  { AE } { 040E }
  { AF } { 040F }
  { B0 } { 0410 }
  { B1 } { 0411 }
  { B2 } { 0412 }
  { B3 } { 0413 }
  { B4 } { 0414 }
  { B5 } { 0415 }
  { B6 } { 0416 }
  { B7 } { 0417 }
  { B8 } { 0418 }
  { B9 } { 0419 }
  { BA } { 041A }
  { BB } { 041B }
  { BC } { 041C }
  { BD } { 041D }
  { BE } { 041E }
  { BF } { 041F }
  { C0 } { 0420 }
  { C1 } { 0421 }
  { C2 } { 0422 }
  { C3 } { 0423 }
  { C4 } { 0424 }
  { C5 } { 0425 }
  { C6 } { 0426 }
  { C7 } { 0427 }
  { C8 } { 0428 }
  { C9 } { 0429 }
  { CA } { 042A }
  { CB } { 042B }
  { CC } { 042C }
  { CD } { 042D }
  { CE } { 042E }
  { CF } { 042F }
  { D0 } { 0430 }
  { D1 } { 0431 }
  { D2 } { 0432 }
  { D3 } { 0433 }
  { D4 } { 0434 }
  { D5 } { 0435 }

{ D6 } { 0436 }
{ D7 } { 0437 }
{ D8 } { 0438 }
{ D9 } { 0439 }
{ DA } { 043A }
{ DB } { 043B }
{ DC } { 043C }
{ DD } { 043D }
{ DE } { 043E }
{ DF } { 043F }
{ E0 } { 0440 }
{ E1 } { 0441 }
{ E2 } { 0442 }
{ E3 } { 0443 }
{ E4 } { 0444 }
{ E5 } { 0445 }
{ E6 } { 0446 }
{ E7 } { 0447 }
{ E8 } { 0448 }
{ E9 } { 0449 }
{ EA } { 044A }
{ EB } { 044B }
{ EC } { 044C }
{ ED } { 044D }
{ EE } { 044E }
{ EF } { 044F }
{ F0 } { 2116 }
{ F1 } { 0451 }
{ F2 } { 0452 }
{ F3 } { 0453 }
{ F4 } { 0454 }
{ F5 } { 0455 }
{ F6 } { 0456 }
{ F7 } { 0457 }
{ F8 } { 0458 }
{ F9 } { 0459 }
{ FA } { 045A }
{ FB } { 045B }
{ FC } { 045C }
{ FD } { 00A7 }
{ FE } { 045E }
{ FF } { 045F }

} }__str_declare_eight_bit_encoding:nnnn { iso88596 } { 344 }
{ iso88595 }
\_\_str\_declare\_eight\_bit\_encoding:nnnn { iso88596 } { 344 }

{ AC } { 060C }
{ BB } { 061B }
{ BF } { 061F }
{ C1 } { 0621 }
{ C2 } { 0622 }

786
{ C3 } { 0623 }
{ C4 } { 0624 }
{ C5 } { 0625 }
{ C6 } { 0626 }
{ C7 } { 0627 }
{ C8 } { 0628 }
{ C9 } { 0629 }
{ CA } { 062A }
{ CB } { 062B }
{ CC } { 062C }
{ CD } { 062D }
{ CE } { 062E }
{ CF } { 062F }
{ D0 } { 0630 }
{ D1 } { 0631 }
{ D2 } { 0632 }
{ D3 } { 0633 }
{ D4 } { 0634 }
{ D5 } { 0635 }
{ D6 } { 0636 }
{ D7 } { 0637 }
{ D8 } { 0638 }
{ D9 } { 0639 }
{ DA } { 063A }
{ E0 } { 0640 }
{ E1 } { 0641 }
{ E2 } { 0642 }
{ E3 } { 0643 }
{ E4 } { 0644 }
{ E5 } { 0645 }
{ E6 } { 0646 }
{ E7 } { 0647 }
{ E8 } { 0648 }
{ E9 } { 0649 }
{ EA } { 064A }
{ EB } { 064B }
{ EC } { 064C }
{ ED } { 064D }
{ EE } { 064E }
{ EF } { 064F }
{ F0 } { 0650 }
{ F1 } { 0651 }
{ F2 } { 0652 }

{ A1 }
{ A2 }
{ A3 }
{ A5 }
{ A6 }
{ A7 }
{ A8 }
{ A9 }
{ AA }
15684  { AB }  
15685  { AE }  
15686  { AF }  
15687  { B0 }  
15688  { B1 }  
15689  { B2 }  
15690  { B3 }  
15691  { B4 }  
15692  { B5 }  
15693  { B6 }  
15694  { B7 }  
15695  { B8 }  
15696  { B9 }  
15697  { BA }  
15698  { BA }  
15699  { BD }  
15700  { BE }  
15701  { C0 }  
15702  { DB }  
15703  { DC }  
15704  { DD }  
15705  { DE }  
15706  { DF }  
15707  }  
15708  }  
15709  ⟨/iso88596⟩  
15710  ⟨*iso88597⟩
15711  \_\_str\_declare\_eight\_bit\_encoding\:nnnn { iso88597 } { 498 }  
15712  {  
15713  { A1 } { 2018 }  
15714  { A2 } { 2019 }  
15715  { A4 } { 20AC }  
15716  { A5 } { 20AF }  
15717  { AA } { 037A }  
15718  { AF } { 2015 }  
15719  { B4 } { 0384 }  
15720  { B5 } { 0385 }  
15721  { B6 } { 0386 }  
15722  { B8 } { 0388 }  
15723  { B9 } { 0389 }  
15724  { BA } { 038A }  
15725  { BC } { 038C }  
15726  { BE } { 038E }  
15727  { BF } { 038F }  
15728  { C0 } { 0390 }  
15729  { C1 } { 0391 }  
15730  { C2 } { 0392 }  
15731  { C3 } { 0393 }  
15732  { C4 } { 0394 }  
15733  { C5 } { 0395 }  
15734  { C6 } { 0396 }  
15735  { C7 } { 0397 }  
15736  { C8 } { 0398 }  
15737  { C9 } { 0399 }  
15738  { CA } { 039A }  
788
{ iso88597 }

\"\_\_str\_declare\_eight\_bit\_encoding:nnnn \{ iso88598 \} \( 308 \) \n
{ AA } \{ 00D7 \}
{ BA } \{ 00F7 \}
{ DF } \{ 2017 \}
{ E0 } \{ 05D0 \}
{ E1 } \{ 05D1 \}
{ E2 } \{ 05D2 \}
{ E3 } \{ 05D3 \}
{ E4 } \{ 05D4 \}
{ E5 } \{ 05D5 \}
{ E6 } \{ 05D6 \}
{ E7 } \{ 05D7 \}
{ E8 } \{ 05D8 \}
{ E9 } \{ 05D9 \}
{ EA } \{ 05DA \}
{ EB } \{ 05DB \}
{ EC } \{ 05DC \}
{ ED } \{ 05DD \}
{ EE } \{ 05DE \}
{ EF } \{ 05DF \}
{ F0 } \{ 05E0 \}
{ F1 } \{ 05E1 \}
{ F2 } \{ 05E2 \}
{ F3 } \{ 05E3 \}
{ F4 } \{ 05E4 \}
{ F5 } \{ 05E5 \}
{ F6 } \{ 05E6 \}
{ F7 } \{ 05E7 \}
{ F8 } \{ 05E8 \}
{ F9 } \{ 05E9 \}
{ FA } \{ 05EA \}
{ FD } \{ 200E \}
{ FE } \{ 200F \}

{ A1 }
{ BF }
{ C0 }
{ C1 }
{ C2 }
{ C3 }
{ C4 }
{ C5 }
{ C6 }
{ C7 }
{ C8 }
{ C9 }
{ CA }
{ CB }

790
\__str_declare_eight_bit_encoding:nnnn { iso88599 } { 352 }
{
  { D0 } { 011E }
  { DD } { 0130 }
  { DE } { 015E }
  { F0 } { 011F }
  { FD } { 0131 }
  { FE } { 015F }
}
⟨/iso88599⟩
⟨∗/iso885910⟩
\__str_declare_eight_bit_encoding:nnnn { iso885910 } { 383 }
{
  { A1 } { 0104 }
  { A2 } { 0112 }
  { A3 } { 0122 }
  { A4 } { 012A }
  { A5 } { 012B }
  { A6 } { 0136 }
  { A8 } { 013B }
  { A9 } { 0110 }
  { AA } { 0160 }
  { AB } { 0166 }
  { AC } { 017D }
  { AE } { 016A }
  { AF } { 014A }
  { B1 } { 0105 }
\langle iso885910 \rangle
\langle * iso885911 \rangle
__str_declare_eight_bit_encoding:nnnn { iso885911 } { 369 }
{ iso885911 }
\backslash \_ \_ str \_ declare \_ eight \_ bit \_ encoding:nnnn { iso885911 } { 369 }
{
  { A1 } { OE01 }
  { A2 } { OE02 }
  { A3 } { OE03 }
  { A4 } { OE04 }
  { A5 } { OE05 }
  { A6 } { OE06 }
  { A7 } { OE07 }
  { A8 } { OE08 }
  { A9 } { OE09 }
  { AA } { OE0A }
  { AB } { OE0B }
  { AC } { OE0C }
  { AD } { OE0D }
  { AE } { OE0E }
  { AF } { OE0F }

793
\__str\_declare\_eight\_bit\_encoding::nnnn \{ iso885913 \} { 399 } 

\_
\_str
declare eight
bit_encoding
:nnnn
{ iso885914
} { 529 }
{

{ A1 } { 1E02 }
{ A2 } { 1E03 }
{ A4 } { 010A }
{ A5 } { 010B }
{ A6 } { 1E0A }
{ A8 } { 1E80 }
{ AA } { 1E82 }
{ AB } { 1E0B }
{ AC } { 1EF2 }
{ AF } { 0178 }
{ B0 } { 1E1E }
{ B1 } { 1E1F }
{ B2 } { 0120 }
{ B3 } { 0121 }
{ B4 } { 1E40 }
{ B5 } { 1E41 }


}
\__strDeclareEightBitEncoding:nnnn { iso885915 } { 383 }
{
  { A4 } { 20AC }
  { A6 } { 0160 }
  { A8 } { 0161 }
  { B4 } { 017D }
  { B8 } { 017E }
  { BC } { 0152 }
  { BD } { 0153 }
  { BE } { 0178 }
}
{
  { A1 } { 0104 }
  { A2 } { 0105 }
  { A3 } { 0141 }
  { A4 } { 20AC }
  { A5 } { 201E }
  { A6 } { 0160 }
  { A8 } { 0161 }
  { AA } { 0218 }
  { AC } { 0179 }
  { AE } { 017A }
  { AF } { 017B }
  { B2 } { 010C }
  { B3 } { 0142 }
  { B4 } { 017D }
  { B5 } { 201D }
  { B8 } { 017E }
}
{ B9 } { 010D }
{ BA } { 0219 }
{ BC } { 0152 }
{ BD } { 0153 }
{ BE } { 0178 }
{ BF } { 017C }
{ C3 } { 0102 }
{ C5 } { 0106 }
{ D0 } { 0110 }
{ D1 } { 0143 }
{ D5 } { 0150 }
{ D7 } { 015A }
{ D8 } { 0170 }
{ DD } { 0118 }
{ DE } { 021A }
{ E3 } { 0103 }
{ E5 } { 0107 }
{ F0 } { 0111 }
{ F1 } { 0144 }
{ F5 } { 0151 }
{ F7 } { 015B }
{ F8 } { 0171 }
{ FD } { 0119 }
{ FE } { 021B }
{/iso885916}
The following test files are used for this code: m3quark001.lvt.

58.1 Quarks

\quark_new:N
Allocate a new quark.

\q_nil
\q_mark
\q_no_value
\q_stop
Some “public” quarks. \q_stop is an “end of argument” marker, \q_nil is a empty value and \q_no_value marks an empty argument.

\q_recursion_tail
\q_recursion_stop
Quarks for ending recursions. Only ever used there! \q_recursion_tail is appended to whatever list structure we are doing recursion on, meaning it is added as a proper list item with whatever list separator is in use. \q_recursion_stop is placed directly after the list.

\s__quark
Private scan mark used in l3quark. We don’t have l3scan yet, so we declare the scan mark here and add it to the scan mark pool later.
Private quark use for some tests.

\quark_new:N \q__quark_nil

When doing recursions, it is easy to spend a lot of time testing if the end marker has been found. To avoid this, a dedicated end marker is used each time a recursion is set up. Thus if the marker is found everything can be wrapper up and finished off. The simple case is when the test can guarantee that only a single token is being tested. In this case, there is just a dedicated copy of the standard quark test. Both a gobbling version and one inserting end code are provided.

\quark_if_recursion_tail_stop:N
\quark_if_recursion_tail_stop_do:Nn

See \quark_if_nil:nTF for the details. Expanding \__quark_if_recursion_tail:w once in front of the tokens chosen here gives an empty result if and only if #1 is exactly \q_recursion_tail.
Analogues of the \quark_if_recursion_tail_stop... functions. Break the mapping using \#2.

\begin{verbatim}
\cs_new:Npn \quark_if_recursion_tail_break:NN #1#2 
{ \if_meaning:w \q_recursion_tail #1 \exp_after:wN #2 \fi: }
\cs_new:Npn \quark_if_recursion_tail_break:nN #1#2 
{ \tl_if_empty:oT { \__quark_if_recursion_tail:w {} #1 {} ?! \q_recursion_tail ??! } {#2} }
\end{verbatim}

(End of definition for \quark_if_recursion_tail_break:NN and \quark_if_recursion_tail_break:nN. These functions are documented on page 147.)

Here we test if we found a special quark as the first argument. We better start with \q_no_value as the first argument since the whole thing may otherwise loop if \#1 is wrongly given a string like aabc instead of a single token.\footnote{It may still loop in special circumstances however!}

\begin{verbatim}
\prg_new_conditional:Npnn \quark_if_nil:N #1 { p, T , F , TF }
{ \if_meaning:w \q_nil #1 \prg_return_true: \else: \prg_return_false: \fi: }
\prg_new_conditional:Npnn \quark_if_no_value:N #1 { p, T , F , TF }
{ \if_meaning:w \q_no_value #1 \prg_return_true: \else: \prg_return_false: \fi: }
\prg_generate_conditional_variant:Nnn \quark_if_no_value:N { c } { p , T , F , TF }
\end{verbatim}

(End of definition for \quark_if_nil:NTF and \quark_if_no_value:NTF. These functions are documented on page 147.)

Let us explain \quark_if_nil:nTF. Expanding \__quark_if_nil:w once is safe thanks to the trailing \q_nil ??!. The result of expanding once is empty if and only if both delimited arguments \#1 and \#2 are empty and \#3 is delimited by the last tokens ?!. Thanks to the leading {}, the argument \#1 is empty if and only if the argument of \quark_if_nil:n starts with \q_nil. The argument \#2 is empty if and only if this \q_nil is followed immediately by ? or by \{?!, coming either from the trailing tokens in the definition of \quark_if_nil:n, or from its argument. In the first case, \__quark_if_nil:n:w is followed by \{\q_nil \}? \q_nil ??!, hence \#3 is delimited by the final ?!, and the test returns true as wanted. In the second case, the result is not empty since
the first ?! in the definition of \quark_if-nil:n stop #3. The auxiliary here is the same as \_tl_if_empty_if:o, with the same comments applying.

\begin{verbatim}
\prg_new_conditional:Nppnn \quark_if-nil:n #1 { p, T, F, TF }
{ \_quark_if-empty_if:o
{ \_quark_if-nil:w {} #1 {} ? ! \q_nil ? ? ! }
\prg_return_true:
else:
\prg_return_false:
\fi:
}
\prg_new_conditional:Nppnn \quark_if-no-value:n #1 { p, T, F, TF }
{ \_quark_if-empty_if:o
{ \_quark_if-no-value:w {} #1 {} ? ! \q_no-value ? ? ! }
\prg_return_true:
else:
\prg_return_false:
\fi:
}
\cs_new:Npn \__quark_if-nil:w #1 \q_nil #2 ? #3 ? ! { #1 #2 }
\prg_generate_conditional_variant:Nnn \quark_if-nil:n { V, o } { p, TF, T, F }
\cs_new:Npn \__quark_if-empty_if:o #1
{ \exp_after:wN \if_meaning:w \exp_after:wN {#1} \q_nil
\__kernel_tl_to_str:w \exp_after:wN {#1} \q_nil
}
\end{verbatim}

(End of definition for \quark_if-nil:nTF and others. These functions are documented on page 145.)

\section*{\_kernel_quark_new_test:N}

The function \_kernel_quark_new_test:N defines #1 in a similar way as \quark-if-recursion_tail... functions (as described below), using \q⟨\text后来的}⟨\textnamespace⟩-recursion_tail as the test quark and \q⟨\textnamespace⟩-recursion_stop as the delimiting quark, where the \langle\textnamespace⟩ is determined as the first \_delimited part in #1.

There are six possible function types which this function can define, and which is defined depends on the signature of the function being defined:

:n gives an analogue of \quark_if-recursion_tail_stop:n
:nn gives an analogue of \quark_if-recursion_tail_stop_do:nn
:nN gives an analogue of \quark_if-recursion_tail_break:nN
:N gives an analogue of \quark_if-recursion_tail_stop:N
:Nn gives an analogue of \quark_if-recursion_tail_stop_do:Nn
:NN gives an analogue of \quark_if-recursion_tail_break:NN

Any other signature causes an error, as does a function without signature.
Similar to \_\_kernel_quark_new_test:N, but defines quark branching conditionals like \quark_if_nil:nTF that test for the quark \_\_\langle namespace\rangle\_\langle name\rangle. The \langle namespace\rangle and \langle name\rangle are determined from the conditional \#1, which must take the rather rigid form \_\_\langle namespace\rangle\_\quark_if\_\langle name\rangle:\langle arg spec\rangle. There are only two cases for the \langle arg spec\rangle here:

:n gives an analogue of \quark_if_nil:nTF

:N gives an analogue of \quark_if_nil:NTF

Any other signature causes an error, as does a function without signature. We use low-level emptiness tests as \l3tl is not available yet when these functions are used; thankfully we only care about whether strings are empty so a simple \if_meaning:w \q_nil \langle string\rangle \q_nil suffices.
These macros implement the six possibilities mentioned above, passing the right arguments to \texttt{\_\_quark\_new\_test\_aux:nnNNnnNn} which defines some auxiliaries, and then to \texttt{\_\_quark\_new\_test\_define\_tl:nnNNnn (n)} variants or to \texttt{\_\_quark\_new\_test\_define\_ifx:nnNNnn (N(n))} which define the main conditionals.

(End of definition for \texttt{\_\_quark\_new\_test\_n:N} and others.)

\texttt{\_\_quark\_new\_test\_n:NNnn} \hfill \texttt{\_\_quark\_new\_test\_nn:NNnn} \hfill \texttt{\_\_quark\_new\_test\_N:NNnn} \hfill \texttt{\_\_quark\_new\_test\_NN:NNnn}
\__quark_new_test_aux_do:nNNnnnnN makes the control sequence names which will be used by \__quark_test_define_aux:NNNNnnNn, and then later by \__quark_new_test_define_tl:nNNnnNn or \__quark_new_test_define_ifx:nNNnnNn. The control sequences defined here are analogous to \__quark_if_recursion_tail:w and to \use_{(none}\_delimit_by_q_recursion_stop:|n}w.

The name is composed by the name-space and the name of the quarks. Suppose \_kernel_quark_new_test:N was used with:

\_kernel_quark_new_test:N \_test_quark_tail:w

then the first auxiliary will be \_test_quark_recursion_tail:w, and the second one will be \_test_use_none_delimit_by_q_recursion_stop:w.

Note that the actual quarks are not defined here. They should be defined separately using \quark_new:N.

\cs_new_protected:Npn \__quark_new_test_aux_do:nNNnnnnNn #1 #2 #3 #4 #5
\exp_args:Ncc \__quark_test_define_aux:NNNNnnNn
{ #1 _quark_recursion_tail:w }
{ #1 _use_ #4 _delimit_by_q_recursion_stop: #5 w }
#2 #3
\cs_new_protected:Npn \__quark_test_define_aux:NNNNnnNn #1 #2 #3 #4 #5 #6 #7
\cs_gset:Npn #1 ##1 #3 ##2 ? ##3 ?! { ##1 ##2 }
\cs_gset:Npn #2 ##1 #6 #4 {#5}
#7 {##1} #1 #2 #3

(End of definition for \__quark_new_test_aux_do:nNNnnnnNn and \__quark_test_define_aux:NNNNnnNn.)

Finally, these two macros define the main conditional function using what’s been set up before.

\cs_new_protected:Npn \__quark_new_test_define_tl:nNNnnNn #1 #2 #3 #4 #5 #6
{ \cs_new:Npn #5 #1
{ \tl_if_empty:oTF
{ #2 {}} #1 {} ?! #4 ??!
{#3} {#6}
}
}
\cs_new_protected:Npn \__quark_new_test_define_ifx:nNNnnNn #1 #2 #3 #4 #5 #6
{ \cs_new:Npn #5 #1
{ \if_meaning:w #4 ##1
\exp_after:wN #3
#6
\fi:
}
}
\cs_new_protected:Npn \__quark_new_test_define_break_tl:nNNNNn #1 #2 #3
{ \__quark_new_test_define_tl:nNNnnNn {##1##2} #2 {##2}
}
\cs_new_protected:Npn \__quark_new_test_define_break_ifx:nNNNNn #1 #2 #3

804
These macros implement the two possibilities for branching quark conditionals, passing the right arguments to \texttt{\__quark_new_conditional_aux_do:NNnnn}, which defines some auxiliaries and defines the main conditionals.

\begin{verbatim}
\cs_new_protected:Npn \__quark_new_conditional_n:Nnnn { \__quark_new_conditional_aux_do:NNnnn \use_i:nn }
\cs_new_protected:Npn \__quark_new_conditional_N:Nnnn { \__quark_new_conditional_aux_do:NNnnn \use_ii:nn }
\end{verbatim}

(End of definition for \texttt{\__quark_new_conditional_n:Nnnn} and \texttt{\__quark_new_conditional_N:Nnnn}.)

Similar to the previous macros, but branching conditionals only require one auxiliary, so we take a shortcut. In \texttt{\__quark_new_conditional_aux_do:NNnnn}, \#4 is \texttt{\use_i:nn} to define the \texttt{n}-type function (which needs an auxiliary) and is \texttt{\use_ii:nn} to define the \texttt{N}-type function.

\begin{verbatim}
\cs_new_protected:Npn \__quark_new_conditional_aux_do:NNnnn #1 #2 #3 #4
{ \exp_args:Ncc \__quark_new_conditional_define:NNNNn
{ __ #4 _if_quark_ #3 :w } { q__ #4 _ #3 } #2 #1 }
\cs_new_protected:Npn \__quark_new_conditional_define:NNNNn #1 #2 #3 #4 #5
{ \__quark_if_empty_if:o { \__if_meaning:w #2 } 
{ \exp_last_unbraced:Nf \__quark_module_name:w 
{ \cs_to_str:N ##1 } #1 \s__quark
\exp_args:Nno \use:n { \prg_new_conditional:Npnn #3 ##1 {#5} }
{ \__quark_if_empty_if:o { \__if_meaning:w #2 } 
{ \exp_last_unbraced:Nf \__quark_module_name:w 
{ \cs_to_str:N ##1 } #1 \s__quark
\exp_last_unbraced:Nf \__quark_module_name_loop:w 
\__quark_module_name_end:w
\__quark_module_name:N }
\__quark_module_name:w
\__quark_module_name_loop:w
\__quark_module_name_end:w
\__quark_module_name:N takes a control sequence and returns its \texttt{(module)} name, determined as the first non-empty non-single-character word, separated by \texttt{\_} or \texttt{\_}. These rules give the correct result for public functions \texttt{\langle module\rangle\_...}, private functions \texttt{\_\_\langle module\rangle\_...}, and variables such as \texttt{\_\_\langle module\rangle\_...}. If no valid module is found the result is an empty string. The approach is to first cut off everything after the (first) \texttt{\_} if any is present, then repeatedly grab \_delimited words until finding one of length at least 2 (we use low-level tests as \texttt{l3tl} is not fully available when \texttt{\__kernel_quark_new-}
\texttt{test:N} is first used. If no \texttt{\langle module\rangle} is found (such as in \texttt{\_\_n}) we get the trailing marker \texttt{\use_none:n \{}, which expands to nothing.

\begin{verbatim}
\cs_set:Npn \__quark_tmp:w #1#2
{ \cs_new:Npn \__quark_module_name:N ##1
{ \exp_last_unbraced:Nf \__quark_module_name:w 
{ \cs_to_str:N ##1 } #1 \s__quark
\exp_last_unbraced:Nf \__quark_module_name_loop:w 
\__quark_module_name_end:w
\__quark_module_name:N}
\__quark_module_name:w
\__quark_module_name_loop:w
\__quark_module_name_end:w
\end{verbatim}

805
\__quark_module_name_loop:w \#1 \#2 \use_none:n \{ \} \#2 \s__quark

\cs_new:Npn \__quark_module_name_loop:w \#1 \#2

\use_i_ii:nnn \if_meaning:w \prg_do_nothing:
\#1 \prg_do_nothing: \prg_do_nothing:
\exp_after:wN \__quark_module_name_loop:w
\else:
\__quark_module_name_end:w \#1
\fi:
\fi:
\fi: \s__quark
\exp_after:wN \__quark_tmp:w \tl_to_str:n { : _ }

(End of definition for \__quark_module_name:w and others.)

\__quark_quark_conditional_name:N \__quark_quark_conditional_name:w \__quark_quark_conditional_name:w
determines the quark name that the quark conditional function \#1 queries, as the part of the function name between \_quark_if_and the trailing :. Again we define it through \__quark_tmp:w, which receives : as \#1 and \_quark_if_as \#2. The auxiliary \__quark_quark_conditional_name:w returns the part between the first \_quark_if_and the next :, and we apply this auxiliary to the function name followed by : (in case the function name is lacking a signature), and \_quark_if_; so that \__quark_quark_conditional_name:N returns an empty string if \_quark_if_is not present.

\cs_set:Npn \__quark_tmp:w \#1 \#2 \s__quark

\exp_after:wN \__quark_tmp:w \tl_to_str:n { : _ }

(End of definition for \__quark_quark_conditional_name:N and \__quark_quark_conditional_name:w.)

58.2 Scan marks

\scan_new:N Check whether the variable is already a scan mark, then declare it to be equal to \scan_stop: globally.

\cs_new_protected:Npn \scan_new:N \#1

\tl_if_in:NnTF \g__scan_marks_tl { \#1 }
\msg_error:nne { scanmark } { already-defined }
\token_to_str:N \#1

\{
We only declare one scan mark here, more can be defined by specific modules. Can’t use \scan_new:N yet because l3tl isn’t loaded, so define \s_stop by hand and add it to \g__scan_marks_tl. We also add the scan marks declared earlier to the pool here. Since they lives in a different namespace, a little l3docstrip cheating is necessary.

(End of definition for \s_stop and \g__scan_marks_tl. This variable is documented on page 148.)

\use_none_delimit_by_s_stop:w
Similar to \use_none_delimit_by_q_stop:w.

(End of definition for \use_none_delimit_by_s_stop:w. This function is documented on page 148.)
Chapter 59

l3seq implementation

The following test files are used for this code: m3seq002,m3seq003.

A sequence is a control sequence whose top-level expansion is of the form \"\textbackslash seq \_\_seq_item:n \{item\} \ldots \_\_seq_item:n \{item\}\" with a leading scan mark followed by \(n\) items of the same form. An earlier implementation used the structure \"\textbackslash seq elt:w \{item\} \textbackslash seq elt:end: \ldots \textbackslash seq elt:w \{item\} \textbackslash seq elt:end:\". This allowed rapid searching using a delimited function, but was not suitable for items containing \{, \} and \# tokens, and also lead to the loss of surrounding braces around items.

\_\_seq_item:n = \_\_seq_item:n \{item\}

The internal token used to begin each sequence entry. If expanded outside of a mapping or manipulation function, an error is raised. The definition should always be set globally.

\_\_seq_push_item_def:n \_\_seq_push_item_def:e \_\_seq_pop_item_def:

Saves the definition of \_\_seq_item:n and redefines it to accept one parameter and expand to \(\{code\}\). This function should always be balanced by use of \_\_seq_pop_item_def:n.

\_\_seq_pop_item_def:

Restores the definition of \_\_seq_item:n most recently saved by \_\_seq_push_item_def:n. This function should always be used in a balanced pair with \_\_seq_push_item_def:n.

\textbackslash seq This private scan mark.

\textbackslash scan new:N \textbackslash seq

(End of definition for \textbackslash seq.)

\textbackslash seq mark Private scan marks.

\textbackslash scan new:N \textbackslash seq mark

\textbackslash scan new:N \textbackslash seq stop

(End of definition for \textbackslash seq mark and \textbackslash seq stop.)
The delimiter is always defined, but when used incorrectly simply removes its argument and hits an undefined control sequence to raise an error.

```latex
\newcommand{__seq_item:n}{\msg{expandable_error:nn}{seq}{misused}}
```

(End of definition for \__seq_item:n.)

\l__seq_internal_a_tl
\l__seq_internal_b_tl

Scratch space for various internal uses.

```latex
\tl_new:N \l__seq_internal_a_tl
\tl_new:N \l__seq_internal_b_tl
```

(End of definition for \l__seq_internal_a_tl and \l__seq_internal_b_tl.)

\__seq_tmp:w

Scratch function for internal use.

```latex
\cs_new_eq:NN __seq_tmp:w ?
```

(End of definition for \__seq_tmp:w.)

\c_empty_seq

A sequence with no item, following the structure mentioned above.

```latex
\tl_const:Nn \c_empty_seq { \s__seq }
```

(End of definition for \c_empty_seq. This variable is documented on page 161.)

### 59.1 Allocation and initialisation

\seq_new:N
\seq_new:c

Sequences are initialized to \c_empty_seq.

```latex
\cs_new_protected:Npn \seq_new:N #1{__kernel_chk_if_free_cs:N #1\cs_gset_eq:NN #1 \c_empty_seq}
```

(End of definition for \seq_new:N. This function is documented on page 149.)

\seq_clear:N
\seq_clear:c

Clearing a sequence is similar to setting it equal to the empty one.

```latex
\cs_new_protected:Npn \seq_clear:N #1{\seq_set_eq:NN \c_empty_seq { #1}}
```

(End of definition for \seq_clear:N and \seq_clear:c. These functions are documented on page 149.)

\seq_new:c
\seq_new:N
\seq_gclear:N
\seq_gclear:c

Once again we copy code from the token list functions.

```latex
\cs_new_protected:Npn \seq_gclear:N #1{\seq_if_exist:NTF #1{\seq_clear:N #1}{\seq_new:N c}}\cs_new_protected:Npn \seq_gclear:c #1{\seq_gset_eq:NN \c_empty_seq { #1}}\cs_generate_variant:Nn \seq_gclear:N { c }\cs_new_protected:Npn \seq_gclear:N #1{\seq_if_exist:NTF #1{\seq_clear:N #1}{\seq_new:N c}}\cs_new_protected:Npn \seq_gclear:c #1{\seq_gset_eq:NN \c_empty_seq { #1}}\cs_generate_variant:Nn \seq_gclear:N { c }
```
Copying a sequence is the same as copying the underlying token list.

Setting a sequence from a comma-separated list is done using a simple mapping.

Almost identical to \seq_set_from_clist:Nn and \seq_gset_from_clist:Nn. These functions are documented on page 150.
When the separator is empty, everything is very simple, just map \texttt{\_\_\_seq_wrap_item:n} through the items of the last argument. For non-trivial separators, the goal is to split a given token list at the marker, strip spaces from each item, and remove one set of outer braces if after removing leading and trailing spaces the item is enclosed within braces. After \texttt{\_\_\_tl_replace_all:Nnn}, the token list \texttt{\l__seq_internal_a_tl} is a repetition of the pattern \texttt{\_\_\_seq_set_split:Nw \texttt{\texttt{\texttt{\texttt{\_\_\_seq_set_split_end:}.}}}} Then, \texttt{\_\_\_e-expansion} causes \texttt{\_\_\_seq_set_split:Nw} to trim spaces, and leaves its result as \texttt{\_\_\_seq_set_split:w} \texttt{(trimmed item)} \texttt{\_\_\_seq_set_split_end:.} This is then converted to the i3seq internal structure by another \texttt{\_\_\_e-expansion}. In the first step, we insert \texttt{\_\_\_prg_do_nothing:} to avoid losing braces too early: that would cause space trimming to act within those lost braces. The second step is solely there to strip braces which are outermost after space trimming.

\begin{verbatim}
\cs_new_protected:Npn \seq_set_split:Nnn { \__seq_set_split:NNNnn \__kernel_tl_set:Ne \tl_trim_spaces:n }
\cs_new_protected:Npn \seq_gset_split:Nnn { \__seq_set_split:NNNnn \__kernel_tl_gset:Ne \tl_trim_spaces:n }
\cs_new_protected:Npn \seq_set_split_keep_spaces:Nnn { \__seq_set_split:NNNnn \__kernel_tl_set:Ne \exp_not:n }
\cs_new_protected:Npn \seq_gset_split_keep_spaces:Nnn { \__seq_set_split:NNNnn \__kernel_tl_gset:Ne \exp_not:n }
\cs_new_protected:Npn \__seq_set_split:NNNnn #1#2#3#4#5
{\tl_if_empty:nTF {#4}
{\tl_set:Nn \l__seq_internal_a_tl {\tl_map_function:nN {#5} \__seq_wrap_item:n }}
{\tl_set:Nn \l__seq_internal_a_tl {
\__seq_set_split:Nw #2 \prg_do_nothing: #5 \__seq_set_split_end: }
\tl_replace_all:Nnn \l__seq_internal_a_tl {#4}
\__seq_set_split:Nw #2 \prg_do_nothing: }
\__kernel_tl_set:Ne \l__seq_internal_a_tl \l__seq_internal_a_tl
}
\cs_new:Npn \__seq_set_split:w #1 \__seq_set_split_end:
{\__seq_wrap_item:n {#1}}
\end{verbatim}
When concatenating sequences, one must remove the leading \s__seq (of the first sequence), which stops f-expansion.

\begin{verbatim}
\cs_new_protected:Npn \seq_concat:NNN #1#2#3
{ \tl_set:Nf #1 { \exp_after:wN \use_i:nn \exp_after:wN #2 #3 } }
\cs_new_protected:Npn \seq_gconcat:NNN #1#2#3
{ \tl_gset:Nf #1 { \exp_after:wN \use_i:nn \exp_after:wN #2 #3 } }
\end{verbatim}

(End of definition for \seq_concat:NNN and \seq_gconcat:NNN. These functions are documented on page 151.)

\begin{verbatim}
\cs_new:Npn \__seq_put_left_aux:w \s__seq { \exp_stop_f: }
\cs_generate_variant:Nn \seq_put_left:Nn { NV , Nv , Ne , No , Nx }
\cs_generate_variant:Nn \seq_gput_left:Nn { NV , Nv , Ne , No , Nx }
\end{verbatim}

(End of definition for \seq_concat:NN and \seq_gconcat:NNN. These functions are documented on page 151.)

\begin{verbatim}
\seq_if_exist:NTF \cs_if_exist:N
\prg_new_eq_conditional:NNn \seq_if_exist:N \cs_if_exist:N
\prg_new_eq_conditional:NNn \seq_if_exist:c \cs_if_exist:c
\end{verbatim}

(End of definition for \seq_if_exist:NTF. This function is documented on page 151.)

### 59.2 Appending data to either end

When adding to the left of a sequence, remove \s__seq. This is done by \_\_\_seq_put_left_aux:w, which also stops f-expansion.

\begin{verbatim}
\cs_new_protected:Npn \seq_put_left:Nn \seq_put_left:NV \seq_put_left:Nv \seq_put_left:Ne \seq_put_left:No \seq_put_left:Nx
{ \_kernel_tl_set:Ne #1 }
\seq_put_left:cn \seq_put_left:cv \seq_put_left:ce \seq_put_left:co \seq_put_left:cx
\end{verbatim}

When adding to the right of a sequence, use \_\_\_seq_put_right:aux:w, which also stops f-expansion.

\end{verbatim}
Since there is no trailing marker, adding an item to the right of a sequence simply means wrapping it in \_\_seq_item:n.

\cs_new_protected:Npn \seq_put_right:Nn #1 #2 \tl_put_right:Nn { \__seq_item:n {#2} } \seq_set_eq:NN \seq_set_eq:NN \seq_gput_right:Nn \seq_gput_right:NV \seq_gput_right:Nv \seq_gput_right:Ne \seq_gput_right:No \seq_gput_right:Nx \seq_gput_right:cn \seq_gput_right:cV \seq_gput_right:cv \seq_gput_right:ce \seq_gput_right:co \seq_gput_right:cx

\cs_new:Npn \__seq_wrap_item:n #1 \exp_not:n { \__seq_item:n {#1} }

\seq_new:N \l__seq_remove_seq

\seq_remove_duplicates:N \seq_remove_duplicates:c \seq_gremove_duplicates:N \seq_gremove_duplicates:c \__seq_remove_duplicates:NN

Removing duplicates means making a new list then copying it.

\cs_new_protected:Npn \seq_remove_duplicates:N \__seq_remove_duplicates:NN \seq_set_eq:NN \seq_gset_eq:NN \__seq_remove_duplicates:NN \__seq_remove_duplicates:NN \__seq_remove_duplicates:NN \__seq_remove_duplicates:NN \__seq_remove_duplicates:NN

\seq_clear:N \l__seq_remove_seq \seq_map_inline:Nn \l__seq_remove_seq

(End of definition for \seq_put_left:Nn, \seq_gput_left:Nn, and \__seq_put_left_aux:w. These functions are documented on page 151.)

59.3 Modifying sequences

This function converts its argument to a proper sequence item in an e-expansion context.

\cs_new:N \__seq_wrap_item:n #1 \exp_not:n { \__seq_item:n {#1} }

An internal sequence for the removal routines.

\seq_new:N \l__seq_remove_seq

(End of definition for \\__seq_wrap_item:n.)

\seq_remove_duplicates:N \seq_gremove_duplicates:N

(End of definition for \\__seq_remove_duplicates:NN.)

813
The idea of the code here is to avoid a relatively expensive addition of items one at a time to an intermediate sequence. The approach taken is therefore similar to that in \_\_seq_pop_right:NNN, using a “flexible” e-type expansion to do most of the work. As \tl_if_eq:nnNT is not expandable, a two-part strategy is needed. First, the e-type expansion uses \str_if_eq:nnT to find potential matches. If one is found, the expansion is halted and the necessary set up takes place to use the \tl_if_eq:nnNT test. The e-type is started again, including all of the items copied already. This happens repeatedly until the entire sequence has been scanned. The code is set up to avoid needing an intermediate scratch list: the lead-off e-type expansion (#1 #2 {#2}) ensures that nothing is lost.

\cs_new_protected:Npn \seq_remove_all:Nn { \__seq_remove_all_aux:NNn \__kernel_tl_set:Ne }
\cs_new_protected:Npn \seq_gremove_all:Nn { \__seq_remove_all_aux:NNn \__kernel_tl_gset:Ne }
\cs_new_protected:Npn \__seq_remove_all_aux:NNn #1#2#3
{ \__seq_push_item_def:n
{ \str_if_eq:nnT {##1} {#3}
{ \if_false: { \fi: }
\tl_set:Nn \l__seq_internal_b_tl {##1}
#1 #2
{ \if_false: } \fi:
\exp_not:o {#2}
\tl_if_eq:NNT \l__seq_internal_a_tl \l__seq_internal_b_tl
{ \use_none:nn }
}
\__seq_wrap_item:n {##1}
} \tl_set:Nn \l__seq_internal_a_tl {#3}
#1 #2 {#2}
\__seq_pop_item_def:
}
\cs_generate_variant:Nn \seq_remove_all:Nn { NV , Ne , c , cV , ce }
\cs_generate_variant:Nn \seq_gremove_all:Nn { NV , Ne , c , cV , ce }
\cs_generate_variant:Nn \seq_gremove_all:Nn { Nx , cx }
\cs_generate_variant:Nn \__seq_remove_all_aux:NNn { NV , Ne , c , cV , ce }
\cs_generate_variant:Nn \__seq_remove_all_aux:NNn { Nx , cx }
(End of definition for \seq_remove_all:Nn, \seq_gremove_all:Nn, and \__seq_remove_all_aux:NNn. These functions are documented on page 154.)
Save the item to be stored and evaluate the position and the sequence length only once. Then depending on the sign of the position, check that it is not bigger than the length (in absolute value) nor zero.

If the position is not ok, \__seq_set_item_false:nnNNNN calls an error or returns false (depending on the \use_i:nn vs \use_ii:nn argument mentioned above).

If the position is ok, \__seq_set_item:nNnnNNNN makes the assignment and returns true (in the case of conditionals). Here \#1 is an integer expression (position minus one), it needs to be evaluated. The sequence \#5 starts with \_s_seq (even if empty), which stops the integer expression and is absorbed by it. The \if_meaning:w test is slightly faster than an integer test (but only works when testing against zero, hence the offset we chose in the position). When we are done skipping items, insert the saved item \_\__seq_internal_a_tl. For put functions the last argument of \_\__seq_set_item_end:w is \use_none:nn and it absorbs the item \#2 that we are removing: this is only useful for the pop functions.
Previously, \seq_reverse:N was coded by collecting the items in reverse order after an \exp_stop_f: marker.

\cs_new_protected:Npn \seq_reverse:N #1
  { \__seq_reverse:NN \__kernel_tl_set:Ne }
\cs_new_protected:Npn \seq_greverse:N
  { \_\_seq_reverse:NN \_\_kernel_tl_set:Ne }

At first, this seems optimal, since we can forget about each item as soon as it is placed after \exp_stop_f:. Unfortunately, \TeX{}'s usual tail recursion does not take place in this case: since the following \_\_seq_reverse_item:nw only reads tokens until \exp_stop_f:, and never reads the \_\_seq_item:n \{#1\} left by the previous call, \TeX{} cannot remove that previous call from the stack, and in particular must retain the various macro parameters in memory, until the end of the replacement text is reached. The stack is thus only flushed after all the \_\_seq_reverse_item:nw are expanded. Keeping track of the arguments of all those calls uses up a memory quadratic in the length of the sequence. \TeX{} can then not cope with more than a few thousand items.

Instead, we collect the items in the argument of \exp_not:n. The previous calls are cleanly removed from the stack, and the memory consumption becomes linear.
59.4 Sequence conditionals

Similar to token lists, we compare with the empty sequence.

\seq_if_empty_p:N 
\seq_if_empty_p:c 
\seq_if_empty:NTF 
\seq_if_empty:cTF 

\seq_shuffle:N 
\seq_shuffle:c 
\seq_gshuffle:N 
\seq_gshuffle:c 
\seq_shuffle_item:n 
\seq_gshuffle_item:n 
\g__seq_internal_seq 
\g__seq_internal_seq

We apply the Fisher–Yates shuffle, storing items in `\toks` registers. We use the primitive \texttt{\tex_uniformdeviate:D} for speed reasons. Its non-uniformity is of order its argument divided by $2^{28}$, not too bad for small lists. For sequences with more than 13 elements there are more possible permutations than possible seeds ($13! > 2^{28}$) so the question of uniformity is somewhat moot. The integer variables are declared in `\l3int`: load-order issues.
The approach here is to define \_\_seq_item:n to compare its argument with the test sequence. If the two items are equal, the mapping is terminated and \group_end: \prg_return_true: is inserted after skipping over the rest of the recursion. On the other hand, if there is no match then the loop breaks, returning \prg_return_false:. Everything is inside a group so that \_\_seq_item:n is preserved in nested situations.

\seq_if_in:NnTF \seq_if_in:NvTF \seq_if_in:NeTF \seq_if_in:NxF \seq_if_in:cnTF \seq_if_in:cVF \seq_if_in:cVF \seq_if_in:cTF \seq_if_in:cVF \seq_if_in:cxTF

(End of definition for \seq_shuffle:N and others. These functions are documented on page 155.)
\begin{verbatim}
}\cs_new:Npn \__seq_if_in:
{ \prg_break:n { \group_end: \prg_return_true: } }
\prg_generate_conditional_variant:Nnn \seq_if_in:Nn
{ NV , Nv , Ne , No , Nx , c , cV , cv , ce , co , cx } { T , F , TF }
\end{verbatim}

(End of definition for \seq_if_in:NnTF and \__seq_if_in:. This function is documented on page 155.)

59.5 Recovering data from sequences

The two \texttt{pop} functions share their emptiness tests. We also use a common emptiness test for all branching \texttt{get} and \texttt{pop} functions.

\begin{verbatim}
\cs_new_protected:Npn \__seq_pop:NNNN #1#2#3#4
{\if_meaning:w #3 \c_empty_seq
\tl_set:Nn #4 { \q_no_value }
\else:\#1#2#3#4 \fi:}
\cs_new_protected:Npn \__seq_pop_TF:NNNN #1#2#3#4
{\if_meaning:w #3 \c_empty_seq
% \tl_set:Nn #4 { \q_no_value }
\prg_return_false: \else:
#1#2#3#4 \prg_return_true: \fi:}
\end{verbatim}

(End of definition for \__seq_pop:NNNN and \__seq_pop_TF:NNNN.)

Getting an item from the left of a sequence is pretty easy: just trim off the first item after \__seq_item:n at the start. We append a \q_no_value item to cover the case of an empty sequence

\begin{verbatim}
\cs_new_protected:Npn \seq_get_left:NN #1#2
{\__kernel_tl_set:Ne #2
{\exp_after:wN \__seq_get_left:wnw
#1 \__seq_item:n { \q_no_value } \s__seq_stop }
}
\cs_new:Npn \__seq_get_left:wnw #1 \__seq_item:n #2#3 \s__seq_stop
{ \exp_not:n {#2} }
\cs_generate_variant:Nn \seq_get_left:NN { c }
\end{verbatim}

(End of definition for \seq_get_left:NN and \__seq_get_left:wnw. This function is documented on page 151.)

The approach to popping an item is pretty similar to that to get an item, with the only difference being that the sequence itself has to be redefined. This makes it more sensible to use an auxiliary function for the local and global cases.
16863 \cs_new_protected:Npn \__seq_pop_left:NN #1#2#3 { \exp_after:wN \__seq_pop_left:wnwNNN #2 \s__seq_stop #1#2#3 }
16864 \cs_new_protected:Npn \__seq_pop_left:wnwNNN #1 \__seq_item:n #2#3 { \tl_set:Nn #6 {#2} }
16865 \cs_generate_variant:Nn \seq_pop_left:NN { c }
16866 \cs_generate_variant:Nn \seq_gpop_left:NN { c }

\seq_get_right:NN \seq_get_right:cN \_seq_get_right_loop:nn \_seq_get_right_end:NnN

First remove \_s__seq and prepend \_q_no_value. The first argument of \_seq_get_right_loop:nn is the last item found, and the second argument is empty until the end of the loop, where it is code that applies \exp_not:n to the last item and ends the loop.

16867 \cs_new_protected:Npn \seq_get_right:NN #1#2 { \__kernel_tl_set:Ne #2 { \exp_after:wN \use_i_ii:nnn \exp_after:wN \__seq_get_right_loop:nn \exp_after:wN \q_no_value #1 \_seq_get_right_end:NnN \_seq_item:n } }
16868 \cs_new:Npn \__seq_get_right_loop:nn #1#2 { #2 \use_none:nn {#1} \_seq_get_right_loop:nn }
16869 \cs_new:Npn \__seq_get_right_end:NnN #1#2#3 { \exp_not:n {#2} }
16870 \cs_generate_variant:Nn \seq_get_right:NN { c }

\seq_pop_right:NN \seq_pop_right:cN \seq_gpop_right:NN \_seq_pop_right_loop:mm \_seq_pop_right_end:NnN

The approach to popping from the right is a bit more involved, but does use some of the same ideas as getting from the right. What is needed is a “flexible length” way to set a token list variable. This is supplied by the \textbackslash if\_false: \textbackslash fi: \ldots \textbackslash if\_false: \textbackslash fi: \ldots construct. Using an \texttt{e}-type expansion and a “non-expanding” definition for \_seq_item:n, the left-most \texttt{n} – 1 entries in a sequence of \texttt{n} items are stored back in the sequence. That needs a loop of unknown length, hence using the strange \texttt{if\_false}: \texttt{way of including braces}. When the last item of the sequence is reached, the closing brace for the assignment is inserted, and \texttt{\tl_set:Nn \_kernel_tl_set:N} is inserted in front of the final entry. This therefore does the pop assignment. One more iteration is performed, with an empty argument and \texttt{use\_none:nn}, which finally stops the loop.
Getting from the left or right with a check on the results. The first argument to \__seq_-
\__seq_pop_TF:NNNN is left unused.

\prg_new_protected_conditional:Npnn \seq_get_left:NN #1#2 { T , F , TF }
\prg_new_protected_conditional:Npnn \seq_get_right:NN #1#2 { T , F , TF }
\prg_generate_conditional_variant:Nnn \seq_get_left:NN { c } { T , F , TF }
\prg_generate_conditional_variant:Nnn \seq_get_right:NN { c } { T , F , TF }

(End of definition for \seq_pop_left:NNTF and \seq_pop_right:NNTF. These functions are documented on page 152.)

Getting from the left or right with a check on the results. The first argument to \__seq_-
\__seq_pop_TF:NNNN is left unused.

\prg_new_protected_conditional:Npnn \seq_get_left:NN #1#2 { T , F , TF }
\prg_new_protected_conditional:Npnn \seq_get_right:NN #1#2 { T , F , TF }
\prg_generate_conditional_variant:Nnn \seq_get_left:NN { c } { T , F , TF }
\prg_generate_conditional_variant:Nnn \seq_get_right:NN { c } { T , F , TF }

(End of definition for \seq_get_left:NNTF and \seq_get_right:NNTF. These functions are documented on page 153.)

More or less the same for popping.

\prg_new_protected_conditional:Npnn \seq_pop_left:NN #1#2
\prg_new_protected_conditional:Npnn \seq_pop_left:NN #1#2
\prg_new_protected_conditional:Npnn \seq_pop_right:NN #1#2

(End of definition for \seq_pop_left:NNTF and \seq_pop_right:NNTF. These functions are documented on page 153.)
The idea here is to find the offset of the item from the left, then use a loop to grab the correct item. If the resulting offset is too large, then the argument delimited by \texttt{\_\_seq_item:n} is \texttt{\_\_seq_item:n} instead of being empty, terminating the loop and returning nothing at all.

\begin{verbatim}
\cs_new:Npn \seq_item:Nn #1 { \exp_after:wN \_\_seq_item:wNn \s__seq_stop #1 }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \_\_seq_item:wNn \s__seq #1 \s__seq_stop #2#3
{ \exp_args:Nf \_\_seq_item:nwn
{ \exp_args:Nf \_\_seq_item:nN { \int_eval:n {#3} } #2 } #1
\prg_break: \_\_seq_item:n { }
\prg_break_point: }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \__seq_item:nN #1#2
{ \int_compare:nNnTF {#1} < 0
{ \int_eval:n { \seq_count:N #2 + 1 + #1 } }
{#1} }
\cs_new:Npn \_\_seq_item:nwn #1#2 \_\_seq_item:n #3
{ #2 \int_compare:nNnTF {#1} = 1
{ \prg_break:n { \exp_not:n {#3} } }
{ \exp_args:Nf \_\_seq_item:nwn \_\_seq_item:nN { \int_eval:n {#1 - 1} } } }
\end{verbatim}

(End of definition for \texttt{\_\_seq_item:n\_\_seq_item:n\_\_seq_item:n} and others. This function is documented on page 153.)
59.6 Mapping over sequences

To break a function, the special token `\prg_break_point:Nn` is used to find the end of
the code. Any ending code is then inserted before the return value of `\seq_map_break:n`
is inserted.

```latex
\cs_new:Npn \seq_map_break:
\cs_new:Npn \seq_map_break:n
```

(End of definition for `\seq_map_break:` and `\seq_map_break:n`. These functions are documented on page 157.)

The idea here is to apply the code of #2 to each item in the sequence without alter-
ing the definition of `\__seq_item:n`. The even-numbered arguments of `\__seq_map_-
function:Nw` delimited by `\__seq_item:n` are almost always empty, except at the end
of the loop where it is `\prg_break:`. This allows to break the loop without needing to
do a (relatively-expensive) quark test.

```latex
\cs_new:Npn \seq_map_function:NN #1#2
```

(End of definition for `\seq_map_function:NN` and `\__seq_map_function:Nw`. This function is docu-
mented on page 155.)

The definition of `\__seq_item:n` needs to be saved and restored at various points within
the mapping and manipulation code. That is handled here: as always, this approach uses
global assignments.

```latex
\cs_new:Npn __seq_push_item_def:n
\cs_new:Npn __seq_push_item_def:e
\cs_new:Npn __seq_push_item_def:
\cs_gset:Npn __seq_item:n
```

823
The idea here is that \texttt{\_\_seq_item:n} is already “applied” to each item in a sequence, and so an in-line mapping is just a case of redefining \texttt{\_\_seq_item:n}.

\begin{verbatim}
\cs_new_protected:Npn \_\_seq_push_item_def:n { \_\_seq_push_item_def: \cs_gset:Npe \_\_seq_item:n ##1 \_\_seq_push_item_def: \int_gincr:N \g__kernel_prg_map_int \cs_gset_eq:cN { __seq_map_ \int_use:N \g__kernel_prg_map_int :w } \_\_seq_item:n \_\_seq_pop_item_def: \cs_gset_eq:Nc \_\_seq_item:n { __seq_map_ \int_use:N \g__kernel_prg_map_int :w } \int_gdecr:N \g__kernel_prg_map_int }
\end{verbatim}

(End of definition for \texttt{\_\_seq_push_item_def:n}, \texttt{\_\_seq_push_item_def:}, and \texttt{\_\_seq_pop_item_def:})

\begin{verbatim}
\seq_map_inline:Nn \_\_seq_map_tokens:nw
\end{verbatim}

This is based on the function mapping but using the same tricks as described for \texttt{prop_map_tokens:Nn}. The idea is to remove the leading \texttt{s\_\_seq} and apply the tokens such that they are safe with the break points, hence the \texttt{\_\_use:n}.

\begin{verbatim}
\cs_new:Npn \_\_seq_map_tokens:nw #1 #2 #3 #4 #5 #6 #7 #8 \\ \_\_seq_item:n #2 \_\_seq_item:n #3 \_\_seq_item:n #4 \_\_seq_item:n #5 \_\_seq_item:n #6 \_\_seq_item:n #7 \_\_seq_item:n #8 \\
\prg_break_point: { } \prg_break_point: { } \prg_break_point: { } \prg_break_point: { }
\end{verbatim}

(End of definition for \texttt{prop_map_tokens:Nn}. This function is documented on page 155.)
This is just a specialised version of the in-line mapping function, using an \texttt{e}-type expansion for the code set up so that the number of \# tokens required is as expected.

\begin{verbatim}
\cs_new_protected:Npn \seq_map_variable:NNn \cs_new_protected:Npn \seq_map_variable:Ncn \cs_new_protected:Npn \seq_map_variable:cNn \cs_new_protected:Npn \seq_map_variable:ccn
\end{verbatim}

Similar to \texttt{\seq_map_function:NN} but we keep track of the item index as a \texttt{;}-delimited argument of \texttt{\__seq_map_indexed:Nw}.

\begin{verbatim}
\cs_new:Npn \seq_map_indexed_function:NN \cs_new:Npn \seq_map_indexed_inline:Nn \cs_new:Npn \__seq_map_indexed:Nw \cs_new:Npn \__seq_map_indexed:NN \cs_new:Npn \__seq_map_indexed:NNn
\end{verbatim}

(End of definition for \texttt{\seq_map_tokens:Nn} and \texttt{\__seq_map_tokens:nw}. This function is documented on page 156.)
The idea is to first expand both sequences, adding the usual \{ ? \prg_break: \} \} to the end of each one. This is most conveniently done in two steps using an auxiliary function. The mapping then throws away the first tokens of \#2 and \#5, which for items in both sequences are \s__seq \__seq_item:n. The function to be mapped are then be applied to the two entries. When the code hits the end of one of the sequences, the break material stops the entire loop and tidy up. This avoids needing to find the count of the two sequences, or worrying about which is longer.

\begin{verbatim}
\cs_new:Npn \seq_map_pairwise_function:NNN #1#2#3
{ \exp_after:wN \__seq_map_pairwise_function:wNN #2 \s__seq_stop #1 #3 }
\cs_new:Npn \__seq_map_pairwise_function:wNN \s__seq #1 \s__seq_stop #2#3
{ \exp_after:wN \__seq_map_pairwise_function:wNw #2 \s__seq_stop #3 #1 \{ ? \prg_break: \} \} }
\cs_new:Npn \__seq_map_pairwise_function:wNw \s__seq #1 \s__seq_stop #2
{ \__seq_map_pairwise_function:Nnnwnn #2 #1 \{ ? \prg_break: \} \} }
\cs_new:Npn \__seq_map_pairwise_function:Nnnwnn #1#2#3#4 \s__seq_stop #5#6
{ \use_none:n #2 \use_none:n #5 \#1 \{#3\} \{#6\} }
\cs_generate_variant:Nn \seq_map_pairwise_function:NNN { Nc , c , cc }
\end{verbatim}

(End of definition for \seq_map_pairwise_function:NNN and others. This function is documented on page 156.)

\begin{verbatim}
\cs_new:Npn \seq_set_map_e:NNn \seq_set_map_e:NNn \seq_set_map_e:NNn
\cs_new_protected:Npn \seq_set_map_e:NNn \seq_set_map_e:NNn \seq_set_map_e:NNn
{ \__seq_set_map_e:NNNn \__kernel_tl_set:Ne }
\cs_new_protected:Npn \seq_set_map_e:NNn \seq_set_map_e:NNn \seq_set_map_e:NNn
{ \__seq_set_map_e:NNNn \__kernel_tl_gset:Ne }
\cs_new_protected:Npn \seq_set_map_e:NNn \seq_set_map_e:NNn \seq_set_map_e:NNn
{ \__seq_push_item_def:n \exp_not:N \__seq_item:n \{#4\} }
\cs_new_protected:Npn \seq_pop_item_def:
\end{verbatim}

826
Similar to \seq_set_map_e:NNn, but prevents expansion of the \textit{inline function}.

\begin{verbatim}
\cs_new_protected:Npn \seq_set_map:NNn { \__seq_set_map:NNNn \__kernel_tl_set:Ne }
\cs_new_protected:Npn \seq_gset_map:NNn { \__seq_set_map:NNNn \__kernel_tl_gset:Ne }
\cs_new_protected:Npn \__seq_set_map:NNNn #1#2#3#4
{ \__seq_push_item_def:n { \exp_not:n { \__seq_item:n {#4} } } #1 #2 { #3 } \__seq_pop_item_def: }
\end{verbatim}

Since counting the items in a sequence is quite common, we optimize it by grabbing 8 items at a time and correspondingly adding 8 to an integer expression. At the end of the loop, \#9 is \__seq_count_end:w instead of being empty. It removes \texttt{8}+ and instead places the number of \__seq_item:n that \__seq_count:w grabbed before reaching the end of the sequence.

\begin{verbatim}
\cs_new:Npn \seq_count:N #1
{ \int_eval:n { \exp_after:wN \use_i:nn \exp_after:wN \__seq_count:w #1 \__seq_count_end:w \__seq_item:n 7 \__seq_count_end:w \__seq_item:n 6 \__seq_count_end:w \__seq_item:n 5 \__seq_count_end:w \__seq_item:n 4 \__seq_count_end:w \__seq_item:n 3 \__seq_count_end:w \__seq_item:n 2 \__seq_count_end:w \__seq_item:n 1 \__seq_count_end:w \__seq_item:n 0 \prg_break_point: }
\cs_generate_variant:Nn \seq_count:N { c }
\end{verbatim}

(End of definition for \seq_set_map:NNn, \seq_gset_map:NNn, and \__seq_set_map:NNNn. These functions are documented on page 158.)
59.7  Using sequences

\seq_use:Nnnn
\seq_use:cn
\seq_use:NNnn
\seq_use_setup:w
\seq_use:nwn
\seq_use:nwwnn
\seq_use:Nn
\seq_use:cn

See \clist_use:Nnnn for a general explanation. The main difference is that we use \__seq_item:n as a delimiter rather than commas. We also need to add \__seq_item:n at various places, and \s__seq.

\cs_new:Npn \seq_use:Nnnn #1#2#3#4
\seq_if_exist:NTF #1
\int_case:nnF { \seq_count:N #1 }
\exp_after:wN \__seq_use:NNnNnn #1 ? { } { }
\exp_after:wN \__seq_use:NNnNnn #1 {#2} }
\exp_after:wN \__seq_use_setup:w #1 \__seq_item:n
\s__seq_mark { \__seq_use:nwwwwnwn {#3} }
\s__seq_mark { \__seq_use:nwnn {#4} }
\s__seq_stop { }
\msg_expandable_error:nnn
\{ kernel \} { bad-variable } {#1}

\cs_generate_variant:Nn \seq_use:Nnnn { c }
\cs_generate_variant:Nn \seq_push:Nn { NV , Nv , Ne , c , cV , cv , ce }
\cs_generate_variant:Nn \seq_push:Nn { No , Nx , co , cx }

(End of definition for \seq_use:Nnnn and others. These functions are documented on page 158.)

59.8  Sequence stacks

The same functions as for sequences, but with the correct naming.

\seq_push:Nn
\seq_push:NV
\seq_push:Nv
\seq_push:Ne
\seq_push:No
\seq_push:Nx
\seq_push:cn
\seq_push:cV
\seq_push:ce
\seq_push:co
\seq_push:cx
\seq_gpush:Nn

Pushing to a sequence is the same as adding on the left.

\cs_new:Npm \seq_use:Nnnn #1#2#3#4
\{ \exp_after:wN \__seq_use:NNnNnn #1 ? { } { } \}
\exp_after:wN \__seq_use:NNnNnn #1 {#2} }
\exp_after:wN \__seq_use_setup:w #1 \__seq_item:n
\s__seq_mark { \__seq_use:nwwwwnwn {#3} }
\s__seq_mark { \__seq_use:nwnn {#4} }
\s__seq_stop { }
\msg_expandable_error:nnn
\{ kernel \} { bad-variable } {#1}

\cs_new_eq:NN \seq_push:Nn \seq_put_left:Nn
\cs_generate_variant:Nn \seq_push:Nn { - , - , c , cV , cv , ce }
\cs_generate_variant:Nn \seq_push:Nn { N , N , co , cx }

828
In most cases, getting items from the stack does not need to specify that this is from the left. So aliases are provided.

More copies.

Apply the general \_\_kernel_chk_tl_type:NnnT.

59.9 Viewing sequences
59.10 Scratch sequences

Temporary comma list variables.

\l_tmpa_seq \seq_new:N \l_tmpa_seq
\l_tmpb_seq \seq_new:N \l_tmpb_seq
\g_tmpa_seq \seq_new:N \g_tmpa_seq
\g_tmpb_seq \seq_new:N \g_tmpb_seq

(End of definition for \l_tmpa_seq and others. These variables are documented on page 162.)

\package
Chapter 60

\texttt{l3int} implementation

The following test files are used for this code: \texttt{m3int001,m3int002,m3int03}.

\texttt{\c{c}\_max\_register\_int}

Done in \texttt{l3basics}.

(End of definition for \texttt{\c{c}\_max\_register\_int}. This variable is documented on page 176.)

\texttt{\_\_int\_to\_roman:w}

Done in \texttt{l3basics}.

(End of definition for \texttt{\_\_int\_to\_roman:w} and \texttt{\_\_int\_compare:w}. This function is documented on page 177.)

\texttt{\_\_int\_compare:w}

Done in \texttt{l3basics}.

(End of definition for \texttt{\_\_int\_compare:w}. This function is documented on page 177.)

Here are the remaining primitives for number comparisons and expressions.

\texttt{\int\_value:w}

\texttt{\_\_int\_eval:w}

\texttt{\_\_int\_eval\_end:}

\texttt{\_\_int\_odd:w}

\texttt{\_\_int\_case:w}

Done in \texttt{l3basics}.

(End of definition for \texttt{\int\_value:w} and others. These functions are documented on page 177.)

\texttt{\_\_int\_mark}

\texttt{\_\_int\_stop}

Scan marks used throughout the module.

(End of definition for \texttt{\_\_int\_mark} and \texttt{\_\_int\_stop}.)

\texttt{\_\_int\_use\_none\_delimit\_by\_s\_stop:w}

Function to gobble until a scan mark.

(End of definition for \texttt{\_\_int\_use\_none\_delimit\_by\_s\_stop:w}.)

\texttt{\_\_int\_recursion\_tail}

\texttt{\_\_int\_recursion\_stop}

Quarks for recursion.

(End of definition for \texttt{\_\_int\_recursion\_tail} and \texttt{\_\_int\_recursion\_stop}.)
60.1 Integer expressions

\textbf{\int_eval:n} Wrapper for \_\_\int_eval:w: can be used in an integer expression or directly in the input stream. It is very slightly faster to use \texttt{the} rather than \texttt{number} to turn the expression to a number. When debugging, we introduce parentheses to catch early termination (see \texttt{l3debug}).

\begin{verbatim}
\cs_new:Npn \int_eval:n #1
{ \tex_the:D \_\_\int_eval:w #1 \_\_\int_eval_end: }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \_\_\int_eval:w
{ \tex_the:D \_\_\int_eval:w }
\end{verbatim}

\textbf{\int_sign:n} See \texttt{\int_abs:n}. Evaluate the expression once (and when debugging is enabled, check that the expression is well-formed), then test the first character to determine the sign. This is wrapped in \texttt{\int_value:w... \exp_stop_f:} to ensure a fixed number of expansions and to avoid dealing with closing the conditionals.

\begin{verbatim}
\cs_new:Npn \int_abs:n #1
{ \int_value:w \exp_after:wN \_\_\int_abs:N
\int_value:w \_\_\int_eval:w #1 \_\_\int_eval_end: ;
\exp_stop_f: }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \_\_\int_abs:N #1
{ \if_meaning:w - #1 \else: \exp_after:wN #1 \fi: }
\cs_set:Npn \int_max:nn #1#2
{ \if_meaning:w \_ \_\int_maxmin:wwN #1#2
\fi: }
\end{verbatim}

\textbf{\int_max:nn} Functions for min, max, and absolute value with only one evaluation. The absolute value is obtained by removing a leading sign if any. All three functions expand in two steps.

\begin{verbatim}
\cs_new:Npn \_\_\int_maxmin:wwN #1#2
{ \int_value:w \exp_after:wN \_\_\int_abs:N
\int_value:w \_\_\int_eval:w #1 \_\_\int_eval_end: \
\exp_stop_f: }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn \_\_\int_abs:N #1
{ \if_meaning:w - #1 \else: \exp_after:wN #1 \fi: }
\cs_set:Npn \int_max:nn #1#2
{ \if_meaning:w \_ \_\int_maxmin:wwN #1#2
\fi: }
\end{verbatim}
As \_\_\_int_eval:w rounds the result of a division we also provide a version that truncates the result. We use an auxiliary to make sure numerator and denominator are only evaluated once: this comes in handy when those are more expensive to evaluate (e.g., \tl_count:n). If the numerator #1#2 is 0, then we divide 0 by the denominator (this ensures that 0/0 is correctly reported as an error). Otherwise, shift the numerator #1#2 towards 0 by (\#3\#4 − 1)/2, which we round away from zero. It turns out that this quantity exactly compensates the difference between \varepsilon\-\TeX's rounding and the truncating behaviour that we want. The details are thanks to Heiko Oberdiek: getting things right in all cases is not so easy.
For the sake of completeness:
\cs_new:Npn \int_div_round:nn #1#2
\{ \int_value:w \__int_eval:w ( #1 ) / ( #2 ) \__int_eval_end: \}

Finally there’s the modulus operation.
\cs_new:Npn \int_mod:nn #1#2
\{ \int_value:w \__int_eval:w \exp_after:wN \__int_mod:ww
\int_value:w \__int_eval:w #1 \exp_after:wN ;
\int_value:w \__int_eval:w #2 ; \__int_eval_end: \}
\cs_new:Npn \__int_mod:ww #1; #2;
\{ #1 - ( \__int_div_truncate:NwNw #1 ; #2 ; ) * #2 \}

(End of definition for \int_div_truncate:nn and others. These functions are documented on page 166.)

\kernel_int_add:nnn
Equivalent to \int_eval:n \{#1+#2+#3\} except that overflow only occurs if the final result overflows \([-2^{31} + 1, 2^{31} - 1]\). The idea is to choose the order in which the three numbers are added together. If \#1 and \#2 have opposite signs (one is in \([-2^{31} + 1, -1]\) and the other in \([0, 2^{31} - 1]\)) then \#1+\#2 cannot overflow so we compute the result as \#1+\#2+\#3. If they have the same sign, then either \#3 has the same sign and the order does not matter, or \#3 has the opposite sign and any order in which \#3 is not last will work. We use \#1+\#3+\#2.
\cs_new:Npn \__kernel_int_add:nnn #1#2#3
\{ \int_value:w \__int_eval:w #1
\if_int_compare:w #2 < \c_zero_int \exp_after:wN \reverse_if:N \fi:
\if_int_compare:w #1 < \c_zero_int \exp_after:wN \reverse_if:N \fi:
\__int_eval_end: \}

(End of definition for __kernel_int_add:nnn.)

60.2 Creating and initialising integers
\int_new:N Two ways to do this: one for the format and one for the \TeX{} package. In plain \TeX{}, \newcount (and other allocators) are \texttt{outer}: to allow the code here to work in “generic” mode this is therefore accessed by name. (The same applies to \texttt{newbox, newdimen} and so on.)
\cs_new_protected:Npn \int_new:N \#1
\{ \__kernel_chk_if_free_cs:N \#1 \cs:w newcount \cs_end: \#1 \}
\cs_generate_variant:Nn \int_new:N { c }

(End of definition for \int_new:N. This function is documented on page 166.)
As stated, most constants can be defined as \texttt{\chardef} or \texttt{\mathchardef} but that's engine dependent. As a result, there is some setup code to determine what can be done. No full engine testing just yet so everything is a little awkward. We cannot use \texttt{\int_gset:Nn} because (when \texttt{check-declarations} is enabled) this runs some checks that constants would fail.

\begin{verbatim}
\cs_new_protected:Npn \int_const:Nn #1#2
{ \__int_const:eN { \int_eval:n {#2} } #1 }
\cs_generate_variant:Nn \int_const:Nn { c }
\cs_new_protected:Npn \__int_const:nN #1#2
{ \int_compare:nNnTF {#1} < \c_zero_int
{ \int_new:N #2
\tex_global:D }
{ \int_compare:nNnTF {#1} > \c__int_max_constdef_int
{ \int_new:N #2
\tex_global:D \__int_constdef:Nw
\__kernel_chk_if_free_cs:N #2
\tex_global:D \__int_constdef:Nw }
#2 = \__int_eval:w #1 \__int_eval_end:
}
\cs_generate_variant:Nn \__int_const:nN { e }
\if_int_odd:w 0
\cs_if_exist:NT \tex_luatexversion:D { 1 }
\cs_if_exist:NT \tex_omathchardef:D { 1 }
\cs_if_exist:NTF \tex_omathchardef:D
{ \cs_new_eq:NN \__int_constdef:Nw \tex_omathchardef:D }
{ \cs_new_eq:NN \__int_constdef:Nw \tex_mathchardef:D
\tex_mathchardef:D \c__int_max_constdef_int 32767 ~
\else:
\cs_new_eq:NN \__int_constdef:Nw \tex_mathchardef:D
\tex_mathchardef:D \c__int_max_constdef_int 1114111 ~
\fi:
\end{verbatim}

(End of definition for \texttt{\int_const:Nn} and others. This function is documented on page 166.)

\begin{verbatim}
\cs_new_protected:Npn \int_zero:N #1 { #1 = \c_zero_int }
\cs_new_protected:Npn \int_gzero:N #1 { \tex_global:D \c_zero_int }
\cs_generate_variant:Nn \int_zero:N { c }
\cs_generate_variant:Nn \int_gzero:N { c }
\end{verbatim}

(End of definition for \texttt{\int_zero:N} and \texttt{\int_gzero:N}. These functions are documented on page 167.)

\begin{verbatim}
\cs_new_protected:Npn \int_zero_new:N #1 { \int_zero:N #1 }
\cs_new_protected:Npn \int_gzero_new:N #1 { \int_gzero:N #1 }
\cs_generate_variant:Nn \int_zero_new:N { c }
\cs_generate_variant:Nn \int_gzero_new:N { c }
\end{verbatim}

(End of definition for \texttt{\int_zero:N} and \texttt{\int_gzero:N}. These functions are documented on page 167.)
Setting equal means using one integer inside the set function of another. Check that assigned integer is local/global. No need to check that the other one is defined as \TeX does it for us.

Adding and subtracting to and from a counter. Including here the optional by would slow down these operations by a few percent.

Incrementing and decrementing of integer registers is done with the following functions.
17435 \cs_new_protected:Npn \int_gdecr:N #1
17436 { \tex_global:D \tex_advance:D \#1 - \c_one_int }
17437 \cs_generate_variant:Nn \int_incr:N { c }
17438 \cs_generate_variant:Nn \int_decr:N { c }
17439 \cs_generate_variant:Nn \int_gincr:N { c }
17440 \cs_generate_variant:Nn \int_gdecr:N { c }

(End of definition for \int_incr:N and others. These functions are documented on page 167.)

\int_set:Nn \int_set:cn \int_gset:Nn \int_gset:cn

As integers are register-based \TeX{} issues an error if they are not defined. While the = sign is optional, this version with = is slightly quicker than without, while adding the optional space after = slows things down minutely.

17441 \cs_new_protected:Npn \int_set:Nn #1#2
17442 { #1 = \__int_eval:w #2 \__int_eval_end: }
17443 \cs_new_protected:Npn \int_gset:Nn #1#2
17444 { \tex_global:D #1 = \__int_eval:w #2 \__int_eval_end: }
17445 \cs_generate_variant:Nn \int_set:Nn { c }
17446 \cs_generate_variant:Nn \int_gset:Nn { c }

(End of definition for \int_set:Nn and \int_gset:Nn. These functions are documented on page 167.)

\int_use:N \int_use:c

Here is how counters are accessed. We hand-code the c variant for some speed gain.

17447 \cs_new_eq:NN \int_use:N \tex_the:D
17448 \cs_new:Npn \int_use:c #1 { \tex_the:D \cs:w #1 \cs_end: }

(End of definition for \int_use:N. This function is documented on page 168.)

\__int_compare_error: \__int_compare_error:Nw

60.5 Integer expression conditionals

Those functions are used for comparison tests which use a simple syntax where only one set of braces is required and additional operators such as != and >= are supported. The tests first evaluate their left-hand side, with a trailing \__int_compare_error:. This marker is normally not expanded, but if the relation symbol is missing from the test’s argument, then the marker inserts = (and itself) after triggering the relevant \TeX{} error. If the first token which appears after evaluating and removing the left-hand side is not a known relation symbol, then a judiciously placed \__int_compare_error:Nw gets expanded, cleaning up the end of the test and telling the user what the problem was.

17449 \cs_new_protected:Np #1\__int_compare_error:
17450 { #1\__int_compare_error:
17451 \if_int_compare:w \c_zero_int \c_zero_int \fi:
17452 = \__int_compare_error:
17453 \}
17454 \cs_new:Np \__int_compare_error:Nw
17455 \cs_gset:cn \__int_compare_error:Nw
17456 \}
17457 \cs_gset:cn \__int_compare_error:Nw
17458 \cs_gset:Nc \__int_stop
17459 \c_zero_int \fi:
17460 \msg_expandable_error:nmn
17461 \{ kernel \} \{ unknown-comparison \} \{#1}
Comparison tests using a simple syntax where only one set of braces is required, additional operators such as != and >= are supported, and multiple comparisons can be performed at once, for instance 0 < 5 <= 1. The idea is to loop through the argument, finding one operand at a time, and comparing it to the previous one. The looping auxiliary \texttt{\__int_compare:Nw} reads one \langle operand \rangle and one \langle comparison \rangle symbol, and leaves roughly
\[\langle operand\rangle \texttt{prg_return_false:} \texttt{fi:} \] \[\texttt{\reverse_if:N} \texttt{if_int_compare:w} \langle operand \rangle \langle comparison \rangle \] \[\langle\texttt{\_int_compare:Nw}\rangle \]
in the input stream. Each call to this auxiliary provides the second operand of the last call's \texttt{if_int_compare:w}. If one of the \langle comparisons \rangle is false, the true branch of the \texttt{\TeX} conditional is taken (because of \texttt{\reverse_if:N}), immediately returning \texttt{false} as the result of the test. There is no \texttt{\TeX} conditional waiting the first operand, so we add an \texttt{if_false:} and expand by hand with \texttt{\int_value:w}, thus skipping \texttt{\prg_return_false:} on the first iteration.

Before starting the loop, the first step is to make sure that there is at least one relation symbol. We first let \texttt{\TeX} evaluate this left hand side of the (in)equality using \texttt{\__int_eval:w}. Since the relation symbols <, >, = and ! are not allowed in integer expressions, they would terminate the expression. If the argument contains no relation symbol, \texttt{\__int_compare_error:} is expanded, inserting = and itself after an error. In all cases, \texttt{\__int_compare:w} receives as its argument an integer, a relation symbol, and some more tokens. We then setup the loop, which is ended by the two odd-looking items \texttt{e} and \texttt{{{=nd_}}}, with a trailing \texttt{\_s\_int_stop} used to grab the entire argument when necessary.

The goal here is to find an \langle operand \rangle and a \langle comparison \rangle. The \langle operand \rangle is already evaluated, but we cannot yet grab it as an argument. To access the following relation symbol, we remove the number by applying \texttt{\__int_to_roman:w}, after making sure that the argument becomes non-positive: its roman numeral representation is then empty. Then probe the first two tokens with \texttt{\__int_compare:Nw} to determine the relation symbol, building a control sequence from it (\texttt{\token_to_str:N} gives better errors if \texttt{#1} is not a character). All the extended forms have an extra = hence the test for that as a second token. If the relation symbol is unknown, then the control sequence is turned by \texttt{\TeX} into \texttt{\scan_stop:}, ignored thanks to \texttt{\unexpanded}, and \texttt{\__int_compare_error:Nw} raises an error.

The goal here is to find an \langle operand \rangle and a \langle comparison \rangle. The \langle operand \rangle is already evaluated, but we cannot yet grab it as an argument. To access the following relation symbol, we remove the number by applying \texttt{\__int_to_roman:w}, after making sure that the argument becomes non-positive: its roman numeral representation is then empty. Then probe the first two tokens with \texttt{\__int_compare:Nw} to determine the relation symbol, building a control sequence from it (\texttt{\token_to_str:N} gives better errors if \texttt{#1} is not a character). All the extended forms have an extra = hence the test for that as a second token. If the relation symbol is unknown, then the control sequence is turned by \texttt{\TeX} into \texttt{\scan_stop:}, ignored thanks to \texttt{\unexpanded}, and \texttt{\__int_compare_error:Nw} raises an error.
When the last \textit{operand} is seen, \texttt{\_\_int\_compare:Nw} receives \texttt{e} and \texttt{\texttt{=nd_}} as arguments, hence calling \texttt{\_\_int\_compare\_end_\=:NNw} to end the loop: return the result of the last comparison (involving the operand that we just found). When a normal relation is found, the appropriate auxiliary calls \texttt{\_\_int\_compare:nnN} where \texttt{#1} is \texttt{\if_int_compare:w} or \texttt{\reverse_if:N \if_int_compare:w}, \texttt{#2} is the \textit{operand}, and \texttt{#3} is one of \texttt{<}, \texttt{=} or \texttt{>}. As announced earlier, we leave the \textit{operand} for the previous conditional. If this conditional is true the result of the test is known, so we remove all tokens and return \texttt{false}. Otherwise, we apply the conditional \texttt{#1} to the \textit{operand} \texttt{#2} and the comparison \texttt{#3}, and call \texttt{\_\_int\_compare:Nw} to look for additional operands, after evaluating the following expression.

The actual comparisons are then simple function calls, using the relation as delimiter for a delimited argument and discarding \texttt{\_\_int\_compare\_error:Nw} \texttt{(token)} responsible for error detection.
\int_compare_p:nNn
\int_compare:nNnTF
\int_if_zero_p:nN
\int_if_zero:nTF
\int_case:nn
\int_case:nnTF
\int_case:nnn
\int_case:nnnf
\int_case:nnnn
\int_case:nnnTF
\int_case:nnnnF
\int_case:nnnTFn
\int_case:nnnnF
\int_case:nnnnn
\int_case:nnnnnF
\int_case:nnnnnTF
\int_case:nnnnnF
\int_case:nnnnnTFn
\int_case_end:nn
\int_case_end:nnn
\int_case_end:nnnn
\int_case_end:nnnnn
\int_case_end:nnnnn
\int_case_end:nnnnnF
\int_case_end:nnnnnTF
\int_case_end:nnnnnF
\int_case_end:nnnnnTFn

More efficient but less natural in typing.

\int_case:nnTF

For integer cases, the first task to fully expand the check condition. The overall idea is then much the same as for \str_case:nnTF as described in l3str.
A predicate function.
\begin{verbatim}
\int_if_odd:n { p , T , F , TF} \{
    \if_int_odd:w \__int_eval:w #1 \__int_eval_end:
    \prg_return_true:
    \else:
    \prg_return_false:
    \fi:
\}
\end{verbatim}

(End of definition for \texttt{\int_if_odd:nTF} and \texttt{\int_if_even:nTF}. These functions are documented on page 170.)

\section{Integer expression loops}
\begin{verbatim}
\int_while_do:nn \int_until_do:nn \int_do_while:nn \int_do_until:nn
\end{verbatim}

These are quite easy given the above functions. The \texttt{\while} versions test first and then execute the body. The \texttt{do\_while} does it the other way round.

\begin{verbatim}
\int_compare:n {#1} = {#2} \{
    \__int_case_end:nw {#3} \}
\end{verbatim}

(End of definition for \texttt{\int_case:nnTF} and others. This function is documented on page 170.)
\begin{verbatim}
\int_compare:nT {#1}
  { \int_do_while:nn {#1} {#2} }
\}
\cs_new:Npx \int_do_until:nn #1#2
  { \int_compare:nF {#1}
    { \int_do_until:nn {#1} {#2} }
  }
\]
(End of definition for \int_while_do:nn and others. These functions are documented on page 171.)

\int_while_do:nNnn
\int_until_do:nNnn
\int_do_while:nNnn
\int_do_until:nNnn
As above but not using the more natural syntax.

\cs_new:Npx \int_while_do:nNnn #1#2#3#4
  { \int_compare:nNnT {#1} #2 {#3}
    { #4 
      \int_while_do:nNnn {#1} #2 {#3} {#4} 
    }
  }
\]
(End of definition for \int_while_do:nNnn and others. These functions are documented on page 171.)

\int_step_function:nnnN
\__int_step:wwwN
\__int_step:NwnnN
\int_step_function:nN
\int_step_function:nnN
Before all else, evaluate the initial value, step, and final value. Repeating a function by steps first needs a check on the direction of the steps. After that, do the function for the start value then step and loop around. It would be more symmetrical to test for a step size of zero before checking the sign, but we optimize for the most frequent case (positive step).
The approach here is to build a function, with a global integer required to make the
tenesting safe (as seen in other in line functions), and map that function using \texttt{\int_step_function:nnnN}. We put a \texttt{\prg_break_point:Nn} so that map\_break functions from other modules correctly decrement \texttt{\g__kernel_prg_map_int} before looking for their own break point. The first argument is \texttt{\scan_stop:}, so that no breaking function recognizes this break point as its own.
60.8 Formatting integers

Nothing exciting here.

For conversion of integers to arbitrary symbols the method is in general as follows. The input number (#1) is compared to the total number of symbols available at each place (#2). If the input is larger than the total number of symbols available then the modulus is needed, with one added so that the positions don’t have to number from zero. Using an f-type expansion, this is done so that the system is recursive. The actual conversion function therefore gets a ‘nice’ number at each stage. Of course, if the initial input was small enough then there is no problem and everything is easy.
End of definition for \texttt{\int_to_symbols:nnn} and \texttt{\__int_to_symbols:nnnn}. This function is documented on page 173.

\texttt{\int_to_alph:n} \texttt{\int_to_Alph:n} These both use the above function with input functions that make sense for the alphabet in English.

\texttt{\cs_new:Npn \int_to_alph:n #1} \{ \texttt{\int_to_symbols:nnn (#1) \{ 26 \}} \)

\texttt{\cs_new:Npn \int_to_Alph:n #1} \{ \texttt{\int_to_symbols:nnn (#1) \{ 26 \}} \)

845
Converting from base ten (#1) to a second base (#2) starts with computing #1: if it is a complicated calculation, we shouldn’t perform it twice. Then check the sign, store it, either - or \c_empty_tl, and feed the absolute value to the next auxiliary function.

Here, the idea is to provide a recursive system to deal with the input. The output is built up after the end of the function. At each pass, the value in #1 is checked to see if it is less than the new base (#2). If it is, then it is converted directly, putting the sign back in front. On the other hand, if the value to convert is greater than or equal to the new
base then the modulus and remainder values are found. The modulus is converted to a symbol and put on the right, and the remainder is carried forward to the next round.

\begin{verbatim}
\cs_new:Npn \_\_int_to_base:nnN \#1\#2\#3
\{
\int_compare:nNnTF {\#1} < {\#2}
{ \exp_last_unbraced:Nf \#3 \{ \_\_int_to_letter:n \{\#1\} \} }
{ \exp_args:Nf \_\_int_to_base:nnN
  \{ \_\_int_to_letter:n { \int_mod:nn \{\#1\} \{\#2\} } \}
  \#1
  \#2
  \#3}
\}
\cs_new:Npn \_\_int_to_base:nnnN \#1\#2\#3\#4
\{
\exp_args:Nf \_\_int_to_base:nnN
\{ \int_div_truncate:nn \{\#2\} \{\#3\} \}
\#4
\#1
\}
\cs_new:Npn \_\_int_to_Base:nnN \#1\#2\#3
\{
\int_compare:nNnTF {\#1} < {\#2}
{ \exp_last_unbraced:Nf \#3 \{ \_\_int_to_Letter:n \{\#1\} \} }
{ \exp_args:Nf \_\_int_to_Base:nnN
  \{ \_\_int_to_Letter:n { \int_mod:nn \{\#1\} \{\#2\} } \}
  \#1
  \#2
  \#3}
\}
\cs_new:Npn \_\_int_to_Base:nnnN \#1\#2\#3\#4
\{
\exp_args:Nf \_\_int_to_Base:nnN
\{ \int_div_truncate:nn \{\#2\} \{\#3\} \}
\#4
\#1
\}
\end{verbatim}

Convert to a letter only if necessary, otherwise simply return the value unchanged. It would be cleaner to use \texttt{\int_case:nn}, but in our case, the cases are contiguous, so it is forty times faster to use the \texttt{\if_case:w} primitive. The first \texttt{\exp_after:wN} expands the conditional, jumping to the correct case, the second one expands after the resulting character to close the conditional. Since \#1 might be an expression, and not directly a single digit, we need to evaluate it properly, and expand the trailing \texttt{\fi:}.

\begin{verbatim}
\cs_new:Npn \_\_int_to_letter:n \#1
\{
\exp_after:wN \exp_after:wN
\if_case:w \__int_eval:w \#1 - 10 \__int_eval_end:
\end{verbatim}

847
\cs_new:Npn \__int_to_Letter:n #1 \exp_after:wN \__int_eval_end: #1 \exp_after:wN \__int_eval:w \int_value:w \__int_eval:w #1 \exp_after:wN \__int_eval_end: \fi:
\cs_new:Npn \__int_to_Letter:n #1
{\exp_after:wN \exp_after:wN \if_case:w \__int_eval:w #1 - 10 \__int_eval_end:w A \or:w B \or:w C \or:w D \or:w E \or:w F \or:w G \or:w H \or:w I \or:w J \or:w K \or:w L \or:w M \or:w N \or:w O \or:w P \or:w Q \or:w R \or:w S \or:w T \or:w U \or:w V
\int_to_bin:n Wrappers around the generic function.
\int_to_hex:n
\int_to_Hex:n
\int_to_oct:n
\int_to_roman:n
\int_to_Roman:n
\__int_to_roman:w The \__int_to_roman:w primitive creates tokens of category code 12 (other). Usually, what is actually wanted is letters. The approach here is to convert the output of the primitive into letters using appropriate control sequence names. That keeps everything expandable. The loop is terminated by the conversion of the Q.
\cs_new:Npn \int_to_roman:n #1 \exp_after:wN \__int_to_roman:N \__int_to_roman:w \int_eval:n {#1} Q
\cs_new:Npn \__int_to_roman:N #1 \use:c { \__int_to_roman_ #1 :w } \__int_to_roman:N
\cs_new:Npn \__int_to_roman_i:w { i }
\cs_new:Npn \__int_to_roman_v:w { v }
\cs_new:Npn \__int_to_roman_x:w { x }
\cs_new:Npn \__int_to_roman_l:w { l }
\cs_new:Npn \__int_to_roman_c:w { c }
\cs_new:Npn \__int_to_roman_d:w { d }
\cs_new:Npn \__int_to_roman_m:w { m }
\cs_new:Npn \__int_to_roman_Q:w #1 { }

(End of definition for \int_to_base:nn and others. These functions are documented on page 174.)
60.9 Converting from other formats to integers

Called as \__int_pass_signs:wn \{ signs and digits \} \s_int_stop \{\code\}, this function leaves in the input stream any sign it finds, then inserts the \(\text{\code}\) before the first non-sign token (and removes \s_int_stop\). More precisely, it deletes any + and passes any – to the input stream, hence should be called in an integer expression.

\begin{verbatim}
\cs_new:Npn \__int_pass_signs:wn #1
\{ \if:w + \if:w - \exp_not:N #1 + \fi: \exp_not:N #1 \exp_after:wN \__int_pass_signs:wn \else: \exp_after:wN \__int_pass_signs_end:wn \exp_after:wN #1 \fi: \}
\cs_new:Npn \__int_pass_signs_end:wn #1 \s_int_stop #2 { #2 #1 }
\end{verbatim}

(End of definition for \__int_pass_signs:wn and \__int_pass_signs_end:wn.)

First take care of signs then loop through the input using the recursion quarks. The \__int_from_alph:n auxiliary collects in its first argument the value obtained so far, and the auxiliary \__int_from_alph:N converts one letter to an expression which evaluates to the correct number.

\begin{verbatim}
\cs_new:Npn \__int_from_alph:n \tl_to_str:n \{#1\}
\exp_after:wN \__int_pass_signs:wn \__int_from_alph:n \tl_to_str:n \{0\}
\__int_recursion_tail \__int_recursion_stop
\}
\exp_after:wN \__int_pass_signs:wn \__int_from_alph:n \#1
\{ \int_eval:n \}
\exp_after:wN \__int_pass_signs:wn \__int_from_alph:n \#1\#2
\{ \_\_\_int_if_recursion_tail_stop:do:NN \#2 \{#1\}
\exp_args:NN \__int_from_alph:n \#1
\{ \int_eval:n \}
\}
\cs_new:Npn \__int_from_alph:N \#1
\{ \_\_\_int_compare:nNnTF \{ #1 \} \{ 91 \} \{ 64 \} \{ 96 \} \}
\end{verbatim}

(End of definition for \__int_from_alph:n, \__int_from_alph:n, and \__int_from_alph:N. This function is documented on page 174.)
Leave the signs into the integer expression, then loop through characters, collecting the value found so far in the first argument of `\_\_int_from_base:nn`. To convert a single character, `\_\_int_from_base:N` checks first for digits, then distinguishes lower from upper case letters, turning them into the appropriate number. Note that this auxiliary does not use `\int_eval:n`, hence is not safe for general use.

\begin{verbatim}
\cs_new:Npn \int_from_base:nn #1#2
  { \int_eval:n { \exp_after:wN \__int_pass_signs:wn \tl_to_str:n {#1} \s__int_stop { \__int_from_base:nnN { 0 } {#2} } \q__int_recursion_tail \q__int_recursion_stop } }
\cs_new:Npn \__int_from_base:nnN #1#2#3
  { \__int_if_recursion_tail_stop_do:Nn #3 {#1} \exp_args:Nf \__int_from_base:nnN { \int_eval:n { #1 * #2 + \__int_from_base:N #3 } } {#2} }
\cs_new:Npn \__int_from_base:N #1
  { \int_compare:nNnTF { '#1 } < { 58 } {#1} { '#1 - \int_compare:nNnTF { '#1 } < { 91 } { 55 } { 87 } } }
\end{verbatim}

(End of definition for `\int_from_base:nn`, `\_\_int_from_base:nn`, and `\_\_int_from_base:N`. This function is documented on page 175.)

```
\int_from_bin:n
\int_from_hex:n
\int_from_oct:n
```

Wrappers around the generic function.

\begin{verbatim}
\cs_new:Npn \int_from_bin:n #1
  { \int_from_base:nn {#1} { 2 } }
\cs_new:Npn \int_from_hex:n #1
  { \int_from_base:nn {#1} { 16 } }
\cs_new:Npn \int_from_oct:n #1
  { \int_from_base:nn {#1} { 8 } }
\end{verbatim}

(End of definition for `\int_from_bin:n`, `\int_from_hex:n`, and `\int_from_oct:n`. These functions are documented on page 174.)

```
\c__int_from_roman_i_int
\c__int_from_roman_v_int
\c__int_from_roman_x_int
\c__int_from_roman_c_int
\c__int_from_roman_d_int
\c__int_from_roman_m_int
\c__int_from_roman_I_int
\c__int_from_roman_V_int
\c__int_from_roman_X_int
\c__int_from_roman_C_int
\c__int_from_roman_D_int
\c__int_from_roman_M_int
```

Constants used to convert from Roman numerals to integers.

\begin{verbatim}
\int_const:cn { c__int_from_roman_i_int } { 1 }
\int_const:cn { c__int_from_roman_v_int } { 5 }
\int_const:cn { c__int_from_roman_x_int } { 10 }
\int_const:cn { c__int_from_roman_c_int } { 50 }
\int_const:cn { c__int_from_roman_d_int } { 500 }
\int_const:cn { c__int_from_roman_m_int } { 1000 }
\int_const:cn { c__int_from_roman_I_int } { 1 }
\int_const:cn { c__int_from_roman_V_int } { 5 }
\int_const:cn { c__int_from_roman_X_int } { 10 }
\end{verbatim}
\int_from_roman:n \quad \_\_int_from_roman:NN \quad \_\_int_from_roman_error:w

The method here is to iterate through the input, finding the appropriate value for each letter and building up a sum. This is then evaluated by \TeX. If any unknown letter is found, skip to the closing parenthesis and insert \texttt{\*0-1} afterwards, to replace the value by $-1$.

\begin{verbatim}
\cs_new:Npn \int_from_roman:n #1
{ \int_eval:n { (0 \exp_after:wN \__int_from_roman:NN \tl_to_str:n {#1} \q__int_recursion_tail \q__int_recursion_tail \q__int_recursion_stop) } }
\cs_new:Npn \__int_from_roman:NN #1#2
{ \__int_if_recursion_tail_stop:N #1 \int_if_exist:cF { c__int_from_roman_ #1 _int } \__int_from_roman_error:w \__int_if_recursion_tail_stop_do:Nn #2 { + \use:c { c__int_from_roman_ #1 _int } } \int_if_exist:cF { c__int_from_roman_ #2 _int } \__int_from_roman_error:w \int_compare:nNnTF { \use:c { c__int_from_roman_ #1 _int } } { < } { \use:c { c__int_from_roman_ #2 _int } } \__int_from_roman:NN
\__int_from_roman:NN #1 \__int_from_roman_error:w \#1 \q__int_recursion_stop \#2
{ \#2 \* 0 - 1 }
\end{verbatim}

(End of definition for \texttt{\_\_int_from_roman_error:w}.

This function is documented on page 175.)

\section{Viewing integer}

\begin{verbatim}
\int_show:N \int_show:c \__int_show:nN
\end{verbatim}

Diagnostics.
\int_show:n \ We don’t use the \TeX\ primitive \texttt{\showthe} to show integer expressions: this gives a more uniform output.
\int_log:N \ Diagnostics.
\int_log:c \ (End of definition for \texttt{\int_log:n}. This function is documented on page 176.)
\int_log:n \ Similar to \texttt{\int_show:n}.
\int_rand:nn \ Defined in \texttt{l3fp-random}.
\c_zero_int \ The zero is defined in \texttt{l3basics}.
\c_one_int \ The largest number allowed is \(2^{31} - 1\)
\c_max_int \ The largest character code is \(1114111\) (hexadecimal \texttt{10FFFF}) in \texttt{Xe\TeX} and \texttt{Lua\TeX} and 255 in other engines. In many places \texttt{p\TeX} and \texttt{u\TeX} support larger character codes but for instance the values of \texttt{\lccode} are restricted to \([0, 255]\).
\c_max_char_int \ (End of definition for \texttt{\int_const:Nn \c_max_char_int}.
(End of definition for \texttt{\int_rand:nn}. This function is documented on page 175.)

60.11 Random integers

60.12 Constant integers

\c_zero_int \ (End of definition for \texttt{\c_zero_int} and \texttt{\c_one_int}. These variables are documented on page 176.)
\c_one_int \ (End of definition for \texttt{\c_max_int}. This variable is documented on page 176.)
\c_max_int \ (End of definition for \texttt{\c_max_char_int}. This variable is documented on page 176.)
\c_max_char_int \ (End of definition for \texttt{\c_max_char_int}. This variable is documented on page 176.)
60.13 Scratch integers

\l_tmpa_int We provide two local and two global scratch counters, maybe we need more or less.
\l_tmpb_int \int_new:N \l_tmpa_int
\g_tmpa_int \int_new:N \l_tmpb_int
\g_tmpb_int \int_new:N \g_tmpa_int
\int_new:N \g_tmpb_int

(End of definition for \l_tmpa_int and others. These variables are documented on page 176.)

60.14 Integers for earlier modules

\l__int_internal_a_int
\l__int_internal_b_int \int_new:N \l__int_internal_a_int
\int_new:N \l__int_internal_b_int

(End of definition for \l__int_internal_a_int and \l__int_internal_b_int.)

</package>
Chapter 61

l3flag implementation

The following test files are used for this code: m3flag001.

61.1 Non-expandable flag commands

The height $h$ of a flag (initially zero) is stored by setting control sequences of the form $\text{flag } \langle \text{name} \rangle \langle \text{integer} \rangle$ to \relax for $0 \leq \langle \text{integer} \rangle < h$. When a flag is raised, a “trap” function $\text{flag } \langle \text{name} \rangle$ is called. The existence of this function is also used to test for the existence of a flag.

$\text{flag\_new:n}$

For each flag, we define a “trap” function, which by default simply increases the flag by 1 by letting the appropriate control sequence to \relax. This can be done expandably!

$\text{flag\_clear:n}$

Undefine control sequences, starting from the 0 flag, upwards, until reaching an undefined control sequence. We don’t use $\text{cs\_undefine:c}$ because that would act globally. When the option check-declarations is used, check for the function defined by $\text{flag\_new:n}$.

(End of definition for $\text{flag\_new:n}$. This function is documented on page 179.)
As for other datatypes, clear the ⟨flag⟩ or create a new one, as appropriate.

\flag_clear_new:n

\flag_show:n, \flag_log:n
\__flag_show:Nn

Show the height (terminal or log file) using appropriate \l3msg auxiliaries.

\flag_if_exist_p:n
\flag_if_exist:nTF
\flag_if_raised_p:n
\flag_if_raised:nTF

A flag exist if the corresponding trap \flag ⟨flag name⟩:n is defined.

\flag_height:n, \__flag_height_loop:wn
\__flag_height_end:wn

Extract the value of the flag by going through all of the control sequences starting from 0.
\begin{verbatim}
\exp_after:wN \__flag_height_end:wn
\fi:
#1 ; {#2}
\}
\cs_new:Npn \__flag_height_end:wn #1 ; #2 {#1}
\end{verbatim}

(End of definition for \flag_height:n, \__flag_height_loop:wn, and \__flag_height_end:wn. This function is documented on page 180.)

\flag_raise:n Simply apply the trap to the height, after expanding the latter.
\begin{verbatim}
\cs_new:Npn \flag_raise:n #1
\{\cs:w flag~#1 \exp_after:wN \cs_end: \int_value:w \flag_height:n {#1} ;
\}
\end{verbatim}

(End of definition for \flag_raise:n. This function is documented on page 180.)

\flag_ensure_raised:n It might be faster to just call the “trap” function in all cases but conceptually the function name suggests we should only run it if the flag is zero in case the “trap” made customizable in the future.
\begin{verbatim}
\cs_new:Npn \flag_ensure_raised:n #1
\{\if_cs_exist:w flag~#1~0 \cs_end:
\else:
\cs:w flag~#1 \cs_end: 0 ;
\fi:
\}
\end{verbatim}

(End of definition for \flag_ensure_raised:n. This function is documented on page 180.)
Chapter 62

l3clist implementation

The following test files are used for this code: m3clist002.
\begin{verbatim}
+package
@@=clist
\end{verbatim}
\c_empty_clist
An empty comma list is simply an empty token list.
\begin{verbatim}
\cs_new_eq:NN \c_empty_clist \c_empty_tl
\end{verbatim}
(End of definition for \c_empty_clist. This variable is documented on page 190.)

\l__clist_internal_clist
Scratch space for various internal uses. This comma list variable cannot be declared as
such because it comes before \clist_new:N
\begin{verbatim}
\tl_new:N \l__clist_internal_clist
\end{verbatim}
(End of definition for \l__clist_internal_clist.)

\s__clist_mark \s__clist_stop
Internal scan marks.
\begin{verbatim}
\scan_new:N \s__clist_mark\scan_new:N \s__clist_stop
\end{verbatim}
(End of definition for \s__clist_mark and \s__clist_stop.)

\__clist_use_none_delimit_by_s_mark:w \__clist_use_none_delimit_by_s_stop:w \__clist_use_i_delimit_by_s_stop:nw
Functions to gobble up to a scan mark.
\begin{verbatim}
\cs_new:Npn \__clist_use_none_delimit_by_s_mark:w #1 \s__clist_mark { }
\cs_new:Npn \__clist_use_none_delimit_by_s_stop:w #1 \s__clist_stop { }
\cs_new:Npn \__clist_use_i_delimit_by_s_stop:nw #1 #2 \s__clist_stop {#1}
\end{verbatim}
(End of definition for \__clist_use_none_delimit_by_s_mark:w, \__clist_use_none_delimit_by_s_stop:w, and \__clist_use_i_delimit_by_s_stop:nw.)

\__clist_tmp:w
A temporary function for various purposes.
\begin{verbatim}
\cs_new_protected:Npn \__clist_tmp:w { }
\end{verbatim}
(End of definition for \__clist_tmp:w.)
62.1 Removing spaces around items

\_clist\_trim\_next:w Called as \exp:w \_clist\_trim\_next:w \prg\_do\_nothing: ⟨comma list⟩ ... it expands to ⟨⟨trimmed item⟩⟩ where the ⟨⟨trimmed item⟩⟩ is the first non-empty result from removing spaces from both ends of comma-delimited items in the ⟨⟨comma list⟩⟩. The \prg\_do\_nothing: marker avoids losing braces. The test for blank items is a somewhat optimized \tl\_if\_empty:oTF construction; if blank, another item is sought, otherwise trim spaces.

\cs\_new:Npn \_clist\_sanitize:n #1 ,
\prg\_do\_nothing:
\tl\_trim\_spaces\_apply:oN {#1} \exp\_end:

(End of definition for \_clist\_trim\_next:w.)

\_clist\_sanitize:n \_clist\_sanitize:Nn The auxiliary \_clist\_sanitize:Nn receives a delimiter (\c\_empty_tl the first time, afterwards a comma) and that item as arguments. Unless we are done with the loop it calls \_clist\_wrap\_item:w to unbrace the item (using a comma delimiter is safe since #2 came from removing spaces from an argument delimited by a comma) and possibly re-brace it if needed.

\cs\_new:Npn \_clist\_sanitize:n #1
{ \exp\_after:wN \_clist\_sanitize:Nn \exp\_after:wN \c\_empty_tl
\exp:w \_clist\_trim\_next:w \prg\_do\_nothing:
#1 , \s\_clist\_stop \prg\_break: , \prg\_break\_point:
}

\cs\_new:Npn \_clist\_sanitize:Nn #1#2
{ \__clist\_use\_none\_delimit\_by\_s\_stop:w #2 \s\_clist\_stop
#1 \__clist\_wrap\_item:w #2 ,
\exp\_after:wN \_clist\_sanitize:Nn \exp\_after:wN ,
\exp:w \_clist\_trim\_next:w \prg\_do\_nothing:
}

(End of definition for \_clist\_sanitize:n and \_clist\_sanitize:Nn.)

\_clist\_if\_wrap:nTF \_clist\_if\_wrap:w True if the argument must be wrapped to avoid getting altered by some clist operations. That is the case whenever the argument

- starts or end with a space or contains a comma,
- is empty, or
- consists of a single braced group.

If the argument starts or ends with a space or contains a comma then one of the three arguments of \_clist\_if\_wrap:w will have its end delimiter (partly) in one of the three copies of #1 in \_clist\_if\_wrap:nTF; this has a knock-on effect meaning that the result of the expansion is not empty; in that case, wrap. Otherwise, the argument is safe unless it starts with a brace group (or is empty) and it is empty or consists of a single n-type argument.

\prg\_new\_conditional:Npnn \_clist\_if\_wrap:n #1 { TF }

859
62.2 Allocation and initialisation

Internally, comma lists are just token lists.

Creating and initializing a constant comma list is done by sanitizing all items (stripping spaces and braces).

Clearing comma lists is just the same as clearing token lists.
\clist_clear_new:N  \clist_clear_new:c  \clist_gclear_new:N  \clist_gclear_new:c

Once again a copy from the token list functions.

\clist_set_eq:NN  \clist_set_eq:cN  \clist_set_eq:Nc  \clist_set_eq:cc
\clist_gset_eq:NN  \clist_gset_eq:cN  \clist_gset_eq:Nc  \clist_gset_eq:cc

(End of definition for \clist_clear_new:N and \clist_gclear_new:N. These functions are documented on page 182.)

\clist_set_from_seq:NN  \clist_set_from_seq:cN  \clist_set_from_seq:Nc  \clist_set_from_seq:cc
\clist_gset_from_seq:NN  \clist_gset_from_seq:cN  \clist_gset_from_seq:Nc  \clist_gset_from_seq:cc

Setting a comma list from a comma-separated list is done using a simple mapping. Safe items are put in \exp_not:n, otherwise we put an extra set of braces. The first comma must be removed, except in the case of an empty comma-list.

(End of definition for \clist_set_eq:NN and \clist_gset_eq:NN. These functions are documented on page 182.)
Concatenating comma lists is not quite as easy as it seems, as there needs to be the correct addition of a comma to the output. So a little work to do.

\begin{verbatim}
\cs_new_protected:Npn \clist_concat:NNN \__clist_concat:NNNN \__kernel_tl_set:Ne
\cs_new_protected:Npn \clist_gconcat:NNN \__clist_concat:NNNN \__kernel_tl_gset:Ne
\cs_new_protected:Npn \__clist_concat:NNNN #1#2#3#4
{ #1 #2
  \exp_not:o #3
  \clist_if_empty:NF #3 { \clist_if_empty:NF #4 { , } }
  \exp_not:o #4
}
\cs_generate_variant:Nn \clist_concat:NNN { ccc }
\cs_generate_variant:Nn \clist_gconcat:NNN { ccc }
\end{verbatim}

(End of definition for \clist_concat:NNN, \clist_gconcat:NNN, and \_\_clist_concat:NNNN. These functions are documented on page 183.)

Copies of the cs functions defined in l3basics.

\begin{verbatim}
\prg_new_eq_conditional:NNn \clist_if_exist:N \cs_if_exist:N
\prg_new_eq_conditional:NNn \clist_if_exist:c \cs_if_exist:c
\end{verbatim}

(End of definition for \clist_if_exist:NTF. This function is documented on page 183.)

\section{Adding data to comma lists}

\begin{verbatim}
\clist_set:Nn \clist_set:NV \clist_set:Ne \clist_set:Nx \clist_set:cn \clist_set:cV \clist_set:ce \clist_set:co \clist_set:cx
\clist_gset:Nn \clist_gset:NV \clist_gset:Ne \clist_gset:Nx \clist_gset:cn \clist_gset:cV \clist_gset:ce
\clist_put_left:Nn \clist_put_left:NV \clist_put_left:Ne \clist_put_left:Nx \clist_put_left:cn \clist_put_left:cV \clist_put_left:ce \clist_put_left:co \clist_put_left:cx
\clist_gput_left:Nn \clist_gput_left:NV \clist_gput_left:Ne \clist_gput_left:Nx \clist_gput_left:cn \clist_gput_left:cV \clist_gput_left:ce
\__clist_put_left:NNNn
\end{verbatim}

Everything is based on concatenation after storing in \l__clist_internal_clist. This avoids having to worry here about space-trimming and so on.

(End of definition for \clist_set:Nn and \clist_gset:Nn. These functions are documented on page 183.)
62.4 Comma lists as stacks

Getting an item from the left of a comma list is pretty easy: just trim off the first item using the comma. No need to trim spaces as comma-list variables are assumed to have “cleaned-up” items. (Note that grabbing a comma-delimited item removes an outer pair of braces if present, exactly as needed to uncover the underlying item.)
An empty clist leads to \texttt{\_q\_no\_value}, otherwise grab until the first comma and assign to the variable. The second argument of \texttt{\_\_clist\_pop:NN} is a comma list ending in a comma and \texttt{\_s\_clist\_mark}, unless the original clist contained exactly one item: then the argument is just \texttt{\_s\_clist\_mark}. The next auxiliary picks either \texttt{\_exp\_not:n} or \texttt{\use\_none:n} as \texttt{#2}, ensuring that the result can safely be an empty comma list.

The same, as branching code: very similar to the above.

\texttt{\_clist\_get:NNTF} 
\texttt{\_clist\_get:cNTF} 
\texttt{\_clist\_pop:NNTF} 
\texttt{\_clist\_gpop:NNTF} 
\texttt{\_\_clist\_pop:TF:NNN} 

\texttt{\_prg\_new\_protected\_conditional:Npnn} \texttt{\_clist\_get:NN #1\#2} \{ \texttt{T} , \texttt{F} , \texttt{TF} \} 
\texttt{\_if\_meaning:w \#1 \texttt{\_c\_empty\_clist}} 
\texttt{\_prg\_return\_false:} 
\texttt{\_else:} 
\texttt{\_exp\_after:WN \_\_clist\_pop:WN #1 , \_s\_clist\_stop #2} 
\texttt{\_prg\_return\_true:} 
\texttt{\_fi:} 
\texttt{\_prg\_generate\_conditional\_variant:Nnn} \texttt{\_clist\_get:NN \{ \texttt{c} \} \{ \texttt{T} , \texttt{F} , \texttt{TF} \}} 
\texttt{\_prg\_new\_protected\_conditional:Npnn} \texttt{\_clist\_pop:NN #1\#2} \{ \texttt{T} , \texttt{F} , \texttt{TF} \} 
\texttt{\_if\_meaning:w \#2 \texttt{\_c\_empty\_clist}} 
\texttt{\_prg\_return\_false:} 
\texttt{\_else:} 
\texttt{\_prg\_new\_protected\_conditional:Npnn} \texttt{\_clist\_gpop:NN #1\#2} \{ \texttt{T} , \texttt{F} , \texttt{TF} \} 
\texttt{\_if\_meaning:w \#2 \texttt{\_c\_empty\_clist}} 
\texttt{\_prg\_return\_false:} 
\texttt{\_else:} 

864
Pushing to a comma list is the same as adding on the left.
\cs_new_eq:NN \clist_push:Nn \clist_put_left:Nn
\cs_generate_variant:Nn \clist_push:Nn { NV , No , Nx , c , cv , co , cx }
\cs_new_eq:NN \clist_gpush:Nn \clist_gput_left:Nn
\cs_generate_variant:Nn \clist_gpush:Nn { NV , No , Nx , c , cv , co , cx }

(End of definition for \clist_push:Nn and \clist_gpush:Nn. These functions are documented on page 189.)

62.5 Modifying comma lists

An internal comma list and a sequence for the removal routines.
\l__clist_internal_remove_clist
\l__clist_internal_remove_seq

(End of definition for \l__clist_internal_remove_clist and \l__clist_internal_remove_seq.)

Removing duplicates means making a new list then copying it.
\cs_new_protected:Npn \clist_remove_duplicates:N
\cs_new_protected:Npn \clist_gremove_duplicates:N
{ \__clist_remove_duplicates:NN \clist_set_eq:NN }
\cs_new_protected:Npn \__clist_remove_duplicates:NN #1#2
{ \clist_clear:N \l__clist_internal_remove_clist
\clist_map_inline:Nn #2
\l__clist_remove_clist_if_in:NnF
\l__clist_remove_clist_if_empty:NF \l__clist_internal_remove_clist ( , ) \l__clist_if_wrap:nTF (#1) \exp_not:n { (#1) } \exp_not:n { (#1) } } #2
\l__clist_remove_clist
\cs_generate_variant:Nn \clist_remove_duplicates:N { c }
\cs_generate_variant:Nn \clist_gremove_duplicates:N { c }

(End of definition for \clist_remove_duplicates:N, \clist_gremove_duplicates:N, and \l__clist_remove_duplicates:NN. These functions are documented on page 184.)
The method used here for safe items is very similar to \texttt{\tl_replace_all:Nnn}. However, if the item contains commas or leading/trailing spaces, or is empty, or consists of a single brace group, we know that it can only appear within braces so the code would fail; instead just convert to a sequence and do the removal with \texttt{l3seq} code (it involves somewhat elaborate code to do most of the work expandably but the final token list comparisons non-expandably).

For “safe” items, build a function delimited by the \texttt{⟨item⟩} that should be removed, surrounded with commas, and call that function followed by the expanded comma list, and another copy of the \texttt{⟨item⟩}. The loop is controlled by the argument grabbed by \texttt{\_\_clist_remove_all:w}: when the item was found, the \texttt{\s__clist_mark} delimiter used is the one inserted by \texttt{\_\_clist_tmp:w}, and \texttt{\_\_clist_use_none_delimit_by_s_stop:w} is deleted. At the end, the final \texttt{⟨item⟩} is grabbed, and the argument of \texttt{\_\_clist_tmp:w} contains \texttt{\s__clist_mark}: in that case, \texttt{\_\_clist_remove_all:w} removes the second \texttt{\s__clist_mark} (inserted by \texttt{\_\_clist_tmp:w}), and lets \texttt{\_\_clist_use_none_delimit_by_s_stop:w} act.

No brace is lost because items are always grabbed with a leading comma. The result of the first assignment has an extra leading comma, which we remove in a second assignment. Two exceptions: if the clist lost all of its elements, the result is empty, and we shouldn’t remove anything; if the clist started up empty, the first step happens to turn it into a single comma, and the second step removes it.
\texttt{\__clist_remove_all:}\{ \exp_after:wN \__clist_remove_all:w \__clist_tmp:w , \}\}
\texttt{\__clist_remove_all:w #1 , \s__clist_mark , #2 , { \exp_not:n \{#1\} }}
\texttt{\__clist_generate_variant:Nn \clist_remove_all:Nn \{ c , NV , cV \}}
\texttt{\__clist_generate_variant:Nn \clist_gremove_all:Nn \{ c , NV , cV \}}

(End of definition for \clist_remove_all:Nn and others. These functions are documented on page 184.)

\texttt{\clist_reverse:N}\texttt{\clist_reverse:c}\texttt{\clist_greverse:N}\texttt{\clist_greverse:c}

Use \clist_reverse:N in an \texttt{e}-expanding assignment. The extra work that \clist_reverse:n does to preserve braces and spaces would not be needed for the well-controlled case of \texttt{N}-type comma lists, but the slow-down is not too bad.

\texttt{\__clist_reverse:wwNww}\texttt{\__clist_reverse_end:ww}

The reversed token list is built one item at a time, and stored between \texttt{\s__clist_stop} and \texttt{\s__clist_mark}, in the form of \texttt{?} followed by zero or more instances of \texttt{⟨item}⟩. We start from a comma list \texttt{⟨item}1⟩,...,\texttt{⟨item}n⟩. During the loop, the auxiliary \texttt{\__clist_reverse:wwNww} receives \texttt{⟨item}i⟩ as \#1, \texttt{⟨item}i+1⟩,...,\texttt{⟨item}n⟩ as \#2, \texttt{\__clist_reverse:wwNww} as \#3, what remains until \texttt{\s__clist_stop} as \#4, and \texttt{⟨item}i−1⟩,...,\texttt{⟨item}1⟩ as \#5. The auxiliary moves \#1 just before \#5, with a comma, and calls itself (\#3). After the last item is moved, \texttt{\__clist_reverse:wwNww} receives \texttt{\s__clist_mark \__clist_reverse:wwNww} as its argument \#1, thus \texttt{\__clist_reverse_end:ww} as its argument \#3. This second auxiliary cleans up until the marker !, removes the trailing comma (introduced when the first item was moved after \texttt{\s__clist_stop}), and leaves its argument \#1 within \texttt{\exp_not:n}. There is also a need to remove a leading comma, hence \texttt{\exp_not:o} and \texttt{\use_none:n}.

\texttt{\__clist_reverse:wwNww}\texttt{\__clist_reverse_end:ww}

(End of definition for \clist_reverse:N and \clist_greverse:N. These functions are documented on page 184.)

\texttt{\clist_sort:Nn}\texttt{\clist_sort:cn}\texttt{\clist_gsort:Nn}\texttt{\clist_gsort:cn}

Implemented in \texttt{l3sort}.

(End of definition for \clist_sort:Nn and \clist_gsort:Nn. These functions are documented on page 185.)
62.6 Comma list conditionals

Simple copies from the token list variable material.

As usual, we insert a token (here \?) before grabbing any argument: this avoids losing
braces. The argument of \texttt{\tl_if_empty:oTF} is empty if \texttt{#1} is \? followed by blank spaces
(besides, this particular variant of the emptiness test is optimized). If the item of the
comma list is blank, grab the next one. As soon as one item is non-blank, exit: the second
auxiliary grabs \texttt{\prg_return_false:} as \#2, unless every item in the comma list was blank
and the loop actually got broken by the trailing \texttt{\s__clist_mark \prg_return_false:} item.

For “safe” items, we simply surround the comma list, and the item, with commas, then
use the same code as for \texttt{\tl_if_in:Nn}. For “unsafe” items we follow the same route as
\texttt{\seq_if_in:Nn}, mapping through the list a comparison function. If found, return \texttt{true}
and remove \texttt{\prg_return_false:}.
62.7 Mapping over comma lists

If the variable is empty, the mapping is skipped (otherwise, that comma-list would be seen as consisting of one empty item). Then loop over the comma-list, grabbing eight comma-delimited items at a time. The end is marked by \s__clist_stop, which may not appear in any of the items. Once the last group of eight items has been reached, we go through them more slowly using \__clist_map_function_end:w. The auxiliary function \__clist_map_function:Nw is also used in some other clist mappings.
\begin{verbatim}
\clist_map_function:nN #1 #2
\begin{verbatim}
\exp_after:wN \__clist_map_function_n:Nn \exp_after:wN #2
\exp:w \__clist_trim_next:w \prg_do_nothing: #1 ,
\s__clist_stop \clist_map_break: ,
\prg_break_point:Nn \clist_map_break: { }
\end{verbatim}
\end{verbatim}
\end{verbatim}
\cs_new:Npn \__clist_map_unbrace:wn #1, #2 { #2 {#1} }
\end{verbatim}
\end{verbatim}
\end{verbatim}
\begin{verbatim}
\clist_map_inline:Nn \clist_map_inline:cn \clist_map_inline:nn
\end{verbatim}

Inline mapping is done by creating a suitable function “on the fly”: this is done globally to avoid any issues with \TeX’s groups. We use a different function for each level of nesting.

Since the mapping is non-expandable, we can perform the space-trimming needed by the \texttt{n} version simply by storing the comma-list in a variable. We don’t need a different comma-list for each nesting level: the comma-list is expanded before the mapping starts.

\begin{verbatim}
\clist_if_empty:NF #1
\int_gincr:N \g__kernel_prg_map_int 
\cs_set_protected:cpn
\{ \__clist_use_none_delimit_by_s_stop:w \#2 \s__clist_stop
\__clist_map_function_end:w \s__clist_stop
#1 {#2}
\__clist_map_function_end:w \s__clist_stop
\}
\cs_generate_variant:Nn \clist_map_function:NN { c }
\end{verbatim}

(End of definition for \clist_map_function:NN, \__clist_map_function:Nw, and \__clist_map_unbrace:wn. This function is documented on page 186.)

The \texttt{n}-type mapping function is a bit more awkward, since spaces must be trimmed from each item. Space trimming is again based on \__clist_trim_next:w. The auxiliary \__clist_map_function_n:Nn receives as arguments the function, and the next non-empty item (after space trimming but before brace removal). One level of braces is removed by \__clist_map_unbrace:wn.

\begin{verbatim}
\cs_new:Npn \clist_map_function:nN #1 #2
\begin{verbatim}
\exp_after:wN \__clist_map_function_n:Nn \exp_after:wN #2
\exp:w \__clist_trim_next:w \prg_do_nothing: #1 ,
\s__clist_stop \clist_map_break: ,
\prg_break_point:Nn \clist_map_break: { }
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\end{verbatim}
\begin{verbatim}
\cs_new:Npn \__clist_map_unbrace:wn #1, #2 { #2 {#1} }
\end{verbatim}

(End of definition for \clist_map_function:nN, \__clist_map_function_n:Nn, and \__clist_map_unbrace:wn. This function is documented on page 186.)

Inline mapping is done by creating a suitable function “on the fly”: this is done globally to avoid any issues with \TeX’s groups. We use a different function for each level of nesting.

Since the mapping is non-expandable, we can perform the space-trimming needed by the \texttt{n} version simply by storing the comma-list in a variable. We don’t need a different comma-list for each nesting level: the comma-list is expanded before the mapping starts.
The \texttt{N}-type version is a straightforward application of \texttt{clist\_map\_tokens:Nn}, calling \texttt{\_\_clist\_map\_variable:Nnn} for each item to assign the variable and run the user’s code. The \texttt{N}-type version is not implemented in terms of the \texttt{n}-type function \texttt{clist\_\_map\_tokens:Nn}, because here we are allowed to clean up the \texttt{n}-type comma list non-expandably.

\begin{verbatim}
\cs_new_protected:Npn \clist_map_variable:NNn #1#2#3 { \clist_map_tokens:Nn #1 { \__clist_map_variable:Nnn #2 {#3} } }
\cs_generate_variant:Nn \clist_map_variable:NNn { c }
\cs_new_protected:Npn \__clist_map_variable:Nnn #1#2#3 { \tl_set:Nn #1 {#3} #2 }
\cs_new_protected:Npn \clist_map_variable:nNn #1 { \clist_set:Nn \l__clist_internal_clist {#1} \clist_map_variable:NNn \l__clist_internal_clist }
\end{verbatim}

\textit{End of definition for \texttt{clist\_map\_variable:NNn}, \texttt{clist\_map\_variable:nNn}, and \texttt{\_\_clist\_map\_variable:Nnn}. These functions are documented on page 186.}

\begin{verbatim}
\cs_new:Npn \clist_map_tokens:Nn #1#2 { \clist_if_empty:NF #1 { \__clist_map_tokens:nw {#2} #1 , \s__clist_stop , \s__clist_stop , \s__clist_stop , \s__clist_stop , \s__clist_stop , \s__clist_stop , \prg_break_point:Nn \clist_map_break: { } } }
\cs_new:Npn \__clist_map_tokens:nw #1 #2, #3, #4, #5, #6, #7, #8, #9, , #10 { \__clist_use_none_delimit_by_s_stop:w #9 \__clist_map_tokens_end:w \s__clist_stop \use:n #1 {#2} \use:n #1 {#3} \use:n #1 {#4} \use:n #1 {#5} \use:n #1 {#6} \use:n #1 {#7} \use:n #1 {#8} \use:n #1 {#9} \__clist_map_tokens:nw {#1} }
\end{verbatim}

\textit{End of definition for \texttt{clist\_map\_tokens:Nn}, \texttt{clist\_map\_tokens:cn}, and \texttt{\_\_clist\_map\_tokens:nw}. These functions are documented on page 186.}

\begin{verbatim}
\cs_new:Npn \__clist_map_tokens_end:w \s__clist_stop \use:n #1#2 { \__clist_use_none_delimit_by_s_stop:w #2 \clist_map_break: \s__clist_stop \use:n {#1} {#2} }
\end{verbatim}

Essentially a copy of \texttt{clist\_map\_function:NN} with braces added.

\begin{verbatim}
\cs_new:Npn \clist_map_tokens:cn \__clist_map_tokens:nw \__clist_map_tokens_end:w
\end{verbatim}

871
(End of definition for \clist_map_tokens:Nn, \__clist_map_tokens:nw, and \__clist_map_tokens_end:w. This function is documented on page 186.)

\clist_map_tokens:nn

Similar to \clist_map_function:nN but with a different way of grabbing items because we cannot use \exp_after:wN to pass the \langle code \rangle.

\clist_map_break:

The break statements use the general \prg_map_break:Nn mechanism.

\clist_count:N
\clist_count:c
\clist_count:e
\__clist_count:n
\__clist_count:w

Counting the items in a comma list is done using the same approach as for other token count functions: turn each entry into a +1 then use integer evaluation to actually do the mathematics. In the case of an n-type comma-list, we could of course use \clist_map_function:nN, but that is very slow, because it carefully removes spaces. Instead, we loop manually, and skip blank items (but not \{), hence the extra spaces.

\__clist_map_tokens_end:w \__clist_stop
\cs_generate_variant:Nn \clist_map_tokens:Nn { c }
\clist_map_tokens:nn
\__clist_map_tokens_n:nw
\prg_do_nothing: #1 , \__clist_map_tokens_end:w \s__clist_stop \clist_map_break: , \prg_break_point:Nn \clist_map_break: { }
\cs_new:Npn \__clist_use_none_delimit_by_s_stop:w #2 \s__clist_stop \tl_trim_spaces_apply:oN {#2} \use_ii_i:nn \__clist_map_unbrace:wn , {#1} \__clist_map_tokens_n:nw {#1} \prg_do_nothing:
\__clist_map_tokens:nw #1#2 ,
\tl_if_empty:oF { \use_none:nn #2 \? } \__clist_use_none_delimit_by_s_stop:w #2 \s__clist_stop \tl_trim_spaces_apply:oN {#2} \use_ii_i:nn \__clist_map_unbrace:wn , {#1}
\__clist_map_tokens:nw #1 \prg_do_nothing:
\__clist_map_tokens_n:nw \__clist_use_none_delimit_by_s_stop:w #2 \s__clist_stop \tl_trim_spaces_apply:oN {#2} \use_ii_i:nn \__clist_map_unbrace:wn , {#1}
\__clist_count:n #1 \prg_do_nothing:
\__clist_count:w
\int_eval:n \__clist_map_tokens_end:w \s__clist_stop
\cs_generate_variant:Nn \clist_count:N { c }
\__clist_map_tokens:nw #1 \{ + 1 \}
\cs_set_protected:Nn \__clist_TMP:w #1
62.8 Using comma lists

First check that the variable exists. Then count the items in the comma list. If it has none, output nothing. If it has one item, output that item, brace stripped (note that space-trimming has already been done when the comma list was assigned). If it has two, place the separator between two in the middle.

Otherwise, \clist_use:nwwwwwn takes the following arguments; 1: a separator, 2, 3, 4: three items from the comma list (or quarks), 5: the rest of the comma list, 6: a continuation function (use_ii or use_iii with its separator argument), 7: junk, and 8: the temporary result, which is built in a brace group following \s__clist_stop. The separator and the first of the three items are placed in the result, then we use the continuation, placing the remaining two items after it. When we begin this loop, the three items really belong to the comma list, the first \s__clist_mark is taken as a delimiter to the use_ii function, and the continuation is use_ii itself. When we reach the last two items of the original token list, \s__clist_mark is taken as a third item, and now the second \s__clist_mark serves as a delimiter to use_ii, switching to the other continuation, use_iii, which uses the separator between final two.

\begin{verbatim}
\cs_new:Npn \clist_count:n \clist_count:n #1
\{
\int_eval:n
\{
0
\__clist_count:w #1
#1 , \s__clist_stop \prg_break: , \prg_break_point:
\}
\}
\cs_new:Npn \__clist_count:w #1 ,
\{
\__clist_use_none_delimit_by_s_stop:w #1 \s__clist_stop
\tl_if_blank:nF {#1} { + 1 }
\__clist_count:w #1
\}
\exp_args:No \__clist_tmp:w \c_space_tl
\cs_generate_variant:Nn \clist_count:n { e }
\end{verbatim}

(End of definition for \clist_count:N and others. These functions are documented on page 187.)
Items are grabbed by \clist_use:Nw, which detects blank items with a \tl_if_empty:OTF test (in which case it recurses). Non-blank items are either the end of the list, in which case the argument #1 of \clist_use:Nw is used to properly end the list, or are normal items, which must be trimmed and properly unbraced. As we find successive items, the long list of \clist_use:Nw calls gets shortened and we end up calling \clist_use_more:w once we have found 3 items. This auxiliary leaves the first-found item and the general separator, and calls \clist_use:Nw to find more items. A subtlety is that we use \clist_use_end:w both in the case of a two-item list and for the last two items of a general list: to get the correct separator, \clist_use_more:w replaces the separator-of-two by the last-separator when called, namely as soon as we have found three items.
62.9 Using a single item

To avoid needing to test the end of the list at each step, we first compute the ⟨length⟩ of the list. If the item number is 0, less than −⟨length⟩, or more than ⟨length⟩, the result is empty. If it is negative, but not less than −⟨length⟩, add ⟨length⟩ + 1 to the item number before performing the loop. The loop itself is very simple, return the item if the counter reached 1, otherwise, decrease the counter and repeat.
This starts in the same way as \clist_item:Nn by counting the items of the comma list. The final item should be space-trimmed before being brace-stripped, hence we insert a couple of odd-looking \prg_do nothing: to avoid losing braces. Blank items are ignored.

\begin{verbatim}
\cs_new:Npn \clist_item:nn \clist_item:en \clist_item:n_loop:nw \clist_item:n_end:n \clist_item:n_strip:n \clist_item:n_strip:w
\__clist_item:ffnN { \clist_count:n {#1} } { \int_eval:n {#2} } {#1} \__clist_item_n:nw 
\cs_generate_variant:Nn \clist_item:nn { e }
\cs_new:Npn \__clist_item_n:nw #1 { \__clist_item_n_loop:nw {#1} \prg_do nothing: }
\cs_new:Npn \__clist_item_n_loop:nw #1 #2, { \exp_args:No \tl_if_blank:nTF {#2} { \__clist_item_n_loop:nw {#1} \prg_do nothing: } { \int_compare:nNnTF {#1} = 0 { \exp_args:Nf \__clist_item_n_end:n {#2} } { \exp_args:Nf \__clist_item_n_loop:nw { \int_eval:n { #1 - 1 } } \prg_do nothing: } } }
\cs_new:Npn \__clist_item_n_end:n #1 #2 \s__clist_stop { \tl_trim_spaces_apply:nN {#1} \__clist_item_n_strip:n }
\cs_new:Npn \__clist_item_n_strip:n #1 , { \exp_not:n {#1} }
\end{verbatim}
62.10 Viewing comma lists

Apply the general \_kernel\_chk\_tl\_type:NnnT with \exp\_not:o #2 serving as a dummy code to prevent a check performed by this auxiliary.

\cs_new_protected:Npn \clist_show:N { \__clist_show:NN \msg_show:nneeee }
\cs_new_protected:Npn \clist_log:N { \__clist_show:NN \msg_log:nneeee }
\cs_new_protected:Npn \__clist_show:NN \clist_count:N #2
\__kernel\_chk\_tl\_type:NnnT #2 \clist \int_compare:nNnTF \clist_count:N #2
\msg_error:nnee { \clist } \token_to_str:N #2 \tl_to_str:N #2

(End of definition for \clist_show:N, \clist_log:N, and \__clist_show:DNN. These functions are documented on page 190.)

A variant of the above: no existence check, empty first argument for the message.
\cs_new_protected:Npn \clist_show:n \clist_log:n \__clist_show:Nn
\int_compare:nNnTF \clist_count:N #2 \msg_error:nnee { \clist } \token_to_str:N #2 \tl_to_str:N #2
62.11 Scratch comma lists

Temporary comma list variables.

(End of definition for \_tmpaclist and others. These variables are documented on page 190.)
Chapter 63

l3token implementation

\s__char_stop\hfill Internal scan mark.
\scan_new:N \s__char_stop
(End of definition for \s__char_stop.)

\q__char_no_value\hfill Internal recursion quarks.
\quark_new:N \q__char_no_value
(End of definition for \q__char_no_value.)

\__char_quark_if_no_value:p:N \__char_quark_if_no_value:N\text{T\hfill Functions to query recursion quarks.
\__kernel_quark_new_conditional:Nn \__char_quark_if_no_value:N \{ T \ F \}
(End of definition for \__char_quark_if_no_value:N\text{T\hfill})

63.2 Manipulating and interrogating character tokens

\char_set_catcode:nn\hfill Simple wrappers around the primitives.
\char_value_catcode:n
\char_show_value_catcode:n
\cs_new_protected:Npn \char_set_catcode:nn \#1\#2
{ \tex_catcode:D \int_eval:n {\#1} = \int_eval:n {\#2} \exp_stop_f: }
\cs_new:Npn \char_value_catcode:n \#1
{ \tex_the:D \tex_catcode:D \int_eval:n {\#1} \exp_stop_f: }
\cs_new_protected:Npn \char_show_value_catcode:n \#1
{ \exp_args:Nf \tl_show:n { \char_value_catcode:n {\#1} } }

(End of definition for \char_set_catcode:nn, \char_value_catcode:n, and \char_show_value_catcode:n. These functions are documented on page 194.)
End of definition for \char_set_catcode_escape:N and others. These functions are documented on page 193.
18901 \cs_new_protected:Npn \char_set_catcode_math_subscript:n #1 18902 { \char_set_catcode:nn {#1} { 8 } } 18903 \cs_new_protected:Npn \char_set_catcode Ignore:n #1 18904 { \char_set_catcode:nn {#1} { 9 } } 18905 \cs_new_protected:Npn \char_set_catcode_space:n #1 18906 { \char_set_catcode:nn {#1} { 10 } } 18907 \cs_new_protected:Npn \char_set_catcode_letter:n #1 18908 { \char_set_catcode:nn {#1} { 11 } } 18909 \cs_new_protected:Npn \char_set_catcode_other:n #1 18910 { \char_set_catcode:nn {#1} { 12 } } 18911 \cs_new_protected:Npn \char_set_catcode_active:n #1 18912 { \char_set_catcode:nn {#1} { 13 } } 18913 \cs_new_protected:Npn \char_set_catcode_comment:n #1 18914 { \char_set_catcode:nn {#1} { 14 } } 18915 \cs_new_protected:Npn \char_set_catcode_invalid:n #1 18916 { \char_set_catcode:nn {#1} { 15 } } (End of definition for \char_set_catcode_escape:n and others. These functions are documented on page 194.)
\char_set_mathcode:nn \char_value_mathcode:n \char_show_value_mathcode:n \char_set_lccode:nn \char_value_lccode:n \char_show_value_lccode:n \char_set_uccode:nn \char_value_uccode:n \char_show_value_uccode:n \char_set_sfcode:nn \char_value_sfcode:n \char_show_value_sfcode:n Pretty repetitive, but necessary!
\char_set_mathcode:nn \char_value_mathcode:n \char_set_lccode:nn \char_value_lccode:n \char_set_uccode:nn \char_value_uccode:n \char_set_sfcode:nn \char_value_sfcode:n (End of definition for \char_set_mathcode:nn and others. These functions are documented on page 195.)
\l_char_active_seq \l_char_special_seq Two sequences for dealing with special characters. The first is characters which may be active, the second longer list is for “special” characters more generally. Both lists are escaped so that for example bulk code assignments can be carried out. In both cases, the order is by ASCII character code (as is done in for example \ExplSyntaxOn).
63.3 Creating character tokens

Four simple functions with very similar definitions, so set up using an auxiliary. These are similar to LuaTeX’s \letcharcode primitive.

\char_set_active_eq:NN
\char_set_active_eq:Nc
\char_gset_active_eq:NN
\char_gset_active_eq:Nc
\char_set_active_eq:nN
\char_set_active_eq:nc
\char_gset_active_eq:nN
\char_gset_active_eq:nc

\group_begin:
\char_set_catcode_active:N \^^@ \
\cs_set_protected:Npn \__char_tmp:nN #1#2 { \cs_new_protected:cpn { #1 :nN } ##1 { \group_begin: \char_set_lccode:nn { \^^@ } { ##1 } \tex_lowercase:D { \group_end: #2 \^^@ } } \cs_new_protected:cpe { #1 :NN } ##1 { \exp_not:c { #1 : nN } { '##1 } } } \__char_tmp:nN { char_set_active_eq } \cs_set_eq:NN \__char_tmp:nN { char_gset_active_eq } \cs_gset_eq:NN \group_end:
\cs_generate_variant:Nn \char_set_active_eq:NN { Nc }
\cs_generate_variant:Nn \char_gset_active_eq:NN { Nc }
\cs_generate_variant:Nn \char_set_active_eq:nN { nc }
\cs_generate_variant:Nn \char_gset_active_eq:nN { nc }

\__char_int_to_roman:w

For efficiency in 8-bit engines, we use the faster primitive approach to making roman numerals.

\cs_new_eq:NN \__char_int_to_roman:w \tex_romannumeral:D

The aim here is to generate characters of (broadly) arbitrary category code. Where possible, that is done using engine support (Xe\TeX, Lua\TeX). There are though various issues which are covered below. At the interface layer, turn the two arguments into integers up-front so this is only done once.

\cs_new:Npn \char_generate:nn { \exp:w \exp_after:wN \__char_generate_aux:w \int_value:w \int_eval:n {#1} \exp_after:wN ; \int_value:w \int_eval:n {#2} ; }
Before doing any actual conversion, first some special case filtering. Spaces are out here as
LuaTeX emulation only makes normal (charcode 32 spaces). However, ~\& is filtered out
separately as that can’t be done with macro emulation either, so is flagged up separately.
That done, hand off to the engine-dependent part.

Engine-dependent definitions are now needed for the implementation. Recent (u)pTeX
and the Unicode engines LuaTeX and X\[E\]TEX have engine-level support for expandable
character creation. pdfTeX and older (u)pTeX releases do not. The branching here if
low-level to avoid fixing the category code of the null character used in the false branch.
The final level is the basic definition at the engine level: the arguments here are integers
so there is no need to worry about them too much. Older versions of X\[E\]TEX cannot
generate active characters so we filter that: at some future stage that may change: the
slightly odd ordering of auxiliaries reflects that.

For engines where \texttt{\textbackslash Ucharcat} isn’t available or emulated, we have to work in macros,
and cover only the 8-bit range. The first stage is to build up a \texttt{tl} containing ~\& with
each category code that can be accessed in this way, with an error set up for the other
cases. This is all done such that it can be quickly accessed using a \if_case:w low-level conditional. The list is done in reverse as this puts the case of an active token first: that’s needed to cover the possibility that it is \outer. Getting the braces into the list is done using some standard \if_false: manipulation, while all of the \exp_not:N are required as there is an expansion in the setup.

For making spaces, there needs to be an o-type expansion of a \use:n (or some other tokenization) to avoid dropping the space.

Convert the above temporary list into a series of constant token lists, one for each character code, using \tex_lowercase:D to convert ^^@ in each case. The e-type expansion ensures that \tex_lowercase:D receives the contents of the token list.

As \TeX{} is very unhappy if it finds an alignment character inside a primitive \halign even when skipping false branches, some precautions are required. \TeX{} is happy if the token is hidden between braces within \if_false: ... \fi: The rather low-level approach here expands in one step to the \langle target token \rangle (\or: ...), then \exp_after:wN \langle target token \rangle (\or: ... expands in one step to \langle target token \rangle. This means that \exp_not:N is applied to a potentially-problematic active token.
\cs_new:Npn \__char_generate_aux:nnw #1#2#3 \exp_end:
 { #3
 \if_false: { \fi:
 \exp_after:wN \exp_after:wN \exp_after:wN \exp_end:
 \exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN
 \if_case:w \tex_numexpr:D 13 - #2
 \exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN
 \exp_after:wN \exp_after:wN \exp_after:wN \exp_not:N
 \cs:w c__char_ \__char_int_to_roman:w #1 _tl \cs_end:
 \fi:
 \fi:
 \group_end:
 (End of definition for \char_generate:nn and others. This function is documented on page 192.)

\c_catcode_active_space_tl
While \char_generate:nn can produce active characters in some engines it cannot in
general. It would be possible to simply change the catcode of space but then the code
would need to avoid all spaces, making it quite unreadable. Instead we use the primitive
\tex_lowercase:D trick.
\group_begin:
 \char_set_catcode_active:N *
 \char_set_lccode:nn { ‘* } { ‘\ }
 \tex_lowercase:D { \tl_const:Nn \c_catcode_active_space_tl { * } }
 \group_end:
 (End of definition for \c_catcode_active_space_tl. This variable is documented on page 192.)

\c_catcode_other_space_tl
Create a space with category code 12: an “other” space.
\tl const:Ne \c_catcode_other_space_tl { \char_generate:nn { ‘\ } { 12 } }
(End of definition for \c_catcode_other_space_tl. This function is documented on page 193.)

63.4 Generic tokens
\s__token_mark
\s__token_stop
Internal scan marks.
\scan_new:N \s__token_mark
\scan_new:N \s__token_stop
(End of definition for \s__token_mark and \s__token_stop.)
\token_to_meaning:N
\token_to_meaning:c
\token_to_str:N
\token_to_str:c
These are all defined in \l3basics, as they are needed “early”. This is just a reminder!
(End of definition for \token_to_meaning:N and \token_to_str:N. These functions are documented on
page 197.)
The macro works by comparing the input token with \if_catcode:w with all valid category codes. Since the most common tokens in an average argument list are of category 11 or 12 those are tested first. And since a space and braces are no ordinary N-type arguments, and only control sequences let to those categories can match them they are tested last.

\cs_new:Npn \token_to_catcode:N
\__token_to_catcode:N
{ \int_value:w \group_align_safe_begin: \__token_to_catcode:N #1
\cs_new:Npn \__token_to_catcode:N #1
{ \if_catcode:w \exp_not:N #1 \c_catcode_letter_token
11
\else:
\if_catcode:w \exp_not:N #1 \c_catcode_other_token
12
\else:
\if_catcode:w \exp_not:N #1 \c_math_toggle_token
3
\else:
\if_catcode:w \exp_not:N #1 \c_alignment_token
4
\else:
\if_catcode:w \exp_not:N #1 ##
6
\else:
\if_catcode:w \exp_not:N #1 \c_math_superscript_token
7
\else:
\if_catcode:w \exp_not:N #1 \c_math_subscript_token
8
\else:
\if_catcode:w \exp_not:N #1 \c_group_begin_token
1
\else:
\if_catcode:w \exp_not:N #1 \c_group_end_token
2
\else:
\if_catcode:w \exp_not:N #1 \c_space_token
10
\else:
\token_if_cs:NTF #1 { 16 } { 13 }
\fi:
\fi:
\fi:
\fi:
\fi:
\fi:
\fi:
\if:
\fi:
\fi:
\fi:
\fi:
\fi:
\if:
\fi:
\group_align_safe_end:
\exp_stop_f:
We define these useful tokens. For the brace and space tokens things have to be done by hand: the formal argument spec. for \texttt{cs\_new\_eq:NN} does not cover them so we do things by hand. (As currently coded it would \textit{work} with \texttt{cs\_new\_eq:NN} but that's not really a great idea to show off: we want people to stick to the defined interfaces and that includes us.) So that these few odd names go into the log when appropriate there is a need to hand-apply the \texttt{\_\_kernel\_chk\_if\_free\_cs:N} check.

\begin{verbatim}
\group_begin:
  \__kernel_chk_if_free_cs:N \c_group_begin_token
  \tex_global:D \tex_let:D \c_group_begin_token {
    \__kernel_chk_if_free_cs:N \c_group_end_token
    \tex_global:D \tex_let:D \c_group_end_token }
  \char_set_catcode_math_toggle:N \*
  \cs_new_eq:NN \c_math_toggle_token *
  \char_set_catcode_alignment:N \*
  \cs_new_eq:NN \c_alignment_token *
  \cs_new_eq:NN \c_parameter_token #
  \cs_new_eq:NN \c_math_superscript_token ^
  \char_set_catcode_math_subscript:N \*
  \cs_new_eq:NN \c_math_subscript_token *
  \__kernel_chk_if_free_cs:N \c_space_token
  \use:n { \tex_global:D \tex_let:D \c_space_token = ~ }
  \cs_new_eq:NN \c_catcode_letter_token a
  \cs_new_eq:NN \c_catcode_other_token 1
\group_end:
\end{verbatim}

(End of definition for \texttt{\c\_group\_begin\_token} and others. These functions are documented on page 196.)

\texttt{\c\_catcode\_active\_tl}

Not an implicit token!

\begin{verbatim}
\group_begin:
  \char_set_catcode_active:N \*
  \tl_const:Nn \c_catcode_active_tl { \exp_not:N * }
\group_end:
\end{verbatim}

(End of definition for \texttt{\c\_catcode\_active\_tl}. This variable is documented on page 196.)

### 63.5 Token conditionals

\texttt{\token\_if\_group\_begin_p:N}

Check if token is a begin group token. We use the constant \texttt{\c\_group\_begin\_token} for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token\_if\_group\_begin:N #1 { p , T , F , TF }
  \if_catcode:w \exp_not:N #1 \c_group_begin_token
    \prg_return_true: \else: \prg_return_false: \fi:
\end{verbatim}

(End of definition for \texttt{\token\_if\_group\_begin:NTF}. This function is documented on page 197.)

\texttt{\token\_if\_group\_end_p:N}

Check if token is an end group token. We use the constant \texttt{\c\_group\_end\_token} for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token\_if\_group\_end:N #1 { p , T , F , TF }
  \if_true:w \exp_not:N #1 \c_group_end_token
    \prg_return_true: \else: \prg_return_false: \fi:
\end{verbatim}

887
Check if token is a math shift token. We use the constant \c_math_toggle_token for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token_if_math_toggle:N #1 { p , T , F , TF }
{ \if_catcode:w \exp_not:N #1 \c_math_toggle_token \prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}

(End of definition for \token_if_math_toggle:NTF. This function is documented on page 198.)

Check if token is an alignment tab token. We use the constant \c_alignment_token for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token_if_alignment:N #1 { p , T , F , TF }
{ \if_catcode:w \exp_not:N #1 \c_alignment_token \prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}

(End of definition for \token_if_alignment:NTF. This function is documented on page 198.)

Check if token is a parameter token. We use the constant \c_parameter_token for this. We have to trick \TeX for a bit to avoid an error message: within a group we prevent \c_parameter_token from behaving like a macro parameter character. The definitions of \prg_new_conditional:Npnn are global, so they remain after the group.

\begin{verbatim}
\group_begin:
\cs_set_eq:NN \c_parameter_token \scan_stop:
\prg_new_conditional:Npnn \token_if_parameter:N #1 { p , T , F , TF }
{ \if_catcode:w \exp_not:N #1 \c_parameter_token \prg_return_true: \else: \prg_return_false: \fi: }
\group_end:
\end{verbatim}

(End of definition for \token_if_parameter:NTF. This function is documented on page 198.)

Check if token is a math superscript token. We use the constant \c_math_superscript_token for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token_if_math_superscript:N #1 { p , T , F , TF }
{ \if_catcode:w \exp_not:N #1 \c_math_superscript_token \prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}

(End of definition for \token_if_math_superscript:NTF. This function is documented on page 198.)
Check if token is a math subscript token. We use the constant \c_math_subscript_token for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token_if_math_subscript:N #1 { p , T , F , TF }
  { \if_catcode:w \exp_not:N #1 \c_math_subscript_token
    \prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}

(End of definition for \token_if_math_subscript:NTF. This function is documented on page 198.)

Check if token is a space token. We use the constant \c_space_token for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token_if_space:N #1 { p , T , F , TF }
  { \if_catcode:w \exp_not:N #1 \c_space_token
    \prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}

(End of definition for \token_if_space:NTF. This function is documented on page 198.)

Check if token is a letter token. We use the constant \c_catcode_letter_token for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token_if_letter:N #1 { p , T , F , TF }
  { \if_catcode:w \exp_not:N #1 \c_catcode_letter_token
    \prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}

(End of definition for \token_if_letter:NTF. This function is documented on page 198.)

Check if token is an other char token. We use the constant \c_catcode_other_token for this.

\begin{verbatim}
\prg_new_conditional:Npnn \token_if_other:N #1 { p , T , F , TF }
  { \if_catcode:w \exp_not:N #1 \c_catcode_other_token
    \prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}

(End of definition for \token_if_other:NTF. This function is documented on page 198.)

Check if token is an active char token. We use the constant \c_catcode_active_tl for this. A technical point is that \c_catcode_active_tl is in fact a macro expanding to \exp_not:N *, where * is active.

\begin{verbatim}
\prg_new_conditional:Npnn \token_if_active:N #1 { p , T , F , TF }
  { \if_catcode:w \exp_not:N #1 \c_catcode_active_tl
    \prg_return_true: \else: \prg_return_false: \fi: }
\end{verbatim}

(End of definition for \token_if_active:NTF. This function is documented on page 198.)

Check if the tokens #1 and #2 have same meaning.

\begin{verbatim}
\prg_new_eq_conditional:NNn \token_if_eq_meaning:NN \cs_if_eq:NN
  { p , T , F , TF }
\end{verbatim}

(End of definition for \token_if_eq_meaning:NTF. This function is documented on page 199.)
\texttt{token\_if\_eq\_catcode:NN} \ Check if the tokens \#1 and \#2 have same category code.
\begin{verbatim}
19202 \prg_new_conditional:Npn \token_if_eq_catcode:NN #1#2 { p , T , F , TF }
19203 { 19204 \if_catcode:w \exp_not:N #1 \exp_not:N #2 19205 \prg_return_true: \else: \prg_return_false: \fi: 19206 }
\end{verbatim}

(End of definition for \token_if_eq_catcode:NTF. This function is documented on page 198.)

\texttt{token\_if\_eq\_charcode:NN} \ Check if the tokens \#1 and \#2 have same character code.
\begin{verbatim}
19207 \prg_new_conditional:Npn \token_if_eq_charcode:NN #1#2 { p , T , F , TF }
19208 { 19209 \if_charcode:w \exp_not:N #1 \exp_not:N #2 19210 \prg_return_true: \else: \prg_return_false: \fi: 19211 }
\end{verbatim}

(End of definition for \token_if_eq_charcode:NTF. This function is documented on page 199.)

\texttt{token\_if\_macro:p:N} \texttt{\_token\_if\_macro:N} \texttt{\__token\_if\_macro_p:w} \texttt{\token\_if\_macro:NTF} \texttt{\__token\_if\_macro_p:w} \texttt{\__token\_if\_macro_p:w} \ When a token is a macro, \texttt{\token\_to\_meaning:N} always outputs something like \texttt{\long macro:#1->#1} so we could naively check to see if the meaning contains ->. However, this can fail the five \texttt{...mark} primitives, whose meaning has the form \texttt{...mark:(user material)}. The problem is that the \texttt{(user material)} can contain ->.

However, only characters, macros, and marks can contain the colon character. The idea is thus to grab until the first :, and analyse what is left. However, macros can have any combination of \texttt{\long}, \texttt{\protected} or \texttt{\outer} (not used in \LaTeX{}3) before the string \texttt{macro:}. We thus only select the part of the meaning between the first \texttt{ma} and the first following \. If this string is \texttt{cro}, then we have a macro. If the string is \texttt{rk}, then we have a mark. The string can also be \texttt{cro parameter character} for a colon with a weird category code (namely the usual category code of \#). Otherwise, it is empty.

This relies on the fact that \texttt{\long}, \texttt{\protected}, \texttt{\outer} cannot contain \texttt{ma}, regardless of the escape character, even if the escape character is m... Both \texttt{ma} and : must be of category code 12 (other), so are detokenized.
\begin{verbatim}
19212 \use:e 19213 { 19214 \prg_new_conditional:Npn \exp_not:N \token_if_macro:NTF #1 19215 { p , T , F , TF } 19216 { 19217 \exp_not:N \exp_after:wN \exp_not:N \__token_if_macro_p:w 19218 \exp_not:N \token_to_meaning:N #1 \tl_to_str:n { ma : } 19219 \s__token_stop 19220 \s__token_stop 19221 \cs_new:Npn \exp_not:N \__token_if_macro_p:w 19222 \#1 \tl_to_str:n { ma } \#2 \c_colon_str \#3 \s__token_stop 19223 \s__token_stop 19224 \s__token_stop 19225 \str_if_eq:nnTF \#2 \{ cro \} 19226 \{ \prg_return_true: \} 19227 \{ \prg_return_false: \}
\end{verbatim}

(End of definition for \token_if_macro:NTF and \__token_if_macro_p:w. This function is documented on page 199.)
\token_if_cs_p:N  
\token_if Cs:N

Check if token has same catcode as a control sequence. This follows the same pattern as  
for \token_if_letter:N etc. We use \scan_stop: for this.

\prg_new_conditional:Npnn \token_if_cs:N #1 { p , T , F , TF }
\exp_after:wN \if_catcode:w \exp_not:N #1 \scan_stop:
\prg_return_true: \else: \prg_return_false: \fi:

(End of definition for \token_if_cs:NTF. This function is documented on page 199.)

\token_if_expandable_p:N  
\token_if_expandable:N

Check if token is expandable. We use the fact that \TeX temporarily converts \exp_not:N \langle \text{token} \rangle into \scan_stop: if \langle \text{token} \rangle is expandable. An undefined token is not considered as expandable. No problem nesting the conditionals, since the third \#1 is only skipped if it is non-expandable (hence not part of \TeX's conditional apparatus).

\prg_new_conditional:Npnn \token_if_expandable:N #1 { p , T , F , TF }
\exp_after:wN \if_meaning:w \exp_not:N #1 #1
\prg_return_false:
\else:
\if_cs_exist:N #1
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:

(End of definition for \token_if_expandable:NTF. This function is documented on page 199.)

\__token_delimit_by_char":w  
\__token_delimit_by_count:w  
\__token_delimit_by_dimen:w  
\__token_delimit_by_font:w  
\__token_delimit_by_macro:w  
\__token_delimit_by_muskip:w  
\__token_delimit_by_skip:w  
\__token_delimit_by_toks:w

These auxiliary functions are used below to define some conditionals which detect whether  
the \meaning of their argument begins with a particular string. Each auxiliary takes an  
argument delimited by a string, a second one delimited by \s__token_stop, and returns  
the first one and its delimiter. This result is eventually compared to another string. Note  
that the “font” auxiliary is delimited by a space followed by “font”. This avoids an  
unnecessary check for the \font primitive below.

\group_begin:
\cs_set_protected:Npn \__token_tmp:w #1
\use:e
\{\cs_new:Npn \exp_not:c { \__token_delimit_by_ #1 :w }
  ##1 \tl_to_str:n {#1} \s__token_stop
  { ##1 \tl_to_str:n {#1} }
\}
\__token_tmp:w { char" }
\__token_tmp:w { count }  
\__token_tmp:w { dimen }  
\__token_tmp:w { - font }  
\__token_tmp:w { macro }  
\__token_tmp:w { muskip }  
\__token_tmp:w { skip }  
\__token_tmp:w { toks }  
\group_end:
Each of these conditionals tests whether its argument’s \textit{meaning} starts with a given string. This is essentially done by having an auxiliary grab an argument delimited by the string and testing whether the argument was empty. Of course, a copy of this string must first be added to the end of the \textit{meaning} to avoid a runaway argument in case it does not contain the string. Two complications arise. First, the escape character is not fixed, and cannot be included in the delimiter of the auxiliary function (this function cannot be defined on the fly because tests must remain expandable): instead the first argument of the auxiliary (plus the delimiter to avoid complications with trailing spaces) is compared using \texttt{str_if_eq:eeTF} to the result of applying \texttt{token_to_str:N} to a control sequence.

Second, the \textit{meaning} of primitives such as \texttt{dimen} or \texttt{dimendef} starts in the same way as registers such as \texttt{dimen123}, so they must be tested for.

Characters used as delimiters must have \texttt{catcode 12} and are obtained through \texttt{tl_to_str:n}. This requires doing all definitions within e-expansion. The temporary function \texttt{\_token_tmp:w} used to define each conditional receives three arguments: the name of the conditional, the auxiliary’s delimiter (also used to name the auxiliary), and the string to which one compares the auxiliary’s result. Note that the \textit{meaning} of a protected long macro starts with \texttt{\protected\long macro}, with no space after \texttt{\protected} but a space after \texttt{\long}, hence the mixture of \texttt{token_to_str:N} and \texttt{tl_to_str:n}.

For the first six conditionals, \texttt{cs_if_exist:cT} turns out to be \texttt{false} (thanks to the leading space for \texttt{font}), and the code boils down to a string comparison between the result of the auxiliary on the \textit{meaning} of the conditional’s argument \texttt{####1}, and \texttt{#3}. Both are evaluated at run-time, as this is important to get the correct escape character.

The other five conditionals have additional code that compares the argument \texttt{####1} to two \TeX{} primitives which would wrongly be recognized as registers otherwise. Despite using \TeX{}’s primitive conditional construction, this does not break when \texttt{####1} is itself a conditional, because branches of the conditionals are only skipped if \texttt{####1} is one of the two primitives that are tested for (which are not \TeX{} conditionals).

\input{09265}

(End of definition for \texttt{\_token_delimit_by_{char*:w and others}}.)
We filter out macros first, because they cause endless trouble later otherwise.

Primitives are almost distinguished by the fact that the result of \token_to_-meaning:N is formed from letters only. Every other token has either a space (e.g., the letter A), a digit (e.g., \count123) or a double quote (e.g., \char“A”).

Ten exceptions: on the one hand, \tex_undefined:D is not a primitive, but its meaning is undefined, only letters; on the other hand, \space, \italiccorr, \hyphen, \firstmark, \topmark, \botmark, \splitfirstmark, \splitbotmark, and \nullfont are primitives, but have non-letters in their meaning.

We start by removing the two first (non-space) characters from the meaning. This removes the escape character (which may be nonexistent depending on \endlinechar), and takes care of three of the exceptions: \space, \italiccorr and \hyphen, whose meaning is at most two characters. This leaves a string terminated by some \s__token_stop.

The meaning of each one of the five \...mark primitives has the form ⟨letters⟩:⟨user material⟩. In other words, the first non-letter is a colon. We remove everything after the first colon.

We are now left with a string, which we must analyze. For primitives, it contains only letters. For non-primitives, it contains either _, or a space, or a digit. Two exceptions remain: \tex_undefined:D, which is not a primitive, and \nullfont, which is a primitive.

Spaces cannot be grabbed in an undelimited way, so we check them separately. If there is a space, we test for \nullfont. Otherwise, we go through characters one by one, and stop at the first character less than ‘A’ (this is not quite a test for “only letters”,

(End of definition for \token_if_chardef:NTF and others. These functions are documented on page 199.)
but is close enough to work in this context). If this first character is \texttt{\textbackslash tex_undefined:D}, and if it is " or a digit, then the token is not a primitive.

For \TeX{} we use a different implementation which just looks at the command code for the token and compaes it to a list of non-primitives. Again, \texttt{\nullfont} is a special case because it is the only primitive with the normally non-primitive \texttt{set_font} command code.

In \MetaTeX{} some of the command names are different, so we check for both versions. The first one is always the \TeX{} version.

\begin{verbatim}
\sys_if_engine_luatex:TF
{ }
\{tex\}
\{lua\}
do
local get_next = token.get_next
local get_command = token.get_command
local get_index = token.get_index
local get_mode = token.get_mode or token.get_index
local cmd = command_id
local set_font = cmd:'get_font'
local biggest_char = token.biggest_char and token.biggest_char()
or status.getconstants().max_character_code
local mode_below_biggest_char = {}
local index_not_nil = {}
local mode_not_null = {}
local non_primitive = {
[cmd'left_brace'] = true,
[cmd'right_brace'] = true,
[cmd'math_shift'] = true,
[cmd'mac_param' or cmd'parameter'] = mode_below_biggest_char,
[cmd'sup_mark' or cmd'superscript'] = true,
[cmd'sub_mark' or cmd'subscript'] = true,
[cmd'endv' or cmd'ignore'] = true,
[cmd'spacer'] = true,
[cmd'letter'] = true,
[cmd'other_char'] = true,
[cmd'tab_mark' or cmd'alignment_tab'] = mode_below_biggest_char,
[cmd'char_given'] = true,
[cmd'math_given' or 'math_char_given'] = true,
[cmd'xmath_given' or 'math_char_xgiven'] = true,
[cmd'set_font'] = mode_not_null,
[cmd'undefined_cs'] = true,
[cmd'call'] = true,
[cmd'long_call' or cmd'protected_call'] = true,
[cmd'outer_call' or cmd'tolerant_call'] = true,
[cmd'assign_glue' or cmd'register_glue'] = index_not_nil,
[cmd'assign_mu_glue' or cmd'register_mu_glue'] = index_not_nil,
[cmd'assign_toks' or cmd'register_toks'] = index_not_nil,
[cmd'assign_int' or cmd'register_int'] = index_not_nil,
[cmd'assign_attr' or cmd'register_attribute'] = true,
[cmd'assign_dimen' or cmd'register_dimen'] = index_not_nil,
}
\end{verbatim}
\texttt{\prg_new_conditional:Npnn \token_ifPrimitive:N \ #1 \ { \ p , \ T , \ F , \ TF \ }}
{\prg_new_conditional:Npnn \__token_if_primitive_lua:N \ #1
{\__token_if_primitive_space:w \ #3 \ ~}
{\prg_new_conditional:Npnn \token_if_primitive:N \ #1
\{ \ #3 \ ~ \}
{\prg_new_conditional:Npnn \exp_not:N \token_if_macro:NTF \ #1
\exp_not:N \prg_return_false:
{\exp_not:N \exp_after:wN \exp_not:N \__token_ifPrimitive:NNw
\exp_not:N \token_to_meaning:N \ #1
\tl_to_str:n \ { : : : } \ s__token_stop \ #1
}
\cs_new:Npn \exp_not:N \__token_ifPrimitive_loop:N \ #3
\c_colon_str \ s__token_stop
{\exp_not:N \tl_if_empty:oTF
{\exp_not:N \__token_ifPrimitive_nullfont:N \ #3
-}
{\exp_not:N \__token_ifPrimitive_loop:N \ #3
\c_colon_str \ s__token_stop
}
{\exp_not:N \__token_ifPrimitive_nullfont:N \ #1
-}
}
\cs_new:Npn \__token_ifPrimitive_nullfont:N \ #1
{\exp_not:N \tl_if_empty:oTF
{\exp_not:N \__token_ifPrimitive_space:w \ #3
-}
{\exp_not:N \__token_ifPrimitive_loop:N \ #3
\c_colon_str \ s__token_stop
}
{\exp_not:N \__token_ifPrimitive_nullfont:N \ #1
-}
}
\cs_new:Npn \__token_ifPrimitive_space:w \ #1
{\exp_not:N \tl_if_empty:oTF
{\exp_not:N \__token_ifPrimitive_loop:N \ #3
\c_colon_str \ s__token_stop
}
{\exp_not:N \__token_ifPrimitive_nullfont:N \ #1
-}
}
\cs_new:Npn \__token_ifPrimitive_nullfont:N \ #1
{\exp_not:N \tl_if_empty:oTF
{\exp_not:N \__token_ifPrimitive_space:w \ #3
-}
{\exp_not:N \__token_ifPrimitive_loop:N \ #3
\c_colon_str \ s__token_stop
}
{\exp_not:N \__token_ifPrimitive_nullfont:N \ #1
-}
}
\cs_new:Npn \__token_ifPrimitive_space:w \ #1
{\exp_not:N \tl_if_empty:oTF
{\exp_not:N \__token_ifPrimitive_loop:N \ #3
\c_colon_str \ s__token_stop
}
{\exp_not:N \__token_ifPrimitive_nullfont:N \ #1
-}
}
\cs_new:Npn \__token_ifPrimitive_nullfont:N \ #1
{\exp_not:N \tl_if_empty:oTF
{\exp_not:N \__token_ifPrimitive_space:w \ #3
-}
{\exp_not:N \__token_ifPrimitive_loop:N \ #3
\c_colon_str \ s__token_stop
}
{\exp_not:N \__token_ifPrimitive_nullfont:N \ #1
-}
}
The aim here is to allow the case statement to be evaluated using a known number of expansion steps (two), and without needing to use an explicit “end of recursion” marker. That is achieved by using the test input as the final case, as this is always true. The trick is then to tidy up the output such that the appropriate case code plus either the true or false branch code is inserted.

(End of definition for \token_if_primitive:NTF and others. This function is documented on page 200.)
To tidy up the recursion, there are two outcomes. If there was a hit to one of the cases searched for, then #1 is the code to insert, #2 is the next case to check on and #3 is all of the rest of the cases code. That means that #4 is the true branch code, and #5 tidies up the spare \s__token_mark and the false branch. On the other hand, if none of the cases matched then we arrive here using the “termination” case of comparing the search with itself. That means that #1 is empty, #2 is the first \s__token_mark and so #4 is the false code (the true code is mopped up by #3).

(End of definition for \token_case_catcode:NnTF and others. These functions are documented on page 201.)

63.6 Peeking ahead at the next token

Peeking ahead is implemented using a two part mechanism. The outer level provides a defined interface to the lower level material. This allows a large amount of code to be shared. There are four cases:

1. peek at the next token;
2. peek at the next non-space token;
3. peek at the next token and remove it;
4. peek at the next non-space token and remove it.
Storage tokens which are publicly documented: the token peeked.

\l_peek_token
\g_peek_token

(End of definition for \l_peek_token and \g_peek_token. These variables are documented on page 201.)

\l__peek_search_token

The token to search for as an implicit token: cf. \l__peek_search_tl.

(End of definition for \l__peek_search_token.)

\l__peek_search_tl

The token to search for as an explicit token: cf. \l__peek_search_token.

(End of definition for \l__peek_search_tl.)

\l__peek_true:w
\l__peek_aux:w
\l__peek_false:w
\l__peek_tmp:w

Functions used by the branching and space-stripping code.

\l__peek_true_remove:w

A function to remove the next token and then regain control.

(End of definition for \l__peek_true_remove:w.)

\s__peek_mark
\s__peek_stop

Internal scan marks.

(End of definition for \s__peek_mark and \s__peek_stop.)

\l__peek_use_none_delimit_by_s_stop:w

Functions to gobble up to a scan mark.

(End of definition for \l__peek_use_none_delimit_by_s_stop:w.)

\peek_after:Nw
\peek_gafter:Nw

Simple wrappers for \futurelet: no arguments absorbed here.

(End of definition for \peek_after:Nw and \peek_gafter:Nw. These functions are documented on page 201.)
Repeatedly use \_\_peek_true_remove:w to remove a space and call \_\_peek_true_aux:w.

(End of definition for \peek_remove_spaces:n and \_\_peek_remove_spaces:. This function is documented on page 202.)

Here we can nest conditionals as \l_peek_token is only skipped over in the nested one if it’s a space: no problems with conditionals or outer tokens.
To deal with undefined control sequences in the same way \TeX{} does, we need to check for expansion manually.

\begin{verbatim}
\cs_new_protected:Npn \__peek_remove_filler_expand:w
{
\exp_after:wN \if_meaning:w \exp_not:N \l_peek_token \l_peek_token
\exp_after:wN \__peek_false:w
\else:
\exp_after:wN \__peek_remove_filler:w
\fi:
\}
\end{verbatim}

(End of definition for \peek_remove_filler:n and others. This function is documented on page 203.)

The generic functions store the test token in both implicit and explicit modes, and the \texttt{true} and \texttt{false} code as token lists, more or less. The two branches have to be absorbed here as the input stream needs to be cleared for the peek function itself. Here, \texttt{#1} is \__peek_true_remove:w when removing the token and \__peek_true_aux:w otherwise.

\begin{verbatim}
\cs_new_protected:Npn \__peek_token_generic_aux:NNNTF \__peek_true_aux:w
{
\group_align_safe_begin:
\cs_set_eq:NN \l__peek_search_token \#3
\tl_set:Nn \l__peek_search_tl {#3}
\cs_set:Npe \__peek_true_aux:w
{
\exp_not:N \group_align_safe_end:
\exp_not:n {#4}
}
\cs_set_eq:NN \__peek_true:w \__peek_true_aux:w
\cs_set:Npe \__peek_false:w
{
\exp_not:N \group_align_safe_end:
\exp_not:n {#5}
}
\peek_after:Nw \#2
\}
\end{verbatim}

(End of definition for \__peek_token_generic_aux:NNNTF.)

For token removal there needs to be a call to the auxiliary function which does the work.

\begin{verbatim}
\cs_new_protected:Npn \__peek_token_remove_generic:NNTF \__peek_true_remove:w
{
\__peek_token_generic_aux:NNNTF \__peek_true_remove:w
\cs_set_eq:NN \l__peek_search_token \#3
\tl_set:Nn \l__peek_search_tl {#3}
\cs_set:Npe \__peek_true_remove:w
{
\exp_not:N \group_align_safe_end:
\exp_not:n {#4}
}
\cs_set_eq:NN \__peek_true:w \__peek_true_remove:w
\cs_set:Npe \__peek_false:w
{
\exp_not:N \group_align_safe_end:
\exp_not:n {#5}
}
\peek_after:Nw \#2
\}
\end{verbatim}

900
The meaning test is straightforward.

\cs_new:Npn \_peek_execute_branches_meaning:
\begin{verbatim}
\if_meaning:w \l_peek_token \l__peek_search_token
\exp_after:wN \_peek_true:w
\else:
\exp_after:wN \_peek_false:w
\fi:
\end{verbatim}

(End of definition for \_peek_execute_branches_meaning:)

The catcode and charcode tests are very similar, and in order to use the same auxiliaries we do something a little bit odd, firing \if_catcode:w and \if_charcode:w before finding the operands for those tests, which are only given in the auxii:N and auxiii: auxiliaries. For our purposes, three kinds of tokens may follow the peeking function:

- control sequences which are not equal to a non-active character token (e.g., macro, primitive);
- active characters which are not equal to a non-active character token (e.g., macro, primitive);
- explicit non-active character tokens, or control sequences or active characters set equal to a non-active character token.

The first two cases are not distinguishable simply using \TeX’s \futurelet, because we can only access the \meaning of tokens in that way. In those cases, detected thanks to a comparison with \scan_stop:, we grab the following token, and compare it explicitly with the explicit search token stored in \l__peek_search_tl. The \exp_not:N prevents outer macros (coming from non-\H\TeX\3 code) from blowing up. In the third case, \l_peek_token is good enough for the test, and we compare it again with the explicit search token. Just like the peek token, the search token may be of any of the three types above, hence the need to use the explicit token that was given to the peek function.

\cs_new:Npn \_peek_execute_branches_catcode:
\begin{verbatim}
\if_catcode:w \_peek_execute_branches_catcode_aux:
\end{verbatim}

\cs_new:Npn \_peek_execute_branches_charcode:
\begin{verbatim}
\if_charcode:w \_peek_execute_branches_catcode_aux:
\end{verbatim}

\cs_new:Npn \_peek_execute_branches_catcode_aux:
\begin{verbatim}
\if_catcode:w \exp_not:N \l_peek_token \scan_stop:
\exp_after:wN \exp_after:wN
\exp_after:wN \_peek_execute_branches_catcode_auxii:N
\exp_after:wN \exp_not:N
\else:
\exp_after:wN \_peek_execute_branches_catcode_auxiii:
\fi:
\end{verbatim}

(End of definition for \_peek_execute_branches_catcode_auxi:N #1)
The public functions themselves cannot be defined using \texttt{\prg_new_conditional:Nppnn}. Instead, the TF, T, F variants are defined in terms of corresponding variants of \texttt{\_\_peek_token\_generic:NNTF} or \texttt{\_\_peek_token\_remove\_generic:NNTF}, with first argument one of \texttt{\_\_peek\_execute\_branches\_catcode:}, \texttt{\_\_peek\_execute\_branches\_charcode:}, or \texttt{\_\_peek\_execute\_branches\_meaning:}.

\begin{verbatim}
\tl_map_inline:nn { { catcode } { charcode } { meaning } }
{ \tl_map_inline:nn { { } { _remove } }
{ \tl_map_inline:nn { { TF } { T } { F } }
{ \cs_new_protected:cpe { peek_ #1 ##1 :N ####1 }
  { \exp_not:c { \_\_peek_token #1 _generic:NN ####1 }
  \exp_not:c { \_\_peek\_execute\_branches_ #1 : } }
  }
  }
}
\end{verbatim}

(End of definition for \texttt{\_\_peek\_execute\_branches\_catcode:} and others. These functions are documented on page 202.)

All tokens are N-type tokens, except in four cases: begin-group tokens, end-group tokens, space tokens with character code 32, and outer tokens. Since \texttt{\_\_peek\_token} might be outer, we cannot use the convenient \texttt{\bool_if:nTF} function, and must resort to the old trick of using \texttt{\ifodd} to expand a set of tests. The \texttt{false} branch of this test is taken if the token is one of the first three kinds of non-N-type tokens (explicit or implicit), thus we call \texttt{\_\_peek\_false:w}. In the \texttt{true} branch, we must detect outer tokens, without impacting performance too much for non-outer tokens. The first filter is to search for \texttt{outer} in the \texttt{meaning} of \texttt{\_\_peek\_token}. If that is absent, \texttt{\_\_peek\_use\_none\_delimit\_by-_s\_stop:w} cleans up, and we call \texttt{\_\_peek\_true:w}. Otherwise, the token can be a non-outer macro or a primitive mark whose parameter or replacement text contains \texttt{outer}, it can be the primitive \texttt{\_\_outer}, or it can be an outer token. Macros and marks would have

902
\texttt{ma} in the part before the first occurrence of \texttt{outer}; the meaning of \texttt{outer} has nothing after \texttt{outer}, contrarily to outer macros; and that covers all cases, calling \texttt{\_\_peek_true:w} or \texttt{\_\_peek_false:w} as appropriate. Here, there is no \texttt{⟨search token⟩}, so we feed a dummy \texttt{\scan_stop:} to the \texttt{\_\_peek_token_generic:NNTF} function.

\begin{verbatim}
group_begin: \cs_set_protected:Npn \_\_peek_tmp:w #1 \s\_\_peek_stop
{ \cs_new_protected:Npn \_\_peek_execute_branches_N_type:
{ \if_int_odd:w \if_catcode:w \exp_not:N \l_peek_token { \c_zero_int \fi:
\if_catcode:w \exp_not:N \l_peek_token } \c_zero_int \fi:
\if_meaning:w \l_peek_token \c_space_token \c_zero_int \fi:
\c_one_int \exp_after:wN \_\_peek_N_type:w
\token_to_meaning:N \l_peek_token \_\_\_peek_mark \_\_\_peek_using None_delimit_by_s_stop:w
\_\_\_peek_stop
\exp_after:wN \_\_\_peek_true:w
\else:
\exp_after:wN \_\_\_peek_false:w
\fi:
}
\cs_new_protected:Npn \_\_\_peek_N_type:w #1 #1 #1 \s\_\_\_peek_stop
{ #1 {#1} {#1} }
\exp_after:wN \_\_\_peek_tmp:w \tl_to_str:n { outer } \s\_\_\_peek_stop
\group_end:
\cs_new_protected:Npn \_\_\_peek_N_type:aux:nw #1 #2 \s\_\_\_peek_mark \s\_\_\_peek_stop
{ \#3 {\#1} {\#2} }
\exp_after:wN \_\_\_peek_tmp:w \tl_to_str:n { outer } \s\_\_\_peek_stop
\cs_new_protected:Npn \_\_\_peek_N_type:TF
{ \_\_\_peek_token_generic:NNTF
\_\_\_peek_execute_branches_N_type: \scan_stop:
}
\cs_new_protected:Npn \_\_\_peek_N_type:T
{ \_\_\_peek_token_generic:NNT \_\_\_peek_execute_branches_N_type: \scan_stop: }
\cs_new_protected:Npn \_\_\_peek_N_type:F
{ \_\_\_peek_token_generic:NNTF \_\_\_peek_execute_branches_N_type: \scan_stop: }
\end{verbatim}

(End of definition for \texttt{\_\_\_peek_N_type:TF} and others. This function is documented on page 203.)
Chapter 64

l3prop implementation

The following test files are used for this code: m3prop001, m3prop002, m3prop003, m3prop004, m3show001.

A property list is a macro whose top-level expansion is of the form

\s__prop \_\_prop_pair:wn \(key_1\) \s__prop \{\langle value_1\rangle\}

...\n
\_\_prop_pair:wn \(key_n\) \s__prop \{\langle\langle value_n\rangle\rangle\}

where \s__prop is a scan mark (equal to \scan_stop:), and \_\_prop_pair:wn can be used to map through the property list.

\s__prop The internal token used at the beginning of property lists. This is also used after each \langle key\rangle (see \_\_prop_pair:wn).

(End of definition for \s__prop.)

\_\_prop_pair:wn \_\_prop_pair:wn \(key\) \s__prop \{\langle item\rangle\}

The internal token used to begin each key-value pair in the property list. If expanded outside of a mapping or manipulation function, an error is raised. The definition should always be set globally.

(End of definition for \_\_prop_pair:wn.)

\l__prop_internal_tl Token list used to store new key-value pairs to be inserted by functions of the \prop_put:Nnn family.

(End of definition for \l__prop_internal_tl.)
\__prop_split:NnTF \__prop_split:NnTF \{property list\} \{\{key\}\} \{\{true code\}\} \{\{false code\}\}

Splits the \{property list\} at the \{key\}, giving three token lists: the \{extract\} of \{property list\} before the \{key\}, the \{value\} associated with the \{key\} and the \{extract\} of the \{property list\} after the \{value\}. Both \{extracts\} retain the internal structure of a property list, and the concatenation of the two \{extracts\} is a property list. If the \{key\} is present in the \{property list\} then the \{true code\} is left in the input stream, with #1, #2, and #3 replaced by the first \{extract\}, the \{value\}, and the second extract. If the \{key\} is not present in the \{property list\} then the \{false code\} is left in the input stream, with no trailing material. Both \{true code\} and \{false code\} are used in the replacement text of a macro defined internally, hence macro parameter characters should be doubled, except #1, #2, and #3 which stand in the \{true code\} for the three extracts from the property list. The \{key\} comparison takes place as described for \str_if_eq:nn.

\s__prop

A private scan mark is used as a marker after each key, and at the very beginning of the property list.

\__prop_pair:wn

The delimiter is always defined, but when misused simply triggers an error and removes its argument.

\l__prop_internal_tl

Token list used to store the new key–value pair inserted by \prop_put:Nnn and friends.

\c_empty_prop

An empty prop.

\__prop_mark \s__prop_stop

Internal scan marks.

\__prop_recursion_tail \__prop_recursion_stop

Internal recursion quarks.

\__prop_if_recursion_tail_stop:n \__prop_if_recursion_tail_stop:o

Functions to query recursion quarks.

64.1 Internal auxiliaries

\s__prop_mark \s__prop_stop

Internal scan marks.

\q__prop_recursion_tail \q__prop_recursion_stop

Internal recursion quarks.

\__prop_if_recursion_tail_stop:n \__prop_if_recursion_tail_stop:o

Functions to query recursion quarks.
64.2 Allocation and initialisation

\prop_new:N \prop_new:c

Property lists are initialized with the value \c_empty_prop.

\prop_clear:N \prop_clear:c \prop_gclear:N \prop_gclear:c

The same idea for clearing.

\prop_clear_new:N \prop_clear_new:c \prop_gclear_new:N \prop_gclear_new:c

Once again a simple variation of the token list functions.

\prop_set_eq:NN \prop_set_eq:cN \prop_set_eq:Nc \prop_set_eq:cc
\prop_gset_eq:NN \prop_gset_eq:cN \prop_gset_eq:Nc \prop_gset_eq:cc

These are simply copies from the token list functions.

\l_tmpa_prop \l_tmpb_prop \g_tmpa_prop \g_tmpb_prop

We can now initialize the scratch variables.

(End of definition for \prop_new:N. This function is documented on page 209.)

(End of definition for \prop_clear:N and \prop_gclear:N. These functions are documented on page 209.)

(End of definition for \prop_clear_new:N and \prop_gclear_new:N. These functions are documented on page 210.)

(End of definition for \prop_set_eq:NN and \prop_gset_eq:NN. These functions are documented on page 210.)

(End of definition for \l_tmpa_prop and others. These variables are documented on page 217.)

906
Property list used by \prop_concat:NNN, \prop_set_from_keyval:Nn and others.

\prop_new:N \l__prop_internal_prop

(End of definition for \l__prop_internal_prop.)

Combine two property lists. We cannot use a simple \tl_concat:NNN because there may be some duplicate keys between the two property lists.

\cs_new_protected:Npn \prop_concat:NNN { \__prop_concat:NNNN \prop_set_eq:NN }
\cs_generate_variant:Nn \prop_concat:NNN { ccc }
\cs_new_protected:Npn \prop_gconcat:NNN { \__prop_concat:NNNN \prop_gset_eq:NN }
\cs_generate_variant:Nn \prop_gconcat:NNN { ccc }
\cs_new_protected:Npn \__prop_concat:NNNN #1#2#3#4

\prop_set_eq:NN \l__prop_internal_prop #3
\prop_map_inline:Nn { \prop_put:Nnn \l__prop_internal_prop {##1} {##2} } #1 #2 \l__prop_internal_prop

(End of definition for \prop_concat:NNN, \prop_gconcat:NNN, and \__prop_concat:NNNN. These functions are documented on page 211.)

To avoid tracking throughout the loop the variable name and whether the assignment is local/global, do everything in a scratch variable and empty it afterwards to avoid wasting memory. Loop through items separated by commas, with \prg_do_nothing: to avoid losing braces. After checking for termination, split the item at the first and then at the second = which ought to be the first of the trailing = that we added). For both splits trim spaces and call a function (first \__prop_from_keyval_key:w then \__prop_from_keyval_value:w), followed by the trimmed material, \s__prop_mark, the subsequent part of the item, and the trailing =’s and \s__prop_stop. After finding the ⟨key⟩ just store it after \s__prop_stop. After finding the ⟨value⟩ ignore completely empty items (both trailing = were used as delimiters and all parts are empty); if the remaining part #2 consists exactly of the second trailing = (namely there was exactly one = in the item) then output one key–value pair for the property list; otherwise complain about a missing or extra =.

\cs_new_protected:Npn \prop_set_from_keyval:Nn #1
{ \prop_clear:N #1 \prop_put_from_keyval:Nn { \exp_not:o \l__prop_internal_prop } #1 \l__prop_internal_prop
\prop_clear:N \l__prop_internal_prop
}
\cs_generate_variant:Nn \prop_set_from_keyval:Nn { c }
\cs_new_protected:Npn \prop_gset_from_keyval:Nn #1
{ \prop_gclear:N #1 \prop_gput_from_keyval:Nn { \exp_not:o \l__prop_internal_prop } #1 \l__prop_internal_prop
\prop_gclear:N \l__prop_internal_prop
}
\cs_generate_variant:Nn \prop_gset_from_keyval:Nn { c }
\cs_new_protected:Npn \prop_const_from_keyval:Nn #1#2
{ \prop_set_from_keyval:Nn \l__prop_internal_prop {#2} \tl_const:Ne #1 { \exp_not:o \l__prop_internal_prop } \l__prop_internal_prop
\prop_clear:N \l__prop_internal_prop

907
64.3 Accessing data in property lists

This function is used by most of the module, and hence must be fast. It receives a ⟨property list⟩, a ⟨key⟩, a ⟨true code⟩ and a ⟨false code⟩. The aim is to split the ⟨property list⟩ at the given ⟨key⟩ into the ⟨extract1⟩ before the key–value pair, the ⟨value⟩ associated with the ⟨key⟩ and the ⟨extract2⟩ after the key–value pair. This is done using a delimited function, whose definition is as follows, where the ⟨key⟩ is turned into a string.

\cs_set:Npn \__prop_split_aux:w #1
\__prop_pair:wn ⟨key⟩ \s__prop #2
#3 \s__prop_mark #4 #5 \s__prop_stop
{ #4 {⟨true code⟩}; {⟨false code⟩} }

If the ⟨key⟩ is present in the property list, \__prop_split_aux:w’s #1 is the part before the ⟨key⟩, #2 is the ⟨value⟩, #3 is the part after the ⟨key⟩, #4 is \use_i:nn, and #5 is additional tokens that we do not care about. The ⟨true code⟩ is left in the input stream, and can use the parameters #1, #2, #3 for the three parts of the property list as desired. Namely, the original property list is in this case #1 \__prop_pair:wn ⟨key⟩ \s__prop ⟨#2⟩ #3.

If the ⟨key⟩ is not there, then the ⟨function⟩ is \use_ii:nn, which keeps the ⟨false code⟩.
Deleting from a property starts by splitting the list. If the key is present in the property list, the returned value is ignored. If the key is missing, nothing happens.

Getting an item from a list is very easy: after splitting, if the key is in the property list, just set the token list variable to the return value, otherwise to \texttt{\textbackslash q\_no\_value}.

Popping a value also starts by doing the split. If the key is present, save the value in the token list and update the property list as when deleting. If the key is missing, save \texttt{\textbackslash q\_no\_value} in the token list.
\begin{verbatim}
\tl_set:Nn #1 { ##1 ##3 }
\}
\cs_new_protected:Npn \prop_gpop:NnN #1#2#3
{ \tl_set:Nn #3 { \q_no_value } }
\cs_new_protected:Npn \prop_gpop:NnN #1#2#3
{ \tl_set:Nn #3 {##2} \tl_gset:Nn #1 { ##1 ##3 } }
\cs_generate_variant:Nn \prop_gpop:NnN { NV , No , Ne , c , cV , co , ce }
\end{verbatim}

(End of definition for \prop_gpop:NnN. These functions are documented on page 212.)

\prop_item:Nn Getting the value corresponding to a key in a property list in an expandable fashion simply uses \prop_map_tokens:Nn to go through the property list. The auxiliary \_\prop_-item:nnn receives the search string \#1, the key \#2 and the value \#3 and returns as appropriate.

\begin{verbatim}
\cs_new:Npn \prop_item:Nn #1#2
{ \exp_args:NNo \prop_map_tokens:Nn #1 \exp_after:wN \__prop_item:nnn \exp_after:wN { \tl_to_str:n {#2} } }
\cs_new:Npn \__prop_item:nnn #1#2#3
{ \str_if_eq:eeT {#1} {#2} { \prop_map_break:n { \exp_not:n {#3} } } }
\cs_generate_variant:Nn \prop_item:Nn { NV , No , Ne , c , cV , co , ce }
\end{verbatim}

(End of definition for \prop_item:Nn and \_\prop_item:nnn. This function is documented on page 213.)

\prop_count:N Counting the key–value pairs in a property list is done using the same approach as for other count functions: turn each entry into a +1 then use integer evaluation to actually do the mathematics.

\begin{verbatim}
\cs_new:Npn \prop_count:N #1
{ \int_eval:n { 0 \prop_map_function:NN #1 \__prop_count:nn } }
\cs_new:Npn \__prop_count:nn #1#2
{ + 1 }
\cs_generate_variant:Nn \prop_count:N { c }
\end{verbatim}

(End of definition for \prop_count:N and \_\prop_count:nn. This function is documented on page 213.)
Each property name and value pair will be returned in the form `{⟨name⟩}=⟨value⟩`.
As one of the main use cases for this macro is to pass the ⟨property list⟩ on to a key–value parser, we have to make sure that the behaviour is as good as possible. Using a space before the opening brace we get the correct brace stripping behaviour for most of the key–value parsers available in \LaTeX. Iterate over the ⟨property list⟩ and remove the leading comma afterwards. Only the value has to be protected in \__kernel_exp_not:w as the property name is always a string. After the loop the leading comma is removed by \use_none:n and afterwards \__kernel_exp_not:w eventually finds the opening brace of its argument.

```
\cs_new:Npn \prop_to_keyval:N #1
{ __kernel_exp_not:w
 \prop_if_empty:NTF #1
 { {} } \\
 { \exp_after:wN \exp_after:wN \exp_after:wN \tex_expanded:D
 __kernel_exp_not:w { \use_none:n }
 \prop_map_function:NN #1 __prop_to_keyval:nn
 }
}
```

Popping an item from a property list, keeping track of whether the key was present or not, is implemented as a conditional. If the key was missing, neither the property list, nor the token list are altered. Otherwise, \prg_return_true: is used after the assignments.

```
\prg_new_protected_conditional:Npnn \prop_pop:NnN #1#2#3 { T , F , TF }
{ __prop_split:NnTF #1 {#2}

 { \tl_set:Nn #3 {##2}
 \tl_set:Nn #1 { ##1 ##3 }
 \prg_return_true:
 }

 \prg_return_false:
}
```

```
\prg_new_protected_conditional:Npnn \prop_gpop:NnN #1#2#3 { T , F , TF }
{ __prop_split:NnTF #1 {#2}

 \tl_set:Nn #3 {#2}
 \tl_gset:Nn #1 { #1 ##3 }
 \prg_return_true:

 \prg_return_false:
}
```

(End of definition for \prop_to_keyval:N and others. This function is documented on page 213.)
Since the branches of \_\_prop_split:NnTF are used as the replacement text of an internal macro, and since the ⟨key⟩ and new ⟨value⟩ may contain arbitrary tokens, it is not safe to include them in the argument of \_\_prop_split:NnTF. We thus start by storing in \l__prop_internal_tl tokens which (after e-expansion) encode the key–value pair. This variable can safely be used in \_\_prop_split:NnTF. If the ⟨key⟩ was absent, append the new key–value to the list. Otherwise concatenate the extracts \#1 and \#3 with the new key–value pair \l__prop_internal_tl. The updated entry is placed at the same spot as the original ⟨key⟩ in the property list, preserving the order of entries.

\cs_new_protected:Npn \prop_put:Nnn { \__prop_put:NNnn \__kernel_tl_set:Ne }
\cs_new_protected:Npn \prop_gput:Nnn { \__prop_put:NNnn \__kernel_tl_gset:Ne }
\cs_new_protected:Npn \__prop_put:NNnn #1#2#3#4
{\tl_set:Nn \l__prop_internal_tl {\exp_not:N \__prop_pair:wn \tl_to_str:n {#3}\s__prop {\exp_not:n {#4}}}}
\__prop_split:NnTF #2 {#3}{#1 #2 {\exp_not:n {##1} \l__prop_internal_tl \exp_not:n {##3}}}{#1 #2 {\exp_not:o {#2} \l__prop_internal_tl}}

\cs_generate_variant:Nn \prop_put:Nnn { NnV , Nnv , Nne , NV , NVV , NVv , NVe , }
\cs_generate_variant:Nn \prop_put:Nnn { Nno , No , Noo , Nnx , NVx , NxV , Nxx }
64.4 Property list conditionals

Copies of the \texttt{cs} functions defined in \texttt{l3basics}.

\begin{verbatim}
\prop_if_exist_p:Nn \prop_if_exist_p:NV \prop_if_exist_p:Ne \prop_if_exist_p:cn \prop_if_exist_p:cV \prop_if_exist_p:ce \prop_if_exist_p:co \\
\prop_if_in_p:Nn \prop_if_in_p:NV \prop_if_in_p:Ne \prop_if_in_p:No \prop_if_in_p:cn \prop_if_in_p:cV \prop_if_in_p:ce \\
\__prop_if_in:nnn
\end{verbatim}

Testing expandably if a key is in a property list requires to go through the key–value pairs one by one. This is rather slow, and a faster test would be
but \_\_prop_split:NnTF is non-expandable. Instead, we use \prop_map_tokens:Nn to
compare the search key to each key in turn using \str_if_eq:ee, which is expandable.

\prg_new_protected_conditional:Npnn \prop_get:NnNTF #1#2#3 { p , T , F , TF }
\prg_new_protected_conditional:Npnn \prop_get:NvNTF #1#2#3 { p , T , F , TF }
\prg_new_protected_conditional:Npnn \prop_get:NeNTF #1#2#3 { p , T , F , TF }
\prg_new_protected_conditional:Npnn \prop_get:NcNTF #1#2#3 { p , T , F , TF }
\prg_new_protected_conditional:Npnn \prop_get:cVNTF #1#2#3 { p , T , F , TF }
\prg_new_protected_conditional:Npnn \prop_get:cvNTF #1#2#3 { p , T , F , TF }
\prg_new_protected_conditional:Npnn \prop_get:ceNTF #1#2#3 { p , T , F , TF }
\prg_new_protected_conditional:Npnn \prop_get:cnenTf #1#2#3 { p , T , F , TF }
\prg_new_protected_conditional:Npnn \prop_get:cxNTF #1#2#3 { p , T , F , TF }
\prg_new_protected_conditional:Npnn \prop_get:cncNTF #1#2#3 { p , T , F , TF }

(End of definition for \prop_get:NnTF and \_\_prop_get_in:nnn. This function is documented on page 214.)

64.5 Recovering values from property lists with branching

Getting the value corresponding to a key, keeping track of whether the key was present or not, is implemented as a conditional (with side effects). If the key was absent, the
token list is not altered.
64.6 Mapping over property lists

The even-numbered arguments of \prop_map_function:Nw are keys, hence have string catcodes, except at the end where they are \fi: \prop_map_break:. The \fi: ends the \if_false: # (even) \fi: construction and we jump out of the loop. No need for any quark test.

\cs_new:Npn \prop_map_function:NN #1#2
{\exp_after:wN \use_i_ii:nnn \exp_after:wN \__prop_map_function:Nw \exp_after:wN #2 #1 \__prop_pair:wn \fi: \prop_map_break: \s__prop { } \prg_break_point:Nn \prop_map_break: { } \cs_generate_variant:Nn \prop_map_function:NN { Nc , c , cc } }

Mapping in line requires a nesting level counter. Store the current definition of \__prop_pair:wn, and define it anew. At the end of the loop, revert to the earlier definition. Note that besides pairs of the form \__prop_pair:wn ⟨key⟩ \s__prop ⟨value⟩, there are a leading and a trailing tokens, but both are equal to \scan_stop:, hence have no effect in such inline mapping. Such \scan_stop: could have affected ligatures if they appeared during the mapping.

\cs_new:Nom \prop_map_function:NN #1#2
{ \cs_gset_eq:cN \__prop_map_ \int_use:N \g__kernel_prg_map_int :wn \__prop_pair:wn \int_gincr:N \g__kernel_prg_map_int \cs_gset_protected:Npn \__prop_pair:wn ##1 \s__prop ##2 {#2} #1 \prg_break_point:Nn \prop_map_break: { } \int_gdecr:N \g__kernel_prg_map_int \cs_gset_eq:Nc \__prop_pair:wn \__prop_map_ \int_use:N \g__kernel_prg_map_int :wn }
The mapping is very similar to \prop_map_function:Nn. The \use_i:nn removes the leading \_s\_prop. The odd construction \use:n (#1) allows #1 to contain any token without interfering with \prop_map_break:. The loop stops when the (key) between \_prop_pair:wn and \_s\_prop is \fi:\prop_map_break: instead of being a string.

\cs_new:Npn \prop_map_tokens:Nn #1#2
\exp_last_unbraced:Nno \use_i:nn { \__prop_map_tokens:nw {#2} } #1
\__prop_pair:wn \fi: \prop_map_break: \_s\_prop { }
\prg_break_point:Nn \prop_map_break: { }
\cs_generate_variant:Nn \prop_map_tokens:Nn { c }

(End of definition for \prop_map_tokens:Nn. This function is documented on page 215.)

\prop_map_break:
The break statements are based on the general \prg_map_break:Nn.
\cs_new:Npn \prop_map_break:
\prg_map_break:Nn \prop_map_break: { }
\cs_new:Npn \prop_map_break:n
\cs_generate_variant:Nn \prop_map_break: { n }

(End of definition for \prop_map_break: and \prop_map_break:n. These functions are documented on page 216.)

\section{Viewing property lists}

Apply the general \_kernel_chk_tl_type:NnnT. Contrarily to sequences and comma lists, we use \msg_show_item:nn to format both the key and the value for each pair.

\cs_new_protected:Npn \prop_show:N { \__prop_show:NN \msg_show:nneeee }
\cs_new_protected:Npn \prop_log:N { \__prop_show:NN \msg_log:nneeee }
\__prop_show_validate:w
\cs_generate_variant:Nn \prop_log:N { c }
\cs_new_protected:Npn \__prop_show:NN #1#2
\__kernel_chk_tl_type:NnnT #2 { prop }
\s__prop
\exp_after:wN \use_i:nn \exp_after:wN \__prop_show_validate:w #2
\__prop_pair:wn \q_recursion_tail \s__prop { } \q_recursion_stop
\__prop_pair:wn #1 { prop } { show }
\token_to_str:N #2
\prop_map_function:NN #2 \msg_show_item:nn
\__prop_show_validate:w
\__(package\end{definition for \prop_show:N and others. These functions are documented on page 216.\end{package}
Chapter 65

l3skip implementation

65.1 Length primitives renamed

Primitives renamed.
\if_dim:w \__dim_eval:w \__dim_eval_end:
\cs_new_eq:NN \if_dim:w \tex_ifdim:D
\cs_new_eq:NN \__dim_eval:w \tex_dimexpr:D
\cs_new_eq:NN \__dim_eval_end: \tex_relax:D

(End of definition for \if_dim:w, \__dim_eval:w, and \__dim_eval_end:. This function is documented on page 233.)

65.2 Internal auxiliaries

Internal scan marks.
\s__dim_mark \s__dim_stop
\scan_new:N \s__dim_mark
\scan_new:N \s__dim_stop

(End of definition for \s__dim_mark and \s__dim_stop.)
\__dim_use_none_delimit_by_s_stop:w Functions to gobble up to a scan mark.
\cs_new:Npn \__dim_use_none_delimit_by_s_stop:w #1 \s__dim_stop { }

(End of definition for \__dim_use_none_delimit_by_s_stop:w.)

65.3 Creating and initialising dim variables

Allocating (dim) registers ...
\dim_new:N \dim_new:c
\cs_new_protected:Npn \dim_new:N #1
{ \__kernel_chk_if_free_cs:N #1 \cs:w newdimen \cs_end: #1 }
\cs_generate_variant:Nn \dim_new:N { c }

918
Contrarily to integer constants, we cannot avoid using a register, even for constants. We cannot use \texttt{\dim_gset:Nn} because debugging code would complain that the constant is not a global variable. Since \texttt{\dim_const:Nn} does not need to be fast, use \texttt{\dim_eval:n} to avoid needing a debugging patch that wraps the expression in checking code.

\begin{verbatim}
cs_new_protected:Npm \dim_const:Nn #1#2
c { \dim_new:N #1 \tex_global:D #1 = \dim_eval:n {#2} \scan_stop: } cs_generate_variant:Nn \dim_const:Nn { c }
\end{verbatim}

Reset the register to zero. Using \texttt{\c_zero_skip} deals with the case where the variable passed is incorrectly a skip (for example a \LaTeX\vskip length). Besides, these functions are then simply copied for \texttt{\skip_zero:N} and related functions.

\begin{verbatim}
cs_new_protected:Npm \dim_zero:N #1 { #1 = \c_zero_skip }
cs_new_protected:Npm \dim_gzero:N #1 { \tex_global:D #1 = \c_zero_skip }
cs_generate_variant:Nn \dim_zero:N { c }
cs_generate_variant:Nn \dim_gzero:N { c }
\end{verbatim}

Create a register if needed, otherwise clear it.

\begin{verbatim}
cs_new_protected:Npm \dim_zero_new:N #1 { \dim_if_exist:NTF #1 { \dim_zero:N #1 } { \dim_new:N #1 } }
cs_new_protected:Npm \dim_gzero_new:N #1 { \dim_if_exist:NTF #1 { \dim_gzero:N #1 } { \dim_new:N #1 } }
cs_generate_variant:Nn \dim_zero_new:N { c }
cs_generate_variant:Nn \dim_gzero_new:N { c }
\end{verbatim}

Copies of the \texttt{cs} functions defined in \texttt{l3basics}.

\begin{verbatim}
prg_new_eq_conditional:NNn \dim_if_exist:N \cs_if_exist:N { TF , T , F , p }
prg_new_eq_conditional:NNn \dim_if_exist:c \cs_if_exist:c { TF , T , F , p }
\end{verbatim}

Setting dimensions is easy enough but when debugging we want both to check that the variable is correctly local/global and to wrap the expression in some code. The \texttt{\scan_stop:} deals with the case where the variable passed is a skip (for example a \LaTeX\vskip length).

\begin{verbatim}
cs_new_protected:Npm \dim_set:Nn #1 \dim_set:cn #1#2
c { \#1 = \__dim_eval:w #2 \__dim_eval_end: \scan_stop: }
\end{verbatim}

65.4 Setting dim variables

Setting dimensions is easy enough but when debugging we want both to check that the variable is correctly local/global and to wrap the expression in some code. The \texttt{\scan_stop:} deals with the case where the variable passed is a skip (for example a \LaTeX\vskip length).

\begin{verbatim}
cs_new_protected:Npm \dim_set:Nn #1 \dim_set:cn #1#2
c { \#1 = \__dim_eval:w #2 \__dim_eval_end: \scan_stop: }
\end{verbatim}
\cs_new_protected:Npn \dim_gset:Nn \tex_global:D \#1 = \__dim_eval:w \#2 \__dim_eval_end: \scan_stop: \
\cs_generate_variant:Nn \dim_set:Nn { c } \cs_generate_variant:Nn \dim_gset:Nn { c } 

(End of definition for \dim_set:Nn and \dim_gset:Nn. These functions are documented on page 219.)

\dim_set_eq:NN All straightforward, with a \scan_stop: to deal with the case where \#1 is (incorrectly)
\dim_set_eq:cN a skip.
\dim_set_eq:cc \cs_new_protected:Npn \dim_set_eq:NN \#1\#2 \#1 = \#2 \scan_stop: 
\cs_generate_variant:Nn \dim_set_eq:NN { c , Nc , cc }
\cs_generate_variant:Nn \dim_gset_eq:NN { c , Nc , cc } 

(End of definition for \dim_set_eq:NN and \dim_gset_eq:NN. These functions are documented on page 219.)

\dim_add:Nn Using by here would slow things down just to detect nonsensical cases such as passing
\dim_add:cn \dimen 123 as the first argument. Using \scan_stop: deals with skip variables. Since
\dim_add:cc debugging checks that the variable is correctly local/global, the global versions cannot
\dim_add:cc be defined as \tex_global:D followed by the local versions.
\dim_add:cc \cs_new_protected:Npn \dim_add:Nn \#1\#2 \tex_advance:D \#1 \__dim_eval:w \#2 \__dim_eval_end: \scan_stop: 
\cs_generate_variant:Nn \dim_add:Nn { c }
\cs_generate_variant:Nn \dim_gadd:Nn { c }
\cs_new_protected:Npn \dim_sub:Nn \#1\#2 \tex_advance:D \#1 - \__dim_eval:w \#2 \__dim_eval_end: \scan_stop: 
\cs_generate_variant:Nn \dim_sub:Nn { c }
\cs_generate_variant:Nn \dim_gsub:Nn { c } 

(End of definition for \dim_add:Nn and others. These functions are documented on page 219.)

65.5 Utilities for dimension calculations

\dim_abs:n Functions for min, max, and absolute value with only one evaluation. The absolute value
\dim_abs:N is evaluated by removing a leading - if present.
\dim_max:nn \cs_new:Npn \dim_abs:n \#1
\dim_min:nn \exp_after:wN \__dim_eval:w \dim_use:N \__dim_eval_end: \scan_stop: 
\dim_max:nn
\cs_new:Npn \_dim_abs:N #1
\{ \if_meaning:w - #1 \else: \exp_after:wN #1 \fi: \}
\cs_new:Npn \dim_max:nn #1#2
\{ \dim_use:N \_dim_eval:w \exp_after:wN \_dim_maxmin:wwN \dim_use:N \_dim_eval:w #1 \exp_after:wN \; \dim_use:N \_dim_eval:w #2 \exp_after:wN \; \__dim_eval_end: \}
\cs_new:Npn \dim_min:nn #1#2
\{ \dim_use:N \_dim_eval:w \exp_after:wN \_dim_maxmin:wwN \dim_use:N \_dim_eval:w #1 \exp_after:wN \; \dim_use:N \_dim_eval:w #2 \exp_after:wN \; \__dim_eval_end: \}
\cs_new:Npn \__dim_maxmin:wwN #1 \__dim_eval:w #2 \__dim_eval:w #3
\{ \if_dim:w #1 #3 #2 \__dim_eval:w #1 \else: #2 \fi: \}
\( \text{End of definition for \_dim_abs:N and others. These functions are documented on page 219.}\)
\dim_ratio:nn \_dim_ratio:n
With dimension expressions, something like 10 pt * ( 5 pt / 10 pt ) does not work. Instead, the ratio part needs to be converted to an integer expression. Using \int_value:w forces everything into sp, avoiding any decimal parts.
\cs_new:Npn \dim_ratio:nn #1#2
{ \_dim_ratio:n {#1} / \_dim_ratio:n {#2} }
\cs_new:Npn \_dim_ratio:n #1
{ \int_value:w \_dim_eval:w (#1) \_dim_eval_end: }
\( \text{End of definition for \dim_ratio:nn and \_dim_ratio:n. This function is documented on page 220.}\)

65.6 Dimension expression conditionals
\dim_compare_p:nNn \dim_compare:nNnTF \__dim_compare:w \__dim_compare:wNN \__dim_compare_=w \__dim_compare_!:w \__dim_compare_:w \__dim_compare_<:w \__dim_compare_>!:w \__dim_compare_error:
Simple comparison.
\prg_new_conditional:Npnn \dim_compare:nNnTF #1#2#3 \{ p , T , F , TF \}
\{ \if_dim:w \_dim_eval:w #1 #2 \_dim_eval:w #3 \_dim_eval_end: \prg_return_true: \else: \prg_return_false: \fi: \}
\( \text{End of definition for \dim_compare:nNnTF. This function is documented on page 220.}\)
This code is adapted from the \int_compare:nTF function. First make sure that there
is at least one relation operator, by evaluating a dimension expression with a trailing \_dim_compare_error:. Just like for integers, the looping auxiliary \_dim_compare:wNN closes a primitive conditional and opens a new one. It is actually easier to
grab a dimension operand than an integer one, because once evaluated, dimensions all end with pt (with category other). Thus we do not need specific auxiliaries for the three “simple” relations <, =, and >.

\begin{verbatim}
\prg_new_conditional:Nnnn \dim_compare:n \#1 \{ p , T , F , TF \}
  \exp_after:wN \__dim_compare:w
  \dim_use:N \__dim_eval:w \#1 \__dim_compare_error:
\end{verbatim}

(End of definition for \dim_compare:nTF and others. This function is documented on page 221.)

For dimension cases, the first task to fully expand the check condition. The over all idea is then much the same as for \str_case:nnTF as described in l3basics.

\begin{verbatim}
\dim_case:nn \dim_case:nnTF \__dim_case:nnTF \__dim_case:nw \__dim_case_end:nw
\end{verbatim}
while do and do while functions for dimensions. Same as for the \texttt{int} type only the names have changed.

```
\cs_new:Npn \dim_while_do:nn #1#2
{ \dim_compare:nT {#1}
 \dim_compare:nF {#1} {#2}
}
```

```
\cs_new:Npn \dim_until_do:nn #1#2
{ \dim_compare:nF {#1}
 \dim_compare:nT {#1} {#2}
}
```

```
\cs_new:Npn \dim_do_while:nn #1#2
{ \dim_compare:nT {#1}
 \dim_do_while:nn {#1} {#2}
}
```

```
\cs_new:Npn \dim_do_until:nn #1#2
{ \dim_do_until:nn {#1} {#2}
}
```

(End of definition for \texttt{\dim_case:nnTF} and others. This function is documented on page 222.)
65.8 Dimension step functions

Before all else, evaluate the initial value, step, and final value. Repeating a function by steps first needs a check on the direction of the steps. After that, do the function for the start value then step and loop around. It would be more symmetrical to test for a step size of zero before checking the sign, but we optimize for the most frequent case (positive step).

```latex
\cs_new:Npn \dim_step_function:nnn { __dim_step:wwwN __dim_step:NnnnN __dim_step:wwwN }
\cs_new:Npn \dim_step_function:nn { __dim_step:wwwN __dim_step:NnnnN }
```

(End of definition for \dim_step_function:nnnn and others. These functions are documented on page 223.)
\textbf{\dim_step_inline:nnnn, \dim_step_variable:nnnNn, \_dim_step:NNnnnn}

The approach here is to build a function, with a global integer required to make the nesting safe (as seen in other in line functions), and map that function using \dim_step_function:nnnN. We put a \prg_break_point:Nn so that map_break functions from other modules correctly decrement \g__kernel_prg_map_int before looking for their own break point. The first argument is \scan_stop:, so that no breaking function recognizes this break point as its own.

\textbf{\cs_new_protected:Npn \dim_step_inline:nnnn}

\textbf{\cs_new_protected:Npn \dim_step_variable:nnnNn #1#2#3#4#5}

\textbf{\cs_new_protected:Npn \_dim_map_:w}

(End of definition for \dim_step_function:nnnN, \_dim_step:wwN, and \_dim_step:NNnnnn. This function is documented on page 223.)
65.9 Using dim expressions and variables

\texttt{dim_eval:n} Evaluating a dimension expression expandably.

\texttt{dim_sign:n} See \texttt{dim_abs:n}. Contrarily to \texttt{int_sign:n} the case of a zero dimension cannot be distinguished from a positive dimension by looking only at the first character, since 0.2pt and 0pt start the same way. We need explicit comparisons. We start by distinguishing the most common case of a positive dimension.

\texttt{dim_use:N} Accessing a \texttt{dim}. We hand-code the \texttt{c} variant for some speed gain.

\texttt{dim_to_decimal:n} A function which comes up often enough to deserve a place in the kernel. Evaluate the dimension expression \#1 then remove the trailing \texttt{pt}. When debugging is enabled, the argument is put in parentheses as this prevents the dimension expression from terminating early and leaving extra tokens lying around. This is used a lot by low-level manipulations.
65.10 Conversion of \texttt{dim} to other units

The conversion from \texttt{pt} or \texttt{sp} to other units is complicated by the fact that \TeX{}’s conversion to \texttt{sp} involves rounding and hard-coded ratios. In order to give re-entrant outcomes, we therefore need to do quite a bit of work: see \url{https://github.com/latex3/latex3/issues/954} for detailed discussion. After dealing with the trivial case, we therefore have some work to do. The code to do this is contributed by Ruixi Zhang.

\texttt{\dim_to_decimal_in_sp:n}\\
\texttt{\dim_to_decimal_in_bp:n}\\
\texttt{\dim_to_decimal_in_cc:n}\\
\texttt{\dim_to_decimal_in_dd:n}\\
\texttt{\dim_to_decimal_in_mm:n}\\
\texttt{\dim_to_decimal_in_pc:n}\\
\texttt{\dim_to_decimal_aux:w}

We first set up a helper macro \texttt{\_dim_tmp:w} which takes two arguments. The first argument is one of the following engine-defined units: \texttt{in}, \texttt{pc}, \texttt{cm}, \texttt{mm}, \texttt{bp}, \texttt{dd}, \texttt{cc}, \texttt{nd}, and \texttt{nc}. The second argument is $\frac{1}{2}\delta^{-1}$ in reduced fraction, where $\delta > 1$ is the engine-defined conversion factor for each unit. Note that $\delta$ must be strictly larger than 1 for the following algorithm to work.

Here is how the algorithm works: Suppose that a user inputs a non-negative dimension in a unit that has conversion factor $\delta > 1$. Then this dimension is internally represented as $X \texttt{sp}$, where $X = [N\delta]$ for some integer $N \geq 0$. We then seek a formula to express this $N$ using $X$. The \texttt{\dim_to_decimal_in_<unit>:n} functions shall return the number $N/2^{16}$ in decimal. This way, we guarantee the returned decimal followed by the original unit will parse to exactly $X \texttt{sp}$.

So how do we get $N$ from $X$? Well, since $X = [N\delta]$, we have $X \leq N\delta < X + 1$ and $X\delta^{-1} \leq N < (X + 1)\delta^{-1}$. Let’s focus on the midpoint of this bounding interval for $N$. The midpoint is $(X + \frac{1}{2})\delta^{-1}$. The fact $\delta > 1$ implies that the bounding interval is shorter than 1 in length. Thus, (1) midpoint + $\frac{1}{2}$ > $N$ and (2) midpoint + $\frac{1}{2}$ < $N + 1$. In other words, $N = \lfloor \text{midpoint} + \frac{1}{2} \rfloor$. As long as we can rewrite the midpoint as the result of
a “scaling operation” of \( \varepsilon \)-\TeX, the \( \lfloor \ldots + \frac{1}{2} \rfloor \) part will follow naturally. Indeed we can: midpoint = \((2X + 1) \times (\frac{1}{2} \delta^{-1})\).

Addendum: If \( \delta \geq 2 \), then the bounding interval for \( N \) is at most \( \frac{1}{2} \) wide in length. In this case, the leftpoint \( X\delta^{-1} \) suffices as \( N = [X\delta^{-1} + \frac{1}{2}] \). Six out of the nine units listed above can be handled in this way, which is much simpler than using midpoint. But three remaining units have \( 1 < \delta < 2 \); they are \( \text{bp} \) (\( \delta = 7227/7200 \)), \( \text{nd} \) (\( \delta = 685/642 \)), and \( \text{dd} \) (\( \delta = 1238/1157 \)), and these three must be handled using midpoint. For consistency, we shall use the midpoint approach for all nine units.

\[
\text{Conversions to other units are now coded. Consult the pdf\TeX source for each conversion factor } \delta. \text{ Each factor } \frac{1}{2} \delta^{-1} \text{ is hand-coded for accuracy (and speed). As the units } \text{nc} \text{ and } \text{nd} \text{ are not supported by Xe\TeX or (u)p\TeX, they are not included here.}
\]

\[
\text{The tokens after } \__\text{dim_to_decimal_aux:w} \text{ shall have the following form: } <\text{number}>;\text{half of delta inverse}; \text{sp}, \text{ where } <\text{number}> \text{ represents the input dimension in } \text{sp} \text{ unit. If } <\text{number}> \text{ is positive, then } #1 \text{ is its leading digit and } #2 \text{ (possibly empty) is all the remaining digits; If } <\text{number}> \text{ is zero, then } #1 \text{ is } 012 \text{ and } #2 \text{ is empty; If } <\text{number}> \text{ is negative, then } #1 \text{ is its sign } -12 \text{ and } #2 \text{ is all its digits. In all three cases, } #1#2 \text{ is the original } <\text{number}>. \text{ We can use } #1 \text{ to decide whether to use the } -1 \text{ formula or the } +1 \text{ formula.}
\]

\[
\text{We need different formulae depending on whether the user input dimension is negative or not. For negative dimension (internally represented as } X \text{ sp}, \text{ the formula is } (2X - 1) \times (\frac{1}{2} \delta^{-1}). \text{ For non-negative dimension, the formula is } (2X + 1) \times (\frac{1}{2} \delta^{-1}). \text{ The intermediate step doubles the dimension } X. \text{ To avoid overflow, we must invoke } \text{int_eval:n}.
\]

\[
\text{Now we append } \text{sp} \text{ to finish the dimension specification.}
\]

\text{(End of definition for } \text{dim_to_decimal_in_bp:n and others. These functions are documented on page 225.)}
\dim_to_decimal_in_unit:nn

\cs_new:Npn \dim_to_decimal_in_unit:nn #1#2
{\exp_after:wN \__dim_chk_unit:w
\int_value:w \__dim_eval:w #2 \__dim_eval_end: ; {#1}}

(End of definition for \dim_to_decimal_in_unit:nn. This function is documented on page 226.)

\__dim_chk_unit:w

The tokens after \__dim_chk_unit:w shall have the following form: <number2>;{<dimexpr2>}, where <number2> represents <dimexpr2> in sp unit. If #1 is 0, the “unit” <dimexpr2> must also be zero. So we throw out a “division by zero” error message at this point. Otherwise, if #1 is -12, we shall negate both <dimexpr1> and <dimexpr2> for later procedures.

\cs_new:Npn \__dim_chk_unit:w #1#2;#3
{\token_if_eq_charcode:NNTF #1 0 { \msg_expandable_error:nn { dim } { zero-unit } }
{ \exp_after:wN \__dim_branch_unit:w
\int_value:w \if:w #1 - - \fi: \__dim_eval:w #3 \exp_after:wN ;
\int_value:w \if:w #1 - - \fi: #1#2 ;
}}

(End of definition for \__dim_chk_unit:w.)

\__dim_branch_unit:w

The tokens after \__dim_branch_unit:w shall have the following form: <number1>;<number2>;, where <number1> represents <dimexpr1> in sp unit (whose sign is taken care of) and <number2> represents the absolute value of <dimexpr2> in sp unit (which is strictly positive).

As explained, the formulae \((2X\pm 1)\times\left(\frac{1}{2}\delta^{-1}\right)\) work if and only if \(\delta = \frac{<number2>/65536}{<number2>} > 1\). This corresponds to \<dimexpr2> strictly larger than 1 pt in absolute value. In this case, we simply call \__dim_to_decimal_aux:w: and supply \(\frac{1}{2}\delta^{-1} = \frac{32768}{<number2}>\) as \textit{half of delta inverse}.

Otherwise if \(<number2> = 65536\), then \<dimexpr2> is 1 pt in absolute value and we call \dim_to_decimal:n directly.

Otherwise \(0 < <number2> < 65536\) and we shall proceed differently.

For unit less than 1 pt, write \(n = <number2>\), then \(\delta = n/65536 < 1\). The midpoint formulae are not optimal. Let’s go back to the inequalities \(X\delta^{-1} \leq N < (X + 1)\delta^{-1}\). Since now \(\delta < 1\), the bounding interval is wider than 1 in length. Consider the ceiling integer \(M = \lceil X\delta^{-1} \rceil\), then \(X\delta^{-1} \leq M < (X + 1)\delta^{-1}\), or equivalently \(X \leq M\delta < X + 1\), and thus \(\lceil M\delta \rceil = X\). The key point here is that we don’t need to solve for \(N\); in fact, any integer that can reproduce \(X\) (such as \(M\)) is good enough. So the algorithm goes like this: (1) Compute rounding of \(X\delta^{-1}\,\text{i.e.,}\,M' = \lceil X\delta^{-1} + \frac{1}{2} \rceil\); this \(M'\) could be either \(M\) or \(M - 1\). (2) Check if \(\lceil M'\delta \rceil = X\), i.e., whether our candidate \(M'\) can reproduce \(X\). If so, then this \(M'\) is good enough; if not, then we add one to \(M'\).

But when \(0 < n < 65536\), we cannot delay the problem of overflow any more. For \(X\delta^{-1} = X \times 65536/n\), where \(X\) can go up to \(2^{30} - 1\) and \(n\) can be as small as 1, the result is well over \(2^{31} - 1\) (largest integer allowed within \numexpr). For example, \dim_to_decimal_in_unit:nn \{ \maxdimen \} \{ 1sp \}. Here, all inputs are legal, so we should be able to output 1073741823 without causing arithmetic overflow.
As a workaround, let’s write $X = qn + r$ with some $q \geq 0$ and $0 \leq r < n$. Then $X\delta^{-1} = 65536q + 65536r/n$, and so $M' = 65536q + [65536r/n + \frac{1}{2}] = 65536q + R'$. Computing $R'$ will never overflow. If this $R'$ can reproduce $r$, then it is good enough; otherwise we add one to $R'$. In the end, we shall output $q + R'/65536$ in decimal.

Note: $q = \lfloor X/n \rfloor = \lfloor 2X - n/2 \rfloor$ represents the “integer” part, while $0 \leq R' \leq 65536$ represents the “fractional” part. (Can $R'$ = 65536 really happen? Didn’t investigate.)

```latex
\textbf{\texttt{__dim_branch_unit:w}} \texttt{#1;#2;}
\{
 \int_compare:nNnTF {#2} > { 65536 }
 { __dim_to_decimal_aux:w \#1 ; 32768 / #2 ; }
 {
 \int_compare:nNnTF {#2} = { 65536 }
 { \dim_to_decimal:n { \#1sp } }
 { __dim_get_quotient:w \#1 ; #2 ; }
 }
\}
(End of definition for __dim_branch_unit:w.)
```

```latex
\textbf{__dim_get_quotient:w} __dim_get_quotient:w
\texttt{#1#2;#3;}
\{
 \token_if_eq_charcode:NNTF #1 0
 { 0 }
 {
 \token_if_eq_charcode:NNTF #1 -
 { \exp_after:wN \exp_after:wN \exp_after:wN __dim_get_remainder:w
 \int_eval:n { (2 * #2 - #3) / (2 * #3) } ;
 #2 ; #3 ; - ;
 } __dim_get_quotient:w
 { \int_eval:n { (2 * #1#2 - #3) / (2 * #3) } ;
 #1#2 ; #3 ; ;
 }
 }
\}
(End of definition for __dim_get_quotient:w.)
```

```latex
__dim_get_remainder:w __dim_get_remainder:w
\texttt{#1#2;#3;}
\texttt{#4;#5;#6;#7;}
\{
 \exp_after:wN \exp_after:wN \exp_after:wN __dim_get_remainder:w
 \int_eval:n { (#4 * #5 - #6) / (#4 * #7) } ;
 #2 ; #3 ; - ;
}
\{
 \exp_after:wN \exp_after:wN \exp_after:wN __dim_get_remainder:w
 \int_eval:n { (#4 * #1#2 - #6) / (#4 * #7) } ;
 #1#2 ; #3 ; ;
\}
\}
```

(End of definition for \_\_dim_get_remainder:w.)

\textbf{\_\_dim_get_remainder:w} \_\_dim_get_remainder:w does not need to read the sign. After finding the remainder $r$, the number $|X|$ is no longer needed. We should then have \_\_dim_convert_remainder:w \_\_dim_get_quotient:w \_\_dim_get_remainder:w \_\_dim_convert_remainder:w followed by $r;n;q;\langle\text{sign of } X\rangle$.  

930
\cs_new:Npn \__dim_get_remainder:w #1;#2;#3; 
\exp_after:wN \exp_after:wN \exp_after:wN \__dim_convert_remainder:w 
\int_eval:n \{ \#2 - \#1 * \#3 \} ; 
\#3 ; \#1 ; 
\}

(End of definition for \__dim_get_remainder:w.)

\__dim_convert_remainder:w This is trivial. We compute \( R' = \lfloor \frac{65536r}{n+\frac{1}{2}} \rfloor \), then leave \__dim_test_candidate:w followed by \( R';r;n;q;\langle \text{sign of } X\rangle; \).
\cs_new:Npn \__dim_convert_remainder:w #1;#2; 
\exp_after:wN \exp_after:wN \exp_after:wN \__dim_test_candidate:w 
\int_eval:n \{ \#1 * 65536 / \#2 \} ; 
\#1 ; \#2 ; 
\}

(End of definition for \__dim_convert_remainder:w.)

\__dim_test_candidate:w Now the fun part: We take \( R', r \) and \( n \) to test whether \( r = \lfloor R' \delta \rfloor \). This is done as a dimension comparison. The left-hand side, \( r \), is simply \( r \ sp \). The right-hand side, \( \lfloor R' \delta \rfloor \), is exactly <\( R' \) as decimal><\text{dimen} = n sp>. If the result is true, then we’ve found \( R' \); otherwise we add one to \( R' \). After this step, \( r \) and \( n \) are no longer needed. We should then have \__dim_parse_decimal:w followed by \( R';q;\langle \text{sign of } X\rangle; \).
\cs_new:Npn \__dim_test_candidate:w #1;#2;#3; 
\exp_after:wN \exp_after:wN \exp_after:wN \__dim_test_candidate:w 
\int_eval:n \{ \#1 * 65536 / \#2 \} ; 
\#1 ; \#2 ; 
\}

(End of definition for \__dim_test_candidate:w.)

\__dim_parse_decimal:w \__dim_parse_decimal_aux:w The Grand Finale: We sum \( q \) and \( R'/65536 \) together, and negate the result if necessary. These are all done expandably. If \( 0 < R'/65536 < 1 \), the integer summation is naturally terminated at the decimal point. If \( R'/65536 = 0 \) (or \( 1 \)), the summation is terminated at the semicolon. The auxiliary function \__dim_parse_decimal_aux:w takes care of both cases.
\cs_new:Npn \__dim_parse_decimal:w #1;#2;#3; 
\exp_after:wN \__dim_parse_decimal_aux:w 
\int_value:w \#3 \int_eval:w \#2 + \dim_to_decimal:n \{ \#1sp \} ; 
\}

(End of definition for \__dim_parse_decimal:w and \__dim_parse_decimal_aux:w.)
65.11 Viewing \texttt{dim} variables

\begin{verbatim}
\dim_show:N \dim_show:c
\end{verbatim}

Diagnostics. We don’t use the \TeX{} primitive \texttt{\showthe} to show dimension expressions: this gives a more unified output.

\begin{verbatim}
\dim_show:n
\end{verbatim}

Diagnostics. We don’t use the \TeX{} primitive \texttt{\showthe} to show dimension expressions: this gives a more unified output.

\begin{verbatim}
\dim_log:N \dim_log:c \dim_log:n
\end{verbatim}

Diagnostics. Redirect output of \texttt{\dim_show:n} to the log.

\begin{verbatim}
\c_zero_dim \c_max_dim
\end{verbatim}

Constant dimensions.

\begin{verbatim}
\dim_const:Nn \c_zero_dim { 0 pt }
\dim_const:Nn \c_max_dim { 16383.99999 pt }
\end{verbatim}

Constant dimensions.

\begin{verbatim}
\l_tmpa_dim \l_tmpb_dim \g_tmpa_dim \g_tmpb_dim
\end{verbatim}

We provide two local and two global scratch registers, maybe we need more or less.

\begin{verbatim}
\dim_new:N \l_tmpa_dim \dim_new:N \l_tmpb_dim \dim_new:N \g_tmpa_dim \dim_new:N \g_tmpb_dim
\end{verbatim}

We provide two local and two global scratch registers, maybe we need more or less.

\begin{verbatim}
\s__skip_stop
\end{verbatim}

Internal scan marks.

\begin{verbatim}
\scan_new:N \s__skip_stop
\end{verbatim}

Internal scan marks.
\texttt{\textbackslash skip\_new:N} \texttt{\textbackslash skip\_new:c}\hspace{1em} Allocation of a new internal registers.
\begin{verbatim}
\texttt{\textbackslash cs\_new\_protected:Npm \textbackslash skip\_new:N \#1}
\texttt{
\{\
\_\_kernel\_chk\_if\_free\_cs:N \#1
\cs:w \textbackslash newskip \cs\_end: \#1
\}
\texttt{\textbackslash cs\_generate\_variant:Nn \textbackslash skip\_new:N \{ \texttt{c} \}}
\end{verbatim}

(End of definition for \texttt{\textbackslash skip\_new:N}. This function is documented on page 227.)

\texttt{\textbackslash skip\_const:Nn} \texttt{\textbackslash skip\_const:cn}\hspace{1em} Contrarily to integer constants, we cannot avoid using a register, even for constants. See \texttt{\textbackslash dim\_const:Nn} for why we cannot use \texttt{\textbackslash skip\_set:Nn}.
\begin{verbatim}
\texttt{\textbackslash cs\_new\_protected:Npm \textbackslash skip\_const:Nn \#1\#2}
\texttt{
\{\
\texttt{\textbackslash skip\_new:N \#1}
\tex\_global:D \#1 = \textbackslash skip\_eval:n \{\#2\} \texttt{\scan\_stop:}
\}
\texttt{\textbackslash cs\_generate\_variant:Nn \textbackslash skip\_const:Nn \{ \texttt{c} \}}
\end{verbatim}

(End of definition for \texttt{\textbackslash skip\_const:Nn}. This function is documented on page 227.)

\texttt{\textbackslash skip\_zero:N} \texttt{\textbackslash skip\_zero:c}\hspace{1em} Reset the register to zero.
\texttt{\textbackslash skip\_zero_new:N} \texttt{\textbackslash skip\_zero\_new:c}\hspace{1em} Create a register if needed, otherwise clear it.
\begin{verbatim}
\texttt{\textbackslash cs\_new\_protected:Npm \textbackslash skip\_zero\_new:N \#1}
\texttt{
\{\texttt{\textbackslash skip\_if\_exist:NTF \#1 \{ \texttt{\textbackslash skip\_zero\_new:N \#1 \} \}}
\}
\texttt{\textbackslash cs\_generate\_variant:Nn \textbackslash skip\_zero\_new:N \{ \texttt{c} \}}
\end{verbatim}

(End of definition for \texttt{\textbackslash skip\_zero\_new:N} and \texttt{\textbackslash skip\_zero\_new:c}. These functions are documented on page 227.)

\texttt{\textbackslash skip\_if\_exist\_p:N} \texttt{\textbackslash skip\_if\_exist\_p:c}\hspace{1em} Copies of the \texttt{cs} functions defined in \texttt{l3basics}.
\texttt{\textbackslash skip\_if\_exist:NTF} \texttt{\textbackslash skip\_if\_exist:cNTF}\hspace{1em} \begin{verbatim}
\texttt{\texttt{\textbackslash prg\_new\_eq\_conditional:NNNn \textbackslash skip\_if\_exist:N \textbackslash cs\_if\_exist:N}}
\texttt{
\{ \texttt{TF, T, F, p} \}}
\end{verbatim}

(End of definition for \texttt{\textbackslash skip\_if\_exist:NTF}. This function is documented on page 228.)
65.15 Setting skip variables

\skip_set:Nn \skip_set:cn \skip_gset:Nn \skip_gset:cn

Much the same as for dimensions.

\begin{verbatim}
\cs_new_protected:Npn \skip_set:Nn #1#2
\cs_new_protected:Npn \skip_gset:Nn #1#2
\end{verbatim}

(End of definition for \skip_set:Nn and \skip_gset:Nn. These functions are documented on page 228.)

\skip_set_eq:NN \skip_set_eq:cN \skip_set_eq:Nc \skip_set_eq:cc

\skip_gset_eq:NN \skip_gset_eq:cN \skip_gset_eq:Nc \skip_gset_eq:cc

All straightforward.

\begin{verbatim}
\cs_new_protected:Npn \skip_add:Nn #1#2
\cs_new_protected:Npn \skip_gadd:Nn #1#2
\end{verbatim}

(End of definition for \skip_add:Nn and others. These functions are documented on page 228.)

\skip_sub:Nn \skip_gsub:Nn

Using by here deals with the (incorrect) case \skip123.

\begin{verbatim}
\prg_new_conditional:Npnn \skip_if_eq:nn { p , T , F , TF }
\end{verbatim}

(End of definition for \skip_if_eq:nnTF. This function is documented on page 229.)

65.16 Skip expression conditionals

\skip_if_eq_p:nn \skip_if_eq:nnTF

Comparing skips means doing two expansions to make strings, and then testing them.

As a result, only equality is tested.

\begin{verbatim}
\prg_new_conditional:Nnn \skip_if_eq:nn \skip_if_eq:nnTF
\end{verbatim}

(End of definition for \skip_if_eq:nnTF. This function is documented on page 229.)
With \( \varepsilon \)-\TeX, we have an easy access to the order of infinities of the stretch and shrink components of a skip. However, to access both, we either need to evaluate the expression twice, or evaluate it, then call an auxiliary to extract both pieces of information from the result. Since we are going to need an auxiliary anyways, it is quicker to make it search for the string \texttt{fil} which characterizes infinite glue.

\begin{verbatim}
\cs_set_protected:Npn \__skip_tmp:w #1
\prg_new_conditional:Npnn \skip_if_finite:n ##1 { p , T , F , TF }
\exp_after:wN \__skip_if_finite:wwNw
\skip_use:N \tex_glueexpr:D ##1 ; \prg_return_false:
#1 ; \prg_return_true: \s__skip_stop
\}
\cs_new:Npn \__skip_if_finite:wwNw ##1 #1 ##2 ; ##3 ##4 \s__skip_stop {##3}
\exp_args:No \__skip_tmp:w { \tl_to_str:n { fil } }
\end{verbatim}

(End of definition for \texttt{\skip_if_finite:nTF} and \texttt{\__skip_if_finite:wwNw}. This function is documented on page 229.)

### 65.17 Using skip expressions and variables

\texttt{\skip_eval:n} Evaluating a skip expression expandably.

\begin{verbatim}
\cs_new:Npn \skip_eval:n #1
{ \skip_use:N \tex_glueexpr:D #1 \scan_stop: }
\end{verbatim}

(End of definition for \texttt{\skip_eval:n}. This function is documented on page 229.)

\texttt{\skip_use:N} \texttt{\skip_use:c} Accessing a \( \langle \text{skip}\rangle \).

\begin{verbatim}
\cs_new_eq:NN \skip_use:N \dim_use:N
\cs_new_eq:NN \skip_use:c \dim_use:c
\end{verbatim}

(End of definition for \texttt{\skip_use:N}. This function is documented on page 229.)

### 65.18 Inserting skips into the output

\texttt{\skip_horizontal:N} \texttt{\skip_horizontal:c} \texttt{\skip_horizontal:n} Inserting skips.

\begin{verbatim}
\cs_new_eq:NN \skip_horizontal:N \tex_hskip:D
\cs_new:Npn \skip_horizontal:n #1
{ \skip_horizontal:N \tex_glueexpr:D #1 \scan_stop: }
\cs_generate_variant:Nn \skip_horizontal:N { c }
\end{verbatim}

(End of definition for \texttt{\skip_horizontal:N} and others. These functions are documented on page 230.)

935
65.19 Viewing skip variables

\skip_show:N  \skip_show:c
\skip_show:n
\skip_log:N  \skip_log:c  \skip_log:n

Diagnostics. We don’t use the TeX primitive \showthe to show skip expressions: this
gives a more unified output.

\skip_log:N  \skip_log:c  \skip_log:n

Diagnostics. Redirect output of \skip_show:n to the log.

\c_zero_skip  \c_max_skip

Skips with no rubber component are just dimensions but need to terminate correctly.

\c_zero_skip  \c_max_skip

\l_tmpa_skip  \l_tmpb_skip  \g_tmpa_skip  \g_tmpb_skip

We provide two local and two global scratch registers, maybe we need more or less.

\l_tmpa_skip  \l_tmpb_skip  \g_tmpa_skip  \g_tmpb_skip

(End of definition for \l_tmpa_skip and others. These variables are documented on page 230.)

65.20 Constant skips

\c_zero_skip  \c_max_skip

\skip_const:Nn \c_zero_skip { \c_zero_dim }
\skip_const:Nn \c_max_skip { \c_max_dim }

(End of definition for \c_zero_skip and \c_max_skip. These functions are documented on page 230.)

65.21 Scratch skips

\l_tmpa_skip  \l_tmpb_skip  \g_tmpa_skip  \g_tmpb_skip

(End of definition for \l_tmpa_skip and others. These variables are documented on page 230.)

65.22 Creating and initialising muskip variables

\muskip_new:N  \muskip_new:c

And then we add muskips.

\muskip_new:N  \muskip_new:c

(End of definition for \muskip_new:N. This function is documented on page 231.)
\texttt{\textbackslash muskip\_const:Nn} \texttt{\textbackslashskip\_const:Nn}

See \texttt{\textbackslash skip\_const:Nn}. \texttt{\textbackslash cs\_new\_protected:Npm \textbackslash muskip\_const:Nn \#1\#2}

\texttt{\textbackslash muskip\_new:N \#1}
\texttt{\tex\_global:D \#1 = \textbackslash muskip\_eval:n \{\#2\} \scan\_stop:}
\texttt{\}}
\texttt{\cs\_generate\_variant:Nn \textbackslash muskip\_const:Nn \{ \texttt{c} \}}

(End of definition for \texttt{\textbackslash muskip\_const:Nn}. This function is documented on page 231.)

\texttt{\textbackslash muskip\_zero:N}
\texttt{\textbackslash muskip\_zero:cn}
\texttt{\textbackslash muskip\_gzero:N}
\texttt{\textbackslash muskip\_gzero:cn}

Reset the register to zero.
\texttt{\cs\_new\_protected:Npm \textbackslash muskip\_zero:N \#1}
\texttt{\{ \#1 = \texttt{\c\_zero\_muskip} \}}
\texttt{\cs\_new\_protected:Npm \textbackslash muskip\_gzero:N \#1}
\texttt{\{ \tex\_global:D \#1 = \texttt{\c\_zero\_muskip} \}}
\texttt{\cs\_generate\_variant:Nn \textbackslash muskip\_zero:N \{ \texttt{c} \}}
\texttt{\cs\_generate\_variant:Nn \textbackslash muskip\_gzero:N \{ \texttt{c} \}}

(End of definition for \texttt{\textbackslash muskip\_zero:N} and \texttt{\textbackslash muskip\_gzero:N}. These functions are documented on page 231.)

\texttt{\textbackslash muskip\_zero\_new:N}
\texttt{\textbackslash muskip\_zero\_new:cn}
\texttt{\textbackslash muskip\_gzero\_new:N}
\texttt{\textbackslash muskip\_gzero\_new:cn}

Create a register if needed, otherwise clear it.
\texttt{\cs\_new\_protected:Npm \textbackslash muskip\_zero\_new:N \#1}
\texttt{\{ \texttt{\textbackslash muskip\_if\_exist:NTF \#1 \{ \textbackslash muskip\_zero\_new:N \#1 \} \{ \textbackslash muskip\_new:N \#1 \} \}}
\texttt{\cs\_new\_protected:Npm \textbackslash muskip\_gzero\_new:N \#1}
\texttt{\{ \texttt{\textbackslash muskip\_if\_exist:NTF \#1 \{ \textbackslash muskip\_gzero\_new:N \#1 \} \{ \textbackslash muskip\_new:N \#1 \} \}}
\texttt{\cs\_generate\_variant:Nn \textbackslash muskip\_zero\_new:N \{ \texttt{c} \}}
\texttt{\cs\_generate\_variant:Nn \textbackslash muskip\_gzero\_new:N \{ \texttt{c} \}}

(End of definition for \texttt{\textbackslash muskip\_zero\_new:N} and \texttt{\textbackslash muskip\_gzero\_new:N}. These functions are documented on page 231.)

\texttt{\textbackslash muskip\_if\_exist\_p:N}
\texttt{\textbackslash muskip\_if\_exist\_p:cn}
\texttt{\textbackslash muskip\_if\_exist\_NTF}
\texttt{\textbackslash muskip\_if\_exist\_cTF}

Copies of the \texttt{cs} functions defined in \texttt{l3basics}.
\texttt{\prg\_new\_eq\_conditional:NNn \textbackslash muskip\_if\_exist\_N \textbackslash cs\_if\_exist\_N}
\texttt{\{ \texttt{TF, T, F, p} \}}
\texttt{\prg\_new\_eq\_conditional:NNn \textbackslash muskip\_if\_exist\_c \textbackslash cs\_if\_exist\_c}
\texttt{\{ \texttt{TF, T, F, p} \}}

(End of definition for \texttt{\textbackslash muskip\_if\_exist\_NTF}. This function is documented on page 231.)

\texttt{\textbackslash muskip\_set:Nn}
\texttt{\textbackslash muskip\_set:cn}
\texttt{\textbackslash muskip\_gset:Nn}
\texttt{\textbackslash muskip\_gset:cn}

This should be pretty familiar.
\texttt{\cs\_new\_protected:Npm \textbackslash muskip\_set:Nn \#1\#2}
\texttt{\{ \#1 = \texttt{\tex\_muexpr:D \#2 \scan\_stop:} \}}
\texttt{\cs\_new\_protected:Npm \textbackslash muskip\_gset:Nn \#1\#2}
\texttt{\{ \tex\_global:D \#1 = \texttt{\tex\_muexpr:D \#2 \scan\_stop:} \}}
\texttt{\cs\_generate\_variant:Nn \textbackslash muskip\_set:Nn \{ \texttt{c} \}}
\texttt{\cs\_generate\_variant:Nn \textbackslash muskip\_gset:Nn \{ \texttt{c} \}}

(End of definition for \texttt{\textbackslash muskip\_set:Nn} and \texttt{\textbackslash muskip\_gset:Nn}. These functions are documented on page 292.)

65.23 Setting muskip variables
All straightforward.

Using by here deals with the (incorrect) case \muskip123.

Using \muskip expressions and variables

Evaluating a \muskip expression expandably.

Accessing a \langle\muskip\rangle.

Viewing \muskip variables

Diagnostics.

Diagnostics. We don’t use the \TeX\ primitive \showthe to show \muskip expressions: this gives a more unified output.
\texttt{\textbackslash muskip\_log:N} Diagnostics. Redirect output of \texttt{\textbackslash muskip\_show:n} to the log.

\begin{verbatim}
\cs_new_eq:NN \muskip\_log:N \__kernel\_register\_log:N
\cs_new_eq:NN \muskip\_log:c \__kernel\_register\_log:c
\cs_new_protected:Npn \muskip\_log:n
  { \__kernel\_msg\_log\_eval:Nn \muskip\_eval:n }
\end{verbatim}

(End of definition for \texttt{\textbackslash muskip\_log:N} and \texttt{\textbackslash muskip\_log:n}. These functions are documented on page 233.)

65.26 Constant muskips

\texttt{\textbackslash c\_zero\_muskip} Constant muskips given by their value.

\begin{verbatim}
\muskip\_const:Nn \c\_zero\_muskip { 0 \textmu
}
\muskip\_const:Nn \c\_max\_muskip { 16383.99999 \textmu
}
\end{verbatim}

(End of definition for \texttt{\textbackslash c\_zero\_muskip} and \texttt{\textbackslash c\_max\_muskip}. These functions are documented on page 233.)

65.27 Scratch muskips

\texttt{\textbackslash l\_tmpa\_muskip, \textbackslash l\_tmpb\_muskip, \textbackslash g\_tmpa\_muskip, \textbackslash g\_tmpb\_muskip} We provide two local and two global scratch registers, maybe we need more or less.

\begin{verbatim}
\muskip\_new:N \l\_tmpa\_muskip
\muskip\_new:N \l\_tmpb\_muskip
\muskip\_new:N \g\_tmpa\_muskip
\muskip\_new:N \g\_tmpb\_muskip
\end{verbatim}

(End of definition for \texttt{\textbackslash l\_tmpa\_muskip} and others. These variables are documented on page 233.)
Chapter 66

\l3keys implementation

66.1 Low-level interface

The low-level key parser’s implementation is based heavily on \expkv. Compared to \keyval it adds a number of additional “safety” requirements and allows to process the parsed list of key–value pairs in a variety of ways. The net result is that this code needs around one and a half the amount of time as \keyval to parse the same list of keys. To optimise speed as far as reasonably practical, a number of lower-level approaches are taken rather than using the higher-level \expl3 interfaces.

\begin{verbatim}
\__keyval_nil
\__keyval_mark
\__keyval_stop
\__keyval_tail
\end{verbatim}

The general behavior of the \l3keys module is to throw an error on blank key names. However to support the usage of \keyval_parse:nnn in the \l3prop module we allow this error to be switched off temporarily and just ignore blank names.

\begin{verbatim}
\bool_new:N \l__kernel_keyval_allow_blank_keys_bool
\end{verbatim}

This temporary macro will be used since some of the definitions will need an active comma or equals sign. Inside of this macro #1 will be the active comma and #2 will be the active equals sign.

\begin{verbatim}
\cs_set_protected:Npn \__keyval_tmp:w #1#2
\keyval_parse:nnn \keyval_parse:nnV \keyval_parse:nnv \keyval_parse:NNn \keyval_parse:NNV \keyval_parse:NNv
\end{verbatim}

The main function starts the first of two loops. The outer loop splits the key–value list at active commas, the inner loop will do so at other commas. The use of \s__keyval_mark here prevents loss of braces from the key argument.
\cs_new:Npn \keyval_parse:nnn ##1 ##2 ##3
{
  \__kernel_exp_not:w \tex_expanded:D
  \{
    \__keyval_loop_active:nnw {##1} {##2}
    \s__keyval_mark ##3 #1 \s__keyval_tail #1
  }
}
\cs_new_eq:NN \keyval_parse:NNn \keyval_parse:nnn

(End of definition for \keyval_parse:nnn and \keyval_parse:NNn. These functions are documented on page \pageref{keyval_parse}.)

\__keyval_loop_active:nnw
First a fast test for the end of the loop is done, it’ll gobble everything up to a \s__keyval_tail. The loop ending macro will gobble everything to the last comma in this definition. If the end isn’t reached yet, start the second loop splitting at other commas, the next iteration of this first loop will be inserted by the end of \__keyval_loop_other:nnw.

\cs_new:Npn \__keyval_loop_active:nnw ##1 ##2 ##3 #1
{
  \__keyval_if_recursion_tail:w ##3
  \__keyval_end_loop_active:w \s__keyval_tail
  \__keyval_loop_other:nnw {##1} {##2} ##3 , \s__keyval_tail ,
}

(End of definition for \__keyval_loop_active:nnw.)

\__keyval_split_other:w
\__keyval_split_active:w
These two macros allow to split at the first equals sign of category 12 or 13. At the same time they also execute branching by inserting the first token following \s__keyval_mark that followed the equals sign. Hence they also test for the presence of such an equals sign simultaneously.

\cs_new:Npn \__keyval_split_other:w ##1 = ##2 \s__keyval_mark ##3
{ ##3 ##1 \s__keyval_stop \s__keyval_mark ##2 }

\cs_new:Npn \__keyval_split_active:w ##1 #2 ##2 \s__keyval_mark ##3
{ ##3 ##1 \s__keyval_stop \s__keyval_mark ##2 }

(End of definition for \__keyval_split_other:w and \__keyval_split_active:w.)

\__keyval_loop_other:nnw
The second loop uses the same test for its end as the first loop, next it splits at the first active equals sign using \__keyval_split_active:w. The \s__keyval_nil prevents accidental brace stripping and acts as a delimiter in the next steps. First testing for an active equals sign will reduce the number of necessary expansion steps for the expected average use case of other equals signs and hence perform better on average.

\cs_new:Npn \__keyval_loop_other:nnw {##1} {##2} \s__keyval_nil
{ ##1 \s__keyval_mark \__keyval_split_active:auxi:w
  \s__keyval_clean_up_active:w
  \s__keyval_mark
}

(End of definition for \__keyval_loop_other:nnw.)
After \texttt{\_\_keyval_split_active:w} the following will only be called if there was at least one active equals sign in the current key–value pair. Therefore this is the execution branch for a key–value pair with an active equals sign. \#1 will be everything up to the first active equals sign. First it tests for other equals signs in the key name, which will eventually throw an error via \texttt{\_\_keyval_misplaced_equal_after_active_error:w}. If none was found we forward the key to \texttt{\_\_keyval_split_active_auxii:w}.

\begin{verbatim}
\cs_new:Npn \_\_keyval_split_active_auxi:w \##1 \s__keyval_stop
{\_\_keyval_split_other:w \##1 \s__keyval_nil \s__keyval_mark \_\_keyval_misplaced_equal_after_active_error:w \s__keyval_mark \_\_keyval_split_active_auxii:w}
\end{verbatim}

\texttt{\_\_keyval_split_active_auxii:w} gets the correct key name with a leading \texttt{s\_\_keyval_mark} as \#1. It has to sanitise the remainder of the previous test and trims the key name which will be forwarded to \texttt{\_\_keyval_split_active_auxiii:w}.

\begin{verbatim}
\cs_new:Npn \_\_keyval_split_active_auxii:w \##1 \s__keyval_nil \s__keyval_mark \_\_keyval_misplaced_equal_after_active_error:w \s__keyval_stop \s__keyval_mark
{\_\_keyval_trim:NN \##1 \_\_keyval_split_active_auxiii:w \##2 \s__keyval_nil #2 \s__keyval_mark \_\_keyval_clean_up_active:w}
\end{verbatim}

Next we test for a misplaced active equals sign in the value, if none is found \texttt{\_\_keyval_\_split_active_auxiv:w} will be called.

\begin{verbatim}
\cs_new:Npn \_\_keyval_split_active_auxiii:w \##1 \##2 \s__keyval_nil
{\_\_keyval_split_active:w \##2 \s__keyval_nil \s__keyval_mark \_\_keyval_misplaced_equal_in_split_error:w \s__keyval_mark \_\_keyval_split_active_auxiv:w \##1}
\end{verbatim}

This runs the last test after sanitising the remainder of the previous one. This time test for a misplaced equals sign of category 12 in the value. Finally the last auxiliary macro will be called.

\begin{verbatim}
\cs_new:Npn \_\_keyval_split_active_auxiv:w \##1 \s__keyval_nil \s__keyval_mark \_\_keyval_misplaced_equal_in_split_error:w \s__keyval_stop \s__keyval_mark
{\_\_keyval_split_other:w \##1 \s__keyval_nil \s__keyval_mark \_\_keyval_misplaced_equal_in_split_error:w \s__keyval_stop \s__keyval_mark
{\_\_keyval_trim:N \#1 \_\_keyval_split_active_auxv:w \s__keyval_nil \s__keyval_mark \_\_keyval_pair:nnnn}}
\end{verbatim}

This last macro in this execution branch sanitises the last test, trims the value and passes it to \texttt{\_\_keyval_pair:nnnn}.

\begin{verbatim}
\cs_new:Npn \_\_keyval_split_active_auxv:w \##1 \s__keyval_nil \s__keyval_mark \_\_keyval_misplaced_equal_in_split_error:w \s__keyval_stop \s__keyval_mark
{\_\_keyval_trim:N \#1 \_\_keyval_pair:nnnn}
\end{verbatim}
The following is the branch taken if the key–value pair doesn’t contain an active equals sign. The remainder of that test will be cleaned up by `\_\_keyval_clean_up_active:w` which will then split at an equals sign of category other.

```latex
\cs_new:Npn __keyval_clean_up_active:w #1 __keyval_nil __keyval_mark __keyval_split_active_auxi:w __keyval_stop
\{ __keyval_split_other:w #1 __keyval_nil __keyval_mark __keyval_split_other_auxi:w __keyval_clean_up_other:w
\}
```

(End of definition for `\_\_keyval_clean_up_active:w`)

This is executed if the key–value pair doesn’t contain an active equals sign but at least one other. #1 of `\_\_keyval_split_other_auxi:w` will contain the complete key name, which is trimmed and forwarded to the next auxiliary macro.

```latex
\cs_new:Npn __keyval_split_other_auxi:w #1 __keyval_stop
\{ __keyval_trim:nN { #1 } __keyval_split_other_auxii:w \}
```

We know that the value doesn’t contain misplaced active equals signs but we have to test for others. Also we need to sanitise the previous test, which is done here and not earlier to avoid superfluous argument grabbing.

```latex
\cs_new:Npn __keyval_split_other_auxii:w #1 #2 __keyval_nil = __keyval_mark __keyval_clean_up_other:w
\{ __keyval_split_other:w #2 __keyval_nil __keyval_mark __keyval_misplaced_equal_in_split_error:w __keyval_split_other_auxiii:w
\}
```

`\_\_keyval_split_other_auxiii:w` sanitises the test for other equals signs, trims the value and forwards it to `\_\_keyval_pair:nnnn`.

```latex
\cs_new:Npn __keyval_split_other_auxiii:w __keyval_nil __keyval_mark __keyval_misplaced_equal_in_split_error:w __keyval_pair:nnnn
\{ __keyval_trim:nN { __keyval_nil } __keyval_pair:nnnn \}
```

(End of definition for `\_\_keyval_split_other_auxi:w`, `\_\_keyval_split_other_auxii:w`, and `\_\_keyval_split_other_auxiii:w`.)

`\_\_keyval_clean_up_other:w` is the last branch that might exist. It is called if no equals sign was found, hence the only possibilities left are a blank list element, which is to be skipped, or a lonely key. If it’s no empty list element this will trim the key name and forward it to `\_\_keyval_key:nn`.

```latex
\cs_new:Npn __keyval_clean_up_other:w #1 __keyval_nil __keyval_mark __keyval_split_other_auxi:w __keyval_stop __keyval_if_blank:w #1 __keyval_nil __keyval_stop __keyval_blank_true:w
\{ __keyval_stop __keyval_stop __keyval_tag:nN { #1 } __keyval_key:nn \}
```

(End of definition for `\_\_keyval_clean_up_other:w`.)
All these two macros do is gobble the remainder of the current other loop execution and throw an error. Afterwards they have to insert the next loop iteration.

```latex
\cs_new:Npn __keyval_misplaced_equal_after_active_error:w
 \s__keyval_mark ##1 \s__keyval_stop \s__keyval_mark ##2 \s__keyval_nil
 \s__keyval_mark #3 \s__keyval_nil #2 \s__keyval_mark __keyval_clean_up_active:w
 \{ \s__keyval_nil \s__keyval_mark __keyval_split_active_auxii:w \s__keyval_mark __keyval_clean_up_active:w { __keyval_loop_other:nnw } \}
\cs_new:Npn __keyval_misplaced_equal_in_split_error:w
 \s__keyval_mark ##1 \s__keyval_stop \s__keyval_mark ##2 \s__keyval_nil
 ##3 \s__keyval_mark ##4 ##5 \{ \msg_expandable_error:nn { keyval } { misplaced-equals-sign } __keyval_loop_other:nnw \}
```

(End of definition for \__keyval_misplaced_equal_after_active_error:w and \__keyval_misplaced_equal_in_split_error:w.)

All that’s left for the parsing loops are the macros which end the recursion. Both just gobble the remaining tokens of the respective loop including the next recursion call. \__keyval_end_loop_other:w also has to insert the next iteration of the active loop.

```latex
\cs_new:Npn __keyval_end_loop_other:w
 \s__keyval_tail __keyval_split_active:w \s__keyval_mark \s__keyval_tail \s__keyval_nil \s__keyval_mark __keyval_split_active_auxi:w
 \#2 \s__keyval_mark __keyval_clean_up_active:w \{ __keyval_loop_active:nnw \}
\cs_new:Npn __keyval_end_loop_active:w
 \s__keyval_tail __keyval_loop_other:nnw ##1 \s__keyval_mark \s__keyval_tail, \s__keyval_tail, \{
```

(End of definition for \__keyval_end_loop_other:w and \__keyval_end_loop_active:w.)

The parsing loops are done, so here ends the definition of \__keyval_tmp:w, which will finally set up the macros.

```latex
__char_set_catcode_active:n \{ \{ \}
__char_set_catcode_active:n \{ \} \}
\cs_generate_variant:Nn \keyval_parse:NNn { NNV, NNv }
\cs_generate_variant:Nn \keyval_parse:nnn { nnV, nnv } __keyval_pair:nnnn __keyval_key:nn
```

These macros will be called on the parsed keys and values of the key–value list. All arguments are completely trimmed. They test for blank key names and call the func-
tions passed to \keyval_parse:nnn inside of \exp_not:n with the correct arguments. Afterwards they insert the next iteration of the other loop.

\begin{verbatim}
\group_begin:
\cs_set_protected:Npn \__keyval_tmp:w #1#2
{ \cs_new:Npn \__keyval_pair:nnnn ##1 ##2 ##3 ##4
{ \__keyval_if_blank:w \s__keyval_mark ##2 \s__keyval_nil \s__keyval_stop \__keyval_stop
  \s__keyval_mark \s__keyval_stop
  \exp_not:n { ##4 {##2} {##1} }
  \__keyval_loop_other:nnw {##3} {##4}
}
\cs_new:Npn \__keyval_key:nn ##1 ##2
{ \__keyval_if_blank:w \s__keyval_mark ##1 \s__keyval_nil \s__keyval_stop \__keyval_blank_key_error:w
  \s__keyval_mark \s__keyval_stop
  #1
  \exp_not:n { ##2 {##1} }
  \__keyval_loop_other:nnw {##2}
}
\__keyval_tmp:w { } { }
\group_end:
\end{verbatim}

(End of definition for \__keyval_pair:nnnn and \__keyval_key:nn.)

\__keyval_if_empty:w, \__keyval_if_blank:w, and \__keyval_if_recursion_tail:w

All these tests work by gobbling tokens until a certain combination is met, which makes
them pretty fast. The test for a blank argument should be called with an arbitrary token
following the argument. Each of these utilize the fact that the argument will contain a
leading \s__keyval_mark.

\begin{verbatim}
\cs_new:Npn \__keyval_if_empty:w #1 \s__keyval_mark \s__keyval_stop { }
\cs_new:Npn \__keyval_if_blank:w \s__keyval_mark #1 \s__keyval_stop \__keyval_stop
\cs_new:Npn \__keyval_if_recursion_tail:w \s__keyval_mark #1 \s__keyval_stop { }
\end{verbatim}

(End of definition for \__keyval_if_empty:w, \__keyval_if_blank:w, and \__keyval_if_recursion_tail:w.)

\__keyval_blank_true:w, \__keyval_blank_key_error:w

These macros will be called if the tests above didn’t gobble them, they execute the
branching.

\begin{verbatim}
\cs_new:Npn \__keyval_blank_true:w \s__keyval_mark \s__keyval_stop \__keyval_stop { \__keyval_loop_other:nnw {##1} }
\cs_new:Npn \__keyval_blank_key_error:w \s__keyval_mark \s__keyval_stop { \__keyval_loop_other:nnw {##1} }
\end{verbatim}

(End of definition for \__keyval_blank_true:w and \__keyval_blank_key_error:w.)

Two messages for the low level parsing system.
And an adapted version of \__tl_trim_spaces:nn which is a bit faster for our use case, as it can strip the braces at the end. This is pretty much the same concept, so I won’t comment on it here. The speed gain by using this instead of \tl_trim_spaces_apply:nN is about 10% of the total time for \keyval_parse:NNn with one key and one key-value pair, so I think it’s worth it.

This is the one macro which differs from the original definition.
66.2 Constants and variables

Various storage areas for the different data which make up keys.

\c__keys_code_root_str
\c__keys_check_root_str
\c__keys_default_root_str
\c__keys_groups_root_str
\c__keys_inherit_root_str
\c__keys_type_root_str

The prefix for storing properties.

\c__keys_props_root_str

Publicly accessible data on which choice is being used when several are generated as a set.

\l_keys_choice_int
\l_keys_choice_tl

Used for storing and recovering the list of groups which apply to a key: set as a comma list but at one point we have to use this for a token list recovery.

\l__keys_groups_clist

For normalisation.

\l__keys_module_str

The name of a key itself: needed when setting keys.

\l_keys_key_str

The \tl version is deprecated but has to be handled manually.

\l_keys_key_tl

The module for an entire set of keys.

\l__keys_module_str
\l__keys_no_value_bool  A marker is needed internally to show if only a key or a key plus a value was seen: this is recorded here.

\bool_new:N \l__keys_no_value_bool

(End of definition for \l__keys_no_value_bool.)

\l__keys_only_known_bool  Used to track if only “known” keys are being set.

\bool_new:N \l__keys_only_known_bool

(End of definition for \l__keys_only_known_bool.)

\l_keys_path_str  The “path” of the current key is stored here: this is available to the programmer and so is public.

\str_new:N \l_keys_path_str

(End of definition for \l_keys_path_str. This variable is documented on page 244.)

\l_keys_path_tl  The older version is deprecated but has to be handled manually.

\tl_new:N \l_keys_path_tl

(End of definition for \l_keys_path_tl.)

\l__keys_inherit_str

\str_new:N \l__keys_inherit_str

(End of definition for \l__keys_inherit_str.)

\l__keys_relative_tl  The relative path for passing keys back to the user. As this can be explicitly no-value, it must be a token list.

\tl_new:N \l__keys_relative_tl
\tl_set:Nn \l__keys_relative_tl { \q__keys_no_value }

(End of definition for \l__keys_relative_tl.)

\l__keys_property_str  The “property” begin set for a key at definition time is stored here.

\str_new:N \l__keys_property_str

(End of definition for \l__keys_property_str.)

\l__keys_selective_bool  Two flags for using key groups: one to indicate that “selective” setting is active, a second to specify which type (“opt-in” or “opt-out”).

\bool_new:N \l__keys_selective_bool
\bool_new:N \l__keys_filtered_bool

(End of definition for \l__keys_selective_bool and \l__keys_filtered_bool.)

\l__keys_selective_seq  The list of key groups being filtered in or out during selective setting.

\seq_new:N \l__keys_selective_seq

(End of definition for \l__keys_selective_seq.)

\l__keys_unused_clist  Used when setting only some keys to store those left over.

\clist_new:N \l__keys_unused_clist

(End of definition for \l__keys_unused_clist.)
\l_keys_value_tl The value given for a key: may be empty if no value was given.

\l___keys_tmp_bool Scratch space.
\l___keys_tmpa_tl
\l___keys_tmpb_tl

\l___keys_precompile_bool For digesting keys.
\l___keys_precompile_tl

\l___keys_usage_load_prop \l___keys_usage_preamble_prop Global data for document-level information.

66.2.1 Internal auxiliaries

\s___keys_nil \s___keys_mark \s___keys_stop Internal scan marks.

\q___keys_no_value Internal quarks.

\__keys_quark_if_no_value_p:N Branching quark conditional.

\__keys_precompile:n An auxiliary to allow cleaner showing of code.
66.3 The key defining mechanism

The public function for definitions is just a wrapper for the lower level mechanism, more or less. The outer function is designed to keep a track of the current module, to allow safe nesting. The module is set removing any leading `/` (which is not needed here).

\keys_define:nn
\keys_define:ne
\keys_define:nx
\__keys_define:nnn
\__keys_define:onn
\keys_define:nn
\__keys_define:nn
\__keys_define:nn
\__keys_define:n
\__keys_define:nn
\__keys_define:n
\__keys_define:nn
\__keys_define:n
\__keys_define:nn
\__keys_define:n

The outer functions here record whether a value was given and then converge on a common internal mechanism. There is first a search for a property in the current key name, then a check to make sure it is known before the code hands off to the next step.

\__keys_property_find:n
\__keys_property_find_auxi:w
\__keys_property_find_auxii:w
\__keys_property_find_auxiii:w
\__keys_property_find_auxiv:w
\__keys_property_find:n
\__keys_property_find_auxi:w
\__keys_property_find_auxii:w
\__keys_property_find_auxiii:w
\__keys_property_find_auxiv:w

Searching for a property means finding the last `. in the input, and storing the text before and after it. Everything is turned into strings, so there is no problem using an `e-type expansion. Since `\keys_trim_spaces:n` will turn its argument into a string anyway, this function uses \cs_set_nopar:Npe instead of `\tl_set:Nn` to gain some speed.
Two possible cases. If there is a value for the key, then just use the function. If not, then
a check to make sure there is no need for a value with the property. If there should be
one then complain, otherwise execute it. There is no need to check for a:
as if it was
missing the earlier tests would have failed.

\cs_new_protected:Npn \__keys_define_code:n \__keys_define_code:w

(End of definition for \__keys_property_find:n and others.)
66.4 Turning properties into actions

Boolean keys are really just choices, but all done by hand. The second argument here is the scope: either empty or \texttt{g} for global.

To make a choice from a key, two steps: set the code, and set the unknown key. As multichoices and choices are essentially the same bar one function, the code is given together.
Auto-generating choices means setting up the root key as a choice, then defining each choice in turn.

\keys_choices_make:nn
\keys_multichoices_make:nn
\keys_choices_make:Nnn

(End of definition for \keys_choices_make: and others.)

\keys_cmd_set:nn \keys_cmd_set:Vn \keys_cmd_set:ne \keys_cmd_set:Vo
\keys_cmd_set_direct:nn

Setting the code for a key first logs if appropriate that we are defining a new key, then saves the code.
Creating control sequences is a bit more tricky than other cases as we need to pick up the p argument. To make the internals look clearer, the trailing n argument here is just for appearance.

Setting a default value is easy. These are stored using \cs_set_nopar:cpe as this avoids any worries about whether a token list exists.

Assigning a key to one or more groups uses comma lists. As the list of groups only exists if there is anything to do, the setting is done using a scratch list. For the usual grouping reasons we use the low-level approach to undefining a list. We also use the low-level approach for the other case to avoid tripping up the check-declarations code.
\__keys_inherit:n

Inheritance means ignoring anything already said about the key: zap the lot and set up.

\__keys_initialise:n

A set up for initialisation: just run the code if it exists. We need to set the key string here, using the deprecated \texttt{tl} as a piece of scratch space.

\__keys_legacy_if_set:nn
\__keys_legacy_if_inverse:nn
\__keys_legacy_if_inverse:nnn

Much the same as expl3 booleans, except we assume that the switch exists.
\__keys_meta_make:n\__keys_meta_make:nn

To create a meta-key, simply set up to pass data through. The internal function is used here as a meta key should respect the prevailing filtering, etc.

\__keys_prop_put:Nn\__keys_prop_put:cn

Much the same as other variables, but needs a dedicated auxiliary.
`\__keys_undefine:` Undefining a key has to be done without `\cs_undefine:c` as that function acts globally.

```latex
\cs_new_protected:Npn __keys_undefine:
\clist_map_inline:nn
\{ code , default , groups , inherit , type , check \}
\{ \cs_set_eq:cN \{ \tl_use:c \{ c__keys_ ##1 _root_str \} \l_keys_path_str \}
\tex_undefined:D \}
```

(End of definition for `\__keys_undefine:`)

`\__keys_value_requirement:nn` `\__keys_check_forbidden:` `\__keys_check_required:` Validating key input is done using a second function which runs before the main key code. Setting that up means setting it equal to a generic stub which does the check. This approach makes the lookup very fast at the cost of one additional csname per key that needs it. The cleanup here has to know the structure of the following code.

```latex
\cs_new_protected:Npn __keys_value_requirement:nn \#1\#2
\str_case:nnF {\#2}
\{ true \}
\{ \cs_set_eq:cc \{ \c__keys_check_root_str \l_keys_path_str \}
\{ \c__keys_check_ \#1 : \}
\}
\{ false \}
\{ \cs_if_eq:ccT \{ \c__keys_check_root_str \l_keys_path_str \}
\{ \c__keys_check_ \#1 : \}
\{ \cs_set_eq:cN \{ \c__keys_check_root_str \l_keys_path_str \}
\tex_undefined:D \}
\}
\msg_error:nne { keys }
\{ boolean-values-only \}
\{ .value_ \#1 :n \}
```

```latex
\cs_new_protected:Npn __keys_check_forbidden:
\bool_if:NF \l__keys_no_value_bool
\{ \msg_error:nnee \{ keys \}
\{ value-forbidden \}
\l_keys_path_str \l_keys_value_tl
\use_none:nnn
\}
```
Save the relevant data.

\__keys_usage:n \__keys_usage:NN \__keys_usage:w

\cs_new_protected:Npm \__keys_usage:n #1
{
  \str_case:nnF {#1}
  {
    ( general )
    {
      \__keys_usage:NN \l_keys_usage_load_prop \c_false_bool
      \__keys_usage:NN \l_keys_usage_preamble_prop \c_false_bool
    }
    ( load )
    {
      \__keys_usage:NN \l_keys_usage_load_prop \c_true_bool
      \__keys_usage:NN \l_keys_usage_preamble_prop \c_false_bool
    }
    ( preamble )
    {
      \__keys_usage:NN \l_keys_usage_load_prop \c_false_bool
      \__keys_usage:NN \l_keys_usage_preamble_prop \c_true_bool
    }
  }
  \msg_error:nnnn { keys } { choice-unknown } { \__keys_usage:n } {#1}
}
\cs_new_protected:Npm \__keys_usage:NN #1#2
{
  \prop_get:NVNF #1 \l__keys_module_str \l__keys_tmpa_tl
  { \tl_clear:N \l__keys_tmpa_tl }
  \tl_set:Ne \l__keys_tmpb_tl
  { \exp_after:wN \__keys_usage:w \l_keys_path_str \s__keys_stop }

(End of definition for \__keys_value_requirement:nn, \__keys_check_forbidden:, and \__keys_check_required.)
Setting a variable takes the type and scope separately so that it is easy to make a new variable if needed.

\begin{verbatim}
\cs_new_protected:Npn \__keys_variable_set:NnnN #1#2#3#4
\use:c { #2_if_exist:NF } #1 { \use:c { #2_new:N } #1 }
\__keys_cmd_set:ne \l_keys_path_str
\exp_not:c { #2 _ #3 set:N #4 }
\exp_not:N #1
\exp_not:n { {##1} }
\end{verbatim}

\begin{verbatim}
\cs_generate_variant:Nn \__keys_variable_set:NnnN { c }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_set:N } #1
{ \__keys_bool_set:Nn #1 { } }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_set:c } #1
{ \__keys_bool_set:cn {#1} { } }
\cs_new_protected:Npn \__keys_variable_set_required:NnnN #1#2#3#4
{ \__keys_variable_set:NnnN #1 {#2} {#3} #4
\__keys_value_requirement:nn { required } { true } }
\cs_generate_variant:Nn \__keys_variable_set_required:NnnN { c }
\end{verbatim}

(End of definition for \__keys_usage:n, \__keys_usage:NN, and \__keys_usage:w.)

### 66.5 Creating key properties

The key property functions are all wrappers for internal functions, meaning that things stay readable and can also be altered later on.

Importantly, while key properties have “normal” argument specs, the underlying code always supplies one braced argument to these. As such, argument expansion is handled by hand rather than using the standard tools. This shows up particularly for the two-argument properties, where things would otherwise go badly wrong.

One function for this.

\begin{verbatim}
\cs_new_protected:cpn { \c__keys_props_root_str .bool_set:N } #1
{ \__keys_bool_set:Nn #1 { } }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_set:c } #1
{ \__keys_bool_set:cn {#1} { } }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_gset:N } #1
{ \__keys_bool_set:Nn #1 { g } }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_gset:c } #1
{ \__keys_bool_set:cn {#1} { g } }
\end{verbatim}

(End of definition for .bool_set:N and .bool_gset:N. These functions are documented on page 236.)
One function for this.

\begin{verbatim}
\cs_new_protected:cpn { \c__keys_props_root_str .bool_set_inverse:N } #1  
{ \__keys_bool_set_inverse:Nn #1 { } }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_set_inverse:c } #1  
{ \__keys_bool_set_inverse:cn {#1} { } }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_gset_inverse:N } #1  
{ \__keys_bool_set_inverse:Nn #1 { g } }
\cs_new_protected:cpn { \c__keys_props_root_str .bool_gset_inverse:c } #1  
{ \__keys_bool_set_inverse:cn {#1} { g } }
\end{verbatim}

(End of definition for \texttt{\bool_set_inverse:N} and \texttt{\bool_gset_inverse:N}. These functions are documented on page \pageref{page:236}.)

\textbf{choice:}

Making a choice is handled internally, as it is also needed by \texttt{\generate_choices:n}.

\begin{verbatim}
\cs_new_protected:cpn { \c__keys_props_root_str .choice: }  
{ \__keys_choice_make: }
\end{verbatim}

(End of definition for \texttt{\choice:}. This function is documented on page \pageref{page:236}.)

\begin{itemize}
  \item \textbf{choices:nn}
  \item \textbf{choices:Vn}
  \item \textbf{choices:en}
  \item \textbf{choices:on}
  \item \textbf{choices:xn}
\end{itemize}

For auto-generation of a series of mutually-exclusive choices. Here, \#1 consists of two separate arguments, hence the slightly odd-looking implementation.

\begin{verbatim}
\cs_new_protected:cpn { \c__keys_props_root_str .choices:nn } #1  
{ \__keys_choices_make:nn #1 }
\cs_new_protected:cpn { \c__keys_props_root_str .choices:Vn } #1  
{ \exp_args:NV \__keys_choices_make:nn #1 }
\cs_new_protected:cpn { \c__keys_props_root_str .choices:en } #1  
{ \exp_args:Ne \__keys_choices_make:nn #1 }
\cs_new_protected:cpn { \c__keys_props_root_str .choices:on } #1  
{ \exp_args:No \__keys_choices_make:nn #1 }
\cs_new_protected:cpn { \c__keys_props_root_str .choices:xn } #1  
{ \exp_args:Nx \__keys_choices_make:nn #1 }
\end{verbatim}

(End of definition for \texttt{\choices:nn}. This function is documented on page \pageref{page:236}.)

\begin{itemize}
  \item \textbf{code:n}
\end{itemize}

Creating code is simply a case of passing through to the underlying \texttt{set} function.

\begin{verbatim}
\cs_new_protected:cpn { \c__keys_props_root_str .code:n } #1  
{ \__keys_cmd_set:nn \l_keys_path_str {#1} }
\end{verbatim}

(End of definition for \texttt{\code:n}. This function is documented on page \pageref{page:237}.)

\begin{itemize}
  \item \textbf{clist_set:N}
  \item \textbf{clist_set:c}
  \item \textbf{clist_gset:N}
  \item \textbf{clist_gset:c}
\end{itemize}

\begin{verbatim}
\cs_new_protected:cpn { \c__keys_props_root_str .clist_set:N } #1  
{ \__keys_variable_set:NnnN #1 { clist } { } n }
\cs_new_protected:cpn { \c__keys_props_root_str .clist_set:c } #1  
{ \__keys_variable_set:cnnN {#1} { clist } { } n }
\cs_new_protected:cpn { \c__keys_props_root_str .clist_gset:N } #1  
{ \__keys_variable_set:NnnN #1 { clist } { g } n }
\cs_new_protected:cpn { \c__keys_props_root_str .clist_gset:c } #1  
{ \__keys_variable_set:cnnN {#1} { clist } { g } n }
\end{verbatim}

(End of definition for \texttt{\clist_set:N} and \texttt{\clist_gset:N}. These functions are documented on page \pageref{page:236}.)
Expansion is left to the internal functions.

Setting a variable is very easy: just pass the data along.

Setting a variable is very easy: just pass the data along.

(End of definition for .dim_set:N and .dim_gset:N. These functions are documented on page 237.)

(End of definition for .fp_set:N and .fp_gset:N.)
.groups:n
A single property to create groups of keys.

```
\cs_new_protected:cpn { \c__keys_props_root_str .groups:n } #1
 \{ __keys_groups_set:n {#1} \}
```

(End of definition for .groups:n. This function is documented on page 238.)

.inherit:n
Nothing complex: only one variant at the moment!

```
\cs_new_protected:cpn { \c__keys_props_root_str .inherit:n } #1
 \{ __keys_inherit:n {#1} \}
```

(End of definition for .inherit:n. This function is documented on page 238.)

.initial:n
The standard hand-off approach.

```
\cs_new_protected:cpn { \c__keys_props_root_str .initial:n } #1
 \{ __keys_initialise:n {#1} \}
```

(End of definition for .initial:n. This function is documented on page 238.)

.int_set:N
Setting a variable is very easy: just pass the data along.

```
\cs_new_protected:cpn { \c__keys_props_root_str .int_set:N } #1
 \{ __keys_variable_set_required:NnnN #1 { int } { } n \}
```

(End of definition for .int_set:N and .int_gset:N. These functions are documented on page 238.)

.meta:n
Making a meta is handled internally.

```
\cs_new_protected:cpn { \c__keys_props_root_str .meta:n } #1
 \{ __keys_meta_make:n {#1} \}
```
Meta with path: potentially lots of variants, but for the moment no so many defined.

The same idea as .choice: and .choices:nn, but where more than one choice is allowed.

Setting a variable is very easy: just pass the data along.

Setting a variable is very easy: just pass the data along.

Setting a variable is very easy: just pass the data along.
Setting a variable is very easy: just pass the data along.

\cs_new_protected:cpn { \c__keys_props_root_str .str_set:N } #1
{ \__keys_variable_set_required:NnnN #1 { str } { } n }
\cs_new_protected:cpn { \c__keys_props_root_str .str_set:c } #1
{ \__keys_variable_set:cnnN {#1} { str } { } n }
\cs_new_protected:cpn { \c__keys_props_root_str .str_set_e:N } #1
{ \__keys_variable_set:NnnN #1 { str } { } e }
\cs_new_protected:cpn { \c__keys_props_root_str .str_set_e:c } #1
{ \__keys_variable_set:cnnN {#1} { str } { } e }
\cs_new_protected:cpn { \c__keys_props_root_str .str_gset:N } #1
{ \__keys_variable_set:NnnN #1 { str } { g } n }
\cs_new_protected:cpn { \c__keys_props_root_str .str_gset:c } #1
{ \__keys_variable_set:cnnN {#1} { str } { g } n }
\cs_new_protected:cpn { \c__keys_props_root_str .str_gset_e:N } #1
{ \__keys_variable_set:NnnN #1 { str } { g } e }
\cs_new_protected:cpn { \c__keys_props_root_str .str_gset_e:c } #1
{ \__keys_variable_set:cnnN {#1} { str } { g } e }

(End of definition for \texttt{.str_set:N} and others. These functions are documented on page 239.)

Setting a variable is very easy: just pass the data along.

\cs_new_protected:cpn { \c__keys_props_root_str .tl_set:N } #1
{ \__keys_variable_set:NnnN #1 { tl } { } n }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_set:c } #1
{ \__keys_variable_set:cnnN {#1} { tl } { } n }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_set_e:N } #1
{ \__keys_variable_set:NnnN #1 { tl } { } e }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_set_e:c } #1
{ \__keys_variable_set:cnnN {#1} { tl } { } e }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_gset:N } #1
{ \__keys_variable_set:NnnN #1 { tl } { g } n }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_gset:c } #1
{ \__keys_variable_set:cnnN {#1} { tl } { g } n }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_gset_e:N } #1
{ \__keys_variable_set:NnnN #1 { tl } { g } e }
\cs_new_protected:cpn { \c__keys_props_root_str .tl_gset_e:c } #1
{ \__keys_variable_set:cnnN {#1} { tl } { g } e }

(End of definition for \texttt{.tl_set:N} and others. These functions are documented on page 239.)

\cs_new_protected:cpn { \c__keys_props_root_str .undefine: }
{ \__keys_undefine: }

(End of definition for \texttt{.undefine:}. This function is documented on page 240.)

Another simple wrapper.

\cs_new_protected:cpn { \c__keys_props_root_str .usage:n }
{ \__keys_usage:n {#1} }

(End of definition for \texttt{.usage:n}. This function is documented on page 240.)
These are very similar, so both call the same function.

```latex
\cs_new_protected:cpn { \c__keys_props_root_str .value_forbidden:n } #1
\cs_new_protected:cpn { \c__keys_props_root_str .value_required:n } #1
```

(End of definition for .value_forbidden:n and .value_required:n. These functions are documented on page 240.)

66.6 Setting keys

A simple wrapper allowing for nesting.

```latex
\keys_set:nn
\keys_set:nV
\keys_set:nv
\keys_set:ne
\keys_set:no
\keys_set:nx
__keys_set:nn
__keys_set:nnn
```

Setting known keys simply means setting the appropriate flag, then running the standard code. To allow for nested setting, any existing value of \l__keys_unused_clist is saved on the stack and reset afterwards. Note that for speed/simplicity reasons we use a \tl operation to set the clist here!

```latex
\keys_set_known:nnN
\keys_set_known:nVnN
\keys_set_known:nvnN
\keys_set_known:nenN
\keys_set_known:nonN
__keys_set_known:nnnnN
\keys_set_known:nn
\keys_set_known:nV
\keys_set_known:nv
```

(End of definition for \keys_set:nn, \__keys_set:nn, and \__keys_set:nnn. This function is documented on page 243.)
The idea of setting keys in a selective manner again uses flags wrapped around the basic code. The comments on \keys_set_known:nn{nn} also apply here. We have a bit more shuffling to do to keep everything nestable.
\cs_new_protected:Npn \__keys_set_selective:nnn \l__keys_selective_seq
\cs_new_protected:Npn \__keys_set_selective:nnnn \l__keys_selective_seq \l__keys_module_str \l__keys_key_str
\tl_set_eq:NN \l__keys_key_tl \l__keys_key_str

(End of definition for \keys_set_filter:nnn and others. These functions are documented on page 245.)

\keys_precompile:nnn
A simple wrapper.
\cs_new_protected:Npn \keys_precompile:nnn \l__keys_module_str \l__keys_key_str
\tl_set_eq:NN \l__keys_precompile_tl \l__keys_module_str

(End of definition for \keys_precompile:nnn. This function is documented on page 246.)

\__keys_set_keyval:n
\__keys_set_keyval:nn
\__keys_set_keyval:nnn
\__keys_set_keyval:onn
\__keys_find_key_module:wNN
\__keys_find_key_module_auxi:Nw
\__keys_find_key_module_auxii:Nw
\__keys_find_key_module_auxiii:Nn
\__keys_find_key_module_auxiv:Nw
\__keys_set_selective:

A shared system once again. First, set the current path and add a default if needed. There are then checks to see if a value is required or forbidden. If everything passes, move on to execute the code.
\cs_new_protected:Npn \__keys_set_keyval:nnn \l__keys_module_str \l__keys_key_str
\tl_set_eq:NN \l__keys_key_tl \l__keys_key_str

The key path here can be fully defined, after which there is a search for the key and module names: the user may have passed them with part of what is actually the module (for our purposes) in the key name. As that happens on a per-key basis, we use the stack approach to restore the module name without a group.
\cs_new_protected:Npn \__keys_set_keyval:onn \l__keys_module_str \l__keys_key_str
\tl_set_eq:NN \l__keys_key_tl \l__keys_key_str

968
This function uses \texttt{\cs_set_nopar:Npe} internally for performance reasons, the argument \texttt{#1} is already a string in every usage, so turning it into a string again seems unnecessary.

If selective setting is active, there are a number of possible sub-cases to consider. The key name may not be known at all or if it is, it may not have any groups assigned. There is then the question of whether the selection is opt-in or opt-out.
In the case where selective setting requires a comparison of the list of groups which apply to a key with the list of those which have been set active. That requires two mappings, and again a different outcome depending on whether opt-in or opt-out is set. We cannot replace the clist mapping by \clist_if_in:NnTF because catcodes may not be the same; they cannot be normalized easily in the clist because of the remote possibility that some items need braces if they involve commas or leading/trailing spaces.

\cs_new_protected:Npn \__keys_check_groups:
\begin{verbatim}
{ \bool_set_false:N \l__keys_tmp_bool
  \seq_map_inline:Nn \l__keys_selective_seq
  { \clist_map_inline:Nn \l__keys_groups_clist
    { \str_if_eq:nnT {##1} {####1} {###1}
      { \bool_set_true:N \l__keys_tmp_bool
        \clist_map_break:n \seq_map_break:
      }
    }
  }
  \bool_if:NTF \l__keys_tmp_bool
  { \bool_if:NTF \l__keys_filtered_bool
    \__keys_store_unused:
    \__keys_execute:
  }
  { \bool_if:NTF \l__keys_filtered_bool
    \__keys_execute:
    \__keys_store_unused:
  }
}
\end{verbatim}

(End of definition for \__keys_set_keyval:n and others.)

If a value is given, return it as #1, otherwise send a default if available.

\cs_new_protected:Npn \__keys_value_or_default:n #1
\cs_new_protected:Npn \__keys_default_inherit:
\__keys_value_or_default:n
Actually executing a key is done in two parts. First, look for the key itself, then look for the unknown key with the same path. If both of these fail, complain. What exactly happens if a key is unknown depends on whether unknown keys are being skipped or if an error should be raised.

```
cs_new_protected:Npn __keys_execute:
{\cs_if_exist:cTF { \c__keys_code_root_str \l_keys_path_str }
{ \cs_if_exist_use:c { \c__keys_check_root_str \l_keys_path_str }
__keys_execute:no \l_keys_path_str \l_keys_value_tl
}
{
\cs_if_exist:cTF
{ \c__keys_inherit_root_str __keys_parent:o \l_keys_path_str }
__keys_execute_inherit:
__keys_execute_unknown:
{ __keys_execute_unknown: }
}
}
```

To deal with the case where there is no hit, we leave \__keys_execute_unknown: in the input stream and clean it up using the break function: that avoids needing a boolean.
\__keys_execute_unknown:
}'
\cs_new_protected:Npn \__keys_execute_unknown:
{
  \bool_if:NTF \l__keys_only_known_bool
  { \__keys_store_unused: }
  {
    \cs_if_exist:cTF
    { \c__keys_code_root_str \l__keys_module_str / unknown }
    { \__keys_execute:no { \l__keys_module_str / unknown } \l_keys_value_tl }
    {
      \msg_error:nnee { keys } { unknown }
      \l_keys_path_str \l__keys_module_str
    }
  }
}

A key’s code is in the control sequence with csname \c__keys_code_root_str #1. We expand it once to get the replacement text (with argument #2) and call \use:n with this replacement as its argument. This ensures that any undefined control sequence error in the key’s code will lead to an error message of the form <argument>...⟨control sequence⟩ in which one can read the (undefined) ⟨control sequence⟩ in full, rather than an error message that starts with the potentially very long key name, which would make the (undefined) ⟨control sequence⟩ be truncated or sometimes completely hidden. See https://github.com/latex3/latex2e/issues/351.

\cs_new:Npn \__keys_execute:nn #1#2
{ \__keys_execute:no {#1} { \prg_do_nothing: #2 } }
\cs_new:Npn \__keys_execute:no #1#2
{
  \exp_args:NNo \exp_args:No \use:n
  { \cs:w \c__keys_code_root_str #1 \exp_after:wN \cs_end:
    \exp_after:wN {#2}
  }
}

When there is no relative path, things here are easy: just save the key name and value. When we are working with a relative path, first we need to turn it into a string: that can’t happen earlier as we need to store \q__keys_no_value. Then, use a standard delimited approach to fish out the partial path.

\cs_new_protected:Npn \__keys_store_unused:
{
  \__keys_quark_if_no_value:NTF \l__keys_relative_tl
  { \clist_put_right:Ne \l__keys_unused_clist
    { \l_keys_key_str
      \bool_if:NF \l__keys_no_value_bool
      { = { \exp_not:o \l_keys_value_tl } }
    }
  }
  {
    \tl_if_empty:NTF \l__keys_relative_tl
    { 
      \__keys_execute_unknown: 
    }
  }
}
Executing a choice has two parts. First, try the choice given, then if that fails call the
unknown key. That always exists, as it is created when a choice is first made. So there
is no need for any escape code. For multiple choices, the same code ends up used in a
mapping.

\cs_new:Npn \_keys_choice_find:n #1
\_keys_choice_find:mm
\_keys_multichoice_find:n

(End of definition for \_keys_execute: and others.)
\cs_new:Npn \__keys_choice_find:nn \#1 \#2
\{ \cs_if_exist:cTF { \c__keys_code_root_str \#1 / \__keys_trim_spaces:n \#2 } \{ \__keys_execute:nn { \#1 / \__keys_trim_spaces:n \#2 } \#2 \} \{ \__keys_execute:nn { \#1 / unknown } \#2 \} \}
\cs_new:Npn \__keys_multichoice_find:n \#1
\{ \clist_map_function:nN \#1 \__keys_choice_find:n \}

(End of definition for \__keys_choice_find:n, \__keys_choice_find:nn, and \__keys_multichoice_find:n.)

66.7 Utilities

\__keys_parent:o
\__keys_parent_auxi:w
\__keys_parent_auxii:w
\__keys_parent_auxiii:n
\__keys_parent_auxiv:w

Used to strip off the ending part of the key path after the last /.
\cs_new:Npn \__keys_parent:o \#1
\{ \exp_after:wN \__keys_parent_auxi:w \#1 \q_nil \__keys_parent_auxii:w
/ \q_nil \__keys_parent_auxiv:w
\}
\cs_new:Npn \__keys_parent_auxi:w \#1 \#2 \q_nil \__keys_parent_auxii:w
\{ \#3 \{ \#1 \} \#2 \q_nil \#3 \}
\cs_new:Npn \__keys_parent_auxii:w \#1 \#2 \q_nil \__keys_parent_auxii:w
\{ \#1 \__keys_parent_auxi:w \#2 \q_nil \__keys_parent_auxiii:n
\}
\cs_new:Npn \__keys_parent_auxiii:n \#1
\{ \#1 \__keys_parent_auxi:w \}
\cs_new:Npn \__keys_parent_auxiv:w \#1 \q_nil \__keys_parent_auxiv:w
\{ \}

(End of definition for \__keys_parent:o and others.)

\__keys_trim_spaces:n
\__keys_trim_spaces_auxi:w
\__keys_trim_spaces_auxii:w
\__keys_trim_spaces_auxiii:w

Space stripping has to allow for the fact that the key here might have several parts, and spaces need to be stripped from each part. Since the key name is turned into a string groups can’t be stripped accidentally and the precautions of \tl_trim_spaces:n aren’t necessary, in this case it is much faster to just directly strip spaces around /.
\group_begin:
\cs_set:Npn \__keys_tmp:w \#1
\{ \cs_new:Npn \__keys_trim_spaces:n \tl_to_str:n { / \#1 } /
\keys_if_exist_p:nn
\keys_if_exist:nnTF

A utility for others to see if a key exists.

\keys_if_choice_exist_p:nn
\keys_if_choice_exist:nnnTF

Just an alternative view on \keys_if_exist:nnTF.

(End of definition for \keys_if_choice_exist:nnnTF. This function is documented on page 246.)
To show a key, show its code using a message.

```latex
\keys_show:nn
\keys_log:nn
__keys_show:Nnn
__keys_show:n
__keys_show:w
__keys_show:Nw

To show a key, show its code using a message.

\cs_new_protected:Npn \keys_show:nn
\cs_new_protected:Npn \keys_log:nn
\cs_new_protected:Npn __keys_show:Nnn #1#2#3
\cs_new_protected:Npn __keys_show:n #1
\cs_new:Npe __keys_show:n #1
```

976
66.8 Messages

For when there is a need to complain.

\msg_new:nnnn { keys } { bad-relative-key-path }
  { The-key-’#1’-is-not-inside-the-’#2’-path. }
\msg_new:nnnn { keys } { boolean-values-only }
  { Key-’#1’-accepts-boolean-values-only. }
\msg_new:nnnn { keys } { choice-unknown }
  { Key-’#1’-accepts-only-a-fixed-set-of-choices. }
  { The-key-’#1’-only-accepts-predefined-values,-
    and-’#2’-is-not-one-of-these. }
\msg_new:nnnn { keys } { unknown }
  { The-key-’#1’-is-unknown-and-is-being-ignored. }
  { The-module-’#2’-does-not-have-a-key-called-’#1’.\}
\msg_new:nnnn { keys } { nested-choice-key }
  { Attempt-to-define-’#1’-as-a-nested-choice-key. }
\msg_new:nnnn { keys } { value-forbidden }
  { The-key-’#1’-should-be-given-without-a-value. }
  { The-value-’#2’-was-present:-the-key-will-be-ignored. }
\msg_new:nnnn { keys } { value-required }
  { The-key-’#1’-requires-a-value. }
  { No-value-was-present:-the-key-will-be-ignored. }
\msg_new:nnnn { keys } { show-key }
  { The-key-’#1’-
    \tl_if_empty:nTF {#2}
    { is-undefined. }
    { has-the-properties: #2 . }
  }
\prop_gput:Nnn \g_msg_module_name_prop { keys } { \LaTeX }
\prop_gput:Nnn \g_msg_module_type_prop { keys } { }

(End of definition for \keys_show:nn and others. These functions are documented on page 246.)
Chapter 67

\texttt{l3intarray} implementation

There are two implementations for this module: One \texttt{fontdimen} based one for more traditional \TeX\ engines and a Lua based one for engines with Lua support.

Both versions do not allow negative array sizes.

\begin{verbatim}
\msg_new:nnn { kernel } { negative-array-size } { Size-of-array-may-not-be-negative:#1 }
\end{verbatim}

\l__intarray_loop_int \texttt{A loop index.}
\begin{verbatim}
\int_new:N \l__intarray_loop_int
\end{verbatim}

(End of definition for \texttt{l__intarray_loop_int}.)

67.1 Lua implementation

First, let’s look at the Lua variant:

We select the Lua version if the Lua helpers were defined. This can be detected by the presence of \texttt{__intarray_gset_count:Nw}.

\begin{verbatim}
\cs_if_exist:NTF \__intarray_gset_count:Nw
\end{verbatim}

67.1.1 Allocating arrays

\g__intarray_table_int \texttt{Used to differentiate intarrays in Lua and to record an invalid index.}
\l__intarray_bad_index_int \texttt{Used as marker for intarrays in Lua. Followed by an unbraced number identifying the array and a single space. This format is used to make it easy to scan from Lua.}

\begin{verbatim}
\luacmd{\texttt{\_intarray:w}, function() scan_int()}
\end{verbatim}

978
Declare \#1 as a tokenlist with the scanmark and a unique number. Pass the array’s size to the Lua helper. Every intarray must be global; it’s enough to run this check in \intarray_new:Nn.

\cs_new_protected:Npn \__intarray_new:N #1
\{ \__kernel_chk_if_free_cs:N #1 \int_gincr:N \g__intarray_table_int \cs_gset_nopar:Npe #1 { \__intarray:w \int_use:N \g__intarray_table_int \c_space_tl } \}

\cs_new_protected:Npn \intarray_new:Nn #1#2
\{ \__intarray_new:N #1 \__intarray_gset_count:Nw #1 \int_eval:n {#2} \scan_stop: \if_int_compare:nNnT { \intarray_count:N #1 } < 0 \msg_error:nne { kernel } { negative-array-size } \{ \intarray_count:N #1 } \}

\cs_generate_variant:Nn \intarray_new:Nn { c }
\end{definition}
return tables[0]
end
local i = scan_int()
local current_table = tables[i]
if current_table then return current_table end
current_table = {}
tables[i] = current_table
return current_table
end

Since in \LaTeX{} this is loaded in the format, we want to preserve any intarrays which are
created while format building for the actual run.

To do this, we use the \texttt{register\_luadata} mechanism from \texttt{l3luatex}: Directly before
the format get dumped, the following function gets invoked and serializes all existing
tables into a string. This string gets compiled and dumped into the format and is made
available at the beginning of regular runs as \texttt{get\_luadata'@@'}.

\begin{verbatim}
if register\_luadata then
  register\_luadata('\_intarray', function()
    local t = '{[0]={},
    for i=1, #tables do
      t = string.format("%s(%s),", t, table.concat(tables[i], ','))
    end
    return t .. ")"
  end)
end
\end{verbatim}

\textit{(End of definition for \_intarray\_table.)}

\setcounter{page}{250}

\texttt{\_intarray\_count:N} Set and get the size of an array. “Setting the size” means in this context that we add
zeros until we reach the desired size.

\begin{verbatim}
\texttt{\_intarray\_count:c}
\texttt{\_intarray\_get\_count:Nw}
local sprint = tex.sprint
luacmd('\_intarray\_get\_count:Nw', function()
  local t = \_intarray\_table()
  local n = scan_int()
  for i=#t+1, n do t[i] = 0 end
  end, 'protected', 'global')
luacmd('\intarray\_count:N', function()
  sprint(-2, \#\_intarray\_table())
end, 'global')
\end{verbatim}

\textit{(End of definition for \texttt{\_intarray\_count:N} and \_intarray\_get\_count:Nw. This function is docu-
mented on page 250.)}
67.1.2 Array items

\_\_intarray\_gset:wF
\_\_intarray\_gset:w

The setter provided by Lua. The argument order somewhat emulates the \fontdimen:
First the array index, followed by the intarray and then the new value. This has been
chosen over a more conventional order to provide a delimiter for the numbers.

\begin{verbatim}
luacmd('\_\_intarray\_gset:wF', function()
    local i = scan_int()
    local t = __intarray_table()
    if t[i] then
        t[i] = scan_int()
        put_next(use_none)
    else
        tex.count.l\_\_intarray\_bad\_index\_int = i
        scan_int()
        put_next(use_i)
    end
end, 'protected', 'global')
\end{verbatim}

End of definition for \_\_intarray\_gset:wF and \_\_intarray\_gset:w.

\intarray\_gset:Nnn
\intarray\_gset:cnn
\_\_\_kernel\_intarray\_gset:Nnn

The \_\_\_kernel\_intarray\_gset:Nnn function does not use \\int\_eval:n, namely its
arguments must be suitable for \int\_\_value:w. The user version checks the position and
value are within bounds.

\begin{verbatim}
\cs_new_protected:Npn \_\_\_kernel\_intarray\_gset:Nnn #1#2#3
    { \_\_intarray\_gset:w #2 #1 #3 \scan_stop: }
\cs_new_protected:Npn \intarray\_gset:Nnn #1#2#3
    { \_\_intarray\_gset:wF \int\_eval:n {#2} #1 \int\_\_value:n{#3}
        \msg_error:nneee { kernel } { out-of-bounds } \token_to_str:N #1 \l\_\_intarray\_bad\_index\_int \\int\_\_value:n \l\_\_intarray\_count:N #1 \\intarray\_gset:Nnn { c } }
\cs_generate_variant:Nn \intarray\_gset:Nnn { c }
\end{verbatim}

(End of definition for \_\_\_kernel\_intarray\_gset:Nnn and \_\_\_kernel\_intarray\_gset:Nnn. This function is docu-
mented on page 256.)

\intarray\_gzero:N
\intarray\_gzero:c

Set the appropriate array entry to zero. No bound checking needed.

\begin{verbatim}
luacmd('\intarray\_gzero:N', function()
    local t = __intarray_table()
    for i=1, #t do
        t[i] = 0
\end{verbatim}

981
Get the appropriate entry and perform bound checks. The \_kernel_intarray Item:Nn function omits bound checks and omits \int_eval:n, namely its argument must be a \TeX integer suitable for \int_value:w.

\cs_new:Npn \__kernel_intarray_item:Nn #1#2
{ \__intarray_item:w #2 #1 }
\cs_new:Npn \intarray_item:Nn #1#2
{ \__intarray_item:wF \int_eval:n {#2} #1
  \msg_expandable_error:nnff { kernel } { out-of-bounds } 
  \{ \token_to_str:N #1 \} \int_use:N \_\_intarray_bad_index_int \{ \intarray_ 
  \intarray_item:cn #1 \}
\cs_generate_variant:Nn \intarray_item:Nn { c }

(End of definition for \intarray_gzero:N. This function is documented on page 251.)

\intarray_rand_item:N
\intarray_rand_item:c
Importantly, \intarray_item:Nn only evaluates its argument once.
67.1.3 Working with contents of integer arrays

We use the \__kernel_intarray_gset:Nnn which does not do bounds checking and instead automatically resizes the array. This is not implemented in Lua to ensure that the clist parsing is consistent with the clist module.

\cs_new_protected:Npn \intarray_const_from_clist:Nn #1#2
{\__intarray_new:N #1 \int_zero:N \l__intarray_loop_int \clist_map_inline:nn {#2}
{\int_incr:N \l__intarray_loop_int \__kernel_intarray_gset:Nnn #1 \l__intarray_loop_int {\int_eval:n {##1}}}
\cs_generate_variant:Nn \intarray_const_from_clist:Nn { c }

(End of definition for \intarray_rand_item:N. This function is documented on page 251.)

\__intarray_range_to_clist:Nnn \__intarray_range_to_clist:w
Loop through part of the array.

\cs_new:Npn \__kernel_intarray_range_to_clist:Nnn #1#2#3
{\__intarray_range_to_clist:w #1 \int_eval:n {#2} \int_eval:n {#3} ~}

(End of definition for \intarray_const_from_clist:Nn. This function is documented on page 251.)

The \__intarray_to_clist:Nn auxiliary allows to choose the delimiter and is also used in \intarray_show:N. Here we just pass the information to Lua and let \texttt{table.concat} do the actual work. We discard the category codes of the passed delimiter but this is not an issue since the delimiter is always just a comma or a comma and a space. In both cases \texttt{sprint(2, \ldots)} provides the right catcodes.

\cs_new:Npn \intarray_to_clist:Nn #1#2
{\__intarray_to_clist:w #1 \int_eval:n {#2} \int_eval:n {#3} ~}

(End of definition for \intarray_to_clist:Nn and \intarray_to_clist:w.)
Loop through part of the array. We allow additional commas at the end.

\begin{verbatim}
\cs_new_protected:Npn \_kernel_intarray_gset_range_from_clist:Nnn #1#2#3 
{ \_intarray_gset_range:w \int_eval:w #2 #1 #3 \comma \scan_stop: }
\end{verbatim}

\begin{verbatim}
luacmd('\_intarray_gset_range:w', function()
    local from = scan_int()
    local t = \_intarray_table()
    while true do
        local tok = scan_token()
        if tok == comma then
            repeat
                tok = scan_token()
            until tok ~= comma
            break
        else
            put_next(tok)
        end
        t[from] = scan_int()
        scan_token()
        from = from + 1
    end
\end{verbatim}

(End of definition for \_kernel_intarray_gset_range_from_clist:Nnn and \_intarray_gset_range:nw.)

In order to allow some code sharing later we provide the \_intarray_gset_overflow_test:nw name here. It doesn’t actually test anything since the Lua implementation accepts all integers which could be tested with \tex_ifabsnum:D.

\begin{verbatim}
\cs_new_protected:Npn \_kernel_intarray_gset_overflow_test:nw #1 
{ }
\end{verbatim}

(End of definition for \_kernel_intarray_gset_overflow_test:nw.)

\section*{67.2 Font dimension based implementation}

Go to the false branch of the conditional above.

\begin{verbatim}
}
\end{verbatim}
67.2.1 Allocating arrays

\__intarray_entry:w
\__intarray_count:w

We use these primitives quite a lot in this module.

\cs_new_eq:NN \__intarray_entry:w \tex_fontdimen:D
\cs_new_eq:NN \__intarray_count:w \tex_hyphenchar:D

(End of definition for \__intarray_entry:w and \__intarray_count:w.)

\__intarray_sp_dim

Used to convert integers to dimensions fast.

\dim_const:Nn \c__intarray_sp_dim { 1 sp }

(End of definition for \c__intarray_sp_dim.)

\g__intarray_font_int

Used to assign one font per array.

\int_new:N \g__intarray_font_int

(End of definition for \g__intarray_font_int.)

\__intarray_new:N #1
\intarray_new:Nn \intarray_new:cn

Declare #1 to be a font (arbitrarily \texttt{cmr10} at a never-used size). Store the array’s size as the \texttt{hyphenchar} of that font and make sure enough \texttt{fontdimen} are allocated, by setting the last one. Then clear any \texttt{fontdimen} that \texttt{cmr10} starts with. It seems LuaTeX’s \texttt{cmr10} has an extra \texttt{fontdimen} parameter number 8 compared to other engines (for a math font we would replace 8 by 22 or some such). Every \texttt{intarray} must be global; it’s enough to run this check in \texttt{intarray_new:Nn}.

\cs_new_protected:Npn \__intarray_new:N #1
\cs_new_protected:Npn \intarray_new:Nn #1#2

\__kernel_chk_if_free_cs:N #1
\int_gincr:N \g__intarray_font_int
\tex_global:D \tex_font:D #1
= \texttt{cmr10-at- \__intarray_font_int} \__intarray_sp_dim \scan_stop:
\int_step_inline:nn { 8 } { \__kernel_intarray_gset:Nnn #1 {##1} \c_zero_int }

\cs_generate_variant:Nn \intarray_new:Nn { c }

(End of definition for \intarray_new:Nn and \__intarray_new:N. This function is documented on page 250.)

\intarray_count:N
\intarray_count:c

Size of an array.

\cs_new:Npn \intarray_count:N #1 { \int_value:w \__intarray_count:w #1 }
\cs_generate_variant:Nn \intarray_count:N { c }

(End of definition for \intarray_count:N. This function is documented on page 250.)
67.2.2 Array items

\__intarray_signed_max_dim:n

Used when an item to be stored is larger than \c_max_dim in absolute value; it is replaced by ±\c_max_dim.

\begin{verbatim}
\cs_new:Npn \__intarray_signed_max_dim:n #1
\{ \int_value:w \int_compare:nNnT {#1} < 0 { - } \c_max_dim }\end{verbatim}

(End of definition for \__intarray_signed_max_dim:n.)

\__intarray_bounds:NNnTF \__intarray_error:NNnw

The functions \intarray_gset:Nnn and \intarray_item:Nn share bounds checking. The T branch is used if \#3 is within bounds of the array \#2.

\begin{verbatim}
\cs_new:Npn \__intarray_bounds:NNnTF #1#2#3
\{ \if_int_compare:w 1 > #3 \exp_stop_f:
\__intarray_bounds_error:NNnw #1 #2 {#3}
\else:
\__intarray_bounds_error:NNnw #1 #2 \intarray_count:N #2 \exp_stop_f:
\fi:
\fi:
\use_i:nn }
\cs_new:Npn \__intarray_bounds_error:NNnw #1#2#3#4 \use_i:nn #5#6
\{ \msg_error:nneee #1 {#2} {#3} { \intarray_count:N #2 } \}
\end{verbatim}

(End of definition for \__intarray_bounds:NNnTF and \__intarray_bounds_error:NNnw.)

\intarray_gset:Nnn \intarray_gset:cnn \__kernel_intarray_gset:Nnn \__intarray_gset:Nnn \__intarray_gset_overflow:Nnn

Set the appropriate \fontdimen. The \__kernel_intarray_gset:Nnn function does not use \int_eval:n, namely its arguments must be suitable for \int_value:w. The user version checks the position and value are within bounds.

\begin{verbatim}
\cs_new_protected:Npn \__kernel_intarray_gset:Nnn #1#2#3
\{ \__intarray_entry:w #2 #1 #3 \c__intarray_sp_dim \}
\cs_new_protected:Npn \intarray_gset:Nnn #1#2#3
\{ \exp_after:wN \__intarray_gset:Nww \exp_after:wN #1 \int_value:w \int_eval:n {#2} \exp_after:wN ; \int_value:w \int_eval:n {#3} ; \}
\end{verbatim}

\cs_generate_variant:Nn \intarray_gset:Nnn { c }

\begin{verbatim}
\cs_new_protected:Npn \__intarray_gset:NNw #1#2 #3
\{ \__intarray_bounds:NNnTF \msg_error:nneee #1 {#2}
\__intarray_gset_overflow_test:nw {#3} \__kernel_intarray_gset:Nnn #1 {#2} {#3} \}
\end{verbatim}

986
\texttt{\_\_intarray_gset_overflow_test:nw} \#1

\begin{verbatim}
\cs_if_exist:NTF \tex_ifabsnum:D
  { \\
    \cs_new_protected:Npn \__intarray_gset_overflow_test:nw #1
      { \\
        \tex_ifabsnum:D #1 > \c_max_dim \\
        \exp_after:wN \__intarray_gset_overflow:NNnn \\
        \fi: \\
      }
  }
\end{verbatim}

\begin{verbatim}
\cs_new_protected:Npn \__intarray_gset_overflow_test:nw #1
  { \\
    \if_int_compare:w \int_abs:n {#1} > \c_max_dim \\
    \exp_after:wN \__intarray_gset_overflow:NNnn \\
    \fi: \\
  }
\end{verbatim}

\begin{verbatim}
\cs_new_protected:Npn \__intarray_gset_overflow:NNnn #1#2#3#4
  { \\
    \msg_error:nneeee { kernel } { overflow } \\
    \{ \token_to_str:N \#2 \} \{ \#3 \} \{ \_\_intarray_signed_max_dim:n \#4 \} \\
    \#1 \#2 \#3 \{ \_\_intarray_signed_max_dim:n \#4 \} \\
  }
\end{verbatim}

(End of definition for \texttt{\_\_intarray_gset:Nnn} and others. This function is documented on page 250.)

\texttt{\_\_intarray_gset:Nnn} Set the appropriate \texttt{\fontdimen} to zero. No bound checking needed. The \texttt{\texttt{\_\_kernel_intarray_item:Nn} \_\_intarray_item:Nn} escape \texttt{\_\_kernel_intarray_item:Nn} possibly uses quite a lot of memory, but this is somewhat comparable to the size of the array, and it is much faster than an \texttt{\int_step_inline:nn} loop.

\begin{verbatim}
\cs_new_protected:Npn \intarray_gzero:N #1
  { \\
    \int_zero:N \l__intarray_loop_int \\
    \prg_replicate:nn { \intarray_count:N #1 } \\
    \{ \\
      \int_incr:N \l__intarray_loop_int \\
      \_\_\_intarray_entry:w \l__intarray_loop_int \#1 \c_zero_dim \\
    \}
  }
\end{verbatim}

\begin{verbatim}
\cs_generate_variant:Nn \intarray_gzero:N { c }
\end{verbatim}

(End of definition for \texttt{\intarray_gzero:N}. This function is documented on page 251.)

\texttt{\_\_kernel_intarray_item:Nn} Get the appropriate \texttt{\fontdimen} and perform bound checks. The \texttt{\_\_kernel_intarray_item:Nn} function omits bound checks and omits \texttt{\int_eval:n}, namely its argument must be a \TeX{} integer suitable for \texttt{\int_value:w}.
Importantly, \texttt{\intarray_item:Nn} only evaluates its argument once.

\begin{verbatim}
cs_new:Npn \intarray_rand_item:N #1 { \intarray_item:Nn #1 { \int_rand:n { \intarray_count:N #1 } } }
cs_generate_variant:Nn \intarray_rand_item:N { c }
\end{verbatim}

(End of definition for \texttt{\intarray_rand_item:N}. This function is documented on page 251.)

67.2.3 Working with contents of integer arrays

Similar to \texttt{\intarray_new:Nn} (which we don’t use because when debugging is enabled that function checks the variable name starts with \texttt{g}_). We make use of the fact that \LaTeX{} allows allocation of successive \texttt{\fontdimen} as long as no other font has been declared: no need to count the comma list items first. We need the code in \texttt{\intarray_gset:Nnn} that checks the item value is not too big, namely \texttt{\__intarray_gset_overflow_test:nw}, but not the code that checks bounds. At the end, set the size of the intarray.

\begin{verbatim}
cs_new_protected:Npn \intarray_const_from_clist:Nn #1#2 { \__intarray_new:N #1 \int_zero:N \l__intarray_loop_int \clist_map_inline:nn {#2} { \exp_args:Nf \__intarray_const_from_clist:nN { \int_eval:n {##1} } #1 } \__intarray_count:w #1 \l__intarray_loop_int }
cs_generate_variant:Nn \intarray_const_from_clist:Nn { c }
cs_new_protected:Npn \__intarray_const_from_clist:nN #1#2 { \int_incr:N \l__intarray_loop_int \__intarray_gset_overflow_test:nw {#1} \__kernel_intarray_gset:Nnn #2 \l__intarray_loop_int {#1} }
\end{verbatim}

(End of definition for \texttt{\intarray_const_from_clist:Nn} and \texttt{\__intarray_const_from_clist:nN}. This function is documented on page 251.)

\texttt{\intarray_to_clist:Nn} Loop through the array, putting a comma before each item. Remove the leading comma with \texttt{f}-expansion. We also use the auxiliary in \texttt{\intarray_show:N} with argument comma, space.

\begin{verbatim}
cs_new:Npn \__intarray_to_clist:Nn #1#2 { \int_compare:nNnF { \intarray_count:N #1 } = \c_zero_int \iftrue \exp_last_unbraced:Nf \use_none:n { \__intarray_to_clist:w 1 ; #1 #2 \prg_break_point: } \fi }
\end{verbatim}

\begin{verbatim}
\__intarray_to_clist:w
\end{verbatim}

988
\cs_new:Npn \__intarray_to_clist:w #1 ; #2\#3
{\prg_break:n
\if_int_compare:w #1 > \__intarray_count:w #2
\fi:
#3 \__kernel_intarray_item:Nn #2 {#1}
\exp_after:wN \__intarray_to_clist:w
\int_value:w \int_eval:w #1 + \c_one_int ; #2 {#3}
}

(End of definition for \__intarray_to_clist:Nn and \__intarray_to_clist:w.)

\cs_new:Npn \__kernel_intarray_range_to_clist:Nnn #1#2#3
{\exp_last_unbraced:Nf \use_none:n
\exp_after:wN \__intarray_range_to_clist:ww
\int_value:w \int_eval:w #2 \exp_after:wN ;
\int_value:w \int_eval:w #3 ;
#1 \prg_break_point:}
\cs_new:Npn \__intarray_range_to_clist:ww #1 ; #2 ; #3
{\if_int_compare:w #1 > #2 \exp_stop_f:
\prg_break:n
\fi:
, \__kernel_intarray_item:Nn #3 {#1}
\exp_after:wN \__intarray_range_to_clist:ww
\int_value:w \int_eval:w #1 + \c_one_int ; #2 ; #3}

(End of definition for \__kernel_intarray_range_to_clist:Nnn and \__intarray_range_to_clist:ww.)

\cs_new:Npn \__kernel_intarray_gset_range_from_clist:Nnn #1#2#3
{\int_set:Nn \l__intarray_loop_int {#2}
\__intarray_gset_range:Nw #1 #3 , , \prg_break_point:}
\cs_new_protected:Npn \__intarray_gset_range:Nw #1 #2 ,
{\if_catcode:w \scan_stop: \tl_to_str:n {#2} \scan_stop:
\prg_break:n
\fi:
\__kernel_intarray_gset:Nnn #1 \l__intarray_loop_int {#2}
\int_incr:N \l__intarray_loop_int
\__intarray_gset_range:Nw #1}

(End of definition for \__kernel_intarray_gset_range_from_clist:Nnn and \__intarray_gset_range:Nw.)
67.3 Common parts

\intarray_show:N Convert the list to a comma list (with spaces after each comma)
\intarray_show:c
\intarray_log:N
\intarray_log:c

\cs_new_protected:Npn \intarray_show:N { \__intarray_show:NN \msg_show:nneee } 
\cs_generate_variant:Nn \intarray_show:N { c } 
\cs_new_protected:Npn \intarray_log:N { \__intarray_show:NN \msg_log:nneee } 
\cs_generate_variant:Nn \intarray_log:N { c } 
\cs_new_protected:Npn \__intarray_show:NN #1#2 
{ \__kernel_chk_defined:NT #2 
  { #1 { intarray } { show } 
    { \token_to_str:N #2 } 
    { \intarray_count:N #2 } 
    { >- \__intarray_to_clist:Nn #2 { , - } } 
  } 
} 

(End of definition for \intarray_show:N and \intarray_log:N. These functions are documented on page 251.)

{/tex}
{/package}
Chapter 68

\textit{l3fp implementation}

Nothing to see here: everything is in the subfiles!
Chapter 69

l3fp-aux implementation

Largely for performance reasons, we need to directly access primitives rather than use \int_eval:n. This happens a lot, so we use private names. The same is true for \romannumeral, although it is used much less widely.

\cs_new_eq:NN \__fp_int_eval:w \tex_numexpr:D
\cs_new_eq:NN \__fp_int_eval_end: \scan_stop:
\cs_new_eq:NN \__fp_int_to_roman:w \tex_romannumeral:D

(End of definition for \__fp_int_eval:w, \__fp_int_eval_end:, and \__fp_int_to_roman:w.)

69.2 Internal representation

Internally, a floating point number \(X\) is a token list containing

\s__fp \__fp_chk:w (case) (sign) (body);

Let us explain each piece separately.

Internal floating point numbers are used in expressions, and in this context are subject to f-expansion. They must leave a recognizable mark after f-expansion, to prevent the floating point number from being re-parsed. Thus, \s__fp is simply another name for \relax.

When used directly without an accessor function, floating points should produce an error: this is the role of \__fp_chk:w. We could make floating point variables be protected to prevent them from expanding under e/x-expansion, but it seems more convenient to treat them as a subcase of token list variables.

The (decimal part of the) IEEE-754-2008 standard requires the format to be able to represent special floating point numbers besides the usual positive and negative cases. We distinguish the various possibilities by their \(case\), which is a single digit:

0 zeros: +0 and −0,
1 “normal” numbers (positive and negative),
Table 3: Internal representation of floating point numbers.

<table>
<thead>
<tr>
<th>Representation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 \s__fp_... ;</td>
<td>Positive zero.</td>
</tr>
<tr>
<td>0 2 \s__fp_... ;</td>
<td>Negative zero.</td>
</tr>
<tr>
<td>1 0 {\langle exponent\rangle} {\langle X_1\rangle} {\langle X_2\rangle} {\langle X_3\rangle} {\langle X_4\rangle} ;</td>
<td>Positive floating point.</td>
</tr>
<tr>
<td>1 2 {\langle exponent\rangle} {\langle X_1\rangle} {\langle X_2\rangle} {\langle X_3\rangle} {\langle X_4\rangle} ;</td>
<td>Negative floating point.</td>
</tr>
<tr>
<td>2 0 \s__fp_... ;</td>
<td>Positive infinity.</td>
</tr>
<tr>
<td>2 2 \s__fp_... ;</td>
<td>Negative infinity.</td>
</tr>
<tr>
<td>3 1 \s__fp_... ;</td>
<td>Quiet \textit{nan}.</td>
</tr>
<tr>
<td>3 1 \s__fp_... ;</td>
<td>Signalling \textit{nan}.</td>
</tr>
</tbody>
</table>

2 infinities: \textit{+inf} and \textit{-inf},

3 quiet and signalling \textit{nan}.

The \textit{<sign>} is 0 (positive) or 2 (negative), except in the case of \textit{nan}, which have \textit{<sign>} = 1. This ensures that changing the \textit{<sign>} digit to 2 – \textit{<sign>} is exactly equivalent to changing the sign of the number.

Special floating point numbers have the form

\s__fp \s__fp_chk:w \langle case \rangle \langle sign \rangle \s__fp_... ;

where \s__fp_... is a scan mark carrying information about how the number was formed (useful for debugging).

Normal floating point numbers ((\textit{case} = 1) have the form

\s__fp \s__fp_chk:w 1 \langle sign \rangle \langle\textit{exponent}\rangle \{\langle X_1\rangle\} \{\langle X_2\rangle\} \{\langle X_3\rangle\} \{\langle X_4\rangle\} ;

Here, the \langle\textit{exponent}\rangle is an integer, between –10000 and 10000. The body consists in four blocks of exactly 4 digits, \textit{0000} ≤ \langle X_i \rangle ≤ \textit{9999}, and the floating point is

\textit{(-1)}^{\langle sign \rangle/2} \langle X_1 \rangle \langle X_2 \rangle \langle X_3 \rangle \langle X_4 \rangle \cdot 10^{\langle\textit{exponent}\rangle-16}

where we have concatenated the 16 digits. Currently, floating point numbers are normalized such that the \langle\textit{exponent}\rangle is minimal, in other words, 1000 ≤ \langle X_1 \rangle ≤ 9999.

Calculations are done in base 10000, \textit{i.e.} one myriad.

69.3 Using arguments and semicolons

This function removes an argument (typically a digit) and replaces it by \exp_stop_f:, a marker which stops \textit{f}-type expansion.

\cs_new:Npn \__fp_use_none_stop_f:n #1 { \exp_stop_f: }

(End of definition for \__fp_use_none_stop_f:n.)

Those functions place a semicolon after one or two arguments (typically digits).

\cs_new:Npn \__fp_use_s:n #1 { \texttt{;} }
\cs_new:Npn \__fp_use_s:nn #1#2 { \texttt{;} }

(End of definition for \__fp_use_s:n and \__fp_use_s:nn.)
\_fp\_use\_none\_until\_s:w
\_fp\_use\_i\_until\_s:nnw
Those functions select specific arguments among a set of arguments delimited by a semi-
colon.
22572 \cs_new:Npn \_fp\_use\_none\_until\_s:w \ #1; \ { \} 
22573 \cs_new:Npn \_fp\_use\_i\_until\_s:nnw \ #1\#2; \ {#1} 
22574 \cs_new:Npn \_fp\_use\_ii\_until\_s:nnn \ #1\#2\#3; \ {#2} 
(End of definition for \_fp\_use\_none\_until\_s:w, \_fp\_use\_i\_until\_s:nnw, and \_fp\_use\_ii\_until\_s:nnn.)
\_fp\_reverse\_args:Nww
Many internal functions take arguments delimited by semicolons, and it is occasionally
useful to swap two such arguments.
22575 \cs_new:Npn \_fp\_reverse\_args:Nww \ #1 \#2; \#3; \ { #1 \#3; \#2; } 
(End of definition for \_fp\_reverse\_args:Nww.)
\_fp\_rrot:www
Rotate three arguments delimited by semicolons. This is the inverse (or the square) of
the Forth primitive ROT, hence the name.
22576 \cs_new:Npn \_fp\_rrot:www \ #1; \#2; \#3; \ { \#2; \#3; \#1; } 
(End of definition for \_fp\_rrot:www.)
\_fp\_use\_i:ww
\_fp\_use\_i:www
Many internal functions take arguments delimited by semicolons, and it is occasionally
useful to remove one or two such arguments.
22577 \cs_new:Npn \_fp\_use\_i:ww \ #1; \#2; \ { \#1; } 
22578 \cs_new:Npn \_fp\_use\_i:www \ #1; \#2; \#3; \ { \#1; } 
(End of definition for \_fp\_use\_i:ww and \_fp\_use\_i:www.)

69.4 Constants, and structure of floating points
\_fp\_misused:n
This receives a floating point object (floating point number or tuple) and generates an
error stating that it was misused. This is called when for instance an \texttt{fp} variable is left
in the input stream and its contents reach \TeX{}'s stomach.
22577 \cs_new:protected:Npn \_fp\_misused:n \ #1 
22578 \ { \msg\_error:nne \{ \texttt{fp} \} \{ misused \} \{ \texttt{fp\_to\_tl:n \#1} \} \} 
(End of definition for \_fp\_misused:n.)
\s\_fp
\_fp\_chk:w
Floating points numbers all start with \texttt{s\_fp \_fp\_chk:w}, where \texttt{s\_fp} is equal to
the \TeX{} primitive \texttt{relax}, and \_fp\_chk:w is protected. The rest of the floating point
number is made of characters (or \texttt{relax}). This ensures that nothing expands under \texttt{f}-expansion, nor under \texttt{e/x}-expansion. However, when typeset, \_fp\_chk:w does nothing,
and \_fp\_chk:w is expanded. We define \_fp\_chk:w to produce an error.
22579 \scan\_new:N \texttt{s\_fp} 
22580 \cs_new:protected:Npn \_fp\_chk:w \ #1 ; 
22581 \ { \_fp\_misused:n \{ \_fp\_chk:w \#1 ; \} } 
(End of definition for \_fp\_chk:w.)
\s\_fp\_expr\_mark
\s\_fp\_expr\_stop
Aliases of \texttt{relax:D}, used to terminate expressions.
22581 \scan\_new:N \s\_fp\_expr\_mark 
22582 \scan\_new:N \s\_fp\_expr\_stop 
(End of definition for \_fp\_expr\_mark and \_fp\_expr\_stop.)
\s__fp_mark
\s__fp_stop

Generic scan marks used throughout the module.

\scan_new:N \s__fp_mark
\scan_new:N \s__fp_stop

(End of definition for \s__fp_mark and \s__fp_stop.)

\fp_use_i_delimit_by_s_stop:nw
Functions to gobble up to a scan mark.

\cs_new:Npn \fp_use_i_delimit_by_s_stop:nw #1 #2 \s__fp_stop {#1}

(End of definition for \fp_use_i_delimit_by_s_stop:nw.)

\s__fp_invalid
\s__fp_underflow
\s__fp_overflow
\s__fp_exact

A couple of scan marks used to indicate where special floating point numbers come from.

\scan_new:N \s__fp_invalid
\scan_new:N \s__fp_underflow
\scan_new:N \s__fp_overflow
\scan_new:N \s__fp_exact

(End of definition for \s__fp_invalid and others.)

\c_zero_fp
\c_minus_zero_fp
\c_inf_fp
\c_minus_inf_fp
\c_nan_fp

The special floating points. We define the floating points here as “exact”.

\tl_const:Nn \c_zero_fp { \s__fp \__fp_chk:w 0 0 \s__fp_exact ; }
\tl_const:Nn \c_minus_zero_fp { \s__fp \__fp_chk:w 0 2 \s__fp_exact ; }
\tl_const:Nn \c_inf_fp { \s__fp \__fp_chk:w 2 0 \s__fp_exact ; }
\tl_const:Nn \c_minus_inf_fp { \s__fp \__fp_chk:w 2 2 \s__fp_exact ; }
\tl_const:Nn \c_nan_fp { \s__fp \__fp_chk:w 3 1 \s__fp_exact ; }

(End of definition for \c_zero_fp and others. These variables are documented on page 262.)

\c__fp_prec_int
\c__fp_half_prec_int
\c__fp_block_int

The number of digits of floating points.

\int_const:Nn \c__fp_prec_int { 16 }
\int_const:Nn \c__fp_half_prec_int { 8 }
\int_const:Nn \c__fp_block_int { 4 }

(End of definition for \c__fp_prec_int, \c__fp_half_prec_int, and \c__fp_block_int.)

\c__fp_myriad_int

Blocks have 4 digits so this integer is useful.

\int_const:Nn \c__fp_myriad_int { 10000 }

(End of definition for \c__fp_myriad_int.)

\c__fp_minus_min_exponent_int
\c__fp_max_exponent_int

Normal floating point numbers have an exponent between \texttt{\minus_min_exponent} and \texttt{\max_exponent} inclusive. Larger numbers are rounded to $\pm\infty$. Smaller numbers are rounded to $\pm0$. It would be more natural to define a \texttt{\min_exponent} with the opposite sign but that would waste one \TeX{} count.

\int_const:Nn \c__fp_minus_min_exponent_int { 10000 }
\int_const:Nn \c__fp_max_exponent_int { 10000 }

(End of definition for \c__fp_minus_min_exponent_int and \c__fp_max_exponent_int.)

\c__fp_max_exp_exponent_int

If a number’s exponent is larger than that, its exponential overflows/underflows.

\int_const:Nn \c__fp_max_exp_exponent_int { 5 }

(End of definition for \c__fp_max_exp_exponent_int.)

995
\c__fp_overflowing_fp

A floating point number that is bigger than all normal floating point numbers. This replaces infinities when converting to formats that do not support infinities.

\tl_const:Ne \c__fp_overflowing_fp
\{ 
\s__fp \__fp_chk:w 1 0
{ \int_eval:n { \c__fp_max_exponent_int + 1 } } 
\{1000} \{0000} \{0000} \{0000\} ; 
\}

(End of definition for \c__fp_overflowing_fp.)

\__fp_zero_fp:N
\__fp_inf_fp:N

In case of overflow or underflow, we have to output a zero or infinity with a given sign.

\cs_new:Npn \__fp_zero_fp:N #1
{ \s__fp \__fp_chk:w 0 #1 \s__fp_underflow ; }
\cs_new:Npn \__fp_inf_fp:N #1
{ \s__fp \__fp_chk:w 2 #1 \s__fp_overflow ; }

(End of definition for \__fp_zero_fp:N and \__fp_inf_fp:N.)

\__fp_exponent:w

For normal numbers, the function expands to the exponent, otherwise to 0. This is used in \l3str-format.

\cs_new:Npn \__fp_exponent:w \s__fp \__fp_chk:w #1
{ \if_meaning:w 1 #1 \exp_after:wN \__fp_use_ii_until_s:nnw
\else: \exp_after:wN \__fp_use_i_until_s:nw \exp_after:wN 0 \fi: }

(End of definition for \__fp_exponent:w.)

\__fp_neg_sign:N

When appearing in an integer expression or after \int_value:w, this expands to the sign opposite to #1, namely 0 (positive) is turned to 2 (negative), 1 (\texttt{nan}) to 1, and 2 to 0.

\cs_new:Npn \__fp_neg_sign:N #1
{ \__fp_int_eval:w 2 - #1 \__fp_int_eval_end: }

(End of definition for \__fp_neg_sign:N.)

\__fp_kind:w

Expands to 0 for zeros, 1 for normal floating point numbers, 2 for infinities, 3 for \texttt{nan}, 4 for tuples.

\cs_new:Npn \__fp_kind:w #1
{ \__fp_if_type_fp:NTwFw \#1 \__fp_use_ii_until_s:nw \__fp_use_i_until_s:nw 4 } 
\s__fp \{ \__fp_use_i_until_s:nw 4 \}
\s__fp_stop

(End of definition for \__fp_kind:w.)
69.5 Overflow, underflow, and exact zero

Expects the sign and the exponent in some order, then the significand (which we don’t touch). Outputs the corresponding floating point number, possibly underflowed to ±0 or overflowed to ±∞. The functions \_fp_underflow:w and \_fp_overflow:w are defined in l3fp-traps.

\cs_new:Npn \_fp_sanitize:Nw #1 #2;
\if_case:w
\if_int_compare:w #2 > \c__fp_max_exponent_int 1 - \else:
\if_int_compare:w #2 < - \c__fp_minus_min_exponent_int 2 - \else:
\if_meaning:w 1 #1 3 ~ \fi: \fi: \fi: 0 ~ \or: \exp_after:wN \_fp_overflow:w
\or: \exp_after:wN \_fp_underflow:w
\or: \exp_after:wN \_fp_sanitize_zero:w
\fi:
\s__fp \_fp_chk:w 1 #1 {#2}
\fi:

\cs_new:Npn \_fp_sanitize:wN #1; #2 { \_fp_sanitize:Nw #2 #1; }
\cs_new:Npn \_fp_sanitize_zero:w \s__fp \_fp_chk:w #1 #2 #3;
{ \c_zero_fp }

(End of definition for \_fp_sanitize:Nw, \_fp_sanitize:wN, and \_fp_sanitize_zero:w.)

69.6 Expanding after a floating point number

\_fp_exp_after_o:w \_fp_exp_after_f:nw
\_fp_exp_after_o:w \_fp_exp_after_f:nw \_fp_chk:w (floating point)
\_fp_exp_after_f:nw \_fp_exp_after_normal:nNW \_fp_exp_after_special:nNW
\exp_after:wN \_fp_exp_after_normal:nNW
\exp_after:wN \_fp_exp_after_normal:nNW
\exp_after:wN \_fp_exp_after_special:nNW
\exp_after:wN \_fp_exp_after_special:nNW
\fi:
\{ \}
\fi:
\s__fp \_fp_chk:w 1 #1 \#2
\cs_new:Npn \_fp_exp_after_o:w \_fp_exp_after_f:nw \c_zero_fp

(End of definition for \_fp_exp_after_o:w, \_fp_exp_after_f:nw, \_fp_exp_after_normal:nNW, \_fp_exp_after_special:nNW.)
Special floating point numbers are easy to jump over since they contain few tokens. For normal floating point numbers, life is slightly harder, since we have many tokens to jump over. Here it would be slightly better if the digits were not braced but instead were delimited arguments (for instance delimited by  ). That may be changed some day.

Floating point tuples take the form \s__fp_tuple \__fp_tuple_chk:w \{ ⟨fp 1⟩ ⟨fp 2⟩ ...⟩ ; where each ⟨fp⟩ is a floating point number or tuple, hence ends with ; itself. When a tuple is typeset, \__fp_tuple_chk:w produces an error, just like usual floating point numbers. Tuples may have zero or one element.
Count the number of items in a tuple of floating points by counting semicolons. The technique is very similar to \texttt{\_\texttt{tl\_count:n}} but with the loop built-in. Checking for the end of the loop is done with the \texttt{\_\texttt{use\_none:n}} \texttt{#1} construction.

\begin{verbatim}
\cs_new:Npn \__fp_tuple_count:w \s__fp_tuple \__fp_tuple_chk:w #1 ;
{ \int_value:w \__fp_int_eval:w 0 \__fp_tuple_count_loop:Nw #1 { ? \prg_break: } ; \prg_break_point: \__fp_int_eval_end: }
\cs_new:Npn \__fp_tuple_count_loop:Nw #1#2 ;
{ \use_none:n #1 + 1 \__fp_tuple_count_loop:Nw }
\end{verbatim}

(End of definition for \texttt{\_\texttt{fp\_tuple\_count:w}}, \texttt{\_\texttt{fp\_array\_count:n}}, and \texttt{\_\texttt{fp\_tuple\_count\_loop:Nw}}.)

\subsection{\texttt{\_\texttt{fp\_type\_from\_scan:N\_fp\_other:N\_fp\_scan:w}}}

Used as \texttt{\_\texttt{fp\_type\_from\_scan:N\_fp\_other:N\_fp\_scan:w}} \texttt{⟨token⟩} \texttt{(marker)} \texttt{⟨true code⟩} \texttt{\_\texttt{fp\_type\_from\_scan:}}\texttt{\_\texttt{fp\_other:}}\texttt{⟨false code⟩} \texttt{\_\texttt{fp\_stop}}, this test whether the \texttt{⟨marker⟩} is \texttt{\_\texttt{fp\_or}} or not and runs the appropriate \texttt{⟨code⟩}. The very unusual syntax is for optimization purposes as that function is used for all floating point operations.

\begin{verbatim}
\cs_new:Npn \__fp_if_type_fp:NTwFw #1 \s__fp #2 #3 \s__fp_stop {#2}
\end{verbatim}

(End of definition for \texttt{\_\texttt{fp\_type\_from\_scan:N\_fp\_other:N\_fp\_scan:w}}.)
Arguments are \langle \text{type marker} \rangle \langle \text{function} \rangle \langle \text{recovery} \rangle. This gives the function obtained by placing the type after \texttt{@@}. If the function is not defined then \langle \text{recovery} \rangle \langle \text{function} \rangle is used instead; however that test is not run when the \langle \text{type marker} \rangle is \texttt{s__fp}.

The \texttt{Nnw} function simply dispatches to the appropriate \texttt{__fp_change_func_type\_chk:NN} with “…” (either empty or \langle \text{type} \rangle) extracted from \#1, which should start with \texttt{s__fp}. If it doesn’t start with \texttt{s__fp} the function \texttt{__fp_change_func_type\_chk:NN} defined in l3fp-parse gives an error; another special \langle \text{type} \rangle is \texttt{stop}, useful for loops, see below. The \texttt{nw} function has an important optimization for floating points numbers; it also fetches its type marker \#2 from the floating point.
The loop works by using the \textit{n} argument of \texttt{\__fp\_exp\_after\_any\_f:nw} to place the loop macro after the next item in the tuple and expand it.

\begin{verbatim}
\__fp\_exp\_after\_array\_f:w
\__fp\_exp\_after\_tuple\_o:w
\__fp\_exp\_after\_tuple\_f:nw
\__fp\_exp\_after\_array\_f:w
The loop works by using the \textit{n} argument of \texttt{\__fp\_exp\_after\_any\_f:nw} to place the loop macro after the next item in the tuple and expand it.
\end{verbatim}

\section{Packing digits}

When a positive integer \texttt{#1} is known to be less than $10^8$, the following trick splits it into two blocks of 4 digits, padding with zeros on the left.

\begin{verbatim}
\cs_new:Npn \__fp\_exp\_after\_tuple\_o:w
\cs_new:Npn \__fp\_exp\_after\_tuple\_f:nw
\cs_new:Npn \__fp\_exp\_after\_array\_f:w
\end{verbatim}

The idea is that adding $10^8$ to the number ensures that it has exactly 9 digits, and can then easily find which digits correspond to what position in the number. Of course, this can be modified for any number of digits less or equal to 9 (we are limited by \LaTeX{}'s integers). This method is very heavily relied upon in \texttt{l3fp-basics}.

More specifically, the auxiliary inserts \texttt{+ #1#2#3#4#5 #6}, which allows us to compute several blocks of 4 digits in a nested manner, performing carries on the fly. Say we want to compute $12345 \times 66778899$. With simplified names, we would do

\begin{verbatim}
\cs_new:Npn \__fp\_exp\_after\_tuple\_o:w
\cs_new:Npn \__fp\_exp\_after\_tuple\_f:nw
\cs_new:Npn \__fp\_exp\_after\_array\_f:w
\end{verbatim}
The \texttt{\textbackslash exp\_after:wN} triggers \texttt{\textbackslash int\_value:w \textbackslash \_fp\_int\_eval:w}, which starts a first computation, whose initial value is \(-5\,0000\) (the “leading shift”). In that computation appears an \texttt{\textbackslash exp\_after:wN}, which triggers the nested computation \texttt{\textbackslash int\_value:w \textbackslash \_fp\_int\_eval:w} with starting value \(4\,999\,5000\) (the “middle shift”). That, in turn, expands \texttt{\textbackslash exp\_after:wN} which triggers the third computation. The third computation’s value is \(5\,0000\,0000 + 12345 \times 8899\), which has 9 digits. Adding \(5 \cdot 10^8\) to the product allowed us to know how many digits to expect as long as the numbers to multiply are not too big; it also works to some extent with negative results. The \texttt{pack} function puts the last 4 of those 9 digits into a brace group, moves the semi-colon delimiter, and inserts a +, which combines the carry with the previous computation. The shifts nicely combine into \(5\,0000\,0000/10^4 + 4\,999\,5000 = 5\,0000\,0000\). As long as the operands are in some range, the result of this second computation has 9 digits. The corresponding \texttt{pack} function, expanded after the result is computed, braces the last 4 digits, and leaves + \(\langle 5\ \text{digits}\rangle\) for the initial computation. The “leading shift” cancels the combination of the other shifts, and the \texttt{\textbackslash post\_processing:w} takes care of packing the last few digits.

Admittedly, this is quite intricate. It is probably the key in making \texttt{l3fp} as fast as other pure \TeX{} floating point units despite its increased precision. In fact, this is used so much that we provide different sets of packing functions and shifts, depending on ranges of input.

\begin{verbatim}
\__fp_pack:NNNNNw \c__fp_trailing_shift_int \c__fp_middle_shift_int \c__fp_leading_shift_int
\__fp_pack_big:NNNNNNw \c__fp_big_trailing_shift_int \c__fp_big_middle_shift_int \c__fp_big_leading_shift_int
\end{verbatim}

This set of shifts allows for computations involving results in the range \([-4 \cdot 10^8, 5 \cdot 10^8 - 1]\). Shifted values all have exactly 9 digits.

This set of shifts allows for computations involving results in the range \([-5 \cdot 10^8, 6 \cdot 10^8 - 1]\) (actually a bit more). Shifted values all have exactly 10 digits. Note that the upper bound is due to \TeX{}’s limit of \(2^{31} - 1\) on integers. The shifts are chosen to be roughly the midpoint of \(10^9\) and \(2^{31}\), the two bounds on 10-digit integers in \TeX{}.
This set of shifts allows for computations with results in the range \([-1 \cdot 10^9, 147483647]\); the end-point is \(2^{31} - 1 - 2 \cdot 10^9 \approx 1.47 \cdot 10^8\). Shifted values all have exactly 10 digits.

```
\int_const:Nn \c__fp_Bigg_leading_shift_int \{ -200000 \}
\int_const:Nn \c__fp_Bigg_middle_shift_int \{ 200000 \cdot 9999 \}
\int_const:Nn \c__fp_Bigg_trailing_shift_int \{ 200000 \cdot 10000 \}
\cs_new:Npn __fp_pack_Bigg:NNNNNNw #1#2#3#4#5#6 #7; \{ + #1\#2\#3\#4\#5\#6; \{#7\} \}
```

(End of definition for \__fp_pack_Bigg:NNNNNNw and others.)

\__fp_pack_twice_four:wNNNNNNNN \langle \text{tokens} \rangle \langle \geq 8 \text{ digits} \rangle

Grabs two sets of 4 digits and places them before the semi-colon delimiter. Putting several copies of this function before a semicolon packs more digits since each takes the digits packed by the others in its first argument.

```
\cs_new:Npn __fp_pack_twice_four:wNNNNNNNN #1; #2\#3\#4\#5 \#6\#7\#8\#9
\{ \#1 \{\#2\#3\#4\#5\} \{\#6\#7\#8\#9\} ; \}
```

(End of definition for \__fp_pack_twice_four:wNNNNNNNN.)

\__fp_pack_eight:wNNNNNNNN \langle \text{tokens} \rangle \langle \geq 8 \text{ digits} \rangle

Grabs one set of 8 digits and places them before the semi-colon delimiter as a single group. Putting several copies of this function before a semicolon packs more digits since each takes the digits packed by the others in its first argument.

```
\cs_new:Npn __fp_pack_eight:wNNNNNNNN #1; #2\#3\#4\#5 \#6\#7\#8\#9
\{ \#1 \{\#2\#3\#4\#5\#6\#7\#8\#9\} ; \}
```

(End of definition for \__fp_pack_eight:wNNNNNNNN.)

Addition and multiplication of significands are done in two steps: first compute a (more or less) exact result, then round and pack digits in the final (braced) form. These functions take care of the packing, with special attention given to the case where rounding has caused a carry. Since rounding can only shift the final digit by 1, a carry always produces an exact power of 10. Thus, \__fp_basics_pack_high_carry:w is always followed by four times \{0000\}.

This is used in \texttt{l3fp-basics} and \texttt{l3fp-extended}.

```
\cs_new:Npn __fp_basics_pack_low:NNNNNw \#1 \#2\#3\#4\#5 \#6;
\{ + \#1 - 1 ; \{\#2\#3\#4\#5\} \{\#6\} ; \}
\cs_new:Npn __fp_basics_pack_high:NNNNNw \#1 \#2\#3\#4\#5 \#6;
\{ \if_meaning:w \#1 __fp_basics_pack_high_carry:w \fi: ; \{\#2\#3\#4\#5\} \{\#6\} \}
\cs_new:Npn __fp_basics_pack_high_carry:w \fi: ; \#1 \{\#2\#3\#4\#5\} \{\#6\} \fi: + 1 ; \{1000\} \}
```

(End of definition for \__fp_basics_pack_low:NNNNNw, \__fp_basics_pack_high:NNNNNw, and \__fp_basics_pack_high_carry:w.)
This is used in \texttt{l3fp-basics} for additions and divisions. Their syntax is confusing, hence the name.

\begin{verbatim}
\cs_new:Npn \__fp_basics_pack_weird_low:NNNNw #1 #2 #3 #4 #5 ;
{ \if_meaning:w 2 \__fp_int_eval_end: \else: \fi:
 \__fp_int_eval_end: \__fp_int_eval_end: \__fp_int_eval_end: ; \fi; }
\cs_new:Npn \__fp_basics_pack_weird_high:NNNNNNNNw
1 #1 #2 #3 #4 #5 #6 #7 #8 #9 ; { ; \__fp_int_eval_end: \__fp_int_eval_end: \__fp_int_eval_end: \__fp_int_eval_end: \fi; }
\end{verbatim}

(End of definition for \__fp_basics_pack_weird_low:NNNNw and \__fp_basics_pack_weird_high:NNNNNNNNw.)

\section*{69.9 Decimate (dividing by a power of 10)}

\texttt{\__fp_decimate:nNnnnn \{\langle shift\rangle\} \{f_1\} \{\langle X_1\rangle\} \{\langle X_2\rangle\} \{\langle X_3\rangle\} \{\langle X_4\rangle\} ;}

Each \langle X_i\rangle consists in 4 digits exactly, and \(1000 \leq \langle X_1\rangle < 9999\). The first argument determines by how much we shift the digits. \(\langle f_1\rangle\) is called as follows:

\(\langle f_1\rangle \langle\text{rounding}\rangle \{\langle X_1'\rangle\} \{\langle X_2'\rangle\} \{\text{extra-digits}\} ;\)

where \(0 \leq \langle X_1'\rangle < 10^8 - 1\) are 8 digit integers, forming the truncation of our number. In other words,

\[
\left( \sum_{i=1}^{4} \langle X_i\rangle \cdot 10^{-4i} \cdot 10^{-\langle shift\rangle} \right) - \left( \langle X_1'\rangle \cdot 10^{-8} + \langle X_2'\rangle \cdot 10^{-16} \right) = 0. \langle\text{extra-digits}\rangle \cdot 10^{-16} \in [0,10^{-16}).
\]

To round properly later, we need to remember some information about the difference. The \(\langle\text{rounding}\rangle\) digit is 0 if and only if the difference is exactly 0, and 5 if and only if the difference is exactly \(0.5 \cdot 10^{-16}\). Otherwise, it is the (non-0, non-5) digit closest to \(10^7\) times the difference. In particular, if the shift is 17 or more, all the digits are dropped, \(\langle\text{rounding}\rangle\) is 1 (not 0), and \(\langle X_1'\rangle\) and \(\langle X_2'\rangle\) are both zero.

If the shift is 1, the \(\langle\text{rounding}\rangle\) digit is simply the only digit that was pushed out of the brace groups (this is important for subtraction). It would be more natural for the \(\langle\text{rounding}\rangle\) digit to be placed after the \(\langle X_i'\rangle\), but the choice we make involves less reshuffling.

Note that this function treats negative \(\langle shift\rangle\) as 0.

\begin{verbatim}
\cs_new:Npn \__fp_decimate:nNnnnn #1
{ \cs:w \__fp_decimate_ \if_int_compare:w \__fp_int_eval:w #1 > \c__fp_prec_int
 \else: \fi:
 \__fp_int_to_roman:w \__fp_int_eval:w #1 \fi:
\cs:w :Nnnnn \cs_end:
\end{verbatim}

1004
Each of the auxiliaries see the function \( f_1 \), followed by 4 blocks of 4 digits.

(End of definition for \texttt{\_fp\_decimate\_\_Nnnnn}.)

If the \texttt{\_fp\_decimate\_\_Nnnnn} is zero, or too big, life is very easy.

(End of definition for \texttt{\_fp\_decimate\_\_Nnnnn} and \texttt{\_fp\_decimate\_\_tiny\_\_Nnnnn}.)

Shifting happens in two steps: compute the \texttt{\_fp\_decimate\_\_Nnnnn} digit, and repack digits into two blocks of 8. The sixteen functions are very similar, and defined through \texttt{\_fp\_decimate\_\_tmp:w}. The arguments are as follows: \#1 indicates which function is being defined; after one step of expansion, \#2 yields the “extra digits” which are then converted by \texttt{\_fp\_round\_digit:Nw} to the \texttt{\_fp\_decimate\_\_Nnnnn} digit (note the + separating blocks of digits to avoid overflowing \TeX{}'s integers). This triggers the \texttt{\_fp\_decimate\_\_pack:nnnnnnnnnnw}, responsible for building two blocks of 8 digits, and removing the rest. For this to work, \#3 alternates between braced and unbraced blocks of 4 digits, in such a way that the 5 first and 5 next token groups yield the correct blocks of 8 digits.

(End of definition for \texttt{\_fp\_decimate\_\_Nnnnn} and others.)

9No, the argument spec is not a mistake: the function calls an auxiliary to do half of the job.
The computation of the \textit{(rounding)} digit leaves an unfinished \texttt{\textbackslash int_value:w}, which expands the following functions. This allows us to repack nicely the digits we keep. Those digits come as an alternation of unbraced and braced blocks of 4 digits, such that the first 5 groups of token consist in 4 single digits, and one brace group (in some order), and the next 5 have the same structure. This is followed by some digits and a semicolon.

\begin{verbatim}
\cs_new:Npn \__fp_decimate_pack:nnnnnnnnnww #1#2#3#4#5
\begin{cases} \__fp_decimate_pack:nnnnnnnnnww \{ #1#2#3#4#5 \} \\
\{ \{#1\} \{#2#3#4\#5\#6\} \}
\end{cases}
\end{verbatim}

(End of definition for \texttt{\__fp_decimate_pack:nnnnnnnnnww}.)

### 69.10 Functions for use within primitive conditional branches

The functions described in this section are not pretty and can easily be misused. When correctly used, each of them removes one \texttt{\textbackslash fi:} as part of its parameter text, and puts one back as part of its replacement text.

Many computation functions in \texttt{l3fp} must perform tests on the type of floating points that they receive. This is often done in an \texttt{\textbackslash if_case:w} statement or another conditional statement, and only a few cases lead to actual computations: most of the special cases are treated using a few standard functions which we define now. A typical use context for those functions would be

\begin{verbatim}
\if_case:w \langle integer \rangle \\exp_stop_f:
\begin{cases}
\__fp_case_return_o:Nw \langle fp var \rangle \\
\__fp_case_use:nw \{ \langle some computation \rangle \}
\or: \__fp_case_return_same_o:w \\
\or: \__fp_case_return:nw \{ \langle something \rangle \}
\fi:
\langle junk \rangle \\
\langle floating point \rangle
\end{cases}
\end{verbatim}

In this example, the case 0 returns the floating point \texttt{\langle fp var \rangle}, expanding once after that floating point. Case 1 does \texttt{\langle some computation \rangle} using the \texttt{\langle floating point \rangle} (presumably compute the operation requested by the user in that non-trivial case). Case 2 returns the \texttt{\langle floating point \rangle} without modifying it, removing the \texttt{\langle junk \rangle} and expanding once after. Case 3 closes the conditional, removes the \texttt{\langle junk \rangle} and the \texttt{\langle floating point \rangle}, and expands \texttt{\langle something \rangle} next. In other cases, the \texttt{\langle junk \rangle} is expanded, performing some other operation on the \texttt{\langle floating point \rangle}. We provide similar functions with two trailing \texttt{\langle floating points \rangle}.

\begin{verbatim}
\__fp_case_use:nw
\end{verbatim}

This function ends a \TeX{} conditional, removes junk until the next floating point, and places its first argument before that floating point, to perform some operation on the floating point.

\begin{verbatim}
\cs_new:Npn \__fp_case_use:nw #1#2 \fi: #3 \a__fp { \fi: \#1 \a__fp }
\end{verbatim}

(End of definition for \texttt{\__fp_case_use:nw}.)
\_fp_case_return:nw

This function ends a \TeX conditional, removes junk and a floating point, and places its first argument in the input stream. A quirk is that we don’t define this function requiring a floating point to follow, simply anything ending in a semicolon. This, in turn, means that the ⟨junk⟩ may not contain semicolons.

\begin{verbatim}
\cs_new:Npn \__fp_case_return:nw #1\fi: #3 ; { \fi: #1 }
\end{verbatim}

(End of definition for \_fp_case_return:nw.)

\_fp_case_return_o:Nw

This function ends a \TeX conditional, removes junk and a floating point, and returns its first argument (an ⟨fp var⟩) then expands once after it.

\begin{verbatim}
\cs_new:Npn \__fp_case_return_o:Nw #1\fi: #3 \s__fp #4 ; { \fi: \exp_after:wN #1 }
\end{verbatim}

(End of definition for \_fp_case_return_o:Nw.)

\_fp_case_return_same_o:w

This function ends a \TeX conditional, removes junk, and returns the following floating point, expanding once after it.

\begin{verbatim}
\cs_new:Npn \__fp_case_return_same_o:w #1 \fi: #2 \s__fp #3 ; \s__fp { \fi: \__fp_exp_after_o:w \s__fp }
\end{verbatim}

(End of definition for \_fp_case_return_same_o:w.)

\_fp_case_return_o:Nww

Same as \_fp_case_return_o:Nw but with two trailing floating points.

\begin{verbatim}
\cs_new:Npn \__fp_case_return_o:Nww #1\fi: #3 #4 ; { \fi: \exp_after:wN #1 }
\end{verbatim}

(End of definition for \_fp_case_return_o:Nww.)

\_fp_case_return_i_o:ww \_fp_case_return_ii_o:ww

Similar to \_fp_case_return_same_o:w, but this returns the first or second of two trailing floating point numbers, expanding once after the result.

\begin{verbatim}
\cs_new:Npn \__fp_case_return_i_o:ww #1 \fi: #2 \s__fp #3 ; \s__fp #4 ; { \fi: \__fp_exp_after_o:w \s__fp #3 ; }
\cs_new:Npn \__fp_case_return_ii_o:ww #1 \fi: #2 \s__fp #3 ; { \fi: \__fp_exp_after_o:w }
\end{verbatim}

(End of definition for \_fp_case_return_i_o:ww and \_fp_case_return_ii_o:ww.)

\section{Integer floating points}

\_fp_int_p:w \_fp_int:w\texttt{TF}

Tests if the floating point argument is an integer. For normal floating point numbers, this holds if the rounding digit resulting from \_fp_decimate:n\texttt{NNNNNN} is 0.

\begin{verbatim}
\prg_new_conditional:Npnn \__fp_int:w \s__fp \__fp_chk:w #1 #2 #3 #4; { TF , T , F , p }
\prg_return_true:
\or:
    \if_case:w #1 \exp_stop_f:
        \if_case:w #1 \exp_stop_f:
            \prg_return_true:
        \else:
            \prg_return_false:
    \else:
        \prg_return_false:
\end{verbatim}

1007
69.12 Small integer floating points

Tests if the floating point argument is an integer or \( \pm \infty \). If so, it is clipped to an integer in the range \([-10^8, 10^8]\) and fed as a braced argument to the \textit{(true code)}. Otherwise, the \textit{(false code)} is performed.

First filter special cases: zeros and infinities are integers, \texttt{nan} is not. For normal numbers, decimate. If the rounding digit is not 0 run the \textit{(false code)}. If it is, then the integer is \#2 \#3; use \#3 if \#2 vanishes and otherwise \( 10^8 \).

(End of definition for \texttt{\_fp_int:wTF} and others.)
69.13 Fast string comparison

\texttt{\_\_fp\_str\_if\_eq:nn}  

A private version of the low-level string comparison function.

\texttt{\cs\_new\_eq:NN \_\_fp\_str\_if\_eq:nn \text\_str\_cmp:D}

(End of definition for \_\_fp\_str\_if\_eq:nn.)

69.14 Name of a function from its l3fp-parse name

\texttt{\_\_fp\_func\_to\_name:N \_\_fp\_func\_to\_name\_aux:w}

The goal is to convert for instance \_\_fp\_sin\_o:w to \textit{sin}. This is used in error messages hence does not need to be fast.

\texttt{\cs\_new:Npn \_\_fp\_func\_to\_name:N \#1}
\texttt{\{ \exp\_last\_unbraced:Nf}
\texttt{\_\_fp\_func\_to\_name\_aux:w \{ \cs\_to\_str:N \#1 \} X}
\texttt{\}}
\texttt{\cs\_set\_protected:Npn \_\_fp\_tmp:w \#1 \#2}
\texttt{\{ \cs\_new:Npn \_\_fp\_func\_to\_name\_aux:w \#1 \#1 \#2 \#2 \#2 \#2 \#2 \} X}
\texttt{\exp\_args:Nff \_\_fp\_tmp:w \{ \tl\_to\_str:n \{ \_fp\_\} \} X}
\texttt{\{ \tl\_to\_str:n \{ _o: \} \} X}

(End of definition for \_\_fp\_func\_to\_name:N and \_\_fp\_func\_to\_name\_aux:w.)

69.15 Messages

Using a floating point directly is an error.

\texttt{\msg\_new:nnnn \{ fp \} \{ misused \}}
\texttt{\{ A-floating-point-with-value-'\#1'-was-misused. \}}
\texttt{\}}
\texttt{To-obtain-the-value-of-a-floating-point-variable,-use-}
\texttt{'\token\_to\_str:n \fp\_to\_decimal:N',-}
\texttt{'\token\_to\_str:n \fp\_to\_tl:N',-or-other-}
\texttt{conversion-functions.}
\texttt{\}}
\texttt{\prop\_gput:NNn \_\_msg\_module\_name\_prop \{ fp \} \{ LaTeX \}}
\texttt{\prop\_gput:NNn \_\_msg\_module\_type\_prop \{ fp \} \{ \}}
\texttt{\} /package)
Chapter 70

l3fp-traps implementation

Exceptions should be accessed by an n-type argument, among

• invalid_operation
• division_by_zero
• overflow
• underflow
• inexact (actually never used).

70.1 Flags

Flags to denote exceptions.

flag fp_invalid_operation
flag fp_division_by_zero
flag fp_overflow
flag fp_underflow

(End of definition for flag fp_invalid_operation and others. These variables are documented on page 264.)

70.2 Traps

Exceptions can be trapped to obtain custom behaviour. When an invalid operation or a
division by zero is trapped, the trap receives as arguments the result as an n-type floating
point number, the function name (multiple letters for prefix operations, or a single symbol
for infix operations), and the operand(s). When an overflow or underflow is trapped, the
trap receives the resulting overly large or small floating point number if it is not too big,
otherwise it receives +∞. Currently, the inexact exception is entirely ignored.

The behaviour when an exception occurs is controlled by the definitions of the func-
tions

• \_fp_invalid_operation:nnw,
Rather than changing them directly, we provide a user interface as \fp_trap:nn \{⟨exception⟩\} \{⟨way of trapping⟩\}, where the ⟨way of trapping⟩ is one of error, flag, or none.

We also provide \__fp_invalid_operation:o:nw, defined in terms of \__fp_invalid_operation:o:nw.

\fp_trap:nn

We provide three types of trapping for invalid operations: either produce an error and raise the relevant flag; or only raise the flag; or don’t even raise the flag. In most cases, the function produces as a result its first argument, possibly with post-expansion.
\flag_ensure_raised:n { fp_invalid_operation }

\exp_args:Nno \use:n
\cs_set:Npn \__fp_invalid_operation_o:Nww ##1##2; ##3; }

\__fp_error:nffn { invalid-ii }
\flag_ensure_raised:n { fp_invalid_operation }
\exp_after:wN \c_nan_fp

\exp_args:Nno \use:n
\cs_set:Npn \__fp_invalid_operation_tl_o:ff ##1##2 }

\__fp_error:nffn { invalid } {##1} {##2} { }
\flag_ensure_raised:n { fp_invalid_operation }
\exp_after:wN \c_nan_fp

\end_of_definition_for \__fp_trap_invalid_operation_set_error: and others.)

\__fp_trap_division_by_zero_set_error:
\__fp_trap_division_by_zero_set_flag:
\__fp_trap_division_by_zero_set_none:
\__fp_trap_division_by_zero_set:N

We provide three types of trapping for invalid operations and division by zero: either produce an error and raise the relevant flag; or only raise the flag; or don’t even raise the flag. In all cases, the function must produce a result, namely its first argument, ±∞ or nan.

\cs_new_protected:Npn \__fp_trap_division_by_zero_set_error:
\cs_new_protected:Npn \__fp_trap_division_by_zero_set_flag:
\cs_new_protected:Npn \__fp_trap_division_by_zero_set_none:
\cs_new_protected:Npn \__fp_trap_division_by_zero_set:N #1

\exp_args:Nno \use:n
\cs_set:Npn \__fp_division_by_zero_o:Nnw ##1##2##3; }

\__fp_error:nffn { zero-div } {##2} { \fp_to_tl:n { ##3; } } { }
\flag_ensure_raised:n { fp_division_by_zero }
\exp_after:wN ##1

\exp_args:Nno \use:n
\cs_set:Npn \__fp_division_by_zero_o:NNww ##1##2##3; ##4; }

\__fp_error:nffn { zero-div-ii }
\flag_ensure_raised:n { fp_division_by_zero }
\exp_after:wN ##1

1012
Just as for invalid operations and division by zero, the three different behaviours are obtained by feeding \texttt{\_fp\_do\_nothing}, \texttt{\_use\_none:nnnn} or \texttt{\_use\_none:nnnnnn} to an auxiliary, with a further auxiliary common to overflow and underflow functions. In most cases, the argument of the \texttt{\_fp\_overflow:w} and \texttt{\_fp\_underflow:w} functions will be an (almost) normal number (with an exponent outside the allowed range), and the error message thus displays that number together with the result to which it overflowed or underflowed. For extreme cases such as $10 \times 10^{1e9999}$, the exponent would be too large for \LaTeX, and \texttt{\_fp\_overflow:w} receives $\pm \infty$ (\texttt{\_fp\_underflow:w} would receive $\pm 0$); then we cannot do better than simply say an overflow or underflow occurred.

```
\cs_new_protected:Npn _fp_trap_overflow_set_error: { _fp_trap_overflow_set:N \prg_do_nothing: }
\cs_new_protected:Npn _fp_trap_overflow_set_flag: { _fp_trap_overflow_set:N \use_none:nnnnn }
\cs_new_protected:Npn _fp_trap_overflow_set_none: { _fp_trap_overflow_set:N \use_none:nnnnnnn }
\cs_new_protected:Npn _fp_trap_overflow_set_NnnNn { _fp_overflow:w _fp_underflow_set_error: }
\cs_new_protected:Npn _fp_trap_overflow_set_N { _fp_trap_overflow_set_NnnNn { overflow } _fp_inf_fp:N { inf } }
\cs_new_protected:Npn _fp_trap_underflow_set_error: { _fp_trap_underflow_set:N \prg_do_nothing: }
\cs_new_protected:Npn _fp_trap_underflow_set_flag: { _fp_trap_underflow_set:N \use_none:nnnnn }
\cs_new_protected:Npn _fp_trap_underflow_set_none: { _fp_trap_underflow_set:N \use_none:nnnnnnn }
\cs_new_protected:Npn _fp_trap_underflow_set_NnnNn { _fp_trap_overflow_set_NnnNn #1 { underflow } _fp_zero_fp:N { 0 } }
\cs_new_protected:Npn _fp_trap_overflow_set_N { _fp_trap_overflow_set_NnnNn { _fp_overflow_set_error: #1\#2\#3\#4 }
\cs_new_protected:Npn _fp_invalid_operation:nnw #1#2#3; { }
\cs_new_protected:Npn _fp_invalid_operation_o:Nww #1#2; #3; { }
\cs_new_protected:Npn _fp_invalid_operation_tl_o:ff #1 #2 { }
\cs_new_protected:Npn _fp_division_by_zero_o:NNw #1 #2 { }
\cs_new_protected:Npn _fp_division_by_zero_tl_o:ff #1 #2 { }
\cs_new_protected:Npn _fp_overflow:w { _fp_invalid_operation:nnw _fp_invalid_operation_o:NNw _fp_division_by_zero_o:NNw _fp_division_by_zero_tl_o:ff _fp_overflow:w _fp_underflow:w }
\cs_new_protected:Npn _fp_division_by_zero_set_error: and others.
\cs_new_protected:Npn _fp_invalid_operation:nnw _fp_invalid_operation_o:NNw _fp_division_by_zero_set_error: and others.
\cs_new_protected:Npn _fp_division_by_zero_set_error: and others.
\cs_new:Npn __fp_overflow:w { }
\cs_new:Npn __fp_underflow:w { }
\fp_trap:nn { invalid_operation } { error }
\fp_trap:nn { division_by_zero } { flag }
\fp_trap:nn { overflow } { flag }
\fp_trap:nn { underflow } { flag }

(End of definition for __fp_invalid_operation:nnw and others.)

__fp_invalid_operation_o:nw
__fp_invalid_operation_o:fw
Convenient short-hands for returning \c_nan_fp for a unary or binary operation, and expanding after.
\cs_new:Npn __fp_invalid_operation_o:nw
{ __fp_invalid_operation:nnw { \exp_after:wN \c_nan_fp } }
\cs_generate_variant:Nn __fp_invalid_operation_o:nw { f }

(End of definition for __fp_invalid_operation_o:nw.)

70.3 Errors

__fp_error:nnnn
__fp_error:nnfn
__fp_error:nffn
__fp_error:nfff
\cs_new:Npn __fp_error:nnnn
{ \msg_expandable_error:nnn { fp } }
\cs_generate_variant:Nn __fp_error:nnnn { nnf, nff , nfff }

(End of definition for __fp_error:nnnn.)

70.4 Messages

Some messages.
\msg_new:nnnn { fp } { unknown-fpu-exception }
{ }
\msg_new:nnnn { fp } { unknown-fpu-trap-type }
{ The-FPU-trap-type-'#2'-is-not-known. }
\msg_new:nnnn { fp } { invalid_operation }
\msg_new:nnnn { fp } { division_by_zero }
\msg_new:nnnn { fp } { overflow }
\msg_new:nnnn { fp } { underflow }
\msg_new:nnnn { fp } { error }
\msg_new:nnnn { fp } { flag }

1014
* - none
}

\msg_new:nnn \{ fp \} \{ flow \}
{ An - #3 - occurred. }

\msg_new:nnn \{ fp \} \{ flow-to \}
{ #1 - #3 ed - to - #2 . }

\msg_new:nnn \{ fp \} \{ zero-div \}
{ Division-by-zero-in- #1 (#2) }

\msg_new:nnn \{ fp \} \{ zero-div-ii \}
{ Division-by-zero-in- (#1) #3 (#2) }

\msg_new:nnn \{ fp \} \{ invalid \}
{ Invalid-operation- #1 (#2) }

\msg_new:nnn \{ fp \} \{ invalid-ii \}
{ Invalid-operation- (#1) #3 (#2) }

\msg_new:nnn \{ fp \} \{ unknown-type \}
{ Unknown-type-for-'#1' }

{/package}
Chapter 71

l3fp-round implementation

71.1 Rounding tools

This is used as the half-point for which numbers are rounded up/down.

Floating point operations often yield a result that cannot be exactly represented in a significant with 16 digits. In that case, we need to round the exact result to a representable number. The IEEE standard defines four rounding modes:
• Round to nearest: round to the representable floating point number whose absolute difference with the exact result is the smallest. If the exact result lies exactly at the mid-point between two consecutive representable floating point numbers, round to the floating point number whose last digit is even.

• Round towards negative infinity: round to the greatest floating point number not larger than the exact result.

• Round towards zero: round to a floating point number with the same sign as the exact result, with the largest absolute value not larger than the absolute value of the exact result.

• Round towards positive infinity: round to the least floating point number not smaller than the exact result.

This is not fully implemented in l3fp yet, and transcendental functions fall back on the “round to nearest” mode. All rounding for basic algebra is done through the functions defined in this module, which can be redefined to change their rounding behaviour (but there is not interface for that yet).

The rounding tools available in this module are many variations on a base function \texttt{\textbackslash _fp_round:NNN}, which expands to \texttt{0\exp _stop _f:} or \texttt{1\exp _stop _f:} depending on whether the final result should be rounded up or down.

\begin{itemize}
 \item \texttt{_fp_round:NNN \{sign\} \{digit\}_1 \{digit\}_2} can expand to \texttt{0\exp _stop _f:} or \texttt{1\exp _stop _f:}.
 \item \texttt{_fp_round_s:NNN_w \{sign\} \{digit\}_1 \{digit\}_2 \{more \ digits\};} can expand to \texttt{0\exp _stop _f:;} or \texttt{1\exp _stop _f:;}.
 \item \texttt{_fp_round_neg:NNN \{sign\} \{digit\}_1 \{digit\}_2} can expand to \texttt{0\exp _stop _f:} or \texttt{1\exp _stop _f:;}
\end{itemize}

See implementation comments for details on the syntax.

\begin{itemize}
 \item \texttt{_fp_round:NNN \{final \ sign\} \{digit\}_1 \{digit\}_2} If rounding the number \texttt{\{final \ sign\}\{digit\}_1\{digit\}_2} to an integer rounds it towards zero (truncates it), this function expands to \texttt{0\exp _stop _f:;}, and otherwise to \texttt{1\exp _stop _f:;}. Typically used within the scope of an \texttt{_fp_int_eval:w}, to add 1 if needed, and thereby round correctly. The result depends on the rounding mode.

It is very important that \texttt{\{final \ sign\}} be the final sign of the result. Otherwise, the result would be incorrect in the case of rounding towards $-\infty$ or towards $+\infty$. Also recall that \texttt{\{final \ sign\}} is 0 for positive, and 2 for negative.

By default, the functions below return \texttt{0\exp _stop _f:;}, but this is superseded by \texttt{_fp_round_return_one:}, which instead returns \texttt{1\exp _stop _f:}; expanding everything and removing \texttt{0\exp _stop _f:;} in the process. In the case of rounding towards $\pm\infty$ or towards 0, this is not really useful, but it prepares us for the “round to nearest, ties to even” mode.

The “round to nearest” mode is the default. If the \texttt{\{digit\}_2} is larger than 5, then round up. If it is less than 5, round down. If it is exactly 5, then round such that \texttt{\{digit\}_1} plus the result is even. In other words, round up if \texttt{\{digit\}_1} is odd.

The “round to nearest” mode has three variants, which differ in how ties are rounded: down towards $-\infty$, truncated towards 0, or up towards $+\infty$.

\begin{verbatim}
\cs_new:Npn _fp_round_return_one: \exp_after:wN 1 \exp_after:wN \exp_stop_f: \exp:w }
\end{verbatim}
\cs_new:Npn __fp_round_to_ninf:NNN #1 #2 #3
{ \if_meaning:w 2 #1
 \if_int_compare:w #3 > \c_zero_int
 __fp_round_return_one:
 \fi:
 \fi:
 \c_zero_int
}
\cs_new:Npn __fp_round_to_zero:NNN #1 #2 #3 { \c_zero_int }
\cs_new:Npn __fp_round_to_pinf:NNN #1 #2 #3
{ \if_meaning:w 0 #1
 \if_int_compare:w #3 > \c_zero_int
 __fp_round_return_one:
 \fi:
 \fi:
 \c_zero_int
}
\cs_new:Npn __fp_round_to_nearest:NNN #1 #2 #3
{ \if_int_compare:w #3 > \c__fp_five_int
 __fp_round_return_one:
 \else:
 \if_meaning:w 5 #3
 \if_int_odd:w #2 \exp_stop_f:
 __fp_round_return_one:
 \fi:
 \fi:
 \fi:
 \c_zero_int
}
\cs_new:Npn __fp_round_to_nearest_ninf:NNN #1 #2 #3
{ \if_int_compare:w #3 > \c__fp_five_int
 __fp_round_return_one:
 \else:
 \if_meaning:w 5 #3
 \if_meaning:w 2 #1
 __fp_round_return_one:
 \fi:
 \fi:
 \fi:
 \c_zero_int
}
\cs_new:Npn __fp_round_to_nearest_zero:NNN #1 #2 #3
{ \if_int_compare:w #3 > \c__fp_five_int
 __fp_round_return_one:
 \fi:
 \c_zero_int
}
\cs_new:Npn __fp_round_to_nearest_pinf:NNN #1 #2 #3
{ \if_int_compare:w #3 > \c__fp_five_int
 __fp_round_return_one:
 \fi:
 \c_zero_int
}
_fp_round:NNN \((\text{final sign}) (\text{digit}) (\text{more digits}) \)
Similar to _fp_round:NNN, but with an extra semicolon, this function expands
to \texttt{0\exp_stop_f;} if rounding \((\text{final sign})(\text{digit})(\text{more digits}) \) to an integer truncates,
and to \texttt{1\exp_stop_f;} otherwise. The \((\text{more digits}) \) part must be a digit, followed by
something that does not overflow a \texttt{\int_use:N _fp_int_eval:w} construction. The
only relevant information about this piece is whether it is zero or not.

_fp_round_s:NNNw \((\text{final sign}) (\text{digit}) (\text{more digits}) \);
This function should always be called within an \texttt{\int_value:w or _fp_int_eval:w} expansion; it may add an extra \texttt{_fp_int_eval:w}, which means that the integer or
integer expression should not be ended with a synonym of \texttt{\relax}, but with a semi-colon
for instance.
#1

```latex
```

(End of definition for __fp_round_digit:Nw.)

```latex
\_\_fp_round_neg:NNN (final sign) (digit1) (digit2)
```

This expands to 0\exp_stop_f: or 1\exp_stop_f: after doing the following test. Starting from a number of the form (final sign)0.(15 digits)(digit1) with exactly 15 (non-
all-zero) digits before (digit1), subtract from it (final sign)0.0...0(digit2), where there
are 16 zeros. If in the current rounding mode the result should be rounded down, then
this function returns 0\exp_stop_f:. Otherwise, i.e., if the result is rounded back to
the first operand, then this function returns 0\exp_stop_f:

It turns out that this negative “round to nearest” is identical to the positive one.
And this is the default mode.

```latex
\cs_new_eq:NN \__fp_round_to_ninf_neg:NNN \__fp_round_to_pinf:NNN
\cs_new:Npn \__fp_round_to_zero_neg:NNN #1 #2 #3
{\if_int_compare:w #3 > \c_zero_int \__fp_round_return_one: \fi: \c_zero_int}
\cs_new_eq:NN \__fp_round_to_pinf_neg:NNN \__fp_round_to_ninf:NNN
\cs_new_eq:NN \__fp_round_to_nearest_neg:NNN \__fp_round_to_nearest:NNN
\cs_new_eq:NN \__fp_round_to_nearest_ninf_neg:NNN \__fp_round_to_nearest_pinf:NNN
\cs_new:Npn \__fp_round_to_nearest_zero_neg:NNN #1 #2 #3
{\if_int_compare:w #3 < \c__fp_five_int \else: \__fp_round_return_one: \fi: \c_zero_int}
\cs_new_eq:NN \__fp_round_to_nearest_pinf_neg:NNN \_\_fp_round_to_nearest_ninf:NNN
\cs_new_eq:NN \__fp_round_to_nearest_neg:NNN \_\_fp_round_to_nearest:NNN
```

(End of definition for __fp_round_neg:NNN and others.)

71.2 The round function

First check that all arguments are floating point numbers. The \texttt{trunc}, \texttt{ceil} and \texttt{floor}
functions expect one or two arguments (the second is 0 by default), and the \texttt{round} function
also accepts a third argument (\texttt{nan} by default), which changes \#1 from __fp_round_-
to_nearest:NNN to one of its analogues.

```latex
\cs_new:Npn \__fp_round_o:Nw \_\_fp_round_aux_o:Nw
```

1020
{\if_case:w __fp_array_count:n {#2} __fp_int_eval_end:
 __fp_round_no_arg_o:Nw #1 \exp:w
 \or:__fp_round:Nwn #1 #2 {0} \exp:w
 \or:__fp_round:Nww #1 #2 \exp:w
 \else:__fp_round:Nwww #1 #2 @ \exp:w
 \fi:
 \exp_after:wN \exp_end: }

(End of definition for __fp_round_no_arg_o:Nw and __fp_round_aux_o:tw.)

__fp_round_no_arg_o:Nw
{\cs_new:Npn __fp_round_no_arg_o:Nw #1
 {\cs_if_eq:NNTF #1 __fp_round_to_nearest:NNN
 {__fp_error:nnnn { num-args } { round () } { 1 } { 3 }
 { __fp_error:nffn { num-args }
 { __fp_round_name_from_cs:N #1 () } { 1 } { 2 }
 }
 }
 \exp_after:wN \c_nan_fp
 }
(End of definition for __fp_round_no_arg_o:Nw.)

__fp_round:Nwww
Having three arguments is only allowed for round, not trunc, ceil, floor, so check for that case. If all is well, construct one of __fp_round_to_nearest:NNN, __fp_round_-_to_nearest_zero:NNN, __fp_round_to_nearest_ninf:NNN, __fp_round_to_nearest_-pinf:NNN and act accordingly.
{\cs_new:Npn __fp_round:Nwww #1#2 ; #3 ; \s__fp __fp_chk:w #4#5#6 ; #7 @
 {\cs_if_eq:NNTF #1 __fp_round_to_nearest:NNN
 {\tl_if_empty:nTF {#7}
 {\exp_after:wN \c_nan_fp
 { __fp_error:nnnn { num-args } { round () } { 1 } { 3 }
 { __fp_error:nffn { num-args }
 { __fp_round_name_from_cs:N #1 () } { 1 } { 2 }
 }
 }
 }
 \exp_after:wN __fp_round:Nww #2 ; #3 ;
 }
(End of definition for __fp_round_to_nearest_zero:NNN.)
If the number of digits to round to is an integer or infinity all is good; if it is \texttt{nan} then just produce a \texttt{nan}; otherwise invalid as we have something like \texttt{round(1,3.14)} where the number of digits is not an integer.
__fp_decimate:nNnnn \{ c__fp_prec_int - #4 - #2 \}
__fp_round_normal:NnnwNnnn \#5 \#1 \#3 \{\#4\} \{\#2\}
\cs_new:Npn __fp_round_normal:NnnwNNnnn \#1\#2\#3\#4; \#5\#6
{ \exp_after:wN __fp_round_normal:NNwNnn \int_value:w __fp_int_eval:w
 \if_int_compare:w #2 > \c_zero_int
 \int_value:w #2
 \exp_after:wN __fp_round_pack:Nw
 \int_value:w __fp_int_eval:w #3 +
 \else:
 \if_int_compare:w #3 > \c_zero_int
 \int_value:w #3 +
 \fi:
 \fi:
 \exp_after:wN __fp_round_pack:Nw
 \int_value:w __fp_int_eval:w
}{ \cs_new:Npn __fp_round_pack:Nw #1 \{ \if_meaning:w 2 #1 + 1 \fi: __fp_int_eval_end: \}
\cs_new:Npn __fp_round_normal:NNwNnn \#1 \#2
{ \if_meaning:w 0 #1 \exp_after:wN __fp_round_special:NwwNnn \exp_after:wN #4 \fi:
 __fp_pack_twice_four:wNNNNNNNN
 __fp_pack_twice_four:wNNNNNNNN
 __fp_round_normal_end:wwNnn \; \#2
}{ \cs_new:Npn __fp_round_normal_end:wwNnn \#1;#2;#3;#4;#5
 \exp_after:wN __fp_exp_after_o:w \exp:w \exp_end_continue_f:w
 __fp_sanitize:Nw #3;#4 \; #1 \;}
\cs_new:Npn __fp_round_special:NwwNnn \#1;#2;#3;#4;#5
{ \if_meaning:w 0 #1 __fp_case_return:nw \{ \exp_after:wN __fp_zero_fp:N \exp_after:wN #4 \}
 \else:
 \exp_after:wN __fp_round_special_aux:Nw \exp_after:wN #4
 \int_value:w __fp_int_eval:w 1
 \if_meaning:w 1 \#1 -#6 \else: +#5 \fi:
 \fi:
}
\cs_new:Npn __fp_round_special_aux:Nw #1#2;
\exp_after:wN __fp_exp_after_o:w \exp:w \exp_end_continue_f:w
__fpanitize:Nw #1#2; {1000}{0000}{0000}{0000};
\}

(End of definition for __fp_round:Nww and others.)

⟨/package⟩
Chapter 72

l3fp-parse implementation

72.1 Work plan

The task at hand is non-trivial, and some previous failed attempts show that the code leads to unreadable logs, so we had better get it (almost) right the first time. Let us first describe our goal, then discuss the design precisely before writing any code.

In this file at least, a (floating point object) is a floating point number or tuple. This can be extended to anything that starts with \texttt{_fp} or \texttt{_fp_\langle type\rangle} and ends with ; with some internal structure that depends on the (type).

\begin{verbatim}
_fp_parse:n \langle fp expr \rangle
\end{verbatim}

Evaluates the (fp expr) and leaves the result in the input stream as a floating point object. This function forms the basis of almost all public l3fp functions. During evaluation, each token is fully \texttt{f}-expanded. __fp_parse:o:n does the same but expands once after its result.

\TeXhackers note: Registers (integers, toks, etc.) are automatically unpacked, without requiring a function such as \texttt{\int_use:N}. Invalid tokens remaining after \texttt{f}-expansion lead to unrecoverable low-level \TeX errors.

Floating point expressions are composed of numbers, given in various forms, infix operators, such as +, **, or , (which joins two numbers into a list), and prefix operators, such as the unary -, functions, or opening parentheses. Here is a list of precedences which control the order of evaluation (some distinctions are irrelevant for the order of evaluation, but serve as signals), from the tightest binding to the loosest binding.

16 Function calls.

13/14 Binary ** and ~ (right to left).

12 Unary +, -, ! (right to left).

11 Juxtaposition (implicit *) with no parenthesis.
10 Binary * and /.

9 Binary + and -.

7 Comparisons.

6 Logical and, denoted by &&.

5 Logical or, denoted by ||.

4 Ternary operator ?:, piece ?.

3 Ternary operator ?:, piece :.

2 Commas.

1 Place where a comma is allowed and generates a tuple.

0 Start and end of the expression.

(End of definition for \c__fp_prec_func_int and others.)

72.1.1 Storing results

The main question in parsing expressions expandably is to decide where to put the intermediate results computed for various subexpressions.

One option is to store the values at the start of the expression, and carry them together as the first argument of each macro. However, we want to \f-expand tokens one by one in the expression (as \int_eval:n does), and with this approach, expanding the next unread token forces us to jump with \exp_after:wN over every value computed earlier in the expression. With this approach, the run-time grows at least quadratically in the length of the expression, if not as its cube (inserting the \exp_after:wN is tricky and slow).

A second option is to place those values at the end of the expression. Then expanding the next unread token is straightforward, but this still hits a performance issue: for long expressions we would be reaching all the way to the end of the expression at every step of the calculation. The run-time is again quadratic.

A variation of the above attempts to place the intermediate results which appear when computing a parenthesized expression near the closing parenthesis. This still lets
us expand tokens as we go, and avoids performance problems as long as there are enough parentheses. However, it would be better to avoid requiring the closing parenthesis to be present as soon as the corresponding opening parenthesis is read: the closing parenthesis may still be hidden in a macro yet to be expanded.

Hence, we need to go for some fine expansion control: the result is stored before the start!

Let us illustrate this idea in a simple model: adding positive integers which may be resulting from the expansion of macros, or may be values of registers. Assume that one number, say, 12345, has already been found, and that we want to parse the next number. The current status of the code may look as follows.

\exp_after:wN \add:ww \int_value:w 12345 \exp_after:wN ;
\exp:w \operand:w ⟨stuff⟩

One step of expansion expands \exp_after:wN, which triggers the primitive \int_value:w, which reads the five digits we have already found, 12345. This integer is unfinished, causing the second \exp_after:wN to expand, and to trigger the construction \exp:w, which expands \operand:w, defined to read what follows and make a number out of it, then leave \exp_end:, the number, and a semicolon in the input stream. Once \operand:w is done expanding, we obtain essentially

\exp_after:wN \add:ww \int_value:w 12345 ;
\exp:w \exp_end: 333444 ;

where in fact \exp_after:wN has already been expanded, \int_value:w has already seen 12345, and \exp:w is still looking for a number. It finds \exp_end:, hence expands to nothing. Now, \int_value:w sees the ;, which cannot be part of a number. The expansion stops, and we are left with

\add:ww 12345 ; 333444 ;

which can safely perform the addition by grabbing two arguments delimited by ;.

If we were to continue parsing the expression, then the following number should also be cleaned up before the next use of a binary operation such as \add:ww. Just like \int_value:w 12345 \exp_after:wN ; expanded what follows once, we need \add:ww to do the calculation, and in the process to expand the following once. This is also true in our real application: all the functions of the form __fp_..._o:ww expand what follows once. This comes at the cost of leaving tokens in the input stack, and we need to be careful not to waste this memory. All of our discussion above is nice but simplistic, as operations should not simply be performed in the order they appear.

72.1.2 Precedence and infix operators

The various operators we will encounter have different precedences, which influence the order of calculations: \(1 + 2 \times 3 = 1 + (2 \times 3)\) because \(\times\) has a higher precedence than \(+\). The true analog of our macro \operand:w must thus take care of that. When looking for an operand, it needs to perform calculations until reaching an operator which has lower precedence than the one which called \operand:w. This means that \operand:w must know what the previous binary operator is, or rather, its precedence: we thus rename it \operand:Nw. Let us describe as an example how we plan to do the calculation 41-2^3+4+5. More precisely we describe how to perform the first operation in this expression. Here, we abuse notations: the first argument of \operand:Nw should be an integer.
constant (\c__fp_prec_plus_int, \ldots) equal to the precedence of the given operator, not directly the operator itself.

- Clean up 41 and find -. We call \operands:Nw - to find the second operand.
- Clean up 2 and find ^.
- Compare the precedences of - and ^. Since the latter is higher, we need to compute the exponentiation. For this, find the second operand with a nested call to \operands:Nw ^.
- Clean up 3 and find *.
- Compare the precedences of ^ and *. Since the former is higher, \operands:Nw ^ has found the second operand of the exponentiation, which is computed: $2^3 = 8$.
- We now have 41-8*4+5, and \operands:Nw - is still looking for a second operand for the subtraction. Is it 8?
- Compare the precedences of - and *. Since the latter is higher, we are not done with 8. Call \operands:Nw * to find the second operand of the multiplication.
- Clean up 4, and find +.
- Compare the precedences of * and +. Since the former is higher, \operands:Nw * has found the second operand of the multiplication, which is computed: $8 \times 4 = 32$.
- We now have 41-32+5, and \operands:Nw - is still looking for a second operand for the subtraction. Is it 32?
- Compare the precedences of - and +. Since they are equal, \operands:Nw - has found the second operand for the subtraction, which is computed: $41 - 32 = 9$.
- We now have 9+5.

The procedure above stops short of performing all computations, but adding a surrounding call to \operands:Nw with a very low precedence ensures that all computations are performed before \operands:Nw is done. Adding a trailing marker with the same very low precedence prevents the surrounding \operands:Nw from going beyond the marker.

The pattern above to find an operand for a given operator, is to find one number and the next operator, then compare precedences to know if the next computation should be done. If it should, then perform it after finding its second operand, and look at the next operator, then compare precedences to know if the next computation should be done. This continues until we find that the next computation should not be done. Then, we stop.

We are now ready to get a bit more technical and describe which of the l3fp-parse functions correspond to each step above.

First, __fp_parse_operand:Nw is the \operands:Nw function above, with small modifications due to expansion issues discussed later. We denote by \<precedence> the argument of __fp_parse_operand:Nw, that is, the precedence of the binary operator whose operand we are trying to find. The basic action is to read numbers from the input stream. This is done by __fp_parse_one:Nw. A first approximation of this function is that it reads one \<number>, performing no computation, and finds the following binary \<operator>. Then it expands to
expanding the \texttt{infix} auxiliary before leaving the above in the input stream.

We now explain the \texttt{infix} auxiliaries. We need some flexibility in how we treat the case of equal precedences: most often, the first operation encountered should be performed, such as 1-2-3 being computed as (1-2)-3, but 2^{-3}4 should be evaluated as 2^{(3\cdot4)} instead. For this reason, and to support the equivalence between \texttt{**} and \texttt{^}, each binary operator is converted to a control sequence \texttt{__fp_parse_infix_} (operator):N when it is encountered for the first time. Instead of passing both precedences to a test function to do the comparison steps above, we pass the \langle\texttt{precedence}\rangle (of the earlier operator) to the \texttt{infix} auxiliary for the following \langle\texttt{operator}\rangle, to know whether to perform the computation of the \langle\texttt{operator}\rangle. If it should not be performed, the \texttt{infix} auxiliary expands to

\begin{verbatim}
0 \use_none:n __fp_parse_infix_ (operator):N
\end{verbatim}

and otherwise it calls \texttt{__fp_parse_operand:Nw} with the precedence of the \langle\texttt{operator}\rangle to find its second operand \langle\texttt{number}\rangle and the next \langle\texttt{operator}\rangle, and expands to

\begin{verbatim}
0 __fp_parse_apply_binary:NwNwN
 (operator) (number2)
0 __fp_parse_infix_ (operator2):N
\end{verbatim}

The \texttt{infix} function is responsible for comparing precedences, but cannot directly call the computation functions, because the first operand \langle\texttt{number}\rangle is before the \texttt{infix} function in the input stream. This is why we stop the expansion here and give control to another function to close the loop.

A definition of \texttt{__fp_parse_operand:Nw} (precedence) with some of the expansion control removed is

\begin{verbatim}
\exp_after:wN __fp_parse_continue:NwN
\exp_after:wN \exp:w \exp_end_continue_f:w
__fp_parse_one:Nw
__fp_parse_continue_ (precedence)\texttt{__fp_parse_one:}\langle\texttt{number}\rangle\texttt{__fp_parse_continue:Nw} N\\
__fp_parse_one: Nw\texttt{__fp_parse_one:}\langle\texttt{operand}\rangle \texttt{__fp_parse_one:}\langle\texttt{number}\rangle \texttt{__fp_parse_one:}\langle\texttt{operator}\rangle\texttt{__fp_parse_one:}\langle\texttt{number}\rangle\\
__fp_parse_one: Nw\texttt{__fp_parse_one:}\langle\texttt{operand}\rangle \texttt{__fp_parse_one:}\langle\texttt{number}\rangle \texttt{__fp_parse_one:}\langle\texttt{operator}\rangle\texttt{__fp_parse_one:}\langle\texttt{number}\rangle
\end{verbatim}

This expands \texttt{__fp_parse_one:}\langle\texttt{precedence}\rangle completely, which finds a number, wraps the next \langle\texttt{operator}\rangle into an \texttt{infix} function, feeds this function the \langle\texttt{precedence}\rangle, and expands it, yielding either

\begin{verbatim}
__fp_parse_one: Nw\texttt{__fp_parse_one:}\langle\texttt{precedence}\rangle\texttt{__fp_parse_one:}\langle\texttt{operand}\rangle\texttt{__fp_parse_one:}\langle\texttt{number}\rangle 0
\end{verbatim}

or

\begin{verbatim}
__fp_parse_one: Nw\texttt{__fp_parse_one:}\langle\texttt{precedence}\rangle\texttt{__fp_parse_one:}\langle\texttt{operand}\rangle\texttt{__fp_parse_one:}\langle\texttt{number}\rangle\texttt{__fp_parse_one:}\langle\texttt{operator}\rangle\texttt{__fp_parse_one:}\langle\texttt{number}\rangle
\end{verbatim}

The definition of \texttt{__fp_parse_continue:NwN} is then very simple:

\begin{verbatim}
\cs_new:Npn __fp_parse_continue:NwN #1#2\#3 \{ #3 \#1 \#2 \0 \}
\end{verbatim}
In the first case, \#3 is \use_none:n, yielding
\use_none:n ⟨preference⟩ ⟨number⟩ @ __fp_parse_infix⟨operator⟩:N
then ⟨number⟩ @ __fp_parse_infix⟨operator⟩:N. In the second case, \#3 is __fp-
parse_apply_binary:NwNwN, whose role is to compute ⟨number⟩ ⟨operator⟩ ⟨number⟩ and to prepare for the next comparison of precedences: first we get
__fp_parse_apply_binary:NwNwN
⟨preference⟩ ⟨number⟩ ⟨operator⟩ ⟨number⟩
@ __fp_parse_infix⟨operator⟩:N
then
exp_after:wN __fp_parse_continue:NwN
exp_after:wN ⟨preference⟩
exw \exp_end_continue_f:w
__fp⟨operator⟩:o:ww ⟨number⟩ ⟨number⟩
exw \exp_end_continue_f:w
__fp_parse_infix⟨operator⟩:N ⟨preference⟩

where __fp⟨operator⟩:o:ww computes ⟨number⟩ ⟨operator⟩ ⟨number⟩ and expands after the result, thus triggers the comparison of the precedence of the ⟨operator⟩ and the ⟨preference⟩, continuing the loop.

We have introduced the most important functions here, and the next few paragraphs we describe various subtleties.

72.1.3 Prefix operators, parentheses, and functions

Prefix operators (unary -, +, !) and parentheses are taken care of by the same mechanism, and functions (sin, exp, etc.) as well. Finding the argument of the unary -, for instance, is very similar to grabbing the second operand of a binary infix operator, with a subtle precedence explained below. Once that operand is found, the operator can be applied to it (for the unary -, this simply flips the sign). A left parenthesis is just a prefix operator with a very low precedence equal to that of the closing parenthesis (which is treated as an infix operator, since it normally appears just after numbers), so that all computations are performed until the closing parenthesis. The prefix operator associated to the left parenthesis does not alter its argument, but it removes the closing parenthesis (with some checks).

Prefix operators are the reason why we only summarily described the function __fp_parse_one:Nw earlier. This function is responsible for reading in the input stream the first possible ⟨number⟩ and the next infix ⟨operator⟩. If what follows __fp_parse_one:Nw ⟨preference⟩ is a prefix operator, then we must find the operand of this prefix operator through a nested call to __fp_parse_operand:N with the appropriate precedence, then apply the operator to the operand found to yield the result of __fp_parse_one:Nw. So far, all is simple.

The unary operators +, -, ! complicate things a little bit: -3**2 should be \(-3^2\) = -9, and not \((-3)^2\) = 9. This would easily be done by giving - a lower precedence, equal to that of the infix + and -. Unfortunately, this fails in cases such as 3**-2*4, yielding 3\(^{-2\times 4}\) instead of the correct 3\(^{-2}\times 4\). A second attempt would be to call __fp-
parse_operand:N with the ⟨preference⟩ of the previous operator, but 0>-2+3 is then
parsed as 0−(2+3): the addition is performed because it binds more tightly than the comparison which precedes −. The correct approach is for a unary − to perform operations whose precedence is greater than both that of the previous operation, and that of the unary − itself. The unary − is given a precedence higher than multiplication and division. This does not lead to any surprising result, since −(x/y) = (−x)/y and similarly for multiplication, and it reduces the number of nested calls to __fp_parse_operand:Nw.

Functions are implemented as prefix operators with very high precedence, so that their argument is the first number that can possibly be built.

Note that contrarily to the infix functions discussed earlier, the prefix functions do perform tests on the previous \langle precedence\rangle to decide whether to find an argument or not, since we know that we need a number, and must never stop there.

72.1.4 Numbers and reading tokens one by one

So far, we have glossed over one important point: what is a “number”? A number is typically given in the form \langle significand\rangle e\langle exponent\rangle, where the \langle significand\rangle is any non-empty string composed of decimal digits and at most one decimal separator (a period), the exponent “e\langle exponent\rangle” is optional and is composed of an exponent mark e followed by a possibly empty string of signs + or − and a non-empty string of decimal digits. The \langle significand\rangle can also be an integer, dimension, skip, or muskip variable, in which case dimensions are converted from points (or mu units) to floating points, and the \langle exponent\rangle can also be an integer variable. Numbers can also be given as floating point variables, or as named constants such as \texttt{nan}, \texttt{inf} or \texttt{pi}. We may add more types in the future.

When __fp_parse_one:Nw is looking for a “number”, here is what happens.

- If the next token is a control sequence with the meaning of \texttt{\scan_stop:}, it can be: __fp, in which case our job is done, as what follows is an internal floating point number, or __fp_expr_mark, in which case the expression has come to an early end, as we are still looking for a number here, or something else, in which case we consider the control sequence to be a bad variable resulting from \texttt{c}\texttt{-expansion}.

- If the next token is a control sequence with a different meaning, we assume that it is a register, unpack it with \texttt{\tex_the:D}, and use its value (in pt for dimensions and skips, mu for muskips) as the \langle significand\rangle of a number: we look for an exponent.

- If the next token is a digit, we remove any leading zeros, then read a significand larger than 1 if the next character is a digit, read a significand smaller than 1 if the next character is a period, or we have found a significand equal to 0 otherwise, and look for an exponent.

- If the next token is a letter, we collect more letters until the first non-letter: the resulting word may denote a function such as \texttt{asin}, a constant such as \texttt{pi} or be unknown. In the first case, we call __fp_parse_operand:Nw to find the argument of the function, then apply the function, before declaring that we are done. Otherwise, we are done, either with the value of the constant, or with the value \texttt{nan} for unknown words.

- If the next token is anything else, we check whether it is a known prefix operator, in which case __fp_parse_operand:Nw finds its operand. If it is not known, then either a number is missing (if the token is a known infix operator) or the token is simply invalid in floating point expressions.
Once a number is found, __fp_parse_one:Nw also finds an infix operator. This goes as follows.

- If the next token is a control sequence, it could be the special marker \s__-fp_expr_mark, and otherwise it is a case of juxtaposing numbers, such as 2\c_zero_int, with an implied multiplication.

- If the next token is a letter, it is also a case of juxtaposition, as letters cannot be proper infix operators.

- Otherwise (including in the case of digits), if the token is a known infix operator, the appropriate __fp_infix\langle/operator\rangle:N function is built, and if it does not exist, we complain. In particular, the juxtaposition \c_zero_int 2 is disallowed.

In the above, we need to test whether a character token \token_to_str:N \#1 is a digit:

\if_int_compare:w 9 < 1 \token_to_str:N \#1 \exp_stop_f:
 is a digit
\else:
 not a digit
\fi:

To exclude 0, replace 9 by 10. The use of \token_to_str:N ensures that a digit with any catcode is detected. To test if a character token is a letter, we need to work with its character code, testing if \#1 lies in [65, 90] (uppercase letters) or [97, 112] (lowercase letters)

\if_int_compare:w __fp_int_eval:w
 \token_to_str:N \#1 \if_int_compare:w \#1 > \char92 \fi:
 / 26 = 3 \exp_stop_f:
 is a letter
\else:
 not a letter
\fi:

At all steps, we try to accept all category codes: when \#1 is kept to be used later, it is almost always converted to category code other through \token_to_str:N. More precisely, catcodes \{3, 6, 7, 8, 11, 12\} should work without trouble, but not \{1, 2, 4, 10, 13\}, and of course \{0, 5, 9\} cannot become tokens.

Floating point expressions should behave as much as possible like \epsilon-\TeX-based integer expressions and dimension expressions. In particular, f-expansion should be performed as the expression is read, token by token, forcing the expansion of protected macros, and ignoring spaces. One advantage of expanding at every step is that restricted expandable functions can then be used in floating point expressions just as they can be in other kinds of expressions. Problematically, spaces stop f-expansion: for instance, the macro \X below would not be expanded if we simply performed f-expansion.

\DeclareDocumentCommand {\test} {m} { \fp_eval:n {#1} }
\ExplSyntaxOff
\test { 1 + \X }

Of course, spaces typically do not appear in a code setting, but may very easily come in document-level input, from which some expressions may come. To avoid this problem, at every step, we do essentially what \use:f would do: take an argument, put it back
in the input stream, then \texttt{f-expand} it. This is not a complete solution, since a macro's expansion could contain leading spaces which would stop the \texttt{f}-expansion before further macro calls are performed. However, in practice it should be enough: in particular, floating point numbers are correctly expanded to the underlying |\texttt{s_fp ...}| structure. The \texttt{f}-expansion is performed by \texttt{__fp_parse_expand:w}.

72.2 Main auxiliary functions

\texttt{__fp_parse_operand:Nw}

\begin{verbatim}
\exp:w __fp_parse_operand:Nw \langle precedence \rangle __fp_parse_expand:w
\end{verbatim}

Reads the "...", performing every computation with a precedence higher than \langle precedence \rangle, then expands to

\begin{verbatim}
\langle result \rangle __fp_parse_infix_\langle operation \rangle:N ...
\end{verbatim}

where the \langle operation \rangle is the first operation with a lower precedence, possibly \texttt{end}, and the "..." start just after the \langle operation \rangle.

(End of definition for \texttt{__fp_parse_operand:Nw}.)

\texttt{__fp_parse_infix_+:N}

\begin{verbatim}
__fp_parse_infix_+:N \langle precedence \rangle ...
\end{verbatim}

If \texttt{+} has a precedence higher than the \langle precedence \rangle, cleans up a second \langle operand \rangle and finds the \langle operation2 \rangle which follows, and expands to

\begin{verbatim}
__fp_parse_apply_binary:NwNwN \langle operand \rangle __fp_parse_infix_\langle operation2 \rangle:N ...
\end{verbatim}

Otherwise expands to

\begin{verbatim}
\use_none:n __fp_parse_infix_+:N ...
\end{verbatim}

A similar function exists for each infix operator.

(End of definition for \texttt{__fp_parse_infix_+:N}.)

\texttt{__fp_parse_one:Nw}

\begin{verbatim}
__fp_parse_one:Nw \langle precedence \rangle ...
\end{verbatim}

Cleans up one or two operands depending on how the precedence of the next operation compares to the \langle precedence \rangle. If the following \langle operation \rangle has a precedence higher than \langle precedence \rangle, expands to

\begin{verbatim}
\langle operand1 \rangle __fp_parse_apply_binary:NwNwN \langle operation \rangle \langle operand2 \rangle __fp_parse_infix_\langle operation2 \rangle:N ...
\end{verbatim}

and otherwise expands to

\begin{verbatim}
\langle operand \rangle __fp_parse_infix_\langle operation \rangle:N ...
\end{verbatim}

(End of definition for \texttt{__fp_parse_one:Nw}.)
72.3 Helpers

\begin{verbatim}
__fp_parse_expand:w \exp:w __fp_parse_expand:w \langle tokens \rangle
This function must always come within a \exp:w expansion. The \langle tokens \rangle should be the part of the expression that we have not yet read. This requires in particular closing all conditionals properly before expanding.
\end{verbatim}

(End of definition for __fp_parse_expand:w.)

\begin{verbatim}
__fp_parse_return_semicolon:w
This very odd function swaps its position with the following \fi: and removes __fp_parse_expand:w normally responsible for expansion. That turns out to be useful.
\end{verbatim}

(End of definition for __fp_parse_return_semicolon:w.)

\begin{verbatim}
These functions must be called within an \int_value:w or __fp_int_eval:w construction. The first token which follows must be f-expanded prior to calling those functions. The functions read tokens one by one, and output digits into the input stream, until meeting a non-digit, or up to a number of digits equal to their index. The full expansion is
\langle digits \rangle ; \langle filling 0 \rangle ; \langle length \rangle
where \langle filling 0 \rangle is a string of zeros such that \langle digits \rangle \langle filling 0 \rangle has the length given by the index of the function, and \langle length \rangle is the number of zeros in the \langle filling 0 \rangle string. Each function puts a digit into the input stream and calls the next function, until we find a non-digit. We are careful to pass the tested tokens through \token_to_str:N to normalize their category code.
\end{verbatim}

(End of definition for __fp_parse_digits_vii:N and others.)
72.4 Parsing one number

This function finds one number, and packs the symbol which follows in an `__fp_parse_infix...` csname. #1 is the previous (precedence), and #2 the first token of the operand. We distinguish four cases: #2 is equal to `\scan_stop:` in meaning, #2 is a different control sequence, #2 is a digit, and #2 is something else (this last case is split further later). Despite the earlier f-expansion, #2 may still be expandable if it was protected by `\exp_not:N`, as may happen with the \texttt{\LaTeX} \texttt{2e} command `\protect`. Using a well placed `\reverse_if:N`, this case is sent to `__fp_parse_one_fp:NN` which deals with it robustly.

```latex
\_\_fp_parse_one:Nw
\begin{verbatim}
\cs_new:Npn \_\_fp_parse_one:Nw #1 #2
{\if_catcode:w \scan_stop: \exp_not:N #2
 \exp_after:wN \if_meaning:w \exp_not:N #2 #2 \else:
 \exp_after:wN \reverse_if:N
 \fi:
 \if_meaning:w \scan_stop: #2
 \exp_after:wN \exp_after:wN
 \exp_after:wN \_\_fp_parse_one_fp:NN
 \else:
 \exp_after:wN \exp_after:wN
 \exp_after:wN \_\_fp_parse_one_register:NN
 \fi:
 \else:
 \if_int_compare:w 9 < 1 \token_to_str:N #2 \exp_stop_f:
 \exp_after:wN \exp_after:wN
 \exp_after:wN \_\_fp_parse_one_digit:NN
 \else:
 \exp_after:wN \exp_after:wN
 \exp_after:wN \_\_fp_parse_one_other:NN
 \fi:
 \fi:
 \else:
 \_\_fp_parse_one_fp:NN
\end{verbatim}
```

(End of definition for `__fp_parse_one:Nw`.)

This function receives a (precedence) and a control sequence equal to `\scan_stop:` in meaning. There are three cases.

- `__fp` starts a floating point number, and we call `__fp_exp_after_f:nn`, which f-expands after the floating point.
- `__fp_expr_mark` is a premature end, we call `__fp_exp_after_expr_mark_-f:nn`, which triggers an `fp-early-end` error.
- For a control sequence not containing `__fp`, we call `__fp_exp_after_-f:nn`, causing a `bad-variable` error.

This scheme is extensible: additional types can be added by starting the variables with a scan mark of the form `__fp_⟨type⟩` and defining `__fp_exp_after_⟨type⟩-f:nn`. In all cases, we make sure that the second argument of `__fp_parse_infix:NN` is correctly expanded. A special case only enabled in \texttt{\LaTeX} \texttt{2e} is that if `\protect` is encountered then...
the error message mentions the control sequence which follows it rather than \protect itself. The test for \LaTeX\ uses \@unexpandable@protect rather than \protect because \protect is often \scan_stop: hence “does not exist”.

\begin{verbatim}
cs_new:Npn _fp_parse_one_fp:NN #1
\begin{verbatim}
 _fp_exp_after_any_f:nw
\end{verbatim}
\begin{verbatim}
 \exp_after:wN _fp_parse_infix:NN
\end{verbatim}
\begin{verbatim}
 \exp_after:wN #1 \exp:w _fp_parse_expand:w
\end{verbatim}
\end{verbatim}
\begin{verbatim}
cs_new:Npn _fp_exp_after_expr_mark_f:nw #1
\begin{verbatim}
 \int_case:nnF { \exp_after:wN \use_i:nnn \use_none:nnn #1 }
\end{verbatim}
\begin{verbatim}
 { \c__fp_prec_comma_int { } \c__fp_prec_tuple_int { } \c__fp_prec_end_int
\end{verbatim}
\begin{verbatim}
 { \exp_after:wN \c__fp_empty_tuple_fp
\end{verbatim}
\begin{verbatim}
 \exp:w \exp_end_continue_f:w
\end{verbatim}
\end{verbatim}
\begin{verbatim}
\cs_new:cpn { __fp_exp_after_?_f:nw } #1#2
\begin{verbatim}
 \msg_expandable_error:nnn { kernel } { bad-variable } {#2}
\end{verbatim}
\begin{verbatim}
 \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w #1
\end{verbatim}
\end{verbatim}
\begin{verbatim}
cs_set_protected:Npn _fp_tmp:w #1
\begin{verbatim}
 \cs_if_exist:NT #1
\end{verbatim}
\begin{verbatim}
 { \cs_gset:cpn { __fp_exp_after_?_f:nw } ##1##2
\end{verbatim}
\begin{verbatim}
 { \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w #1
\end{verbatim}
\begin{verbatim}
 \str_if_eq:nnTF {##2} { \protect }
\end{verbatim}
\begin{verbatim}
 { \msg_expandable_error:nnn { fp } { robust-cmd }
\end{verbatim}
\begin{verbatim}
 { \msg_expandable_error:nnn { kernel } { bad-variable } {##2}
\end{verbatim}
\end{verbatim}
\end{verbatim}

1036
This is called whenever \#2 is a control sequence other than \scan_stop: in meaning. We special-case \wd, \ht, \dp (see later) and otherwise assume that it is a register, but carefully unpack it with \tex_the:D within braces. First, we find the exponent following \#2.

Then we unpack \#2 with \tex_the:D. and the auxii auxiliary distinguishes integer registers from dimensions/skips from muskips, according to the presence of a period and/or of pt. For integers, simply convert \langle value \rangle e \langle exponent \rangle to a floating point number with __fp_parse:n (this is somewhat wasteful). For other registers, the decimal rounding provided by \TeX{} does not accurately represent the binary value that it manipulates, so we extract this binary value as a number of scaled points with \int_value:w \dim_to_decimal_in_sp:n \{ \langle decimal value \rangle pt \}, and use an auxiliary of \dim_to_fp:n, which performs the multiplication by 2^{-16}, correctly rounded.
A digit marks the beginning of an explicit floating point number. Once the number is found, we catch the case of overflow and underflow with __fp_sanitize:wN,__fp_sanitize:N and others.)
then _fp_parse_infix_after_operand:NwN expands _fp_parse_infix:NN after the number we find, to wrap the following infix operator as required. Finding the number itself begins by removing leading zeros: further steps are described later.

\cs\new:Npn _fp_parse_one_digit:NN #1
\begin{verbatim}
\exp\after:wN _fp_parse_infix_after_operand:NwN
\exp\after:wN #1
\exp:w \exp_end_continue_f:w
\exp\after:wN _fp_sanitize:wN
\int_value:w _fp_int_eval:w 0 _fp_parse_trim_zeros:N
\end{verbatim}

\end{verbatim}(End of definition for _fp_parse_one_digit:NN.)

_fp_parse_one_other:NN

For this function, #2 is a character token which is not a digit. If it is an ASCII letter, _fp_parse_letters:N beyond this one and give the result to _fp_parse_word:Nw. Otherwise, the character is assumed to be a prefix operator, and we build _fp_parse_prefix_⟨operator⟩:Nw.

\cs\new:Npn _fp_parse_one_other:NN #1 #2
\begin{verbatim}
\if\int_compare:w
_fp_int_eval:w
\begin{verbatim}
\('#2 \if\int_compare:w '#2 > 'Z - 32 \fi:) / 26
= 3 \exp_stop_f:
\exp\after:wN _fp_parse_word:Nw
\exp\after:wN #1
\exp\after:wN #2
\exp:w \exp\after:wN _fp_parse_letters:N
\exp:w
\end{verbatim}
\else:
\exp\after:wN _fp_parse_prefix:NNN
\exp\after:wN #1
\exp\after:wN #2
\cs:w
_fp_parse_prefix_ \token_to_str:N #2 :Nw
\exp\after:wN
\cs_end:
\exp:w
\fi:
_fp_parse_expand:w
\end{verbatim}

\end{verbatim}(End of definition for _fp_parse_one_other:NN.)

_fp_parse_word:Nw
_fp_parse_letters:N

Finding letters is a simple recursion. Once _fp_parse_letters:N has done its job, we try to build a control sequence from the word #2. If it is a known word, then the corresponding action is taken, and otherwise, we complain about an unknown word, yield \c_nan_fp, and look for the following infix operator. Note that the unknown word could be a mistyped function as well as a mistyped constant, so there is no way to tell whether to look for arguments; we do not. The standard requires “inf” and “infinity” and “nan” to be recognized regardless of case, but we probably don’t want to allow every \l3fp word to have an arbitrary mixture of lower and upper case, so we test and use a differently-named control sequence.
\cs_new:Npn __fp_parse_word:Nw #1#2;
\{
\cs_if_exist_use:cF \{ _fp_parse_word_#2:N \}
\{
\cs_if_exist_use:cF { _fp_parse_caseless_ \str_casefold:n \{#2\} :N }
\{
\msg_expandable_error:nnn \{ fp \} \{ unknown-fp-word \} \{#2\}
\exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w
__fp_parse_infix:NN
\}
\}
\cs_new:Npn __fp_parse_letters:N #1
\{
\exp_end_continue_f:w
\if_int_compare:w \if_catcode:w \scan_stop: \exp_not:N #1 0 \else: __fp_int_eval:w \{ '#1 \if_int_compare:w '#1 \> 'Z - 32 \fi: \} / 26
\fi: = 3 \exp_stop_f:
\exp:w \exp_after:wN __fp_parse_letters:N
\exp:w
\else:
__fp_parse_return_semicolon:w #1
\fi:
__fp_parse_expand:w
\}
\}
__(End\ of\ definition\ for\ _fp_parse_word:Nw\ and\ _fp_parse_letters:N.)
__fp_parse_prefix:NNN _fp_parse_prefix_unknown:NNN

For this function, \#1 is the previous ⟨precedence⟩, \#2 is the operator just seen, and \#3 is a control sequence which implements the operator if it is a known operator. If this control sequence is \scan_stop:, then the operator is in fact unknown. Either the expression is missing a number there (if the operator is valid as an infix operator), and we put \texttt{nan}, wrapping the infix operator in a csname as appropriate, or the character is simply invalid in floating point expressions, and we continue looking for a number, starting again from _fp_parse_one:Nw.
\cs_new:Npn __fp_parse_prefix:NNN \#1\#2\#3
\{
\if_meaning:w \scan_stop: \#3
\exp_after:wN _fp_parse_prefix_unknown:NNN
\exp_after:wN \#2
\fi:
\#3 \#1
\}
\cs_new:Npn __fp_parse_prefix_unknown:NNN \#1\#2\#3
\{

Numbers: trimming leading zeros

Numbers are parsed as follows: first we trim leading zeros, then if the next character is a digit, start reading a significand \(\geq 1 \) with the set of functions \(__fp_parse_large \ldots \); if it is a period, the significand is \(< 1\); and otherwise it is zero. In the second case, trim additional zeros after the period, counting them for an exponent shift \(\langle \text{exp1} \rangle < 0 \), then read the significand with the set of functions \(__fp_parse_small \ldots \). Once the significand is read, read the exponent if \(e \) is present.

\[__fp_parse_trim_zeros:N __fp_parse_trim_end:w\]

This function expects an already expanded token. It removes any leading zero, then distinguishes three cases: if the first non-zero token is a digit, then call \(__fp_parse_large:N \) (the significand is \(\geq 1 \)); if it is \(. \), then continue trimming zeros with \(__fp_parse_strim_zeros:N \); otherwise, our number is exactly zero, and we call \(__fp_parse_zero: \) to take care of that case.

\[\cs_new:Npn __fp_parse_trim_zeros:N __fp_parse_trim_end:w\]

\(\cs_if_exist:cTF { __fp_parse_infix_ \token_to_str:N \#1 } :N \}

\{ \msg_expandable_error:nnn \{ fp \} \{ missing-number \} \{#1\} \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w __fp_parse_infix:NN \#3 \#1 \}

\{ \msg_expandable_error:nnn \{ fp \} \{ unknown-symbol \} \{#1\} __fp_parse_one:Nw \#3 \}

\}

\(\text{(End of definition for } __fp_parse_prefix:NNN \text{ and } __fp_parse_prefix_unknown:NNN.\)

72.4.1 Numbers: trimming leading zeros

This function expects an already expanded token. It removes any leading zero, then distinguishes three cases: if the first non-zero token is a digit, then call \(__fp_parse_large:N \) (the significand is \(\geq 1 \)); if it is \(. \), then continue trimming zeros with \(__fp_parse_strim_zeros:N \); otherwise, our number is exactly zero, and we call \(__fp_parse_zero: \) to take care of that case.

\[\cs_new:Npn __fp_parse_trim_zeros:N __fp_parse_trim_end:w\]

\(\cs_if_exist:cTF { __fp_parse_infix_ \token_to_str:N \#1 } :N \}

\{ \msg_expandable_error:nnn \{ fp \} \{ missing-number \} \{#1\} \exp_after:wN \c_nan_fp \exp:w \exp_end_continue_f:w __fp_parse_infix:NN \#3 \#1 \}

\{ \msg_expandable_error:nnn \{ fp \} \{ unknown-symbol \} \{#1\} __fp_parse_one:Nw \#3 \}

\}

\(\text{(End of definition for } __fp_parse_prefix:NNN \text{ and } __fp_parse_prefix_unknown:NNN.\)
If we have removed all digits until a period (or if the body started with a period), then enter the “small_trim” loop which outputs \(-1 \) for each removed 0. Those \(-1\) are added to an integer expression waiting for the exponent. If the first non-zero token is a digit, call \(__fp_parse_small:N \) (our significand is smaller than \(1 \)), and otherwise, the number is an exact zero. The name \texttt{strim} stands for “small trim”.

\begin{verbatim}
\cs_new:Npn __fp_parse_strim_zeros:N #1
 { \if:w 0 \exp_not:N #1 - 1 \exp_after:wN __fp_parse_strim_zeros:N \exp:w
 \else: __fp_parse_strim_end:w #1 \fi: __fp_parse_expand:w }
\cs_new:Npn __fp_parse_strim_end:w #1 \fi: __fp_parse_expand:w
 { \fi: \if_int_compare:w 9 < 1 \token_to_str:N #1 \exp_stop_f: \exp_after:wN __fp_parse_small:N
 \else: \exp_after:wN __fp_parse_zero: \fi: #1 }
\end{verbatim}

(End of definition for \(__fp_parse_strim_zeros:N \) and \(__fp_parse_strim_end:w \))

\(__fp_parse_zero: \) After reading a significand of 0, find any exponent, then put a sign of 1 for \(__fp_sanitize:wN \), which removes everything and leaves an exact zero.

\begin{verbatim}
\cs_new:Npn __fp_parse_zero:
 { \exp_after:wN ; \exp_after:wN 1 \int_value:w __fp_parse_exponent:N }
\end{verbatim}

(End of definition for \(__fp_parse_zero: \))

72.4.2 Number: small significand

\(__fp_parse_small:N \) This function is called after we have passed the decimal separator and removed all leading zeros from the significand. It is followed by a non-zero digit (with any catcode). The goal is to read up to 16 digits. But we can’t do that all at once, because \(\int_value:w \) (which allows us to collect digits and continue expanding) can only go up to 9 digits. Hence we grab digits in two steps of 8 digits. Since \(#1 \) is a digit, read seven more digits using \(__fp_parse_digits_vii:N \). The \texttt{small_leading} auxiliary leaves those digits in the \(\int_value:w \), and grabs some more, or stops if there are no more digits. Then the
pack_leading auxiliary puts the various parts in the appropriate order for the processing further up.

\cs_new:Npn __fp_parse_small:N #1
\{
 \exp_after:wN __fp_parse_pack_leading:NNNNNww
 \int_value:w __fp_int_eval:w 1 \token_to_str:N #1
 \exp_after:wN __fp_parse_small_leading:wwNN
 \int_value:w 1
 \exp_after:wN __fp_parse_digits_vii:N
 \exp:w __fp_parse_expand:w
\}

(End of definition for __fp_parse_small:N)

__fp_parse_small_leading:wwNN
__fp_parse_small_leading:wwNN 1 ⟨digits⟩ ; ⟨zeros⟩ ; ⟨number of zeros⟩

We leave ⟨digits⟩ ⟨zeros⟩ in the input stream: the functions used to grab digits are such that this constitutes digits 1 through 8 of the significand. Then prepare to pack 8 more digits, with an exponent shift of zero (this shift is used in the case of a large significand). If #4 is a digit, leave it behind for the packing function, and read 6 more digits to reach a total of 15 digits: further digits are involved in the rounding. Otherwise put 8 zeros in to complete the significand, then look for an exponent.

\cs_new:Npn __fp_parse_small_trailing:wwNN
__fp_parse_small_trailing:wwNN 1 #1 ; #2; #3 #4
\{
 #1 #2
 \exp_after:wN __fp_parse_pack_trailing:NNNNNww
 \exp_after:wN 0
 \exp_after:wN __fp_parse_small_leading:wwNN
 \int_value:w 1
 \exp_after:wN __fp_parse_digits_vii:N
 \exp:w
 \if_int_compare:w 9 < 1 \token_to_str:N #4 \exp_stop_f:
 \token_to_str:N #4
 \exp_after:wN __fp_parse_small_round:NN
 \else:
 0000 0000 __fp_parse_exponent:Nw #4
 \fi:
 __fp_parse_expand:w
\}

(End of definition for __fp_parse_small_trailing:wwNN.)

__fp_parse_small_trailing:wwNN
__fp_parse_small_trailing:wwNN 1 ⟨digits⟩ ; ⟨zeros⟩ ; ⟨number of zeros⟩
⟨next token⟩

Leave digits 10 to 15 ⟨arguments #1 and #2⟩ in the input stream. If the ⟨next token⟩ is a digit, it is the 16th digit, we keep it, then the small_round auxiliary considers this digit and all further digits to perform the rounding: the function expands to nothing, to +0 or to +1. Otherwise, there is no 16-th digit, so we put a 0, and look for an exponent.

\cs_new:Npn __fp_parse_small_trailing:wwNN
__fp_parse_small_trailing:wwNN 1 #1 ; #2; #3 #4
\{
 #1 #2
 \if_int_compare:w 9 < 1 \token_to_str:N #4 \exp_stop_f:
 \token_to_str:N #4
 \exp_after:wN __fp_parse_small_round:NN
 \exp_after:wN __fp_parse_small_trailing:wwNN
\}
Those functions are expanded after all the digits are found, we took care of the rounding, as well as the exponent. The last argument is the exponent. The previous five arguments are 8 digits which we pack in groups of 4, and the argument before that is 1, except in the rare case where rounding lead to a carry, in which case the argument is 2. The trailing function has an exponent shift as its first argument, which we add to the exponent found in the \texttt{e...} syntax. If the trailing digits cause a carry, the integer expression for the leading digits is incremented (+1 in the code below). If the leading digits propagate this carry all the way up, the function \texttt{_fp_parse_pack_carry:w} increments the exponent, and changes the significand from 0000... to 1000..., this is simple because such a carry can only occur to give rise to a power of 10.

\begin{verbatim}
\cs_new:Npn _fp_parse_large:N #1
{ \exp_after:wN _fp_parse_large_leading:wwNN \int_value:w 1 \token_to_str:N #1 \exp_after:wN _fp_parse_digits_vii:N \exp:w _fp_parse_expand:w }
\end{verbatim}

(End of definition for \texttt{_fp_parse_small_trailing:wwNN}, \texttt{_fp_parse_large_leading:wwNN}, \texttt{_fp_parse_large:N}.)

72.4.3 Number: large significand

Parsing a significand larger than 1 is a little bit more difficult than parsing small significands. We need to count the number of digits before the decimal separator, and add that to the final exponent. We also need to test for the presence of a dot each time we run out of digits, and branch to the appropriate \texttt{parse_small} function in those cases.

This function is followed by the first non-zero digit of a “large” significand (≥ 1). It is called within an integer expression for the exponent. Grab up to 7 more digits, for a total of 8 digits.

\begin{verbatim}
\cs_new:Npn _fp_parse_large_N
{ \exp_after:wN _fp_parse_large_leading:wwNN \int_value:w 1 \token_to_str:N \#1 \exp_after:wN _fp_parse_digits_vii:N \exp:w _fp_parse_expand:w }
\end{verbatim}

1044
We shift the exponent by the number of digits in \#1, namely the target number, 8, minus the \langle number of zeros \rangle (number of digits missing). Then prepare to pack the 8 first digits. If the \langle next token \rangle is a digit, read up to 6 more digits (digits 10 to 15). If it is a period, try to grab the end of our 8 first digits, branching to the small functions since the number of digit does not affect the exponent anymore. Finally, if this is the end of the significand, insert the \langle zeros \rangle to complete the 8 first digits, insert 8 more, and look for an exponent.
we already grabbed. Finally, if this is truly the end of the significand, look for an exponent after using the \(\langle\text{zeros}\rangle\) and providing a 16-th digit of 0.

This loop is called when rounding a number (whether the mantissa is small or large). It should appear in an integer expression. This function reads digits one by one, until reaching a non-digit, and adds 1 to the integer expression for each digit. If all digits found are 0, the function ends the expression by \(;0\), otherwise by \(;1\). This is done by switching the loop to \texttt{round up} at the first non-zero digit, thus we avoid to test whether digits are 0 or not once we see a first non-zero digit.

\begin{verbatim}
\cs_new:Npn _fp_parse_round_loop:N _fp_parse_round_up:N
\end{verbatim}

\textbf{72.4.4 Number: beyond 16 digits, rounding}

(End of definition for _fp_parse_large_trailing:wwNN.)
__fp_parse_round_loop:N __fp_parse_round_up:N \\
\cs_new:Npn __fp_parse_round_loop:N #1 __fp_parse_round_up:N #1 __fp_parse_round_world_after:wN __fp_parse_small_round:NN \\
__fp_parse_small_round:NN __fp_parse_round_after:wN

After the loop __fp_parse_round_loop:N, this function fetches an exponent with __fp_parse_exponent:N, and combines it with the number of digits counted by __fp_parse_round_loop:N. At the same time, the result 0 or 1 is added to the surrounding integer expression.

\cs_new:Npn __fp_parse_small_round:NN #1#2 \\
\if_int_compare:w 9 < 1 \token_to_str:N #1 \exp_stop_f: \\
+ 1 \\
\exp_after:wN __fp_parse_round_up:N \\
\exp:w \\
\else: \\
__fp_parse_return_semicolon:w 1 #1 __fp_parse_expand:w \\
\fi: \\
__fp_parse_expand:w \\
\end {definition} for __fp_parse_round_loop:N and __fp_parse_round_up:N.}

__fp_parse_round_after:wN

Here, #1 is the digit that we are currently rounding (we only care whether it is even or odd). If #2 is not a digit, then fetch an exponent and expand to ;\langle exponent\rangle only. Otherwise, we expand to +0 or +1, then ;\langle exponent\rangle. To decide which, call __fp_round_s:NNNw to know whether to round up, giving it as arguments a sign 0 (all explicit numbers are positive), the digit #1 to round, the first following digit #2, and either +0 or +1 depending on whether the following digits are all zero or not. This last argument is obtained by __fp_parse_round_loop:N, whose number of digits we discard by multiplying it by 0. The exponent which follows the number is also fetched by __fp_parse_round_after:wN.

\cs_new:Npn __fp_parse_small_round:NN #1#2 \\
\if_int_compare:w 9 < 1 \token_to_str:N #2 \exp_stop_f: \\
+ \exp_after:wN #1 \exp_after:wN #2 __fp_int_eval:w #1 + __fp_parse_exponent:N \\
\else: \\
__fp_parse_exponent:w #2 \\
\fi: \\
__fp_parse_expand:w \\
\end {definition} for __fp_parse_round_after:wN.}

__fp_parse_round_after:wN
Large numbers are harder to round, as there may be a period in the way. Again, \#1 is the digit that we are currently rounding (we only care whether it is even or odd). If there are no more digits (\#2 is not a digit), then we must test for a period: if there is one, then switch to the rounding function for small significands, otherwise fetch an exponent. If there are more digits (\#2 is a digit), then round, checking with __fp_parse_round_loop:N if all further digits vanish, or some are non-zero. This loop is not enough, as it is stopped by a period. After the loop, the aux function tests for a period: if it is present, then we must continue looking for digits, this time discarding the number of digits we find.
72.4.5 Number: finding the exponent

Expansion is a little bit tricky here, in part because we accept input where multiplication is implicit.

__fp_parse:n { 3.2 erf(0.1) }
__fp_parse:n { 3.2 e_my_int }
__fp_parse:n { 3.2 \c_pi_fp }

The first case indicates that just looking one character ahead for an “e” is not enough, since we would mistake the function \textit{erf} for an exponent of “rf”. An alternative would be to look two tokens ahead and check if what follows is a sign or a digit, considering in that case that we must be finding an exponent. But taking care of the second case requires that we unpack registers after \texttt{e}. However, blindly expanding the two tokens ahead completely would break the third example (unpacking is even worse). Indeed, in the course of reading 3.2, \texttt{\c_pi_fp} is expanded to \texttt{\s__fp __fp_chk:w 1 0 {-1} \{3141\} \cdots}; and \texttt{\s_fp} stops the expansion. Expanding two tokens ahead would then force the expansion of \texttt{__fp_chk:w} (despite it being protected), and that function tries to produce an error.

What can we do? Really, the reason why this last case breaks is that just as \TeX{} does, we should read ahead as little as possible. Here, the only case where there may be an exponent is if the first token ahead is \texttt{e}. Then we expand (and possibly unpack) the second token.

__fp_parse_exponent:N

This auxiliary is convenient to smuggle some material through \texttt{\fi}: ending conditional processing. We place those \texttt{\fi}: (argument \#2) at a very odd place because this allows us to insert \texttt{__fp_int_eval:w \ldots} there if needed.

__fp_parse_exponent:NN

This function should be called within an \texttt{\int_value:w} expansion (or within an integer expression). It leaves digits of the exponent behind it in the input stream, and terminates the expansion with a semicolon. If there is no \texttt{e} (or \texttt{E}), leave an exponent of 0. If there is an \texttt{e} or \texttt{E}, expand the next token to run some tests on it. The first rough test is that if the character code of \#1 is greater than that of 9 (largest code valid for an exponent, less than any code valid for an identifier), there was in fact no exponent; otherwise, we search for the sign of the exponent.
\if:w e \if:w E \exp_not:N \#1 \else: \exp_not:N \#1 \fi:
\exp_after:wN __fp_parse_exponent_aux:NN
\exp_after:wN \#1
\exp:w
\else:
0 __fp_parse_return_semicolon:w \#1
\fi:
__fp_parse_expand:w
\cs_new:Npn __fp_parse_exponent_aux:NN #1#2
{
\if_int_compare:w \if_catcode:w \scan_stop: \exp_not:N #2
0 \else: '9 \exp_stop_f:
0 \exp_after:wN ; \exp_after:wN __fp_parse_exponent_body:N \exp_after:wN \#1
\else:
\exp_after:wN __fp_parse_exponent_sign:N
\fi:
__fp_parseexpand:w
\end {definition for __fp_parse_exponent:N and __fp_parse_exponent_aux:NN}
__fp_parse_exponent_sign:N
\cs_new:Npn __fp_parse_exponent_sign:N #1
{
\if:w + \if:w - \exp_not:N #1 + \token_to_str:N \#1 \fi: \exp_after:wN __fp_parse_exponent_sign:N
\exp:w \exp_after:wN __fp_parse_exponent_body:N \exp_after:wN \#1
\else:
\exp_after:wN __fp_parse_exponent_digits:N
\exp:w
\fi:
__fp_parse_expand:w
\end {definition for __fp_parse_exponent_sign:N}
__fp_parse_exponent_body:N
\cs_new:Npn __fp_parse_exponent_body:N #1
{
\if_int_compare:w 9 < 1 \token_to_str:N \#1 \exp_stop_f:
\token_to_str:N \#1
\exp_after:wN __fp_parse_exponent_digits:N
\exp:w
\else:
__fp_parse_exponent_keep:NTF \#1
\{ __fp_parse_return_semicolon:w \#1 \}
\exp:w
\fi:
__fp_parse_expand:w
\end {definition for __fp_parse_exponent_body:N}
_fp_parse_exponent_digits:N

Read digits one by one, and leave them behind in the input stream. When finding a non-digit, stop, and insert a semicolon. Note that we do not check for overflow of the exponent, hence there can be a \TeX\ error. It is mostly harmless, except when parsing 0e9876543210, which should be a valid representation of 0, but is not.

\begin{verbatim}
\cs_new:Npn __fp_parse_exponent_digits:N \#1
\begin{verbatim}
\if_int_compare:w 9 < 1 \token_to_str:N \#1 \exp_stop_f:
\token_to_str:N \#1
\exp:w
\else:
__fp_parse_return_semicolon:w \#1
\fi:
__fp_parse_expand:w
\end{verbatim}
\end{verbatim}

(End of definition for __fp_parse_exponent_digits:N.)

_fp_parse_exponent_keep:NTF

This is the last building block for parsing exponents. The argument \#1 is already fully expanded, and neither + nor – nor a digit. It can be:

- \s__fp, marking the start of an internal floating point, invalid here;
- another control sequence equal to \texttt{\relax}, probably a bad variable;
- a register: in this case we make sure that it is an integer register, not a dimension;
- a character other than +, – or digits, again, an error.

\begin{verbatim}
\prg_new_conditional:Npnn __fp_parse_exponent_keep:N \#1 { TF }
\begin{verbatim}
\if_catcode:w \scan_stop: \exp_not:N \#1
\if_meaning:w \scan_stop: \#1
\if:w 0 __fp_str_if_eq:nn \{ \s__fp \} \{ \exp_not:N \#1 \}
0
\msg_expandable_error:nnn
\{ fp \} \{ after-e \} \{ floating-point- \}
\prg_return_true:
\else:
0
\msg_expandable_error:nnn
\{ kernel \} \{ bad_variable \} \{#1\}
\prg_return_false:
\fi:
\else:
\if:w 0 __fp_str_if_eq:nn \{ \int_value:w \#1 \} \{ \tex_the:D \#1 \}
\int_value:w \#1
\else:
0
\msg_expandable_error:nnn
\{ fp \} \{ after-e \} \{ dimension_#1 \}
\fi:
\prg_return_false:
\end{verbatim}
\end{verbatim}

1051
A unary `+` does nothing: we should continue looking for a number.

In contrast to `_fp_parse_apply_function:NNNW`, this checks that the operand #4 is a single argument (namely there is a single `;`). We use the fact that any floating point starts with a “safe” token like `\s__fp`. If there is no argument produce the `fp-no-arg` error; if there are at least two produce `fp-multi-arg`. For the error message extract the mathematical function name (such as `sin`) from the expl3 function that computes it, such as `_fp_sin_o:w`.

In addition, since there is a single argument we can dispatch on type and check that the resulting function exists. This catches things like `sin((1,2))` where it does not make sense to take the sine of a tuple.
__fp_parse_apply_unary_chk:nNNNNw { multi } }
\fi:
\cs_new:Npn __fp_parse_apply_unary_chk:nNNNNw #1#2#3#4#5#6 @
{ #2
__fp_error:nffn { #1-arg } { __fp_func_to_name:N #4 } { } { }
\exp_after:wN #4 \exp_after:wN #5 \c_nan_fp @
}
\cs_new:Npn __fp_parse_apply_unary_type:NNN #1#2#3
{ __fp_change_func_type:NNN #3 #1 __fp_parse_apply_unary_error:NNw
#2 #3}
\cs_new:Npn __fp_parse_apply_unary_error:NNw #1#2#3 @
{ __fp_invalid_operation_o:fw { __fp_func_to_name:N #1 } #3 }
(End of definition for __fp_parse_apply_unary:NNNw and others.)
__fp_parse_prefix_-:Nw __fp_parse_prefix_!:Nw
The unary - and boolean not are harder: we parse the operand using a precedence equal
to the maximum of the previous precedence \#1 and the precedence __fp_prec_not_int
of the unary operator, then call the appropriate __fp_⟨operation⟩_o:w function,
where the (operation) is set_sign or not.
\cs_set_protected:Npn __fp_tmp:w #1#2#3#4
{ \cs_new:cpn { __fp_parse_prefix_ #1 :Nw } ##1
{ \exp_after:wN __fp_parse_apply_unary:NNNw
\exp_after:wN #1
\exp_after:wN #2
\exp:w
\if_int_compare:w #2 < ##1
__fp_parse_operand:Nw ##1
\else:
__fp_parse_operand:Nw #2
\fi:
__fp_parse_expand:w }
__fp_tmp:w - \c__fp_prec_not_int __fp_set_sign_o:w 2
__fp_tmp:w ! \c__fp_prec_not_int __fp_not_o:w ?
(End of definition for __fp_parse_prefix_-:Nw and __fp_parse_prefix_!:Nw.)
__fp_parse_prefix_.:Nw
Numbers which start with a decimal separator (a period) end up here. Of course, we do
not look for an operand, but for the rest of the number. This function is very similar to
__fp_parse_one_digit:NN but calls __fp_parse_strim_zeros:N to trim zeros after
the decimal point, rather than the trim_zeros function for zeros before the decimal
point.
\cs_new:cpn { __fp_parse_prefix_:.:Nw } #1
{ \exp_after:wN __fp_parse_infix_after_operand:NwN
\exp_after:wN #1
1053
_fp_parse_prefix_:Nw _fp_parse_lparen_after:NwN

The left parenthesis is treated as a unary prefix operator because it appears in exactly the same settings. If the previous precedence is \c__fp_prec_func_int we are parsing arguments of a function and commas should not build tuples; otherwise commas should build tuples. We distinguish these cases by precedence: \c__fp_prec_comma_int for the case of arguments, \c__fp_prec_tuple_int for the case of tuples. Once the operand is found, the _fp_parse_lparen_after auxiliary makes sure that there was a closing parenthesis (otherwise it complains), and leaves in the input stream an operand, fetching the following infix operator.

\cs_new:cpn { __fp_parse_prefix_:Nw } #1
{
 \exp_after:wN _fp_parse_lparen_after:NwN
 \exp_after:wN #1
 \exp:w
 \if_int_compare:w #1 = \c__fp_prec_func_int
 _fp_parse_operand:Nw \c__fp_prec_comma_int
 \else:
 _fp_parse_operand:Nw \c__fp_prec_tuple_int
 \fi:
 _fp_parse_expand:w
}
\cs_new:Npe _fp_parse_lparen_after:NwN #1#2 @ #3
{
 \exp_not:N \token_if_eq_meaning:NNTF #3 \exp_not:c { __fp_parse_infix_):N }
 \exp_not:N _fp_exp_after_array_f:w #2 \exp_not:N _fp_expr_stop
 \exp_not:N \exp_after:wN _fp_parse_infix_after_paren:NN
 \exp_not:N \exp_after:wN #1
 \exp_not:N \exp:w
 \exp_not:N _fp_parse_expand:w
}
{\exp_not:N \msg_expandable_error:nnn { fp } { missing } {) }
\exp_not:N \tl_if_empty:nT {#2} \exp_not:N \c__fp_empty_tuple_fp
#2 @ \exp_not:N \use_none:n #3
}
}

(End of definition for _fp_parse_prefix_:Nw and _fp_parse_lparen_after:NwN.)

_fp_parse_prefix_:Nw

The right parenthesis can appear as a prefix in two similar cases: in an empty tuple or tuple ending with a comma, or in an empty argument list or argument list ending with a comma, such as in \texttt{max(1,2,)} or \texttt{rand()}.

\cs_new:cpn { __fp_parse_prefix_:Nw } #1

1054
72.5.2 Constants

Some words correspond to constant floating points. The floating point constant is left as
a result of _fp_parse_one:Nw after expanding _fp_parse_infix:NN.

Copies of _fp_parse_word...:N commands, to allow arbitrary case as mandated by
the standard.

Dimension units are also floating point constants but their value is not stored as a floating
point constant. We give the values explicitly here.

(End of definition for _fp_parse_prefix:Nw.)

_fp_parse_word_inf:N
_fp_parse_word_nan:N
_fp_parse_word_pi:N
_fp_parse_word_deg:N
_fp_parse_word_true:N
_fp_parse_word_false:N
_fp_parse_caseless_inf:N
_fp_parse_caseless_infinity:N
_fp_parse_caseless_nan:N
_fp_parse_word_pt:N
_fp_parse_word_in:N
_fp_parse_word_cm:N
_fp_parse_word_mm:N
_fp_parse_word_dd:N
_fp_parse_word_cc:N
_fp_parse_word_dd:N
_fp_parse_word_nu:N
_fp_parse_word_bp:N
_fp_parse_word_sp:N
The font-dependent units `em` and `ex` must be evaluated on the fly. We reuse an auxiliary
of `\dim_to_fp:n`.

```latex
\tl_map_inline:nn { {em} {ex} }
{
  \cs_new:cpn { __fp_parse_word_#1:N }
  {
    \exp_after:wN \__fp_from_dim_test:ww
    \exp_after:wN 0 \exp_after:wN ,
    \int_value:w \dim_to_decimal_in_sp:n { 1 #1 } \exp_after:wN ;
    \exp:w \exp_end_continue_f:w \__fp_parse_infix:NN
  }
}
```

(End of definition for `__fp_parse_word_em:N` and `__fp_parse_word_ex:N`.)

72.5.3 Functions

```latex
\cs_new:Npn \__fp_parse_unary_function:NNN #1#2#3
{
  \exp_after:wN \__fp_parse_apply_unary:NNNW
  \exp_after:wN #3
  \exp_after:wN #2
  \exp_after:wN #1
  \exp:w \__fp_parse_operand:Nw \c__fp_prec_func_int \__fp_parse_expand:w
}

\cs_new:Npn \__fp_parse_function:NNN #1#2#3
{
  \exp_after:wN \__fp_parse_apply_function:NNNW
  \exp_after:wN #3
  \exp_after:wN #2
  \exp_after:wN #1
  \exp:w \__fp_parse_operand:Nw \c__fp_prec_func_int \__fp_parse_expand:w
}
```

(End of definition for `__fp_parse_unary_function:NNN` and `__fp_parse_function:NNN`.)

72.6 Main functions

Start an \exp:w expansion so that _fp_parse:n expands in two steps. The _fp_parse_operand:N function performs computations until reaching an operation with precedence \c__fp_prec_end_int or less, namely, the end of the expression. The marker \s__fp_expr_mark indicates that the next token is an already parsed version of an infix operator, and _fp_parse_infix_end:N has infinitely negative precedence. Finally, clean up a (well-defined) set of extra tokens and stop the initial expansion with \exp_end:

\begin{verbatim}
cs_new:Npn __fp_parse:n #1
 \exp:w \exp_after:wN __fp_parse_after:ww
 \exp:w __fp_parse_operand:Nw \c__fp_prec_end_int
 __fp_parse_expand:w #1
 \s__fp_expr_mark __fp_parse_infix_end:N
 \s__fp_expr_stop
 \exp_end:

cs_new:Npn __fp_parse_after:ww #1@ __fp_parse_infix_end:N \s__fp_expr_stop #2 { #2 #1 }
cs_new:Npn __fp_parse_o:n #1
 \exp:w \exp_after:wN __fp_parse_after:ww
 \exp:w __fp_parse_operand:Nw \c__fp_prec_end_int
 __fp_parse_expand:w #1
 \s__fp_expr_mark __fp_parse_infix_end:N
 \s__fp_expr_stop
 { \exp_end_continue_f:w __fp_exp_after_any_f:nw { \exp_after:wN \exp_stop_f: } }
cs_new:Npn __fp_parse_operand:Nw #1
 \exp_end_continue_f:w \exp_after:wN __fp_parse_continue:NwN \exp_after:wN #1
 \exp:w \exp_end_continue_f:w \exp_after:wN __fp_parse_one:Nw \exp_after:wN #1
 \exp:w

cs_new:Npn __fp_parse_continue:NwN #1 #2 @ #3 { #3 #1 #2 @ }

cs_new:Npn __fp_parse_continue:NwN #1 #2 @ #3 { #3 #1 #2 @ }
\end{verbatim}

(End of definition for _fp_parse:n, _fp_parse_o:n, and _fp_parse_after:ww.)

_fp_parse_operand:Nw This is just a shorthand which sets up both _fp_parse_continue:NwN and _fp_parse_one:Nw with the same precedence. Note the trailing \exp:w.

\begin{verbatim}
cs_new:Npn __fp_parse_operand:Nw #1
 \exp_end_continue_f:w \exp_after:wN __fp_parse_continue:NwN \exp_after:wN #1
 \exp:w \exp_end_continue_f:w __fp_parse_one:Nw
 \exp_after:wN #1
 \exp:w

cs_new:Npn __fp_parse_continue:NwN #1 #2 @ #3 { #3 #1 #2 @ }
\end{verbatim}

(End of definition for _fp_parse_operand:Nw and _fp_parse_continue:NwN.)
Receives \(\langle \text{precedence} \rangle \langle \text{operand}_1 \rangle \@ \langle \text{operation} \rangle \langle \text{operand}_2 \rangle \@ \langle \text{infix command} \rangle \). Builds the appropriate call to the \(\langle \text{operation} \rangle \@ #3 \), dispatching on both types. If the resulting control sequence does not exist, the operation is not allowed.

This is redefined in \texttt{l3fp-extras}.

\begin{verbatim}
\cs_new:Npn __fp_parse_apply_binary:NwNwN #1 #2#3@ #4 #5#6@ #7
 \exp_after:wN __fp_parse_continue:NwN
 \exp_after:wN #1
 \exp:w \exp_end_continue_f:w
 \exp_after:wN __fp_parse_apply_binary_chk:NN
 \cs:w __fp __fp_type_from_scan:N #2
 _#4
 __fp_type_from_scan:N #5
 _o:ww
 \cs_end:
 #1
 #2#3 #5#6
 \exp:w \exp_end_continue_f:w #7 #1
\end{verbatim}

\begin{verbatim}
\cs_new:Npn __fp_parse_apply_binary_chk:NN #1#2
 \if_meaning:w \scan_stop: #1
 __fp_parse_apply_binary_error:NNN #2
 \fi:
 #1
\end{verbatim}

\begin{verbatim}
\cs_new:Npn __fp_parse_apply_binary_error:NNN #1#2#3
 #2
 __fp_invalid_operation_o:Nww #1
\end{verbatim}

(End of definition for \(__fp_parse_apply_binary:NwNwN \), \(__fp_parse_apply_binary_chk:NN \), and \(__fp_parse_apply_binary_error:NNN \).)

\begin{verbatim}
__fp_binary_type_o:Nww __fp_binary_rev_type_o:Nww
\end{verbatim}

Applies the operator \#1 to its two arguments, dispatching according to their types, and expands once after the result. The \texttt{rev} version swaps its arguments before doing this.

\begin{verbatim}
\cs_new:Npn __fp_binary_type_o:Nww #1 #2#3 ; #4
 \exp_after:wN __fp_parse_apply_binary_chk:NN
 \cs:w
 __fp
 __fp_type_from_scan:N #2
 _#4
 __fp_type_from_scan:N #5
 _o:ww
 \cs_end:
 #1
 #2 #3 ; #4
\end{verbatim}

\begin{verbatim}
\cs_new:Npn __fp_binary_rev_type_o:Nww #1 #2#3 ; #4#5 ;
 \end{verbatim}
72.7 Infix operators

(End of definition for __fp_binary_type_o:Nww and __fp_binary_rev_type_o:Nww.)
\msg_expandable_error:nnn
{ fp } { missing } { * }
\exp_after:wN __fp_parse_infix_mul:N
\exp_after:wN \#2
\exp_after:wN \#3
\else:
\exp_after:wN \#1
\exp_after:wN \#2
\exp:w \exp_after:wN __fp_parse_expand:w
\fi:
\}

(End of definition for __fp_parse_infix_after_operand:N.)

__fp_parse_infix_after_paren:NN
Variant of __fp_parse_infix:NN for use after a closing parenthesis. The only difference is that __fp_parse_infix_juxt:N is replaced by __fp_parse_infix_mul:N.
\cs_new:Npn __fp_parse_infix_after_paren:NN #1 #2
{\if_catcode:w \scan_stop: \exp_not:N #2
\if:w 0 __fp_str_if_eq:nn { \s__fp_expr_mark } { \exp_not:N #2 }
\exp_after:wN \exp_after:wN
\exp_after:wN __fp_parse_infix_mark:NNN
\else:
\exp_after:wN \exp_after:wN
\exp_after:wN __fp_parse_infix_mul:N
\fi:
\else:
\if_int_compare:w
__fp_int_eval:w
#2 \if_int_compare:w #2 > 'Z - 32 \fi:) / 26
= 3 \exp_stop_f:
\exp_after:wN \exp_after:wN
\exp_after:wN __fp_parse_infix_mul:N
\else:
\exp_after:wN __fp_parse_infix_check:NNN
\cs:w
__fp_parse_infix_ \token_to_str:N \#2 :N
\exp_after:wN \exp_after:wN \exp_after:wN
\cs_end:
\fi:
\fi1:
#1
#2
}

(End of definition for __fp_parse_infix_after_paren:NN.)

72.7.1 Closing parentheses and commas
As an infix operator, \s__fp_expr_mark means that the next token (#3) has already gone through __fp_parse_infix:NN and should be provided the precedence #1. The scan mark #2 is discarded.
\cs_new:Npn __fp_parse_infix_mark:NNN #1#2#3 { #3 #1 }
This one is a little bit odd: force every previous operator to end, regardless of the precedence.

\cs_new:Npn _fp_parse_infix_end:N #1
\{ \@ \use_none:n _fp_parse_infix_end:N \}

This is very similar to _fp_parse_infix_end:N, complaining about an extra closing parenthesis if the previous operator was the beginning of the expression, with precedence \c__fp_prec_end_int.

\cs_set_protected:Npn _fp_tmp:w #1
\{ \cs_new:Npn #1 ##1
\{ \if_int_compare:w ##1 > \c__fp_prec_end_int
\exp_after:wN @
\exp_after:wN \use_none:n
\exp_after:wN #1
\else:
\msg_expandable_error:nnn { fp } { extra } {) }
\exp_after:wN _fp_parse_infix:NN
\exp_after:wN ##1
\exp:w \exp_after:wN _fp_parse_expand:w
\fi:
\}
\exp_args:Nc _fp_tmp:w { _fp_parse_infix_):N }

As for other infix operations, if the previous operations has higher precedence the comma waits. Otherwise we call _fp_parse_operand:Nw to read more comma-delimited arguments that _fp_parse_infix_comma:w simply concatenates into a @-delimited array.

The first comma in a tuple that is not a function argument is distinguished: in that case call _fp_parse_apply_comma:NwWN whose job is to convert the first item of the tuple and an array of the remaining items into a tuple. In contrast to _fp_parse_apply_binary:NwWN this function’s operands are not single-object arrays.

\cs_set_protected:Npn _fp_tmp:w #1
\{ \cs_new:Npn #1 ##1
\{ \if_int_compare:w ##1 > \c__fp_prec_comma_int
\exp_after:wN @
\exp_after:wN \use_none:n
\exp_after:wN #1
\else:
\if_int_compare:w ##1 < \c__fp_prec_comma_int
\exp_after:wN @
\exp_after:wN _fp_parse_apply_comma:NwWN
\exp_after:wN ,
\exp:w
\else:
\end{definition}

(End of definition for _fp_parse_infix_comma:w)
As described in the “work plan”, each infix operator has an associated ___fp_parse_infix__ function, a computing function, and precedence, given as arguments to __fp_tmp:w. Using the general mechanism for arithmetic operations. The power operation must be associative in the opposite order from all others. For this, we use two distinct precedences.

```
\_\_fp_parse_infix_+:N
\_\_fp_parse_infix_-:N
\_\_fp_parse_infix_juxt:N
\_\_fp_parse_infix_/:N
\_\_fp_parse_infix_mul:N
\_\_fp_parse_infix_and:N
\_\_fp_parse_infix_or:N
\_\_fp_parse_infix_^:N
```

(End of definition for __fp_parse_infix__:N, __fp_parse_infix_comma:w, and __fp_parse_apply_comma:NwNwN.)

72.7.2 Usual infix operators

As described in the “work plan”, each infix operator has an associated ___fp_parse_infix__ function, a computing function, and precedence, given as arguments to __fp_tmp:w. Using the general mechanism for arithmetic operations. The power operation must be associative in the opposite order from all others. For this, we use two distinct precedences.
72.7.3 Juxtaposition
_fp_parse_infix_(:N

When an opening parenthesis appears where we expect an infix operator, we compute the product of the previous operand and the contents of the parentheses using _fp_parse_infix_mul:N.

72.7.4 Multi-character cases
_fp_parse_infix_*:N

(End of definition for _fp_parse_infix_*:N and others.)
\exp_after:wN #3
\exp_after:wN #1
\exp_after:wN #2
\fi:
}
\exp_args:Nc __fp_tmp:w { __fp_parse_infix_|:Nw } \& __fp_parse_infix_and:N
\exp_args:Nc __fp_tmp:w { __fp_parse_infix_&:Nw } \& __fp_parse_infix_and:N

(End of definition for __fp_parse_infix_|:Nw and __fp_parse_infix_&:Nw.)

72.7.5 Ternary operator

__fp_parse_infix_?:N
__fp_parse_infix_::N
\cs_set_protected:Npn __fp_tmp:w #1#2#3#4
{\cs_new:Npn #1 ##1
{\if_int_compare:w ##1 < \c__fp_prec_quest_int
#4
\exp_after:wN @
\exp_after:wN #2
\exp:w
__fp_parse_operand:Nw #3
\exp_after:wN __fp_parse_expand:w
\else:
\exp_after:wN @
\exp_after:wN \use_none:n
\exp_after:wN #1
\fi:
}
\exp_args:Nc __fp_tmp:w { __fp_parse_infix_?:Nw } \& __fp_parse_infix_or:N
\exp_args:Nc __fp_tmp:w { __fp_parse_infix_&:Nw } \& __fp_parse_infix_and:N

(End of definition for __fp_parse_infix_|:Nw and __fp_parse_infix_&:Nw.)

72.7.6 Comparisons

__fp_parse_infix_<:N
__fp_parse_infix_=:N
__fp_parse_infix_>\N
__fp_parse_infix_!:N
__fp_parse_excl_error:
__fp_parse_compare:NNNNNNN
__fp_parse_compare_auxi:NNNNNN
__fp_parse_compare_end:NNNN
__fp_compare:wNNNNw
\cs_new:cpn { __fp_parse_infix_<:N } #1
{ __fp_parse_compare:NNNNNNN #1 1 0 0 0 0 < }\0
\cs_new:cpn { __fp_parse_infix_=\N } #1
{ __fp_parse_compare:NNNNNNN #1 1 0 0 0 0 = }\0
\cs_new:cpn { __fp_parse_infix_>:N } #1
{ __fp_parse_compare:NNNNNNN #1 1 0 0 0 0 > }\0
\cs_new:cpn { __fp_parse_infix_!:N } #1
{ __fp_parse_compare:NNNNNNN #1 1 0 0 0 0 }\0

(End of definition for __fp_parse_infix_<:N and __fp_parse_infix_::N.)
\exp_after:wN __fp_parse_compare:NNNNNNN
\exp_after:wN #1
\exp_after:wN 0
\exp_after:wN 1
\exp_after:wN 1
\exp_after:wN 1
\exp_after:wN 1
}
\cs_new:Npn __fp_parse_excl_error:
{\msg_expandable_error:nnnn {fp} {missing} {=} {-after-!} }
\cs_new:Npn __fp_parse_compare:NNNNNNN #1
{\if_int_compare:w #1 < \c__fp_prec_comp_int
\exp_after:wN __fp_parse_compare_auxi:NNNNNNN
\else:
\exp_after:wN \@ \exp_after:wN \use_none:n \exp_after:wN __fp_parse_compare:NNNNNNN
\fi:
}
\cs_new:Npn __fp_parse_compare_auxi:NNNNNNN #1#2#3#4#5#6#7
{\if_case:w
__fp_int_eval:w \exp_after:wN ' \token_to_str:N #7 - '<
__fp_int_eval_end:
__fp_parse_compare_auxii:NNNNN #2#2#4#5#6
\or: __fp_parse_compare_auxii:NNNNN #2#3#2#5#6
\or: __fp_parse_compare_auxii:NNNNN #2#3#4#2#6
\or: __fp_parse_compare_auxii:NNNNN #2#3#4#5#2
\else: #1 __fp_parse_compare_end:NNNNw #3#4#5#6#7
\fi:
}
\cs_new:Npn __fp_parse_compare_auxii:NNNNN #1#2#3#4#5
{\exp_after:wN __fp_parse_compare_auxi:NNNNNNN \exp_after:wN \prg_do_nothing:
\exp_after:wN #1 \exp_after:wN #2 \exp_after:wN #3 \exp_after:wN #4 \exp_after:wN #5
\exp:w \exp_after:wN __fp_parse_expand:w
\exp_after:wN __fp_parse_compare_end:NNNNN #1#2#3#4#5 \fi:
{\fi:
\exp_after:wN \@ \exp_after:wN __fp_parse_apply_compare:NwNNNNNNwN \exp_after:wN \c_one_fp \exp_after:wN #1

1065
\exp_after:wN __fp_parse_operand:Nw \c__fp_prec_comp_int __fp_parse_expand:w #5
\}
\cs_new:Npn __fp_parse_apply_compare:NwNNNNNwN
 #1 #2@ #3 #4#5#6#7 #8@ #9
{\if_int_odd:w
 \if_meaning:w \c_zero_fp #3
 \else:
 \if_case:w __fp_compare_back_any:ww #8 #2 \exp_stop_f:
 #5 \or: #6 \or: #7 \else: #4
 \fi:
 \fi:
 \exp_after:wN __fp_parse_apply_compare_aux:NNwN
 \else:
 \exp_after:wN __fp_parse_apply_compare_aux:NNwN
 \fi:
\end{definition}

72.8 Tools for functions

__fp_parse_function_all_fp_o:fnw
Followed by {\langle function name \rangle} {\langle code \rangle} {\langle float array \rangle} this checks all floats are floating point numbers (no tuples).
\cs_new:Npn __fp_parse_function_all_fp_o:fnw #1#2#3 @
{ __fp_array_if_all_fp:nTF {#3}
 { #2 #3 @ }
 { __fp_error:nffn { bad-args }
 {#1}
 { \fp_to_tl:n { \s__fp_tuple __fp_tuple_chk:w {#3} ; } }
 { }
 \exp_after:wN \c_nan_fp
 }
}

(End of definition for __fp_parse_function_all_fp_o:fnw.)

This is followed by \langle{\text{function name}}\rangle \langle{\text{code}}\rangle \langle{\text{float array}}\rangle @. It checks that the \langle{\text{float array}}\rangle consists of one or two floating point numbers (not tuples), then leaves the \langle{\text{code}}\rangle (if there is one float) or its tail (if there are two floats) followed by the \langle{\text{float array}}\rangle. The \langle{\text{code}}\rangle should start with a single token such as __fp_atan_default:w that deals with the single-float case.

The first __fp_if_type_fp:NTwFw test catches the case of no argument and the case of a tuple argument. The next one distinguishes the case of a single argument (no error, just add \c_one_fp) from a tuple second argument. Finally check there is no further argument.

\cs_new:Npn __fp_parse_function_one_two:nnw #1#2#3
{ __fp_if_type_fp:NTwFw #3 { } \s__fp __fp_parse_function_one_two_error_o:w \s__fp_stop
 __fp_parse_function_one_two_aux:nnw (#1) (#2) #3
}
\cs_new:Npn __fp_parse_function_one_two_error_o:w #1#2#3#4 @
{ __fp_error:nffn { bad-args }
 {#2}
 { \fp_to_tl:n { \s__fp_tuple __fp_tuple_chk:w {#4} ; } }
 { }
 \exp_after:wN \c_nan_fp
}
\cs_new:Npn __fp_parse_function_one_two_aux:nnw #1#2 #3; #4
{ __fp_if_type_fp:NTwFw #4 { }
 \s__fp
 { \if_meaning:w @ #4 \exp_after:wN \use_iv:nnnn \fi:
 __fp_parse_function_one_two_error_o:w
 }
 \s__fp_stop
 __fp_parse_function_one_two_auxii:nnw (#1) (#2) #3; #4
}
\cs_new:Npn __fp_parse_function_one_two_auxii:nnw #1#2#3; #4
{ 1067
Apply \#1 to all items in the following tuple and expand once afterwards. The code \#1 should itself expand once after its result.

```latex
\cs_new:Npn \__fp_tuple_map_o:nw #1 \s__fp_tuple \__fp_tuple_chk:w #2 ;
    {\exp:w \exp_end_continue_f:w \__fp_tuple_map_loop_o:nw {#1} #2 { \s__fp \prg_break: } ;}
```

Apply \#1 to pairs of items in the two following tuples and expand once afterwards.

```latex
\cs_new:Npn \__fp_tuple_mapthread_o:nww #1 \s__fp_tuple \__fp_tuple_chk:w #2 ; \s__fp_tuple \__fp_tuple_chk:w #3 ;
    {\exp:w \exp_end_continue_f:w \__fp_tuple_mapthread_loop_o:nw {#1} #2 { \s__fp \prg_break: } ; #3 { \s__fp \prg_break: } ;}
```

(End of definition for __fp_parse_function_one_two:nw and others.)
72.9 Messages

\msg_new:nnn { fp } { deprecated } { ''#1''-deprecated;-'use-'#2' }
\msg_new:nnn { fp } { unknown-fp-word } { Unknown-fp-word-#1. }
\msg_new:nnn { fp } { missing } { Missing-#1-inserted #2. }
\msg_new:nnn { fp } { extra } { Extra-#1-ignored. }
\msg_new:nnn { fp } { early-end } { Premature-end-in-fp-expression. }
\msg_new:nnn { fp } { after-e } { Cannot-use-#1 after-'e'. }
\msg_new:nnn { fp } { missing-number } { Missing-number-before-''#1''. }
\msg_new:nnn { fp } { unknown-symbol } { Unknown-symbol-#1-ignored. }
\msg_new:nnn { fp } { extra-comma } { Unexpected-comma-turned-to-nan-result. }
\msg_new:nnn { fp } { no-arg } { #1-got-no-argument;-used-nan. }
\msg_new:nnn { fp } { multi-arg } { #1-got-more-than-one-argument;-used-nan. }
\msg_new:nnn { fp } { num-args } { #1-expects-between-#2-and-#3-arguments. }
\msg_new:nnn { fp } { bad-args } { Arguments-in-#1#2-are-invalid. }
\msg_new:nnn { fp } { infty-pi } { Math-command-#1 is-not-an-fp }
\cs_if_exist:cT { @unexpandable@protect }
\msg_new:nnn { fp } { robust-cmd } { Robust-command-#1 invalid-in-fp-expression! }
{Robust-command-#1 invalid-in-fp-expression!}
Chapter 73

\textbf{l3fp-assign implementation}

73.1 Assigning values

Floating point variables are initialized to be +0.

\begin{verbatim}
\cs_new_protected:Npn \fp_new:N #1 { \cs_new_eq:NN #1 \c_zero_fp }
\cs_generate_variant:Nn \fp_new:N {c}
\end{verbatim}

(End of definition for \texttt{\fp_new:N}. This function is documented on page 254.)

Simply use \texttt{__fp_parse:n} within various f-expanding assignments.

\begin{verbatim}
\cs_new_protected:Npn \fp_set:Nn #1#2 { __kernel_tl_set:Ne #1 { \exp_not:f { __fp_parse:n {#2} } } }
\cs_new_protected:Npn \fp_gset:Nn #1#2 { __kernel_tl_gset:Ne #1 { \exp_not:f { __fp_parse:n {#2} } } }
\cs_new_protected:Npn \fp_const:Nn #1#2 { \tl_const:Ne #1 { \exp_not:f { __fp_parse:n {#2} } } }
\cs_generate_variant:Nn \fp_set:Nn {c}
\cs_generate_variant:Nn \fp_gset:Nn {c}
\cs_generate_variant:Nn \fp_const:Nn {c}
\end{verbatim}

(End of definition for \texttt{\fp_set:Nn}, \texttt{\fp_gset:Nn}, and \texttt{\fp_const:Nn}. These functions are documented on page 254.)

Copying a floating point is the same as copying the underlying token list.

\begin{verbatim}
\cs_new_protected:Npn \fp_set_eq:NN \fp_set_eq:cN \fp_set_eq:Nc \fp_gset_eq:Nc \fp_set_eq:cc \fp_gset_eq:cc
\cs_new_eq:NN \fp_set_eq:NN \fp_set_eq:NN \fp_gset_eq:NN \fp_gset_eq:NN \fp_set_eq:NN \fp_gset_eq:NN { c , Nc , cc }
\cs_generate_variant:Nn \fp_set_eq:NN \fp_set_eq:NN \fp_gset_eq:NN { c , Nc , cc }
\end{verbatim}

(End of definition for \texttt{\fp_set_eq:NN} and \texttt{\fp_gset_eq:NN}. These functions are documented on page 254.)
Setting a floating point to zero: copy \texttt{c_zero_fp}.
\begin{verbatim}
\cs_new_protected:Npn \fp_zero:N #1 { \fp_set_eq:NN #1 \c_zero_fp }
\cs_new_protected:Npn \fp_gzero:N #1 { \fp_gset_eq:NN #1 \c_zero_fp }
\cs_generate_variant:Nn \fp_zero:N { c }
\cs_generate_variant:Nn \fp_gzero:N { c }
\end{verbatim}

(End of definition for \texttt{fp_zero:N} and \texttt{fp_gzero:N}. These functions are documented on page 254.)

Set the floating point to zero, or define it if needed.
\begin{verbatim}
\cs_new_protected:Npn \fp_zero_new:N #1 { \fp_if_exist:NTF #1 { \fp_zero:N #1 } { \fp_new:N #1 } }
\cs_new_protected:Npn \fp_gzero_new:N #1 { \fp_if_exist:NTF #1 { \fp_gzero:N #1 } { \fp_new:N #1 } }
\cs_generate_variant:Nn \fp_zero_new:N { c }
\cs_generate_variant:Nn \fp_gzero_new:N { c }
\end{verbatim}

(End of definition for \texttt{fp_zero_new:N} and \texttt{fp_gzero_new:N}. These functions are documented on page 254.)

73.2 Updating values

These match the equivalent functions in \texttt{l3int} and \texttt{l3skip}.
\begin{verbatim}
\cs_new_protected:Npn \fp_add:Nn { __fp_add:NNNn \fp_set:Nn + }
\cs_generate_variant:Nn \fp_add:Nn { c }
\cs_new_protected:Npn \fp_gadd:Nn { __fp_add:NNNn \fp_gset:Nn + }
\cs_generate_variant:Nn \fp_gadd:Nn { c }
\cs_new_protected:Npn \fp_sub:Nn { __fp_add:NNNn \fp_set:Nn - }
\cs_generate_variant:Nn \fp_sub:Nn { c }
\cs_new_protected:Npn \fp_gsub:Nn { __fp_add:NNNn \fp_gset:Nn - }
\cs_generate_variant:Nn \fp_gsub:Nn { c }
\cs_new_protected:Npn __fp_add:NNNn #1#2#3#4 { #1 #3 { #3 #2 __fp_parse:n {#4} } }
\cs_generate_variant:Nn \fp_add:Nn { c }
\cs_generate_variant:Nn \fp_gadd:Nn { c }
\cs_generate_variant:Nn \fp_sub:Nn { c }
\cs_generate_variant:Nn \fp_gsub:Nn { c }
\end{verbatim}

(End of definition for \texttt{fp_add:Nn} and others. These functions are documented on page 254.)

73.3 Showing values

This shows the result of computing its argument by passing the right data to \texttt{tl_show:n} or \texttt{tl_log:n}.
\begin{verbatim}
\cs_new_protected:Npn \fp_show:N { __fp_show:NN \tl_show:n }
\cs_generate_variant:Nn \fp_show:N { c }
\cs_new_protected:Npn \fp_log:N { __fp_show:NN \tl_log:n }
\cs_generate_variant:Nn \fp_log:N { c }
\end{verbatim}

(End of definition for \texttt{fp_show:N} and \texttt{fp_log:N}. These functions are documented on page 254.)
To support symbolic expression, validation has to be done recursively. Two __fp_show_validate:nn wrappers are used to distinguish between initial and recursive calls, in which the former provides a demo of possible forms a fp variable would have.

\begin{verbatim}
__fp_show_validate:n __fp_show_validate_aux:n __fp_show_validate:w __fp_tuple_show_validate:w __fp_symbolic_show_validate:w

\cs_new:Npn __fp_show_validate:n __fp蹯
__fp_chk:w ??? ;\ or \iow_newline:
__fp_tuple __fp_tuple_chk:w ?? ;\ or \iow_newline:
__fp_symbolic __fp_symbolic_chk:w ? , ?? ;

\end{verbatim}
73.4 Some useful constants and scratch variables

Some constants.
\c_one_fp
\c_e_fp
\fp_const:Nn \c_one_fp { 2.718 2818 2845 9045 }
\fp_const:Nn \c_e_fp { 1 }

(End of definition for \c_one_fp and \c_e_fp. These variables are documented on page 262.)
\c_pi_fp
\c_one_degree_fp
\fp_const:Nn \c_pi_fp { 3.141 5926 5358 9793 }
\fp_const:Nn \c_one_degree_fp { 0.0 1745 3292 5199 4330 }

(End of definition for \c_pi_fp and \c_one_degree_fp. These variables are documented on page 262.)
\l_tmpa_fp
\l_tmpb_fp
\g_tmpa_fp
\g_tmpb_fp
\fp_new:N \l_tmpa_fp
\fp_new:N \l_tmpb_fp
\fp_new:N \g_tmpa_fp
\fp_new:N \g_tmpb_fp

(End of definition for \l_tmpa_fp and others. These variables are documented on page 263.)
Chapter 74

\textbf{l3fp-logic implementation}

\begin{verbatim}
__fp_parse_word_max:N __fp_parse_word_min:N
\end{verbatim}

Those functions may receive a variable number of arguments.

\begin{verbatim}
\cs_new:Npn __fp_parse_word_max:N { __fp_parse_function:NNN __fp_minmax_o:Nw 2 }
\cs_new:Npn __fp_parse_word_min:N { __fp_parse_function:NNN __fp_minmax_o:Nw 0 }
\end{verbatim}

(End of definition for __fp_parse_word_max:N and __fp_parse_word_min:N.)

74.1 Syntax of internal functions

\begin{itemize}
\item \texttt{__fp_compare_npos:nwnw \{\langle expon \rangle \} \{\langle body \rangle \}; \{\langle expon \rangle \} \{\langle body \rangle \};}
\item \texttt{__fp_minmax_o:Nw \langle sign \rangle \langle floating point array \rangle}
\item \texttt{__fp_not_o:w ? \langle floating point array \rangle (with one floating point number only)}
\item \texttt{__fp_and_o:w \langle floating point \rangle \langle floating point \rangle}
\item \texttt{__fp_or_o:w \langle floating point \rangle \langle floating point \rangle}
\item \texttt{__fp_ternary:NwwN, __fp_ternary_auxi:NwwN, __fp_ternary_auxii:NwwN}
\end{itemize}

have to be understood.

74.2 Tests

\begin{verbatim}
\fp_if_exist_p:N \fp_if_exist_p:c
\end{verbatim}

Copies of the cs functions defined in l3basics.

\begin{verbatim}
\prg_new_eq_conditional:NN\texttt{N} \fp_if_exist:N \cs_if_exist:N \{ TF , T , F , p \}
\prg_new_eq_conditional:NN\texttt{N} \fp_if_exist:c \cs_if_exist:c \{ TF , T , F , p \}
\end{verbatim}

(End of definition for \fp_if_exist:N\texttt{TF}. This function is documented on page 256.)
\fp_if_nan:nTF
\fp_if_nan:nTF
\fp_compare_p:n
\fp_compare:nTF
__fp_compare_return:w
\fp_compare_p:nNn
\fp_compare:nTF
__fp_compare_aux:wn
\fp_compare_p:n
\fp_compare:nTF
__fp_compare_aux:wn
\fp_if_nan:nTF
\fp_if_nan:nTF

Evaluate and check if the result is a floating point of the same kind as \texttt{nan}.

\begin{verbatim}
 \prg_new_conditional:Nppnn \fp_if_nan:n #1 { TF , T , F , p }
 {
 \if:w 3 \exp_last_unbraced:Nf __fp_kind:w { __fp_parse:n {#1} }
 \prg_return_true:
 \else:
 \prg_return_false:
 \fi:
 }
\end{verbatim}

(End of definition for \texttt{\fp_if_nan:nTF}. This function is documented on page 258.)

74.3 Comparison

Within floating point expressions, comparison operators are treated as operations, so we evaluate \#1, then compare with ±0. Tuples are \texttt{true}.

\begin{verbatim}
 \prg_new_conditional:Nppnn \fp_compare:n #1 { p , T , F , TF }
 {
 \exp_after:wN __fp_compare_return:w
 \exp:w \exp_end_continue_f:w __fp_parse:n {#1}
 }
\end{verbatim}

\begin{verbatim}
 \cs_new:Npn __fp_compare_return:w #1#2#3;
 {
 \if_charcode:w 0
 __fp_if_type_fp:NTwFw
 #1 { __fp_use_i_delimit_by_s_stop:nw #3 \s__fp_stop }
 \s__fp 1 \s__fp_stop
 \prg_return_false:
 \else:
 \prg_return_true:
 \fi:
 }
\end{verbatim}

(End of definition for \texttt{\fp_compare:nTF} and \texttt{__fp_compare_return:w}. This function is documented on page 257.)

\begin{verbatim}
 \prg_new_conditional:Nppnn \fp_compare:nNn #1#2#3 { p , T , F , TF }
 {
 \if_int_compare:w
 \exp_after:wN __fp_compare_aux:wn
 \exp:w \exp_end_continue_f:w __fp_parse:n {#1} {#3} \\
 = __fp_int_eval:w '#2 - '= __fp_int_eval_end:
 \prg_return_true:
 \else:
 \prg_return_false:
 \fi:
 }
\end{verbatim}

Evaluate \#1 and \#3, using an auxiliary to expand both, and feed the two floating point numbers swapped to \texttt{__fp_compare_back_any:ww}, defined below. Compare the result with ‘\#2’=, which is –1 for <, 0 for =, 1 for > and 2 for ?.

\begin{verbatim}
 \prg_new_conditional:Nppnn \fp_compare:nNn #1#2#3 { p , T , F , TF }
 {
 \if_int_compare:w
 \exp_after:wN __fp_compare_aux:wn
 \exp:w \exp_end_continue_f:w __fp_parse:n {#1} {#3} \\
 = __fp_int_eval:w '#2 - '=' __fp_int_eval_end:
 \prg_return_true:
 \else:
 \prg_return_false:
 \fi:
 }
\end{verbatim}

Evaluate \#1 and \#3, using an auxiliary to expand both, and feed the two floating point numbers swapped to \texttt{__fp_compare_back_any:ww}, defined below. Compare the result with ‘\#2’=, which is –1 for <, 0 for =, 1 for > and 2 for ?.
(End of definition for \texttt{fp_compare:nNnTF} and \texttt{fp_compare_aux:wn}. This function is documented on page 257.)

\texttt{_fp_compare_back:ww} \langle y \rangle ; \langle x \rangle ; \text{ Expands (in the same way as \texttt{int_eval:n}) to \(-1\) if } x < y, \text{ 0 if } x = y, \text{ 1 if } x > y, \text{ and 2 otherwise (denoted as } x?y). \text{ If either operand is nan, stop the comparison with } \texttt{_fp_compare_nan:w} \text{ returning 2. If } x \text{ is negative, swap the outputs 1 and } -1 \text{ (i.e., } > \text{ and } <); \text{ we can henceforth assume that } x \geq 0. \text{ If } y \geq 0, \text{ and they have the same type, either they are normal and we compare them with } \texttt{_fp_compare_npos:nwnw}, \text{ or they are equal. If } y \geq 0, \text{ but of a different type, the highest type is a larger number. Finally, if } y \leq 0, \text{ then } x > y, \text{ unless both are zero.}
Tuple and floating point numbers are not comparable so return 2 in mixed cases or when tuples have a different number of items. Otherwise compare pairs of items with __fp_compare_back_any:ww and if any don’t match return 2 (as \int_value:w 02 \exp_stop_f:).

(End of definition for __fp_compare_back:ww and others.)
Within an \int_value:w \exp_stop_f: construction, this expands to 0 if the two numbers are equal, −1 if the first is smaller, and 1 if the first is bigger. First compare the exponents: the larger one denotes the larger number. If they are equal, we must compare significands. If both the first 8 digits and the next 8 digits coincide, the numbers are equal. If only the first 8 digits coincide, the next 8 decide. Otherwise, the first 8 digits are compared.

\cs_new:Npn __fp_compare_npos:nwnw #1#2; #3#4; {
\if_int_compare:w #1 = #3 \exp_stop_f:
__fp_compare_significand:nnnnnnnn #2 #4
\else:
\if_int_compare:w #1 < #3 - \fi:
\fi:
}
\cs_new:Npn __fp_compare_significand:nnnnnnnn #1#2#3#4#5#6#7#8 {
\if_int_compare:w #1#2 = #5#6 \exp_stop_f:
\if_int_compare:w #3#4 = #7#8 \exp_stop_f:
0
\else:
\if_int_compare:w #3#4 < #7#8 - \fi:
\fi:
\else:
\if_int_compare:w #1#2 < #5#6 - \fi:
\fi:
}

(End of definition for __fp_compare_npos:nwnw and __fp_compare_significand:nnnnnnnn.)

74.4 Floating point expression loops

These are quite easy given the above functions. The do_until and do_while versions execute the body, then test. The until_do and while_do do it the other way round.

\cs_new:Npn \fp_do_until:nn #1#2 {
\fp_compare:nF {#1}
{ \fp_do_until:nn {#1} {#2} }
}
\cs_new:Npn \fp_do_until:nn #1#2 {
\fp_compare:nT {#1}
{ \fp_do_until:nn {#1} {#2} }
}
\cs_new:Npn \fp_until_do:nn #1#2 {
\fp_compare:nF {#1}
{ \fp_until_do:nn {#1} {#2} }
}
\cs_new:Npn \fp_until_do:nn #1#2 {
\fp_compare:nT {#1}
{ \fp_until_do:nn {#1} {#2} }
}

1078
\cs_new:Npn \fp_while_do:nn #1#2
{\fp_compare:nT {#1}
{\fp_while_do:nn {{#1}} {#2}}}

(End of definition for \fp_do_until:nn and others. These functions are documented on page 258.)

\cs_new:Npn \fp_do_until:nNnn #1#2#3#4
{\exp_after:wN __fp_step:wwwN
\exp:w \exp_end_continue_f:w __fp_parse_o:n {#1}
\exp:w \exp_end_continue_f:w __fp_parse_o:n {#2}
\exp_after:wN __fp_step_fp:wwwN
\exp:w \exp_end_continue_f:w __fp_parse_o:n {#3}
\exp_after:wN __fp_step:NnnnnN
\exp:w \exp_end_continue_f:w __fp_parse_o:n {#4}}

\cs_new:Npn \fp_until_do:nNnn #1#2#3#4
{\fp_compare:nNnF {#1} #2 {#3}
{\fp_until_do:nNnn {#1} #2 {#3} {#4}}}

\cs_new:Npn \fp_while_do:nNnn #1#2#3#4
{\fp_compare:nNnT {#1} #2 {#3}
{\fp_while_do:nNnn {#1} #2 {#3} {#4}}}

The approach here is somewhat similar to \int_step_function:nnnN. There are two
subtleties: we use the internal parser __fp_parse:n to avoid converting back and forth
from the internal representation; and (due to rounding) even a non-zero step does not
guarantee that the loop counter increases.

(End of definition for \fp_do_until:nnn and others. These functions are documented on page 258.)
Only floating point numbers (not tuples) are allowed arguments. Only “normal” floating points (not ±0, ±inf, nan) can be used as step; if positive, call _fp_step:Nnnnn with argument > otherwise <. This function has one more argument than its integer counterpart, namely the previous value, to catch the case where the loop has made no progress. Conversion to decimal is done just before calling the user’s function.

\cs_new:Npn _fp_step:wwwN #1; #2; #3; #4; #5; #6;
__fp_chk:w #7
__fp_if_type_fp:NTwFw #1 \s__fp \prg_break: \s__fp_stop
__fp_step_fp:wwwN #1; #2; #3; #4; #5; #6;
\prg_break_point:
\use:n { #1; } { \c_nan_fp } { #6}
__fp_if_type_fp:NTwFw #3 \s__fp \prg_break: \s__fp_stop
__fp_error:nfff { step-tuple } { \fp_to_tl:n { #1#2; } }
{ \fp_to_tl:n { #3#4; } } { \fp_to_tl:n { #5#6; } }
}
__fp_step:NnnnnN #1; #2; #3; #4; #5; #6;
__fp_error:nffn { tiny-step } { \fp_to_tl:n { #3; } } { \fp_to_tl:n { #4; } } { \fp_compare:nNnTF {2} = {#3} }
{ \fp_compare:nNnTF {2} = {#3} }
{ \fp_compare:nNnF {1} = {#3} }
\begin{verbatim}
\exp_args:Nf \#6 { __fp_to_decimal_dispatch:w \#2 }
__fp_step:NfnnnN
 \#1 { __fp_parse:n { \#2 + \#4 } } {\#2} {\#4} {\#5} \#6
\exp_args:Nc __fp_step:NNnnnn
 \exp_args:c {\#1} {\#2} {\#3} {\#4} {\#5} {\#6}
\cs_generate_variant:Nn __fp_step:NnnnnN { Nf }
\end{verbatim}

(End of definition for \fp_step_function:nnnn and others. This function is documented on page 259.)

As for \int_step_inline:nnnn, create a global function and apply it, following up with a break point.

\begin{verbatim}
\cs_new_protected:Npn \fp_step_inline:nnnn
{ \int_gincr:N \g__kernel_prg_map_int
\exp_args:NNc __fp_step:NNnnnn
\cs_gset_protected:Npn
{ __fp_map_\int_use:N \g__kernel_prg_map_int :w }
}
\cs_new_protected:Npn \fp_step_variable:nnnNN\#1\#2\#3\#4\#5\#6
{ \int_gincr:N \g__kernel_prg_map_int
\exp_args:NNc __fp_step:NNnnnn
\cs_gset_protected:Npe
{ __fp_map_\int_use:N \g__kernel_prg_map_int :w }
\tl_set:Nn \exp_not:N \#4 {##1}
\exp_not:n {\#5}
}
\cs_new_protected:Npn __fp_step:NNnnnn \#1\#2\#3\#4\#5\#6
{ \#1 \#2 ##1 {\#6}
\fp_step_function:nnnn {\#3} {\#4} {\#5}
\prg_break_point:Nn \scan_stop: { \int_gdecr:N \g__kernel_prg_map_int }
}
\end{verbatim}

(End of definition for \fp_step_inline:nnnn, \fp_step_variable:nnnn, and __fp_step:NNnnnn. These functions are documented on page 259.)

\begin{verbatim}
\msg_new:nnn { fp } { step-tuple }
{ Tuple-argument-in-fp_step,...-(\#1)\#2(\#3). }
\msg_new:nnn { fp } { bad-step }
{ Invalid-step-size=\#2-for-function=\#3. }
\msg_new:nnn { fp } { tiny-step }
{ Tiny-step-size=(\#1+\#2=\#1)-for-function=\#3. }
\end{verbatim}

74.5 Extrema

First check all operands are floating point numbers. The argument \#1 is 2 to find the maximum of an array \#2 of floating point numbers, and 0 to find the minimum. We read numbers sequentially, keeping track of the largest (smallest) number found so far. If numbers are equal (for instance ±0), the first is kept. We append −∞ (∞), for the case
of an empty array. Since no number is smaller (larger) than that, this additional item only affects the maximum (minimum) in the case of \texttt{\textsf{max}}() and \texttt{\textsf{min}}() with no argument. The weird \textsf{fp}-like trailing marker breaks the loop correctly: see the precise definition of \	exttt{__fp_minmax_loop:Nww}.

\begin{verbatim}
\cs_new:Npn __fp_minmax_o:Nw #1
{ __fp_parse_function_all_fp_o:fnw { \token_if_eq_meaning:NNTF 0 #1 { min } { max } } { __fp_minmax_aux_o:Nw #1 } }
\cs_new:Npn __fp_minmax_aux_o:Nw #1#2 @
{ \if_meaning:w 0 #1
\exp_after:wN __fp_minmax_loop:Nww \exp_after:wN +
\else:
\exp_after:wN __fp_minmax_loop:Nww \exp_after:wN -
\fi:
__fp __fp_chk:w 2 #1 \s__fp_exact ;
__fp __fp_chk:w { 3 __fp_minmax_break_o:w } ;
}
\end{verbatim}

(\textit{End of definition for \texttt{__fp_minmax_o:Nw} and \texttt{__fp_minmax_aux_o:Nw})

\texttt{__fp_minmax_loop:Nww} \texttt{__fp_minmax_loop:Nww} The first argument is \texttt{__fp_minmax_loop:Nww} or \texttt{__fp_minmax_loop:Nww} to denote the case where the currently largest (smallest) number found (first floating point argument) should be replaced by the new number (second floating point argument). If the new number is \texttt{nan}, keep that as the extremum, unless that extremum is already a \texttt{nan}. Otherwise, compare the two numbers. If the new number is larger (in the case of \texttt{\textsf{max}}) or smaller (in the case of \texttt{\textsf{min}}), the test yields \texttt{true}, and we keep the second number as a new maximum; otherwise we keep the first number. Then loop.

\begin{verbatim}
\cs_new:Npn __fp_minmax_break_o:w #1
{ __fp __fp.chk:w #1 \s__fp_exact ;}
\end{verbatim}

\begin{verbatim}
__fp __fp.chk:w { 3 __fp_minmax_break_o:w } ;
\end{verbatim}
__fp_minmax_loop:Nww
End of definition for __fp_minmax_loop:Nww.
__fp_minmax_auxi:ww
Keep the first/second number, and remove the other.
__fp_minmax_auxii:ww
\cs_new:Npn __fp_minmax_auxi:ww #1 \fi: \fi: #2 \s__fp #3 ; \s__fp #4;
\cs_new:Npn __fp_minmax_auxii:ww #1 \fi: \fi: #2 \s__fp #3 ;
\cs_new:Npn __fp_minmax_break_o:w #1 \fi: \fi: #2 \s__fp #3; #4;
\cs_new:Npn __fp_minmax_break_o:w #1 \fi: \fi: #2 \s__fp #3; \s__fp #3;
End of definition for __fp_minmax_auxi:ww and __fp_minmax_auxii:ww.
__fp_not_o:w
__fp_tuple_not_o:w
Return true or false, with two expansions, one to exit the conditional, and one to please \l3fp-parse. The first argument is provided by \l3fp-parse and is ignored.
\cs_new:Npn __fp_not_o:w #1 \s__fp __fp_chk:w #2#3; @
{\if_meaning:w 0 #2 \exp_after:wN \exp_after:wN \exp_after:wN \c_one_fp \else:\exp_after:wN \exp_after:wN \exp_after:wN \c_zero_fp \fi:}
\cs_new:Npn __fp_tuple_not_o:w #1 @ { \exp_after:wN \c_zero_fp }
(End of definition for __fp_not_o:w and __fp_tuple_not_o:w)
__fp_&_o:ww
__fp_tuple_&_o:ww
__fp_&_tuple_o:ww
__fp_tuple_&_tuple_o:ww
__fp_|_o:ww
__fp_tuple_|_o:ww
__fp_|_tuple_o:ww
__fp_tuple_|_tuple_o:ww
__fp_and_return:wNw
For and, if the first number is zero, return it (with the same sign). Otherwise, return the second one. For or, the logic is reversed: if the first number is non-zero, return it, otherwise return the second number: we achieve that by hi-jacking __fp_&_o:ww, inserting an extra argument, \else:, before \s__fp. In all cases, expand after the floating point number.
\group_begin:
\char_set_catcode_letter:N & \char_set_catcode_letter:N | \cs_new:Npn __fp_&_o:ww #1 \s__fp __fp_chk:w #2#3; \{ \if_meaning:w 0 #2 \#1 __fp_and_return:wNw \s__fp __fp_chk:w #2#3; \fi:__fp_exp_after_o:w \} \cs_new:Npn __fp_&_tuple_o:ww #1 \s__fp __fp_chk:w #2#3; \}
\group_end:

74.6 Boolean operations
The first function receives the test and the true branch of the `?:` ternary operator. It calls \texttt{__fp_ternary_auxii:NwwN} if the test branch is a floating point number ± 0, and otherwise calls \texttt{__fp_ternary_auxi:NwwN}. These functions select one of their two arguments.

\begin{verbatim}
\cs_new:Npn __fp_ternary:NwwN #1 #2#3@ #4@ #5
 {
 \if_meaning:w __fp_parse_infix_:N #5
 \if_charcode:w 0
 __fp_if_type_fp:NTwFw #2 \{ \use_i:nn __fp_use_i_delimit_by_s_stop:nw #3 \s__fp_stop \exp_after:wN \exp_after:wN \exp_after:wN __fp_ternary_auxii:NwwN \else:
 \exp_after:wN __fp_ternary_auxi:NwwN \else:
 \msg_expandable_error:nnnn { fp } { missing } { : } { ~for~?: }
 \exp_after:wN \exp_after:wN \exp_after:wN __fp_ternary_auxi:NwwN \fi:
 \exp_after:wN __fp_ternary_after_array_f:w __fp_expr_stop
 \exp_after:wN \exp_after:wN \exp_end_continue_f:w __fp_expr_stop
 \exp: \exp_after:wN \exp_after:wN \exp_after:wN __fp_parse_operand:Nw \c__fp_prec_colon_int __fp_parse_expand:w
 \else:
 __fp_ternary:NwwN #1 __fp_ternary_after_array_f:w __fp_expr_stop
 \exp_after:wN \exp_end_continue_f:w __fp_expr_stop
 \exp:w \exp_after:wN \exp_after:wN \exp_end_continue_f:w
 \fi:
\}
\end{verbatim}

(End of definition for __fp_k:o:ww and others.)

74.7 Ternary operator

The first function receives the test and the true branch of the `?:` ternary operator. It calls \texttt{__fp_ternary_auxii:NwwN} if the test branch is a floating point number ± 0, and otherwise calls \texttt{__fp_ternary_auxi:NwwN}. These functions select one of their two arguments.
\cs_new:Npn __fp_ternary_auxi:NwwN #1\#2\#3\#4
{
 \exp_after:wN __fp_parse_continue:NwN
 \exp_after:wN \#1
 \exp:w \exp_end_continue_f:w
 __fp_exp_after_array_f:w \#2 \s__fp_expr_stop
 \#4 \#1
}
\cs_new:Npn __fp_ternary_auxii:NwwN #1\#2\#3\#4
{
 \exp_after:wN __fp_parse_continue:NwN
 \exp_after:wN \#1
 \exp:w \exp_end_continue_f:w
 __fp_exp_after_array_f:w \#3 \s__fp_expr_stop
 \#4 \#1
}

(End of definition for __fp_ternary:NwwN, __fp_ternary_auxi:NwwN, and __fp_ternary_auxii:NwwN.)

(/package)
Chapter 75

l3fp-basics implementation

The l3fp-basics module implements addition, subtraction, multiplication, and division of two floating points, and the absolute value and sign-changing operations on one floating point. All operations implemented in this module yield the outcome of rounding the infinitely precise result of the operation to the nearest floating point.

Some algorithms used below end up being quite similar to some described in “What Every Computer Scientist Should Know About Floating Point Arithmetic”, by David Goldberg, which can be found at http://cr.yp.to/2005-590/goldberg.pdf.

Unary functions.

\texttt{__fp_parse_word_abs:N}
\texttt{__fp_parse_word_logb:N}
\texttt{__fp_parse_word_sign:N}
\texttt{__fp_parse_word_sqrt:N}

(End of definition for \texttt{__fp_parse_word_abs:N} and others.)

75.1 Addition and subtraction

We define here two functions, \texttt{__fp__ - o:ww} and \texttt{__fp__ + o:ww}, which perform the subtraction and addition of their two floating point operands, and expand the tokens following the result once.

A more obscure function, \texttt{__fp_add_big_i:o:ww}, is used in l3fp-expo. The logic goes as follows:

- \texttt{__fp__ - o:ww} calls \texttt{__fp__ + o:ww} to do the work, with the sign of the second operand flipped;
- \texttt{__fp__ + o:ww} dispatches depending on the type of floating point, calling specialized auxiliaries;
• in all cases except summing two normal floating point numbers, we return one or
the other operands depending on the signs, or detect an invalid operation in the
case of $\infty - \infty$;
• for normal floating point numbers, compare the signs;
• to add two floating point numbers of the same sign or of opposite signs, shift the
significand of the smaller one to match the bigger one, perform the addition or
subtraction of significands, check for a carry, round, and pack using the _fp_-
basics_pack... functions.

The trickiest part is to round correctly when adding or subtracting normal floating point
numbers.

75.1.1 Sign, exponent, and special numbers
fp\-_o:ww
The _fp_\+_o:ww auxiliary has a hook: it takes one argument between the first \s_-
fp and _fp_chk:w, which is applied to the sign of the second operand. Positioning
the hook there means that _fp_\+_o:ww can still perform the sanity check that it was
followed by \s__fp.
\cs_new:cpe { _fp_\-_o:ww } \s__fp
\exp_not:c { _fp_\+_o:ww }
\exp_not:n { \s__fp _fp_neg_sign:N }
(End of definition for _fp_\-_o:ww.)

fp\+_o:ww
This function is either called directly with an empty #1 to compute an addition, or it
is called by _fp_\-_o:ww with _fp_neg_sign:N as #1 to compute a subtraction, in
which case the second operand’s sign should be changed. If the \(\textit{types}\) #2 and #4 are the
same, dispatch to case #2 (0, 1, 2, or 3), where we call specialized functions: thanks to
\int_value:w, those receive the tweaked \(\textit{sign}2\) (expansion of #1#5) as an argument. If
the \(\textit{types}\) are distinct, the result is simply the floating point number with the highest
\(\textit{type}\). Since case 3 (used for two \texttt{nan}) also picks the first operand, we can also use it
when \(\textit{type}1\) is greater than \(\textit{type}2\). Also note that we don’t need to worry about \(\textit{sign}2\)
in that case since the second operand is discarded.
\cs_new:cpn { _fp_\+_o:ww }
\s__fp #1 _fp_chk:w #2 #3 ; \s__fp _fp_chk:w #4 #5
\if_case:w
\if_meaning:w #2 #4
\else:
\if_int_compare:w #2 > #4 \exp_stop_f:
3
\else:
4
\fi:
\fi:
\exp_stop_f:
\exp_after:wN _fp_add_zeros_o:Nww \int_value:w
\or: \exp_after:wN _fp_add_normal_o:Nww \int_value:w
1087
__fp_add_return_ii_o:Nww \par
Ignore the first operand, and return the second, but using the sign \#1 rather than \#4. As usual, expand after the floating point.
\par
\cs_new:Npn __fp_add_return_ii_o:Nww #1 #2 ; \s__fp __fp_chk:w #3 #4 { __fp_exp_after_o:w \s__fp __fp_chk:w #3 #1 }

(End of definition for __fp_add_return_ii_o:Nww.)

__fp_add_zeros_o:Nww \par
Adding two zeros yields \c_zero_fp, except if both zeros were \(-0\).
\par
\cs_new:Npn __fp_add_zeros_o:Nww #1 \s__fp __fp_chk:w 0 #2 { \if_int_compare:w #2 #1 = 20 \exp_stop_f: \else: \exp_after:wN __fp_case_return_i_o:ww \fi: \s__fp __fp_chk:w 0 #2 }

(End of definition for __fp_add_zeros_o:Nww.)

__fp_add_inf_o:Nww \par
If both infinities have the same sign, just return that infinity, otherwise, it is an invalid operation. We find out if that invalid operation is an addition or a subtraction by testing whether the tweaked \langle sign\rangle (\#1) and the \langle sign\rangle (\#4) are identical.
\par
\cs_new:Npn __fp_add_inf_o:Nww #1 \s__fp __fp_chk:w 2 #2 #3; \s__fp __fp_chk:w 2 #4 { \if_meaning:w #1 #2 __fp_case_return_i_o:ww \else: __fp_case_use:nw \exp_last_unbraced:Nf __fp_invalid_operation_o:Nww \token_if_eq_meaning:NNTF #1 #4 + - \fi: \s__fp __fp_chk:w 2 #2 #3; \s__fp __fp_chk:w 2 #4 }

(End of definition for __fp_add_inf_o:Nww.)
We now have two normal numbers to add, and we have to check signs and exponents more carefully before performing the addition.

\begin{verbatim}
\cs_new:Npn __fp_add_normal_o:Nww #1 \s__fp __fp_chk:w 1 #2 {
 \if_meaning:w #1#2
 \exp_after:wN __fp_add_npos_o:NnwNnw
 \else:
 \exp_after:wN __fp_sub_npos_o:NnwNnw
 \fi:
 #2
}\end{verbatim}

\textit{(End of definition for __fp_add_normal_o:Nww.)}

75.1.2 Absolute addition

In this subsection, we perform the addition of two positive normal numbers.

\begin{verbatim}
\cs_new:Npn __fp_add_npos_o:NnwNnw #1#2#3 ; \s__fp __fp_chk:w 1 #4 #5 {
 \exp_after:wN __fp_sanitize:Nw
 \exp_after:wN #1
 \int_value:w __fp_int_eval:w
 \if_int_compare:w #2 > #5 \exp_stop_f:
 #2
 \else:
 #5
 \fi:
 __fp_int_eval:w #5 - #2 ; #1 #3;
}\end{verbatim}

\textit{(End of definition for __fp_add_npos_o:NnwNnw.)}

\begin{verbatim}
\cs_new:Npn __fp_add_big_i_o:wNww #1; #2 #3; #4; {
 __fp_decimate:nNnnnn {#1}
 __fp_add_significand_o:NnnwnnnnN
}\end{verbatim}
To round properly, we must know at which digit the rounding should occur. This requires to know whether the addition produces an overall carry or not. Thus, we do the computation now and check for a carry, then go back and do the rounding. The rounding may cause a carry in very rare cases such as 0.9999... → 1.0000..., but this situation always give an exact power of 10, for which it is easy to correct the result at the end.

If there’s no carry, grab all the digits again and round. The packing function __fp_basics_pack_high:NNNNNw takes care of the case where rounding brings a carry.
__fp_add_significand_no_carry_o:wwwNN __fp_add_significand_carry_o:wwwNN

⟨ 8d ⟩; ⟨ 6d ⟩; ⟨ 2d ⟩; ⟨ rounding digit ⟩ ⟨ sign ⟩

The case where there is a carry is very similar. Rounding can even raise the first digit from 1 to 2, but we don’t care.

\cs_new:Npn __fp_add_significand_carry_o:wwwNN #1; #2; #3#4; #5#6
\{
+ 1
\exp_after:wN __fp_basics_pack_weird_high:NNNNNNNNw
\int_value:w __fp_int_eval:w 1 1 #1
\exp_after:wN __fp_basics_pack_weird_low:NNNN
\int_value:w __fp_int_eval:w 1 #2#3 +
\exp_after:wN __fp_round:NNN \exp_after:wN #6 \exp_after:wN #3 \int_value:w \c_round_digit:Nw #4 #5 ;
\exp_after:wN ;
\}

\cs_new:Npn __fp_sub_npos_o:NnwNnw __fp_sub_eq_o:Nnwnw __fp_sub_npos_ii_o:Nnwnw
\langle sign \rangle \langle exp \rangle \langle body \rangle; \s__fp __fp_chk:w 1 \langle initial sign \rangle \langle exp \rangle \langle body \rangle ;

Rounding properly in some modes requires to know what the sign of the result will be. Thus, we start by comparing the exponents and significands. If the numbers coincide, return zero. If the second number is larger, swap the numbers and call __fp_sub_npos_-i_o:Nnwnw with the opposite of \langle sign \rangle.

\cs_new:Npn __fp_sub_npos_o:NnwNnw __fp_sub_eq_o:Nnwnw __fp_sub_npos_ii_o:Nnwnw
\{
\if_case:w __fp_compare_npos:nwnw {#2} #3; {#5} #6; \exp_stop_f:
\exp_after:wN __fp_sub_eq_o:Nnwnw
\else:
\exp_after:wN __fp_sub_npos_i_o:Nnwnw
\fi:
#1 \{#2 \} #3; \{#5 \} #6;
\}

\cs_new:Npn __fp_sub_eq_o:Nnwnw __fp_sub_npos_i_o:Nnwnw __fp_sub_npos_ii_o:Nnwnw
\cs_new:Npn __fp_sub_npos_i_o:Nnwnw __fp_sub_npos_ii_o:Nnwnw
\cs_new:Npn __fp_sub_i_o:Nnwnw __fp_sub_ii_o:Nnwnw
\cs_new:Npn __fp_sub_ii_o:Nnwnw
\cs_new:Npn __fp_sub_npos_i_o:Nnwnw __fp_sub_ii_o:Nnwnw
\cs_new:Npn __fp_sub_ii_o:Nnwnw
\cs_new:Npn __fp_sub_i_o:Nnwnw
\cs_new:Npn __fp_sub_i_o:Nnwnw
__fp_sub_npos_i_o:Nw

After the computation is done, __fp_sanitize:Nw checks for overflow/underflow. It expects the ⟨final sign⟩ and the ⟨exponent⟩ (delimited by ;). Start an integer expression for the exponent, which starts with the exponent of the largest number, and may be decreased if the two numbers are very close. If the two numbers have the same exponent, call the near auxiliary. Otherwise, decimate \(y \), then call the far auxiliary to evaluate the difference between the two significands. Note that we decimate by 1 less than one could expect.

__fp_sub_back_near_o:nnnnnnnnN
__fp_sub_back_near_pack:NNNNNNw
__fp_sub_back_near_after:wNNNNw

__fp_sub_npos_i_o:Nw

__fp_sub_back_near_o:nnnnnnnnN \{ \langle Y_1 \rangle \} \{ \langle Y_2 \rangle \} \{ \langle Y_3 \rangle \} \{ \langle Y_4 \rangle \} \{ \langle X_1 \rangle \} \{ \langle X_2 \rangle \} \{ \langle X_3 \rangle \} \{ \langle X_4 \rangle \} \langle final sign \rangle

In this case, the subtraction is exact, so we discard the ⟨final sign⟩ #9. The very large shifts of \(10^9 \) and \(1.1 \cdot 10^9 \) are unnecessary here, but allow the auxiliaries to be reused later. Each integer expression produces a 10 digit result. If the resulting 16 digits start with a 0, then we need to shift the group, padding with trailing zeros.
This function is called with $\langle Z_1 \rangle \leq 999$. Act with \number to trim leading zeros from $\langle Z_1 \rangle \langle Z_2 \rangle$ (we don’t do all four blocks at once, since non-zero blocks would then overflow \TeX’s integers). If the first two blocks are zero, the auxiliary receives an empty #1 and trims #2#30 from leading zeros, yielding a total shift between 7 and 16 to the exponent. Otherwise we get the shift from #1 alone, yielding a result between 1 and 6. Once the exponent is taken care of, trim leading zeros from #1#2#3 (when #1 is empty, the space before #2#3 is ignored), get four blocks of 4 digits and finally clean up. Trailing zeros are added so that digits can be grabbed safely.
The easiest case is when $x - y$ is extremely close to a power of 10, namely the first digit of x is 1, and all others vanish when subtracting y. Then the (rounding) \#3 and the (final sign) \#4 control whether we get 1 or 0. 9999999999999999. In the usual round-to-nearest mode, we get 1 whenever the (rounding) digit is less than or equal to 5 (remember that the (rounding) digit is only equal to 5 if there was no further non-zero digit).

In the present case, x and y have different exponents, but y is large enough that $x - y$ has a smaller exponent than x. Decrement the exponent (with -1). Then proceed in a way similar to the near auxiliaries seen earlier, but multiplying x by 10 (#30 and #40 below), and with the added quirk that the (rounding) digit has to be taken into account. Namely, we may have to decrease the result by one unit if __fp_round_neg:NNN returns 1. This function expects the (final sign) \#6, the last digit of 1100000000+\#40-\#2, and the (rounding) digit. Instead of redoing the computation for the second argument, we note that __fp_round_neg:NNN only cares about its parity, which is identical to that of the last digit of #2.
The case where \(x - y \) and \(x \) have the same exponent is a bit more tricky, mostly because it cannot reuse the same auxiliaries. Shift the \(y \) significand by adding a leading 0. Then the logic is similar to the \(\text{not_far} \) functions above. Rounding is a bit more complicated: we have two (\textit{rounding}) digits \#3 and \#6 (from the decimation, and from the new shift) to take into account, and getting the parity of the main result requires a computation. The first \(\text{int_value:w} \) triggers the second one because the number is unfinished; we can thus not use 0 in place of 2 there.

\[
\text{__fp_sub_back_very_far_o:wwwwNN} \{ \text{__fp_pack_eight:wNNNNNNN} \text{__fp_sub_back_very_far_ii_o:nnNww} \}
\]

(\textit{End of definition for __fp_sub_back_very_far_o:wwwwNN} and __fp_sub_back_very_far_ii_o:mmNww.)

75.2 Multiplication

75.2.1 Signs, and special numbers

We go through an auxiliary, which is common with __fp_/_o:ww. The first argument is the operation, used for the invalid operation exception. The second is inserted in a formula to dispatch cases slightly differently between multiplication and division. The
third is the operation for normal floating points. The fourth is there for extra cases needed in _fp_/_o:ww.

\cs_new:cpn _fp__o:ww
__fp_mul_cases_o:NnNnww *
\{ - 2 + \}
_fp_mul_npos_o:Nww \}

(End of definition for _fp__o:ww.)

_fp_mul_cases_o:nNnnww
Split into 10 cases (12 for division). If both numbers are normal, go to case 0 (same sign) or case 1 (opposite signs): in both cases, call _fp_mul_npos_o:Nww to do the work. If the first operand is nan, go to case 2, in which the second operand is discarded; if the second operand is nan, go to case 3, in which the first operand is discarded (note the weird interaction with the final test on signs). Then we separate the case where the first number is normal and the second is zero: this goes to cases 4 and 5 for multiplication, 10 and 11 for division. Otherwise, we do a computation which dispatches the products 0\times0 = 0, 1\times0 = 0 to case 4 or 5 depending on the combined sign, the products 0\times\infty and \infty\times0 to case 6 or 7 (invalid operation), and the products 1\times\infty = \infty\times1 = \infty\times\infty = \infty to cases 8 and 9. Note that the code for these two cases (which return ±\infty) is inserted as argument #4, because it differs in the case of divisions.

\cs_new:Npn _fp_mul_cases_o:nNnnww
\#1\#2\#3\#4 \s__fp __fp_chk:w \#5\#6\#7; \s__fp __fp_chk:w \#8\#9
\{ \if_case:w __fp_int_eval:w
__fp_int_compare:w \#5 \#8 = 11 ~
1
\else:
__fp_int_compare:w \#5 \#8 = 11 ~
3
\else:
__fp_int_compare:w \#5 \#8 = 10 ~
2
\else:
__fp_int_compare:w \#5 \#8 = 10 ~
9 \#2 - 2
\else:
__fp_int_compare:w \#5 \#2 \#8) / 2 * 2 + 7
\fi:
\fi:
\fi:
\fi:
\if_meaning:w \#6 \#9 - 1 \fi:
__fp_int_eval_end:
_fp_case_use:nw \#3 \#0)
\or: _fp_case_use:nw \#3 \#2)
\or: _fp_case_return_i_o:ww
\or: _fp_case_return_ii_o:ww
\or: _fp_case_return_o:Nww \c_zero_fp
\or: _fp_case_return_o:Nww \c_minus_zero_fp

1096
75.2.2 Absolute multiplication

In this subsection, we perform the multiplication of two positive normal numbers.

_fp_mul_npos_o:Nww _fp_mul_npos_o:Nww _fp_chk:w 1 (sign) \{_fp_int_eval:w #4 \} \{_fp_round_digit:Nw\} \{_fp_sanitize:Nw\} _fp_mul_significand_o:nnnnNnnnn\n
This is also used in l3fp-convert.

_fp_mul_significand_o:nnnnNnnnn _fp_mul_significand_drop:NNNNNw _fp_mul_significand_keep:NNNNNw

Note the three semicolons at the end of the definition. One is for the last _fp_mul_significand_drop:NNNNNw; one is for _fp_round_digit:Nw later on; and one, preceded by \exp_after:wN, which is correctly expanded (within an _fp_int_eval:w), is used by _fp_basics_pack_low:NNNNNw.

The product of two 16 digit integers has 31 or 32 digits, but it is impossible to know which one before computing. The place where we round depends on that number of digits, and may depend on all digits until the last in some rare cases. The approach is thus to compute the 5 first blocks of 4 digits (the first one is between 100 and 9999 inclusive), and a compact version of the remaining 3 blocks. Afterwards, the number of digits is known, and we can do the rounding within yet another set of _fp_int_eval:w.
In this branch, \(\langle \text{digit 1} \rangle \) is zero. Our result is thus \(\langle \text{digits 2–17} \rangle \), plus some rounding which depends on the digits 17, 18, and whether all subsequent digits are zero or not. The 8 digits 1#3 are followed, after expansion of the \texttt{small} _\texttt{pack} auxiliary, by the next digit, to form a 9 digit number.

\begin{verbatim}
\cs_new:Npn _fp_mul_significand_small_f:NNwwwN #1 #2#3; #4#5; #6; + #7 {
 - 1 \exp_after:wN _fp_basics_pack_high:NNNNNw
 \int_value:w _fp_int_eval:w 1#3#4
 \exp_after:wN _fp_basics_pack_low:NNNNNw
 \int_value:w _fp_int_eval:w 1#5#6#7
 + \exp_after:wN _fp_round:NNN \exp_after:wN #1 \exp_after:wN #7 \int_value:w _fp_round_digit:Nw
}\end{verbatim}

\begin{itemize}
\item \texttt{_fp_mul_significand_large_f:NNwNNNN}
\end{itemize}

\textbf{75.3 Division}

\subsection*{75.3.1 Signs, and special numbers}

Time is now ripe to tackle the hardest of the four elementary operations: division.

\texttt{_fp_/o:ww}

Filtering special floating point is very similar to what we did for multiplications, with a few variations. Invalid operation exceptions display \(/ \) rather than \(* \). In the formula for dispatch, we replace \(-2 + \) by \(- \). The case of normal numbers is treated using \texttt{_fp_-_div_npos_o:Nww} rather than \texttt{_fp_mul_npos_o:Nww}. There are two additional cases: if the first operand is normal and the second is a zero, then the division by zero exception is raised: cases 10 and 11 of the \texttt{_fp_cases_o:NnNnww} construction in \texttt{_fp_mul_cases_o:NnNnww} are provided as the fourth argument here.

\begin{verbatim}
\cs_new:cpn { _fp_/o:ww } {
 _fp_mul_cases_o:NnNnww /
 fp/o:ww
 _fp_div_npos_o:Nww
 _or:
 _fp_case_use:nw
 { _fp_division_by_zero_o:NNww \c_inf_fp / }
 _or:
 _fp_case_use:nw
 { _fp_division_by_zero_o:NNww \c_minus_inf_fp / }
}\end{verbatim}
We want to compute \(A/Z \). As for multiplication, \(__fp_sanitize:Nw \) checks for overflow or underflow; we provide it with the (final sign), and an integer expression in which we compute the exponent. We set up the arguments of \(__fp_div_significand_i_o:wnnw \), namely an integer \(y \) obtained by adding 1 to the first 5 digits of \(Z \) (explanation given soon below), then the four \(\{ A_i \} \), then the four \(\{ Z_i \} \), a semi-colon, and the (final sign), used for rounding at the end.

\[
\begin{align*}
\text{\texttt{__fp_div_npos_o:Nww}} \ & \text{\texttt{(final sign)}} \ \texttt{s__fp__fp_chk:w1 \{ (sign_A) \}} \ \texttt{\{ (exp A) \}} \\
\text{\texttt{\{ (A_1) \} \{ (A_2) \} \{ (A_3) \} \{ (A_4) \}}} \ & \text{\texttt{\{ (sign_Z) \}} \ \texttt{\{ (exp Z) \}} \\
\text{\texttt{\{ (Z_1) \} \{ (Z_2) \} \{ (Z_3) \} \{ (Z_4) \}} \ & \text{\texttt{; \texttt{s__fp__fp_chk:w1 \{ (sign_Z) \}} \ \texttt{\{ (exp Z) \}}}}
\end{align*}
\]

We are given two numbers, \(A = 0.A_1A_2A_3A_4 \) and \(Z = 0.Z_1Z_2Z_3Z_4 \), in blocks of 4 digits, and we know that the first digits of \(A \) and of \(Z \) are non-zero. To compute \(A/Z \), we proceed as follows.

- Find an integer \(Q_A \approx 10^4 A/Z \).
- Replace \(A \) by \(B = 10^4 A - Q_A Z \).
- Find an integer \(Q_B \approx 10^4 B/Z \).
- Replace \(B \) by \(C = 10^4 B - Q_B Z \).
- Find an integer \(Q_C \approx 10^4 C/Z \).
- Replace \(C \) by \(D = 10^4 C - Q_C Z \).
- Find an integer \(Q_D \approx 10^4 D/Z \).
- Consider \(E = 10^4 D - Q_D Z \), and ensure correct rounding.

75.3.2 Work plan

In this subsection, we explain how to avoid overflowing \(\text{\LaTeX}'s integers when performing the division of two positive normal numbers.

We are given two numbers, \(A = 0.A_1A_2A_3A_4 \) and \(Z = 0.Z_1Z_2Z_3Z_4 \), in blocks of 4 digits, and we know that the first digits of \(A \) and of \(Z \) are non-zero. To compute \(A/Z \), we proceed as follows.

- Find an integer \(Q_A \approx 10^4 A/Z \).
- Replace \(A \) by \(B = 10^4 A - Q_A Z \).
- Find an integer \(Q_B \approx 10^4 B/Z \).
- Replace \(B \) by \(C = 10^4 B - Q_B Z \).
- Find an integer \(Q_C \approx 10^4 C/Z \).
- Replace \(C \) by \(D = 10^4 C - Q_C Z \).
- Find an integer \(Q_D \approx 10^4 D/Z \).
- Consider \(E = 10^4 D - Q_D Z \), and ensure correct rounding.
The result is then

\[Q = 10^{-4}Q_A + 10^{-8}Q_B + 10^{-12}Q_C + 10^{-16}Q_D + \text{rounding}. \]

Since the \(Q_i \) are integers, \(B, C, D, \) and \(E \) are all exact multiples of \(10^{-16} \), in other words, computing with 16 digits after the decimal separator yields exact results. The problem is the risk of overflow: in general, \(B, C, D, \) and \(E \) may be greater than 1.

Unfortunately, things are not as easy as they seem. In particular, we want all intermediate steps to be positive, since negative results would require extra calculations at the end. This requires that \(Q_A \leq 10^4A/Z \) etc. A reasonable attempt would be to define \(Q_A \) as

\[
\text{\texttt{\int_eval:n}} \left\{ \frac{A_1A_2}{Z_1+1} - 1 \right\} \leq 10^4 \frac{A}{Z}
\]

Subtracting 1 at the end takes care of the fact that \(\varepsilon\texttt{-TEX}'s \texttt{_fp_int_eval:w} \) rounds divisions instead of truncating (really, \(1/2 \) would be sufficient, but we work with integers). We add 1 to \(Z_1 \) because \(Z_1 \leq 10^4Z < Z_1 + 1 \) and we need \(Q_A \) to be an underestimate. However, we are now underestimating \(Q_A \) too much: it can be wrong by up to 100, for instance when \(Z = 0.1 \) and \(A \approx 1 \). Then \(B \) could take values up to 10 (maybe more), and a few steps down the line, we would run into arithmetic overflow, since \(\text{\texttt{TEX}} \) can only handle integers less than roughly \(2 \cdot 10^9 \).

A better formula is to take

\[
Q_A = \text{\texttt{\int_eval:n}} \left\{ \frac{10 \cdot A_1A_2}{[10^{-3} \cdot Z_1Z_2] + 1} - 1 \right\}.
\]

This is always less than \(10^9A/(10^5Z) \), as we wanted. In words, we take the 5 first digits of \(Z \) into account, and the 8 first digits of \(A \), using 0 as a 9-th digit rather than the true digit for efficiency reasons. We shall prove that using this formula to define all the \(Q_i \) avoids any overflow. For convenience, let us denote

\[y = \lfloor 10^{-3} \cdot Z_1Z_2 \rfloor + 1, \]

so that, taking into account the fact that \(\varepsilon\texttt{-TEX} \) rounds ties away from zero,

\[
Q_A = \left\lfloor \frac{A_1A_20}{y} - \frac{1}{2} \right\rfloor > \frac{A_1A_20}{y} - \frac{3}{2}.
\]

Note that \(10^4 < y \leq 10^5 \), and \(999 \leq Q_A \leq 99989 \). Also note that this formula does not cause an overflow as long as \(A < (2^{31} - 1)/10^9 \approx 2.147 \cdots \), since the numerator involves an integer slightly smaller than \(10^9A \).

Let us bound \(B \):

\[
10^3B = A_1A_20 + 10 \cdot 0. A_3A_4 - 10 \cdot Z_1Z_2Z_3Z_4 \cdot Q_A
\]

\[
< A_1A_20 \cdot \left(1 - 10 \cdot \frac{Z_1Z_2Z_3Z_4}{y} \right) + \frac{3}{2} \cdot 10 \cdot Z_1Z_2Z_3Z_4 + 10
\]

\[
\leq A_1A_20 \cdot \left(y - 10 \cdot \frac{Z_1Z_2Z_3Z_4}{y} \right) + \frac{3}{2} y + 10
\]

\[
\leq \frac{A_1A_20 \cdot 1}{y} + \frac{3}{2} y + 10 \leq \frac{10^9A}{y} + 1.6 \cdot y.
\]
At the last step, we hide 10 into the second term for later convenience. The same reasoning yields

$$10^5B < 10^9A/y + 1.6y,$$
$$10^5C < 10^9B/y + 1.6y,$$
$$10^5D < 10^9C/y + 1.6y,$$
$$10^5E < 10^9D/y + 1.6y.$$

The goal is now to prove that none of B, C, D, and E can go beyond $(2^{31} - 1)/10^9 = 2.147\ldots$.

Combining the various inequalities together with $A < 1$, we get

$$10^5B < 10^9/y + 1.6y,$$
$$10^5C < 10^{13}/y^2 + 1.6(y + 10^4),$$
$$10^5D < 10^{17}/y^3 + 1.6(y + 10^4 + 10^8/y),$$
$$10^5E < 10^{21}/y^4 + 1.6(y + 10^4 + 10^8/y + 10^{12}/y^2).$$

All of those bounds are convex functions of y (since every power of y involved is convex, and the coefficients are positive), and thus maximal at one of the end-points of the allowed range $10^4 < y \leq 10^5$. Thus,

$$10^5B < \max(1.16 \cdot 10^5, 1.7 \cdot 10^5),$$
$$10^5C < \max(1.32 \cdot 10^5, 1.77 \cdot 10^5),$$
$$10^5D < \max(1.48 \cdot 10^5, 1.777 \cdot 10^5),$$
$$10^5E < \max(1.64 \cdot 10^5, 1.7777 \cdot 10^5).$$

All of those bounds are less than $2.147 \cdot 10^5$, and we are thus within TeX’s bounds in all cases!

We later need to have a bound on the Q_i. Their definitions imply that $Q_A < 10^9A/y - 1/2 < 10^5A$ and similarly for the other Q_i. Thus, all of them are less than 177770.

The last step is to ensure correct rounding. We have

$$A/Z = \sum_{i=1}^4 (10^{-4}Q_i) + 10^{-16}E/Z$$

exactly. Furthermore, we know that the result is in $[0.1, 10)$, hence will be rounded to a multiple of 10^{-16} or of 10^{-15}, so we only need to know the integer part of E/Z, and a “rounding” digit encoding the rest. Equivalently, we need to find the integer part of $2E/Z$, and determine whether it was an exact integer or not (this serves to detect ties).

Since

$$\frac{2E}{Z} = 2 \cdot \frac{10^5E}{10^9Z} \leq 2 \cdot \frac{10^5E}{10^9} < 36,$$

1102
this integer part is between 0 and 35 inclusive. We let ε-TEX round

\[P = \text{int_eval:n} \left\{ 2 \cdot E_1 E_2 \over Z_1 Z_2 \right\}, \]

which differs from \(2E/Z \) by at most

\[\frac{1}{2} + 2 \left| \frac{E}{Z} - \frac{E}{10^{-8}Z_1 Z_2} \right| + 2 \left| \frac{10^8 E - E_1 E_2}{Z_1 Z_2} \right| < 1, \]

(1/2 comes from ε-TEX’s rounding) because each absolute value is less than \(10^{-7} \). Thus \(P \) is either the correct integer part, or is off by \(P \). If it is zero, then \(E/Z = P \). If it is negative, then \(E/Z \in (P-1)/2, P/2). \) If it is positive, then \(E/Z \in (P/2, (P-1)/2) \). In each case, we know how to round to an integer, depending on the parity of \(P \), and the rounding mode.

75.3.3 Implementing the significand division

\[\text{__fp_div_significand_i_o:wnnw} \]

Compute \(10^6 + QA \) (a 7 digit number thanks to the shift), unbrace \(A_1 \) and \(A_2 \), and prepare the \(\langle \text{continuation} \rangle \) arguments for 4 consecutive calls to \(\text{__fp_div_significand_calc:wnnnnnnn} \). Each of these calls needs \(y \) (#1), and it turns out that we need post-expansion there, hence the \text{\texttt{int_value:w}}. Here, #4 is six brace groups, which give the six first n-type arguments of the calc function.

```
\text{cs\_new\_Npn} \begin{align*}
\text{\_\_fp\_div\_significand\_i\_o:wnnn} \; & \langle y \rangle \; \langle (A_1) \rangle \; \langle (A_2) \rangle \; \langle (A_3) \rangle \; \langle (A_4) \rangle \\
\{ \langle (Z_1) \rangle \; \langle (Z_2) \rangle \; \langle (Z_3) \rangle \; \langle (Z_4) \rangle \}; \langle \text{\texttt{sign}} \rangle \\
\end{align*}
```

(End of definition for \(\text{__fp_div_significand_i_o:wnnn} \))

\[\text{__fp_div_significand_calc:wnnnnnnn} \]

\[10^6 + QA \] \(\langle A_1 \rangle \; \langle A_2 \rangle \; \langle A_3 \rangle \; \langle A_4 \rangle \)

\[\langle (Z_1) \rangle \; \langle (Z_2) \rangle \; \langle (Z_3) \rangle \; \langle (Z_4) \rangle \; \langle \text{\texttt{continuation}} \rangle \]

\begin{align*}
\{ & \langle \text{\texttt{continuation}} \rangle \; \langle B_1 \rangle \; \langle B_2 \rangle \; \langle B_3 \rangle \; \langle B_4 \rangle \; \langle Z_1 \rangle \; \langle Z_2 \rangle \; \langle Z_3 \rangle \; \langle Z_4 \rangle \\
& \langle (Z_4) \rangle \}
\end{align*}

where \(B = 10^4A - QA \cdot Z \). This function is also used to compute \(C, D, E \) (with the input shifted accordingly), and is used in l3fp-expo.

We know that \(0 < QA < 1.8 \cdot 10^5 \), so the product of \(QA \) with each \(Z_i \) is within TeX’s bounds. However, it is a little bit too large for our purposes: we would not be able to
use the usual trick of adding a large power of 10 to ensure that the number of digits is fixed.

The bound on Q_A, implies that $10^6 + Q_A$ starts with the digit 1, followed by 0 or 1. We test, and call different auxiliaries for the two cases. An earlier implementation did the tests within the computation, but since we added a \langlecontinuation\rangle, this is not possible because the macro has 9 parameters.

The result we want is then (the overall power of 10 is arbitrary):

$$10^{-4}(\#2 - \#1 \cdot \#5 - 10 \cdot (i) \cdot #5#6) + 10^{-8}(\#3 - \#1 \cdot \#6 - 10 \cdot (i) \cdot #7) + 10^{-12}(\#4 - \#1 \cdot \#7 - 10 \cdot (i) \cdot #8) + 10^{-16}(-\#1 \cdot #8),$$

where (i) stands for the 10^5 digit of Q_A, which is 0 or 1, and #1, #2, etc. are the parameters of either auxiliary. The factors of 10 come from the fact that $Q_A = 10 \cdot 10^4 \cdot (i) + #1$. As usual, to combine all the terms, we need to choose some shifts which must ensure that the number of digits of the second, third, and fourth terms are each fixed. Here, the positive contributions are at most 10^8 and the negative contributions can go up to 10^9. Indeed, for the auxiliary with $(i) = 1$, #1 is at most 80000, leading to contributions of at worse $-8 \cdot 10^4$, while the other negative term is very small $< 10^6$ (except in the first expression, where we don’t care about the number of digits); for the auxiliary with $(i) = 0$, #1 can go up to 99999, but there is no other negative term. Hence, a good choice is $2 \cdot 10^9$, which produces totals in the range $[10^9, 2 \cdot 10^9]$. We are flirting with $\text{T}_{\text{e}}\text{X}$’s limits once more.
\[
\exp_after:wN \int_value:w __fp_int_eval:w \c__fp_Bigg_leading_shift_int + \#2 - \#1 * \#5 \\
\exp_after:wN __fp_pack_Bigg:NNNNNNw \int_value:w __fp_int_eval:w \c__fp_Bigg_middle_shift_int + \#3 - \#1 * \#6 \\
\exp_after:wN __fp_pack_Bigg:NNNNNNw \int_value:w __fp_int_eval:w \c__fp_Bigg_middle_shift_int + \#4 - \#1 * \#7 \\
\exp_after:wN __fp_pack_Bigg:NNNNNNw \int_value:w __fp_int_eval:w \c__fp_Bigg_trailing_shift_int - \#1 * \#8 ; \\
{\#5}{\#6}{\#7}{\#8}
\]

(End of definition for __fp_div_significand_calc:wnnnnnn, __fp_div_significand_calc_i:wnnnnnn, and __fp_div_significand_calc_ii:wnnnnnn.)

\[
\exp_after:wN __fp_div_significand_ii:wn \langle y \rangle ; \langle B_1 \rangle ; \langle B_2 \rangle ; \langle B_4 \rangle ; \langle Z_1 \rangle \\
\langle Z_2 \rangle ; \langle Z_3 \rangle ; \langle Z_4 \rangle \{ \text{sign} \}
\]

Compute \(Q_B \) by evaluating \(B_1 B_2 \langle y \rangle - 1 \). The result is output to the left, in an __fp_int_eval:w which we start now. Once that is evaluated (and the other \(Q_i \) also, since later expansions are triggered by this one), a packing auxiliary takes care of placing the digits of \(Q_B \) in an appropriate way for the final addition to obtain \(Q \). This auxiliary is also used to compute \(Q_C \) and \(Q_D \) with the inputs \(C \) and \(D \) instead of \(B \).

\[
\exp_after:wN __fp_div_significand_iii:wnnnnnn \langle y \rangle ; \langle E_1 \rangle ; \langle E_2 \rangle ; \langle E_4 \rangle \\
\langle Z_2 \rangle ; \langle Z_3 \rangle ; \langle Z_4 \rangle \langle \text{sign} \rangle
\]

We compute \(P = 2E/Z \) by rounding \(2E_1 E_2/Z_1 Z_2 \). Note the first 0, which multiplies \(Q_D \) by 10: we later add (roughly) \(5 \cdot P \), which amounts to adding \(P/2 = E/Z \) to \(Q_D \), the appropriate correction from a hypothetical \(Q_E \).

\[
\exp_after:wN __fp_div_significand_iv:wnnnnnnn \langle P \rangle ; \langle E_1 \rangle ; \langle E_2 \rangle ; \langle E_4 \rangle \\
\langle Z_2 \rangle ; \langle Z_3 \rangle ; \langle Z_4 \rangle \langle \text{sign} \rangle
\]

(End of definition for __fp_div_significand_ii:wn.)
This adds to the current expression \((10^7 + 10 \cdot Q_D)\) a contribution of \(5 \cdot P + \text{sign}(T)\) with \(T = 2E - PZ\). This amounts to adding \(P/2\) to \(Q_D\), with an extra \((\text{rounding})\) digit. This \((\text{rounding})\) digit is 0 or 5 if \(T\) does not contribute, i.e., if \(0 = T = 2E - PZ\), in other words if \(10^{16} A/Z\) is an integer or half-integer. Otherwise it is in the appropriate range, \([1, 4]\) or \([6, 9]\). This is precise enough for rounding purposes (in any mode).

It seems an overkill to compute \(T\) exactly as I do here, but I see no faster way right now.

Once more, we need to be careful and show that the calculation \#1 \cdot \#6\#7 below does not cause an overflow: naively, \(P\) can be up to 35, and \#6\#7 up to \(10^8\), but both cannot happen simultaneously. To show that things are fine, we split in two (non-disjoint) cases.

- For \(P < 10\), the product obeys \(P \cdot \#6\#7 < 10^8 \cdot P < 10^9\).
- For large \(P \geq 3\), the rounding error on \(P\), which is at most 1, is less than a factor of 2, hence \(P \leq 4E/Z\). Also, \#6\#7 \leq 10^8 \cdot Z\), hence \(P \cdot \#6\#7 \leq 4E \cdot 10^8 < 10^9\).

Both inequalities could be made tighter if needed.

Note however that \(P \cdot \#8\#9\) may overflow, since the two factors are now independent, and the result may reach \(3.5 \cdot 10^9\). Thus we compute the two lower levels separately. The rest is standard, except that we use + as a separator (ending integer expressions explicitly). \(T\) is negative if the first character is -, it is positive if the first character is neither 0 nor -. It is also positive if the first character is 0 and second argument of __fp_div_significand_vi:Nw\, a sum of several terms, is also zero. Otherwise, there was an exact agreement: \(T = 0\).

\begin{verbatim}
\cs_new:Npn __fp_div_significand_iv:wwnnnnnnn #1; #2;#3#4#5 #6#7#8#9
\{ + 5 * #1 \exp_after:wN __fp_div_significand_vi:Nw
\int_value:w __fp_int_eval:w -50 + 2*#2#3 - #1*#6#7 + \exp_after:wN __fp_div_significand_v:NN
\int_value:w __fp_int_eval:w 499950 + 2*#4 - #1*#8 + \exp_after:wN __fp_div_significand_v:NN
\int_value:w __fp_int_eval:w 500000 + 2*#5 - #1*#9 ;
\}
\cs_new:Npn __fp_div_significand_v:NN #1#2 { #1#2 __fp_int_eval_end: + }
\cs_new:Npn __fp_div_significand_vi:Nw #1#2 (\#1#2 __fp_int_eval_end: +)
\cs_new:Npn __fp_div_significand_v:NNw #1#2 __fp_int_eval_end: +}
\{ if_meaning:w 0 \#1
__fp_int_compare:w \#2 > 0 + 1 \fi:
\else:
\if_meaning:w \#1 - \else: + \fi: 1
\fi: 1;
\}
__fp_div_significand_pack:NN
\end{verbatim}

At this stage, we are in the following situation: \TeX{} is in the process of expanding several integer expressions, thus functions at the bottom expand before those above.
Here, \(\varepsilon = \text{sign}(T) \) is 0 in case \(2E = PZ \), 1 in case \(2E > PZ \), which means that \(P \) was the correct value, but not with an exact quotient, and \(-1\) if \(2E < PZ \), i.e., \(P \) was an overestimate. The packing function we define now does nothing special: it removes the \(10^6 \) and carries two digits (for the \(10^5 \)'s and the \(10^4 \)'s).

\[
\text{_fp_div_significand_test_o:w} 1\ 0\ \langle 5d \rangle;\ \langle 4d \rangle;\ \langle 4d \rangle;\ \langle 5d \rangle;\ \langle \text{sign} \rangle
\]

We know that the final result cannot reach \(10 \), hence \(1\#1\#2\), together with contributions from the level below, cannot reach \(2 \cdot 10^9 \). For rounding, we build the \(\langle \text{rounding digit} \rangle \) from the last two of our 18 digits.
75.4 Square root

\[\sqrt{\text{Zeros are unchanged: } \sqrt{-0} = -0 \text{ and } \sqrt{+0} = +0. \text{ Negative numbers (other than } -0 \text{) have no real square root. Positive infinity, and } \text{nan}, \text{ are unchanged. Finally, for normal positive numbers, there is some work to do.}} \]

\[\text{Prepare } \text{\textbackslash _fp_sanitize: NW to receive the final sign 0 (the result is always positive) and the exponent, equal to half of the exponent } #1 \text{ of the argument. If the exponent } #1 \text{ is even, find a first approximation of the square root of the significand } 10^{#1}a_1 + a_2 = 10^{#1}\#2\#3 + \#4\#5 \text{ through Newton's method, starting at } x = 57234133 \approx 10^{7.75}. \text{ Otherwise, first shift the significand of the argument by one digit, getting } a'_1 \in [10^6, 10^7) \text{ instead of } [10^7, 10^8), \text{ then use Newton's method starting at } 17782794 \approx 10^{7.25}.} \]
Newton’s method maps $x \mapsto [(x + [10^8a_1/x])/2]$ in each iteration, where $[b/c]$ denotes ε-TpX’s division. This division rounds the real number b/c to the closest integer, rounding ties away from zero, hence when c is even, $b/c - 1/2 + 1/c \leq [b/c] \leq b/c + 1/2$ and when c is odd, $b/c - 1/2 + 1/(2c) \leq [b/c] \leq b/c + 1/2 - 1/(2c)$. For all c, $b/c - 1/2 + 1/(2c) \leq [b/c] \leq b/c + 1/2$.

Let us prove that the method converges when implemented with ε-TpX integer division, for any $10^6 \leq a_1 < 10^8$ and starting value $10^6 < x < 10^8$. Using the inequalities above and the arithmetic–geometric inequality $(x+t)/2 \geq \sqrt{xt}$ for $t = 10^8 a_1/x$, we find

$$x' = \left[\frac{x + [10^8a_1/x]}{2}\right] \geq \frac{x + 10^8a_1/x - 1/2 + 1/(2x)}{2} \geq \sqrt{10^8a_1} - \frac{1}{4} + \frac{1}{4x}.$$

After any step of iteration, we thus have $\delta = x - \sqrt{10^8a_1} \geq -0.25 + 0.25 \cdot 10^{-8}$. The new difference $\delta' = x' - \sqrt{10^8a_1}$ after one step is bounded above as

$$x' - \sqrt{10^8a_1} \leq \frac{x + 10^8a_1/x + 1/2}{2} - \frac{\delta}{2} \sqrt{10^8a_1} + \frac{\delta}{4} + \frac{3}{4}.$$

For $\delta > 3/2$, this last expression is $\leq \delta/2 + 3/4 < \delta$, hence δ decreases at each step: since all a_1 are integers, δ must reach a value $-1/4 < \delta \leq 3/2$. In this range of values, we get $\delta' \leq \frac{3}{4} \sqrt{10^8a_1} + \frac{3}{4} \leq 0.75 + 1.125 \cdot 10^{-7}$. We deduce that the difference $\delta = x - \sqrt{10^8a_1}$ eventually reaches a value in the interval $[-0.25 + 0.25 \cdot 10^{-8}, 0.75 + 11.25 \cdot 10^{-8}]$, whose width is $1 + 11 \cdot 10^{-8}$. The corresponding interval for x may contain two integers, hence x might oscillate between those two values.

However, the fact that $x \mapsto x - 1$ and $x - 1 \mapsto x$ puts stronger constraints, which are not compatible: the first implies $x + [10^8a_1/x] \leq 2x - 2$ hence $10^8a_1/x \leq x - 3/2$, while the second implies $x - 1 + [10^8a_1/(x - 1)] \geq 2x - 1$ hence $10^8a_1/(x - 1) \geq x - 1/2$. Combining the two inequalities yields $x^2 - 3x/2 \geq 10^8a_1 \geq x - 3x/2 + 1/2$, which cannot hold. Therefore, the iteration always converges to a single integer x. To stop the iteration when two consecutive results are equal, the function _fp_sqrt_Neon_o:wnN receives the newly computed result as \#1, the previous result as \#2, and a_1 as \#3. Note that ε-TpX combines the computation of a multiplication and a following division, thus avoiding overflow in \#3 * 100000000 / \#1. In any case, the result is within $[10^7, 10^8]$.

1109
This receives a continuation function \#1, then five blocks of 4 digits for \texttt{y}, then two 8-digit blocks and a single digit for \texttt{a}. A common estimate of \(\sqrt{a} - y = (a - y^2) / (\sqrt{a} + y)\), which leads to alternating overestimates and underestimates. We tweak this, to only work with underestimates (no need then to worry about signs in the computation). Each step finds the largest integer \(j \leq 6\) such that \(10^{10j}(a - y^2) < 2 \cdot 10^8\), then computes the integer (with \(\varepsilon\)-\texttt{TeX}'s rounding division)

\[
10^{10j}z = \left[\left(10^{10j}(a - y^2)\right) / 257\right] \cdot 0.5 \cdot 10^8 / |10^8y + 1|.
\]

The choice of \(j\) ensures that \(10^{10j}z < 2 \cdot 10^8 \cdot 0.5 \cdot 10^8 / 10^7 = 10^9\), thus \(10^9 + 10^{10j}z\) has exactly 10 digits, does not overflow \(\varepsilon\)-\texttt{TeX}'s integer range, and starts with 1. Incidentally, since all \(a - y^2 < 3.2 \cdot 10^8\), we know that \(j \geq 3\).

Let us show that \(z\) is an underestimate of \(\sqrt{a} - y\). On the one hand, \(\sqrt{a} - y \leq 16 \cdot 10^{-8}\) because this holds for the initial \(y\) and values of \(y\) can only increase. On the other hand, the choice of \(j\) implies that \(\sqrt{a} - y \leq 5(\sqrt{a} + y)(\sqrt{a} - y) = 5(a - y^2) < 10^9 - 10^{10j}\). For \(j = 3\),
the first bound is better, while for larger \(j \), the second bound is better. For all \(j \in [3, 6] \), we find \(\sqrt{a} - y < 16 \cdot 10^{-2j} \). From this, we deduce that

\[
10^{4j}(\sqrt{a} - y) = \frac{10^{4j} (a - y^2 - (\sqrt{a} - y)^2)}{2y} \geq \frac{10^{4j} (a - y^2) - 257}{2 \cdot 10^{-8}[10^9y + 1]} + \frac{1}{2}
\]

where we have replaced the bound \(10^{4j}(16 \cdot 10^{-2j}) = 256 \) by \(257 \) and extracted the corresponding term \(1/(2 \cdot 10^{-8}[10^9y + 1]) \geq 1/2 \). Given that \(\varepsilon \)-TpX’s integer division obeys \(\lfloor b/c \rfloor \leq b/c + 1/2 \), we deduce that \(10^{4j}z \leq 10^{4j}(\sqrt{a} - y) \), hence \(y + z \leq \sqrt{a} \) is an underestimate of \(\sqrt{a} \), as claimed. One implementation detail: because the computation involves \(-#4*#4 - 2*#3*#5 - 2*#2*#6\) which may be as low as \(-5 \cdot 10^8\), we need to use the pack_big functions, and the big shifts.

```
\cs_new:Npn \__fp_sqrt_auxii_o:Nnnnnnnn #1 #2#3#4#5#6 #7#8#9
\int_value:w \__fp_int_eval:w \c__fp_big_leading_shift_int
+ #7 - #2 * #2
\exp_after:wN \__fp_pack_big:NNNNNw
\int_value:w \__fp_int_eval:w \c__fp_big_middle_shift_int
- 2 * #2 * #3
\exp_after:wN \__fp_pack_big:NNNNNw
\int_value:w \__fp_int_eval:w \c__fp_big_middle_shift_int
- #3 * #3 - 2 * #2 * #4
\exp_after:wN \__fp_pack_big:NNNNNw
\int_value:w \__fp_int_eval:w \c__fp_big_middle_shift_int
+ #4 - #2 * #5
\exp_after:wN \__fp_pack_big:NNNNNw
\int_value:w \__fp_int_eval:w \c__fp_big_middle_shift_int
- 2 * #3 * #4 - 2 * #2 * #5
\exp_after:wN \__fp_pack_big:NNNNNw
\int_value:w \__fp_int_eval:w \c__fp_big_middle_shift_int
+ #9 000 0000 - #4 * #4 - 2 * #3 * #5 - 2 * #2 * #6
\exp_after:wN \__fp_pack_big:NNNNNw
\int_value:w \__fp_int_eval:w \c__fp_big_middle_shift_int
- 2 * #4 * #5 - 2 * #3 * #6
\exp_after:wN \__fp_pack_big:NNNNNw
\int_value:w \__fp_int_eval:w \c__fp_big_middle_shift_int
- #5 * #5 - 2 * #4 * #6
\exp_after:wN \__fp_pack_big:NNNNNw
\int_value:w \__fp_int_eval:w \c__fp_big_middle_shift_int
- 2 * #5 * #6
\exp_after:wN \__fp_pack_big:NNNNNw
\int_value:w \__fp_int_eval:w \c__fp_big_trailing_shift_int
- #6 * #6
\int_value:w \__fp_int_eval:w \c__fp_big_trailing_shift_int
- 257 ) * 5000 0000 / (#2#3 + 1) + 10 0000 0000 ;
\{#2}{#3}{#4}{#5}{#6} {#7}{#8}#9
\}
```

(End of definition for _fp_sqrt_auxii_o:NnnnnnN.)

We receive here the difference \(a - y^2 = d = \sum_i d_i \cdot 10^{-4i} \), as \(\langle d_2 \rangle \); \(\{d_3\} \) \ldots \(\{d_{10}\} \), where each block has 4 digits, except \(\langle d_2 \rangle \). This function finds the largest \(j \leq 6 \) such that \(10^{4j}(a - y^2) < 2 \cdot 10^8 \), then leaves an open parenthesis and the integer \([10^{4j}(a - y^2)] \).
in an integer expression. The closing parenthesis is provided by the caller __fp_sqrt_auxii_o:NnnnnnnN, which completes the expression

\[
10^{ij} z = \left(\frac{\left(10^{ij} (a - y^2) \right) - 257}{0.5 \cdot 10^8} \right) \cdot \left(\frac{0.5 \cdot 10^8}{\left(10^y + 1 \right)} \right)
\]

for an estimate of \(10^{ij} \sqrt{a - y}\). If \(d_2 \geq 2\), \(j = 3\) and the auxiv auxiliary receives \(10^{j+1} z\). If \(d_2 \leq 1\) but \(10^{j+1} d_2 + 10^4 d_3 + d_5 \geq 1\). In this case, we detect when \(10^{j+1} z \leq 10^3\), which essentially means \(\sqrt{a - y} \lesssim 10^{-17}\): once this threshold is reached, there is enough information to find the correctly rounded \(\sqrt{a}\) with only one more call to __fp_sqrt_auxii_o:NnnnnnnN. Note that the iteration cannot be stuck before reaching \(j = 6\), because for \(j < 6\), one has \(2 \cdot 10^8 \leq 10^{k+1} (a - y^2)\), hence

\[
10^{j+1} z \geq \left(\frac{20000 - 257}{0.5 \cdot 10^8} \right) \cdot \left(\frac{0.5 \cdot 10^8}{\left(10^y + 1 \right)} \right) \geq \left(\frac{20000 - 257}{0.5} \right) > 0.
\]

\begin{verbatim}
\cs_new:Npn __fp_sqrt_auxiii_o:wnnnnnnnn #1; #2#3#4#5#6#7#8#9 {
 \if_int_compare:w #1 > \c_one_int
 \exp_after:wN __fp_sqrt_auxiv_o:NNNNNw
 \int_value:w __fp_int_eval:w (#1#2 %)
 \else:
 \if_int_compare:w #1#2 > \c_one_int
 \exp_after:wN __fp_sqrt_auxv_o:NNNNNw
 \int_value:w __fp_int_eval:w (#1#2#3 %)
 \else:
 \if_int_compare:w #1#2#3 > \c_one_int
 \exp_after:wN __fp_sqrt_auxvi_o:NNNNNw
 \int_value:w __fp_int_eval:w (#1#2#3#4 %)
 \else:
 \exp_after:wN __fp_sqrt_auxvii_o:NNNNNw
 \int_value:w __fp_int_eval:w (#1#2#3#4#5 %)
 \fi:
 \fi:
 \fi:
}
\cs_new:Npn __fp_sqrt_auxiv_o:NNNNNw 1#1#2#3#4#5#6; {
 __fp_sqrt_auxviii_o:nnnnnnn {#1#2#3#4#5#6} {00000000}
}
\cs_new:Npn __fp_sqrt_auxv_o:NNNNNw 1#1#2#3#4#5#6; {
 __fp_sqrt_auxvii_o:nnnnnnn {#1#2#3#4#5#6} {00000000}
}
\cs_new:Npn __fp_sqrt_auxvi_o:NNNNNw 1#1#2#3#4#5#6; {
 __fp_sqrt_auxvi_o:nnnnnnn {#1#2#3#4#5#6} {00000000}
}
\cs_new:Npn __fp_sqrt_auxvii_o:NNNNNw 1#1#2#3#4#5#6; {
 __fp_sqrt_auxvii_o:nnnnnnn {#1#2#3#4#5#6} {00000000}
}
\cs_new:Npn __fp_sqrt_auxviii_o:NNNNNw 1#1#2#3#4#5#6; {
 __fp_sqrt_auxviii_o:nnnnnnn {#1#2#3#4#5#6} {00000000}
}
\end{verbatim}

(End of definition for __fp_sqrt_auxiii_o:wnnnnnnnn and others.)
Simply add the two 8-digit blocks of \(z \), aligned to the last four of the five 4-digit blocks of \(y \), then call the auxii auxiliary to evaluate \(y' = (y + z)^2 \).

\[
\text{\texttt{_fp_sqrt_auxviii_o:nnnnnnn}} \text{\texttt{_fp_sqrt_auxix_o:wnwnw}}
\]

\[
\text{\texttt{_fp_sqrt_auxx_o:Nnnnnnnn}} \text{\texttt{_fp_sqrt_auxxi_o:wwnnN}}
\]

At this stage, \(j = 6 \) and \(10^{24}z < 10^7 \), hence

\[
10^7 + 1/2 > 10^{24}z + 1/2 \geq \left(10^{24}(a - y^2) - 258\right) \cdot (0.5 \cdot 10^8) / (10^8 y + 1),
\]

then \(10^{24}(a - y^2) - 258 < 2(10^7 + 1/2)(y + 10^{-8}), \) and

\[
10^{24}(a - y^2) < (10^7 + 1290.5)(1 + 10^{-8}/y) < (10^7 + 1290.5)(1 + 10^{-7})y + \sqrt{a},
\]

which finally implies \(0 \leq \sqrt{a} - y < 0.2 \cdot 10^{-16} \). In particular, \(y \) is an underestimate of \(\sqrt{a} \) and \(y + 0.5 \cdot 10^{-16} \) is a (strict) overestimate. There is at exactly one multiple \(m \) of \(0.5 \cdot 10^{-16} \) in the interval \([y, y + 0.5 \cdot 10^{-16}]\); hence \(y + 0.5 \cdot 10^{-16} \) is irrelevant for rounding. \(m^2 \) is a multiple of \(m \) and there is no rounding. If \(m^2 < a \) then we round \(m + \epsilon \). For now, discard a few irrelevant arguments \#1, \#2, \#3, and find the multiple of \(0.5 \cdot 10^{-16} \) within \([y, y + 0.5 \cdot 10^{-16}]\); rather, only the last 4 digits \#8 of \(y \) are considered, and we do not perform any carry yet. The auxxi auxiliary sets up auxii with a continuation function auxxii instead of auxiii as before. To prevent auxxi from giving a negative results \(a - m^2 \), we compute \(a + 10^{-16} - m^2 \) instead, always positive since \(m < \sqrt{a} + 0.5 \cdot 10^{-16} \) and \(a \leq 1 - 10^{-16} \).
The difference $0 \leq a + 10^{-16} - m^2 \leq 10^{-16} + (\sqrt{a} - m)(\sqrt{a} + m) \leq 2 \cdot 10^{-16}$ was just computed: its first 8 digits vanish, as do the next four, $\#1$, and most of the following four, $\#2$. The guess m is an overestimate if $a + 10^{-16} - m^2 < 10^{-16}$, that is, $\#1 \#2$ vanishes. Otherwise it is an underestimate, unless $a + 10^{-16} - m^2 = 10^{-16}$ exactly. For an underestimate, call the auxxiv function with argument 9998. For an exact result call it with 9999, and for an overestimate call it with 10000.

This receives 9998, 9999 or 10000 as $\#1$ when m is an underestimate, exact, or an overestimate, respectively. Then comes m as five blocks of 4 digits, but where the last block $\#6$ may be 0, 5000, or 10000. In the latter case, we need to add a carry, unless m is an overestimate ($\#1$ is then 10000). Then comes a as three arguments. Rounding is done by __fp_round:NNN, whose first argument is the final sign (square roots are positive). We fake its second argument. It should be the last digit kept, but this is only used when ties are “rounded to even”, and only when the result is exactly half-way between two representable numbers rational square roots of numbers with 16 significant digits have: this situation never arises for the square root, as any exact square root of a 16 digit number has at most 8 significant digits. Finally, the last argument is the next digit, possibly shifted by 1 when there are further nonzero digits. This is achieved by __fp_round_digit:Nw, which receives (after removal of the 10000’s digit) one of 0000, 0001, 4999, 5000, 5001, or 9999, which it converts to 0, 1, 4, 5, 6, and 9, respectively.
The exponent of a normal number is its \langle exponent \rangle minus one.

\cs_new:Npn __fp_logb_o:w ? \s__fp __fp_chk:w #1#2; @
{\if_case:w #1 \exp_stop_f:
__fp_case_use:nw
 { __fp_division_by_zero_o:Nnw \c_minus_inf_fp \s__fp __fp_chk:w #1 #2; @ }
\or: \exp_after:wN __fp_logb_aux_o:w
\or: __fp_case_return_o:Nw \c_inf_fp
\else: __fp_case_return_same_o:w
\fi:
\s__fp __fp_chk:w #1 #2; }
\cs_new:Npn __fp_logb_aux_o:w \s__fp __fp_chk:w #1 #2 #3 #4 ;
{ \exp_after:wN __fp_parse:n \exp_after:wN
 { \int_value:w \int_eval:w #3 - 1 \exp_after:wN }
}

(End of definition for __fp_logb_o:w and __fp_logb_aux_o:w.)

Find the sign of the floating point: \text{nan}, +0, -0, +1 or -1.

\cs_new:Npn __fp_sign_o:w ? \s__fp __fp_chk:w #1#2; @
{\if_case:w #1 \exp_stop_f:
__fp_case_use:nw
 { __fp_case_return_same_o:w }
\or: \exp_after:wN __fp_sign_aux_o:w
\or: __fp_case_return_same_o:w
\else: __fp_case_return_same_o:w
\fi:
\s__fp __fp_chk:w #1 #2; }
\cs_new:Npn __fp_sign_aux_o:w \s__fp __fp_chk:w #1 #2 #3 #4 ;
{ \exp_after:wN __fp_set_sign_o:w \exp_after:wN #2 \c_one_fp @ }

(End of definition for __fp_sign_o:w and __fp_sign_aux_o:w.)

75.5 About the sign and exponent

The exponent of a normal number is its \langle exponent \rangle minus one.

\cs_new:Npn __fp_logb_o:w __fp_logb_aux_o:w
{\cs_new:Npn __fp_logb_o:w ? \s__fp __fp_chk:w #1#2; @
{\if_case:w #1 \exp_stop_f:
__fp_case_use:nw
 { __fp_division_by_zero_o:Nnw \c_minus_inf_fp \s__fp __fp_chk:w #1 #2; @ }
\or: \exp_after:wN __fp_logb_aux_o:w
\or: __fp_case_return_o:Nw \c_inf_fp
\else: __fp_case_return_same_o:w
\fi:
\s__fp __fp_chk:w #1 #2; }
\cs_new:Npn __fp_logb_aux_o:w \s__fp __fp_chk:w #1 #2 #3 #4 ;
{ \exp_after:wN __fp_parse:n \exp_after:wN
 { \int_value:w \int_eval:w #3 - 1 \exp_after:wN }
}

(End of definition for __fp_logb_o:w and __fp_logb_aux_o:w.)

Find the sign of the floating point: \text{nan}, +0, -0, +1 or -1.

\cs_new:Npn __fp_sign_o:w __fp_sign_aux_o:w
{\cs_new:Npn __fp_sign_o:w ? \s__fp __fp_chk:w #1#2; @
{\if_case:w #1 \exp_stop_f:
__fp_case_use:nw
 { __fp_case_return_same_o:w }
\or: \exp_after:wN __fp_sign_aux_o:w
\or: __fp_case_return_same_o:w
\else: __fp_case_return_same_o:w
\fi:
\s__fp __fp_chk:w #1 #2; }
\cs_new:Npn __fp_sign_aux_o:w \s__fp __fp_chk:w #1 #2 #3 #4 ;
{ \exp_after:wN __fp_set_sign_o:w \exp_after:wN #2 \c_one_fp @ }

(End of definition for __fp_sign_o:w and __fp_sign_aux_o:w.)
This function is used for the unary minus and for \texttt{abs}. It leaves the sign of \texttt{nan} invariant, turns negative numbers (sign 2) to positive numbers (sign 0) and positive numbers (sign 0) to positive or negative numbers depending on \#1. It also expands after itself in the input stream, just like \texttt{__fp_set_sign_o:w}.

\begin{verbatim}
\texttt{\textbackslash cs_new:Npn __fp_set_sign_o:w \#1 __fp __fp_chk:w \#2\#3\#4; @}
\end{verbatim}

\texttt{\textbackslash exp_after:wN __fp_exp_after_o:w}
\texttt{\exp_after:wN __fp_chk:w}
\texttt{\exp_after:wN __fp_after:wN \#2}
\texttt{\int_value:w}
\texttt{\if_case:w \#3 \exp_stop_f: \#1 \or: 1 \or: 0 \fi: \exp_stop_f:}
\texttt{\#4;}

(End of definition for \texttt{__fp_set_sign_o:w}.)

\subsection{Operations on tuples}

Two cases: \texttt{abs((tuple))} for which \#1 is 0 (invalid for tuples) and \texttt{-(tuple)} for which \#1 is 2. In that case, map over all items in the tuple an auxiliary that dispatches to the type-appropriate sign-flipping function.

\begin{verbatim}
\texttt{\texttt{\textbackslash cs_new:Npn __fp_tuple_set_sign_o:w \#1#2 __fp_invalid_operation_o:nw \{ abs \} \#2}}
\end{verbatim}

\texttt{\texttt{\textbackslash cs_new:Npn __fp_tuple_set_sign_aux_o:Nnw}}
\texttt{\texttt{__fp_tuple_set_sign_aux_o:w}}
\texttt{__fp_tuple_map_o:nw __fp_tuple_set_sign_aux_o:w}
\texttt{__fp_change_func_type:NNN \#1 __fp_set_sign_o:w}
\texttt{__fp_parse_apply_unary_error:Nnw}
\texttt{__fp_after:wN \#2 \#1 \#2; @}

(End of definition for \texttt{__fp_tuple_set_sign_o:w}, \texttt{__fp_tuple_set_sign_aux_o:Nnw}, and \texttt{__fp_tuple_set_sign_aux_o:w}.)

\subsection*{Operations on tuples}

For \texttt{(number)*(tuple)} and \texttt{(tuple)*(number)} and \texttt{(tuple)/(number)}, loop through the \texttt{__fp_tuple_set_sign_o:w} some code that multiplies or divides by the appropriate \texttt{__fp_set_sign_o:w}. Importantly we need to dispatch according to the type, and we make sure to apply the operator in the correct order.

\begin{verbatim}
\texttt{\texttt{\textbackslash cs_new:cpn \{ __fp_*_tuple_o:ww \} \#1}}
\end{verbatim}
\begin{verbatim}
\texttt{\texttt{\textbackslash cs_new:cpn \{ __fp_*_o:ww __fp_binary_type_o:Nww * \#1 ; \}}}
\end{verbatim}
\begin{verbatim}
\texttt{\texttt{\textbackslash cs_new:cpn \{ __fp_*_o:ww __fp_binary_rev_type_o:Nww * \#2 ; \} \#1 ; \}}
\end{verbatim}
\begin{verbatim}
\texttt{\texttt{\textbackslash cs_new:cpn \{ __fp_*_o:ww __fp_binary_rev_type_o:Nww \#2 ; \} \#1 ; \}}
\end{verbatim}

1116
Check the two tuples have the same number of items and map through these a helper that dispatches appropriately depending on the types. This means \((1,2)+((1,1),2)\) gives \((\text{nan},4)\).

\[
\begin{align*}
\text{\texttt{_fp_tuple_+_tuple_o:ww}} & \quad \text{\texttt{_fp_tuple_-_tuple_o:ww}} \\
\text{\texttt{_fp_tuple_/_tuple_o:ww}} &
\end{align*}
\]

\texttt{(End of definition for _fp_tuple_+_tuple_o:ww, _fp_tuple_-_tuple_o:ww, and _fp_tuple_/_tuple_o:ww.)}

\texttt{(End of definition for _fp_tuple_+_tuple_o:ww and _fp_tuple_-_tuple_o:ww.)}

\texttt{⟨/package⟩}
Chapter 76

l3fp-extended implementation

76.1 Description of fixed point numbers

This module provides a few functions to manipulate positive floating point numbers with extended precision (24 digits), but mostly provides functions for fixed-point numbers with this precision (24 digits). Those are used in the computation of Taylor series for the logarithm, exponential, and trigonometric functions. Since we eventually only care about the 16 first digits of the final result, some of the calculations are not performed with the full 24-digit precision. In other words, the last two blocks of each fixed point number may be wrong as long as the error is small enough to be rounded away when converting back to a floating point number. The fixed point numbers are expressed as

\[
\langle a_1 \rangle \ \langle a_2 \rangle \ \langle a_3 \rangle \ \langle a_4 \rangle \ \langle a_5 \rangle \ \langle a_6 \rangle ;
\]

where each \(\langle a_i \rangle \) is exactly 4 digits (ranging from 0000 to 9999), except \(\langle a_1 \rangle \), which may be any “not-too-large” non-negative integer, with or without leading zeros. Here, “not-too-large” depends on the specific function (see the corresponding comments for details).

Checking for overflow is the responsibility of the code calling those functions. The fixed point number \(a \) corresponding to the representation above is

\[
a = \sum_{i=1}^{6} \langle a_i \rangle \cdot 10^{-4i}.
\]

Most functions we define here have the form

\[
__fp_fixed_\langle \text{calculation} \rangle : ___ \langle \text{operand}_1 \rangle ; \langle \text{operand}_2 \rangle ; \{ \langle \text{continuation} \rangle \}
\]

They perform the \(\langle \text{calculation} \rangle \) on the two \(\langle \text{operands} \rangle \), then feed the result (6 brace groups followed by a semicolon) to the \(\langle \text{continuation} \rangle \), responsible for the next step of the calculation. Some functions only accept an N-type \(\langle \text{continuation} \rangle \). This allows constructions such as

\[
__fp_fixed_add : ___ X_1 ; X_2 ;
__fp_fixed_mul : ___ X_3 ;
__fp_fixed_add : ___ X_4 ;
\]
to compute \((X_1 + X_2) \cdot X_3 + X_4\). This turns out to be very appropriate for computing continued fractions and Taylor series.

At the end of the calculation, the result is turned back to a floating point number using \texttt{_fp_fixed_to_float:wn}. This function has to change the exponent of the floating point number: it must be used after starting an integer expression for the overall exponent of the result.

76.2 Helpers for numbers with extended precision

\begin{verbatim}
\c__fp_one_fixed_tl \The fixed-point number 1, used in \texttt{__fp-fixed-expo}.
\end{verbatim}

\begin{verbatim}
\c__fp_fixed_continue:wn This function simply calls the next function.
\end{verbatim}

\begin{verbatim}
\c__fp_fixed_add_one:wn \langle continuation \rangle
This function adds 1 to the fixed point \langle a \rangle, by changing \(a_1\) to 10000 + \(a_1\), then calls the \langle continuation \rangle. This requires \(a_1 + 10000 < 2^{31}\).
\end{verbatim}

\begin{verbatim}
\c__fp_fixed_div_myriad:wn Divide a fixed point number by 10000. This is a little bit more subtle than just removing the last group and adding a leading group of zeros: the first group \#1 may have any number of digits, and we must split \#1 into the new first group and a second group of exactly 4 digits. The choice of shifts allows \#1 to be in the range \([0, 5 \cdot 10^8 - 1]\).
\end{verbatim}

\begin{verbatim}
\c__fp_fixed_mul_after:wn The fixed point operations which involve multiplication end by calling this auxiliary. It braces the last block of digits, and places the \langle continuation \rangle \#3 in front.
\end{verbatim}
76.3 Multiplying a fixed point number by a short one

\[
__fp_fixed_mul_short:wwn
\{\{a_{i}\}\} \{\{a_{i}\}\} \{\{a_{i}\}\} \{\{a_{i}\}\} ;
\{\{b_{i}\}\} \{\{b_{i}\}\} ; \{\{\text{continuation}\}\} \}
\]

Computes the product \(c = ab \) of \(a = \sum_{i} a_{i}10^{-4i} \) and \(b = \sum_{i} b_{i}10^{-4i} \), rounds it to the closest multiple of \(10^{-24} \), and leaves \(\{\{\text{continuation}\}\} \{\{c_{i}\}\} \ldots \{\{c_{n}\}\} \) in the input stream, where each of the \(\{c_{i}\} \) are blocks of 4 digits, except \(\{c_{0}\} \), which is any \TeX\ integer. Note that indices for \(\{b_{i}\} \) start at 0: for instance a second operand of \{0001\}\{0000\}\{0000\} leaves the first operand unchanged (rather than dividing it by \(10^{4} \), as __fp_fixed_mul:wwn would).

```latex
\cs_new:Npn \_\_fp\_fixed\_mul\_short:wwn #1#2#3#4#5#6; #7#8#9; 
\exp_after:wN \_\_fp\_fixed\_mul\_after:wwn 
\int_value:w \_\_fp\_int_eval:w \c__fp\_leading\_shift\_int + #1*#7 
\exp_after:wN \_\_fp\_pack:NNNNNW \_\_fp\_fixed\_div\_int:wwn \langle a \rangle ; \langle n \rangle ; \{ \{ \text{continuation} \} \}
\]
```

(End of definition for __fp_fixed_mul_short:wwn.)

76.4 Dividing a fixed point number by a small integer

\[
__fp_fixed_div_int:wwN \{a\} ; \{n\} ; \{\text{continuation}\}
\]

Divides the fixed point number \((a) \) by the (small) integer \(0 < \langle n \rangle < 10^{4} \) and feeds the result to the \(\{\text{continuation}\} \). There is no bound on \(a_{1} \).

The arguments of the \(i \) auxiliary are 1: one of the \(a_{i} \), 2: \(n \), 3: the \(ii \) or the \(iii \) auxiliary. It computes a (somewhat tight) lower bound \(Q_{i} \) for the ratio \(a_{i}/n \).

The \(ii \) auxiliary receives \(Q_{i} \), \(n \), and \(a_{i} \) as arguments. It adds \(Q_{i} \) to a surrounding integer expression, and starts a new one with the initial value 9999, which ensures that the result of this expression has 5 digits. The auxiliary also computes \(a_{i} - n \cdot Q_{i} \), placing the result in front of the 4 digits of \(a_{i+1} \). The resulting \(a_{i+1}' = 10^{4}(a_{i} - n \cdot Q_{i}) + a_{i+1} \) serves as the first argument for a new call to the \(i \) auxiliary.

When the \(iii \) auxiliary is called, the situation looks like this:
where expansion is happening from the last line up. The \(\text{iii} \) auxiliary adds \(Q_6 + 2 \approx a_6/n + 1 \) to the last 9999, giving the integer closest to \(10000 + a_6/n \).

Each pack auxiliary receives 5 digits followed by a semicolon. The first digit is added as a carry to the integer expression above, and the 4 other digits are braced. Each call to the pack auxiliary thus produces one brace group. The last brace group is produced by the after auxiliary, which places the (continuation) as appropriate.

\[
\begin{align*}
\text{_fp_fixed_div_int_after:Nw} & \ (\text{continuation}) \\
-1 + Q_1, \\
\text{_fp_fixed_div_int_pack:Nw} & \ 9999 + Q_2, \\
\text{_fp_fixed_div_int_pack:Nw} & \ 9999 + Q_3, \\
\text{_fp_fixed_div_int_pack:Nw} & \ 9999 + Q_4, \\
\text{_fp_fixed_div_int_pack:Nw} & \ 9999 + Q_5, \\
\text{_fp_fixed_div_int_auxii:wnn} & \ Q_6 ; \ \{(n}\} \ \{(a_6)} \end{align*}
\]

(End of definition for \(\text{_fp_fixed_div_int:wnN} \) and others.)

76.5 Adding and subtracting fixed points

\[
\begin{align*}
\text{_fp_fixed_add:wwN} & \ \langle a \rangle ; \ \langle b \rangle ; \ \{\text{_fp_fixed_add:wwN} \} \ {\text{_fp_fixed_add:WWN}} \\
\text{_fp_fixed_sub:wwN} & \ \langle a \rangle - \langle b \rangle ; \ \{\text{_fp_fixed_sub:wwN} \} \\
\text{_fp_fixed_add:Nnnnnwn} & \ \text{_fp_fixed_add:WWN} \\
\text{_fp_fixed_add:nnnnnwn} & \ \text{_fp_fixed_add:WWN} \\text{_fp_fixed_add_after:WWN} \\
\text{_fp_fixed_add_after:WWN} & \ \{\text{_fp_fixed_add:WWN} \} \ \{\text{_fp_fixed_add:WWN} \}
\end{align*}
\]
Computes $a + b$ (resp. $a - b$) and feeds the result to the \textit{(continuation)}. This function requires $0 \leq a_1, b_1 \leq 11,474,8$, its result must be positive (this happens automatically for addition) and its first group must have at most 5 digits: $(a \pm b)_1 < 10,000$. The two functions only differ by a sign, hence use a common auxiliary. It would be nice to grab the 12 brace groups in one go; only 9 parameters are allowed. Start by grabbing the sign, a_1, \ldots, a_4, the rest of a, and b_1 and b_2. The second auxiliary receives the rest of a, the sign multiplying b, the rest of b, and the \textit{(continuation)} as arguments. After going down through the various level, we go back up, packing digits and bringing the \textit{(continuation)} (#5, then #7) from the end of the argument list to its start.

\[
\text{\texttt{\textbackslash cs_new:Np n _fp_fixed_add:wwn \{ _fp_fixed_add:nnnnnnnw + \}}}
\]
\[
\text{\texttt{\textbackslash cs_new:Np n _fp_fixed_sub:wwn \{ _fp_fixed_add:nnnnnnnw - \}}}
\]
\[
\text{\texttt{\textbackslash cs_new:Np n _fp_fixed_add:nnnnnnnw \#1 \#2\#3\#4\#5 \#6; \#7\#8}}
\]
\[
\text{\texttt{\exp_after:wN _fp_fixed_add_after:NNNNNwn}}
\]
\[
\text{\texttt{\textint_value:w _fp_int_eval:w 9 9999 9999 + \#2\#3 \#1 \#7\#8}}
\]
\[
\text{\texttt{\textint_value:w _fp_int_eval:w 1 9999 9999 + \#4\#5}}
\]
\[
\text{\texttt{_fp_fixed_add:mmnnnnww \#6 \#1}}
\]
\[
\text{\texttt{\textint_value:w _fp_int_eval:w 2 0000 0000 \#3 \#6\#7 + \#1\#2 \#8}}
\]
\[
\text{\texttt{\~}}
\]
\[
\text{\texttt{\textint_value:w _fp_int_eval:w 1 9999 9999 + \#4\#5 \#6 \#1}}
\]
\[
\text{\texttt{_fp_fixed_add:mmnnnnww \#1 \#2 \#3 \#4\#5 \#6 \#7 \#8}}
\]
\[
\text{(End of definition for _fp_fixed_add:wwn and others.)}
\]

76.6 Multiplying fixed points

\[
\text{\texttt{_fp_fixed_mul:wwn \(a); \{b\}; \{\textit{(continuation)}\}}}
\]
Computes $a \times b$ and feeds the result to \textit{(continuation)}. This function requires $0 \leq a_1, b_1 < 10,000$. Once more, we need to play around the limit of 9 arguments for \TeX{} macros. Note that we don’t need to obtain an exact rounding, contrarily to the * operator, so things could be harder. We wish to perform carries in

\[
\begin{align*}
a \times b &= a_1 \cdot b_1 \cdot 10^{-8} \\
&\quad + (a_1 \cdot b_2 + a_2 \cdot b_1) \cdot 10^{-12} \\
&\quad + (a_1 \cdot b_3 + a_2 \cdot b_2 + a_3 \cdot b_1) \cdot 10^{-16} \\
&\quad + (a_1 \cdot b_4 + a_2 \cdot b_3 + a_3 \cdot b_2 + a_4 \cdot b_1) \cdot 10^{-20} \\
&\quad + \left(a_2 \cdot b_4 + a_3 \cdot b_3 + a_4 \cdot b_2 \\
&\quad + a_3 \cdot b_4 + a_4 \cdot b_3 + a_1 \cdot b_6 + a_2 \cdot b_5 + a_5 \cdot b_2 + a_6 \cdot b_1 \right) \cdot 10^{4} \\
&\quad + a_1 \cdot b_5 + a_5 \cdot b_1 \right) \cdot 10^{-24} + O(10^{-24}),
\end{align*}
\]

1122
where the $O(10^{-24})$ stands for terms which are at most 5×10^{-24}; ignoring those leads to an error of at most 5 ulp. Note how the first 15 terms only depend on a_1, \ldots, a_4 and b_1, \ldots, b_4, while the last 6 terms only depend on a_1, a_2, a_5, a_6, and the corresponding parts of b. Hence, the first function grabs a_1, \ldots, a_4, the rest of a, and b_1, \ldots, b_4, and writes the 15 first terms of the expression, including a left parenthesis for the fraction. The auxiliary receives $a_5, a_6, b_1, b_2, a_1, a_2, b_5, b_6$ and finally the (continuation) as arguments. It writes the end of the expression, including the right parenthesis and the denominator of the fraction. The (continuation) is finally placed in front of the 6 brace groups by _fp_fixed_mul_after:wwn.

\begin{verbatim}
26250 \cs_new:Npn _fp_fixed_mul:wwn #1#2#3#4 #5; #6#7#8#9
26251 { \exp_after:wN _fp_fixed_mul_after:wwn
26252 \int_value:w _fp_int_eval:w \c__fp_leading_shift_int
26253 \exp_after:wN _fp_pack:NNNNNw
26254 \int_value:w _fp_int_eval:w \c__fp_middle_shift_int
26256 + #1*#6 \exp_after:wN _fp_pack:NNNNNw
26257 \int_value:w _fp_int_eval:w \c__fp_middle_shift_int
26259 + #1*#7 + #2*#6 \exp_after:wN _fp_pack:NNNNNw
26261 \int_value:w _fp_int_eval:w \c__fp_middle_shift_int
26262 + #1*#8 + #2*#7 + #3*#6 \exp_after:wN _fp_pack:NNNNNw
26264 \int_value:w _fp_int_eval:w \c__fp_middle_shift_int
26265 + #1*#9 + #2*#8 + #3*#7 + #4*#6 \exp_after:wN _fp_pack:NNNNNw
26267 \int_value:w _fp_int_eval:w \c__fp_trailing_shift_int
26269 + #2*#9 + #3*#8 + #4*#7
26270 + (#3*#9 + #4*#8
26271 + _fp_fixed_mul:nnnnnnnw #5 {#6}{#7} {#1}{#2}
26272 \cs_new:Npn _fp_fixed_mul:nnnnnnnw #1#2 #3#4 #5#6 #7#8 ;
26273 { #1*#4 + #2*#3 + #5*#8 + #6*#7) / _fp_myriad_int
26275 + #1*#3 + #5*#7 ; ;
26276 }
\end{verbatim}

(End of definition for _fp_fixed_mul:wwn and _fp_fixed_mul:nnnnnnnw.)

76.7 Combining product and sum of fixed points

_fp_fixed_mul_add:wwn
_fp_fixed_mul_sub_back:wwn
_fp_fixed_mul_one_minus_mul:wwn

\begin{verbatim}
\cs_new:Npn _fp_fixed_mul_add:wwn _fp_fixed_mul_sub_back:wwn _fp_fixed_one_minus_mul:wwn
_fp_fixed_mul_add:wwn _fp_fixed_mul:wwn _fp_fixed_mul:nnnnnnnw
\end{verbatim}

Sometimes called FMA (fused multiply-add), these functions compute $a \times b + c, c - a \times b$, and $1 - a \times b$ and feed the result to the (continuation). Those functions require $0 \leq a_1, b_1, c_1 \leq 10000$. Since those functions are at the heart of the computation of Taylor expansions, we over-optimize them a bit, and in particular we do not factor out the common parts of the three functions.
For definiteness, consider the task of computing \(a \times b + c\). We perform carries in
\[
\begin{align*}
 a \times b + c &= (a_1 \cdot b_1 + c_1 c_2) \cdot 10^{-8} \\
 &\quad + (a_1 \cdot b_2 + a_2 \cdot b_1) \cdot 10^{-12} \\
 &\quad + (a_1 \cdot b_3 + a_2 \cdot b_2 + a_3 \cdot b_1 + c_3 c_4) \cdot 10^{-16} \\
 &\quad + (a_1 \cdot b_4 + a_2 \cdot b_3 + a_3 \cdot b_2 + a_4 \cdot b_1) \cdot 10^{-20} \\
 &\quad + \left(a_2 \cdot b_4 + a_3 \cdot b_3 + a_4 \cdot b_2 \\
 &\quad + a_3 \cdot b_4 + a_4 \cdot b_3 + a_1 \cdot b_6 + a_2 \cdot b_5 + a_5 \cdot b_2 + a_6 \cdot b_1 \\
 &\quad + a_1 \cdot b_5 + a_5 \cdot b_1 + c_5 c_6 \right) \cdot 10^{-24} + O(10^{-24})
\end{align*}
\]
where \(c_1 c_2, c_3 c_4, c_5 c_6\) denote the 8-digit number obtained by juxtaposing the two blocks of digits of \(c\), and \(\cdot\) denotes multiplication. The task is obviously tough because we have 18 brace groups in front of us.

Each of the three function starts the first two levels (the first, corresponding to \(10^{-4}\), is empty), with \(c_1 c_2\) in the first level, calls the auxiliary with arguments described later, and adds a trailing \(+ c_5 c_6\); \((\text{continuation})\). The \(+ c_5 c_6\) piece, which is omitted for \(_-_fp_fixed_one_minus_mul:wwn\), is taken in the integer expression for the \(10^{-24}\) level.

\begin{verbatim}
\cs_new:Npn _fp_fixed_mul_add:wwnn \#1; \#2; \#3#4#5#6#7#8;
{\exp_after:wN _fp_fixed_mul_after:wwn
\int_value:w _fp_int_eval:w \c__fp_big_leading_shift_int
\exp_after:wN _fp_pack_big:NNNNNNw
\int_value:w _fp_int_eval:w \c__fp_big_middle_shift_int + \#3 #4
_fp_fixed_mul_add:Nwnnnwnnn +
 + \#5 \#6 ; \#2 ; \#1 ; \#2 ; +
 + \#7 \#8 ; ;
\}
\cs_new:Npn _fp_fixed_mul_sub_back:wwnn \#1; \#2; \#3#4#5#6#7#8;
{\exp_after:wN _fp_fixed_mul_after:wwn
\int_value:w _fp_int_eval:w \c__fp_big_leading_shift_int
\exp_after:wN _fp_pack_big:NNNNNNw
\int_value:w _fp_int_eval:w \c__fp_big_middle_shift_int + \#3 #4
_fp_fixed_mul_add:Nwnnnwnnn -
 + \#5 \#6 ; \#2 ; \#1 ; \#2 ; -
 + \#7 \#8 ; ;
\}
\cs_new:Npn _fp_fixed_one_minus_mul:wwn \#1; \#2;
{\exp_after:wN _fp_fixed_mul_after:wwn
\int_value:w _fp_int_eval:w \c__fp_big_leading_shift_int
\exp_after:wN _fp_pack_big:NNNNNNw
\int_value:w _fp_int_eval:w \c__fp_big_middle_shift_int +
 1 0000 0000
_fp_fixed_mul_add:Nwnnnwnnn -
 ; \#2 ; \#1 ; \#2 ; -
 ; ;
\}
\end{verbatim}
expressions all parts of \langle fixed_mul_one_minus_mul \rangle was inserted by the auxiliary. Then we prepare level 10^{-20} for levels 10^{-20} and 10^{-24}, keeping the pieces of $\langle a \rangle$ we've read, but not $\langle b \rangle$, since there is another copy later in the input stream.

Level 10^{-20} is $(a_1 \cdot b_4 + a_2 \cdot b_3 + a_3 \cdot b_2 + a_4 \cdot b_1)$, multiplied by the sign, which was inserted by the auxiliary. Then we prepare level 10^{-24}. We don't have access to all parts of $\langle a \rangle$ and $\langle b \rangle$ needed to make all products. Instead, we prepare the partial expressions

\begin{align*}
&b_1 + a_4 \cdot b_2 + a_3 \cdot b_3 + a_2 \cdot b_4 + a_1 \\
&b_2 + a_4 \cdot b_3 + a_3 \cdot b_4 + a_2.
\end{align*}

Obviously, those expressions make no mathematical sense: we complete them with $a_5 \cdot b_5$ and $a_6 \cdot b_1 + a_5 \cdot b_5$ and $b_6 + a_1 + b_6$, and of course with the trailing $+ c_5 c_6$. To do all this, we keep a_1, a_5, a_6, and the corresponding pieces of $\langle b \rangle$.

(End of definition for __fp_fixed_mul_add:wwn, __fp_fixed_mul_sub_back:wwn, and __fp_fixed_mul_one_minus_mul:wwn.)

__fp_fixed_mul_add:wwnnnnnnn (op) + (c_3) (c_4) ;
\langle b \rangle; \langle a \rangle; \langle b \rangle; \langle op \rangle
+ (c_5) (c_6);

Here, $\langle op \rangle$ is either $+$ or or. Arguments #3, #4, #5 are $(b_1), (b_2), (b_3)$; arguments #7, #8, #9 are $(a_1), (a_2), (a_3)$. We can build three levels: $a_1 \cdot b_1$ for 10^{-18}, $(a_1 \cdot b_2 + a_2 \cdot b_1)$ for 10^{-12}, and $(a_1 \cdot b_3 + a_2 \cdot b_2 + a_3 \cdot b_1 + c_3 c_4)$ for 10^{-10}. The $a \cdot b$ products use the sign #1. Note that #2 is empty for __fp_fixed_one_minus_mul:wwn. We call the auxiliary for levels 10^{-20} and 10^{-24}, keeping the pieces of $\langle a \rangle$ we've read, but not $\langle b \rangle$, since there is another copy later in the input stream.

(End of definition for __fp_fixed_mul_add:wwnnnnnn.)

__fp_fixed_mul_add:wwnnnnnnn (a) ; (b) ; (op)
+ (c_5) (c_6);

Level 10^{-20} is $(a_1 \cdot b_4 + a_2 \cdot b_3 + a_3 \cdot b_2 + a_4 \cdot b_1)$, multiplied by the sign, which was inserted by the auxiliary. Then we prepare level 10^{-24}. We don't have access to all parts of $\langle a \rangle$ and $\langle b \rangle$ needed to make all products. Instead, we prepare the partial expressions

\begin{align*}
&b_1 + a_4 \cdot b_2 + a_3 \cdot b_3 + a_2 \cdot b_4 + a_1 \\
&b_2 + a_4 \cdot b_3 + a_3 \cdot b_4 + a_2.
\end{align*}

Obviously, those expressions make no mathematical sense: we complete them with $a_5 \cdot b_5$ and $a_6 \cdot b_1 + a_5 \cdot b_5$ and $b_6 + a_1 + b_6$, and of course with the trailing $+ c_5 c_6$. To do all this, we keep a_1, a_5, a_6, and the corresponding pieces of $\langle b \rangle$.

1125
The second one is divided by 10000: this is the carry from level 10^{-28}. The trailing $+c_6c_5$ is taken into the expression for level 10^{-24}. Note that the total of level 10^{-24} is in the interval $[-5 \cdot 10^8, 6 \cdot 10^8]$ (give or take a couple of 10000), hence adding it to the shift gives a 10-digit number, as expected by the packing auxiliaries. See \texttt{l3fp-aux} for the definition of the shifts and packing auxiliaries.

\begin{verbatim}
\cs_new:Npn __fp_fixed_mul_add:nnnnwnnwN #1#2 #3#4#5; #6#7#8; #9
{ #9 (#4* #1 *#7)
#9 (#5*#6+#4* #2 *#7+#3*#8) / \c__fp_myriad_int}
\end{verbatim}

(End of definition for \texttt{_fp_fixed_mul_add:nnnnwnnwN}.)

76.8 Extended-precision floating point numbers

In this section we manipulate floating point numbers with roughly 24 significant figures ("extended-precision" numbers, in short, “ep”), which take the form of an integer exponent, followed by a comma, then six groups of digits, ending with a semicolon. The first group of digit may be any non-negative integer, while other groups of digits have 4 digits. In other words, an extended-precision number is an exponent ending in a comma, then a fixed point number. The corresponding value is $\langle\text{digits}\rangle \cdot 10^{\langle\text{exponent}\rangle}$. This convention differs from floating points.

\begin{verbatim}
\cs_new:Npn __fp_ep_to_fixed:wwn #1,#2
{ \exp_after:wN __fp_ep_to_fixed_auxi:www \int_value:w __fp_int_eval:w 1 0000 0000 + #2 \exp_after:wN ;
\exp:w \exp_end_continue_f:w
\prg_replicate:nn { 4 - \int_max:nn {#1} { -32 } } { 0 } ;}
\cs_new:Npn __fp_ep_to_fixed_auxi:www #1; #2; #3#4#5#6#7;
{ __fp_pack_eight:wNNNNNNNN __fp_pack_twice_four:wNNNNNNNN __fp_pack_twice_four:wNNNNNNNN __fp_pack_twice_four:wNNNNNNNN __fp_ep_to_fixed_auxii:nnnnnnnwn ; #2 #1#3#4#5#6#7 0000 !}
\cs_new:Npn __fp_ep_to_fixed_auxii:nnnnnnnwn #1#2#3#4#5#6#7; #8! #9
{ #9 {#1#2}{#3}{#4}{#5}{#6}{#7};}
\end{verbatim}

(End of definition for \texttt{_fp_ep_to_fixed:wwn}, \texttt{_fp_ep_to_fixed_auxi:www}, and \texttt{_fp_ep_to_fixed_auxii:nnnnnnnwn}.)
Normalize an extended-precision number. More precisely, leading zeros are removed from
the mantissa of the argument, decreasing its exponent as appropriate. Then the digits
are packed into 6 groups of 4 (discarding any remaining digit, not rounding). Finally,
the continuation \#8 is placed before the resulting exponent–mantissa pair. The input
exponent may in fact be given as an integer expression. The loop auxiliary grabs a
digit: if it is 0, decrement the exponent and continue looping, and otherwise call the end
auxiliary, which places all digits in the right order (the digit that was not 0, and any
remaining digits), followed by some 0, then packs them up neatly in $3 \times 2 = 6$ blocks of
four. At the end of the day, remove with __fp_use_i:ww any digit that did not make it
in the final mantissa (typically only zeros, unless the original first block has more than 4
digits).

\begin{verbatim}
\cs_new:Npn __fp_ep_to_ep:wwN #1,#2#3#4#5#6#7; #8
\{
\exp_after:wN #8
\int_value:w __fp_int_eval:w #1 + 4
\exp_after:wN \use_i:nn
\exp_after:wN __fp_ep_to_ep_loop:N
\int_value:w __fp_int_eval:w 1 0000 0000 + #2 __fp_int_eval_end:
#3#4#5#6#7 ; ; !
\}
\cs_new:Npn __fp_ep_to_ep_loop:N #1
{\if_meaning:w 0 #1
- 1 \else: __fp_ep_to_ep_end:www #1 \fi: __fp_ep_to_ep_loop:N #2; #3!}
\cs_new:Npn __fp_ep_to_ep_end:www #1 \fi: #2; #3!
{ \fi: \if_meaning:w ; #1
- 2 * \c__fp_max_exponent_int __fp_ep_to_ep_zero:ww
\fi: __fp_pack_twice_four:wNNNNNNNNNNNNNNNNNNNN
__fp_pack_twice_four:wNNNNNNNNNNNNNNNNNNNN
__fp_use_i:ww , ; #1 #2 0000 0000 0000 0000 0000 0000 ;}
\cs_new:Npn __fp_ep_to_ep_zero:ww \fi: #1; #2; #3!
{ \fi: , {1000}{0000}{0000}{0000}{0000}{0000} ; }
\end{verbatim}

(End of definition for __fp_ep_to_ep:wwN and others.)

In \texttt{l3fp-trig} we need to compare two extended-precision numbers. This is based on the
same function for positive floating point numbers, with an extra test if comparing only
16 decimals is not enough to distinguish the numbers. Note that this function only works
if the numbers are normalized so that their first block is in $[1000, 9999]$.

\begin{verbatim}
\cs_new:Npn __fp_ep_compare:wwww __fp_ep_compare_aux:wwww
\{
\exp_after:wN \use_i:nn
\exp_after:wN __fp_ep_compare_aux:wwww
\int_value:w __fp_int_eval:w 1 0000 0000 + __fp_ep_to_ep_end:www #1 __fp_ep_to_ep:wwN
#2; #3! #4; #5! \fi: __fp_ep_compare:wwww \fi: #1; #2; #3;
\}
\end{verbatim}
Multiply two extended-precision numbers: first normalize them to avoid losing too much
precision, then multiply the mantissas \#2 and \#4 as fixed point numbers, and sum the
exponents \#1 and \#3. The result’s first block is in [100,9999].

Let us call \langle n \rangle the numerator and \langle d \rangle the denominator. After a simple normalization
step, we can assume that \langle n \rangle ∈ [0.1,1) and \langle d \rangle ∈ [0.1,1), and compute \langle n \rangle/(10\langle d \rangle) ∈
(0.01,1). In terms of the 6 blocks of digits \langle n_1 \rangle \cdots \langle n_6 \rangle and the 6 blocks \langle d_1 \rangle \cdots \langle d_6 \rangle, the
condition translates to \langle n_1 \rangle,\langle d_1 \rangle ∈ [1000,9999].

\section{Dividing extended-precision numbers}

Divisions of extended-precision numbers are difficult to perform with exact rounding: the
technique used in \texttt{l3fp-basics} for 16-digit floating point numbers does not generalize easily
to 24-digit numbers. Thankfully, there is no need for exact rounding.

Let us call \langle n \rangle the numerator and \langle d \rangle the denominator. After a simple normalization
step, we can assume that \langle n \rangle ∈ [0.1,1) and \langle d \rangle ∈ [0.1,1), and compute \langle n \rangle/(10\langle d \rangle) ∈
(0.01,1). In terms of the 6 blocks of digits \langle n_1 \rangle \cdots \langle n_6 \rangle and the 6 blocks \langle d_1 \rangle \cdots \langle d_6 \rangle, the
condition translates to \langle n_1 \rangle,\langle d_1 \rangle ∈ [1000,9999].
We first find an integer estimate \(a \simeq 10^8/\langle d \rangle \) by computing

\[
\alpha = \left\lfloor \frac{10^9}{\langle d_1 \rangle + 1} \right\rfloor
\]
\[
\beta = \left\lfloor \frac{10^9}{\langle d_1 \rangle} \right\rfloor
\]
\[
a = 10^3\alpha + (\beta - \alpha) \cdot \left(10^3 - \left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor\right) - 1250,
\]

where \(\left\lfloor \frac{\varepsilon}{\varepsilon} \right\rfloor \) denotes \(\varepsilon \)-TeX’s rounding division, which rounds ties away from zero. The idea is to interpolate between \(10^3\alpha \) and \(10^3\beta \) with a parameter \(\langle d_2 \rangle/10^4 \), so that when \(\langle d_2 \rangle = 0 \) one gets \(a = 10^3\beta - 1250 \approx 10^{12}/\langle d_1 \rangle \approx 10^8/\langle d \rangle \), while when \(\langle d_2 \rangle = 9999 \) one gets \(a = 10^3\alpha - 1250 \approx 10^{12}/(\langle d_1 \rangle + 1) \approx 10^8/\langle d \rangle \). The shift by 1250 helps to ensure that \(a \) is an underestimate of the correct value. We shall prove that

\[
1 - 1.755 \cdot 10^{-5} < \frac{\langle d \rangle a}{10^8} < 1.
\]

We can then compute the inverse of \(\langle d \rangle a/10^8 = 1 - \epsilon \) using the relation \(1/(1 - \epsilon) \simeq (1 + \epsilon)(1 + \epsilon^2) + \epsilon^4 \), which is correct up to a relative error of \(\epsilon^5 < 1.6 \cdot 10^{-24} \). This allows us to find the desired ratio as

\[
\frac{\langle n \rangle}{\langle d \rangle} = \frac{\langle n \rangle a}{10^8} ((1 + \epsilon)(1 + \epsilon^2) + \epsilon^4).
\]

Let us prove the upper bound first (multiplied by \(10^{15} \)). Note that \(10^7\langle d \rangle < 10^3\langle d_1 \rangle + 10^{-1}(\langle d_2 \rangle + 1) \), and that \(\varepsilon \)-TeX’s division \(\left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor \) underestimates \(10^{-1}(\langle d_2 \rangle + 1) \) by 0.5 at most, as can be checked for each possible last digit of \(\langle d_2 \rangle \). Then,

\[
10^7\langle d \rangle a < \left(10^3\langle d_1 \rangle + \left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor + \frac{1}{2} \right) \left(10^3 - \left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor \right) \beta + \left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor \alpha - 1250 \tag{1}
\]
\[
< 10^3\langle d_1 \rangle + \left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor + \frac{1}{2} \tag{2}
\]
\[
\left(10^3 - \left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor \right) \left(10^9 \left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor + \frac{1}{2} \right) + \left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor \left(\frac{10^9}{\langle d_1 \rangle + 1} + \frac{1}{2} \right) - 1250 \tag{3}
\]
\[
< 10^3\langle d_1 \rangle + \left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor + \frac{1}{2} \left(10^{12} \langle d_1 \rangle + 1 \right) - \left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor \left(\frac{10^9}{\langle d_1 \rangle} - 750 \right) \tag{4}
\]

We recognize a quadratic polynomial in \(\langle (d_2)/10 \rangle \) with a negative leading coefficient: this polynomial is bounded above, according to \(\langle ((d_2)/10) + a \rangle (b - c\langle (d_2)/10 \rangle) \leq (b+ca)^2/4c \). Hence,

\[
10^7\langle d \rangle a < \frac{10^{15}}{\langle d_1 \rangle (\langle d_1 \rangle + 1)} \left(\langle d_1 \rangle + \frac{1}{2} + \frac{1}{4}10^{-3} - \frac{3}{8}10^{-9}\langle d_1 \rangle (\langle d_1 \rangle + 1) \right)^2
\]

Since \(\langle d_1 \rangle \) takes integer values within \([1000,9999]\), it is a simple programming exercise to check that the squared expression is always less than \(\langle d_1 \rangle (\langle d_1 \rangle + 1) \), hence \(10^7\langle d \rangle a < 10^{15} \). The upper bound is proven. We also find that \(\frac{3}{8} \) can be replaced by slightly smaller numbers, but nothing less than 0.374563..., and going back through the derivation of
the upper bound, we find that 1250 is as small a shift as we can obtain without breaking the bound.

Now, the lower bound. The same computation as for the upper bound implies

\[10^7 \langle d \rangle a > \left(10^3 \langle d_1 \rangle + \left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor - \frac{1}{2} \right) \left(\frac{10^{12}}{\langle d_1 \rangle} - \left\lfloor \frac{\langle d_2 \rangle}{10} \right\rfloor \right) - 1750 \]

This time, we want to find the minimum of this quadratic polynomial. Since the leading coefficient is still negative, the minimum is reached for one of the extreme values \((y/10) = 0\) or \((y/10) = 100\), and we easily check the bound for those values.

We have proven that the algorithm gives us a precise enough answer. Incidentally, the upper bound that we derived tells us that \(a < \frac{10^8}{\langle d \rangle} \leq 10^9\), hence we can compute \(a\) safely as a TEX integer, and even add \(10^9\) to it to ease grabbing of all the digits. The lower bound implies \(10^8 - 1755 < a\), which we do not care about.

Compute the ratio of two extended-precision numbers. The result is an extended-precision number whose first block lies in the range \([100, 9999]\), and is placed after the \(\langle\text{continuation}\rangle\) once we are done. First normalize the inputs so that both first block lie in \([1000, 9999]\), then call \(\text{_fp_ep_div_esti:wwwwn}\) (denominator \(\langle\text{numerator}\rangle\)), responsible for estimating the inverse of the denominator.

The \(\text{esti}\) function evaluates \(\alpha = \frac{10^9}{(\langle d_1 \rangle + 1)}\), which is used twice in the expression for \(a\), and combines the exponents \#1 and \#4 (with a shift by 1 because we later compute \(\langle n \rangle/(10 \langle d \rangle)\)). Then the \(\text{estii}\) function evaluates \(10^9 + a\), and puts the exponent \#2 after the continuation \#7: from there on we can forget exponents and focus on the mantissa. The \(\text{estiii}\) function multiplies the denominator \#7 by \(10^{-8} a\) (obtained as a split into the single digit \#1 and two blocks of 4 digits, \#2#3#4#5 and \#6). The result \(10^{-8} a(d) = (1 - \epsilon)\), and a partially packed \(10^{-9} a\) (as a block of four digits, and five individual digits, not packed by lack of available macro parameters here) are passed to \(\text{_fp_ep_div_epsi:wnNNNNn}\), which computes \(10^{-9} a/(1 - \epsilon)\), that is, \(1/(10 \langle d \rangle)\) and we finally multiply this by the numerator \#8.
The bounds shown above imply that the \texttt{epsi} function's first operand is $(1 - \epsilon)$ with \(\epsilon \in [0, 1.755 \cdot 10^{-5}]\). The \texttt{epsi} function computes \(\epsilon\) as $1 - (1 - \epsilon)$. Since $\epsilon < 10^{-4}$, its first block vanishes and there is no need to explicitly use \#1 (which is 9999). Then \texttt{epsii} evaluates $10^{-9}a/(1 - \epsilon)$ as $(1 + \epsilon^2)(1 + \epsilon)(10^{-9}ae) + 10^{-9}a$. Importantly, we compute $10^{-9}ae$ before multiplying it with the rest, rather than multiplying by \(\epsilon\) and then $10^{-9}ae$, as this second option loses more precision. Also, the combination of \texttt{short mul} and \texttt{div myriad} is both faster and more precise than a simple \texttt{mul}.
76.10 Inverse square root of extended precision numbers

The idea here is similar to division. Normalize the input, multiplying by powers of 100 until we have \(x \in [0.01, 1) \). Then find an integer approximation \(r \in [101, 1003] \) of \(10^{2}/\sqrt{x} \), as the fixed point of iterations of the Newton method: essentially \(r \rightarrow (r + 10^{8}/(x \cdot r))/2 \), starting from a guess that optimizes the number of steps before convergence. In fact, just as there is a slight shift when computing divisions to ensure that some inequalities hold, we replace \(10^{8} \) by a slightly larger number which ensures that \(r^{2}x \geq 10^{4} \). This also causes \(r \in [101, 1003] \). Another correction to the above is that the input is actually normalized to \([0.1, 1)\), and we use either \(10^{8} \) or \(10^{9} \) in the Newton method, depending on the parity of the exponent. Skipping those technical hurdles, once we have the approximation \(r \), we set \(y = 10^{-4}r^{2}x \) (or rather, the correct power of 10 to get \(y \approx 1 \)) and compute \(y^{-1/2} \) through another application of Newton’s method. This time, the starting value is \(z = 1 \), each step maps \(z \rightarrow z(1.5 - 0.5yz^{-2}) \), and we perform a fixed number of steps. Our final result combines \(r \) with \(y^{-1/2} \) as \(x^{-1/2} = 10^{-2}ry^{-1/2} \).

First normalize the input, then check the parity of the exponent \#1. If it is even, the result’s exponent will be \(-#1/2\), otherwise it will be \((#1 - 1)/2\) (except in the case where the input was an exact power of 100). The auxii function receives as \#1 the result’s exponent just computed, as \#2 the starting value for the iteration giving \(r \) (the values 168 and 535 lead to the least number of iterations before convergence, on average), as \#3 and \#4 one empty argument and one 0, depending on the parity of the original exponent, as \#5 and \#6 the normalized mantissa (\#5 \in \([1000, 9999]\)), and as \#7 the continuation. It sets up the iteration giving \(r \): the esti function receives the initial two guesses \#2 and 0, an approximation \#5 of 10^4x (its first block of digits), and the empty/zero arguments \#3 and \#4, followed by the mantissa and an altered continuation where we have stored the result’s exponent.

\[
\begin{align*}
__fp_ep_isqrt:wwn &\cs_new:Npn __fp_ep_isqrt:wwn \#1,#2; \\
__fp_ep_isqrt:wwn &\{ \\
__fp_ep_to_ep:wwN \#1,#2; \\
__fp_ep_isqrt_auxi:wwn \\
\} \\
__fp_ep_isqrt:wwn &\cs_new:Npn __fp_ep_isqrt_auxi:wwn \#1, \\
__fp_ep_isqrt:wwn &\{ \\
\exp_after:wN __fp_ep_isqrt_auxii:wwnnnn \\
\int_value:w __fp_int_eval:w \\
\int_if_odd:nTF \#1 \\
\{ \{1 - \#1\}/2 , 535 , \{0\}\{\}\} \\
\{1 - \#1\}/2 , 168 , \{0\}\{0\}\} \\
\} \\
__fp_ep_isqrt:wwn &\cs_new:Npn __fp_ep_isqrt_auxii:wwnnnn \#1, \#2, \#3#4 \#5#6; \#7 \\
__fp_ep_isqrt:wwn &\{ \\
__fp_ep_isqrt_esti:wwnnnn \#1, \#2, \#3#4 \#5#6 \#7 \\
__fp_ep_isqrt_esti:wwnnnn \#1, \#2, \#3#4 \#5#6; \#7 \\
__fp_ep_isqrt_esti:wwnnnn \#1, \#2, \#3#4 \#5#6; \#7 \\
__fp_ep_isqrt_esti:wwnnnn \#1, \#2, \#3#4 \#5#6; \#7 \\
\end{align*}
\]

(End of definition for __fp_ep_isqrt:wwn, __fp_ep_isqrt_auxi:wwn, and __fp_ep_isqrt_auxii:wwnnnn.)

If the last two approximations gave the same result, we are done: call the estii function to clean up. Otherwise, evaluate \((\langle\text{prev}\rangle + 1.005 \cdot 10^{8} \text{or} 5/(\langle\text{prev}\rangle \cdot x))/2\), as the next approximation: omitting the 1.005 factor, this would be Newton’s method. We can
check by brute force that if \#4 is empty (the original exponent was even), the process computes an integer slightly larger than \(100/\sqrt{x}\), while if \#4 is 0 (the original exponent was odd), the result is an integer slightly larger than \(100/\sqrt{x}/10\). Once we are done, we evaluate \(100r^2/2\) or \(10r^2\) (when the exponent is even or odd, respectively) and feed that to \texttt{estiii}. This third auxiliary finds \(y_{\text{even}}/2 = 10^{-4}r^2x/2\) or \(y_{\text{odd}}/2 = 10^{-5}r^2x/2\) (again, depending on earlier parity). A simple program shows that \(y \in [1, 1.0201]\). The number \(y/2\) is fed to \texttt{_fp_isqrt_epsii:WN}, which computes \(1/\sqrt{y}\), and we finally multiply the result by \(r\).

\begin{verbatim}
\cs_new:Npn _fp_isqrt_esti:wwwnn \#1, \#2, \#3, \#4
{ \if_int_compare:w \#1 = \#2 \exp_stop_f:
\exp_after:wN _fp_isqrt_estii:wwwnn \fi:
\exp_after:wN _fp_isqrt_estii:wwwnn \int_value:w _fp_int_eval:w \(#1 + 1 0050 0000 \#4 / (#1 * \#3)) / 2 , \#1, \#3, \{\#4\}
}
\cs_new:Npn _fp_isqrt_estii:wwwnn \#1, \#2, \#3, \#4\#5
{ \exp_after:wN _fp_isqrt_estiii:NNNNNwwwn \#1#2#3#4#5#6, \#7#8; \#9; }
\cs_new:Npn _fp_isqrt_estiii:NNNNNwwwn \#1#2#3#4#5#6, \#7#8; \#9;
{ _fp_fixed_mul_short:wwn \#9; \{\#1\} \{\#2\} \{\#3\} \{\#4\} \{\#6\} ; _fp_isqrt_epsii:WN _fp_fixed_mul_short:wwn \#7; \{\#8\} \{0000\} ; }
\end{verbatim}

(End of definition for _fp_isqrt_esti:wwwnn, _fp_isqrt_estii:wwwnn, and _fp_isqrt_estiii:NNNNNwwwn.)

Here, we receive a fixed point number \(y/2\) with \(y \in [1, 1.0201]\). Starting from \(z = 1\) we iterate \(z \mapsto z(3/2 - z^2y^2/2)\). In fact, we start from the first iteration \(z = 3/2 - y/2\) to avoid useless multiplications. The \texttt{epsii} auxiliary receives \(z\) as \#1 and \(y\) as \#2.

\begin{verbatim}
\cs_new:Npn _fp_isqrt_epsii:WN \#1;
{ _fp_fixed_sub:wwn \{15000\} \{0000\} \{0000\} \{0000\} \{0000\} \{0000\}; \#1; _fp_isqrt_epsii:WN \#1; _fp_isqrt_epsii:WN \#1; _fp_isqrt_epsii:WN \#1; }
\cs_new:Npn _fp_isqrt_epsii:wwn \#1; \#2;
{ _fp_fixed_mul:wwn \#1; \#1; _fp_fixed_mul_sub_back:wwn \#2; \{15000\} \{0000\} \{0000\} \{0000\} \{0000\} \{0000\}; _fp_fixed_mul:wwn \#1; }
\end{verbatim}

(End of definition for _fp_isqrt_epsii:WN and _fp_isqrt_epsii:wwn.)
76.11 Converting from fixed point to floating point

After computing Taylor series, we wish to convert the result from extended precision (with or without an exponent) to the public floating point format. The functions here should be called within an integer expression for the overall exponent of the floating point.

An extended-precision number is simply a comma-delimited exponent followed by a fixed point number. Leave the exponent in the current integer expression then convert the fixed point number.

\begin{verbatim}
\cs_new:Npn __fp_ep_to_float_o:wwN #1, { + __fp_int_eval:w #1 __fp_fixed_to_float_o:wN #1,2; __fp_ep_to_float_o:wwN 1,00000000000000000000; #1,2; __fp_ep_to_float_o:wwN }
\end{verbatim}

(End of definition for __fp_ep_to_float_o:wwN and __fp_ep_inv_to_float_o:wwN.)

\begin{verbatim}
\cs_new:Npn __fp_ep_inv_to_float_o:wwN #1,#2; { __fp_ep_div:wwwwn 1,\{1000\}0000\{0000\}0000\{0000\}0000; #1,#2; __fp_ep_to_float_o:wwN }
\end{verbatim}

Another function which reduces to converting an extended precision number to a float.

\begin{verbatim}
\cs_new:Npn __fp_fixed_inv_to_float_o:wN { __fp_ep_inv_to_float_o:wwN 0, }
\end{verbatim}

(End of definition for __fp_fixed_inv_to_float_o:wN.)

\begin{verbatim}
\cs_new:Npn __fp_fixed_to_float_rad_o:wN #1; { __fp_fixed_mul:wwn #1; \{5729\}5779\{5130\}8232\{0876\}7981; __fp_ep_to_float_o:wwN 2, }
\end{verbatim}

Converts the fixed point number #1 from degrees to radians then to a floating point number. This could perhaps remain in l3fp-trig.

\begin{verbatim}
\cs_new:Npn __fp_fixed_to_float_o:Nw #1#2; { __fp_fixed_to_float_o:wN #2; #1 }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn __fp_fixed_to_float_o:wN #1#2#3#4#5#6; #7 { % for the 8-digit-at-the-start thing + __fp_int_eval:w \c__fp_block_int \exp_after:wN \exp_after:wN __fp_fixed_to_loop:N 10 Brun...}
\end{verbatim}

And the \texttt{to_fixed} version gives six brace groups instead of 4, ensuring that 1000 ≤ \langle a' \rangle ≤ 9999. At this stage, we know that \langle a_1 \rangle is positive (otherwise, it is sign of an error before), and we assume that it is less than 10^8.\footnote{Bruno: I must double check this assumption.}

\begin{verbatim}
\cs_new:Npn __fp_fixed_to_float_o:Nw #1; { __fp_fixed_to_float_o:wN \langle exponent \rangle __fp_fixed_to_float_o:Nw \{\langle a_1 \rangle \} \{\langle a_2 \rangle \} \{\langle a_3 \rangle \} ; \langle sign \rangle y...}
\end{verbatim}

\begin{verbatim}
\cs_new:Npn __fp_fixed_to_float_o:Nw #1#2; #3; __fp_fixed_to_float_o:Nw #4#5; #6; #7 { % for the 8-digit-at-the-start thing + __fp_int_eval:w \c__fp_block_int \exp_after:wN \exp_after:wN __fp_fixed_to_loop:N 10...}
\end{verbatim}
\exp_after:wN \use_none:n
\int_value:w __fp_int_eval:w
 1 0000 0000 + \#1 \exp_after:wN __fp_use_none_stop_f:n
\int_value:w \#2 \exp_after:wN __fp_use_none_stop_f:n
\int_value:w \#3\#4 \exp_after:wN __fp_use_none_stop_f:n
\int_value:w \#5\#6 \exp_after:wN ; \exp_after:wN ;}
\cs_new:Npn __fp_fixed_to_loop:N #1
 { \if_meaning:w 0 #1 - 1 \exp_after:wN __fp_fixed_to_loop:N
 \else: \exp_after:wN __fp_fixed_to_loop_end:w \exp_after:wN #1 \fi:
}\cs_new:Npn __fp_fixed_to_loop_end:w #1 #2 ;
 { \if_meaning:w ; #1 \exp_after:wN __fp_fixed_to_float_zero:w
 \else: \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
 \exp_after:wN __fp_pack_twice_four:wNNNNNNNN
 \exp_after:wN __fp_fixed_to_float_pack:ww
 \exp_after:wN ;
 \fi:
 #1 #2 0000 0000 0000 0000 ;
 }
\cs_new:Npn __fp_fixed_to_float_zero:w ; 0000 0000 0000 0000 ;
 { - 2 * \c__fp_max_exponent_int ; \{0000\} \{0000\} \{0000\} \{0000\} ;
}\cs_new:Npn __fp_fixed_to_float_pack:ww #1 ; #2#3 ; ;
 { \if_int_compare:w #2 > 4 \exp_stop_f:
 \exp_after:wN __fp_fixed_to_float_round_up:wnnnnw
 \fi:
 ; \#1 ;
 }
\cs_new:Npn __fp_fixed_to_float_round_up:wnnnnw ; \#1\#2\#3\#4 ;
 { \exp_after:wN __fp_basics_pack_high:NNNNNw
 \int_value:w __fp_int_eval:w 1 \#1\#2
 \exp_after:wN __fp_basics_pack_low:NNNNNw
 \int_value:w __fp_int_eval:w 1 \#3\#4 + 1 ;
 }

(End of definition for __fp_fixed_to_float_o:wN and __fp_fixed_to_float_o:Nw.)
\package
Chapter 77

l3fp-expo implementation

Unary functions.

__fp_parse_word_exp:N
__fp_parse_word_ln:N
__fp_parse_word_fact:N

(End of definition for __fp_parse_word_exp:N, __fp_parse_word_ln:N, and __fp_parse_word_fact:N.)

77.1 Logarithm

77.1.1 Work plan

As for many other functions, we filter out special cases in __fp Ln_o:w. Then __fp Ln_pos_o:w receives a positive normal number, which we write in the form $a \cdot 10^b$ with $a \in [0.1, 1)$.

The rest of this section is actually not in sync with the code. Or is the code not in sync with the section? In the current code, $c \in [1, 10]$ is such that $0.7 \leq ac < 1.4$.

We are given a positive normal number, of the form $a \cdot 10^b$ with $a \in [0.1, 1)$. To compute its logarithm, we find a small integer $5 \leq c < 50$ such that $0.91 \leq ac^5 < 1.1$, and use the relation

$$\ln(a \cdot 10^b) = b \cdot \ln(10) - \ln(c/5) + \ln(ac/5).$$

The logarithms $\ln(10)$ and $\ln(c/5)$ are looked up in a table. The last term is computed using the following Taylor series of \ln near 1:

$$\ln\left(\frac{ac}{5}\right) = \ln\left(\frac{1+t}{1-t}\right) = 2t \left(1 + t^2 \left(\frac{1}{3} + t^2 \left(\frac{1}{5} + t^2 \left(\frac{1}{7} + t^2 \left(\frac{1}{9} + \cdots \right) \right) \right) \right)$$
where \(t = 1 - 10/(ac + 5) \). We can now see one reason for the choice of \(ac \sim 5 \): then \(ac + 5 = 10(1 - \epsilon) \) with \(-0.05 < \epsilon \leq 0.045\), hence

\[
t = \frac{\epsilon}{1 - \epsilon} = \epsilon(1 + \epsilon)(1 + \epsilon^2)(1 + \epsilon^4) \ldots,
\]

is not too difficult to compute.

77.1.2 Some constants

A few values of the logarithm as extended fixed point numbers. Those are needed in the implementation. It turns out that we don’t need the value of \(\ln(5) \).

\[
\begin{align*}
\text{tl_const:Nn} \c__fp_ln_i_fixed_tl & { {0000}{0000}{0000}{0000}{0000}{0000};} \\
\text{tl_const:Nn} \c__fp_ln_ii_fixed_tl & { {6931}{4718}{0559}{9453}{0941}{7232};} \\
\text{tl_const:Nn} \c__fp_ln_iii_fixed_tl & { {10986}{1228}{8668}{0196}{9139}{5245};} \\
\text{tl_const:Nn} \c__fp_ln_iv_fixed_tl & { {13862}{9436}{1119}{8906}{1883}{4464};} \\
\text{tl_const:Nn} \c__fp_ln_v_fixed_tl & { {17917}{5946}{9228}{0550}{0081}{2477};} \\
\text{tl_const:Nn} \c__fp_ln_vi_fixed_tl & { {19459}{1014}{9055}{3133}{0510}{5353};} \\
\text{tl_const:Nn} \c__fp_ln_vii_fixed_tl & { {20794}{4154}{1679}{8359}{2825}{1696};} \\
\text{tl_const:Nn} \c__fp_ln_viii_fixed_tl & { {21972}{2457}{7336}{2193}{8279}{0490};} \\
\text{tl_const:Nn} \c__fp_ln_ix_fixed_tl & { {23025}{8509}{2994}{0456}{8401}{7991};}
\end{align*}
\]

(End of definition for \c__fp_ln_i_fixed_tl and others.)

77.1.3 Sign, exponent, and special numbers

The logarithm of negative numbers (including \(-\infty\) and \(-0\)) raises the “invalid” exception. The logarithm of \(+0\) is \(-\infty\), raising a division by zero exception. The logarithm of \(+\infty\) or a \text{nan} is itself. Positive normal numbers call _fp_ln_npos_o:w.

\[
\begin{align*}
\text{cs_new:Npn} __fp_ln_o:w \#1 \text{ s__fp } __fp_chk:w \#2\#3\#4; & \text{ 0} \\
\text{if_meaning:w} & 2 \#3 \\
__fp_case_use:nw & { __fp_invalid_operation_o:nw \{ \text{ln} \}} \\
\text{fi:} \\
\text{if_case:w} & 2 \text{ \exp_stop_f:} \\
__fp_case_use:nw & { __fp_division_by_zero_o:Nnw \text{c_minus_inf_fp} \{ \text{ln} \}} \\
\text{or:} \\
\text{else:} \\
__fp_case_return_same_o:w \\
\text{fi:} \\
__fp_ln_npos_o:w & \text{s__fp } __fp_chk:w \#2\#3\#4;
\end{align*}
\]

(End of definition for __fp_ln_o:w.)

77.1.4 Absolute \text{ln}

We catch the case of a significand very close to 0.1 or to 1. In all other cases, the final result is at least \(10^{-4} \), and then an error of \(0.5 \cdot 10^{-20} \) is acceptable.

\[
\begin{align*}
\text{cs_new:Npn} __fp_ln_npos_o:w & \text{s__fp } __fp_chk:w \text{10#1#2#3;} \\
\text{\%\%} & \text{A todo: ln(1) should be "exact zero", not "underflow"} \\
\text{exp_after:wN} & __fp sanitize:Nw
\end{align*}
\]
This function expands to

\text{continuation} \{(Y_1)\} \{(Y_2)\} \{(Y_3)\} \{(Y_4)\} \{(Y_5)\} \{(Y_6)\} ;

where \(Y = -\ln(X)\) as an extended fixed point.

We have thus found \(c \in [1, 10]\) such that \(0.7 \leq ac < 1.4\) in all cases. Compute \(1 + x = 1 + ac \in [1.7, 2.4]\).
\int_value:w _fp_int_eval:w 10 0000 0000 + #1*#4#5 ;
{00000} {0000} {0000} {0000}
\cs_new:Npn __fp_ln_x_iii:NNNNNw #1#2 #3#4#5#6 #7;
{ #1#2; {#3#4#5#6} {#7} }
\cs_new:Npn __fp_ln_x_iii_var:NNNNNw #1 #2#3#4#5 #6;
{
#1#2#3#4#5 + 1 ;
{#1#2#3#4#5} {#6}
}
\endinput

The Taylor series to be used is expressed in terms of $t = \frac{x - 1}{x + 1} = 1 - \frac{2}{x + 1}$. We now compute the quotient with extended precision, reusing some code from __fp_/_o:ww. Note that $1 + x$ is known exactly.

To re-use notations from l3fp-basics, we want to compute A/Z with $A = 2$ and $Z = x + 1$. In l3fp-basics, we considered the case where both A and Z are arbitrary, in the range $[0.1, 1)$, and we had to monitor the growth of the sequence of remainders A, B, C, \ldots to ensure that no overflow occurred during the computation of the next quotient. The main source of risk was our choice to define the quotient as roughly $10^9 \cdot A/10^5 \cdot Z$: then A was bound to be below $2.147 \ldots$, and this limit was never far.

In our case, we can simply work with $10^8 \cdot A$ and $10^4 \cdot Z$, because our reason to work with higher powers has gone: we needed the integer $y = 10^5 \cdot Z$ to be at least 10^4, and now, the definition $y \approx 10^4 \cdot Z$ suffices.

Let us thus define $y = \lceil 10^4 \cdot Z \rceil + 1 \in (1.7 \cdot 10^4, 2.4 \cdot 10^4]$, and

$$Q_1 = \left\lfloor \frac{10^8 \cdot A}{y} - \frac{1}{2} \right\rfloor.$$ (The $1/2$ comes from how ε-TeX rounds.) As for division, it is easy to see that $Q_1 \leq 10^4 A/Z$, i.e., Q_1 is an underestimate.

Exactly as we did for division, we set $B = 10^4 A - Q_1 Z$. Then

$$10^4 B \leq A_1 A_2 A_3 A_4 - \left(\frac{A_1 A_2}{y} - \frac{3}{2} \right) 10^4 Z \leq A_1 A_2 \left(1 - \frac{10^4 Z}{y} \right) + 1 + \frac{3}{2} y \leq 10^8 \frac{A}{y} + 1 + \frac{3}{2} y$$

1139
In the same way, and using $1.7 \cdot 10^4 \leq y \leq 2.4 \cdot 10^4$, and convexity, we get

\[
\begin{align*}
10^4 A &= 2 \cdot 10^4 \\
10^4 B &\leq 10^8 \frac{A}{y} + 1.6 y \leq 4.7 \cdot 10^4 \\
10^4 C &\leq 10^8 \frac{B}{y} + 1.6 y \leq 5.8 \cdot 10^4 \\
10^4 D &\leq 10^8 \frac{C}{y} + 1.6 y \leq 6.3 \cdot 10^4 \\
10^4 E &\leq 10^8 \frac{D}{y} + 1.6 y \leq 6.5 \cdot 10^4 \\
10^4 F &\leq 10^8 \frac{E}{y} + 1.6 y \leq 6.6 \cdot 10^4
\end{align*}
\]

Note that we compute more steps than for division: since t is not the end result, we need to know it with more accuracy (on the other hand, the ending is much simpler, as we don’t need an exact rounding for transcendental functions, but just a faithful rounding).

\[
\text{The number is } x. \text{ Compute } y \text{ by adding 1 to the five first digits.}
\]

\[
\begin{align*}
&\text{\texttt{\textbackslash cs_new:Npn \textbackslash __fp_ln_x_iv:wnnnnnnn \{1 or 2\} \{8d\} ; \{\langle4d\rangle\} \{\langle4d\rangle\} \{\texttt{\textbackslash fixed-tl}\} \{\text{\textbackslash exp_after:wN __fp_div_significand_calc:wwnnnnnnn \textbackslash int_value:w __fp_int_eval:w 999999 + 2 0000 0000 / #1 \ ; \% Q1 \textbackslash exp_after:wN __fp_div_significand_calc:wwnnnnnnn \textbackslash int_value:w __fp_int_eval:w 999999 + #2 #3 / #1 \ ; \% Q2 \textbackslash exp_after:wN __fp_div_significand_calc:wwnnnnnnn \textbackslash int_value:w __fp_int_eval:w 999999 + #2 #3 \ ;}}}
\end{align*}
\]

1140
We now have essentially
__fp_ln_div_after:Nw \langle fixed tl \rangle
__fp_div_significand_pack:NNN 10^6 + Q_1
__fp_div_significand_pack:NNN 10^6 + Q_2
__fp_div_significand_pack:NNN 10^6 + Q_3
__fp_div_significand_pack:NNN 10^6 + Q_4
__fp_div_significand_pack:NNN 10^6 + Q_5
__fp_div_significand_pack:NNN 10^6 + Q_6;
\langle exponent \rangle; \langle continuation \rangle

where \langle fixed tl \rangle holds the logarithm of a number in \([1, 10] \), and \langle exponent \rangle is the exponent. Also, the expansion is done backwards. Then __fp_div_significand_pack:NNN puts things in the correct order to add the \(Q_i \) together and put semicolons between each piece. Once those have been expanded, we get
__fp_ln_div_after:Nw \langle fixed-tl \rangle (1d); (4d); (4d); (4d); (4d); (4d); (4d); (4d); (exponent);

Just as with division, we know that the first two digits are 1 and 0 because of bounds on the final result of the division \(2/(x+1) \), which is between roughly 0.8 and 1.2. We then compute \(1 - 2/(x+1) \), after testing whether \(2/(x+1) \) is greater than or smaller than 1.
\cs_new:Npn __fp_ln_div_after:Nw #1#2;
{\if_meaning:w 0 #2 \exp_after:wN __fp_ln_t_small:Nw \else: \exp_after:wN __fp_ln_t_large:NNw \exp_after:wN - \fi: \int_value:w \int_eval:w 9999 - #2 \exp_after:wN ; \int_value:w \int_eval:w 9999 - #3 \exp_after:wN ; \int_value:w \int_eval:w 9999 - #4 \exp_after:wN ; \int_value:w \int_eval:w 9999 - #5 \exp_after:wN ; \int_value:w \int_eval:w 1 0000 - #6 \exp_after:wN ; \int_value:w \int_eval:w 9999 - #7 \exp_after:wN ; \int_value:w \int_eval:w 9999 - #8 \exp_after:wN ; }\exp_after:wN __fp_ln_t_large:NNw \langle sign \rangle \langle fixed tl \rangle \langle t_1 \rangle; \langle t_2 \rangle; \langle t_3 \rangle; \langle t_4 \rangle; \langle t_5 \rangle; \langle t_6 \rangle; \langle exponent \rangle; \langle continuation \rangle

Compute the square \(t^2 \), and keep \(t \) at the end with its sign. We know that \(t < 0.1765 \), so every piece has at most 4 digits. However, since we were not careful in __fp_ln_t_small:w, they can have less than 4 digits.
\cs_new:Npn __fp_ln_t_large:NNw #1 #2 #3; #4; #5; #6; #7; #8;
{
\exp_after:wN __fp_ln_square_t_after:w
\int_value:w __fp_int_eval:w 9999 0000 + #3*#3
\exp_after:wN __fp_ln_square_t_pack:NNNNNw
\int_value:w __fp_int_eval:w 9999 0000 + 2*#3*#4
\exp_after:wN __fp_ln_square_t_pack:NNNNNw
\int_value:w __fp_int_eval:w 9999 0000 + 2*#3*#5 + #4*#4
\exp_after:wN __fp_ln_square_t_pack:NNNNNw
\int_value:w __fp_int_eval:w 9999 0000 + 2*#3*#6 + 2*#4*#5
\exp_after:wN __fp_ln_square_t_pack:NNNNNw
\int_value:w __fp_int_eval:w 1 0000 0000 + 2*#3*#7 + 2*#4*#6 + #5*#5
+ (2*#3*#8 + 2*#4*#7 + 2*#5*#6) / 1 0000
\exp_after:wN __fp_ln_twice_t_after:w
\int_value:w __fp_int_eval:w -1 + 2*#3
\exp_after:wN __fp_ln_twice_t_pack:Nw
\int_value:w __fp_int_eval:w 9999 + 2*#4
\exp_after:wN __fp_ln_twice_t_pack:Nw
\int_value:w __fp_int_eval:w 9999 + 2*#5
\exp_after:wN __fp_ln_twice_t_pack:Nw
\int_value:w __fp_int_eval:w 9999 + 2*#6
\exp_after:wN __fp_ln_twice_t_pack:Nw
\int_value:w __fp_int_eval:w 9999 + 2*#7
\exp_after:wN __fp_ln_twice_t_pack:Nw
\int_value:w __fp_int_eval:w 10000 0000 + 2*#8
__fp_ln_c:NwNw \@ #1 \@ \@ #2 \}
\cs_new:Npn __fp_ln_twice_t_pack:Nw #1 #2; { + #1 ; {#2} }
\cs_new:Npn __fp_ln_twice_t_pack:Nw #1 #2; { + #1 ; {#2} }
\cs_new:Npn __fp_ln_twice_t_pack:Nw #1 #2; { + #1 ; {#2} }
\cs_new:Npn __fp_ln_twice_t_pack:Nw #1 #2; { + #1 ; {#2} }
\cs_new:Npn __fp_ln_twice_t_pack:Nw #1 #2; { + #1 ; {#2} }
\cs_new:Npn __fp_ln_c:NwNw \@ #1 \@ \@ __fp_taylor:wwNw \@ {0\@ \@ #3 \@ \@ \@ \@ #4 \} }
____fp_ln_Taylor:wwNw (End of definition for ____fp_ln_x_ii:wwnnn.)
____fp_ln_Taylor:wwNw Denoting T = t^2, we get
____fp_ln_Taylor:wwNw
\{ \{(T_0)\} \{(T_2)\} \{(T_4)\} \{(T_6)\} \{(T_8)\} \} \{ \{(2t_1)\} \{(2t_2)\} \{(2t_3)\} \{(2t_4)\} \{(2t_5)\} \{(2t_6)\} \} \}
\{ ____fp_ln_c:wwNw (sign) \}
\{ (fixed t_1) \{ exponent \} \} \{ continuation \}

And we want to compute
\begin{align*}
\ln \left(\frac{1+t}{1-t} \right) &= 2t \left(1 + T \left(\frac{1}{3} + T \left(\frac{1}{5} + T \left(\frac{1}{7} + T \left(\frac{1}{9} + \cdots \right) \right) \right) \right)
\end{align*}

The process looks as follows
\loop 5; A; \\
\div_int 5; 1.0; \add A; \mul T; \{\loop \eval 5-2;\} \\
\add 0.2; A; \mul T; \{\loop \eval 5-2;\} \\
\mul B; T; \{\loop 3;\} \\
\loop 3; C;

This uses the routine for dividing a number by a small integer (< 10^4).

\cs_new:Npn __fp_ln_Taylor:wwNw \\
\cs_new:Npn __fp_ln_Taylor_loop:www #1; {0000}{0000}{0000}{0000} ; } \\
\cs_new:Npn __fp_ln_Taylor_loop:www #1; #2; #3; \\
{ \\
\if_int_compare:w #1 = \c_one_int \\
__fp_ln_Taylor_break:w \\
\fi: \\
\exp_after:wN __fp_fixed_div_int:wwN \c__fp_one_fixed_tl #1; \\
__fp_fixed_add:wwN \c__fp_one_fixed_tl #2; \\
__fp_fixed_mul:wwN #3; \\
\exp_after:wN __fp_ln_Taylor_loop:www \\
\int_value:w __fp_int_eval:w #1 - 2 ; \\
\} \\
#3; \\
} \\
\cs_new:Npn __fp_ln_Taylor_break:w \fi: #1 __fp_fixed_add:wwN #2#3 ; #4 ;; \\
\exp_after:wN __fp_fixed_mul:wwN \\
\exp_after:wN __fp_fixed_add:wwN \int_value:w __fp_int_eval:w 10000 + #2 } #3; \\
(End of definition for __fp_ln_Taylor:wwNw.)

__fp_ln_c:NwNw __fp_ln_c:NwNw \langle sign \rangle \\
\langle r_1 \rangle \langle r_2 \rangle \langle r_3 \rangle \langle r_4 \rangle \langle r_5 \rangle ; \\
\langle fixed tl \rangle \langle exponent \rangle ; \langle continuation \rangle

We are now reduced to finding \(\ln(c)\) and \(\langle exponent \rangle \ln(10)\) in a table, and adding it to the mixture. The first step is to get \(\ln(c) - \ln(x) = -\ln(a)\), then we get \(b\langle exponent \rangle\ln(10)\) and add or subtract.

For now, \(\ln(x)\) is given as \(-10^9\). Unless both the exponent is 1 and \(c = 1\), we shift to working in units of \(-10^4\), since the final result is at least \(\ln(10/7) \approx 0.35\).

\cs_new:Npn __fp_ln_c:NwNw #1 #2; #3 \\
{ \\
\if_meaning:w + #1 \\
\exp_after:wN \exp_after:wN \exp_after:wN __fp_fixed_sub:wwN \\
\else: \\
\exp_after:wN \exp_after:wN \exp_after:wN __fp_fixed_add:wwN \\
\fi: \\
#3 #2 ; \\
(End of definition for __fp_ln_c:NwNw.)
Compute \(\langle\text{exponent}\rangle\) times \(\ln(10)\). Apart from the cases where \(\langle\text{exponent}\rangle\) is 0 or 1, the result is necessarily at least \(\ln(10) \approx 2.3\) in magnitude. We can thus drop the least significant 4 digits. In the case of a very large (positive or negative) exponent, we can (and we need to) drop 4 additional digits, since the result is of order \(10^4\). Naively, one would think that in both cases we can drop 4 more digits than we do, but that would be slightly too tight for rounding to happen correctly. Besides, we already have addition and subtraction for 24 digits fixed point numbers.

```
\cs_new:Npn \__fp_ln_exponent:wn #1; #2
  {\__fp_case_return:nw { \__fp_fixed_to_float_o:Nw 2 }
   \or:
   \exp_after:wN \__fp_ln_exponent_one:ww \int_value:w
   \else:
   \if_int_compare:w #2 > \c_zero_int
   \exp_after:wN \__fp_ln_exponent_small:NNww
   \else:
   \exp_after:wN \__fp_ln_exponent_small:NNww
   \exp_after:wN 2
   \exp_after:wN \__fp_fixed_sub:wwn \int_value:w
   \fi:
   \fi:
   #2; #1;
}
```

Now we painfully write all the cases.¹¹ No overflow nor underflow can happen, except when computing \(\ln(1)\).

```
\cs_new:Npn \__fp_ln_exponent_one:ww 1; #1;
{ 0 \__fp_case_return:nw { \__fp_fixed_to_float_o:Nw 2 }
 \exp_after:wN \__fp_ln_exponent_small:NNww
 \exp_after:wN 0
 \exp_after:wN \__fp_fixed_sub:wwn \int_value:w
 \exp_after:wN \__fp_fixed_add:wwn \int_value:w -
 \fi:
 \fi:
 #2; #1;
}
```

For small exponents, we just drop one block of digits, and set the exponent of the log to 4 (minus any shift coming from leading zeros in the conversion from fixed point to floating point). Note that here the exponent has been made positive.

```
\cs_new:Npn \__fp_ln_exponent_small:NNww #1#2#3; #4#5#6#7#8#9;
{ 4 \__fp_fixed_mul:wwn
 \c__fp_ln_x_fixed_tl
 \exp_after:wN \__fp_fixed_to_float_o:wN 0
 \__fp_fixed_to_float_o:wN #1
}
```

¹¹ Bruno: do rounding.
77.2 Exponential

77.2.1 Sign, exponent, and special numbers

_fp_exp_o:w

\cs_new:Npn _fp_exp_o:w \s__fp _fp_chk:w #2#3#4; \0
{\if_case:w #2 \exp_stop_f:
 _fp_case_return_o:Nw \c_one_fp
\or:
 \exp_after:wN _fp_exp_normal_o:w
\or:
 \if_meaning:w 0 #3
 \exp_after:wN _fp_case_return_o:Nw
 \else:
 \exp_after:wN _fp_case_return_same_o:w
 \fi:
\s__fp _fp_chk:w #2#3#4;}

(End of definition for _fp_exp_o:w.)

_fp_exp_normal_o:w
_fp_exp_pos_o:NNnw
_fp_exp_overflow:NN

\cs_new:Npn _fp_exp_normal_o:w \s__fp _fp_chk:w 1#1
{\if_meaning:w 0 #1
 _fp_exp_pos_o:NNnw + _fp_fixed_to_float_o:wN
\else:
 _fp_exp_pos_o:NNnw - _fp_fixed_inv_to_float_o:wN
\fi:
\cs_new:Npn _fp_exp_pos_o:NNnw _fp_exp_pos_o:NNnw #1#2#3 \fi: \#4#5;
{\fi:
 _fp_max_exp_exponent_int
 \token_if_eq_charcode:NNTF + \c_inf_fp
 _fp_overflow:NN _fp_overflow:w \c_inf_fp
 _fp_underflow:NN \c_zero_fp
 \exp:w
 \else:
 _fp_sanitize:Nw
 \exp_after:wN _fp_sanitize:Nw
 \exp_after:wN 0 \int_value:w #1 _fp_int_eval:w
 \if_int_compare:w #4 > \c_zero_int
 _fp_int_eval:w \#4 _fp_int_eval:w
 \else:
 _fp_int_eval:w \#1 _fp_int_eval:w
 \exp_after:wN \use_i:nn
 \else:

(End of definition for _fp_exp_o:w.)
This function is called for numbers in the range \([10^{-9}, 10^{-1})\). We compute 10 terms of the Taylor series. The first argument is irrelevant (rounding digit used by some other functions). The next three arguments, at least 16 digits, delimited by a semicolon, form a fixed point number, so we pack it in blocks of 4 digits.
\c__fp_exp_intarray

The integer array has \(6 \times 9 \times 4 = 216\) items encoding the values of \(\exp(j \times 10^i)\) for \(j = 1, \ldots, 9\) and \(i = -1, \ldots, 4\). Each value is expressed as \(\approx 10^p \times m_1 m_2 m_3\) with three 8-digit blocks \(m_1, m_2, m_3\) and an integer exponent \(p\) (one more than the scientific exponent), and these are stored in the integer array as four items: \(p, 10^8 + m_1, 10^8 + m_2, 10^8 + m_3\). The various exponentials are stored in increasing order of \(j \times 10^i\).

Storing this data in an integer array makes it slightly harder to access (slower, too), but uses 16 bytes of memory per exponential stored, while storing as tokens used around 40 tokens; tokens have an especially large footprint in Unicode-aware engines.

\intarray_const_from_clist:Nn \c__fp_exp_intarray

__fp_exp_large_after:wwn
__fp_exp_large:NNw
__fp_exp_intarray:w
__fp_exp_intarray_aux:w

The first two arguments are irrelevant (a rounding digit, and a brace group with 8 zeros). The third argument is the integer part of our number, then we have the decimal part delimited by a semicolon, and finally the exponent, in the range \([0, 5]\). Remove leading zeros from the integer part: putting \#4 in there too ensures that an integer part of 0 is also removed. Then read digits one by one, looking up \(\exp(\langle digit\rangle \cdot 10^{\langle exponent\rangle})\) in a table, and multiplying that to the current total. The loop is done by __fp_exp_large:NwN, whose \#1 is the \(\langle\text{exponent}\rangle\), \#2 is the current mantissa, and \#3 is the \(\langle\text{digit}\rangle\). At the end, __fp_exp_large_after:wwn moves on to the Taylor series, eventually multiplied with the mantissa that we have just computed.

\cs_new:Npn __fp_exp_pos_large:NnnNwn #1#2#3 #4#5; #6
\cs_new:Npn __fp_exp_large:NwN #1#2; #3
Power

Raising a number a to a power b leads to many distinct situations.

<table>
<thead>
<tr>
<th>a^b</th>
<th>$-\infty$</th>
<th>$(-\infty, 0)$</th>
<th>$-\text{integer}$</th>
<th>± 0</th>
<th>$+\text{integer}$</th>
<th>$(0, \infty)$</th>
<th>$+\infty$</th>
<th>nan</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+\infty$</td>
<td>$+\infty$</td>
<td>$+\infty$</td>
<td>$+\infty$</td>
<td>$+\infty$</td>
<td>$+\infty$</td>
<td>$+\infty$</td>
<td>$+\infty$</td>
<td>$+\infty$</td>
</tr>
<tr>
<td>$(1, \infty)$</td>
<td>$+0$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
</tr>
<tr>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
</tr>
<tr>
<td>$(0, 1)$</td>
<td>$+\infty$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
</tr>
<tr>
<td>$+0$</td>
<td>$+\infty$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
<td>$+1$</td>
</tr>
<tr>
<td>0</td>
<td>$+\infty$</td>
<td>$+0$</td>
<td>$+0$</td>
<td>$+0$</td>
<td>$+0$</td>
<td>$+0$</td>
<td>$+0$</td>
<td>$+0$</td>
</tr>
<tr>
<td>$(-1, 0)$</td>
<td>$+\text{nan}$</td>
<td>$(-1)^b\infty$</td>
<td>$+1$</td>
<td>$(-1)^b0$</td>
<td>$+0$</td>
<td>$+0$</td>
<td>$+0$</td>
<td>$+0$</td>
</tr>
<tr>
<td>$(-1, 1)$</td>
<td>$+\text{nan}$</td>
<td>$(-1)^b</td>
<td>b</td>
<td>$</td>
<td>$+1$</td>
<td>$(-1)^b</td>
<td>b</td>
<td>$</td>
</tr>
<tr>
<td>$(-\infty, -1)$</td>
<td>$+\text{nan}$</td>
<td>$(-1)^b</td>
<td>b</td>
<td>$</td>
<td>$+1$</td>
<td>$(-1)^b</td>
<td>b</td>
<td>$</td>
</tr>
<tr>
<td>$-\text{nan}$</td>
<td>$+\text{nan}$</td>
<td>$(-1)^b\text{nan}$</td>
<td>$+1$</td>
<td>$(-1)^b\text{nan}$</td>
<td>nan</td>
<td>nan</td>
<td>nan</td>
<td>nan</td>
</tr>
</tbody>
</table>

We distinguished in this table the cases of finite (positive or negative) integer exponents, as $(-1)^b$ is defined in that case. One peculiarity of this operation is that $\text{nan}^0 = 1\text{nan} = 1$, because this relation is obeyed for any number, even $\pm\infty$.

We crammed most of the tests into a single function to save csnames. First treat the case $b = 0$: $a^0 = 1$ for any a, even nan. Then test the sign of a.

\texttt{__fp\^_o:ww}
If it is positive, and \(a \) is a normal number, call \(__fp_pow_normal_o:ww \) followed by the two \(__fp_a \) and \(__fp_b \). For \(a = +0 \) or \(+\infty \), call \(__fp_pow_zero_or_inf:ww \) instead, to return either \(+0\) or \(+\infty\) as appropriate.

If \(a \) is a \texttt{nan}, then skip to the next semicolon (which happens to be conveniently the end of \(b \)) and return \texttt{nan}.

Finally, if \(a \) is negative, compute \(a^b \) (\(__fp_pow_normal_o:ww \) which ignores the sign of its first operand), and keep an extra copy of \(a \) and \(b \) (the second brace group, containing \{ \(a \ b \) \}, is inserted between \(a \) and \(b \)). Then do some tests to find the final sign of the result if it exists.

\begin{verbatim}
\cs_new:cpn { _fp_\^_o:ww }
 __fp __fp_chk:w #1#2#3; __fp __fp_chk:w #4#5#6;
 \{}\if_meaning:w 0 #4
 _fp_case_return_o:Nw \c_one_fp \fi:
 \if_case:w #2 \exp_stop_f:
 \exp_after:wN \use_i:nn \exp_after:wN \\exp_after:wN \use:nn
 \else:
 \exp_after:wN __fp_case_return_o:Nw \c_nan_fp \else:
 \exp_after:wN __fp_pow_neg:www \exp:w \exp_end_continue_f:w \exp_after:wN \use:nn
 \fi:
 \{}\if_meaning:w 1 #4
 _fp_case_return_same_o:w \fi:
 \if_meaning:w #1 #4
 _fp_case_return_o:Nw \c_zero_fp \fi:
 \} \else:
 __fp __fp_chk:w #4#5#6; __fp __fp_chk:w #4#5#6;
 \} \}\exp_after:wN \exp_end_continue_f:w

__fp_pow_zero_or_inf:ww

\cs_new:Npn __fp_pow_zero_or_inf:ww
 __fp_chk:w #1#2; __fp __fp_chk:w #3#4
 \{}\if_meaning:w 1 #4
 _fp_case_return_same_o:w \fi:
 \if_meaning:w #1 #4
 _fp_case_return_o:Nw \c_zero_fp \fi:
 \} \exp_after:wN \exp_end_continue_f:w

__fp_pow_zero_or_inf:ww

\cs_new:fpm __fp_pow_zero_or_inf:ww
 __fp __fp_chk:w #1#2; __fp __fp_chk:w #3#4
 \{}\if_meaning:w 1 #4
 _fp_case_return_same_o:w \fi:
 \if_meaning:w #1 #4
 _fp_case_return_o:Nw \c_zero_fp \fi:
 \} \exp_after:wN \exp_end_continue_f:w

(End of definition for __fp_\^_o:ww.)

__fp_pow_zero_or_inf:ww

Raising \(-0 \) or \(-\infty \) to \texttt{nan} yields \texttt{nan}. For other powers, the result is \(+0\) if \(0 \) is raised to a positive power or \(\infty \) to a negative power, and \(+\infty\) otherwise. Thus, if the type of \(a \) and the sign of \(b \) coincide, the result is \(0 \), since those conveniently take the same possible values, \(0 \) and \(2 \). Otherwise, either \(a = \pm\infty \) and \(b > 0 \) and the result is \(+\infty\), or \(a = \pm0 \) with \(b < 0 \) and we have a division by zero unless \(b = -\infty \).

\begin{verbatim}
\cs_new:fpm __fp_pow_zero_or_inf:ww
 __fp __fp_chk:w #1#2; __fp __fp_chk:w #3#4
 \{}\if_meaning:w 1 #4
 _fp_case_return_same_o:w \fi:
 \if_meaning:w #1 #4
 _fp_case_return_o:Nw \c_zero_fp \fi:
 \} \exp_after:wN \exp_end_continue_f:w

1150
\end{verbatim}
We have in front of us a, and $b \neq 0$, we know that a is a normal number, and we wish to compute $|a|^b$. If $|a| = 1$, we return 1, unless $a = -1$ and b is \texttt{nan}. Indeed, returning 1 at this point would wrongly raise “invalid” when the sign is considered. If $|a| \neq 1$, test the type of b:

0 Impossible, we already filtered $b = \pm 0$.

1 Call \texttt{_fp_pow_npos_o:Nww}.

2 Return $+\infty$ or $+0$ depending on the sign of b and whether the exponent of a is positive or not.

3 Return b.

\texttt{\cs_new:Npn _fp_pow_normal_o:ww}
\texttt{\s__fp _fp_chk:w 1 #1\#3; \s__fp _fp_chk:w #4\#5}
\{
 \if:w 0 _fp_str_if_eq:nn { #2 \#3 } { 1 \{1000\} \{0000\} \{0000\} \{0000\} } \if_int_compare:w #4 #1 = 32 \exp_stop_f:
 \exp_after:wN _fp_case_return_ii_o:ww _fp_case_return_o:Nw \c_one_fp
 \fi:
 _fp_case_return_o:Nw \c_inf_fp
 \else:
 _fp_case_return_o:Nw \c_zero_fp
 \fi:
\}
_fp_case_return_ii_o:ww
We now know that $a
eq \pm 1$ is a normal number, and b is a normal number too. We want to compute $|a|^b = (|x| \cdot 10^n)^y 10^p = \exp((\ln|x| + n \ln(10)) \cdot y \cdot 10^p) = \exp(z)$. To compute the exponential accurately, we need to know the digits of z up to the 16-th position. Since the exponential of 10^5 is infinite, we only need at most 21 digits, hence the fixed point result of $__fp_{ln_o:w}$ is precise enough for our needs. Start an integer expression for the decimal exponent of e^z. If z is negative, negate that decimal exponent, and prepare to take the inverse when converting from the fixed point to the floating point result.

```latex
\_\_fp_{pow\_npos\_aux:NNnw}
The first argument is the conversion function from fixed point to float. Then comes an
exponent and the 4 brace groups of $x$, followed by $b$. Compute $-\ln(x)$.
```
\cs_new:Npn __fp_pow_exponent:Nwnnnnnw #1#2; #3#4#5#6#7#8;
\{ %``A todo: use that in ln.
\exp_after:wN __fp_fixed_mul_after:wn
\int_value:w __fp_int_eval:w \c__fp_leading_shift_int
#1#2*23025 - #1 #3
\exp_after:wN __fp_pack:NNNNNw
\int_value:w __fp_int_eval:w \c__fp_middle_shift_int
#1#2*8509 - #1 #4
\exp_after:wN __fp_pack:NNNNNw
\int_value:w __fp_int_eval:w \c__fp_middle_shift_int
#1#2*2994 - #1 #5
\exp_after:wN __fp_pack:NNNNNw
\int_value:w __fp_int_eval:w \c__fp_middle_shift_int
#1#2*0456 - #1 #6
\exp_after:wN __fp_pack:NNNNNw
\int_value:w __fp_int_eval:w \c__fp_trailing_shift_int
#1 #2*8401 - #1 #7
#1 (#2*7991 - #8) / 1 0000 ; ;
\}
\cs_new:Npn __fp_pow_B:wwN #1#2#3#4#5#6; #7;
\{ \if_int_compare:w #7 < \c_zero_int
\exp_after:wN __fp_pow_C_neg:w \int_value:w -
\else:
\if_int_compare:w #7 < 22 \exp_stop_f:
\exp_after:wN __fp_pow_C_pos:w \int_value:w
\else:
\exp_after:wN __fp_pow_C_overflow:w \int_value:w
\fi:
\fi:
\#7 \exp_after:wN ;
\int_value:w __fp_int_eval:w 10 0000 + #1 __fp_int_eval_end:
#2#3#4#5#6 0000 0000 0000 0000 0000 0000 ; %``A todo: how many 0?
\}
\cs_new:Npn __fp_pow_C_overflow:w #1; #2; #3
\{ + 2 * \c__fp_max_exponent_int
\exp_after:wN __fp_fixed_continue:wn \c__fp_one_fixed_tl
\}
\cs_new:Npn __fp_pow_C_neg:w #1 ; 1
\{ \exp_after:wN \exp_after:wN \exp_after:wN __fp_pow_C_pack:w
\prg_replicate:nnn {#1} {0}
\}
\cs_new:Npn __fp_pow_C_pos:w #1; #2
\{ \exp_after:wN \exp_after:wN \exp_after:wN __fp_pow_C_pack:w
\}
\cs_new:Npn __fp_pow_C_pos_loop:wN #1; #2
\{ __fp_pow_C_pos_loop:wN #1; 1
\}
\cs_new:Npn __fp_pow_C_pos_loop:wn #1; #2
\{ __fp_pow_C_pos_loop:wn #1; 1
\}
\exp_after:wN __fp_pow_C_pack:w
\}
\exp_after:wN __fp_pow_C_pack:w
_fp_pow_npos_aux:NNw

_fp_pow_npos_aux:NNw

This function is followed by three floating point numbers: a^b, $a \in [-\infty, -0]$, and b. If b is an even integer (case -1), $a^b = a^b$. If b is an odd integer (case 0), $a^b = -a^b$, obtained by a call to _fp_pow_neg_aux:NNw. Otherwise, the sign is undefined. This is invalid, unless a^b turns out to be $+0$ or nan, in which case we return that as a^b. In particular, since the underflow detection occurs before _fp_pow_npos_aux:NNw is called, $(-0.1)^{12345.67}$ gives $+0$ rather than complaining that the sign is not defined.

_fp_pow_neg:www
_fp_pow_neg_aux:wNN

This function expects a floating point number, and determines its “parity”. It should be used after if_case:w or in an integer expression. It gives -1 if the number is an even integer, 0 if the number is an odd integer, and 1 otherwise. Zeros and $\pm \infty$ are even
(because very large finite floating points are even), while \texttt{nan} is a non-integer. The sign of normal numbers is irrelevant to parity. After __fp_decimate:nNnnnn the argument \#1 of __fp_pow_neg_case_aux:Nnnn is a rounding digit, 0 if and only if the number was an integer, and \#3 is the 8 least significant digits of that integer.

\begin{verbatim}
\cs_new:Npn __fp_pow_neg_case:w #1#2#3;
{ \if_case:w #1 \exp_stop_f:
 \or: __fp_pow_neg_case_aux:nnnnn #3
 \or: -1
 \else: 1
 \fi:
 \exp_stop_f:
}
\cs_new:Npn __fp_pow_neg_case_aux:nnnnn #1#2#3#4#5
{ \if_int_compare:w #1 > \c__fp_prec_int
 -1
 \else:
 __fp_decimate:nNnnn { __fp_prec_int - \#1 }
 __fp_pow_neg_case_aux:Nnnw
 {#2} {#3} {#4} {#5}
 \fi:
}
\cs_new:Npn __fp_pow_neg_case_aux:Nnnw #1#2#3#4 ;
{ \if_meaning:w 0 #1
 \if_int_odd:w #3 \exp_stop_f:
 0
 \else:
 -1
 \fi:
 \else:
 1
 \fi:
}
\end{verbatim}

(End of definition for __fp_pow_neg_case:w, __fp_pow_neg_case_aux:nnnnn, and __fp_pow_neg_case_aux:Nnnw.)

77.4 Factorial

__fpfact_max_arg_int The maximum integer whose factorial fits in the exponent range is 3248, as \(3249! \approx 10^{10000}\).

\begin{verbatim}
\int_const:Nn __fpfact_max_arg_int { 3248 }
\end{verbatim}

(End of definition for __fpfact_max_arg_int.)

__fpfact_o:w First detect \(\pm 0\) and \(+\infty\) and \texttt{nan}. Then note that factorial of anything with a negative sign (except \(-0\)) is undefined. Then call __fp_small_int:wTF to get an integer as the argument, and start a loop. This is not the most efficient way of computing the factorial, but it works all right. Of course we work with 24 digits instead of 16. It is easy to check that computing factorials with this precision is enough.
\cs_new:Npn __fp_fact_o:w #1 \s__fp __fp_chk:w #2#3#4; @
{
\if_case:w #2 \exp_stop_f:
__fp_case_return_o:Nw \c_one_fp
\or:
\or:
\if_meaning:w 0 #3
\exp_after:wN __fp_case_return_same_o:w
\fi:
\or:
__fp_fact_pos_o:w
\s__fp __fp_chk:w #2 #3 #4 ;
}\fi:
\if_meaning:w 2 #3
__fp_case_use:nw { __fp_invalid_operation_o:fw { fact } }
\fi:
__fp_fact_pos_o:w
__fp_fact_int_o:w
Then check the input is an integer, and call __fp_facorial_int_o:n with that int as an argument. If it's too big the factorial overflows. Otherwise call __fp_sanitize:Nw with a positive sign marker 0 and an integer expression that will mop up any exponent in the calculation.
\cs_new:Npn __fp_fact_pos_o:w #1;
{
__fp_small_int:wTF #1;
{ __fp_fact_int_o:n }
{ __fp_invalid_operation_o:fw { fact } #1; }
}
\cs_new:Npn __fp_fact_int_o:n #1
{
\if_int_compare:w #1 > \c__fp_fact_max_arg_int
__fp_case_return:nw
{ __fp_invalid_operation_o:fw { fact } #1; }
\fi:
\exp_after:wN __fp_sanitize:Nw
\exp_after:wN 0
\int_value:w __fp_int_eval:w __fp_fact_loop_o:w #1 . 4 , { 1 } { } { } { } { } { } ;
}
(End of definition for __fp_fact_o:w.)

__fp_fact_pos_o:w Then check the input is an integer, and call __fp_facorial_int_o:n with that int as an argument. If it’s too big the factorial overflows. Otherwise call __fp_sanitize:Nw with a positive sign marker 0 and an integer expression that will mop up any exponent in the calculation.
\cs_new:Npn __fp_fact_pos_o:w #1;
{
__fp_small_int:wTF #1;
{ __fp_fact_int_o:n }
{ __fp_invalid_operation_o:fw { fact } #1; }
}
\cs_new:Npn __fp_fact_int_o:n #1
{
\if_int_compare:w #1 > \c__fp_fact_max_arg_int
__fp_case_return:nw
{ __fp_invalid_operation_o:fw { fact } #1; }
\fi:
\exp_after:wN __fp_sanitize:Nw
\exp_after:wN 0
\int_value:w __fp_int_eval:w __fp_fact_loop_o:w #1 . 4 , { 1 } { } { } { } { } { } ;
}
(End of definition for __fp_fact_pos_o:w and __fp_fact_int_o:w.)

__fp_fact_loop_o:w The loop receives an integer #1 whose factorial we want to compute, which we progressively decrement, and the result so far as an extended-precision number #2 in the form ⟨exponent⟩⟨mantissa⟩. The loop goes in steps of two because we compute #1*#1-1 as an integer expression (it must fit since #1 is at most 3248), then multiply with the result so far. We don’t need to fill in most of the mantissa with zeros because __fp_ep_mul:wwwwn first normalizes the extended precision number to avoid loss of precision.
When reaching a small enough number simply use a table of factorials less than 10^8. This limit is chosen because the normalization step cannot deal with larger integers.

\begin{verbatim}
\cs_new:Npn __fp_fact_loop_o:w #1 . #2 ;
{\if_int_compare:w #1 < 12 \exp_stop_f:
 __fp_fact_small_o:w #1 \fi:
 \exp_after:wN __fp_ep_mul:wwwwn
 \exp_after:wN 4 \exp_after:wN ,
 \exp_after:wN \{ \int_value:w __fp_int_eval:w #1 * (#1 - 1) \}
 { } { } { } { } { } ; #2 ;
 { }
 \exp_after:wN __fp_fact_loop_o:w
 \int_value:w __fp_int_eval:w #1 - 2 .
}
\cs_new:Npn __fp_fact_small_o:w #1 \fi: #2 ; #3 ; #4
{\fi:
 \exp_after:wN __fp_ep_mul:wwwwn
 \exp_after:wN 4 \exp_after:wN ,
 \exp_after:wN \{ \int_value:w \if_case:w #1 \exp_stop_f:
 1 \or: 1 \or: 2 \or: 6 \or: 24 \or: 120 \or: 720 \or: 5040
 \or: 40320 \or: 362880 \or: 3628800 \or: 39916800
 \fi:
 { } { } { } { } { } ; #3 ;
 __fp_ep_to_float_o:wwn 0
}
\end{verbatim}

(End of definition for __fp_fact_loop_o:w)

1157
Chapter 78

l3fp-trig implementation

__fp_parse_word_acos:N
__fp_parse_word_acosd:N
__fp_parse_word_acsc:N
__fp_parse_word_acscd:N
__fp_parse_word_asec:N
__fp_parse_word_asecd:N
__fp_parse_word_asin:N
__fp_parse_word_asind:N
__fp_parse_word_cos:N
__fp_parse_word_cosd:N
__fp_parse_word_cot:N
__fp_parse_word_cotd:N
__fp_parse_word_csc:N
__fp_parse_word_cscd:N
__fp_parse_word_sec:N
__fp_parse_word_secd:N
__fp_parse_word_sin:N
__fp_parse_word_sind:N
__fp_parse_word_tan:N
__fp_parse_word_tand:N

Unary functions.

tl_map_inline:nn
\cs_new:cpe { __fp_parse_word_#1:N } { \exp_not:N __fp_parse_unary_function:NNN \exp_not:c { __fp_#1_o:w } \exp_not:N \use_i:nn }
\cs_new:cpe { __fp_parse_word_#1d:N } { \exp_not:N __fp_parse_unary_function:NNN \exp_not:c { __fp_#1_o:w } \exp_not:N \use_ii:nn }

(End of definition for __fp_parse_word_acos:N and others.)

\cs_new:Npn __fp_parse_word_acot:N { __fp_parse_function:NNN __fp_acot_o:w \use_i:nn }
\cs_new:Npn __fp_parse_word_acotd:N { __fp_parse_function:NNN __fp_acot_o:w \use_ii:nn }
\cs_new:Npn __fp_parse_word_atan:N { __fp_parse_function:NNN __fp_atan_o:w \use_i:nn }
\cs_new:Npn __fp_parse_word_atand:N { __fp_parse_function:NNN __fp_atan_o:w \use_ii:nn }

(End of definition for __fp_parse_word_acot:N and others.)

Those functions may receive a variable number of arguments.
78.1 Direct trigonometric functions

The approach for all trigonometric functions (sine, cosine, tangent, cotangent, cosecant, and secant), with arguments given in radians or in degrees, is the same.

- Filter out special cases (± 0, $\pm \infty$ and nan).
- Keep the sign for later, and work with the absolute value $|x|$ of the argument.
- Small numbers ($|x| < 1$ in radians, $|x| < 10$ in degrees) are converted to fixed point numbers (and to radians if $|x|$ is in degrees).
- For larger numbers, we need argument reduction. Subtract a multiple of $\pi/2$ (in degrees, 90) to bring the number to the range to $[0, \pi/2)$ (in degrees, $[0, 90)$).
- Reduce further to $[0, \pi/4)$ (in degrees, $[0, 45)$) using $\sin x = \cos(\pi/2 - x)$, and when working in degrees, convert to radians.
- Use the appropriate power series depending on the octant $\lfloor x \pi/4 \rfloor$ mod 8 (in degrees, the same formula with $\pi/4 \rightarrow 45$), the sign, and the function to compute.

78.1.1 Filtering special cases

This function, and its analogs for \cos, \csc, \sec, \tan, and \cot instead of \sin, are followed either by $\use_i:nn$ and a float in radians or by $\use_{ii}:nn$ and a float in degrees. The sine of ± 0 or nan is the same float. The sine of $\pm \infty$ raises an invalid operation exception with the appropriate function name. Otherwise, call the trig function to perform argument reduction and if necessary convert the reduced argument to radians. Then, $__fp_sin_series:o:NNwwww$ is called to compute the Taylor series: this function receives a sign #3, an initial octant of 0, and the function $__fp_ep_to_float:o:wwN$ which converts the result of the series to a floating point directly rather than taking its inverse, since $\sin(x) = #3|\sin(x)|$.

\begin{verbatim}
\cs_new:Npn __fp_sin_o:w #1 \s__fp __fp_chk:w #2#3#4; \
{ \if_case:w #2 \exp_stop_f: __fp_case_return_same_o:w __fp_case_use:nw __fp_trig:NNNNNwn #1 __fp_sin_series_o:NNwwww __fp_ep_to_float_o:wwN #3 0 } \else: __fp_case_return_same_o:w \fi: \s__fp __fp_chk:w #2#3#4; }
\end{verbatim}

(End of definition for $__fp_sin_o:w$.)

__fp_cos_o:w

The cosine of ± 0 is 1. The cosine of $\pm \infty$ raises an invalid operation exception. The cosine of nan is itself. Otherwise, the trig function reduces the argument to at most half a right-angle and converts if necessary to radians. We then call the same series as
for sine, but using a positive sign 0 regardless of the sign of \(x \), and with an initial octant of 2, because \(\cos(x) = +\sin(\pi/2 + |x|) \).

\[\cos(\pm 0) = \pm \infty \]

\[\cos(\pm \infty) \] raises an invalid operation exception. The cosecant of \(\pm \infty \) is itself. Otherwise, the trig function performs the argument reduction, and converts if necessary to radians before calling the same series as for sine, using the sign \(#3 \), a starting octant of 0, and inverting during the conversion from the fixed point sine to the floating point result, because cosec(\(x \)) = \(\pm 1 / \sin(\pi/2 + |x|) \).

\[\sec(\pm 0) = 1 \]

\[\sec(\pm \infty) \] raises an invalid operation exception. The secant of \(\pm \infty \) is itself. Otherwise, the trig function reduces the argument and turns it to radians before calling the same series as for sine, using a positive sign 0, a starting octant of 2, and inverting upon conversion, because sec(\(x \)) = \(1/\sin(\pi/2 + |x|) \).
_fp_tan_o:w The tangent of ±0 or nan is the same floating point number. The tangent of ±∞ raises an invalid operation exception. Once more, the trig function does the argument reduction step and conversion to radians before calling _fp_tan_series_o:NNwwww, with a sign #3 and an initial octant of 1 (this shift is somewhat arbitrary). See _fp_cot_o:w for an explanation of the 0 argument.

_fp_cot_zero_o:Nfw The cotangent of ±0 is ±∞ with the same sign, with a division by zero exception (see _fp_cot_zero_o:Nfw. The cotangent of ±∞ raises an invalid operation exception. The cotangent of nan is itself. We use \(\cot x = -\tan(\pi/2 + x) \), and the initial octant for the tangent was chosen to be 1, so the octant here starts at 3. The change in sign is obtained by feeding _fp_tan_series_o:NNwwww two signs rather than just the sign of the argument: the first of those indicates whether we compute tangent or cotangent. Those signs are eventually combined.
_fp_trig:NNNNNwn

The first argument is \use_i:nn if the operand is in radians and \use_ii:nn if it is in degrees. Arguments #2 to #5 control what trigonometric function we compute, and #6 to #8 are pieces of a normal floating point number. Call the _series function #2, with arguments #3, either a conversion function (_fp_ep_to_float_o:wN or _fp_ep_inv_to_float_o:wN) or a sign 0 or 2 when computing tangent or cotangent; #4, a sign 0 or 2; the octant, computed in an integer expression starting with #5 and stopped by a period; and a fixed point number obtained from the floating point number by argument reduction (if necessary) and conversion to radians (if necessary). Any argument reduction adjusts the octant accordingly by leaving a (positive) shift into its integer expression. Let us explain the integer comparison. Two of the four \exp_after:wN are expanded, the expansion hits the test, which is true if the float is at least 1 when working in radians, and at least 10 when working in degrees. Then one of the remaining \exp_after:wN hits #1, which picks the _trig or _trigd function in whichever branch of the conditional was taken. The final \exp_after:wN closes the conditional. At the end of the day, a number is large if it is ≥ 1 in radians or ≥ 10 in degrees, and small otherwise. All four _trig/_trigd auxiliaries receive the operand as an extended-precision number.

(End of definition for _fp_trig:NNNNNwn.)
78.1.3 Small arguments

__fp_trig_small:ww

This receives a small extended-precision number in radians and converts it to a fixed point number. Some trailing digits may be lost in the conversion, so we keep the original floating point number around: when computing sine or tangent (or their inverses), the last step is to multiply by the floating point number (as an extended-precision number) rather than the fixed point number. The period serves to end the integer expression for the octant.

\cs_new:Npn __fp_trig_small:ww #1,#2;
\{ __fp_ep_to_fixed:wwn #1,#2; . #1,#2; \}

(End of definition for __fp_trig_small:ww.)

__fp_trigd_small:ww

Convert the extended-precision number to radians, then call __fp_trig_small:ww to massage it in the form appropriate for the _series auxiliary.

\cs_new:Npn __fp_trigd_small:ww #1,#2;
{ __fp_ep_mul_raw:wwwwN -1,{1745}{3292}{5199}{4329}{5769}{2369}; #1,#2; __fp_trig_small:ww }

(End of definition for __fp_trigd_small:ww.)

78.1.4 Argument reduction in degrees

__fp_trigd_large:ww
__fp_trigd_large_auxi:nnnnwNNNN
__fp_trigd_large_auxii:wNw
__fp_trigd_large_auxiii:www

Note that 25 \times 360 = 9000, so 10^{k+1} \equiv 10^k \pmod{360} for k \geq 3. When the exponent #1 is very large, we can thus safely replace it by 22 (or even 19). We turn the floating point number into a fixed point number with two blocks of 8 digits followed by five blocks of 4 digits. The original float is 100 \times \langle block_1 \rangle \cdots \langle block_3 \rangle \langle block_4 \rangle \cdots \langle block_7 \rangle, or is equal to it modulo 360 if the exponent #1 is very large. The first auxiliary finds \langle block_1 \rangle + \langle block_2 \rangle (mod 9), a single digit, and prepends it to the 4 digits of \langle block_3 \rangle. It also unpacks \langle block_4 \rangle and grabs the 4 digits of \langle block_7 \rangle. The second auxiliary grabs the \langle block_3 \rangle plus any contribution from the first two blocks as #1, the first digit of \langle block_4 \rangle (just after the decimal point in hundreds of degrees) as #2, and the three other digits as #3. It finds the quotient and remainder of #1#2 modulo 9, adds twice the quotient to the integer expression for the octant, and places the remainder (between 0 and 8) before #3 to form a new \langle block_1 \rangle. The resulting fixed point number is x \in [0, 0.9]. If x \geq 0.45, we add 1 to the octant and feed 0.9 – x with an exponent of 2 (to compensate the fact that we are working in units of hundreds of degrees rather than degrees) to __fp_trigd_small:ww. Otherwise, we feed it x with an exponent of 2. The third auxiliary also discards digits which were not packed into the various \langle blocks \rangle. Since the original exponent #1 is at least 2, those are all 0 and no precision is lost (#6 and #7 are four 0 each).

\cs_new:Npn __fp_trigd_large:ww #1, #2#3#4#5#6#7;
{ \exp_after:wN __fp_pack_eight:wNNNNNNNN \exp_after:wN __fp_pack_eight:wNNNNNNNN \exp_after:wN __fp_pack_twice_four:wNNNNNNNN \exp_after:wN __fp_pack_twice_four:wNNNNNNNN \exp_after:wN __fp_trigd_large_auxi:nnnnwNNNN \exp_after:wN __fp_trigd_large_auxii:wNw __fp_trigd_large_auxiii:www ; \exp:w \exp_end_continue_f:w
Arguments greater or equal to 1 need to be reduced to a range where we only need a few terms of the Taylor series. We reduce to the range \([0, 2\pi]\) by subtracting multiples of \(2\pi\), then to the smaller range \([0, \pi/2]\) by subtracting multiples of \(\pi/2\) (keeping track of how many times \(\pi/2\) is subtracted), then to \([0, \pi/4]\) by mapping \(x \rightarrow \pi/2 - x\) if appropriate. When the argument is very large, say, \(10^{100}\), an equally large multiple of \(2\pi\) must be subtracted, hence we must work with a very good approximation of \(2\pi\) in order to get a sensible remainder modulo \(2\pi\).

Specifically, we multiply the argument by an approximation of \(1/(2\pi)\) with 10048 digits, then discard the integer part of the result, keeping 52 digits of the fractional part. From the fractional part of \(x/(2\pi)\) we deduce the octant (quotient of the first three digits by 125). We then multiply by 8 or \(-8\) (the latter when the octant is odd), ignore any integer part (related to the octant), and convert the fractional part to an extended precision number, before multiplying by \(\pi/4\) to convert back to a value in radians in \([0, \pi/4]\).

It is possible to prove that given the precision of floating points and their range of exponents, the 52 digits may start at most with 24 zeros. The 5 last digits are affected by carries from computations which are not done, hence we are left with at least 52 - 24 - 5 = 23 significant digits, enough to round correctly up to 0.6 \cdot \text{ulp} in all cases.
This integer array stores blocks of 8 decimals of $10^{-16}/(2\pi)$. Each entry is 10^8 plus an 8 digit number storing 8 decimals. In total we store 10112 decimals of $10^{-16}/(2\pi)$. The number of decimals we really need is the maximum exponent plus the number of digits we later need, 52, plus 12 (4×4 groups of 4 digits). The memory footprint (1/2 byte per digit) is the same as an earlier method of storing the data as a control sequence name, but the major advantage is that we can unpack specific subsets of the digits without unpacking the 10112 decimals.
The exponent $#1$ is between 1 and 10000. We wish to look up decimals $10^{#1-16}/(2\pi)$ starting from the digit $#1+1$. Since they are stored in batches of 8, compute $[#1/8]$ and fetch blocks of 8 digits starting there. The numbering of items in \c__fp_trig_intarray starts at 1, so the block $[#1/8] + 1$ contains the digit we want, at one of the eight positions. Each call to $\int_value:w __kernel_intarray_item:Nn$ expands the next, until being stopped by __fp_trig_large auxii:w using \exp_stop_f. Once all these blocks are unpacked, the \exp_stop_f: and 0 to 7 digits are removed by $\use_\text{none:n...n}$. Finally, __fp_trig_large auxii:w packs 64 digits (there are between 65 and 72 at this point) into groups of 4 and the auxv auxiliary is called.

\cs_new:Npn __fp_trig_large:ww \#1, \#2\#3\#4\#5\#6; {
\exp_after:wN __fp_trig_large_auxi:w
\int_value:w __kernel_intarray_item:Nn \c__fp_trig_intarray { __fp_int_eval:w \#1 + 1 \scan_stop: }
\exp_after:wN __fp_trig_large_auxii:w
\cs:w
\use_none:n \prg_replicate:nn { \#2 - \#1 * 8 } { n }
\exp_after:wN __fp_trig_large_auxiii:w
\cs_end:w
\cs_new:Npn __fp_trig_large:ww \#1, \#2, {
\exp_after:wN \exp_after:wN \exp_after:wN __fp_trig_large_auxi:w
\int_value:w __kernel_intarray_item:Nn \c__fp_trig_intarray { __fp_int_eval:w \#1 + 1 \scan_stop: }
\exp_after:wN __fp_trig_large_auxii:w
\cs:w
\use_none:n \prg_replicate:nn { \#2 - \#1 * 8 } { n }
\exp_after:wN __fp_trig_large_auxiii:w
\cs_end:w
\exp_after:wN __kernel_intarray_item:Nn \c__fp_trig_intarray
{ __fp_int_eval:w \#1 + 1 \scan_stop: }
\exp_after:wN __fp_trig_large_auxii:w
\int_value:w __kernel_intarray_item:Nn \c__fp_trig_intarray
{ __fp_int_eval:w \#1 + 2 \scan_stop: }
\exp_after:wN __fp_trig_large_auxii:w
\int_value:w __kernel_intarray_item:Nn \c__fp_trig_intarray
{ __fp_int_eval:w \#1 + 3 \scan_stop: }
\exp_after:wN __fp_trig_large_auxii:w
\int_value:w __kernel_intarray_item:Nn \c__fp_trig_intarray
{ __fp_int_eval:w \#1 + 4 \scan_stop: }
\exp_after:wN __fp_trig_large_auxii:w
\int_value:w __kernel_intarray_item:Nn \c__fp_trig_intarray
{ __fp_int_eval:w \#1 + 5 \scan_stop: }
\exp_after:wN __fp_trig_large_auxii:w
\int_value:w __kernel_intarray_item:Nn \c__fp_trig_intarray
{ __fp_int_eval:w \#1 + 6 \scan_stop: }
\exp_after:wN __fp_trig_large_auxii:w
\int_value:w __kernel_intarray_item:Nn \c__fp_trig_intarray
{ __fp_int_eval:w \#1 + 7 \scan_stop: }
First come the first 64 digits of the fractional part of $10^{#1 - 16} / (2\pi)$, arranged in 16 blocks of 4, and ending with a semicolon. Then a few more digits of the same fractional part, ending with a semicolon, then 4 blocks of 4 digits holding the significand of the original argument. Multiply the 16-digit significand with the 64-digit fractional part: the auxvi auxiliary receives the significand as #2#3#4#5 and 16 digits of the fractional part as #6#7#8#9, and computes one step of the usual ladder of pack functions we use for multiplication (see e.g., _fp_fixed_mul:wwn), then discards one block of the fractional part to set things up for the next step of the ladder. We perform 13 such steps, replacing the last middle shift by the appropriate trailing shift, then discard the significand and remaining 3 blocks from the fractional part, as there are not enough digits to compute any more step in the ladder. The last semicolon closes the ladder, and we return control to the auxvii auxiliary.
The auxiliary is followed by 52 digits and a semicolon. We find the octant as the integer part of 8 times what follows, or equivalently as the integer part of \(\frac{\#1\#2\#3}{125} \), and add it to the surrounding integer expression for the octant. We then compute 8 times the 52-digit number, with a minus sign if the octant is odd. Again, the last middle shift is converted to a trailing shift. Any integer part (including negative values which come up when the octant is odd) is discarded by \(_\text{fp_use_i_until_s}:wN\). The resulting fractional part should then be converted to radians by multiplying by \(2\pi/8 \), but first, build an extended precision number by abusing \(_\text{fp_ep_to_ep_loop}:N\) with the appropriate trailing markers. Finally, \(_\text{fp_trig_small}:ww\) sets up the argument for the functions which compute the Taylor series.
78.1.6 Computing the power series

Here we receive a conversion function __fp_to_float_o:wwN or __fp_inv_to_float_o:wwN, a \langle sign \rangle (0 or 2), a (non-negative) \langle octant \rangle delimited by a dot, a \langle fixed point \rangle number delimited by a semicolon, and an extended-precision number. The auxiliary receives:

- the conversion function \#1;
- the final sign, which depends on the octant \#3 and the sign \#2;
- the octant \#3, which controls the series we use;
- the square \#4 * \#4 of the argument as a fixed point number, computed with __fp_fixed_mul:www;
- the number itself as an extended-precision number.

If the octant is in \{1, 2, 5, 6, ...\}, we are near an extremum of the function and we use the series

$$\cos(x) = 1 - x^2 \left(\frac{1}{2!} - x^2 \left(\frac{1}{4!} - x^2 \left(\cdots \right) \right) \right).$$

Otherwise, the series

$$\sin(x) = x \left(1 - x^2 \left(\frac{1}{3!} - x^2 \left(\frac{1}{5!} - x^2 \left(\cdots \right) \right) \right) \right)$$

is used. Finally, the extended-precision number is converted to a floating point number with the given sign, and __fp_sanitize:Nw checks for overflow and underflow.
_fp_tan_series_o:NNwwww
_fp_tan_series_aux_o:NNwww

Contrarily to _fp_sin_series_o:NNwwww which received a conversion auxiliary as #1, here, #1 is 0 for tangent and 2 for cotangent. Consider first the case of the tangent. The octant #3 starts at 1, which means that it is 1 or 2 for |x| ∈ [0, \pi/2], it is 3 or 4 for |x| ∈ [\pi/2, \pi], and so on: the intervals on which tan|x| ≥ 0 coincide with those for which [(#3 + 1)/2] is odd. We also have to take into account the original sign of x to get the sign of the final result; it is straightforward to check that the first \int_value:w expansion produces 0 for a positive final result, and 2 otherwise. A similar story holds for cot(x).

The auxiliary receives the sign, the octant, the square of the (reduced) input, and the (reduced) input (an extended-precision number) as arguments. It then computes the numerator and denominator of

\[
\tan(x) \simeq \frac{x(1 - x^2(a_1 - x^2(a_2 - x^2(a_3 - x^2(a_4 - x^2a_5)))))}{1 - x^2(b_1 - x^2(b_2 - x^2(b_3 - x^2(b_4 - x^2b_5))))}.
\]

The ratio is computed by _fp_ep_div:wwwwn, then converted to a floating point number. For octants #3 (really, quadrants) next to a pole of the functions, the fixed point
numerator and denominator are exchanged before computing the ratio. Note that this \if_int_odd:w test relies on the fact that the octant is at least 1.

\cs_new:Npn _fp_tan_series_o:NNwwww #1#2#3. #4;
{ _fp_fixed_mul:wwn #4; #4;
\exp_after:wN _fp_tan_series_aux_o:Nww
\int_value:w \if_int_odd:w _fp_int_eval:w #3 / 2 _fp_int_eval_end:
\exp_after:wN \reverse_if:N
\fi:
\if_meaning:w #1#2 2 \else: 0 \fi:
(#3)
}
\cs_new:Npn _fp_tan_series_aux_o:Nnwww #1 #2 #3; #4,#5;
{ _fp_fixed_mul_sub_back:wwwn {0000}{0000}{1527}{3493}{0856}{7059};
#3; {0000}{0159}{6080}{0274}{5257}{6472};
_fp_fixed_mul_sub_back:wwwn #3; {0002}{4571}{2320}{0157}{2558}{8481};
_fp_fixed_mul_sub_back:wwwn #3; {0115}{5830}{7533}{5397}{3168}{2147};
_fp_fixed_mul_sub_back:wwwn #3; {1929}{8245}{6140}{3508}{7719}{2982};
_fp_fixed_mul_sub_back:wwwn #3;{10000}{0000}{0000}{0000}{0000}{0000};
{ _fp_ep_mul:wwwwn 0, } #4,#5;
_fp_fixed_mul_sub_back:wwwn {0000}{0000}{0000}{0000}{0000}{0000};
{ _fp_ep_div:wwwwn 0, }
\reverse_if:N \if_int_odd:w _fp_int_eval:w (#2 - 1) / 2 _fp_int_eval_end:
\exp_after:wN _fp_reverse_args:Nww
\fi:
_fp_ep_div:wwwwn 0,
}
\cs_new:Npn _fp_tan_series_aux_o:Nww #1 #2 #3; #4,#5;
{ _fp_fixed_mul_sub_back:wwwn {0000}{0000}{1527}{3493}{0856}{7059};
_fp_fixed_mul_sub_back:wwwn #3; {0000}{0159}{6080}{0274}{5257}{6472};
_fp_fixed_mul_sub_back:wwwn #3; {0002}{4571}{2320}{0157}{2558}{8481};
_fp_fixed_mul_sub_back:wwwn #3; {0115}{5830}{7533}{5397}{3168}{2147};
_fp_fixed_mul_sub_back:wwwn #3; {1929}{8245}{6140}{3508}{7719}{2982};
_fp_fixed_mul_sub_back:wwwn #3;{10000}{0000}{0000}{0000}{0000}{0000};
{ _fp_ep_mul:wwwwn 0, } #4,#5;
_fp_fixed_mul_sub_back:wwwn {0000}{0000}{0000}{0000}{0000}{0000};
{ _fp_ep_div:wwwwn 0, }
\reverse_if:N \if_int_odd:w _fp_int_eval:w (#2 - 1) / 2 _fp_int_eval_end:
\exp_after:wN _fp_reverse_args:Nww
\fi:
_fp_ep_div:wwwwn 0,
}
\cs_new:Npn _fp_tan_series_o:NNwwww #1#2#3. #4;
{ _fp_fixed_mul:wwn #4; #4;
\exp_after:wN _fp_tan_series_aux_o:Nww
\int_value:w \if_int_odd:w _fp_int_eval:w #3 / 2 _fp_int_eval_end:
\exp_after:wN \reverse_if:N
\fi:
\if_meaning:w #1#2 2 \else: 0 \fi:
(#3)
}

(End of definition for _fp_tan_series_o:NNwwww and _fp_tan_series_aux_o:Nwww.)

78.2 Inverse trigonometric functions

All inverse trigonometric functions (arcsine, arccosine, arctangent, arccotangent, arcsecant, and arccosecant) are based on a function often denoted atan2. This func-
tion is accessed directly by feeding two arguments to arctangent, and is defined by
atan(y, x) = atan(y/x) for generic y and x. Its advantages over the conventional
arctangent is that it takes values in [−π, π] rather than [−π/2, π/2], and that it is better
behaved in boundary cases. Other inverse trigonometric functions are expressed in terms
of atan as

\[
\begin{align*}
\cos x &= \tan(\sqrt{1-x^2}, x) \\
\sin x &= \tan(x, \sqrt{1-x^2}) \\
\sec x &= \tan(\sqrt{x^2-1}, 1) \\
\csc x &= \tan(1, \sqrt{x^2-1}) \\
\tan x &= \tan(x, 1) \\
\cot x &= \tan(1, x).
\end{align*}
\]

Rather than introducing a new function, atan2, the arctangent function atan is over-
loaded: it can take one or two arguments. In the comments below, following many texts,
we call the first argument y and the second x, because atan(y, x) = atan(y/x) is the
angular coordinate of the point (x, y).

As for direct trigonometric functions, the first step in computing atan(y, x) is ar-
gent reduction. The sign of y gives that of the result. We distinguish eight regions
where the point (x, |y|) can lie, of angular size roughly π/8, characterized by their “oc-
tant”, between 0 and 7 included. In each region, we compute an arctangent as a Taylor
series, then shift this arctangent by the appropriate multiple of π/4 and sign to get the
result. Here is a list of octants, and how we compute the arctangent (we assume y > 0:
otherwise replace y by −y below):

\[
\begin{align*}
0 & \quad 0 < |y| < 0.41421x, \text{ then } \frac{|y|}{x} \text{ is given by a nicely convergent Taylor series;} \\
1 & \quad 0 < 0.41421x < |y| < x, \text{ then } \frac{|y|}{x} = \frac{\pi}{4} - \tan \frac{x-|y|}{x+|y|}; \\
2 & \quad 0 < 0.41421|y| < x < |y|, \text{ then } \frac{|y|}{x} = \frac{\pi}{4} + \tan \frac{-x+|y|}{x+|y|}; \\
3 & \quad 0 < x < 0.41421|y|, \text{ then } \frac{|y|}{x} = \frac{\pi}{2} - \tan \frac{x}{|y|}; \\
4 & \quad 0 < -x < 0.41421|y|, \text{ then } \frac{|y|}{x} = \frac{\pi}{2} + \tan \frac{-x}{|y|}; \\
5 & \quad 0 < 0.41421|y| < -x < |y|, \text{ then } \frac{|y|}{x} = \frac{3\pi}{4} - \tan \frac{x+|y|}{x+|y|}; \\
6 & \quad 0 < -0.41421x < |y| < -x, \text{ then } \frac{|y|}{x} = \frac{3\pi}{4} + \tan \frac{-x-|y|}{x+|y|}; \\
7 & \quad 0 < |y| < -0.41421x, \text{ then } \frac{|y|}{x} = \pi - \tan \frac{x}{2}.
\end{align*}
\]

In the following, we denote by z the ratio among \(|x|/y|, |x-|y|/x+|y|, |x+|y|/x+y|\) which appears in
the right-hand side above.

\section{78.2.1 Arctangent and arccotangent}

The parsing step manipulates atan and acot like \texttt{min} and \texttt{max}, reading in an array of
operands, but also leaves \texttt{use_i:nn} or \texttt{use_ii:nn} depending on whether the result
should be given in radians or in degrees. The helper _fp_parse_function_one_two:nnw checks that the operand is one or two floating point numbers (not tuples) and leaves its second argument or its tail accordingly (its first argument is used for error messages). More precisely if we are given a single floating point number _fp_atan_default:w places \c_one_fp (expanded) after it; otherwise _fp_atan_default:w is omitted by _fp_parse_function_one_two:nnw.

2795 \cs_new:Npn _fp_atan_o:Nw #1
2796 { _fp_parse_function_one_two:nnw
2797 { _fp_atan_default:w _fp_atanii_o:Nww #1 } }\end{definition}

2798 \cs_new:Npn _fp_acot_o:Nw #1
2799 { _fp_parse_function_one_two:nnw
2800 { _fp_acotii_o:Nww #1 } }\end{definition}

If either operand is \textit{nan}, we return it. If both are normal, we call _fp_atan_normal_o:NNNw. If both are zero or both infinity, we call _fp_atan_inf_o:NNNw with argument 2, leading to a result among \{±\pi/4,±3\pi/4\} (in degrees, \{±45,±135\}). Otherwise, one is much bigger than the other, and we call _fp_atan_inf_o:NNNw with either an argument of 4, leading to the values ±\pi/2 (in degrees, ±90), or 0, leading to \{±0,±\pi\} (in degrees, \{±0,±180\}). Since \textit{acot}(x,y) = \textit{atan}(y,x), _fp_acotii_o:ww simply reverses its two arguments.

2791 \cs_new:Npn _fp_atanii_o:Nww #1
2792 \s__fp _fp_chk:w #2#3#4; \s__fp _fp_chk:w #5 #6 @
2793 { \if_meaning:w 3 #2 _fp_case_return_i_o:ww \fi:
2794 \if_meaning:w 3 #5 _fp_case_return_ii_o:ww \fi:
2795 \if_case:w
2796 \if_meaning:w #2 #5
2797 \if_meaning:w 1 #2 10 \else: 0 \fi:
2798 \else:
2799 \if_int_compare:w #2 > #5 \exp_stop_f: 1 \else: 2 \fi:
3000 \fi:
3001 \exp_stop_f:
3002 _fp_case_return:nw { _fp_atan_inf_o:NNNw #1 #3 2 }
3003 \or: _fp_case_return:nw { _fp_atan_inf_o:NNNw #1 #3 4 }
3004 \or: _fp_case_return:nw { _fp_atan_inf_o:NNNw #1 #3 0 }
3005 \fi:
3006 _fp_atan_normal_o:NNNwNww #1
3007 \s__fp _fp_chk:w #2#3#4;
3008 \s__fp _fp_chk:w #5 #6
3009 }\end{definition}

1176
This auxiliary is called whenever one number is ±0 or ±∞ (and neither is \texttt{nan}). Then the result only depends on the signs, and its value is a multiple of \(\pi/4\). We use the same auxiliary as for normal numbers, \texttt{_fp_atan_combine_o:Nwwwww}, with arguments the final sign \#2; the octant \#3; \(\text{atan} \ z/z = 1\) as a fixed point number; \(z = 0\) as a fixed point number; and \(z = 0\) as an extended-precision number. Given the values we provide, \text{atan} \ z is computed to be 0, and the result is \([\#3/2] \cdot \pi/4\) if the sign \#5 of \(x\) is positive, and \([(7 - \#3)/2] \cdot \pi/4\) for negative \(x\), where the divisions are rounded up.

\begin{verbatim}
\cs_new:Npn _fp_atan_inf_o:NNNw #1#2#3 \s__fp __fp_chk:w #4#5#6;
{
\exp_after:wN _fp_atan_combine_o:NwwwwwN
\exp_after:wN #2
\int_value:w __fp_int_eval:w
\if_meaning:w 2 #5 7 - \fi: #3 \exp_after:wN ;
\c__fp_one_fixed_tl
0,{0000}{0000}{0000}{0000}{0000}{0000}; #1
}
\end{verbatim}

\section*{__fp_atan_normal_o:NNnwNnw}

Here we simply reorder the floating point data into a pair of signed extended-precision numbers, that is, a sign, an exponent ending with a comma, and a six-block mantissa ending with a semi-colon. This extended precision is required by other inverse trigonometric functions, to compute things like \(\text{atan}(x, \sqrt{1-x^2})\) without intermediate rounding errors.

\begin{verbatim}
\cs_new_protected:Npn _fp_atan_normal_o:NNnwNnw
#1 \s__fp __fp_chk:w 1#2#3#4; \s__fp __fp_chk:w 1#5#6#7;
{
__fp_atan_test_o:NwwNwwN
#2 #3, #4{0000}{0000};
#5 #6, #7{0000}{0000}; #1
}
\end{verbatim}

\section*{__fp_atan_test_o:NwwNwwN}

This receives: the sign \#1 of \(y\), its exponent \#2, its 24 digits \#3 in groups of 4, and similarly for \(x\). We prepare to call \texttt{_fp_atan_combine_o:NwwwwwN} which expects the sign \#1, the octant, the ratio (\(\text{atan} \ z\))/\(z = 1 - \cdots\), and the value of \(z\), both as a fixed point number and as an extended-precision floating point number with a mantissa in \([0.01, 1)\). For now, we place \#1 as a first argument, and start an integer expression for the octant. The sign of \(x\) does not affect \(z\), so we simply leave a contribution to the octant: \((\text{octant}) \rightarrow 7 - \langle \text{octant} \rangle\) for negative \(x\). Then we order \(|y| > |x|\) in a non-decreasing order: if \(|y| > |x|\), insert 3 in the expression for the octant, and swap the two numbers. The finer test with 0.41421 is done by \texttt{_fp_atan_div:wnwwnw} after the operands have been ordered.

\begin{verbatim}
\cs_new:Npn _fp_atan_test_o:NwwNwwN
#1 \s__fp __fp_chk:w 1#2#3#4; \s__fp __fp_chk:w 1#5#6#7;
{
\exp_after:wN _fp_atan_combine_o:NwwwwwN
\exp_after:wN #1
\int_value:w __fp_int_eval:w
\if_meaning:w 2 #6 7 - \fi: #5 \exp_after:wN ;
\c__fp_one_fixed_tl

0,{0000}{0000}{0000}{0000}{0000}{0000}; #1
}
\end{verbatim}

1177
This receives two positive numbers \(a \) and \(b \) (equal to \(|x|\) and \(|y|\) in some order), each as an exponent and 6 blocks of 4 digits, such that \(0 < a < b \). If \(0.41421b < a \), the two numbers are “near”, hence the point \((y,x)\) that we started with is closer to the diagonals \(|y| = |x|\) than to the axes \(\{xy = 0\}\). In that case, the octant is 1 (possibly combined with the 7 and 3 inserted earlier) and we wish to compute \(\tan b \div a\). Otherwise, the octant is 0 (again, combined with earlier terms) and we wish to compute \(\tan \frac{b}{a}\). In any case, call \(__fp_atan_auxi:ww\) followed by \(z\), as a comma-delimited exponent and a fixed point number.

\begin{verbatim}
\cs_new:Npn __fp_atan_div:wnwwnw #1,#2#3; #4,#5#6; {
 \if_int_compare:w __fp_int_eval:w 41421 * #5 < #2 000
 \if_case:w __fp_int_eval:w #4 - #1 __fp_int_eval_end:
 00 \or: 0 \fi:
 \exp_stop_f:
 \exp_after:wN __fp_atan_near:wwwn
 \fi:
 0 __fp_ep_div:wwwwn #1,#2; #3,
 __fp_atan_auxi:ww
}\cs_new:Npn __fp_atan_near:wwwn 0 __fp_ep_div:wwwwn #1,#2; #3,
 { __fp_fixed_add:wwn #1; #2;
 { __fp_fixed_sub:wwn #2; #1; { __fp_ep_div:wwwwn 0, } 0, } }
\cs_new:Npn __fp_atan_auxii:w #1; #2;
 { __fp_fixed_add:wwn #1; #2;
 { __fp_fixed_sub:wwn #2; #1; { __fp_ep_div:wwwwn 0, } 0, } }
\end{verbatim}

(End of definition for \(__fp_atan_div:wnwwnw\), \(__fp_atan_near:wwwn\), and \(__fp_atan_near_aux:wwn\).)

\begin{verbatim}
__fp_atan_auxi:ww __fp_atan_auxii:w
\end{verbatim}

Convert \(z\) from a representation as an exponent and a fixed point number in \([0.01, 1)\) to a fixed point number only, then set up the call to \(__fp_atan_Taylor_loop:www\), followed by the fixed point representation of \(z\) and the old representation.

\begin{verbatim}
\cs_new:Npn __fp_atan_Taylor_loop:www #1,#2; __fp_atan:ww #1; #2;
\cs_new:Npn __fp_atan:ww #1; #2;
\cs_new:Npn __fp_atan:ww #1; #2;
\end{verbatim}

1178
We compute the series of \((\text{atan} z)/z\). A typical intermediate stage has \(\#1 = 2k - 1\), \(\#2 = \frac{1}{2k+1} - z^2(\frac{1}{2k+3} - z^2(\cdots - z^2(\frac{1}{29})}}{2})\), and \(\#3 = z^2\). To go to the next step \(k \rightarrow k - 1\), we compute \(\frac{1}{2k+1}\), then subtract from it \(z^2\) times \(\#2\). The loop stops when \(k = 0\): then \(\#2\) is \((\text{atan} z)/z\), and there is a need to clean up all the unnecessary data, end the integer expression computing the octant with a semicolon, and leave the result \(\#2\) afterwards.

\[
\begin{align*}
\cs_new:Npn __fp_atan_Taylor_loop:www #1; #2; #3; \\
\{ \exp_after:wN __fp_fixed_div_int:wwN \c__fp_one_fixed_tl #1; \\
\exp_after:wN __fp_rrot:www __fp_fixed_mul_sub_back:wwwn #2; #3; \\
\{ \exp_after:wN __fp_atan_Taylor_loop:www \\
\int_value:w __fp_int_eval:w #1 - 2 ; \\
\} \#3; \\
\} \cs_new:Npn __fp_atan_Taylor_break:w \\
\fi: \#1 __fp_fixed_mul_sub_back:wwwn #2 ! \\
{ \fi: ; #2 ; }
\end{align*}
\]

(End of definition for \(/_fp_atan_Taylor_loop:www and \/_fp_Taylor_break:w.)

This receives a \(<\text{sign}>,\) an \(<\text{octant}>,\) a fixed point value of \((\text{atan} z)/z\), a fixed point number \(z\), and another representation of \(z\), as an \(<\text{exponent}>,\) and the fixed point number \(10^{-<\text{exponent}>z}\), followed by either \use_i:nn (when working in radians) or \use_ii:nn (when working in degrees). The function computes the floating point result \(<\text{sign}>(\left\lceil<\text{octant}>>2\pi + (-1)^{<\text{octant}>>\frac{\text{atan} z}{z} \cdot z\right))\),

\[
\text{multiplied by } 180/\pi \text{ if working in degrees, and using in any case the most appropriate representation of } z. \text{ The floating point result is passed to } __fp_sanitize:Nw, \text{ which checks for overflow or underflow. If the octant is } 0, \text{ leave the exponent } \#5 \text{ for } __fp_-\text{sanitize:Nw, and multiply } \#3 = \frac{\text{atan} z}{z} \text{ with } \#6, \text{ the adjusted } z. \text{ Otherwise, multiply } \#3 = \frac{\text{atan} z}{z} \text{ with } \#4 = z, \text{ then compute the appropriate multiple of } \frac{\pi}{4} \text{ and add or subtract the product } \#3 \cdot \#4. \text{ In both cases, convert to a floating point with } __fp_fixed_to_-\text{float_o:wN.}
\]

\[
\begin{align*}
\cs_new:Npn __fp_atan_combine_o:NwwwwN #1 #2; #3; #4; #5,#6; #7 \\
\{ \exp_after:wN __fp_sanitize:Nw \\
\exp_after:wN __fp_sanitize:Nw \\
\exp_after:wN __fp_int_eval:w
\end{align*}
\]
\if_meaning:w 0 #2
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_ii:nn
\fi:
{ #5 __fp_fixed_mul:wnn #3; #6; }
{ __fp_fixed_mul:wnn #3; #4; }
{ \exp_after:wN __fp_atan_combine_aux:ww
\int_value:w __fp_int_eval:w #2 / 2 ; #2; }
}
{ #7 __fp_fixed_to_float_o:wnn __fp_fixed_to_float_rad_o:wnn }
#1
\cs_new:Npn __fp_atan_combine_aux:ww #1; #2;
{ __fp_fixed_mul_short:wnnnn
{7853}{9816}{3397}{4483}{0961}{5661};
{#1}{0000}{0000};
{ \if_int_odd:w #2 \exp_stop_f:
\exp_after:wN __fp_fixed_sub:wwn
\else:
\exp_after:wN __fp_fixed_add:wwn
\fi:
}
__fp_atan_combine_aux:ww #1; #2;
\cs_new:Npn __fp_atan_combine_aux:ww #1; #2;
{ __fp_fixed_mul_short:wnn
\int_value:w __fp_int_eval:w #2 / 2 ; #2;
}
__fp_fixed_to_float_o:wnn __fp_fixed_to_float_rad_o:wnn }
#1
\endinput

(End of definition for __fp_atan_combine_o:NwwwwwN and __fp_atan_combine_aux:ww.)

78.2.2 Arcsine and arccosine

__fp_asin_o:w Again, the first argument provided by l3fp-parse is \use_i:nn if we are to work in radians and \use_ii:nn for degrees. Then comes a floating point number. The arcsine of ±0 or nan is the same floating point number. The arcsine of ±∞ raises an invalid operation exception. Otherwise, call an auxiliary common with __fp_acos_o:w, feeding it information about what function is being performed (for “invalid operation” exceptions).
__fp_asin_o:w #1 \s__fp __fp_chk:w #2#3; @
{ \if_case:w #2 \exp_stop_f:
__fp_case_return_same_o:w
\or:
__fp_case_use:nw
{ __fp_asin_normal_o:Nwwnnnnn #1 \{ #1 \{ asin \} \{ asind \} \} }
\or:
__fp_case_use:nw
{ __fp_invalid_operation_o:ww \{ #1 \{ asin \} \{ asind \} \} }
\else:
__fp_case_return_same_o:w
\fi:
\s__fp __fp_chk:w #2 #3;
The arccosine of ±0 is π/2 (in degrees, 90). The arccosine of ±∞ raises an invalid
operation exception. The arccosine of \texttt{nan} is itself. Otherwise, call an auxiliary common
with \texttt{fp.sin.o}, informing it that it was called by \texttt{acos} or \texttt{acosd}, and preparing to
swap some arguments down the line.

\begin{verbatim}
\cs_new:Npn __fp_acos_o:w #1 \s__fp __fp_chk:w #2#3; @
 __fp_case_use:nw { __fp_atan_inf:o:NNNw #1 0 4 }
\or:
 __fp_case_use:nw
 { __fp_asin_normal:o:NwNnnnnw #1 { #1 { acos } { acosd } } }
 __fp_reverse_args:Nww
\or:
 __fp_case_use:nw
 { __fp_invalid_operation:o:fw { #1 { acos } { acosd } } }
\else:
 __fp_case_return_same:o:w
\fi:
\s__fp __fp_chk:w #2 #3;}
\end{verbatim}

If the exponent \texttt{#5} is at most 0, the operand lies within \((-1, 1)\) and the operation is permitted:
call \texttt{fp.sin.auxi:o:NNw} with the appropriate arguments. If the number is exactly ±1
(the test works because we know that \texttt{#5 \geq 1}, \texttt{#6 \geq 1000000}, \texttt{#8 \geq 0}, with equality only for \(\pm 1\)), we also call \texttt{fp.sin.auxi:o:NNw}. Otherwise, \texttt{fp.use_i:ww}
gets rid of the \texttt{asin} auxiliary, and raises instead an invalid operation, because
the operand is outside the domain of arcsine or arccosine.

\begin{verbatim}
\cs_new:Npn __fp_acos_normal:o:NwNnnnnw
 \#1\#2\#3 \s__fp __fp_chk:w 1\#4\#5\#6\#7\#8\#9;
 \if_int_compare:w \#5 < \c_one_int
 \exp_after:wN __fp_use_none_until:w
 \fi:
 \if_int_compare:w __fp_int_eval:w \#5 + \#6\#7 + \#8\#9 = 1000 0001
 \exp_after:wN __fp_use_none_until:w
 \fi:
 __fp_use_i:ww
 __fp_invalid_operation:o:fw \{2\}
 \s__fp __fp_chk:w 1\#4\#5\#6\#7\#8\#9;\#0\#0\#0\#0
 __fp_sin_auxi:o:NwNw
 \#1 \{3\} \#4,\#5,\#6,\#7,\#8,\#9;0000000000000000;
\end{verbatim}

We compute \(x/\sqrt{1-x^2}\). This function is used by \texttt{asin} and \texttt{acos}, but also by \texttt{acsc}
and \texttt{asec} after inverting the operand, thus it must manipulate extended-precision numbers.
First evaluate \(1-x^2\) as \((1+x)(1-x)\): this behaves better near \(x = 1\). We do the
addition/subtraction with fixed point numbers (they are not implemented for extended-
precision floats), but go back to extended-precision floats to multiply and compute the
inverse square root $\frac{1}{\sqrt{1-x^2}}$. Finally, multiply by the (positive) extended-precision float
$|x|$, and feed the (signed) result, and the number +1, as arguments to the arctangent
function. When computing the arcosine, the arguments $x/\sqrt{1-x^2}$ and +1 are swapped
by \texttt{_fp_reverse_args:Nww} in that case before \texttt{_fp_atan_test_o:NwwNwwN} is
evaluated. Note that the arctangent function requires normalized arguments, hence the
need for \texttt{ep_to_ep} and continue after \texttt{ep_mul}.

```
\cs_new:Npn \__fp\_asin\_auxi\_o:NnNww \#1\#2\#3\#4,#5;
\begin{verbatim}
\__fp\_ep\_to\_fixed:wwn \#4,#5;
\__fp\_asin\_isqrt:wn
\__fp\_ep\_mul:wwwwn \#4,#5;
\__fp\_ep\_to\_ep:wwN
\__fp\_ep\_fixed\_continue:wn
\{ \#2 \__fp\_atan\_test\_o:NwwNwwN \#3 \}
0 \{1000\{0000\{0000\{0000\{0000\{0000\; \#1
\}
\}
\}
\}
\}
\cs_new:Npn \__fp\_asin\_isqrt:wn \#1;\begin{verbatim}
\exp_after:wN \__fp\_fixed\_sub:wwn \c__fp\_one\_fixed_tl \#1;
{ \__fp\_fixed\_add\_one:wn \#1;
\__fp\_fixed\_continue:wn \{ \__fp\_ep\_mul:wwwn 0, \} 0,
}
\__fp\_ep\_isqrt:wn
\end{verbatim}
\end{verbatim}
```

(End of definition for \texttt{_fp_asin_auxi_o:Nww} and \texttt{_fp_asin_isqrt:wn}.)

78.2.3 Arccosecant and arcsecant

\texttt{_fp_acsc_o:w} Cases are mostly labelled by \texttt{\#2}, except when \texttt{\#2} is 2: then we use \texttt{\#3\#2}, which is \texttt{02 = 2}
when the number is $+\infty$ and \texttt{22} when the number is $-\infty$. The arcosecant of ± 0 raises
an invalid operation exception. The arcosecant of $\pm \infty$ is ± 0 with the same sign. The
arcosecant of \texttt{nan} is itself. Otherwise, \texttt{_fp_acsc_normal_o:NfwNwN} does some more
tests, keeping the function name (acsc or acscd) as an argument for invalid operation
exceptions.

```
\cs_new:Npn \__fp\_acsc\_o:w \#1 \s__fp \__fp\_chk:w \#2\#3\#4; \@ \begin{verbatim}
\if_case:w \if_meaning:w 2 \#2 \#3 \fi: \#2 \exp_stop_f:
\__fp\_case\_use:wn \{ \__fp\_invalid\_operation\_o:fw \{ #1 \{ acsc \} \{ acscd \} \} \}
\or: \__fp\_case\_use:wn \{ \__fp\_acsc\_normal\_o:NfwNwN \#1 \{ #1 \{ acsc \} \{ acscd \} \} \}
\or: \__fp\_case\_return\_o:Nw \c_zero_fp
\or: \__fp\_case\_return\_same\_o:w
\else: \__fp\_case\_return\_o:Nw \c\_minus\_zero_fp\fi:
\s__fp \__fp\_chk:w \#2 \#3 \#4;
\end{verbatim}
```

(End of definition for \texttt{_fp_acsc_o:w}.)
The arcsecant of ±0 raises an invalid operation exception. The arcsecant of ±∞ is π/2 (in degrees, 90). The arcsecant of nan is itself. Otherwise, do some more tests, keeping the function name asec (or asecd) as an argument for invalid operation exceptions, and a __fp_reverse_args:Nww following precisely that appearing in __fp_acos_o:w.

\cs_new:Npn __fp_asec_o:w #1 \s__fp __fp_chk:w #2#3; @
\begin{verbatim}
 \if_case:w #2 \exp_stop_f:
 __fp_case_use:nw
 __fp_invalid_operation_o:fw __fp_acsc_normal_o:NfwNnw #1 \s__fp __fp_chk:w #2#3;
 \or:
 __fp_case_use:nw
 __fp_acsc_normal_o:NfwNnw #1 \s__fp __fp_chk:w #2#3;
\end{verbatim}
\end{verbatim}

(End of definition for __fp_asec_o:w.)

__fp_acsc_normal_o:NfwNnw

If the exponent is non-positive, the operand is less than 1 in absolute value, which is always an invalid operation: complain. Otherwise, compute the inverse of the operand, and feed it to __fp_asin_auxi_o:NNww (with all the appropriate arguments). This computes what we want thanks to \c{acsc}(x) = \c{asin}(1/x) and \c{asec}(x) = \c{acos}(1/x).

\cs_new:Npn __fp_acsc_normal_o:NfwNnw #1#2#3 \s__fp __fp_chk:w 1#4#5#6;
\begin{verbatim}
 \int_compare:nNnTF {#5} < 1
 __fp_invalid_operation_o:fw __fp_ep_div:wwwwn __fp_acsc_normal_o:NfwNnw #1 \s__fp __fp_chk:w 1#4#5#6;
 \else:
 __fp_case_use:nw __fp_acsc_normal_o:NfwNnw #1 \s__fp __fp_chk:w 1#4#5#6;
\end{verbatim}
\end{verbatim}

(End of definition for __fp_acsc_normal_o:NfwNnw.)
Chapter 79

13fp-convert implementation

79.1 Dealing with tuples

The first argument is for instance _fp_to_tl_dispatch:w, which converts any floating point object to the appropriate representation. We loop through all items, putting , between all of them and making sure to remove the leading ,.

\cs_new:Npn __fp_tuple_convert:Nw #1 \s__fp_tuple __fp_tuple_chk:w #2 ;
\int_case:nnF { __fp_array_count:n {#2} }
\{ 0 \} \{ () \}
\{ 1 \} \{ _fp_tuple_convert_end:w @ { #1 #2 , } \}
\}
\{ _fp_tuple_convert_loop:nNw { } #1 #2 { ? _fp_tuple_convert_end:w } ;
\@ { \use_none:nn } \}
\}
\cs_new:Npn __fp_tuple_convert_loop:nNw #1#2#3#4; #5 @ #6
\use_none:n #3
\exp_args:Nf __fp_tuple_convert_loop:nNw { #2 #3#4 ; } #2 #5
@ { #6 , - #1 } \}
\cs_new:Npn __fp_tuple_convert_end:w #1 @ #2
\{ \exp_after:wN (\exp:w \exp_end_continue_f:w #2) \}

(End of definition for _fp_tuple_convert:Nw, _fp_tuple_convert_loop:nNw, and _fp_tuple_convert_end:w.)

79.2 Trimming trailing zeros

If #1 ends with a 0, the loop auxiliary takes that zero as an end-delimiter for its first argument, and the second argument is the same loop auxiliary. Once the last trailing
zero is reached, the second argument is the dot auxiliary, which removes a trailing dot if any. We then clean-up with the end auxiliary, keeping only the number.

(End of definition for _fp_trim_zeros:w and others.)

79.3 Scientific notation

The three public functions evaluate their argument, then pass it to _fp_to_scientific_dispatch:w.

(End of definition for _fp_to_scientific:N and _fp_to_scientific:n. These functions are documented on page 256.)

We allow tuples.

Expressing an internal floating point number in scientific notation is quite easy: no rounding, and the format is very well defined. First cater for the sign: negative numbers (\#2 = 2) start with \-; we then only need to care about positive numbers and \textit{nan}. Then filter the special cases: ±0 are represented as 0; infinities are converted to a number slightly larger than the largest after an “invalid_operation” exception; \textit{nan} is represented as 0 after an “invalid_operation” exception. In the normal case, decrement the exponent.

1185
and unbrace the 4 brace groups, then in a second step grab the first digit (previously hidden in braces) to order the various parts correctly.

```latex
\cs_new:Npn \__fp_to_scientific:w \s__fp \__fp_chk:w #1#2
\{\if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi:
\if_case:w #1 \exp_stop_f:
\__fp_case_return:nw { 0.00000000000000e0 }
\or: \exp_after:wN \__fp_to_scientific_normal:wnnnn
\or:
\__fp_case_use:nw
\{ \__fp_invalid_operation:nw
\{ \fp_to_scientific:N \c__fp_overflowing_fp \}
\fp_to_scientific \}
\}
\or:
\__fp_case_use:nw
\{ \__fp_invalid_operation:nw
\{ \fp_to_scientific:N \c_zero_fp \}
\fp_to_scientific \}
\}
\\if: \s__fp \__fp_chk:w #1 #2
\}
\cs_new:Npn \__fp_to_scientific_normal:wnnnn
\s__fp \__fp_chk:w 1 #1 #2 #3#4#5#6 ;
\exp_after:wN \__fp_to_scientific_normal:wNw
\exp:w \exp_end_continue_f:w \__fp_parse:n
\}
\cs_new:Npn \__fp_to_scientific_normal:wNw #1 ; #2#3;
{ #2.#3 #1 }
(End of definition for \__fp_to_scientific:w, \__fp_to_scientific_normal:wnnnn, and \__fp_to_scientific_normal:wNw.)
```

79.4 Decimal representation

\fp_to_decimal:N, \fp_to_decimal:c, \fp_to_decimal:n

All three public variants are based on the same __fp_to_decimal_dispatch:w after evaluating their argument to an internal floating point.

```latex
\cs_new:Npn \fp_to_decimal:N #1
\{ \exp_after:wN \__fp_to_decimal_dispatch:w #1 \}
\cs_generate_variant:Nn \fp_to_decimal:N { c }
\cs_new:Npn \fp_to_decimal:n
\{ \exp_after:wN \__fp_to_decimal_dispatch:w
\exp:w \exp_end_continue_f:w \__fp_parse:n
\}
(End of definition for \fp_to_decimal:N and \fp_to_decimal:n. These functions are documented on page 255.)
```
We allow tuples.

\cs_new:Npn __fp_to_decimal_dispatch:w #1
\{
__fp_change_func_type:NNN
\#1 __fp_to_decimal:w __fp_to_decimal_recover:w
\}
\cs_new:Npn __fp_to_decimal_recover:w #1 #2 ;
\{
__fp_error:nffn { unknown-type } { \tl_to_str:n { #2 ; } } { } { }
nan
\}
\cs_new:Npn __fp_tuple_to_decimal:w
\{ __fp_tuple_convert:Nw __fp_to_decimal_dispatch:w \}

(End of definition for __fp_to_decimal_dispatch:w, __fp_to_decimal_recover:w, and __fp_tuple_to_decimal:w.)

The structure is similar to __fp_to_scientific:w. Insert - for negative numbers. Zero gives 0, \pm\infty and nan yield an “invalid operation” exception; note that \pm\infty produces a very large output, which we don’t expand now since it most likely won’t be needed. Normal numbers with an exponent in the range [1, 15] have that number of digits before the decimal separator: “decimate” them, and remove leading zeros with \int_value:w, then trim trailing zeros and dot. Normal numbers with an exponent 16 or larger have no decimal separator, we only need to add trailing zeros. When the exponent is non-positive, the result should be 0.⟨zeros⟩⟨digits⟩, trimmed.

\cs_new:Npn __fp_to_decimal:w \s__fp __fp_chk:w #1#2
\{
\if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi:
\if_case:w #1 \exp_stop_f:
__fp_case_return:nw { 0 }
\or: \exp_after:wN __fp_to_decimal_normal:wnnnnn
\or:
__fp_case_use:nw
\{
__fp_invalid_operation:nww
\{ \fp_to_decimal:N \c__fp_overflowing_fp \}
\fp_to_decimal \}
\}
\or:
__fp_case_use:nw
\{
__fp_invalid_operation:nww
\{ 0 \}
\fp_to_decimal \}
\}
\fi:
\s__fp __fp_chk:w #1 #2
\}
\cs_new:Npn __fp_to_decimal_normal:wnnnnn
\s__fp __fp_chk:w 1 #1 #2 #3 #4 #5 #6 ;
\cs_new:Npn __fp_to_decimal_large:Nnnw
\s__fp __fp_chk:w #1 #2 #3 #4 #5 #6 ;
79.5 Token list representation

These three public functions evaluate their argument, then pass it to __fp_to_tl__dispatch:w. These functions are documented on page 256.

We allow tuples.
A structure similar to `__fp_to_scientific_dispatch:w` and `__fp_to_decimal_dispatch:w`, but without the “invalid operation” exception. First filter special cases. We express normal numbers in decimal notation if the exponent is in the range \([-2, 16]\), and otherwise use scientific notation.

\begin{lstlisting}[language=TeX]
\cs_new:Npn __fp_to_tl:w \s__fp __fp_chk:w #1#2 { \if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi: \if_case:w #1 \exp_stop_f: __fp_case_return:nw { 0 } \or: __fp_to_tl_normal:nnnnn \or: __fp_case_return:nw { inf } \else: __fp_case_return:nw { nan } \fi: }
\cs_new:Npn __fp_to_tl_normal:nnnnn #1 { \int_compare:nTF \{-2 \leq #1 \leq \c__fp_prec_int\} { __fp_to_decimal_normal:wnnnnn } { __fp_to_tl_scientific:wnnnnn } \s__fp __fp_chk:w 1 0 {#1} }
\cs_new:Npn __fp_to_tl_scientific:wnnnnn \s__fp __fp_chk:w 1 #1 #2#3#4#5#6 ; { \exp_after:wN __fp_to_tl_scientific:wNw \exp_after:wN e \int_value:w __fp_int_eval:w #2 - 1 ; #3 #4 #5 #6 ; }
\cs_new:Npn __fp_to_tl_scientific:wNw #1 ; #2#3; { __fp_trim_zeros:w #2.#3 ; #1 }
\end{lstlisting}

\end{document}

79.6 Formatting

This is not implemented yet, as it is not yet clear what a correct interface would be, for this kind of structured conversion from a floating point (or other types of variables) to a string. Ideas welcome.

79.7 Convert to dimension or integer

All three public variants are based on the same `__fp_to_dim_dispatch:w` after evaluating their argument to an internal floating point. We only allow floating point numbers,
not tuples.

\begin{verbatim}
\cs_new:Npn \fp_to_dim:N #1
\{ \exp_after:wN __fp_to_dim_dispatch:w #1 \}
\cs_generate_variant:Nn \fp_to_dim:N { c }
\cs_new:Npn \fp_to_dim:n
{ \exp_after:wN __fp_to_dim_dispatch:w \exp:w \exp_end_continue_f:w __fp_parse:n }
\cs_new:Npn __fp_to_dim_dispatch:w #1#2 ;
{ __fp_change_func_type:NNN #1 __fp_to_dim:w __fp_to_dim_recover:w #1 #2 ; }
\cs_new:Npn __fp_to_dim_recover:w #1
{ __fp_invalid_operation:nnw { 0pt } { fp_to_dim } }
\cs_new:Npn __fp_to_dim:w #1; { __fp_to_decimal:w #1; pt }
\end{verbatim}

(End of definition for \texttt{\textbf{fp_to_dim:N}} and others. These functions are documented on page 255.)

\begin{verbatim}
\fp_to_int:N \fp_to_int:c \fp_to_int:n __fp_to_int_dispatch:w __fp_to_int_recover:w
\end{verbatim}

For the most part identical to \texttt{\textbf{fp_to_dim:N}} but without \texttt{pt}, and where \texttt{__fp_to_int:w} does more work. To convert to an integer, first round to 0 places (to the nearest integer), then express the result as a decimal number: the definition of \texttt{__fp_to_decimal_dispatch:w} is such that there are no trailing dot nor zero.

\begin{verbatim}
\cs_new:Npn \fp_to_int:N #1 { \exp_after:wN __fp_to_int_dispatch:w #1 }
\cs_generate_variant:Nn \fp_to_int:N { c }
\cs_new:Npn \fp_to_int:n
{ \exp_after:wN __fp_to_int_dispatch:w \exp:w \exp_end_continue_f:w __fp_parse:n }
\cs_new:Npn __fp_to_int_dispatch:w #1#2 ;
{ __fp_change_func_type:NNN #1 __fp_to_int:w __fp_to_int_recover:w #1 #2 ; }
\cs_new:Npn __fp_to_int_recover:w #1
{ __fp_invalid_operation:nnw { 0 } { fp_to_int } }
\cs_new:Npn __fp_to_int:w #1; { \exp_after:wN __fp_to_decimal:w \exp:w \exp_end_continue_f:w __fp_round:Nwn __fp_round_to_nearest:NNN #1; { 0 } }
\end{verbatim}

(End of definition for \texttt{\textbf{fp_to_int:N}} and others. These functions are documented on page 255.)

79.8 Convert from a dimension

The dimension expression (which can in fact be a glue expression) is evaluated, converted to a number (\textit{i.e.}, expressed in scaled points), then multiplied by \(2^{-16} = 0.0000152587890625\) to give a value expressed in points. The auxiliary \texttt{__fp_mul__npos_o:Nww} expects the desired (\textit{final sign}) and two floating point operands (of the form
\s__fp... \} as arguments. This set of functions is also used to convert dimension registers to floating points while parsing expressions: in this context there is an additional exponent, which is the first argument of _fp_from_dim_test:ww, and is combined with the exponent \(-4\) of \(2^{-16}\). There is also a need to expand afterwards: this is performed by _fp_mul_npos_o:Nww, and cancelled by \prg_do_nothing: here.

\cs_new:Npn \dim_to_fp:n #1
\exp_after:wN __fp_from_dim_test:ww
\exp_after:wN 0
\exp_after:wN ,
\int_value:w \tex_glueexpr:D #1 ;
\cs_new:Npn __fp_from_dim_test:ww #1, #2
\if_meaning:w 0 #2
__fp_case_return:nw { \exp_after:wN \c_zero_fp }
\else:
\exp_after:wN __fp_from_dim:wNw
\int_value:w __fp_int_eval:w #1 - 4
\if_meaning:w - #2
\exp_after:wN , \exp_after:wN 2 \int_value:w #2
\else:
\exp_after:wN , \exp_after:wN 0 \int_value:w #2
\fi:
\fi:
\cs_new:Npn __fp_from_dim:wNw #1,#2#3;
__fp_pack_twice_four:wNNNNNNNN __fp_from_dim:wNNnnnnn ;
\#3 000 0000 00 {10}987654321; #2 \{#1\}
\cs_new:Npn __fp_from_dim:wNNnnnnn #1; #2#3#4#5#6#7#8#9
{ __fp_from_dim:wnnnnwNn #1 \{#2#300\} \{0000\} ; }
\cs_new:Npn __fp_from_dim:wnnnnwNn #1; #2#3#4#5#6; #7#8
{ __fp_mul_npos_o:Nww #7
\s__fp __fp_chk:w 1 \{#5\} \#1 ;
\s__fp __fp_chk:w 1 0 \{#8\} \{1525\} \{8789\} \{0625\} \{0000\} ;
\prg_do_nothing:
}\)

(End of definition for \dim_to_fp:n and others. This function is documented on page 226.)

79.9 Use and eval

\fp_use:N
Those public functions are simple copies of the decimal conversions.
\fp_use:c
\fp_eval:n
(End of definition for \fp_use:N and \fp_eval:n. These functions are documented on page 256.)
\texttt{\textbackslash fp_sign:n} Trivial but useful. See the implementation of \texttt{\textbackslash fp_add:Nn} for an explanation of why to use \texttt{__fp_parse:n}, namely, for better error reporting.

\begin{verbatim}
\cs_new:Npn \fp_sign:n #1
\{ \fp_to_decimal:n { sign __fp_parse:n (#1) } \}
\end{verbatim}

(End of definition for \texttt{\textbackslash fp_sign:n}. This function is documented on page 255.)

\texttt{\textbackslash fp_abs:n} Trivial but useful. See the implementation of \texttt{\textbackslash fp_add:Nn} for an explanation of why to use \texttt{__fp_parse:n}, namely, for better error reporting.

\begin{verbatim}
\cs_new:Npn \fp_abs:n #1
\{ \fp_to_decimal:n { abs __fp_parse:n (#1) } \}
\end{verbatim}

(End of definition for \texttt{\textbackslash fp_abs:n}. This function is documented on page 273.)

\texttt{\textbackslash fp_max:nn} \texttt{\textbackslash fp_min:nn} Similar to \texttt{\textbackslash fp_abs:n}, for consistency with \texttt{\textbackslash int_max:nn}, etc.

\begin{verbatim}
\cs_new:Npn \fp_max:nn #1#2
\{ \fp_to_decimal:n { max (__fp_parse:n (#1) , __fp_parse:n (#2)) } \}
\cs_new:Npn \fp_min:nn #1#2
\{ \fp_to_decimal:n { min (__fp_parse:n (#1) , __fp_parse:n (#2)) } \}
\end{verbatim}

(End of definition for \texttt{\textbackslash fp_max:nn} and \texttt{\textbackslash fp_min:nn}. These functions are documented on page 273.)

79.10 Convert an array of floating points to a comma list

\texttt{__fp_array_to_clist:n} \texttt{__fp_array_to_clist_loop:Nw} Converts an array of floating point numbers to a comma-list. If speed here ends up irrelevant, we can simplify the code for the auxiliary to become

\begin{verbatim}
\cs_new:Npn __fp_array_to_clist_loop:Nw #1 #2
{ \use_none:n #1
 \{ , - \} \fp_to_tl:n { #1 #2 ; } __fp_array_to_clist_loop:Nw }
\end{verbatim}

The \texttt{\use_ii:nn} function is expanded after \texttt{__fp_expand:n} is done, and it removes , from the start of the representation.

\begin{verbatim}
\cs_new:Npn __fp_array_to_clist:n #1
{ \tl_if_empty:nF {#1}
 \exp_last_unbraced:Ne \use_ii:nn
 \{ __fp_array_to_clist_loop:Nw #1 \? \prg_break: \}
 \prg_break_point: }
\cs_new:Npn __fp_array_to_clist_loop:Nw #1 #2
{ \use_none:n #1
 , - }
\end{verbatim}

1192
\exp_not:f { __fp_to_tl_dispatch:w #1 #2 ; }
__fp_array_to_clist_loop:Nw
}

(End of definition for __fp_array_to_clist:n and __fp_array_to_clist_loop:Nw.)

\endinput
Chapter 80

l3fp-random implementation

Those functions may receive a variable number of arguments. We won’t use the argument ?.

(End of definition for __fp_parse_word_rand:N and __fp_parse_word_randint:N.)

80.1 Engine support

Obviously, every word “random” below means “pseudo-random”, as we have no access to entropy (except a very unreliable source of entropy: the time it takes to run some code).

The primitive random number generator (RNG) is provided as \texttt{uniformdeviate:D}. Under the hood, it maintains an array of 55 28-bit numbers, updated with a linear recursion relation (similar to Fibonacci numbers) modulo 2^{28}. When \texttt{uniformdeviate:D \langle \texttt{integer} \rangle} is called (for brevity denote by \texttt{N} the \texttt{\langle \texttt{integer} \rangle}), the next 28-bit number is read from the array, scaled by $N/2^{28}$, and rounded. To prevent 0 and \texttt{N} from appearing half as often as other numbers, they are both mapped to the result 0.

This process means that \texttt{uniformdeviate:D} only gives a uniform distribution from 0 to $N-1$ if \texttt{N} is a divisor of 2^{28}, so we will mostly call the RNG with such power of 2 arguments. If \texttt{N} does not divide 2^{28}, then the relative non-uniformity (difference between probabilities of getting different numbers) is about $N/2^{28}$. This implies that detecting deviation from $1/N$ of the probability of a fixed value \texttt{X} requires about $2^{56}/N$ random trials. But collective patterns can reduce this to about $2^{56}/N^2$. For instance with \texttt{N} = 3×2^{k}, the modulo 3 repartition of such random numbers is biased with a non-uniformity about $2^k/2^{28}$ (which is much worse than the circa $3/2^{28}$ non-uniformity from taking directly $N = 3$). This is detectable after about $2^{56}/2^{2k} = 9 \cdot 2^{56}/N^2$ random numbers. For $k = 15$, \texttt{N} = 98304, this means roughly 2^{26} calls to the RNG (experimentally this takes at the very least 16 seconds on a 2 giga-hertz processor). While this bias is not quite problematic, it is uncomfortably close to being so, and it becomes worse as \texttt{N} is increased. In our code, we shall thus combine several results from the RNG.
The RNG has three types of unexpected correlations. First, everything is linear modulo 2^{28}, hence the lowest k bits of the random numbers only depend on the lowest k bits of the seed (and of course the number of times the RNG was called since setting the seed). The recommended way to get a number from 0 to $N - 1$ is thus to scale the raw 28-bit integer, as the engine’s RNG does. We will go further and in fact typically we discard some of the lowest bits.

Second, suppose that we call the RNG with the same argument N to get a set of K integers in $[0, N - 1]$ (throwing away repeats), and suppose that $N > K^3$ and $K > 55$. The recursion used to construct more 28-bit numbers from previous ones is linear: \[x_n = x_{n-55} - x_{n-24} \text{ or } x_n = x_{n-55} - x_{n-24} + 2^{28}. \] After rescaling and rounding we find that the result $N_n \in [0, N - 1]$ is among \[N_n - 55 \leq N_n - 24 + \{ -1, 0, 1 \} \] modulo N (a more detailed analysis shows that 0 appears with frequency close to $3/4$). The resulting set thus has more triplets (a, b, c) than expected obeying $a = b + c$ modulo N. Namely it will have of order $(K - 55) \times 3/4$ such triplets, when one would expect $K^3/(6N)$. This starts to be detectable around $N = 2^{18} > 55^3$ (earlier if one keeps track of positions too, but this is more subtle than it looks because the array of 28-bit integers is read backwards by the engine). Hopefully the correlation is subtle enough to not affect realistic documents so we do not specifically mitigate against this. Since we typically use two calls to the RNG per \texttt{int_rand_nn} we would need to investigate linear relations between the x_{2n} on the one hand and between the x_{2n+1} on the other hand. Such relations will have more complicated coefficients than ± 1, which alleviates the issue.

Third, consider successive batches of 165 calls to the RNG (with argument 2^{28} or with argument 2 for instance), then most batches have more odd than even numbers. Note that this does not mean that there are more odd than even numbers overall. Similar issues are discussed in Knuth’s TAOCP volume 2 near exercise 3.3.2-31. We do not have any mitigation strategy for this.

Ideally, our algorithm should be:

- Uniform. The result should be as uniform as possible assuming that the RNG’s underlying 28-bit integers are uniform.

- Uncorrelated. The result should not have detectable correlations between different seeds, similar to the lowest-bit ones mentioned earlier.

- Quick. The algorithm should be fast in TeX, so no “bit twiddling”, but “digit twiddling” is ok.

- Simple. The behaviour must be documentable precisely.

- Predictable. The number of calls to the RNG should be the same for any \texttt{int_rand_nn}, because then the algorithm can be modified later without changing the result of other uses of the RNG.

- Robust. It should work even for \texttt{int_rand_nn \{- \c_max_int \} \{ \c_max_int \}} where the range is not representable as an integer. In fact, we also provide later a floating-point \texttt{randint} whose range can go all the way up to $2 \times 10^{16} - 1$ possible values.

Some of these requirements conflict. For instance, uniformity cannot be achieved with a fixed number of calls to the RNG.

Denote by random(N) one call to \texttt{tex_uniformdeviate:D} with argument N, and by \texttt{ediv(p,q)} the ε-TeX rounding division giving $\lfloor p/q + 1/2 \rfloor$. Denote by (\min), (\max)
and \(R = \langle \text{max} \rangle - (\langle \text{min} \rangle + 1 \) the arguments of \texttt{\int_min:nn} and the number of possible outcomes. Note that \(R \in [1, 2^{32} - 1] \) cannot necessarily be represented as an integer (however, \(R < 2^{31} \) can). Our strategy is to get two 28-bit integers \(X \) and \(Y \) from the RNG, split each into 14-bit integers, as \(X = X_1 \times 2^{14} + X_0 \) and \(Y = Y_1 \times 2^{14} + Y_0 \) then return essentially \(\langle \text{min} \rangle + \lfloor R(X_1 \times 2^{-14} + Y_1 \times 2^{-28} + Y_0 \times 2^{-42} + X_0 \times 2^{-56}) \rfloor \). For small \(R \) the \(X_0 \) term has a tiny effect so we ignore it and we can compute \(R \times Y/2^{28} \) much more directly by \texttt{random}(\(R \)).

- If \(R \leq 2^{17} - 1 \) then return \(\text{ediv}(R \times \text{random}(2^{14}) + \text{random}(R) + 2^{13}, 2^{14}) - 1 + (\langle \text{min} \rangle \). The shifts by \(2^{13} \) and \(-1 \) convert \(\varepsilon \)-T\(\text{p} \) division to truncated division. The bound on \(R \) ensures that the number obtained after the shift is less than \(\text{\texttt{c_max_int}} \). The non-uniformity is at most of order \(2^{17}/2^{42} = 2^{-25} \).

- Split \(R = R_2 \times 2^{28} + R_1 \times 2^{14} + R_0 \), where \(R_2 \in [0, 15] \). Compute \(\langle \text{min} \rangle + R_2 X_1 2^{14} + \langle R_2 Y_1 + R_1 X_1 \rangle \) and \(\text{ediv}(R_2 Y_0 + R_1 Y_1 + R_0 X_1 + \text{ediv}(R_2 X_0 + R_0 Y_1 + \text{ediv}(2^{14} R_1 + R_0)(2^{14} Y_0 + X_0), 2^{28}), 2^{14}), 2^{14} \rangle \) then map a result of \(\langle \text{max} \rangle + 1 \) to \(\langle \text{min} \rangle \). Writing each \text{ediv} in terms of truncated division with a shift, and using \(\langle (p + [r/s])/q \rangle = \langle (ps + r)/(sq) \rangle \), what we compute is equal to \(\langle \text{exact} \rangle + 2^{-29} + 2^{-15} + 2^{-1} \) with \(\langle \text{exact} \rangle = (\langle \text{min} \rangle + R \times 0.X_1 Y_0 X_0) \). Given we map \(\langle \text{max} \rangle + 1 \) to \(\langle \text{min} \rangle \), the shift has no effect on uniformity. The non-uniformity is bounded by \(R/2^{56} < 2^{-24} \). It may be possible to speed up the code by dropping tiny terms such as \(R_0 X_0 \), but the analysis of non-uniformity proves too difficult.

To avoid the overflow when the computation yields \(\langle \text{max} \rangle + 1 \) with \(\langle \text{max} \rangle = 2^{31} - 1 \) (note that \(R \) is then arbitrary), we compute the result in two pieces. Compute \(\langle \text{first} \rangle = \langle \text{min} \rangle + R_2 X_1 2^{14} \) if \(R_2 < 8 \) or \(\langle \text{min} \rangle + 8X_1 2^{14} \) if \(R_2 \geq 8 \), the expressions being chosen to avoid overflow. Compute \(\langle \text{second} \rangle = R_2 Y_1 + R_1 X_1 + \text{ediv}(\ldots) \), at most \(R_2 2^{14} + R_2 2^{14} + R_0 \leq 2^{28} + 15 \times 2^{14} - 1 \), not at risk of overflowing. We have \(\langle \text{first} \rangle + \langle \text{second} \rangle = \langle \text{max} \rangle + 1 = \langle \text{min} \rangle + R \) if and only if \(\langle \text{second} \rangle = R_2 2^{14} + R_0 + R_2 2^{14} \) and \(2^{14} R_2 X_1 = 2^{28} R_2 - 2^{14} R_2 \) (namely \(R_2 = 0 \) or \(X_2 = 2^{14} - 1 \)). In that case, return \(\langle \text{min} \rangle \), otherwise return \(\langle \text{first} \rangle + \langle \text{second} \rangle \), which is safe because it is at most \(\langle \text{max} \rangle \). Note that the decision of what to return does not need \(\langle \text{first} \rangle \) explicitly so we don’t actually compute it, just put it in an integer expression in which \(\langle \text{second} \rangle \) is eventually added (or not).

- To get a floating point number in \([0, 1)\) just call the \(R = 10000 \leq 2^{17} - 1 \) procedure above to produce four blocks of four digits.

- To get an integer floating point number in a range (whose size can be up to \(2 \times 10^{16} - 1 \)), work with fixed-point numbers: get six times four digits to build a fixed point number, multiply by \(R \) and add \(\langle \text{min} \rangle \). This requires some care because \texttt{\texttt{lfp-extended}} only supports non-negative numbers.

\[\text{\texttt{c_kernel_randint_max_int}} \] Constant equal to \(2^{17} - 1 \), the maximal size of a range that \texttt{\texttt{int_range:nn}} can do with its “simple” algorithm.

\[\texttt{\texttt{int_const:Nn}} \texttt{\texttt{c_kernel_randint_max_int}} \{ 131071 \} \]

(End of definition for \texttt{\texttt{c_kernel_randint_max_int}}.)

\[\text{\texttt{_kernel_randint:n}} \] Used in an integer expression, \(\text{\texttt{_kernel_randint:n}} \{ R \} \) gives a random number \(1 + \lfloor (R \text{\texttt{random}}(2^{14}) + \text{\texttt{random}}(R))/2^{14} \rfloor \) that is in \([1, R]\). Previous code was computing \([p/2^{14}] \) as \(\text{\texttt{ediv}}(p - 2^{13}, 2^{14}) \) but that wrongly gives \(-1\) for \(p = 0 \).

1196
Random floating point

First we check that \texttt{random} was called without argument. Then get four blocks of four
digits and convert that fixed point number to a floating point number (this correctly sets
the exponent). This has a minor bug: if all of the random numbers are zero then the
result is correctly 0 but it raises the 	exttt{underflow} flag; it should not do that.

\begin{verbatim}
\cs_new:Npn __fp_rand_o:Nw ? #1 @
{ \tl_if_empty:nTF {#1}
 { \exp_after:wN __fp_rand_o:w
 \exp:w \exp_end_continue_f:w
 __fp_rand_myriads:n { XXXX } { 0000 } { 0000 } ; 0
 }
 { \msg_error:nnnnn { fp } { num-args } { rand() } { 0 } { 0 } }
 \exp_after:wN \c_nan_fp
}
\cs_new:Npn __fp_rand_o:w ;
{ \exp_after:wN __fp_sanitize:Nw
 \exp_after:wN 0 \int_value:w __fp_int_eval:w \c_zero_int
 __fp_fixed_to_float_o:wN
}
\end{verbatim}

80.2 Random floating point
80.3 Random integer

Enforce that there is one argument (then add first argument 1) or two arguments. Call __fp_randint_badarg:w on each; this function inserts \exp_stop_f: to end the \if_case:w statement if either the argument is not an integer or if its absolute value is $\geq 10^{16}$. Also bail out if __fp_compare_back:ww yields 1, meaning that the bounds are not in the right order. Otherwise an auxiliary converts each argument times 10^{-16} (hence the shift in exponent) to a 24-digit fixed point number (see __fp-sanitize:Nw). Then compute the number of choices, $\langle \max \rangle + 1 - \langle \min \rangle$. Create a random 24-digit fixed-point number with __fp_rand_myriads:n, then use a fused multiply-add instruction to multiply the number of choices to that random number and add it to $\langle \min \rangle$. Then truncate to 16 digits (namely select the integer part of 10^{16} times the result) before converting back to a floating point number (__fp-sanitize:Nw takes care of zero). To avoid issues with negative numbers, add 1 to all fixed point numbers (namely 10^{16} to the integers they represent), except of course when it is time to convert back to a float.
\cs_new:Npn __fp_randint_auxi_o:ww #1 ; #2 ; #3 \exp_end:
{
\if:
__fp_randint_auxii:wn #2 ;
__fp_randint_auxii:wn #1 ; __fp_randint_auxiii_o:ww }
\cs_new:Npn __fp_randint_auxii:wn \a__fp __fp_chk:w #1#2#3#4 ;
{
\if_meaning:w 0 #1
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_ii:nn
\fi:
\exp_after:wN __fp_fixed_continue:wn \c__fp_one_fixed_tl
\if_meaning:w 0 #2
\exp_after:wN \use_i:nnn
\exp_after:wN __fp_fixed_add_one:wN
\fi:
\exp_after:wN __fp_fixed_sub:wwn \c__fp_one_fixed_tl }
__fp_fixed_continue:wn
\cs_new:Npn __fp_randint_auxiii_o:ww #1 ; #2 ;
{ __fp_fixed_add:wwn #2 ; {0000} {0000} {0000} {0001} {0000} {0000} ;
__fp_fixed_sub:wwn #1 ;
\exp_after:wN __fp_rand_myriads:n { XXXXXX } ;
\if_int_compare:w #1#2 > #6#7 \exp_stop_f: 1 \else:
\if_int_compare:w #1#2 < #6#7 \exp_stop_f: - \fi: \fi:
__fp_use_i_until_s:nw
__fp_randint_auxiv_o:w {#1}{#2}{#3}{#4}#5 __fp_randint_auxv_o:w #1 ; @ }
\cs_new:Npn __fp_randint_auxiv_o:ww #1#2#3#4#5 ; #6#7#8#9
{
\if_int_compare:w #1#2 > #6#7 \exp_stop_f: 1 \else:
\if_int_compare:w #1#2 < #6#7 \exp_stop_f: - \fi: \fi:
__fp_use_i_until_s:nw
__fp_randint_auxv_o:w {#1}{#2}{#3}{#4}#5 }
\cs_new:Npn __fp_randint_auxv_o:w #1#2#3#4#5 ; #6 0
\int_rand:nn __fp_randint:ww

Evaluate the argument and filter out the case where the lower bound #1 is more than
the upper bound #2. Then determine whether the range is narrower than \c__kernel__-
randint_max_int; #2-#1 may overflow for very large positive #2 and negative #1. If the
range is narrow, call __kernel_randint:n \langle \choices \rangle where \langle \choices \rangle is the number
of possible outcomes. If the range is wide, use somewhat slower code.

\cs_new:Npn \int_rand:nn \#1#2
\{\[
\int_eval:n
\{\[
\exp_after:wN __fp_randint:ww
\int_value:w \int_eval:n {#1} \exp_after:wN ,\exp_after:wN \int_value:w \int_eval:n {#2} ;
\}
\]
\}
\cs_new:Npn __fp_randint:ww \#1; \#2;\{
\if_int_compare:w #1 > #2 \exp_stop_f:
\msg_expandable_error:nnnn { kernel } { randint-backward-range } \#1 \#2\}
__fp_randint:ww \#2; \#1;\else:\\if_int_compare:w #1 > \c_zero_int
- \#1 < __fp_int_eval:w \#2
\else:__fp_int_eval:w \#1 + \fi:\\c__kernel_randint_max_int
__fp_int_eval_end:__kernel_randint:n
\{ __fp_int_eval:w \#2 - \#1 + 1 __fp_int_eval_end: \}
\else:\\fi:\\c__kernel_randint_max_int
__fp_int_eval_end:__kernel_randint:n
\{ __fp_int_eval:w \#2 - \#1 + 1 __fp_int_eval_end: \}
\end{definition_for __fp_randint_o:Nw and others. \}
(End of definition for __fp_randint_o:Nw and others.)

\int_rand:nn __fp_randint:ww

Any \(n \in [-2^{31} + 1, 2^{31} - 1] \) is uniquely written as \(2^{14} n_1 + n_2 \) with \(n_1 \in [-2^{17}, 2^{17} - 1] \) and \(n_2 \in [0, 2^{14} - 1] \). Calling \(__fp_randint_split_o:Nw n \) gives \(n_1; n_2 \); and expands the next token once. We do this for two random numbers and apply \(__fp_randint_split_o:Nw \) twice to fully decompose the range \(R \). One subtlety is that we compute \(R - 2^{31} = (\text{max}) - (\text{min}) - (2^{31} - 1) \in [-2^{31} + 1, 2^{31} - 1] \) rather than \(R \) to avoid overflow. Then we have \(__fp_randint_wide_aux:w (X_1); (X_0); (Y_1); (Y_0); (R_2); (R_1); (R_0); \) and we apply the algorithm described earlier.

```latex
\cs_new:Npn \_\_kernel_randint:nn #1 \#2
{\_\_fp\_randint\_split\_o:Nw \_\_fp\_randint\_split\_aux:w \_\_fp\_randint\_wide\_aux:w \_\_fp\_randint\_wide\_aux:w \_\_kernel\_int\_add:nnn {\#2} {-\text{c\_max\_int}} {-\#1} \{ -\#1 \} \{ -\text{c\_max\_int} \} ;}
```

(End of definition for \texttt{__randint:nn} and \texttt{__fp_randint:nn}. This function is documented on page 175.)
\begin{verbatim}
(\#5 * \#4 + \#6 * \#3 + \#7 * \#1 +
(\#5 * \#2 + \#7 * \#3 +
(16384 * \#6 + \#7) * (16384 * \#4 + \#2) / 268435456) / 16384 \exp_after:wN ;
\int_value:w __fp_int_eval:w (#5 + \#6) * 16384 + \#7 ;
\#1 ; \#5 ;
}
\cs_new:Npn __fp_randint_wide_auxii:w #1; #2; #3; #4;
{
\if_int_odd:w 0
\if_int_compare:w \#1 = \#2 \else: \exp_stop_f: \fi:
\if_int_compare:w \#4 = \c_zero_int 1 \fi:
\if_int_compare:w \#3 = 16383 ~ 1 \fi:
\exp_stop_f:
\exp_after:wN \prg_break:
\fi:
\if_int_compare:w \#4 < 8 \exp_stop_f:
+ \#4 * \#3 * 16384
\else:
+ 8 * \#3 * 16384 + (#4 - 8) * \#3 * 16384
\fi:
+ \#1
\prg_break_point:
}
\end{verbatim}

(End of definition for __kernel_randint:nn and others.)

\texttt{\textbackslash int_rand:n}

Similar to \texttt{\textbackslash int_rand:nn}, but needs fewer checks.

\begin{verbatim}
\cs_new:Npn \int_rand:n #1
{
\int_eval:n { \exp_args:Nf __fp_randint:n { \int_eval:n {#1} } }
}
\cs_new:Npn __fp_randint:n #1
{
\if_int_compare:w #1 < \c_one_int
\msg_expandable_error:nnnn { kernel } { randint-backward-range } { 1 } {#1}
__fp_randint:ww #1; 1;
\else:
\if_int_compare:w #1 > \c__kernel_randint_max_int
__kernel_randint:nn { 1 } {#1}
\else:
__kernel_randint:n {#1}
\fi:
\fi:
}
\end{verbatim}

(End of definition for \texttt{\textbackslash int_rand:n} and \texttt{__fp_randint:n}. This function is documented on page 175.)

(/package)
Chapter 81

l3fp-types implementation

81.1 Support for types

Despite lack of documentation, the l3fp internals support types. Each additional type must define

- \s__fp_⟨type⟩ and __fp_⟨type⟩_chk:w;
- __fp_exp_after_⟨type⟩_f:nw;
- __fp_⟨type⟩_to_⟨out⟩:w for ⟨out⟩ among decimal, scientific, tl;

and may define

- __fp_⟨type⟩_to_int:w and __fp_⟨type⟩_to_dim:w;
- __fp_⟨op⟩_⟨type⟩_o:w for any of the ⟨op⟩ that the type implements, among acos, acsc, asec, asin, cos, cot, csc, exp, ln, not, sec, set_sign, sin, tan;
- __fp_⟨type1⟩_⟨op⟩_⟨type2⟩_o:ww for ⟨op⟩ among */-+&| and for every pair of types;
- __fp_⟨type1⟩_bcmp_⟨type2⟩:ww for every pair of types.

The latter is set up in l3fp-logic.

81.2 Dispatch according to the type

__fp_types_cs_to_op:N \cs_new:Npe __fp_types_cs_to_op:N #1
{ \exp_not:N \exp_after:wN \exp_not:N __fp_types_cs_to_op_auxi:wwwn
__fp_types.cs_to_op_auxi:wwwn
\exp_not:N \token_to_str:N #1 \s__fp_mark
\exp_not:N __fp_use_i_delimit_by_s_stop:nw
\tl_to_str:n { __fp_ _o:w } \s__fp_mark
{ \exp_not:N __fp_use_i_delimit_by_s_stop:nw ? }
\use:e \use:0
\cs_new:Npn \exp_not:N __fp_types_cs_to_op_auxi:wwwn
\#1 \tl_to_str:n { _o:w } \#2 \tl_to_str:n { _o:w } \#3 \s__fp_mark \#4 \{ \#4 \{\#2\} \}
\end{definition} for __fp_types_cs_to_op:N and __fp_types_cs_to_op_auxi:wwwn.
\begin{definition}
\cs_new:Npn __fp_types_unary:NNw
\{ __fp_types_unary_auxi:nNw \}
\cs_new:Npn __fp_types_unary_auxi:nNw
\{ __fp_types_unary_auxii:NnNw \}
\begin{definition}
\cs_new:Npn __fp_types_unary:NNw
\{ __fp_types_unary_auxi:nNw \}
\end{definition}
\begin{definition}
\cs_new:Npn __fp_types_unary_auxi:nNw
\{ __fp_types_unary_auxii:NnNw \}
\end{definition}
\begin{definition}
\cs_new:Npn __fp_types_unary_auxii:NnNw
\{ __fp_invalid_operation_o:nw \{\#2\} \}
\end{definition}
\end{definition} for __fp_types_unary:NNw, __fp_types_unary_auxi:nNw, and __fp_types_unary_auxii:NnNw.
\begin{definition}
\cs_new:Npn __fp_types_binary:Nww
\{ __fp_types_binary_auxi:Nww \}
\cs_new:Npn __fp_types_binary_auxi:Nww
\{ __fp_types_binary_auxii:NNww \}
\begin{definition}
\cs_new:Npn __fp_types_binary:Nww
\{ __fp_types_binary_auxi:Nww \}
\end{definition}
\begin{definition}
\cs_new:Npn __fp_types_binary_auxi:Nww
\{ __fp_types_binary_auxii:NNww \}
\end{definition}
\begin{definition}
\cs_new:Npn __fp_types_binary_auxii:NNww
\{ __fp_invalid_operation_o:nw \{\#2\} \}
\end{definition}
\end{definition} for __fp_types_binary:Nww, __fp_types_binary_auxi:Nww, and __fp_types_binary_auxii:NNww.
\cs_new:Npn _fp_types_binary_auxii:NNww #1#2
\{
 \token_if_eq_meaning:NNTF \scan_stop: #1
 { _fp_invalid_operation_o:Nww #2 }
 {#1}
\}

(End of definition for _fp_types_binary:Nww, _fp_types_binary_auxi:Nww, and _fp_types_binary_auxii:Nww.)

\endinput
Chapter 82

\textbf{l3fp-symbolic implementation}

\begin{verbatim}
\l__fp_symbolic_fp
Scratch floating point.
\end{verbatim}

\l__fp_symbolic_fp \texttt{\textbackslash fp_new:N \l__fp_symbolic_fp}

\textit{(End of definition for \l__fp_symbolic_fp.)}

\subsection{82.2 Building blocks for expressions}

Every symbolic expression has the form \texttt{\textbackslash s__fp_symbolic \textbackslash __fp_symbolic_chk:w \langle operation \rangle, \{\langle operands \rangle\} \langle junk \rangle}; where the \langle operation \rangle is a list of \texttt{N}-type tokens, the \langle operands \rangle is an array of floating point objects, and the \langle junk \rangle is to be discarded. If the outermost operator (last to be evaluated) is unary, the expression has the form

\begin{verbatim}
___fp_symbolic __fp_symbolic_chk:w
__fp_types_unary:NNw __fp_\langle op \rangle_o:w \langle token \rangle, \{ \langle operand \rangle \} \langle junk \rangle;
\end{verbatim}

where the \langle op \rangle is a unary operation (\texttt{set_sign}, \texttt{cos}, ...), and the \langle token \rangle and \langle operand \rangle are used as arguments for __fp_\langle op \rangle_o:w (or the type-specific analog of this function). If the outermost operator is binary, the expression has the form

\begin{verbatim}
___fp_symbolic __fp_symbolic_chk:w
__fp_types_binary:Nww __fp_\langle op \rangle_o:ww, \{ \langle operand_1 \rangle \} \langle operand_2 \rangle \} \langle junk \rangle;
\end{verbatim}

where the \langle op \rangle is an operation (+, &, ...), and __fp_\langle op \rangle_o:ww receives the \langle operands \rangle as arguments. If the expression consists of a single variable, it is stored as

\begin{verbatim}
___fp_symbolic __fp_symbolic_chk:w
__fp_variable_o:w \langle identifier \rangle, \{ \} \langle junk \rangle;
\end{verbatim}
Symbolic expressions are stored in a prefix form. When encountering a symbolic expression in a floating point computation, we attempt to evaluate the operands as much as possible, and if that yields floating point numbers rather than expressions, we apply the operator which follows (if the function is known).

For instance, the expression \(a + b \times \sin(c)\) is stored as

\[
\s__fp_symbolic __fp_symbolic_chk:w \\
__fp_types_binary:Nww __fp+_o:ww , \\
\{ \\
\s__fp_symbolic __fp_symbolic_chk:w \\
__fp_variable_o:w a , \} ; \\
\s__fp_symbolic __fp_symbolic_chk:w \\
__fp_types_binary:Nww __fp_*_o:ww , \\
\{ \\
\s__fp_symbolic __fp_symbolic_chk:w \\
__fp_variable_o:w b , \} ; \\
\s__fp_symbolic __fp_symbolic_chk:w \\
__fp_types_unary:NWw __fp_sin_o:w \use_i:nn , \\
\{ \\
\s__fp_symbolic __fp_symbolic_chk:w \\
__fp_variable_o:w c , \} ; \\
\} ; \\
\s__fp_symbolic
\]

\(\s__fp_symbolic\) Scan mark indicating the start of a symbolic expression.

(End of definition for \(\s__fp_symbolic\).)

\(__fp_symbolic_chk:w\) Analog of \(__fp_chk:w\) for symbolic expressions.

(End of definition for \(__fp_symbolic_chk:w\).)

82.3 Expanding after a symbolic expression

\(__fp_if_has_symbolic:nTF\) \(__fp_if_has_symbolic_aux:w\)

Tests if \#1 contains \(\s__fp_symbolic\) at top-level. This test should be precise enough to determine if a given array contains a symbolic expression or only consists of floating points. Used in \(__fp_exp_after_symbolic_f:nw\).

(End of definition for \(__fp_symbolic_chk:w\).)
This function does two things: trigger an \texttt{f}-expansion of the argument \#1 after the following symbolic expression, and evaluate all pieces of the expression which can be evaluated.

\begin{verbatim}
\cs_new:Npn __fp_exp_after_symbolic_f:nw #1 \s__fp_symbolic __fp_symbolic_chk:w #2, #3#4; \exp_after:wN __fp_exp_after_symbolic_aux:w \exp:w __fp_exp_after_symbolic_loop:N #2 \exp_after:wN \exp_end: \exp_after:wN __fp_exp_after_array_f:w #3 \s__fp_expr_stop \exp_after:wN ; \exp:w \exp_end_continue_f:w #1
\cs_new:Npn __fp_exp_after_symbolic_aux:w #1, #2; __fp_exp_after_symbolic_f:nw \s__fp_symbolic __fp_symbolic chk:w #1, \{#2\}; \}
\cs_new:Npn __fp_exp_after_symbolic_loop:N #1 __fp_if_has_symbolic:nTF \#2 { \s__fp_symbolic __fp_symbolic chk:w #1, \#2; \}
{ #1 \#2 \prg_do_nothing: }
\cs_new:Npn __fp_exp_after_symbolic_loop:N __fp_if_has_symbolic:nTF \#2 { \s__fp_symbolic __fp_symbolic_chk:w #1, \{#2\}; }
\cs_new:Npn __fp_exp_after_symbolic_loop:N __fp_if_has_symbolic:nTF \#2 { \s__fp_symbolic __fp_symbolic_chk:w #1, \{#2\}; }
\end{verbatim}

\section{Applying infix operators to expressions}

\begin{verbatim}
\cs_new:Npn __fp_symbolic_binary_o:Nww #1 #2; #3; __fp_exp_after_symbolic_f:nw \s__fp_symbolic __fp_symbolic chk:w #1, \{#2; \#3\}; \}
\end{verbatim}

\vspace{1208}
82.5 Applying prefix functions to expressions

Used when applying infix operators to expressions.

\begin{verbatim}
\cs_new:Npn __fp_symbolic_unary_o:NNw #1#2#3; @
{ __fp_exp_after_symbolic_f:nw { \exp_after:wN \exp_stop_f: }
\s__fp_symbolic __fp_symbolic_chk:w
__fp_types_unary:NNw #1#2 , { #3; } ; }
\end{verbatim}

(End of definition for __fp_symbolic_unary_o:NNw and others.)

\begin{verbatim}
\tl_map_inline:nn { \{acos} \{acsc} \{asec} \{asin} \{cos} \{cot} \{csc} \{exp} \{ln}
\{not\} \{sec\} \{set_sign\} \{sin\} \{sqrt\} \{tan\} }
{ \cs_new:cpe __fp_symbolic_#1_o:w {
\exp_not:N __fp_symbolic_#1_o:w
\exp_not:c __fp_#1_o:w
} }
\end{verbatim}

(End of definition for __fp_symbolic_acos_o:w and others.)
82.6 Conversions

Symbolic expressions cannot be converted to decimal, integer, or scientific notation unless they can be reduced to

\begin{verbatim}
\cs_set_protected:Npn __fp_tmp:w #1#2#3
\cs_new:cpn { __fp_symbolic_to_#1:w }
\exp_after:wN __fp_symbolic_convert:wnnN
\exp:w \exp_end_continue_f:w
__fp_exp_after_symbolic_f:nw { { #2 } { fp_to_#1 } #3 }
__fp_tmp:w { decimal } { 0 } __fp_to_decimal_dispatch:w
__fp_tmp:w { int } { 0 } __fp_to_int_dispatch:w
__fp_tmp:w { scientific } { nan } __fp_to_scientific_dispatch:w
\cs_new:Npn __fp_symbolic_convert:wnnN #1#2; #3#4#5
\str_if_eq:nnTF {#1} { \s__fp_symbolic }{ __fp_invalid_operation:nnw {#3} {#4} #1#2; } { #5 #1#2; }
\end{verbatim}

(End of definition for __fp_symbolic_to_decimal:w and others.)

Converting a symbolic expression to a token list is possible.

\begin{verbatim}
\cs_new:Npn __fp_symbolic_to_tl:w __fp_symbolic_unary_to_tl:Nw __fp_symbolic_binary_to_tl:Nw __fp_symbolic_function_to_tl:Nw
\cs_new:Npn __fp_symbolic_unary_to_tl:Nw { __fp_types_unary:NNw }
\cs_new:Npn __fp_symbolic_binary_to_tl:Nww { __fp_types_binary:NNww }
\cs_new:Npn __fp_symbolic_function_to_tl:Nw { __fp_types_function:NNw }
\end{verbatim}

(End of definition for __fp_symbolic_to_tl:w and others.)
82.7 Identifiers

Functions defined here are not necessarily tied to symbolic expressions.

If \texttt{#1} contains a space, it is not a valid identifier. Otherwise, loop through letters in \texttt{#1}: if it is not a letter, break the loop and return \texttt{true}. If the end of the loop is reached without finding any non-letter, return \texttt{false}. Note \texttt{#1} must be a str (i.e., resulted from \texttt{\tl_to_str:n}).
29028 \prg_break_point:
29029 }
29030 }
29031 }
29032 \cs_new:Npn __fp_id_if_invalid_aux:N #1
29033 {
29034 \use_none:n #1
29035 \int_compare:nF { 'a <= '#1 <= 'z }
29036 {
29037 \int_compare:nF { 'A <= '#1 <= 'Z }
29038 {
29039 \prg_break:n \prg_return_true: }
29040 }
29041 __fp_id_if_invalid_aux:N
29042 (
29043 End of definition for __fp_id_if_invalid:nTF and __fp_id_if_invalid_aux:N.)

82.8 Declaring variables and assigning values

__fp_variable_o:w We do not use \exp_last_unbraced:Nv to extract the value of \l__fp_variable_#1_fp because in \fp_set_variable:nn we define this fp variable to be something which f-expands to an actual floating point, rather than a genuine floating point.

29044 \cs_new:Npn __fp_variable_o:w #1 \@ \@ #2
29045 {
29046 \fp_if_exist:cTF { l__fp_variable_#1_fp }
29047 {
29048 \exp_last_unbraced:Nf __fp_exp_after_array_f:w
29049 \use:c { l__fp_variable_#1_fp } \s__fp_expr_stop
29050 \exp_after:wN \exp_stop_f: #2
29051 }
29052 \token_if_eq_meaning:NNTF #2 \prg_do_nothing:
29053 {
29054 \s__fp_symbolic __fp_symbolic_chk:w
29055 __fp_variable_o:w #1 , { } ;
29056 }
29057 {
29058 \exp_after:wN \s__fp_symbolic
29059 \exp_after:wN __fp_symbolic_chk:w
29060 \exp_after:wN __fp_variable_o:w
29061 \exp:w
29062 __fp_exp_after_symbolic_loop:N #1
29063 \use:w \use_none:nn }
29064 \exp_after:wN \exp_end:
29065 \exp_after:wN { \exp_after:wN } \exp_after:wN ; #2
29066 }
29067 }
29068 }

(End of definition for __fp_variable_o:w)

__fp_variable_set_parsing:Nn
__fp_variable_set_parsing_aux:Nn

1212
\cs_new_protected:Npm __fp_variable_set_parsing:Nn \#1#2
{
 \cs_set:Npn __fp_tmp:w
 {
 ___fp_exp_after_symbolic_f:nw { ___fp_parse_infix:NN }
 ___fp_symbolic ___fp_symbolic_chk:w
 ___fp_variable_o:w \#2 , { } ;
 }
}
\exp_args:NNc ___fp_variable_set_parsing_aux:NNn \#1
{ ___fp_parse_word_\#2:N } \#2
\cs_new_protected:Npm __fp_variable_set_parsing_aux:NNn \#1#2#3
{
 \cs_if_eq:NNF \#2 __fp_tmp:w
 {
 \cs_if_exist:NTF \#2
 {
 \msg_warning:nnnn { fp } { id-used-elsewhere } {\#3} { variable }
 \#1 \#2 ___fp_tmp:w
 }
 {
 \cs_new_eq:NN \#2 \scan_stop: % to declare the function
 \#1 \#2 ___fp_tmp:w
 }
 }
}
\cs_new_protected:Npm \fp_clear_variable:n \#1
{
 \exp_args:No __fp_clear_variable:n { \tl_to_str:n \#1 }
}
\cs_new_protected:Npm __fp_clear_variable:n \#1
{
 __fp_id_if_invalid:nTF \#1
 { \msg_error:nnn { fp } { id-invalid } \#1 }
 { __fp_clear_variable_aux:n \#1 }
}
\cs_new_protected:Npm __fp_clear_variable_aux:n \#1
{
 \cs_set_eq:cN { l__fp_variable_\#1_fp } \tex_undefined:D
 __fp_variable_set_parsing:Nn \cs_set_eq:NN \#1
}
(End of definition for ___fp_variable_set_parsing:Nn and ___fp_variable_set_parsing_aux:NNn.)

\fp_clear_variable:n ___fp_clear_variable:n ___fp_clear_variable_aux:n
___fp_clear_variable:n ___fp_clear_variable:n ___fp_clear_variable_aux:n
___fp_clear_variable:n
We need local undefining, so have to do it low-level. ___fp_clear_variable_aux:n is
needed by ___fp_set_function:Nnnn to skip ___fp_id_if_invalid:nTF.
\cs_new_protected:Npm \fp_clear_variable:n \#1
{
 \exp_args:No __fp_clear_variable:n { \tl_to_str:n \#1 }
}
\cs_new_protected:Npm __fp_clear_variable:n \#1
{
 ___fp_id_if_invalid:nTF \#1
 { \msg_error:nnn { fp } { id-invalid } \#1 }
 { ___fp_clear_variable_aux:n \#1 }
}
\cs_new_protected:Npm __fp_clear_variable_aux:n \#1
{
 \cs_set_eq:cN { l__fp_variable_\#1_fp } \tex_undefined:D
 ___fp_variable_set_parsing:Nn \cs_set_eq:NN \#1
}
(End of definition for \fp_clear_variable:n, ___fp_clear_variable:n, and ___fp_clear_variable_-
aux:n. This function is documented on page 261.)

\fp_new_variable:n ___fp_new_variable:n ___fp_new_variable_aux:n
___fp_new_variable:n ___fp_new_variable:n ___fp_new_variable_aux:n
___fp_new_variable:n
Check that \#1 is a valid identifier. If the identifier is already in use, complain. Then set
___fp_parse_word_\#1:N to use ___fp_variable_o:w.
\cs_new_protected:Npm \fp_new_variable:n \#1

\documentclass{article}
\usepackage{amsmath,amsfonts,amssymb}
\begin{document}

\begin{verbatim}
\newcommand*{__fp_new_variable:n}[1]{\tl_to_str:n {#1}}
\newcommand*{__fp_set_variable:nn}[2]{\tl_to_str:n {#2}}
\end{verbatim}

(End of definition for \texttt{__fp_new_variable:n} and \texttt{__fp_new_variable:n}. This function is documented on page 260.)

\texttt{__fp_set_variable:nn} \texttt{__fp_set_variable:nn} Refuse invalid identifiers. If the variable does not exist yet, define it just as in \texttt{__fp_new_variable:n} (but without unnecessary checks). Then evaluate \texttt{#2}. If the result contains the identifier \texttt{#1}, we would later get a loop in cases such as

\begin{verbatim}
__fp_set_variable:nn {A} {A} __fp_set_variable:nn __fp_set_variable:nn
\end{verbatim}

To detect this, define \texttt{__fp_variable___fp_variable___fp_variable__fp} to raise an internal flag and evaluate to \texttt{nan}. Then re-evaluate \texttt{__fp_symbolic__fp}, and store the result in \texttt{#1}. If the flag is raised, \texttt{#1} was present in \texttt{__fp_symbolic__fp}. In all cases, the \texttt{#1}-free result ends up in \texttt{__fp_variable___fp_variable__fp}.

\begin{verbatim}
\newcommand*{__fp_symbolic}{\flag_new:n { __fp_symbolic }}
\newcommand*{__fp_set_variable:nn}[2]{\tl_to_str:n {#2}}
\end{verbatim}

\begin{verbatim}
__fp_symbolic
__fp_set_variable:nn
__fp_set_variable:nn
\end{verbatim}

\end{document}
\{ \fp_to_tl:N \l__fp_symbolic_fp \}
\}

(End of definition for \fp_set_variable:nn and __fp_set_variable:nn. This function is documented on page 261.)

\section{Messages}

\msg_new:nnnn { fp } { id-invalid }
\{ Floating-point-identifier-'#1'-invalid. \}
\{
 LaTeX\-has\-been\-asked\-to\-create\-a\-new\-floating\-point\-identifier-'#1'-
 but\-this\-may\-only\-contain\-ASCII\-letters.
\}
\msg_new:nnnn { fp } { id-already-defined }
\{ Floating-point-identifier-'#1'-already-defined. \}
\{
 LaTeX\-has\-been\-asked\-to\-create\-a\-new\-floating\-point\-identifier-'#1'-
 but\-this\-name\-has\-already\-been\-used\-elsewhere.
\}
\msg_new:nnnn { fp } { id-used-elsewhere }
\{ Floating-point-identifier-'#1'-already-used-for-something-else. \}
\{
 LaTeX\-has\-been\-asked\-to\-create\-a\-new\-floating\-point\-identifier-'#1'-
 but\-this\-name\-is\-used,-and\-is\-not\-a\-user\-defined-#2.
\}
\msg_new:nnnn { fp } { id-loop }
\{ Variable-'#1'-used-in-the-definition-of-'#1'. \}
\{
 LaTeX\-has\-been\-asked\-to\-set\-the\-floating\-point\-identifier-'#1'-
 to\-the\-expression-'#2'.\-Evaluating\-this\-expression\-yields-'#3',-
 which\-contains-'#1'-itself.
\}

\section{Road-map}

The following functions are not implemented: \texttt{min}, \texttt{max}, \texttt{?};, comparisons, \texttt{round}, \texttt{atan}, \texttt{acot}.
Chapter 83

13fp-functions implementation

83.1 Declaring functions

\fp_new_function:n
__fp_new_function:n
\cs_new_protected:Npm \fp_new_function:n #1
\exp_args:No __fp_new_function:n { \tl_to_str:n {#1} } \}
\cs_new_protected:Npm __fp_new_function:n #1
\{
__fp_id_if_invalid:nTF {#1}
\{ \msg_error:nnn { fp } { id-invalid } {#1} \}
\{
\cs_if_exist:cT { __fp_parse_word_#1:N }
\{
\msg_error:nnn
\}
\cs_undefine:c { __fp_parse_word_#1:N }
\cs_undefine:c { __fp_#1_o:w }
\}
__fp_function_set_parsing:Nn \cs_gset_eq:NN {#1}
\}
\}

(End of definition for \fp_new_function:n and __fp_new_function:n. This function is documented on page 261.)

__fp_function_set_parsing:Nn
__fp_function_set_parsing_aux:NNN
\cs_new_protected:Npm __fp_function_set_parsing:Nn #1#2
\{
\exp_args:Nnc __fp_function_set_parsing_aux:NNN #1
\{ __fp_parse_word_#2:N } {#2} \}
\cs_new_protected:Npm __fp_function_set_parsing_aux:NNN #1#2#3
\{
\cs_set:Npe __fp_tmp:w
\{
\exp_not:N __fp_parse_function:NNN
\end{document}
83.2 Defining functions by their expression

__fp_function_arg_int

Labels the arguments of a function being defined.

\int_new:N __fp_function_arg_int

(End of definition for __fp_function_arg_int.)

\fp_set_function:nnn __fp_set_function:Nnnn

\fp_set_function:nnn \{\identifier\} \{\comma-list of variables\} \{\expression\}

Defines the \identifier to stand for a function which expects some arguments defined by the \comma-list of variables, and evaluates to the \expression.
\cs_new_protected:Npn \fp_set_function:nnn \hskip \parindent #1
{
\exp_args:NNo __fp_set_function:Nnnn \cs_set_eq:cN
{ \tl_to_str:n {#1} }
}
\cs_new_protected:Npn __fp_set_function:Nnnn #1#2#3#4
{
__fp_id_if_invalid:nTF {#2}
{ \msg_error:nnn { fp } { id-invalid } {#2} }
{\cs_if_exist:cF { __fp_parse_word_#2:N }
{ __fp_function_set_parsing:Nn \cs_set_eq:NN {#2} }
\group_begin:
\int_zero:N \l__fp_function_arg_int
\exp_args:No \clist_map_inline:nn { \tl_to_str:n {#3} }
{\int_incr:N \l__fp_function_arg_int
\exp_args:Ne __fp_clear_variable_aux:n
{\c_underscore_str \tex_romannumeral:D \l__fp_function_arg_int
} \fp_clear_variable:n {##1}
\cs_set:nopar:cpe { l__fp_variable_##1_fp }
{\exp_not:N \s__fp_symbolic
\exp_not:N __fp_symbolic_chk:w
\exp_not:N __fp_function_arg_o:w
\int_use:N \l__fp_function_arg_int
#1 , { } ;
}
}
\cs_set:Npn __fp_function_arg_o:w ##1 @
{\exp_after:wN \s__fp_symbolic
\exp_after:wN __fp_symbolic_chk:w
\exp_after:wN __fp_function_arg_o:w
\tex_romannumeral:D __fp_exp_after_symbolic_loop:N #1
{ , \tex_romannumeral:D \use_none:nn }
\exp_after:wN \c_zero_int
\exp_after:wN \exp_after:wN \exp_after:wN ;
}
\fp_set:Nn \l__fp_symbolic_fp {#4}
\use:e
{\exp_not:n \cs_gset:Npn __fp_tmp:w #1 }
{ \exp_not:o \l__fp_symbolic_fp }
}
\use:e
{\exp_not:n \cs_gset:Npn __fp_tmp:w #1 @ }
{ \exp_not:N __fp_exp_after_symbolic_f:nw
\exp_not:n \exp_stop_f: }

1218
\exp_not:o { __fp_tmp:w { . , {##1} } }
\group_end:
#1 { __fp_#2_o:w } __fp_tmp:w
__fp_function_arg_o:w
__fp_function_arg_few:w
__fp_function_arg_get:w
\cs_new:Npn __fp_function_arg_o:w #1. #2
{ \if_meaning:w @ #2 \exp_after:wN __fp_function_arg_few:w \fi:
\if_int_compare:w #1 = \c_one_int \exp_after:wN __fp_function_arg_get:w \fi:
__fp_use_i_until_s:nw
{ \exp_after:wN __fp_function_arg_o:w
\int_value:w \int_eval:n { #1 - 1 } . #2 }
\cs_new:Npn __fp_function_arg_few:w #1 @ { \exp_after:wN \c_nan_fp }
\cs_new:Npn __fp_function_arg_get:w #1#2#3; #4 @
{ __fp_exp_after_array_f:w #3; \s__fp_expr_stop
\exp_after:wN \exp_stop_f: }
(End of definition for \fp_set_function:nnn and others. This function is documented on page 262.)
\fp_clear_function:n
__fp_clear_function:n
\cs_new_protected:Npm \fp_clear_function:n #1
{ \exp_args:No __fp_clear_function:n \tl_to_str:n {#1} } \cs_new_protected:Npm __fp_clear_function:n #1
{ __fp_id_if_invalid:nTF {#1}
{ \msg_error:nnn { fp } { id-invalid } {#1} }
{ \cs_set_eq:cN { __fp_#1_o:w } \tex_undefine:D
\cs_set_eq:NN { __fp_#1.o:w } \cs_set_eq:NN {#1} }
}
(End of definition for \fp_clear_function:n and __fp_clear_function:n. This function is docu-
mented on page 262.)
(/package)
Chapter 84

l3fparray implementation

In analogy to l3intarray it would make sense to have <@@=fparray>, but we need direct access to __fp_parse:n from l3fp-parse, and a few other (less crucial) internals of the l3fp family.

84.1 Allocating arrays

There are somewhat more than \((2^{31}-1)^2\) floating point numbers so we store each floating point number as three entries in integer arrays. To avoid having to multiply indices by three or to add 1 etc, a floating point array is just a token list consisting of three tokens: integer arrays of the same size.

\g__fp_array_int Used to generate unique names for the three integer arrays.

\int_new:N \g__fp_array_int

(End of definition for \g__fp_array_int.)

\l__fp_array_loop_int Used to loop in __fp_array_gzero:N.

\int_new:N \l__fp_array_loop_int

(End of definition for \l__fp_array_loop_int.)

\fparray_new:Nn Build a three-token token list, then define all three tokens to be integer arrays of the same size. No need to initialize the data: the integer arrays start with zeros, and three zeros denote precisely \c_zero_fp, as we want.

\cs_new_protected:Npn \fparray_new:Nn #1#2
\tl_new:N #1
\prg_replicate:nn { 3 }
\int_gincr:N \g__fp_array_int
\exp_args:NNc \tl_gput_right:Nn #1 { g__fp_array_ __fp_int_to_roman:w \g__fp_array_int _intarray }
\exp_last_unbraced:Nfo __fp_array_new:nNNN
\cs_new_protected:Npm \fparray_new:Nn #1#2
{ \int_eval:n {#2} } #1 #1
(End of definition for \fparray_new:Nn and _fp_array_new:nNNN. This function is documented on page 276.)

\fparray_count:N Size of any of the intarrays, here we pick the third.
\fparray_count:c

(End of definition for \fparray_count:N. This function is documented on page 276.)

84.2 Array items

See the \l3intarray analogue: only names change. The functions \fparray_gset:Nnn and \fparray_item:Nn share bounds checking. The T branch is used if #3 is within bounds of the array #2.

_fp_array_bounds:NNnTF _fp_array_bounds_error:NNn

1221
\fparray_gset:Nnn
\fparray_gset:cnn
_fp_array_gset:NNNNww
_fp_array_gset_error:NNn
_fp_array_gset_recover:Nw
_fp_array_gset_special:nnNNN
_fp_array_gset_normal:w

Evaluate, then store exponent in one intarray, sign and 8 digits of mantissa in the next, and 8 trailing digits in the last.

\cs_new_protected:Npn \fparray_gset:Nnn \#1\#2\#3
\{\exp_after:wN \exp_after:wN \exp_after:wN __fp_array_gset:NNNNww \exp_after:wN \#1 \exp_after:wN \int_value:w \int_eval:n {\#2} \exp_after:wN ; \exp:w \exp_end_continue_f:w __fp_parse:n {\#3} \}\cs_generate_variant:Nn \fparray_gset:Nnn { c }
\cs_new_protected:Npn __fp_array_gset:NNNNww \#1\#2\#3\#4\#5 ; \#6 ;
\{__fp_array_bounds:NNnTF \msg_error:nneee \#4 \{\#5\} \} \exp_after:wN __fp_change_func_type:NNN __fp_use_i_until_s:nw \#6 ;
__fp_array_gset:w __fp_array_gset_recover:Nw
\#6 ; \{\#5\} \#1 \#2 \#3
\} \cs_new_protected:Npn __fp_array_gset_recover:Nw \#1\#2 ;
\{__fp_error:nffn \{unknown-type\} \{\tl_to_str:n \{\#2 ; \} \} \{} \{} \}
\exp_after:wN \#1 \c_nan_fp
\cs_new_protected:Npn __fp_array_gset_special:nnNNN \#1\#2\#3\#4\#5
\{__kernel_intarray_gset:Nnn \#3 \{\#2\} \{\#2\}
__kernel_intarray_gset:Nnn \#4 \{\#2\} \{\#2\}
__kernel_intarray_gset:Nnn \#5 \{\#2\} \{\#2\}
\}\cs_new_protected:Npn __fp_array_gset_normal:w \s__fp __fp_chk:w \#1 \#2
\{\if_case:w \#1 \exp_stop_f:
__fp_case_return:nw \{__fp_array_gset_special:nnNNN \#2\} \}
\or:\exp_after:wN __fp_array_gset_normal:w
\or:\exp_after:wN __fp_array_gset_special:nnNNN \{\#2 \#3\} \}
\or:\exp_after:wN __fp_array_gset_special:nnNNN \{\#1 \#2 \#3\} \}
\fi:
\s__fp __fp_chk:w \#1 \#2
\cs_new_protected:Npn __fp_array_gset_normal:w
\s__fp __fp_chk:w \#1 \#2 \#3\#4\#5 ; \#6\#7\#8\#9
\{__kernel_intarray_gset:Nnn \#7 \{\#6\} \{\#2\}
__kernel_intarray_gset:Nnn \#8 \{\#6\}
\{\if_meaning:w \#2 \#1 \else: \#1 \fi: \#3\#4 \}
__kernel_intarray_gset:Nnn \#9 \{\#6\} \{\#1 \use:nn \#5 \}
\cs_new_protected:Npn __fp_array_gset_special:nnNNN \#1\#2\#3\#4\#5
\{__kernel_intarray_gset:Nnn \#3 \{\#2\} \{\#1\}
__kernel_intarray_gset:Nnn \#4 \{\#2\} \{\#0\}
__kernel_intarray_gset:Nnn \#5 \{\#2\} \{\#0\}

(End of definition for _fp_array_bounds:NNnTF and _fp_array_bounds_error:NNn.)
(End of definition for \fparray_gset:Nnn and others. This function is documented on page 276.)

\fparray_gzero:N
\fparray_gzero:c

\cs_new_protected:Npn \fparray_gzero:N #1
 \int_zero:N \l__fp_array_loop_int
 \prg_replicate:nn { \fparray_count:N #1 }
 \int_incr:N \l__fp_array_loop_int
 \exp_after:wN __fp_array_gset_special:nnNNN
 \exp_after:wN 0
 \exp_after:wN \l__fp_array_loop_int
 #1
 \exp_after:wN __fp_array_gset:NNnN

\cs_generate_variant:Nn \fparray_gzero:N { c }

(End of definition for \fparray_gzero:N. This function is documented on page 276.)

\fparray_item:Nn
\fparray_item:cn
\fparray_item_to_tl:Nn
\fparray_item_to_tl:cn
__fp_array_item:NwN
__fp_array_item:NNNnN
__fp_array_item:N
__fp_array_item:w
__fp_array_item_special:w
__fp_array_item_normal:w

\cs_new:Npn \fparray_item:Nn #1#2
 \exp_after:wN __fp_array_item:NwN
 \exp_after:wN #1
 \int_value:w \int_eval:n {#2} ; __fp_to_decimal:w

\cs_generate_variant:Nn \fparray_item:Nn { c }

\cs_new:Npn \fparray_item_to_tl:Nn #1#2
 \exp_after:wN __fp_array_item:NwN
 \exp_after:wN #1
 \int_value:w \int_eval:n {#2} ; __fp_to_tl:w

\cs_generate_variant:Nn \fparray_item_to_tl:Nn { c }

\cs_new:Npn __fp_array_item:NwN #1#2 ; #3
 __fp_array_bounds:NNnTF #1 {#2} { \exp_after:wN __fp_array_item:NNNnN #1 {#2} #3 }
 \exp_after:wN \c_nan_fp

\cs_new:Npn __fp_array_item:NNNnN #1#2#3#4
 \exp_after:wN __fp_array_item:N
 \int_value:w __kernel_intarray_item:Nn #2 {#4} \exp_after:wN ;
 \int_value:w __kernel_intarray_item:Nn #3 {#4} \exp_after:wN ;
 \int_value:w __kernel_intarray_item:Nn #1 {#4} ;

\cs_new:Npn __fp_array_item:N
 \if_meaning:w 0 #1 \exp_after:wN __fp_array_item_special:w \fi:
 __fp_array_item:w #1

1223
\cs_new:Npn __fp_array_item:w #1 #2#3#4#5 #6 ; 1 #7 ;
\{\exp_after:wN __fp_array_item_normal:w\int_value:w \if_meaning:w #1 1 0 \else: 2 \fi: \exp_stop_f: #7 ; {#2#3#4#5} {#6} ;\}
\cs_new:Npn __fp_array_item_special:w #1 ; #2 ; #3 ; #4
\{\exp_after:wN #4 \exp:w \exp_end_continue_f:w\if_case:w #3 \exp_stop_f:\exp_after:wN \c_zero_fp\or: \exp_after:wN \c_nan_fp\or: \exp_after:wN \c_minus_zero_fp\or: \exp_after:wN \c_inf_fp\else: \exp_after:wN \c_minus_inf_fp\fi:\}
\cs_new:Npn __fp_array_item_normal:w #1 #2#3#4#5 #6 ; #7 ; #8 ; #9
\{ #9 \s__fp __fp_chk:w 1 #1 {#8} #7 {#2#3#4#5} {#6} ; \}

(End of definition for \fparray_item:Nn and others. These functions are documented on page 276.)
Chapter 85

libbitset implementation

A bitset is a string variable.

\bitset_new:N
\bitset_new:c
\bitset_new:Nn
\bitset_new:cn

\cs_new_protected:Npn \bitset_new:N #1
{__kernel_chk_if_free_cs:N #1
\cs_gset_eq:NN #1 \c_zero_str
\prop_new:c { g__bitset_ \cs_to_str:N #1 _name_prop }
}

\cs_new_protected:Npn \bitset_new:Nn #1 #2
{__kernel_chk_if_free_cs:N #1
\cs_gset_eq:NN #1 \c_zero_str
\prop_new:c { g__bitset_ \cs_to_str:N #1 _name_prop }
\prop_gset_from_keyval:cn
{ g__bitset_ \cs_to_str:N #1 _name_prop }
{#2}
}

\prop_generate_variant:Nn \bitset_new:N { c }

\l__bitset_tmp_prop A scratch prop to be able to extend the names properties.

\prop_new:N \l__bitset_tmp_prop

(End of definition for \bitset_new:N and \bitset_new:Nn. These functions are documented on page 278.)

\bitset_addto_named_index:Nn
\cs_new_protected:Npn \bitset_addto_named_index:Nn #1#2
{\prop_set_from_keyval:Nn \l__bitset_tmp_prop {#2}
\prop_map_inline:Nn \l__bitset_tmp_prop
{ \prop_gput:cnn

1225
Existence tests.

The internal command uses only numbers (integer expressions) for the position. A bit is set by either extending the string or by splitting it and then inserting an 1. It is not checked if the value was already 1.

```latex
\cs_new_protected:Npn \__bitset_set_true:Nn #1#2
\cs_new_protected:Npn \__bitset_gset_true:Nn #1#2
\cs_new_protected:Npn \__bitset_set_false:Nn #1#2
\cs_new_protected:Npn \__bitset_gset_false:Nn #1#2
\cs_new_protected:Npn \__bitset_set:NNnN #1#2#3#4
```

(End of definition for \bitset_if_exist:NTF. This function is documented on page 279.)
(End of definition for _bitset_internal_int.)

_bitset_test_digits:nTF
_bitset_test_digits_end:n
_bitset_test_digits:wn

https://chat.stackexchange.com/transcript/message/56878159#56878159

\prg_new_protected_conditional:Npnn _bitset_test_digits:n #1 { TF }
{
\tex_afterassignment:D _bitset_test_digits:w
_bitset_internal_int = 0 \tl_trim_spaces_apply:nN {#1} \tl_to_str:n
_bitset_test_digits_end:
\if_int_compare:w \c_zero_int < \l__bitset_internal_int
\prg_return_true:
\else:
\prg_return_false:
\fi:
\prg_return_false:
}
\cs_new_eq:NN _bitset_test_digits_end: \exp_stop_f:
\cs_new_protected:Npn _bitset_test_digits:w #1 _bitset_test_digits_end: { }

(End of definition for _bitset_test_digits:nTF, _bitset_test_digits_end:n, and _bitset_test_digits:wn.)

\bitset_set_true:Nn
\bitset_set_true:cn
\bitset_gset_true:Nn
\bitset_gset_true:cn
\bitset_set_false:Nn
\bitset_set_false:cn
\bitset_gset_false:Nn
\bitset_gset_false:cn
_bitset_set_aux:NNn

The user commands must first translate the argument to an index number.

\cs_new_protected:Npn \bitset_set_true:Nn #1#2
{ _bitset_set:NNn \bitset_set_true:Nn #1 {#2} }
\cs_new_protected:Npn \bitset_gset_true:Nn #1#2
{ _bitset_set:NNn \bitset_gset_true:Nn #1 {#2} }
\cs_new_protected:Npn \bitset_set_false:Nn #1#2
{ _bitset_set:NNn \bitset_set_false:Nn #1 {#2} }
\cs_new_protected:Npn \bitset_gset_false:Nn #1#2
{ _bitset_set:NNn \bitset_gset_false:Nn #1 {#2} }
\cs_new_protected:Npn \bitset_set:NNn _bitset_set_aux:NNn
{ \prop_if_in:cnTF { g__bitset_ \cs_to_str:N #2 _name_prop } {#3}
{ #1 #2
{ \prop_item:cn { g__bitset_ \cs_to_str:N #2 _name_prop } {#3}
}
{ _bitset_test_digits:nTF {#3}
{ #1 #2 {#3}
\prop_gput:cnn { g__bitset_ \cs_to_str:N #2 _name_prop } {#3} {#3}
}
{ \msg_warning:nnee { bitset } { unknown-name }
{ \token_to_str:N #2
{ \tl_to_str:n {#3}
}
}
}
}
\cs_generate_variant:Nn \bitset_set_true:Nn { c }

1227
\cs_generate_variant:Nn \bitset_set_true:Nn { c }
\cs_generate_variant:Nn \bitset_set_false:Nn { c }
\cs_generate_variant:Nn \bitset_gset_true:Nn { c }
\cs_generate_variant:Nn \bitset_gset_false:Nn { c }

(End of definition for \bitset_set_true:Nn and others. These functions are documented on page 279.)

\bitset_clear:N
\bitset_clear:c
\bitset_gclear:N
\bitset_gclear:c
\cs_new_protected:Npn \bitset_clear:N #1
{ \str_set_eq:NN #1 \c_zero_str }
\cs_new_protected:Npn \bitset_gclear:N #1
{ \str_gset_eq:NN #1 \c_zero_str }
\cs_generate_variant:Nn \bitset_clear:N { c }
\cs_generate_variant:Nn \bitset_gclear:N { c }

(End of definition for \bitset_clear:N and \bitset_gclear:N. These functions are documented on page 279.)

\bitset_to_arabic:N
\bitset_to_arabic:c
\bitset_to_bin:N
\bitset_to_bin:c
\cs_new:Npn \bitset_to_arabic:N #1
{ \int_compare:nNnTF \{ \str_count:N #1 \} \< \{ 32 \}
\exp_args:No \int_from_bin:n {#1} }
\cs_new:Npn \bitset_to_bin:N #1
{ #1 }
\cs_generate_variant:Nn \bitset_to_arabic:N { c }
\cs_generate_variant:Nn \bitset_to_bin:N { c }

(End of definition for \bitset_to_arabic:N and \bitset_to_bin:N. These functions are documented on page 280.)

\bitset_item:Nn
\bitset_item:cn
\cs_new:Npn \bitset_item:Nn #1#2
{ \prop_if_in:cnTF \{ g__bitset_ \cs_to_str:N #1 _name_prop \} \{#2\} }

(End of definition for \bitset_item:Nn and \bitset_item:cn. These functions are documented on page 281.)

\bitset_clear:N
\bitset_clear:c
\bitset_gclear:N
\bitset_gclear:c
\cs_new_protected:Npn \bitset_clear:N #1
{ \str_set_eq:NN #1 \c_zero_str }
\cs_new_protected:Npn \bitset_gclear:N #1
{ \str_gset_eq:NN #1 \c_zero_str }
\cs_generate_variant:Nn \bitset_clear:N { c }
\cs_generate_variant:Nn \bitset_gclear:N { c }

(End of definition for \bitset_clear:N and \bitset_gclear:N. These functions are documented on page 279.)

\bitset_to_arabic:N
\bitset_to_arabic:c
\bitset_to_bin:N
\bitset_to_bin:c
\cs_new:Npn \bitset_to_arabic:N #1
{ \int_compare:nNnTF \{ \str_count:N #1 \} \< \{ 32 \}
\exp_args:No \int_from_bin:n {#1} }
\cs_new:Npn \bitset_to_bin:N #1
{ #1 }
\cs_generate_variant:Nn \bitset_to_arabic:N { c }
\cs_generate_variant:Nn \bitset_to_bin:N { c }

(End of definition for \bitset_to_arabic:N and \bitset_to_bin:N. These functions are documented on page 280.)

\bitset_item:Nn
\bitset_item:cn
\cs_new:Npn \bitset_item:Nn #1#2
{ \prop_if_in:cnTF \{ g__bitset_ \cs_to_str:N #1 _name_prop \} \{#2\} }

(End of definition for \bitset_item:Nn and \bitset_item:cn. These functions are documented on page 281.)

All bits that have been set at anytime have an entry in the prop, so we can take everything else as 0.
\cs_new:Npn \bitset_item:Nn #1#2
{ \prop_if_in:cnTF \{ g__bitset_ \cs_to_str:N #1 _name_prop \} \{#2\} }

(End of definition for \bitset_item:Nn and \bitset_item:cn. These functions are documented on page 281.)
\begin{verbatim}
\int_eval:n
\str_item:Nn #1
\{ 0 - (\prop_item:cn { g__bitset_ \cs_to_str:N #1 _name_prop } {#2}) \}
+0
\}
\{ 0 \}
\}
\cs_generate_variant:Nn \bitset_item:Nn { c }
(End of definition for \bitset_item:N. This function is documented on page 279.)
\bitset_show:N
\bitset_show:c
\bitset_log:N
\bitset_log:c
\cs_new_protected:Npn \bitset_show:N { __bitset_show:NN \msg_show:nneeee }
\cs_generate_variant:Nn \bitset_show:N { c }
\cs_new_protected:Npn \bitset_log:N { __bitset_show:NN \msg_log:nneeee }
\cs_generate_variant:Nn \bitset_log:N { c }
\cs_new_protected:Npn \bitset_show_named_index:N { __bitset_show_named_index:NN \msg_show_item:nn }
\cs_generate_variant:Nn \bitset_show_named_index:N { c }
\cs_new_protected:Npn __bitset_show:NN #1#2
\{ __kernel_chk_defined:NT #2
\{ #1 \{ bitset \} \{ show \}
\{ \token_to_str:N #2 \}
\{ \bitset_to_bin:N #2 \}
\{ \bitset_to_arabic:N #2 \}
\} \}
\cs_new_protected:Npn __bitset_show_named_index:NN #1#2
\{ __kernel_chk_defined:NT #2
\{ #1 \{ bitset \} \{ show-names \}
\{ \token_to_str:N #2 \}
\{ \prop_map_function:cn \{ g__bitset_ \cs_to_str:N #2 _name_prop \} \msg_show_item:nn \}
\} \}
(End of definition for \bitset_show:N and \bitset_log:N. These functions are documented on page 280.)
\end{verbatim}

85.1 Messages

\begin{verbatim}
\msg_new:nnn { bitset } { show }
\{ \thet-bitset-#1-has-the-representation: \}
\end{verbatim}
\msg_new:nnn \{ \text{bitset} \} \{ \text{show-names} \} \{
\text{The-bitset-#1-} \\
\text{\texttt{tl_if_empty:nTF} \{#2\}} \\
\{ \text{knows-no-names-yet} \text{ \text{\textbackslash >}~.} \} \\
\{ \text{knows-the-name/index-pairs-(without-outer-braces):} \text{ #2 .} \}
\}
\msg_new:nnn \{ \text{bitset} \} \{ \text{unknown-name} \} \{
\text{The-name-'#2'-is-unknown-for-bitset-} \text{\texttt{\texttt{tl_to_str:n} \{#1\}}} \} \\
\prop_gput:Nnn \g_msg_module_name_prop \{ \text{bitset} \} \{ \LaTeX \} \\
\prop_gput:Nnn \g_msg_module_type_prop \{ \text{bitset} \} \{ \} \\
\}

85.2 Stub package

\ProvidesExplPackage{l3bitset}{2023-12-11}{\text{L3 Experimental bitset support}}
Chapter 86

\texttt{\texttt{l3cctab} implementation}

As \LaTeX{} offers engine support for category code tables, and this is entirely lacking from the other engines, we need two complementary approaches. (Some future Xe\TeX{} may add support, at which point the conditionals below would be different.)

86.1 Variables

\begin{itemize}
 \item \texttt{\g__cctab_stack_seq} List of catcode tables saved by nested \texttt{\cctab\ begin:N}, to restore catcodes at the matching \texttt{\cctab\ end:}. When popped from the \texttt{\g__cctab_stack_seq} the table numbers are stored in \texttt{\g__cctab_unused_seq} for later reuse.
 \item \texttt{\g__cctab_group_seq} A stack to store the group level when a catcode table started.
 \item \texttt{\g__cctab_allocate_int} Integer to keep track of what category code table to allocate. In \LaTeX{} it is only used in format mode to implement \texttt{\cctab\ new:N}. In other engines it is used to make csnames for dynamic tables.
 \item \texttt{\l__cctab_internal_a_tl} \texttt{\l__cctab_internal_b_tl} Scratch space. For instance, when popping \texttt{\g__cctab_stack_seq}/\texttt{\g__cctab_unused_seq}, consists of the catcode table number (integer denotation) in \LaTeX{}, or of an intarray variable (as a single token) in other engines.
\end{itemize}

\texttt{(End of definition for \texttt{\g__cctab_stack_seq} and \texttt{\g__cctab_unused_seq}).}

\texttt{(End of definition for \texttt{\g__cctab_group_seq}).}

\texttt{(End of definition for \texttt{\g__cctab_allocate_int}).}

\texttt{(End of definition for \texttt{\l__cctab_internal_a_tl} and \texttt{\l__cctab_internal_b_tl}).}
In LuaTeX we store the \endlinechar associated to each \catcodetable in a property list, unless it is the default value 13.

\prop_new:N \g__cctab_endlinechar_prop

(End of definition for \g__cctab_endlinechar_prop.)

86.2 Allocating category code tables

The __cctab_new:N auxiliary allocates a new catcode table but does not attempt to set its value consistently across engines. It is used both in \cctab_new:N, which sets catcodes to \iniTeX values, and in \cctab_begin:N/\cctab_end: for dynamically allocated tables.

First, the LuaTeX case. Creating a new category code table is done like other registers. In ConTeXt, \newcatcodetable does not include the initialisation, so that is added explicitly.

\sys_if_engine_luatex:TF
{ \cs_new_protected:Npn \cctab_new:N #1
 { __kernel_chk_if_free_cs:N #1
 __cctab_new:N #1
 }
\cs_new_protected:Npn __cctab_new:N #1
 { \newcatcodetable #1
 \tex_initcatcodetable:D #1
 }
}

Now the case for other engines. Here, each table is an integer array. Following the LuaTeX pattern, a new table starts with \iniTeX codes. The index base is out-by-one, so we have an internal function to handle that. The \iniTeX \endlinechar is 13.

{ \cs_new_protected:Npn __cctab_new:N #1
 { __kernel_chk_if_free_cs:N #1
 __cctab_new:N #1
 \int_step_inline:nn { 256 } { __cctab_gstore:Nnn #1 {##1} { 12 } }
 __cctab_gstore:Nnn #1 { 257 } { 13 }
 __cctab_gstore:Nnn #1 { 0 } { 9 }
 __cctab_gstore:Nnn #1 { 13 } { 5 }
 __cctab_gstore:Nnn #1 { 32 } { 10 }
 __cctab_gstore:Nnn #1 { 37 } { 14 }
 \int_step_inline:nn { 65 } { 90 } { __cctab_gstore:Nnn #1 {##1} { 0 } }
 __cctab_gstore:Nnn #1 { 92 } { 0 }
 \int_step_inline:nn { 97 } { 122 } { __cctab_gstore:Nnn #1 {##1} { 11 } }
 __cctab_gstore:Nnn #1 { 127 } { 15 }
 }
}
86.3 Saving category code tables

In various functions we need to save the current catcodes (globally) in a table. In LuaTeX, saving the catcodes is a primitives, but the \endlinechar needs more work: to avoid filling \g__cctab_endlinechar_prop with many entries we special-case the default value 13. In other engines we store 256 current catcodes and the \endlinechar in an intarray variable.

\cctab_gset:Nn \cctab_gset:cn

Category code tables are always global, so only one version of assignments is needed. Simply run the setup in a group and save the result in a category code table \#1, provided it is valid. The internal function is defined above depending on the engine.
Very simple.

\cs_new_protected:Npn \cctab_gsave_current:N #1
 __cctab_chk_if_valid:NT #1
 __cctab_gset:n {#1}
\cs_generate_variant:Nn \cctab_gsave_current:N { c }

(End of definition for \cctab_gsave_current:N. This function is documented on page 281.)

86.4 Using category code tables

In LuaTeX, we must ensure that the saved tables are read-only. This is done by applying the saved table, then switching immediately to a scratch table. Any later catcode assignment will affect that scratch table rather than the saved one. If we simply switched to the saved tables, then \char_set_catcode_other:N in the example below would change \c_document_cctab and a later use of that table would give the wrong category code to _.

\use:n
 \cctab_begin:N \c_document_cctab
 \char_set_catcode_other:N _
 \cctab_end:
 \cctab_begin:N \c_document_cctab
 \int_compare:nTF { \char_value_catcode:n { _ } = 8 } { \TRUE } { \ERROR }
 \cctab_end:
\}

We must also make sure that a scratch table is never reused in a nested group: in the following example, the scratch table used by the first \cctab_begin:N would be changed globally by the second one issuing \savecatcodetable, and after \group_end: the wrong category codes (those of \c_str_cctab) would be imposed. Note that the inner \cctab_end: restores the correct catcodes only locally, so the problem really comes up because of the different grouping level. The simplest is to use a scratch table labeled by the \currentgrouplevel. We initialize one of them as an example.

\use:n
 \cctab_begin:N \c_document_cctab
 \group_begin:
 \cctab_begin:N \c_str_cctab
 \savecatcodetable
 \cctab_end:
 \group_end:
\}
The public function simply checks the \texttt{\langle cctab var \rangle} exists before using the engine-dependent \texttt{_cctab select:N}. Skipping these checks would result in low-level engine-dependent errors. First, the LuaTeX case. In other engines, selecting a catcode table is a matter of doing 256 catcode assignments and setting the \texttt{\endlinechar}.

```latex
\cs_new_protected:Npn \cctab_select:N #1 { \__cctab_chk_if_valid:NT #1 { \__cctab_select:N #1 } }
\cs_generate_variant:Nn \cctab_select:N { c }
\sys_if_engine_luatex:TF
{ \cs_new_protected:Npn \__cctab_select:N #1 { \tex_catcodetable:D #1 \prop_get:NVNTF \g__cctab_endlinechar_prop #1 \l__cctab_internal_a_tl \int_set:Nn \tex_endlinechar:D { \l__cctab_internal_a_tl } \int_set:Nn \tex_endlinechar:D { 13 } \cs_if_exist:cF { \__cctab_internal_cctab_name: } { \exp_args:Nc \__cctab_new:N { \__cctab_internal_cctab_name: } } \exp_args:Nc \tex_savecatcodetable:D { \__cctab_internal_cctab_name: } \exp_args:Nc \tex_catcodetable:D { \__cctab_internal_cctab_name: } }
{ \int_step_inline:nn { 256 } { \char_set_catcode:nn { ##1 - 1 } { \__kernel_intarray_item:Nn #1 {##1} } \int_set:Nn \tex_endlinechar:D { \__kernel_intarray_item:Nn #1 { 257 } } } }
```

(End of definition for \texttt{_cctab select:N} and \texttt{_cctab select:N}. This function is documented on page 282.)
___cctab_next_cctab ___cctab_begin_aux:

For \cctab_begin:N/\cctab_end: we will need to allocate dynamic tables. This is done here by ___cctab_begin_aux:, which puts a table number (in \LaTeX) or name (in other engines) into \l__cctab_internal_a_tl. In \LaTeX this simply calls ___cctab_new:N and uses the resulting catcodetable number; in other engines we need to give a name to the intarray variable and use that. In \LaTeX, to restore catcodes at \cctab_end: we cannot just set \catcodetable to its value before \cctab_begin:N, because that table may have been altered by other code in the mean time. So we must make sure to save the catcodes in a table we control and restore them at \cctab_end:.

\sys_if_engine_luatex:TF
\cs_new_protected:Npn ___cctab_begin_aux:
___cctab_new:N \g__cctab_next_cctab
\tl_set:NV \l__cctab_internal_a_tl \g__cctab_next_cctab
\cs_undefine:N \g__cctab_next_cctab
\}
\}
\cs_new_protected:Npn ___cctab_begin_aux:
\int_gincr:N \g__cctab_allocate_int
\exp_args:Nc ___cctab_new:N { \g__cctab_allocate_int }
\exp_args:NNc \tl_set:Nn \l__cctab_internal_a_tl { \g__cctab_allocate_int }
\}
\}
\cs_generate_variant:Nn \cctab_begin:N { c }
\seq_gpop:NNF \g__cctab_unused_seq \l__cctab_internal_a_tl
___cctab_begin_aux: }
___cctab CHK if valid:NT #1
___cctab CHK group begin:e
___cctab nesting number:N \l__cctab_internal_a_tl
\exp_args:NV ___cctab_gset:n \l__cctab_internal_a_tl _cctab select:N #1
\}
\}
\cs_new_protected:Npn \cctab_begin:N \cctab_begin:c

Check the \langle cctab var \rangle exists, to avoid low-level errors. Get in \l__cctab_internal_a_tl the number/name of a dynamic table, either from \g__cctab_unused_seq where we save tables that are not currently in use, or from ___cctab_begin_aux: if none are available. Then save the current catcodes into the table (pointed to by) \l__cctab_internal_a_tl and save that table number in a stack before selecting the desired catcodes.

\cs_new_protected:Npn \cctab_begin:N #1
\{
___cctab CHK if valid:NT #1
___cctab CHK group begin:e
___cctab nesting number:N \l__cctab_internal_a_tl
\exp_args:NV ___cctab_gset:n \l__cctab_internal_a_tl _cctab select:N #1
\}
\}
\cs_generate_variant:Nn \cctab_begin:N { c }

(End of definition for \g__cctab_next_cctab and ___cctab_begin_aux:.)

\cctab_begin:N \cctab_begin:c

Make sure a \cctab_begin:N was used some time earlier, get in \l__cctab_internal_a_tl the catcode table number/name in which the prevailing catcodes were stored, then
restore these catcodes. The dynamic table is now unused hence stored in \g__cctab_unused_seq for recycling by later \cctab_begin:N.

\cs_new_protected:Npn \cctab_end:
\begin{verbatim}
\SEQ_gpop:NNTF \g__cctab_stack_seq \l__cctab_internal_a_tl
\SEQ_gpush:NV \g__cctab_unused_seq \l__cctab_internal_a_tl
\exp_args:Ne __cctab_chk_group_end:n\{ \l__cctab_internal_a_tl \}
__cctab_select:N \l__cctab_internal_a_tl
\{ \msg_error:nn { cctab } { extra-end } \}
\end{verbatim}

(End of definition for \cctab_end:. This function is documented on page 282.)

Catcode tables are not allowed to be intermixed with groups, so here we check that they are properly nested regarding \TeX groups. __cctab_chk_group_begin:n stores the current group level in a stack, and locally defines a dummy control sequence __cctab_-group_⟨cctab-level⟩_chk:
__cctab_chk_group_end:n pops the stack, and compares the returned value with \tex_currentgrouplevel:D. If they differ, \cctab_end: is in a different grouping level than the matching \cctab_begin:N. If they are the same, both happened at the same level, however a group might have ended and another started between \cctab_begin:N and \cctab_end::

\begin{verbatim}
\group_begin:
 \cctab_begin:N \c_document_cctab
 \group_end:
\group_begin:
 \cctab_end:
 \group_end:
\end{verbatim}

In this case checking \tex_currentgrouplevel:D is not enough, so we locally define __cctab_group_⟨cctab-level⟩_chk:, and then check if it exist in \cctab_end:. If it doesn’t, we know there was a group end where it shouldn’t.

The \texttt{⟨cctab-level⟩} in the sentinel macro above cannot be replaced by the more convenient \tex_currentgrouplevel:D because with the latter we might be tricked. Suppose:

\begin{verbatim}
\group_begin:
 \cctab_begin:N \c_code_cctab \% A
 \group_end:
\group_begin:
 \cctab_begin:N \c_code_cctab \% B
 \cctab_end: \% C
 \cctab_end: \% D
 \group_end:
\end{verbatim}

The line marked with A would start a \cctab with a sentinel token named __cctab_-group_1 chk:, which would disappear at the \group_end: that follows. But B would create the same sentinel token, since both are at the same group level. Line C would end the \cctab from line B correctly, but so would line D because line B created the same sentinel token. Using \texttt{⟨cctab-level⟩} works correctly because it signals that certain \cctab
level was activated somewhere, but if it doesn’t exist when the \cctab_end: is reached, we had a problem.

Unfortunately these tests only flag the wrong usage at the \cctab_end:, which might be far from the \cctab_begin:N. However it isn’t possible to signal the wrong usage at the \group_end: without using \tex_aftergroup:D, which is unsafe in certain types of groups.

The three cases checked here just raise an error, and no recovery is attempted: usually interleaving groups and catcode tables will work predictably.

\begin{verbatim}
\cs_new_protected:Npn __cctab_chk_group_begin:n #1
\seq_gpush:Ne \g__cctab_group_seq { \int_use:N \tex_currentgrouplevel:D }
\cs_set_eq:cN { __cctab_group_ #1 _chk: } \prg_do_nothing:
\cs_generate_variant:Nn __cctab_chk_group_begin:n { e }
\cs_new_protected:Npn __cctab_chk_group_end:n #1
\seq_gpop:NN \g__cctab_group_seq \l__cctab_internal_b_tl \bool_lazy_and:nnF
{ \int_compare_p:nNn { \tex_currentgrouplevel:D } = { \l__cctab_internal_b_tl } }
{ \cs_if_exist_p:c { __cctab_group_ #1 _chk: } }
{ \msg_error:nne { cctab } { group-mismatch } }
{ \int_sign:n { \tex_currentgrouplevel:D - \l__cctab_internal_b_tl } }
\cs_undefine:c { __cctab_group_ #1 _chk: }
\end{verbatim}

\texttt{End of definition for __cctab_chk_group_begin:n and __cctab_chk_group_end:n.}

__cctab_nesting_number:N __cctab_nesting_number:w
This macro returns the numeric index of the current catcode table. In LuaTeX this is just the argument, which is a count reference to a \catcodetable register. In other engines, the number is extracted from the \cctab variable.

\begin{verbatim}
\sys_if_engine_luatex:TF
\cs_new:Npn __cctab_nesting_number:N #1 {#1}
\cs_new:Npn __cctab_nesting_number:N __cctab_nesting_number:w
\end{verbatim}

\texttt{End of definition for __cctab_chk_group_begin:n and __cctab_chk_group_end:n.}

1238
Finally, install some code at the end of the TeX run to check that all `\cctab_begin:N` were ended by some `\cctab_end:`.

```latex
\cs_if_exist:NT \hook_gput_code:nnn
\{ \hook_gput_code:nnn { enddocument/end } \} \cctab
\{ \seq_if_empty:NF \g__cctab_stack_seq
\{ \msg_error:nn \{ \cctab \} \{ missing-end \} \}
\}
```

`\cctab_item:Nn` and `\cctab_item:cn`

Evaluate the integer argument only once. In most engines the `cctab` variable only has 256 entries so we only look up the catcode for these entries, otherwise we use the current catcode. In particular, for out-of-range values we use whatever fallback `\char_value_catcode:n`.

```latex
\cs_new:Npn \cctab_item:Nn #1#2
\{ \exp_args:Nf \__cctab_item:nN { \int_eval:n {#2} } #1 \}
```

LuaTEX

```latex
\sys_if_engine_luatex:TF
\{ \cs_new:Npn \__cctab_item:nN #1#2
\{ \lua_now:e { tex.print(-2, tex.getcatcode(\int_use:N #2, #1)) } \}
\}
```

Other Engines

```latex
\cs_new:Npn \__cctab_item:nN #1#2
\{ \int_compare:nNnTF {#1} < { 256 }
\{ \intarray_item:Nn #2 { #1 + 1 } \}
\{ \char_value_catcode:n {#1} \}
\}
```

`\cctab_if_exist:NTF`

Checks whether a `\cctab var` is defined.

```latex
\prg_new_eq_conditional:NNn \cctab_if_exist:N \cs_if_exist:N
\{ TF , T , F , p \}
```

`\cctab_if_exist:N`, `\cctab_if_exist:c`, `\cctab_if_exist:NT`, `\cctab_if_exist:cTF`

Checks whether the argument is defined and whether it is a valid `\cctab var`. In LuaTeX the validity of the `\cctab var` is checked by the engine, which complains if the argument is not a `\chardef`ed constant. In other engines, check if the given command is an intarray variable (the underlying definition is a copy of the `cmr10` font).

```latex
\__cctab_chk_if_valid:N \__cctab_chk_if_valid:NTF
```

86.5 Category code table conditionals

`\cctab_if_exist_p:N`, `\cctab_if_exist_p:c`, `\cctab_if_exist:NTF`, `\cctab_if_exist:cTF`

Checks whether a `\cctab var` is defined.

```latex
\prg_new_eq_conditional:NNn \cctab_if_exist:N \cs_if_exist:N
\{ TF , T , F , p \}
```

LuaTEX

```latex
\sys_if_engine_luatex:TF
\{ \prg_new_eq_conditional:NNn \cctab_if_exist:N \cs_if_exist:N
\{ TF , T , F , p \}
```

Other Engines

```latex
\prg_new_protected_conditional:Npnn \__cctab_chk_if_valid:N \__cctab_chk_if_valid:NTF
\{ TF , T , F \}
```

1239
\cctab_if_exist:NTF #1
{
 _\cctab_chk_if_valid_aux:NTF #1
 {
 \prg_return_true:
 {
 \msg_error:nne { cctab } { invalid-cctab }
 { \token_to_str:N #1 }
 \prg_return_false:
 }
 }
}

\sys_if_engine_luatex:TF
{
 \cs_new_protected:Npn _\cctab_chk_if_valid_aux:NTF #1
 {
 \int_compare:nNnTF {#1-1} < { \e@alloc@ccodetable@count }
 }
 \cs_if_exist:NT \c_syst_catcodes_n
 {
 \cs_gset_protected:Npn _\cctab_chk_if_valid_aux:NTF #1
 {
 \int_compare:nTF { #1 <= \c_syst_catcodes_n }
 }
 }
}
\cs_new_protected:Npn _\cctab_chk_if_valid_aux:NTF #1
{
 \exp_args:Nf \str_if_in:nnTF
 { \cs_meaning:N #1 }
 { select-font-cmr10-at- }
}
(End of definition for _\cctab_chk_if_valid:NTF and _\cctab_chk_if_valid_aux:NTF.)

86.6 Constant category code tables

\cctab_const:Nn \cctab_const:cn

Creates a new \langle ctab var \rangle then sets it with the current and user-supplied codes.
\cs_new_protected:Npn \cctab_const:Nn #1#2
{
 \cctab_new:N #1
 \cctab_gset:Nn #1 {#2}
}
\cs_generate_variant:Nn \cctab_const:cn { c }
(End of definition for \cctab_const:Nn. This function is documented on page \pageref{cctab_const:Nn}.)
Creating category code tables means thinking starting from init\TeX. For all-other and
the standard "string" tables that’s easy.
\begin{verbatim}
\ctab_new:N \c_initex_cctab
\ctab_const:Nn \c_other_cctab
\{
\ctab_select:N \c_initex_cctab
\int_set:Nn \tex_endlinechar:D { -1 }
\int_step_inline:nnn { 0 } { 127 }
\{
\char_set_catcode_other:n {#1} }
\}
\ctab_const:Nn \c_str_cctab
\{
\ctab_select:N \c_other_cctab
\char_set_catcode_space:n { 32 }
\}
\end{verbatim}

(End of definition for \c_initex_cctab, \c_other_cctab, and \c_str_cctab. These variables are doc-
dumented on page 283.)

To pick up document-level category codes, we need to delay set up to the end of
the format, where that’s possible. Also, as there are a lot of category codes to set, we avoid
using the official interface and store the document codes using internal code. Depending
on whether we are in the hook or not, the catcodes may be code or document, so we
explicitly set up both correctly.
\begin{verbatim}
\cs_if_exist:NTF \@expl@finalise@setup@@
{ \tl_gput_right:Nn \@expl@finalise@setup@@ }
{ \use:n }
\{
__cctab_new:N \c_code_cctab
\group_begin:
\int_set:Nn \tex_endlinechar:D { 32 }
\bool_lazy_or:nnTF
{ \sys_if_engine_xetex_p: } { \sys_if_engine_luatex_p: }
{ \int_step_function:nN { 31 } \char_set_catcode_invalid:n }
{ \int_step_function:nN { 31 } \char_set_catcode_active:n }
{ \int_step_function:nnN { 33 } { 64 } \char_set_catcode_other:n }
{ \int_step_function:nnN { 65 } { 90 } \char_set_catcode_letter:n }
{ \int_step_function:nnN { 91 } { 96 } \char_set_catcode_other:n }
{ \int_step_function:nnN { 97 } { 122 } \char_set_catcode_letter:n }
{ \char_set_catcode_ignore:n { 9 } % tab }
{ \char_set_catcode_other:n { 10 } % lf }
{ \char_set_catcode_active:n { 12 } % ff }
{ \char_set_catcode_end_line:n { 13 } % cr }
{ \char_set_catcode_ignore:n { 32 } % space }
{ \char_set_catcode_parameter:n { 35 } % hash }
{ \char_set_catcode_math_toggle:n { 36 } % dollar }
{ \char_set_catcode_comment:n { 37 } % percent }
{ \char_set_catcode_alignment:n { 38 } % ampersand }
{ \char_set_catcode_letter:n { 58 } % colon }
{ \char_set_catcode_escape:n { 92 } % backslash }
{ \char_set_catcode_math_superscript:n { 94 } % circumflex }
{ \char_set_catcode_letter:n { 95 } % underscore }
{ \char_set_catcode_group_begin:n { 123 } % left brace
\end{verbatim}

1241
\char_set_catcode_other:n \char_set_catcode_group_end:n \char_set_catcode_space:n \char_set_catcode_invalid:n \bool_lazy_or:nnF \sys_if_engine_xetex_p: \sys_if_engine_luatex_p: \int_step_function:nnN \char_set_catcode_active:n __cctab_gset:n \cctab_const:Nn \cctab_select:N % \cctab_end: \int_set:Nn \tex_endlinechar:D \char_set_catcode_space:n \char_set_catcode_space:n \char_set_catcode_other:n \char_set_catcode_math_subscript:n \char_set_catcode_active:n \cctab_new:N \g_tmpa_cctab \cctab_new:N \g_tmpb_cctab \g_tmpa_cctab \g_tmpb_cctab \msg_new:nnnn \g_tmpa_cctab \g_tmpb_cctab \msg_new:nnnn { stack-full } \msg_new:nnnn { extra-end } \msg_new:nnnn { missing-end } \msg_new:nnnn { invalid-cctab }

86.7 Messages

The-category-code-table-stack-is-exhausted.

LaTeX-has-been-asked-to-switch-to-a-new-category-code-table,-
but-there-is-no-more-space-to-do-this!

Extra-\iow_char:N\cctab_end:-ignored-\msg_line_context:.

LaTeX-came-across-a-\iow_char:N\cctab_end:-without-a-matching-
\iow_char:N\cctab_begin:N.\-This-command-will-be-ignored.

LaTeX-came-across-more-\iow_char:N\cctab_begin:N-than-
\iow_char:N\cctab_end:.

LaTeX-came-across-more-\iow_char:N\cctab_begin:N-than-
\iow_char:N\cctab_end:.

You-can-only-switch-to-a-\iow_char:N\catcode-table-that-is-

1242
initialized using \iow_char:N\cctab_new:N-or-
\iow_char:N\cctab_const:Nn.
\msg_new:nnn { cctab } { group-mismatch }
{
\iow_char:N\cctab_end: occurred in a-
\int_case:nn {#1}
{
 { 0 } { different-group }
 { 1 } { higher-group-level }
 { -1 } { lower-group-level }
} than-
the-matching\iow_char:N\cctab_begin:N.
}
{
Catcode-tables-and-groups-must-be-properly-nested,-but-
you-tried-to-interleave-them.-\LaTeX\-will-try-to-proceed,-
but-results-may-be-unexpected.
}
\prop_gput:Nnn \g_msg_module_name_prop { cctab } { \LaTeX }
\prop_gput:Nnn \g_msg_module_type_prop { cctab } { }
{/package}
Chapter 87

13unicode implementation

87.1 User functions

Conversion of a codepoint to a character (Unicode engines) or to one or more bytes (8-bit engines) is required. For loading the data, all that is needed is the form which creates strings: these are outside the group as they will also be used when looking up data in the hash table storage at point-of-use. Later, we will also need functions that can generate character tokens for document use: those are defined below, in the data recovery setup.
\begin{verbatim}
{ __codepoint_str_generate:nnnn __kernel_codepoint_to_bytes:n \#1 }
\}
\cs_new:Npn __codepoint_str_generate:nnnn \#1\#2\#3\#4
{ \char_generate:nn \#1 \#2
 \tl_if_blank:nF \#3
 { \char_generate:nn \#3 \#4
 { \char_generate:nn \#4 }
 }
 \cs_new:Npn \codepoint_generate:nn \#1\#2
 { \int_compare:nNnTF \#1 \= \char: \{ \char_generate:nn \#1 \#2
 \}
 { \int_compare:nNnTF \#1 \< \char: \{ __kernel_exp_not:w \exp_after:wN \exp_after:wN \exp_after:wN
 \char_generate:nn \#1 \#2
 \}
 }
 \use:e
 { __kernel_exp_not:w __codepoint_generate:nnnn __kernel_codepoint_to_bytes:n \#1 }
}
\cs_new:Npn __codepoint_generate:nnnn \#1\#2\#3\#4
{ __kernel_exp_not:w \exp_after:wN \exp_after:wN \exp_after:wN
 __codepoint_generate:n \#1
 __codepoint_generate:n \#2
 \tl_if_blank:nF \#3
 { __codepoint_generate:n \#3
 \tl_if_blank:nF \#4
 { __codepoint_generate:n \#4 }
 }
}
\cs_new:Npn \codepoint_generate:nn \#1\#2
 { \int_compare:nNnTF \#1 \= \char: \{ \char_generate:nn \#1 \#2
 \}
 { \int_compare:nNnTF \#1 \< \char: \{ __kernel_exp_not:w \exp_after:wN \exp_after:wN \exp_after:wN
 \char_generate:nn \#1 \#2
 \}
 }
 \use:e
 { __kernel_exp_not:w __codepoint_generate:nnnn __kernel_codepoint_to_bytes:n \#1 }
}
\end{verbatim}
This code converts a codepoint into the correct UTF-8 representation. In terms of the algorithm itself, see https://en.wikipedia.org/wiki/UTF-8 for the octet pattern.
__codepoint_to_bytes_outputiv:nw

\{ __codepoint_to_bytes_auxiii:n \{#1\} \}

\fi:

\else:
\fi:
\fi:
\else:
__codepoint_to_bytes_outputi:nw \{#1\}
\fi:
__codepoint_to_bytes_end: \{ \} \{ \} \{ \} \{ \}
\}
\cs_new:Npn __codepoint_to_bytes_auxii:Nnn #1#2#3
{ \#10 + \int_div_truncate:nn \{#2\} \{#3\} }
\cs_new:Npn __codepoint_to_bytes_auxiii:n #1
{ \int_mod:nn \{#1\} \{ 64 \} + 128 }
\cs_new:Npn __codepoint_to_bytes_outputi:nw #1 #2 __codepoint_to_bytes_end: #3 #4
\{ __codepoint_to_bytes_output:fnn \{ \int_eval:n \{#1\} \} \{ \} \{#2\} \}
\cs_new:Npn __codepoint_to_bytes_outputii:nw #1 #2 __codepoint_to_bytes_end: #3 #4 #5
\{ __codepoint_to_bytes_output:fnn \{ \int_eval:n \{#1\} \} \{ \{#3\} \{#4\} \{#5\} \} \{#2\} \}
\cs_new:Npn __codepoint_to_bytes_outputiii:nw #1 #2 __codepoint_to_bytes_end: #3 #4 #5 #6
\{ __codepoint_to_bytes_output:fnn \{ \int_eval:n \{#1\} \} \{ \{#3\} \{#4\} \{#5\} \{#6\} \} \}
\cs_new:Npn __codepoint_to_bytes_outputiv:nw #1 #2 __codepoint_to_bytes_end: #3 #4 #5 #6 #7
\{ __codepoint_to_bytes_output:fnn \{ \int_eval:n \{#1\} \} \{ \{#3\} \{#4\} \{#5\} \{#6\} \{#7\} \} \}
\cs_new:Npn __codepoint_to_bytes_output:nnn #1#2#3
\{ \cs:w c__codepoint_category_: \tex_romannumeral:D __kernel_codepoint_data:nn { category } {#1} _str \cs_end: \}
\cs_generate_variant:Nn __codepoint_to_bytes_output:nnn { f }
\cs_new:Npn __codepoint_to_bytes_end: { }

(End of definition for __kernel_codepoint_to_bytes:n and others.)

\codepoint_to_category:n

Get the value and convert back to the string,

\cs_new:Npn \codepoint_to_category:n #1
\cs:w c__codepoint_category_: \tex_romannumeral:D __kernel_codepoint_data:nn \{ category \} \{#1\} _str \cs_end:

(End of definition for \codepoint_to_category:n. This function is documented on page \texttt{287}.)

1247
\texttt{_codepoint_to_nfd:n} is a potentially-recursive process: the key is to check if we get the input codepoint back again. As far as possible, we use the same path for all engines.

\begin{verbatim}
\cs_new:Npn \codepoint_to_nfd:n #1
\{ \exp_args:Ne __codepoint_to_nfd:n { \int_eval:n {#1} } \}
\cs_new:Npn __codepoint_to_nfd:n #1
\{ __codepoint_to_nfd:nn {#1} { \char_value_catcode:n {#1} } \}
\bool_lazy_or:nnF
\{ \sys_if_engine_luatex_p: \}
\{ \sys_if_engine_xetex_p: \}
{ \cs_gset:Npn __codepoint_to_nfd:n #1
{ \int_compare:nNnTF {#1} > { "80 }
{ __codepoint_to_nfd:nn {#1} { 12 } }
{ __codepoint_to_nfd:nn {#1} { \char_value_catcode:n {#1} } } } }
\cs_new:Npn __codepoint_to_nfd:nn #1#2
\{ \exp_args:Ne __codepoint_to_nfd:nnn \{ __codepoint_nfd:n {#1} \} {#1} {#2} \}
\cs_new:Npn __codepoint_to_nfd:nnn #1#2#3 { __codepoint_to_nfd:nnnn #1 {#2} {#3} }
\cs_new:Npn __codepoint_to_nfd:nnnn #1#2#3#4
{ \int_compare:nNnTF {#1} = {#3}
{ \codepoint_generate:nn {#1} {#4} }
{ __codepoint_to_nfd:nn {#1} {#4} }
{ \tl_if_blank:nF {#1} {#2}
{ __codepoint_to_nfd:nn {#2} {#4} } } }
\end{verbatim}

\textit{(End of definition for \texttt{\codepoint_to_nfd:n} and others. This function is documented on page 287.)}

87.2 Data loader

Text operations requires data from the Unicode Consortium. Data read into Unicode engine formats is at best a small part of what we need, so there is a loader here to set up the appropriate data structures.

Where we need data for most or all of the Unicode range, we use the two-stage table approach recommended by the Unicode Consortium and demonstrated in a model implementation in Python in \url{https://www.strchr.com/multi-stage_tables}. This approach uses the \texttt{intarray} (\texttt{fontdimen}-based) data type as it is fast for random access and avoids significant hash table usage. In contrast, where only a small subset of codepoints are required, storage as macros is preferable. There is also some consideration of the effort needed to load data: see for example the grapheme breaking information, which would be problematic to convert into a two-stage table but which can be used with reasonable performance in a small number of comma lists (at the cost that breaking at higher codepoint Hangul characters will be slightly slow).
Choosing the block size for the blocks in the two-stage approach is non-trivial: depending on the data stored, the optimal size for memory usage will vary. At the same time, for us there is also the question of load-time: larger blocks require longer comma lists as intermediates, so are slower. As this is going to be needed to use the data, we set it up outside of the group for clarity.

```
\int_const:Nn \c__codepoint_block_size_int { 64 }
```

(End of definition for \c__codepoint_block_size_int.)

Parsing the data files can be the same way for all engines, but where they are stored as character tokens, the construction method depends on whether they are Unicode or 8-bit internally. Parsing is therefore done by common functions, with some data storage using engine-specific auxiliaries.

As only the data needs to remain at the end of this process, everything is set up inside a group. The only thing that is outside is creating a stream: they are global anyway and it is best to force a stream for all engines.

```
\ior_new:N \g__codepoint_data_ior
```

(End of definition for \g__codepoint_data_ior.)

We need some setup for the two-part table approach. The number of blocks we need will be variable, but the resulting size of the stage one table is predictable. For performance reasons, we therefore create the stage one tables now so they can be used immediately, and will later rename them as a constant tables. For each two-stage table construction, we need a comma list to hold the partial block and a couple of integers to track where we are up to. To avoid burning registers, the latter are stored in macros and are “fake” integers. We also avoid any \texttt{new} functions, keeping as much as possible local.

As we need both positive and negative values, case data requires one two-stage table for each transformation. In contrasts, general Unicode properties could be stored in one table with appropriate combination rules: that is not done at present but is likely to be added over time. Here, all that is needed is additional entries into the comma-list to create the structures.

Notice that in the standard expl3 way we are indexes position not offset: that does mean a little work later.

```
\group_begin:
\clist_map_inline:nn { category , uppercase , lowercase }
{ \cs_set_nopar:cpn { l__codepoint_ #1 _block_clist } { } \\
  \cs_set_nopar:cpn { l__codepoint_ #1 _block_tl } { 1 } \\
  \cs_set_nopar:cpn { l__codepoint_ #1 _pos_tl } { 0 } \\
  \intarray_new:cn { g__codepoint_ #1 _index_intarray } { \int_div_truncate:nn { "110000 } \c__codepoint_block_size_int } 
}
\group_end:
```

We need an integer value when matching the current block to those we have already seen, and a way to track codepoints for handling ranges. Again, we avoid using up registers or creating global names.

```
\cs_set_nopar:Npn \l__codepoint_next_codepoint_fint_tl { 0 }
\cs_set_nopar:Npn \l__codepoint_matched_block_tl { 0 }
```

1249
For Unicode general category, there needs to be numerical representation of each possible value. As we need to go from string to number here, but the other way elsewhere, we set up fast mappings both ways, but one set local and the other as constants.

\cs_set_protected:Npn _codepoint_data_auxi:w #1#2
{ \quark_if_recursion_tail_stop:n {#2} \cs_set_nopar:cpn { l__codepoint_category_ #2 _tl } {#1} \str_const:cn { c__codepoint_category_ \tex_romannumeral:D #1 _str } {#2} \exp_args:Ne _codepoint_data_auxi:w \{ \int_eval:n { #1 + 1 } \} \q_recursion_stop \q_recursion_tail }

_codepoint_data_auxi:w \{ 1 \}
{ Lu } { Ll } { Lt } { Lm } { Lo }
{ Mn } { Me } { Mc }
{ Nd } { Nl } { No }
{ Zs } { Zl } { Zp }
{ Cc } { Cf } { Co } { Cs } { Cn }
{ Pp } { Ps } { Pe } { Pc } { Po } { Pi } { Pf }
{ Sm } { Sc } { Sk } { So }
\q_recursion_tail \q_recursion_stop

Parse the main Unicode data file and pull out the NFD and case changing data. The NFD data is stored on using the hash table approach and can yield a predictable number of codepoints: one or two. We also need the case data, which will be modified further below. To allow for finding ranges, the description of the codepoint needs to be carried forward.

\cs_set_protected:Npn _codepoint_data_auxii:w #1 ; #2 ~ #3 \q_stop
{ \tl_if_blank:nF {#6} { \tl_if_head_eq_charcode:nNF {#6} < % > { _codepoint_data_auxiii:w #1 ; #6 - \q_stop } \q_recursion_stop } _codepoint_data_auxiii:w #1 ; #2 ; #3 ;}

\cs_set_protected:Npn _codepoint_data_auxiii:w #1 ; #2 ; #3 ; #4 ; #5 ; #6 ; #7 ; #8 ; #9 ~ \q_stop
{ \use:e 1250 }

The category data needs to be converted from a string to the numerical equivalent: a simple operation. The case data is going to be stored as an offset from the parent character, rather than an absolute value. We therefore deal with that plus the situation where a codepoint has no mapping data in one shot.
To deal with ranges, we track the position of the next codepoint expected. If there is a gap, we deal with that separately: it could be a range or an unused part of the Unicode space. As such, we deal with the current codepoint here whether or not there is range to fill in. Upper- and lowercase data go into the two-stage table, any titlecase exception is just stored in a macro. The data for the codepoint is added to the current block, and if that is now complete we move on to save the block. The case exceptions are all stored as codepoints, with a fixed number of balanced text as we know that there are never more than three.

```
\cs_set:Npn \__codepoint_data_auxiv:w #1 ; #2 ; #3 ; #4 ; #5 ; #6 ;
{\tl_if_blank:nTF {#2}{0}{\int_eval:n {"#2 - "#1}}}
\__codepoint_add:nn { category } {#3}
\__codepoint_add:nn { uppercase } {#4}
\__codepoint_add:nn { lowercase } {#5}
\int_compare:nNnF {#4} = { \__codepoint_data_offset:nn {#1} {#6} }
{\tl_const:ce{c__codepoint_titlecase_ \codepoint_str_generate:n{"#1} _tl}{"#6} { } { }}
\tl_set:Ne \l__codepoint_next_codepoint_fint_tl{\int_eval:n {"#1 + 1}}}
\cs_set_protected:Npn \__codepoint_add:nn #1#2
{\clist_put_right:cn { l__codepoint_ #1 _block_clist } {#2}}
\int_compare:nNnT { \clist_count:c { l__codepoint_ #1 _block_clist } } {#2}
\int_compare:nNnT { \clist_count:c { l__codepoint_ #1 _block_clist } }{\c__codepoint_block_size_int}
\__codepoint_save_blocks:nn {#1}{1}
\}
\cs_set:Npn \__codepoint_data_auxv:w
{\tl_if_blank:nTF {#1} > \l__codepoint_next_codepoint_fint_tl}
category for unassigned characters is Cn, so we find the correct value once and then use that.

Calculated the length of the range and the space remaining in the current block.

Here we want to do three things: add to and possibly complete the current block, add complete blocks quickly, then finish up the range in a final open block. We need to avoid as far as possible avoid dealing with every single codepoint, so the middle step is optimised.
To allow rapid comparison, each completed block is stored locally as a comma list: once all of the blocks have been created, they are converted into an \texttt{intarray} in one step. The aim here is to check the current block against those we’ve already used, and either match to an existing block or save a new block.

Close out the final block, rename the first stage table, then combine all of the block comma-lists into one large second-stage table with offsets. As we use an index not an offset, there is a little back-and-forward to do.
With the setup done, read the main data file: it’s easiest to do that as a token list with spaces retained.

\ior_open:Nn \g__codepoint_data_ior { UnicodeData.txt }
\group_begin:
\char_set_catcode_space:n { '\ '}
\ior_map_variable:NNn \g__codepoint_data_ior \l__codepoint_tmpa_tl
\if_meaning:w \l__codepoint_tmpa_tl \c_space_tl
\exp_after:wN \ior_map_break:
\fi:
\exp_after:wN \__codepoint_data_auxi:w \l__codepoint_tmpa_tl \q_stop
\group_end:
\group_end:
\__kernel_codepoint_data:nn
\__codepoint_data:nnn

Recover data from a two-stage table: entirely generic as this applies to all tables (as we
use the same block size for all of them). Notice that as we use indices not offsets we have
to shuffle out-by-one issues. This function is needed before loading the special casing
data, as there we need to be able to check the standard case mappings.

```latex
\begin{verbatim}
\cs_new:Npn __kernel_codepoint_data:nn #1#2
{|exp_args:Nf |__codepoint_data:nnn
 \int_eval:n
 { \c__codepoint_block_size_int *
 |\intarray_item:cn \{ c__codepoint_ #1 _index_intarray \}
 |\int_div_truncate:nn \{#2\} \c__codepoint_block_size_int
 + 1
 \}
 - 1
}
\}
\cs_new:Npn __codepoint_data:nnn #1#2#3
{|\intarray_item:cn \{ c__codepoint_ #3 _blocks_intarray \}
 \{ #1 \int_mod:nn \{#2\} \c__codepoint_block_size_int + 1 \}
\}
\end{verbatim}

\end{definition}

The other data files all use C-style comments so we have to worry about # tokens
(and reading as strings). The set up for case folding is in two parts. For the basic
(core) mappings, folding is the same as lower casing in most positions so only store the
differences. For the more complex foldings, always store the result, splitting up the two
or three code points in the input as required.

```
\group_begin:
\ior_open:Nn \g__codepoint_data_ior { CaseFolding.txt }
\cs_set_protected:Npn \__codepoint_data_auxi:w #1 ;~ #2 ;~ #3 ; #4 \q_stop
{|\if:w \tl_head:n { #2 ? } C
 \reverse_if:N \if_int_compare:w
 \int_eval:n \{ \__kernel_codepoint_data:nn \{ lowercase \} \{\"#1\} + \"#1 \}
 = \"#3 -
 \tl_const:ce
 \{ c__codepoint_casefold_ \codepoint_str_generate:n \{\"#1\} _tl \}
 \{ \{\"#3\} \} \} \}
\fi:
\else:
|\if:w \tl_head:n { #2 ? } F
 \__codepoint_data_auxii:w #1 - #3 - \q_stop
\fi:
\fi:
\}
```

(End of definition for __kernel_codepoint_data:nn and __codepoint_data:nnn.)
Here, \#4 can have a trailing space, so we tidy up a bit at the cost of speed for these small number of cases it applies to.

\begin{verbatim}
\cs_set_protected:Npn _codepoint_data_auxii:w #1 - #2 - #3 - \#4 \q_stop
\tl_const:ce { c_codepoint_casfold_ \codepoint_str_generate:n {"#1\} \tl }
\{ %"#2
\{ %"#3
\{ \tl_if_blank:nF {#4} { " \int_to_Hex:n {"#4\} } \}
\}
\ior_str_map_inline:Nn \g_codepoint_data_ior
\{ \reverse_if:N \if:w \c_hash_str \tl_head:w #1 \c_hash_str \q_stop
__codepoint_data_auxi:w #1 \q_stop
\fi:
\ior_close:N \g_codepoint_data_ior
\end{verbatim}

For upper- and lowercase special situations, there is a bit more to do as we also have titlecasing to consider, plus we need to stop part-way through the file.

\begin{verbatim}
\ior_open:Nn \g_codepoint_data_ior { SpecialCasing.txt }
\cs_set_protected:Npn _codepoint_data_auxii:w #1 ;#2 ;#3 ;#4 ;#5 \q_stop
\use:n { _codepoint_data_auxii:w #1 lower #2 } \q_stop
\use:n { _codepoint_data_auxii:w #1 upper #4 } \q_stop
\str_if_eq:nnF {#3} {#4} { \use:n { _codepoint_data_auxii:w #1 title #3 } \q_stop }
\}
\cs_set_protected:Npn _codepoint_data_auxii:w #1 ~ #2 ~ #3 ~ #4 ~ #5 \q_stop
\tl_if_empty:nF {#4}
{ \tl_const:ce { c_codepoint_ #2 case_ \codepoint_str_generate:n {"#1\} \tl }
\{ %"#3
\{ %"#4
\{ \tl_if_blank:nF {#5} {"#5\} \}
\}
\}
\ior_str_map_inline:Nn \g_codepoint_data_ior
\{ \str_if_eq:eeTF {\tl_head:w #1 \c_hash_str \q_stop } { \c_hash_str \}
\{ \str_if_eq:eeT
\{ #1\}
(\c_hash_str \c_space_tl Conditional-Mappings \}
\{ \ior_map_break: \}
\}
\{ _codepoint_data_auxii:w #1 \q_stop \}
\end{verbatim}
With the core data files loaded, there is now a need to provide access to this information for other modules. That is done here such that case folding can also be covered. At this level, all that needs to be returned is the

\begin{verbatim}
\cs_new:Npn __kernel_codepoint_case:nn #1#2 {
 \exp_args:Ne __codepoint_case:nnn { \codepoint_str_generate:n {#2} } {#1} {#2}
}
\cs_new:Npn __codepoint_case:nnn #1#2#3 {
 \cs_if_exist:cTF { c__codepoint_ #2 _ #1 _tl }
 {
 \tl_use:c { c__codepoint_ #2 _ #1 _tl }
 }
 { \use:c { __codepoint_ #2 :n } {#3} }
}\cs_new:Npn __codepoint_uppercase:n { __codepoint_case:nn { uppercase } }
\cs_new:Npn __codepoint_lowercase:n { __codepoint_case:nn { lowercase } }
\cs_new:Npn __codepoint_titlecase:n { __codepoint_case:nn { uppercase } }
\cs_new:Npn __codepoint_casefold:n { __codepoint_case:nn { lowercase } }
\cs_new:Npn __codepoint_case:nn #1#2 {
 { \int_eval:n { __kernel_codepoint_data:nn {#1} {#2} + #2 } }
\}
\end{verbatim}

(End of definition for __kernel_codepoint_case:nn and others.)

\begin{verbatim}
\cs_new:Npn __codepoint_nfd:n #1 {
 \exp_args:Ne __codepoint_nfd:nn { \codepoint_str_generate:n {#1} } {#1}
}\cs_new:Npn __codepoint_nfd:nn #1#2 {
 \tl_if_exist:cTF { c__codepoint_nfd_ #1 _tl }
 { \tl_use:c { c__codepoint_nfd_ #1 _tl } }
 { {#2} { } }
\}
\end{verbatim}

(End of definition for __codepoint_nfd:n and __codepoint_nfd:nn.)

\begin{verbatim}
\ior_new:N \g__text_data_ior
\group_begin:
\ior_open:Nn \g__text_data_ior { GraphemeBreakProperty.txt }
\cs_set_nopar:Npn \l__text_tmpa_str { }
\ior_close:N \g__codepoint_data_ior
\group_end:
\end{verbatim}

Read the Unicode grapheme data. This is quite easy to handle and we only need codepoints, not characters, so there is no need to worry about the engine in use. As reading as a string is most convenient, we have to do some work to remove spaces: the hardest part of the entire process!

1257
\cs_set_nopar:Npn \l__text_tmpb_str { }
\cs_set_protected:Npn __text_data_auxi:w #1 ;~ #2 ~ #3 \q_stop
{
\str_if_eq:VnF \l__text_tmpb_str {#2}
{
\str_if_empty:NF \l__text_tmpb_str
{
\clist_const:ce { c__text_grapheme_ \l__text_tmpb_str _clist }
\exp_after:wN \use_none:n \l__text_tmpa_str
\cs_set_nopar:Npn \l__text_tmpa_str { }
\cs_set_nopar:Npn \l__text_tmpb_str {#2}
}
__text_data_auxii:w #1 .. #1 .. #1 \q_stop
}
\cs_set_nopar:Npn \l__text_tmpb_str {#2}
}
__text_data_auxii:w #1 .. #2 .. #3 \q_stop
{
\cs_set_nopar:Npe \l__text_tmpa_str
{
\l__text_tmpa_str ,
\tl_trim_spaces:n {#1} .. \tl_trim_spaces:n {#2}
}
\ior_str_map_inline:Nn \g__text_data_ior
{
\str_if_eq:eeF { \tl_head:w #1 \c_hash_str \q_stop } { \c_hash_str }
{
\tl_if_blank:nF {#1}
{
__text_data_auxii:w #1 \q_stop
}
}
\ior_close:N \g__text_data_ior
\group_end:
⟨/package⟩
Chapter 88

l3text implementation

88.1 Internal auxiliaries

\s__text_stop Internal scan marks.
\q__text_nil Internal quarks.
__text_quark_if_nil:p:n Branching quark conditional.
__text_recursion_tail __text_recursion_stop Internal recursion quarks.

__text_use_i_delimit_by_q_recursion_stop:nw Functions to gobble up to a quark.
__text_if_q_recursion_tail_stop_do:Nn __text_if_q_recursion_tail_stop_do:nn Functions to query recursion quarks.
Internal scan marks quarks.

Functions to gobble up to a scan mark.

Functions to query recursion scan marks. Slower than a quark test but needed to avoid issues in the outer expansion loop with unterminated \romannumeral primitives.

The idea here is to take a token and ensure that if it's an implicit char, we output the explicit version. Otherwise, the token needs to be unchanged. First, we have to split between control sequences and everything else.
For control sequences, we can check for macros versus other cases using \if_meaning:w, then explicitly check for \chardef and \mathchardef.

\cs_new:Npn __text_token_to_explicit_cs:N #1
\begin{verbatim}
 \exp_after:wN \if_meaning:w \exp_not:N #1 \#1
 \exp_after:wN \use:nn \exp_after:wN
 __text_token_to_explicit_cs_aux:N
 \else:
 \exp_after:wN \exp_not:n \fi:
 __text_token_to_explicit_cs_aux:N #1
\end{verbatim}

For character tokens, we need to filter out the implicit characters from those that are explicit. That’s done here, then if necessary we work out the category code and generate the char. To avoid issues with alignment tabs, that one is done by elimination rather than looking up the code explicitly. The trick with finding the charcode is that the \TeX messages are either the ⟨some⟩thing character ⟨char⟩ or the ⟨type⟩ ⟨char⟩.

\cs_new:Npn __text_token_to_explicit_char:N #1
\begin{verbatim}
 \if:w \if_catcode:w ^ \exp_args:No \str_tail:n { \token_to_str:N #1 } ^
 \token_to_str:N #1 \#1
 \else:
 \exp_after:wN \exp_not:n \fi:
 __text_token_to_explicit:n #1
\end{verbatim}

\cs_new:Npn __text_token_to_explicit:n #1
\begin{verbatim}
 \exp_after:wN __text_token_to_explicit_auxi:w
 \int_value:w \if_catcode:w \c_group_begin_token \#1 \else:
 10 \else:
 12 \fi:
 \fi:
\end{verbatim}
An idea from \texttt{l3char}: we need to get the category code of a specific token, not the general case.
\text{__text_if_expandable:NTF}

Test for tokens that make sense to expand here: that is more restrictive than the engine view.

\prg_new_conditional:Nppn __text_if_expandable:N \#1 \{ T , F , TF \}

\prg_new_conditional:Nppn __text_if_expandable:N #1

{ \token_if_expandable:NTF #1

{ \token_if_protected_macro_p:N #1

{ \token_if_protected_long_macro_p:N #1

{ \token_eq_meaning_p:NN \q__text_recursion_tail #1 }

)

{ \prg_return_false: }

{ \prg_return_true: }

}

{ \prg_return_false: }

}

(End of definition for __text_char_catcode:N.)

88.3 Codepoint utilities

For working with codepoints in an engine-neutral way.

\prg_new_conditional:Nppn __text_if_expandable:N #1\ { #1 \{ #2 \} }

\prg_new_conditional:Nppn __text_if_expandable:N #1\ { #1 \{ #2 \} }

{ \sys_if_engine_luatex_p: }

{ \sys_if_engine_xetex_p: }

{ \cs_new:Npn __text_codepoint_process:nNN \#1\#2 \{ #1 \{ #2 \} }

{ \cs_new:Npe __text_codepoint_process:nNN \#1\#2

{ \exp_not:N \int_compare:nNnTF '\#2' > { "80 } }

{ \sys_if_engine_pdftex:TF

{ \exp_not:N __text_codepoint_process_aux:nN }
\begin{verbatim}
\exp_not:N \int_compare:nNnTF {'#2} > { "FF }
\exp_not:N \use:n \\
\exp_not:N __text_codepoint_process_aux:nN
\end{verbatim}

(End of definition for __text_codepoint_process:nN and others.)

Allows comparison for all engines using a first “character” followed by a codepoint.
\sys_if_engine_pdftex:TF
{
 \exp_not:N \exp_after:wN
 \exp_not:N \text_codepoint_from_chars_aux:Nw
}
{
 \exp_not:N \if_int_compare:w '#1 > "FF \exp_not:N \exp_stop_f:
 \exp_not:N \exp_after:wN \exp_not:N \exp_after:wN
 \exp_not:N \text_codepoint_from_chars:N
 \exp_not:N \else:
 \exp_not:N \exp_after:wN \exp_not:N \exp_after:wN
 \exp_not:N __text_codepoint_from_chars_aux:Nw
 \exp_not:N \fi:
}
\exp_not:N \else:
 \exp_after:wN \exp_not:N \text_codepoint_from_chars:N
\exp_not:N \fi:
#1
}
cs_new:Npn \text_codepoint_from_chars_aux:Nw #1
{
 \if_int_compare:w '#1 < "E0 \exp_stop_f:
 \exp_after:wN \text_codepoint_from_chars:NN
 \else:
 \if_int_compare:w '#1 < "F0 \exp_stop_f:
 \exp_after:wN \exp_after:wN \exp_after:wN
 \text_codepoint_from_chars:NNN
 \else:
 \exp_after:wN \exp_after:wN \exp_after:wN
 \text_codepoint_from_chars:NNNN
 \fi:
 \fi:
#1
}
cs_new:Npn \text_codepoint_from_chars:NN #1#2
{
 ('#1 - "C0) * "40 + '#2 - "80
}
cs_new:Npn \text_codepoint_from_chars:NNN #1#2#3
{
 ('#1 - "E0) * "1000 + ('#2 - "80) * "40 + ('#3 - "80
}
cs_new:Npn \text_codepoint_from_chars:NNNN #1#2#3#4
{
 ('#1 - "F0) * "40000
}
(End of definition for \text_codepoint_compare:nNnTF and others.)
88.4 Configuration variables

\l_text_accents_tl Used to be used for excluding these ideas from expansion: now deprecated.
\l_text_letterlike_tl
\tl_new:N \l_text_accents_tl
\tl_new:N \l_text_letterlike_tl
(End of definition for \l_text_accents_tl and \l_text_letterlike_tl.)

\l_text_case_exclude_arg_tl Non-text arguments, including covering the case of \protected@edef applied to \cite.
\tl_new:N \l_text_case_exclude_arg_tl
\tl_set:Ne \l_text_case_exclude_arg_tl
{ \exp_not:n { \begin \cite \end \label \ref }
 \exp_not:c { cite - }
 \exp_not:n { \babelshorthand }
}
(End of definition for \l_text_case_exclude_arg_tl. This variable is documented on page 291.)

\l_text_math_arg_tl Math mode as arguments.
\tl_new:N \l_text_math_arg_tl
\tl_set:Nn \l_text_math_arg_tl { \ensuremath }
(End of definition for \l_text_math_arg_tl. This variable is documented on page 291.)

\l_text_math_delims_tl Paired math mode delimiters.
\tl_new:N \l_text_math_delims_tl
\tl_set:Nn \l_text_math_delims_tl { $ $ () }
(End of definition for \l_text_math_delims_tl. This variable is documented on page 291.)

\l_text_expand_exclude_tl Commands which need not to expand. We start with a somewhat historical list, and tidy
up if possible.
\tl_new:N \l_text_expand_exclude_tl
\tl_set:Nn \l_text_expand_exclude_tl { \begin \cite \end \label \ref }
\bool_lazy_and:nnT
{ \str_if_eq_p:VN \fmtname { LaTeX2e } }
{ \tl_if_exist_p:N \@expl@finalise@setup@@ }
{ \tl_gput_right:Nn \@expl@finalise@setup@@
 { \tl_gput_right:Nn \@kernel@after@begindocument
 { \cs_set_protected:Npn _text_tmp:w #1
 { \tl_clear:N \l_text_expand_exclude_tl
 \tl_map_inline:nn {#1}
 { \bool_lazy_any:nF
 { \token_if_protected_macro_p:N ##1 }
 { \token_if_protected_long_macro_p:N ##1 }
 }
 }
 }
 }
}

1266
Markers for implicit char handling.

After precautions against & tokens, start a simple loop: that of course means that “text” cannot contain the two recursion quarks. The loop here must be \text-type expandable; we have arbitrary user commands which might be protected and take arguments, and if the expansion code is used in a typesetting context, that will otherwise explode. (The same issue applies more clearly to case changing: see the example there.) The outer loop has to use scan marks as delimiters to protect against unterminated \textromannumeral usage in the input.
The approach to making the code f-type expandable is to use a marker result token and to shuffle the collected tokens.

\texttt{\cs_new:Npn _text_expand_result:n \{ \}}

The main loop is a standard “tl action”: groups are handled recursively, while spaces are just passed through. Thus all of the action is in handling N-type tokens.

\texttt{\cs_new:Npn _text_expand_loop:w \#1 _text_recursion_stop}

The first step in dealing with N-type tokens is to look for math mode material: that needs to be left alone. The starting function has to be split into two as we need \texttt{\quark-if_recursion_tail_stop:N} first before we can trigger the search. We then look for matching pairs of delimiters, allowing for the case where math mode starts but does not end. Within math mode, we simply pass all the tokens through unchanged, just checking the N-type ones against the end marker.
At this stage, either we have a control sequence or a simple character: split and handle. The need to check for non-protected actives arises from handling of legacy input encodings: they need to end up in a representation we can deal with in further processing. The tests for explicit parts of the \LaTeX2\ε UTF-8 mechanism cover the case of bookmarks, where definitions change and are no longer protected. The same is true for babel shorthands.

\begin{verbatim}
\cs_new:Npn __text_expand_explicit:N #1
\token_if_cs:NTF #1
\{ __text_expand_exclude:N #1 \}
\bool_lazy_and:nnTF
\{ \token_if_active_p:N #1 \}
\{ \token_if_protected_macro_p:N #1 \}
\{ \token_if_protected_long_macro_p:N #1 \}
\{ \tl_if_head_eq_meaning_p:oN {#1} \UTFviii@two@octets \}
\{ \tl_if_head_eq_meaning_p:oN {#1} \UTFviii@three@octets \}
\{ \tl_if_head_eq_meaning_p:oN {#1} \UTFviii@four@octets \}
\{ \tl_if_head_eq_meaning_p:oN {#1} \active@prefix \}
\}
\}
__text_expand_store:n {#1}
__text_expand_loop:w
\}
\}
\cs_new:Npn __text_expand_exclude:N #1
\cs_if_eq:NNTF #1 \text_case_switch:nnnn
\{ __text_expand_exclude_switch:Nnnnn #1 \}
\exp_args:Ne __text_expand_exclude:nN #1
__text_expand_store:n {#1}
__text_expand_loop:w
\}
\}
\cs_new:Npn __text_expand_exclude_switch:Nnnnn #1#2#3#4#5
__text_expand_store:n { #1 {#2} {#3} {#4} {#5} }
__text_expand_loop:w
\end{verbatim}

Next we exclude math commands: this is mainly as there might be an \ensuremath. The switching command for case needs special handling as it has to work by meaning.
\cs_new:Npn __text_expand_exclude:nN #1#2
 { __text_expand_exclude:NN #2 #1 \q__text_recursion_tail \q__text_recursion_stop }
\cs_new:Npn __text_expand_exclude:NN #1#2
 { __text_if_q_recursion_tail_stop_do:Nn #2 { __text_expand_accent:N #1 } \str_if_eq:nnTF {#1} {#2} { __text_use_i_delimit_by_q_recursion_stop:nw { __text_expand_exclude:Nw #1 } } { __text_expand_exclude:NN #1 } }
\cs_new:Npn __text_expand_exclude:Nw #1#2#
 { __text_expand_exclude:Nnn #1 {#2} }
\cs_new:Npn __text_expand_exclude:Nnn #1#2#3
 { __text_expand_store:n { #1#2 {#3} } __text_expand_loop:w }
\cs_new:Npn __text_expand_accent:N #1
 { \exp_after:wN __text_expand_accent:NN \exp_after:wN #1 \l_text_accents_tl \q__text_recursion_tail \q__text_recursion_stop }
\cs_new:Npn __text_expand_accent:NN #1#2
 { __text_if_q_recursion_tail_stop_do:Nn #2 { __text_expand_letterlike:N #1 } \cs_if_eq:NNTF #2 #1 { __text_use_i_delimit_by_q_recursion_stop:nw { __text_expand_store:n {#1} __text_expand_loop:w } } { __text_expand_accent:NN #1 } }
\cs_new:Npn __text_expand_letterlike:N #1
 { \exp_after:wN __text_expand_letterlike:NN \exp_after:wN #1 \l_text_letterlike_tl \q__text_recursion_tail \q__text_recursion_stop }
\cs_new:Npn __text_expand_letterlike:NN #1#2
 { __text_if_q_recursion_tail_stop_do:Nn #2 { __text_expand_letterlike:N #1 } \cs_if_eq:NNTF #2 #1 { __text_use_i_delimit_by_q_recursion_stop:nw { __text_expand_store:n {#1} __text_expand_loop:w } } { __text_expand_accent:NN #1 } }
\cs_new:Npn __text_expand_letterlike:NN #1#2
Another list of exceptions: these ones take no arguments so are easier to handle.
LaTeXε's \protect makes life interesting. Where possible, we simply remove it and replace with the “parent” command; of course, the \protect might be explicit, in which case we need to leave it alone. That includes the case where it’s not even followed by an N-type token. There is also the case of a straight \@protected@testopt to cover.
__text_quark_if_nil:nTF \{#4\}
\{ \cs_if_exist:cTF \{#2\}
\{ \exp_args:Ne __text_expand_store:n \{ \exp_not:c \{#2\} \} \}
\{ __text_expand_store:n \{ \protect \#1 \} \}
\}
__text_expand_loop:w
\cs_new:Npn __text_expand_testopt:N #1
\{ \token_if_eq_meaning:NNTF #1 \@protected@testopt
\{ __text_expand_testopt:NNn \}
\{ __text_expand_encoding:N #1 \}
\}
\cs_new:Npn __text_expand_testopt:NNn #1#2#3
\{ __text_expand_store:n \{#1\}
__text_expand_loop:w
\}

Deal with encoding-specific commands
\cs_new:Npn __text_expand_encoding:N #1
\{ \bool_lazy_or:nnTF
\{ \cs_if_eq_p:NN #1 \@current@cmd \}
\{ \cs_if_eq_p:NN #1 \@changed@cmd \}
\{ \exp_after:wN __text_expand_loop:w __text_expand_encoding_escape:NN \}
\{ __text_expand_replace:N #1 \}
\}
\cs_new:Npn __text_expand_encoding_escape:NN #1#2 { \exp_not:n \{#1\} }

See if there is a dedicated replacement, and if there is, insert it.
\cs_new:Npn __text_expand_replace:N #1
\{ \bool_lazy_and:nnTF
\{ \cs_if_exist_p:c { l__textexpand \token_to_str:N #1 _tl } \}
\{ \bool_lazy_or_p:nn
\{ \token_if_cs_p:N #1 \}
\{ \token_if_active_p:N #1 \} \}
\{ \exp_args:NV __text_expand_replace:n
\{ l__textexpand_ \token_to_str:N #1 _tl \} \}
\{ __text_expand_expand:N #1 \}
\}
\cs_new:Npn __text_expand_replace:n #1 \{ __text_expand_loop:w #1 \}

Finally, expand any macros which can be: this then loops back around to deal with what they produce. The only issue is if the token is \exp_not:n, as that must apply to the following balanced text.
\cs_new:Npn __text_expand_cs_expand:N #1
\{
Since \texttt{\exp_not:n} is actually a primitive, it allows a strange syntax and it particular the primitive expands what follows and discards spaces and \texttt{\scan_stop:} until finding a braced argument (the opening brace can be implicit but we will not support this here). Here, we repeatedly \texttt{f-exp}and after such an \texttt{\exp_not:n}, and test what follows. If it is a brace group, then we found the intended argument of \texttt{\exp_not:n}. If it is a space, then the next \texttt{f-exp}ansion will eliminate it. If it is an \texttt{N}-type token then \texttt{__text__expand_unexpanded:N} leaves the token to be expanded if it is expandable, and otherwise removes it, assuming that it is \texttt{\scan_stop:}. This silently hides errors when \texttt{\exp_not:n} is incorrectly followed by some non-expandable token other than \texttt{\scan_stop:}, but this should be pretty rare, and there is no good error recovery anyways.

\begin{verbatim}
\cs_new:Npn __text-expand-unexpanded:w
\{
 \exp_after:wN __text-expand-unexpanded-test:w
 \exp:w \exp_end_continue_f:w
\}
\cs_new:Npn __text-expand-unexpanded-test:w #1 \s__text-recursion-stop
\{
 \tl_if_head_is_group:nTF {#1}
 \{ __text-expand-unexpanded:n \}
 \{
 __text-expand-unexpanded:w
 \tl_if_head_is_N_type:nTF {#1} \{ __text-expand-unexpanded:N \}
 \}
 #1 \s__text-recursion-stop
\}
\cs_new:Npn __text-expand-unexpanded:N #1
\{
 __text-expand-store:n {#1}
 __text-expand-loop:w
\}
\end{verbatim}

(End of definition for \texttt{\text-expand:n and others. This function is documented on page 288.)

\texttt{\text-declare-expand-equivalent:Nn}
\texttt{\text-declare-expand-equivalent:cn}

Create equivalents to allow replacement.

\begin{verbatim}
\cs_new_protected:Npn \text-declare-expand-equivalent:Nn
\{
 \exp_after:wN \if_meaning:w \exp_not:N #1 #1
 \else:
 \exp_after:wN \exp_not:N #1
 \fi:
\}
\cs_new:Npn \text-declare-expand-equivalent:cn
\{
 __text-expand-store:n {#1}
 __text-expand-loop:w
\}
\end{verbatim}

1274
Prevent expansion of various standard values.

\tl_map_inline:nn\{ \AA \aa \AE \ae \DH \dh \DJ \dj \IJ \ij \L \l \NG \ng \O \o \OE \oe \SS \ss \TH \th \}

(End of definition for \text_declare_expand_equivalent:Nn. This function is documented on page 288.)
Chapter 89

\text-case implementation

89.1 Case changing

Needed to determine the route used in titlecasing.

\bool_new:N \l_text_titlecase_check_letter_bool
\bool_set_true:N \l_text_titlecase_check_letter_bool

(End of definition for \l_text_titlecase_check_letter_bool. This variable is documented on page 291.)

The user level functions here are all wrappers around the internal functions for case changing.

\cs_new:Npn \text_lowercase:n #1 { __text_change_case:nnn { lower } { } {#1} }
\cs_new:Npn \text_uppercase:n #1 { __text_change_case:nnn { upper } { } {#1} }
\cs_new:Npn \text_titlecase_all:n #1 { __text_change_case:nnn { title } { } {#1} }
\cs_new:Npn \text_titlecase_first:n #1 { __text_change_case:nnn { title } { break } { } {#1} }
\cs_new:Npn \text_lowercase:nn #1#2 { __text_change_case:nnn { lower } {#1} {#2} }
\cs_new:Npn \text_uppercase:nn #1#2 { __text_change_case:nnn { upper } {#1} {#2} }
\cs_new:Npn \text_titlecase_all:nn #1#2 { __text_change_case:nnn { title } {#1} {#2} }
\cs_new:Npn \text_titlecase_first:nn #1#2 { __text_change_case:nnn { title } { break } {#1} {#2} }

(End of definition for \text_lowercase:n and others. These functions are documented on page 289.)

As for the expansion code, the business end of case changing is the handling of \N-type tokens. First, we expand the input fully (so the loops here don't need to worry about awkward look-aheads and the like). Then we split into the different paths.
The code here needs to be \texttt{f}-type expandable to deal with the situation where case changing is applied in running text. There, we might have case changing as a document command and the text containing other non-expandable document commands.

\begin{verbatim}
\cs_set_eq:NN \MakeLowercase \text_lowercase \\
\MakeLowercase\enquote*{A} text
\end{verbatim}

If we use an \texttt{e}-type expansion and wrap each token in \texttt{exp_not:n}, that would explode: the document command grabs \texttt{exp_not:n} as an argument, and things go badly wrong. So we have to wrap the entire result in exactly one \texttt{exp_not:n}, or rather in the kernel version.

\begin{verbatim}
\cs_new:Npn _text_change_case:nnnn #1#2#3#4
 { _kernel_exp_not:w \exp_after:wN \\
 \exp:w \exp_args:Ne _text_change_case_auxi:nnnn \\
 { \text_expand:n {#4} } \{#1\} \{#2\} \{#3\} }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn _text_change_case_auxi:nnnn #1#2#3#4
 { \exp_args:No _text_change_case_BCP:nnnn \\
 { \tl_to_str:n {#4} } \{#1\} \{#2\} \{#3\} }
\end{verbatim}

\begin{verbatim}
\cs_new:Np _text_change_case_BCP:nnnn #1#2#3#4
 { \exp_not:N _text_change_case_BCP:nnnw \\
 {#2} \{#3\} \{#4\} \exp_not:N \q__text_stop \\
 \exp_not:N \\tl_to_str:n { -x- -x- } \\ exp_not:N \q__text_stop }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn _text_change_case_BCP:nnnnw #1#2#3#4#5#6 - #7 \q__text_stop \\
 { \bool_lazy_or:nnTF \cs_if_exist_p:c { _text_change_case_ #2 _ #6 -x- #4 :nnnn } \\
 \tl_if_exist_p:c { l_text_ #2 case_special_ #6 -x- #4 _tl } \\
 { _text_change_case_auxii:nnnn \{#1\} \{#2\} \{#3\} \{#5\} } \\
 \cs_if_exist:cTF { _text_change_case_ #2 _ #6 :nnnn } \\
 { _text_change_case_auxii:nnnn \{#1\} \{#2\} \{#3\} \{#6\} } \\
 { _text_change_case_auxii:nnnn \{#1\} \{#2\} \{#3\} \{#5\} } \\
 } }
\end{verbatim}

\begin{verbatim}
\cs_new:Npn _text_change_case_auxii:nnnn #1#2#3#4
 { \group_align_safe_begin: \\
\end{verbatim}
As for expansion, collect up the tokens for future use.

The main loop is the standard \texttt{tl} action type.

For a group, we could worry about whether this contains a character or not. However, that would make life very complex for little gain: exactly what a first character is is rather weakly-defined anyway. So if there is a group, we simply assume that a character has been seen, and for title case we switch to the “rest of the tokens” situation. To avoid having too much testing, we use a two-step process here to allow the titlecase functions to be separate.
The first step of handling N-type tokens is to filter out the end-of-loop. That has to be done separately from the first real step as otherwise we pick up the wrong delimiter. The loop here is the same as the \texttt{expand} one, just passing the additional data long. If no close-math token is found then the final clean-up is forced (i.e. there is no assumption of “well-behaved” input in terms of math mode).
Once potential math-mode cases are filtered out the next stage is to test if the token grabbed is a control sequence: the two routes the code may take are then very different.
To deal with a control sequence there is first a need to test if it is on the list which indicate that case changing should be skipped. That’s done using a loop as for the other special cases. If a hit is found then the argument is grabbed and passed through as-is.

Deal with any specialist replacement for case changing.
\cs_new:Npn __text_change_case_replace:nnnN #1#2#3#4
\{
\cs_if_exist:cTF { l__text_case_ \token_to_str:N #4 _tl }
\{
__text_change_case_replace:vnnn
\{ _text_change_case_ \token_to_str:N \#4 _tl \} \{#1\} \{#2\} \{#3\}
\}
\{ _text_change_case_switch:nnn \{#1\} \{#2\} \{#3\} \#4 \}
\}

\cs_new:Npn __text_change_case_replace:nnnn #1#2#3#4
\{ __text_change_case_loop:nnnw \{#2\} \{#3\} \{#4\}
\}
\cs_generate_variant:Nn __text_change_case_replace:nnnn { v }

Allow for manually-controlled case switching.

\cs_new:Npn __text_change_case_switch:nnnN #1#2#3#4
\{
\cs_if_eq:NNTF #4 \text_case_switch:nnnn
\{ \use:c { __text_change_case_switch_ #1 :nnnNnnnn } \}
\{ \use:c { __text_change_case_letterlike_ #1 :nnnN } \}
\{ \{#1\} \{#2\} \{#3\} \#4 \}
\}
\cs_new:Npn __text_change_case_switch_lower:nnnNnnnn #1#2#3#4#5#6#7#8
\{ __text_change_case_store:n \{#7\} __text_change_case_loop:nnnw \{#1\} \{#2\} \{#3\}
\}
\cs_new:Npn __text_change_case_switch_upper:nnnNnnnn #1#2#3#4#5#6#7#8
\{ __text_change_case_store:n \{#6\} __text_change_case_loop:nnnw \{#1\} \{#2\} \{#3\}
\}
\cs_new:Npn __text_change_case_switch_title:nnnNnnnn #1#2#3#4#5#6#7#8
\{ __text_change_case_store:n \{#8\} __text_change_case_skip:nnw \{#2\} \{#3\}
\}

Skip over material quickly after titlecase-first-only initials

\cs_new:Npn __text_change_case_skip:nnw #1#2#3 \q__text_recursion_stop
\{
\tl_if_head_is_N_type:nTF \{#3\}
\{ __text_change_case_skip_N_type:nnN \}
\}
\tl_if_head_is_group:nTF \{#3\}
\{ __text_change_case_skip_group:nnn \}
\{ __text_change_case_skip_space:nnw \}
\}
\{ \{#1\} \{#2\} \#3 \q__text_recursion_stop
\}
\cs_new:Npn __text_change_case_skip_N_type:nnN \#1#2#3
\{ __text_change_case_skip_N_type:nw \}
\cs_new:Npn __text_change_case_skip_group:nnn \#1#2#3
\{ __text_change_case_end:w \}
\cs_new:Npn __text_change_case_skip:Nn \#1#2#3
\{ __text_change_case_store:nw \{#3\}
\}
\cs_new:Npn __text_change_case_end:w \#1#2#3
\{ \}

1282
Letter-like commands may still be present: they are set up using a simple lookup approach, so can easily be handled with no loop. If there is no hit, we are at the end of the process: we loop around. Letter-like chars are all available only in upper- and lowercase, so titlecasing maps to the uppercase version.

Check for a customised codepoint result.
For upper- and lowercase changes, once we get to this stage there are only a couple of questions remaining: is there a language-specific mapping and is there the special case of a terminal sigma. If not, then we pass to a simple codepoint mapping.

If the current character is an uppercase sigma, a check is made on the next item in the input. If it is N-type and not a control sequence then there is a look-ahead phase: the logic here is simply based on letters or actives (to cover 8-bit engines).
For title casing, we need to obtain the general category of the current codepoint.

```latex
\cs_new:Npn \__text_change_case_codepoint_title:nnnn \#2 \#3 \#4 \#5
\bool_if:NTF \l_text_titlecase_check_letter_bool
  \exp_args:Nn \__text_change_case_codepoint_title_auxi:nnnn
  \{ \__text_codepoint_to_category:nn \__text_codepoint_from_chars:Nw \#4 \}
\}
\} \__text_change_case_codepoint_title:nnn \#2 \#3 \#4
\cs_new:Npn \__text_change_case_codepoint_title_auxii:nnnnn \#1 \#2 \#3 \#4 \#5
\cs_if_exist_use:cF { __text_change_case_title_ #3 :nnnnn }
\cs_if_exist_use:cF { __text_change_case_upper_ #3 :nnnnn }
\__text_change_case_codepoint:nnnnn \#2 \#3 \#4 \#5
\} \__text_change_case_codepoint_title:nnnn \#1 \#2 \#3 \#4
\cs_new:Npn \__text_change_case_codepoint:nnnnn \#1 \#2 \#3 \#4 \#5
\bool_lazy_and:nnTF
  \tl_if_single_p:n {#5} \token_if_active_p:N #5 \__text_change_case_store:n {#5}
```
Avoid high chars with \texttt{pTEx}.

\begin{verbatim}
\sys_if_engine_ptex:T
{ \cs_new_eq:NN __text_change_case_codepoint_aux:nn __text_change_case_codepoint:nn
 \cs_gset:Npn __text_change_case_codepoint:nnn #1#2#3
 { \int_compare:nNnTF {#1} = { -1 }
 { \exp_not:n {#3} }
 { __text_change_case_codepoint_aux:nnn {#1} {#2} {#3} } }
 \cs_new:Npn __text_change_case_codepoint:nnn #1#2#3
 { \exp_args:Ne __text_change_case_codepoint_aux:nn
 __kernel_codepoint_case:nn { #2 case } {#1} } {#3}
 \cs_generate_variant:Nn __text_change_case_codepoint:nnn { f }
\end{verbatim}

We need to ensure that only valid catcode-extraction is attempted. That’s fine with
Unicode engines but needs a bit of work with 8-bit ones. The logic is that if the original codepoint was in the ASCII range, we keep the catcode. Otherwise, if the target is in the ASCII range, we use the standard catcode. If neither are true, we set as 13 on the grounds that this will be what is used anyway!

\bool_lazy_or:nnTF\{\sys_if_engine_luatex_p: \}\{\sys_if_engine_xetex_p: \}\{
\cs_new:Npn __text_change_case_catcode:nn #1#2
{ __text_char_catcode:N #1 }
\}
\{
\cs_new:Npn __text_change_case_catcode:nn #1#2
{ __text_codepoint_compare:nNnTF {#1} < { "80 }
{ __text_char_catcode:N #1 }
{ \int_compare:nNnTF {#2} < { "80 }
{ \char_value_catcode:n {#2} }
{ 13 }
}
}
\cs_new:Npn __text_change_case_next_lower:nnn #1#2#3
{ __text_change_case_loop:nnnw {#1} {#2} {#3} }
\cs_new_eq:NN __text_change_case_next_upper:nnn __text_change_case_next_lower:nnn
\cs_new_eq:NN __text_change_case_next_title:nnn __text_change_case_next_lower:nnn
\cs_new:Npn __text_change_case_next_end:nnn #1#2#3
{ __text_change_case_skip:nnw {#2} {#3} }

(End of definition for __text_change_case:nnnn and others.)
\\text_declare_case_equivalent:Nn
Create equivalents to allow replacement.

\cs_new_protected:Npn \text_declare_case_equivalent:Nn #1#2
{ \tl_clear_new:c { l__text_case_ \token_to_str:N #1 _tl }
\tl_set:cn { l__text_case_ \token_to_str:N #1 _tl } {#2} }

(End of definition for \text_declare_case_equivalent:Nn. This function is documented on page 290.)

\text_declare_lowercase_mapping:nn
\text_declare_titlecase_mapping:nn
\text_declare_uppercase_mapping:nn
__text_declare_case_mapping:nnn
__text_declare_case_mapping_aux:nnn
\text_declare_lowercase_mapping:nnn
\text_declare_titlecase_mapping:nnn
\text_declare_uppercase_mapping:nnn
__text_declare_case_mapping:nnnn
__text_declare_case_mapping_aux:nnnn

Codepoint customisation.
\text_case_switch:nnnn
__text_case_switch_marker:
Set up the mechanism for manual case switching.
__text_change_case_generate:n
A utility.
__text_change_case_upper_de-xeszett:nnnn
__text_change_case_upper_de-alt:nnnn
A simple alternative version for German.
For Greek uppercasing, we need to know if characters in the Greek range have accents. That means doing a NFD conversion first, then starting a search. As described by the Unicode CLDR, Greek accents need to be found after any U+0308 (diaeresis) and are done in two groups to allow for the canonical ordering. The implementation here follows the data and examples from ICU (https://icu.unicode.org/design/case/greek-upper), although necessarily the implementation is somewhat different. The ypoγεγραμμι is filtered out here as it is not actually in the Greek range, so gets lost if we leave until later. The one Greek codepoint we skip is the numeral sign and question mark: the first has an awkward NFD for pdfTEX so is best left unchanged, and the latter has issues concerning how LGR outputs the input and output (differently!).

\cs_new:Npn __text_change_case_upper_el:nnnnnn #1#2#3#4#5
\begin{verbatim}
{ \bool_lazy_and:nnTF { __text_change_case_if_greek_p:n {#5} } { ! \bool_lazy_or_p:nn { __text_codepoint_compare_p:nNn {#5} = { "0374 } } { __text_codepoint_compare_p:nNn {#5} = { "037E } } } { __text_change_case_if_greek_spacing_diacritic:nTF {#5} { __text_change_case_if_greek_spacing_diacritic:nTF {#5} } { __text_change_case_if_greek_spacing_diacritic:nTF {#5} } } { __text_change_case_if_greek_spacing_diacritic:nTF {#5} } } { __text_change_case_store:n {#5} } __text_change_case_loop:nnnw {#2} {#3} {#4} {#5}
\end{verbatim}
\end{verbatim}
At this stage we have the first NFD codepoint as \texttt{#3}. What we need to know is whether after that we have another character, either from the NFD or directly in the input. If not, we store the changed character at this stage.

Now, we check the detail of the next codepoint: again we filter out the not-a-char cases, before checking if it’s an dialetic, accent or diacritic. (The latter do not have the same hiatus behavior as accents.) There is additional work if the codepoint can take a ypogegrammeni: there, we need to move any ypogegrammeni to after accents (in case the input is not normalised). The ypogegrammeni itself is handled separately.
\cs_new:Npn __text_change_case_upper_el_ypogegrammeni:nnnnnnw #1#2#3#4#5#7
{ __text_change_case_if_greek_accent_p:n {#7} }
\cs_new:Npn __text_change_case_upper_el_dialytika:nnnn {#2} {#3} {#4} {#1}
{ __text_change_case_if_greek_accent_p:n {#5} }
\cs_new:Npn __text_change_case_upper_el_hiatus:nnnnw {#2} {#3} {#4} {#1}
{ __text_change_case_if_greek_accent_p:n {#5} }
\cs_new:Npn __text_change_case_upper_el:nnnn {#1} {#2} {#3} {#4}
{ __text_change_case_upper_el_dialytika:nnnn {#1} {#2} {#3} {#4} }
We handle dialytika in parts as it’s also needed for the hiatus. We know only two letters take it, so we can shortcut here on the second part of the tests.

Adding a hiatus needs some of the same ideas, but if there is not one we skip this code point, hence needing a separate function.
Handling the *ypogegrammeni* output depends on the selected approach.
We choose to retain stress diacritics, but we also need to recombine them for pdfTeX. That is handled here.

\cs_new:Npn __text_change_case_upper_el_stress:nn #1#2
{\exp_args:Ne __text_change_case_generate:n
 {\int_case:nn
 {__text_codepoint_from_chars:Nw #2}
 { "0304 }
 { "0306 }

 {\int_case:nn
 {__text_codepoint_from_chars:Nw #1}
 { "0391 } { "1FB9 }
 { "03B1 } { "1FB9 }
 { "0399 } { "1FD9 }
 { "03B9 } { "1FD9 }
 { "03A5 } { "1FE9 }
 { "03C5 } { "1FE9 }
 } }
{ "0304 }

{\int_case:nn
 {__text_codepoint_from_chars:Nw #1}
 { "0391 } { "1FB8 }
 { "03B1 } { "1FB8 }
 { "0399 } { "1FD8 }
 { "03B9 } { "1FD8 }
 { "03A5 } { "1FE8 }
 { "03C5 } { "1FE8 }
 } }
{ "0306 }

{\int_case:nn
 {__text_codepoint_from_chars:Nw #1}
 { "0391 } { "1FB8 }
 { "03B1 } { "1FB8 }
 { "0399 } { "1FD8 }
 { "03B9 } { "1FD8 }
 { "03A5 } { "1FE8 }
 { "03C5 } { "1FE8 }
 } }
{ "0306 }

\cs_new:Npn __text_change_case_upper_el_gobble:nnnw #1#2#3#4 \q__text_recursion_stop
{\tl_if_head_is_N_type:nTF {#4}
 { __text_change_case_upper_el_gobble:nnnN #1#2#3#4 \q__text_recursion_stop
 { __text_change_case_loop:nnw #1#2#3#4 \q__text_recursion_stop
 { __text_change_case_upper_el_gobble:nnnw #1#2#3#4 \q__text_recursion_stop
 { __text_change_case_upper_el_gobble:nnnw #1#2#3#4 \q__text_recursion_stop
 { \token_if_cs:NTF #4

For clearing out trailing combining marks after we have dealt with the first one.
Luckily the Greek range is limited and clear.

We follow ICU in adding a few extras to the accent list here.
\begin{verbatim}
\textbf{There is one thing that need special treatment at the start of words in Greek. For an isolated accent \textit{eta}, which is handled by seeing if we have exactly one of the affected codepoints followed by a space or brace group.}
\end{verbatim}
In Greek, breathing diacritics are normally dropped when uppercasing: see the code for the general case. However, for the first character of a word, if there is a breather and the next character takes a dialytika, it needs to be added. We start by checking if the current codepoint is in the Greek range, then decomposing.

Normal form decomposition will always give between one and three codepoints. Luckily, the two breathing marks (psili and dasia) will be in a predictable position: last. So we can quickly establish first that there was a change on decomposition, and second if the final resulting codepoint is one of the two we care about.
Now the lookahead can be fired: check the next codepoint and assess whether it takes a *dialytika*. Drop the breathing mark or generate the *dialytika*: the latter is code shared with the general mechanism.
Titlecasing retains accents, but to prevent the uppercasing code from kicking in, there has to be an explicit function here.

```latex
\cs_new:Npn \__text_change_case_title_el:nnnnn #1#2#3#4#5
  \__text_change_case_store:e
  \__text_codepoint_compare:nNnTF \c{text}{0587}
    \__text_change_case_store:e
      \codepoint_generate:n {0535}
          \__text_change_case_catcode:n {0535}
      \codepoint_generate:n {054E}
          \__text_change_case_catcode:n {054E}
    \use:c {__text_change_case_next_ #2 :nnn}
      \c{text}{#2}{#3}{#4}
  \__text_change_case_codepoint:nnnnn \c{text}{#1}{#2}{#3}{#4}{#5}
\cs_new:cpn {__text_change_case_upper_hy-x-yiwn:nnnnn} #1#2#3#4#5
\cs_new_eq:cc {__text_change_case_title_hy-x-yiwn:nnnnn} {__text_change_case_upper_hy-x-yiwn:nnnnn}
```


(End of definition for \texttt{_text_change_case_title_el:nnnnn}.

(End of definition for \texttt{_text_change_case_breathing:nnnn} and others.)
Simply swaps of characters.

\cs_new:cpn { __text_change_case_lower_la-x-medieval:nnnnn } #1#2#3#4#5
{ __text_codepoint_compare:nNnTF {#5} = { "0056 }
 __text_change_case_store:e
 { \char_generate:nn { "0075 } __text_char_catcode:N #5 }
 \use:c { __text_change_case_next_ #2 :nnn }
 {#2} {#3} {#4}
} { __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }

\cs_new:cpn { __text_change_case_upper_la-x-medieval:nnnnn } #1#2#3#4#5
{ __text_codepoint_compare:nNnTF {#5} = { "0075 }
 __text_change_case_store:e
 { \char_generate:nn { "0056 } __text_char_catcode:N #5 }
 \use:c { __text_change_case_next_ #2 :nnn }
 {#2} {#3} {#4}
} { __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }

(End of definition for __text_change_case_lower_la-x-medieval:nnnnn and __text_change_case_upper_la-x-medieval:nnnnn.)

For Lithuanian, the issue to be dealt with is dots over lower case letters: these should be present if there is another accent. The first step is a simple match attempt: look for the three uppercase accented letters which should gain a dot-above char in their lowercase form.

\cs_new:Npn __text_change_case_lower_lt:nnnnn #1#2#3#4#5
{ \exp_args:Ne __text_change_case_lower_lt_auxi:nnnnn
 { \int_case:nn { __text_codepoint_from_chars:Nw #5 }
 { "00CC" { "0300 }
 { "00CD" { "0301 }
 { "0128" { "0303 }
 {#2} {#3} {#4}
 }
 }
 }
 }
}{ __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }

(End of definition for __text_change_case_lower_la-x-medieval:nnnnn and __text_change_case_upper_la-x-medieval:nnnnn.)

If there was a hit, output the result with the dot-above and move on. Otherwise, look for one of the three letters that can take a combining accent: I, J and I-ogonek.

\cs_new:Npn __text_change_case_lower_lt_auxi:nnnnn #1#2#3#4#5
{ \tl_if_blank:nTF {#1}
 \exp_args:Ne __text_change_case_lower_lt_auxii:nnnnn
 { \int_case:nn { __text_codepoint_from_chars:Nw #5 }
 {#2} {#3} {#4}
 }
}{ __text_change_case_codepoint:nnnnn {#1} {#2} {#3} {#4} {#5} }

(End of definition for __text_change_case_lower_la-x-medieval:nnnnn and __text_change_case_upper_la-x-medieval:nnnnn.)
Again, branch depending on a hit. If there is one, we output the character then need to look for a combining accent: as usual, we need to be aware of the loop situation.
The uppercasing version: first find i/j/i-ogonek, then look for the combining char: drop it if present.

\cs_new:Npn __text_change_case_upper_lt:nnnnn #1#2#3#4#5
\exp_args:Ne __text_change_case_upper_lt_aux:nnnnn
\int_case:nn { __text_codepoint_from_chars:Nw #5 } { "0069 } { "0049 } { "006A } { "004A } { "012F } { "012E } ...
\\text_change_case_upper_lt:nnnw #1 #2 #3 #4
\\text_change_case_loop:nnnw #1 #2 #3 #4

(End of definition for \text_change_cases_lower_lt:nnnnn and others.)
For Dutch, there is a single look-ahead test for \textit{ij} when title casing. If the appropriate letters are found, produce \textit{IJ} and gobble the \textit{j}/\textit{J}.

\begin{verbatim}
\cs_new:Npn __text_change_case_title_nl:nnnnn #1#2#3#4#5
\tl_if_single:nTF {#5}
{ __text_change_case_title_nl_aux:nnnnn }
{ __text_change_case_title_codepoint:nnnnn }
\end{verbatim}
The Turkic languages need special treatment for dotted-i and dotless-i. The lower casing rule can be expressed in terms of searching first for either a dotless-I or a dotted-I. In the latter case the mapping is easy, but in the former there is a second stage search.

After a dotless-I there may be a dot-above character. If there is then a dotted-i should be produced, otherwise output a dotless-i. When the combination is found both the dotless-I and the dot-above char have to be removed from the input.
\texttt{\textbackslash cs_new:Npn __text_change_case_lower_tr:NnnnN #1#2#3#4#5}

\texttt{__text_codepoint_process:nN}

\texttt{___text_change_case_lower_tr:Nnnn #1 \{#2\} \{#3\} \{#4\} \#5}

\texttt{\cs_new:Npn __text_change_case_lower_tr:Nnnnn #1#2#3#4#5}

\texttt{\textbackslash bool_lazy_or:nnTF}

\texttt{\textbackslash bool_lazy_and_p:nn}

\texttt{\textbackslash if_single_p:n \{#5\}}

\texttt{\token_if_cs:p \#5}

\texttt{! __text_codepoint_compare_p:nNn \{#5\} = \{ "0307 \}}

\texttt{__text_change_case_store:e}

\texttt{\codepoint_generate:nn \{ "0131 \}}

\texttt{__text_change_case_catcode:nn \{#1\} \{ "0131 \}}

\texttt{__text_change_case_loop:nnnn \{#2\} \{#3\} \{#4\} \#5}

\texttt{__text_change_case_store:e}

\texttt{\codepoint_generate:nn \{ "0069 \}}

\texttt{__text_change_case_catcode:nn \{#1\} \{ "0069 \}}

\texttt{__text_change_case_loop:nnnn \{#2\} \{#3\} \{#4\}}

\texttt{__text_change_case_next_ #2 :nnn \{#2\} \{#3\} \{#4\}}

\texttt{__text_change_case_codepoint:nnnnn \{#1\} \{#2\} \{#3\} \{#4\} \{#5\}}

\texttt{(End of definition for __text_change_case_lower_tr:nnnnn and others.)}

\texttt{__text_change_upper_tr:nnnnn}

Uppercasing is easier: just one exception with no context.

\texttt{\cs_new:Npn __text_change_case_upper_tr:nnnnn #1#2#3#4#5}

\texttt{__text_codepoint_compare_p:nNnTF \{#5\} = \{ "0069 \}}

\texttt{__text_change_case_store:e}

\texttt{\codepoint_generate:nn \{ "0130 \}}

\texttt{__text_change_case_catcode:nn \{#5\} \{ "0130 \}}

\texttt{__text_change_case_loop:nnnn \{#2\} \{#3\} \{#4\} \#5}

\texttt{__text_change_case_store:e}

\texttt{\codepoint_generate:nn \{ "0069 \}}

\texttt{__text_change_case_catcode:nn \{#1\} \{ "0069 \}}

\texttt{__text_change_case_loop:nnnn \{#2\} \{#3\} \{#4\}}

\texttt{(End of definition for __text_change_case_upper_tr:nnnnn.)}

\texttt{__text_change_case_lower_az:nnnnn __text_change_upper_az:nnnnn}

Straight copies.

\texttt{\cs_new_eq:NN __text_change_case_lower_az:nnnnn __text_change_case_lower_tr:nnnnn}

\texttt{__text_change_case_upper_az:nnnnn __text_change_case_upper_tr:nnnnn}

1308
The (fixed) look-up mappings for letter-like control sequences.

To deal with possible encoding-specific extensions to \texttt{@uclclist}, we check at the end of the preamble. This will therefore only apply to \texttt{\LaTeX 2\epsilon} package mode.
A few adjustments to case mapping for combining chars: these are not needed for the Unicode engines

\bool_lazy_or:nnF \sys_if_engine_luatex_p: \sys_if_engine_xetex_p:
\text_declare_uppercase_mapping:nn { "01F0 } { \v { J } }
Chapter 90

\text-map implementation

90.1 Mapping to text

The standard lead-off for an action loop.
\begin{verbatim}
\cs_new:Npn \text_map_function:nN #1#2
{ \exp_args:Ne __text_map_function:nN { \text_expand:n {#1} } #2 }
\cs_new:Npn __text_map_function:nN #1#2
{
__text_map_loop:Nnw #2 { } #1
\q__text_recursion_tail \q__text_recursion_stop
\prg_break_point:Nn \text_map_break: { }
}
\end{verbatim}

The standard set up for an “action” loop. Groups are handled by recursion, spaces are treated similarly: both count as grapheme boundaries. For \texttt{N}-type tokens, we filter out control sequences (again a boundary), then move on to further analysis.
\begin{verbatim}
\cs_new:Npn __text_map_loop:Nnw #1#2#3 \q__text_recursion_stop
{
\tl_if_head_is_N_type:nTF {#3}
{ __text_map_N_type:NnN }
{ \tl_if_head_is_group:nTF {#3}
{ __text_map_group:Nnn }
__text_map_space:Nnw }
#1 {#2} #3 \q__text_recursion_stop
}
\cs_new:Npn __text_map_group:Nnn #1#2#3
{ __text_map_output:Nn #1 {#2}
__text_map_loop:Nnw #1 { } #2
\q__text_recursion_tail \q__text_recursion_stop
}
\cs_new:Npn __text_map_loop_nw_nn \q__text_recursion_stop
{ \tl_if_head_is_N_type:nTF {#3}
{ __text_map_N_type:nNn }
{ \tl_if_head_is_group:nTF {#3}
{ __text_map_group:nNn }
__text_map_space:Nnw }
#1 {#2} \#3 \q__text_recursion_stop
}
\cs_new:Npn __text_map_not_Control:nNn
{ __text_map_not_Prepend:nNn }
{ __text_map_not_Prepend:nNn }
\cs_new:Npn __text_map_not_Prepend:nNn
{ __text_map_not_Control:nNn }
\end{verbatim}
We pull out a few special cases here. Carriage returns case needs a bit of context handling so has an auxiliary. Codepoint U+200D is the zero-width joiner, which has no context to concern us: just don’t break.

A carriage return is a boundary unless it is immediately followed by a line feed, in which case that pair is a boundary.
There are various classes of character, and we deal with them all in the same general way. We need to examine the relevant list of codepoints: if we get a hit, then we do whatever the relevant action is. Otherwise we loop, but only if the current codepoint could still match: the loop stops early otherwise and we move forward.

Break before and after.
Keep collecting.

Outputting anything earlier, the combine with what follows. The only exclusions are control characters.
Dealing with end-of-class is done such that we can be flexible.

\cs_new:Npn __text_map_not_Control:Nnn #1#2#3
{ __text_map_class:Nnnn #1 {#2} {#3} { Extend } }
\cs_new:Npn __text_map_not_Extend:Nnn #1#2#3
{ __text_map_class:Nnnn #1 {#2} {#3} { SpacingMark } }
\cs_new:Npn __text_map_not_SpacingMark:Nnn #1#2#3
{ __text_map_class:Nnnn #1 {#2} {#3} { Prepend } }
\cs_new:Npn __text_map_not_Prepend:Nnn #1#2#3
{ __text_map_class:Nnnn #1 {#2} {#3} { L } }
\cs_new:Npn __text_map_not_L:Nnn #1#2#3
{ __text_map_class:Nnnn #1 {#2} {#3} { LV } }
\cs_new:Npn __text_map_not_LV:Nnn #1#2#3
{ __text_map_class:Nnnn #1 {#2} {#3} { V } }
\cs_new:Npn __text_map_not_Regional_Indicator:Nnn #1#2#3
{ __text_map_output:Nn #1 {#2}
__text_map_loop:Nnw #1 {#3} }
\cs_new:Npn __text_map_L:Nnn #1#2#3
{ __text_map_output:Nn #1 {#2}
__text_map_hangul:Nnnw #1 {#3} { L ; V ; LV ; LVT } }
\cs_new:Npn __text_map_LV:Nnn #1#2#3
{ __text_map_output:Nn #1 {#2}
__text_map_hangul:Nnnw #1 {#3} { V ; T } }
\cs_new_eq:NN __text_map_V:Nnn __text_map_LV:Nnn
\cs_new:Npn __text_map_LVT:Nnn #1#2#3
{ __text_map_output:Nn #1 {#2}
__text_map_hangul:Nnnw #1 {#3} { T } }
\cs_new_eq:NN __text_map_T:Nnn __text_map_LVT:Nnn
\cs_new:Npn __text_map_hangul:Nnnw #1#2#3#4 \q__text_recursion_stop
{ \tl_if_head_is_N_type:nTF {#4} 1315

Hangul needs additional treatment. First we have to deal with the start-of-Hangul position: output what we had up to now, then move the specialist handler. The idea here is to pick off the different codepoint types one at a time, tracking what else can be considered at each stage until we hit the end of the viable types. Other than that, we just keep building up the Hangul codepoints using a dedicated version of the loop from above.

\cs_new:Npn __text_map_L:Nnn #1#2#3
{ __text_map_output:Nn #1 {#2}
__text_map_hangul:Nnnw #1 {#3} { L ; V ; LV ; LVT } }
\cs_new:Npn __text_map_LV:Nnn #1#2#3
{ __text_map_output:Nn #1 {#2}
__text_map_hangul:Nnnw #1 {#3} { V ; T } }
\cs_new_eq:NN __text_map_V:Nnn __text_map_LV:Nnn
\cs_new:Npn __text_map_LVT:Nnn #1#2#3
{ __text_map_output:Nn #1 {#2}
__text_map_hangul:Nnnw #1 {#3} { T } }
\cs_new_eq:NN __text_map_T:Nnn __text_map_LVT:Nnn
\cs_new:Npn __text_map_hangul:Nnnw #1#2#3#4 \q__text_recursion_stop
{ \tl_if_head_is_N_type:nTF {#4} 1315
The Regional Indicator rule means looking ahead and dealing with the case where there are two in a row. So we use a look ahead to pick them off. As there is only one range the values are hard-coded.

A generic loop-ahead setup.

The Regional Indicator rule means looking ahead and dealing with the case where there are two in a row. So we use a look ahead to pick them off. As there is only one range the values are hard-coded.

A generic loop-ahead setup.

The Regional Indicator rule means looking ahead and dealing with the case where there are two in a row. So we use a look ahead to pick them off. As there is only one range the values are hard-coded.

A generic loop-ahead setup.
\text_map_break: \text_map_break:n

The standard non-expandable inline version.

(End of definition for \text_map_function:n and others. These functions are documented on page 292.)

\text_map_inline:nn

(End of definition for \text_map_inline:nn. This function is documented on page 292.)

/package
Chapter 91

\text-purify implementation

91.1 Purifying text

Functions to query recursion quarks.

As in the other parts of the module, we start off with a standard “action” loop, with expansion applied up-front.

As for expansion, collect up the tokens for future use.

1319
The main loop is a standard “tl action”. Unlike the expansion or case changing, here any
groups have to be run inline. Most of the business end is as before in the N-type token
processing.

\cs_new:Npn __text_purify_loop:w #1 \q__text_recursion_stop
{\tl_if_head_is_N_type:nTF {#1}
 { __text_purify_N_type:N }
 { \tl_if_head_is_group:nTF {#1}
 { __text_purify_group:n }
 { __text_purify_space:w }
}
#1 \q__text_recursion_stop
}
\cs_new:Npn __text_purify_group:n #1 { __text_purify_loop:w #1 }
\exp_last_unbraced:NNo \cs_new:Npn __text_purify_space:w \c_space_tl
\q__text_recursion_tail ? \q__text_recursion_stop
The first part of handling math mode is exactly the same as in the other functions: look
for a start-of-math mode token and if found start a new loop tracking the closing token.
\cs_new:Npn __text_purify_N_type:N #1
{__text_if_q_recursion_tail_stop_do:Nn #1 { __text_purify_end:w }
 __text_purify_N_type_aux:N #1
}
\cs_new:Npn __text_purify_N_type_aux:N #1
{\exp_after:wN __text_purify_math_search:NNN \exp_after:wN #1 \l_text_math_delims_tl
 \q__text_recursion_tail ? \q__text_recursion_stop
}
\cs_new:Npn __text_purify_math_search:NNN #1#2#3
{__text_if_q_recursion_tail_stop_do:Nn #2
 { __text_purify_math_cmd:N #1 }
 \token_if_eq_meaning:NNTF #1 #2
 { __text_use_i_delimit_by_q_recursion_stop:nw
 { __text_purify_math_start:NNw #2 #3 } }
 { __text_purify_math_search:NNN #1 }
}
\cs_new:Npn __text_purify_math_start:NNN #1#2#3
{__text_purify_math_loop:NNN #1#2#3 \q__text_recursion_stop
 __text_purify_math_result:n { }
}
\cs_new:Npn __text_purify_math_store:n #1

1320
Then handle math mode as an argument: same outcomes, different input syntax.
For N-type tokens, we first look for a string-context replacement before anything else: this can therefore cover anything. Assuming we don’t find one, check to see if we can expand control sequences: if not, they have to be dropped. We also allow for \LaTeX{2e} protect: there’s an assumption that we don’t have \protect { \oops } or similar, but that’s also in the expansion code and seems like a reasonable balance.
Handle encoding commands, as detailed for expansion.

\cs_new:Npn ___text_purify_encoding:N #1
\{ \bool_lazy_or:nnTF
{ \cs_if_eq_p:NN #1 \@current@cmd }
{ \cs_if_eq_p:NN #1 \@changed@cmd }
{ __text_purify_encoding_escape:NN }
\{ __text_if_expandable:NTF #1
{ \exp_after:wN __text_purify_loop:w #1 }
{ __text_purify_loop:w }
\}
\}
\cs_new:Npn ___text_purify_encoding_escape:NN #1#2
\{ __text_purify_store:n {#1}
__text_purify_loop:w
\}

(End of definition for \text_purify:n and others. This function is documented on page 291.)

\text_declare_purify_equivalent:Nn
\text_declare_purify_equivalent:Nn
\cs_new_protected:Npn \text_declare_purify_equivalent:Nn #1#2
\{ \tl_clear_new:c { l__text_purify_ \token_to_str:N #1 _tl }
\tl_set:cn { l__text_purify_ \token_to_str:N #1 _tl } {#2}
\}
\cs_generate_variant:Nn \text_declare_purify_equivalent:Nn { Ne }

(End of definition for \text_declare_purify_equivalent:Nn. This function is documented on page 291.)

Now pre-define a range of standard commands that need dedicated definitions in purified text. First handle font-related stuff: all of this needs to be disabled.

\text_map_inline:nn
\{ \fontencoding \fontfamily \fontseries \fontshape
\}
\text_declare_purify_equivalent:Nn \text_declare_purify_equivalent:Nn \text_declare_purify_equivalent:Nn \text_declare_purify_equivalent:Nn
\{ \use_font \selectfont \}
\text_map_inline:nn
\{ \texttt }
\text
\textnormal
\textttm
\textsf
\textttt
Environments have to be handled by pure expansion.

\textbf{\textbf{Environments}}

\begin{itemize}
\item \textbf{\textbf{Environments}}
\end{itemize}

\end{document}

91.2 Accent and letter-like data for purifying text

In contrast to case changing, both 8-bit and Unicode engines need information for text purification to handle accents and letter-like functions: these all need to be removed. However, the results are of course engine-dependent.

For the letter-like commands, life is relatively easy: they are all simply added as standard exceptions. The only oddity is \SS, which gets converted to two letters. (At some stage an alternative version can presumably be added to babel or similar.)

\cs_set_protected:Npn __text_loop:Nn #1#2
\quark_if_recursion_tail_stop:N #1
\text_declare_purify_equivalent:Ne #1
\text_declare_purify_equivalent:Ne \char_set_catcode_active:N \~
\use:n { \c_space_tl }
\text_declare_purify_equivalent:Nn \nobreakspace { - }
\text_declare_purify_equivalent:Nn \ { - }
\text_declare_purify_equivalent:Nn \, { - }

\cs_set_protected:Nnm __text_loop:Nn #1#2
\quark_if_recursion_tail_stop:N #1
\text_declare_purify_equivalent:Ne #1
\text_declare_purify_equivalent:Ne \char_set_catcode_active:N \~
\use:n { \c_space_tl }
\text_declare_purify_equivalent:Nn \nobreakspace { - }
\text_declare_purify_equivalent:Nn \ { - }
\text_declare_purify_equivalent:Nn \, { - }

\cs_set_protected:Nnm __text_loop:Nn #1#2
\quark_if_recursion_tail_stop:N #1
\text_declare_purify_equivalent:Ne #1
\text_declare_purify_equivalent:Ne \char_set_catcode_active:N \~
\use:n { \c_space_tl }
\text_declare_purify_equivalent:Nn \nobreakspace { - }
\text_declare_purify_equivalent:Nn \ { - }
\text_declare_purify_equivalent:Nn \, { - }
Accent handling is a little more complex. Accents may exist as pre-composed codepoints or as independent glyphs. The former are all saved as single token lists, whilst for the latter the combining accent needs to be re-ordered compared to the character it applies to.

First set up the combining accents.
Now we handle the pre-composed accents: the list here is taken from \texttt{puenc.def}. All of the precomposed cases take a single letter as their second argument. We do not try to cover the case where an accent is added to a “real” dotless-i or -j, or a æ/Æ. Rather, we assume that if the UTF-8 character is used, it will have the real accent character too.

\begin{verbatim}
\cs_set_protected:Npn _text_loop:NNn #1#2#3
\quark_if_recursion_tail_stop:N #1
\tl_const:ce
\{ _text_purify_ \token_to_str:N #1 \token_to_str:N #2 \token_to_str:N #3 \}
\{ \codepoint_generate:nn {"#3} \{ \char_value_catcode:n {"#3} \} \}
_text_loop:NNn
\end{verbatim}
\^ i { 00EE }
\^ \i { 00EE }
" i { 00EF }
" \i { 00EF }
\- n { 00F1 }
\' o { 00F2 }
\' o { 00F3 }
\- o { 00F4 }
\- o { 00F5 }
\- o { 00F6 }
\' u { 00F9 }
\' u { 00FA }
\" u { 00FB }
\" u { 00FC }
\' y { 00FD }
\' y { 00FF }
\= A { 0100 }
\= a { 0101 }
\u A { 0102 }
\u a { 0103 }
\u k A { 0104 }
\k a { 0105 }
\' C { 0106 }
\' c { 0107 }
\" C { 0108 }
\" c { 0109 }
\. C { 010A }
\. c { 010B }
\v C { 010C }
\v c { 010D }
\v D { 010E }
\v d { 010F }
\= E { 0112 }
\= e { 0113 }
\u E { 0114 }
\u e { 0115 }
\. E { 0116 }
\. e { 0117 }
\k E { 0118 }
\k e { 0119 }
\v E { 011A }
\v e { 011B }
\^ G { 011C }
\= G { 011D }
\u G { 011E }
\u g { 011F }
\. G { 0120 }
\. g { 0121 }
\c G { 0122 }
\c g { 0123 }
\^ H { 0124 }
\= h { 0125 }
\= I { 0128 }
\- i { 0129 }
\- U { 0168 }
\- u { 0169 }
\= U { 016A }
\= u { 016B }
\u U { 016C }
\u u { 016D }
\r U { 016E }
\r u { 016F }
\H U { 0170 }
\H u { 0171 }
\k U { 0172 }
\k u { 0173 }
\^ W { 0174 }
\^ w { 0175 }
\^ Y { 0176 }
\^ y { 0177 }
* Y { 0178 }
\! Z { 0179 }
\! z { 017A }
\. Z { 017B }
\. z { 017C }
\v Z { 017D }
\v z { 017E }
\v A { 017D }
\v a { 01CE }
\v I { 01CD }
\v i { 01D0 }
\v O { 01D1 }
\v o { 01D2 }
\v U { 01D3 }
\v u { 01D4 }
\v G { 01E6 }
\v g { 01E7 }
\v K { 01E8 }
\v k { 01E9 }
\k O { 01EA }
\k o { 01EB }
\v \j { 01F0 }
\v J { 01F0 }
\r G { 01F4 }
\r g { 01F5 }
\r N { 01F8 }
\r n { 01F9 }
\AE { 01FC }
\ae { 01FD }
\O { 01FE }
\o { 01FF }
\h { 021E }
\h { 021F }
. A { 0226 }
. a { 0227 }
\c E { 0228 }
\c e { 0229 }
(End of definition for __text_purify_accent:NN.)

{/package}
Chapter 92

\13box implementation

92.1 Support code

Evaluating a dimension expression expandably. The only difference with \texttt{\dim eval:n} is the lack of \texttt{\dim use:N}, to produce an internal dimension rather than expand it into characters.

\begin{verbatim}
\cs_new_eq:NN __box_dim_eval:w \tex_dimexpr:D
\cs_new:Npn __box_dim_eval:n #1 { __box_dim_eval:w #1 \scan_stop: }
\end{verbatim}

(End of definition for \texttt{__box_dim_eval:w} and \texttt{__box_dim_eval:n}.)

We need kerns in a few places. At present, we don't have a module for this concept, so it goes in at first use: here. The idea is to avoid repeated use of the bare primitive.

\begin{verbatim}
\cs_new_protected:Npn __kernel_kern:n #1 { \tex_kern:D __box_dim_eval:n {#1} }
\end{verbatim}

(End of definition for \texttt{__kernel_kern:n}.)

92.2 Creating and initialising boxes

The following test files are used for this code: \texttt{m3box001.lvt}.

\begin{verbatim}
\box_new:N \box_new:c
__kernel_chk_if_free_cs:N __kernel_kern:n __kernel_kern:n __kernel_kern:n
\cs_new_protected:Npn \box_new:N #1 { __kernel_chk_if_free_cs:N #1 \cs:w newbox \cs_end: #1 \scan_stop: }
\cs_generate_variant:Nn \box_new:N { c }
\end{verbatim}

Defining a new \texttt{\box} register: remember that box 255 is not generally available.
Clear a ⟨box⟩ register.
\begin{verbatim}
\cs_new_protected:Npn \box_clear:N #1
{ \box_set_eq:NN #1 \c_empty_box }
\cs_new_protected:Npn \box_gclear:N #1
{ \box_gset_eq:NN #1 \c_empty_box }
\cs_generate_variant:Nn \box_clear:N { c }
\cs_generate_variant:Nn \box_gclear:N { c }
\end{verbatim}

Clear or new.
\begin{verbatim}
\cs_new_protected:Npn \box_clear_new:N #1
{ \box_if_exist:NTF #1 { \box_clear:N #1 } { \box_new:N #1 } }
\cs_new_protected:Npn \box_gclear_new:N #1
{ \box_if_exist:NTF #1 { \box_gclear:N #1 } { \box_new:N #1 } }
\cs_generate_variant:Nn \box_clear_new:N { c }
\cs_generate_variant:Nn \box_gclear_new:N { c }
\end{verbatim}

Assigning the contents of a box to be another box.
\begin{verbatim}
\cs_new_eq:NN \box_ht:N \tex_ht:D
\cs_new_eq:NN \box_dp:N \tex_dp:D
\cs_generate_variant:Nn \box_ht:N { c }
\cs_generate_variant:Nn \box_dp:N { c }
\end{verbatim}

Assigning the contents of a box to be another box, then drops the original box.
\begin{verbatim}
\cs_new_protected:Npn \box_set_eq_drop:NN #1#2
{ \tex_setbox:D #1 \tex_box:D #2 }
\cs_new_protected:Npn \box_gset_eq_drop:NN #1#2
{ \tex_global:D \tex_setbox:D #1 \tex_box:D #2 }
\cs_generate_variant:Nn \box_set_eq_drop:NN { c , Nc , cc }
\cs_generate_variant:Nn \box_gset_eq_drop:NN { c , Nc , cc }
\end{verbatim}

Copies of the \texttt{cs} functions defined in \texttt{l3basics}.
\begin{verbatim}
\prg_new_eq_conditional:NNn \box_if_exist:N \cs_if_exist:N
{ TF , T , F , p }
\prg_new_eq_conditional:NNn \box_if_exist:c \cs_if_exist:c
{ TF , T , F , p }
\end{verbatim}

92.3 Measuring and setting box dimensions

Accessing the height, depth, and width of a ⟨box⟩ register.
\begin{verbatim}
\cs_new_eq:NN \box_ht:N \tex_ht:D
\cs_new_eq:NN \box_dp:N \tex_dp:D
\cs_generate_variant:Nn \box_ht:N { c }
\cs_generate_variant:Nn \box_dp:N { c }
\end{verbatim}

The \texttt{__box_dim_eval:n} primitives do not expand but rather are suitable for use after \texttt{__the} or inside dimension expressions. Here we obtain the same behaviour by using \texttt{__box_dim_eval:n} (basically \texttt{__dim_eval:n}) rather than \texttt{__dim_eval:n} (basically \texttt{__the __dim_eval:n}).
Setting the size whilst respecting local scope requires copying; the same issue does not come up when working globally. When debugging, the dimension expression \#2 is surrounded by parentheses to catch early termination.

92.4 Using boxes

Using a \langle box \rangle. These are just \TeX primitives with meaningful names.

Move box material in different directions. When debugging, the dimension expression \#1 is surrounded by parentheses to catch early termination.
92.5 Box conditionals

The primitives for testing if a ⟨box⟩ is empty/void or which type of box it is.

\if_hbox:N \if_vbox:N \if_box_empty:N

\if_hbox:N
\if_vbox:N
\if_box_empty:N

\box_if_horizontal_p:N \box_if_horizontal_p:c \box_if_horizontal:N \box_if_horizontal:c
\box_if_vertical_p:N \box_if_vertical_p:c \box_if_vertical:N \box_if_vertical:c

\box_if_empty_p:N \box_if_empty_p:c \box_if_empty:N \box_if_empty:c

\prg_new_conditional:Npnn \box_if_horizontal:N #1 { p , T , F , TF } \prg_new_conditional:Npnn \box_if_empty:N #1 { p , T , F , TF }

\cs_new_eq:NN \if_hbox:N \tex_ifhbox:D \cs_new_eq:NN \if_vbox:N \tex_ifvbox:D \cs_new_eq:NN \if_box_empty:N \tex_ifvoid:D

Testing if a ⟨box⟩ is empty/void.

\box_if_empty_p:N \box_if_empty_p:c \box_if_empty:N \box_if_empty:c

\prg_new_conditional:Npnn \box_if_empty:N #1 { p , T , F , TF }

(End of definition for \box_new:N and others. These functions are documented on page 294.)

92.6 The last box inserted

\box_set_to_last:N \box_set_to_last:c \box_set_to_last:N \box_set_to_last:c

\cs_new_protected:Npn \box_set_to_last:N #1 \cs_new_protected:Npn \box_set_to_last:c #1 \cs_new_protected:Npn \box_gset_to_last:N #1 \cs_new_protected:Npn \box_gset_to_last:c #1

\tex_setbox:D \tex_lastbox:D \tex_setbox:D \tex_lastbox:D \tex_setbox:D \tex_lastbox:D

(End of definition for \box_set_to_last:N and \box_gset_to_last:N. These functions are documented on page 297.)

92.7 Constant boxes

\c_empty_box

A box we never use.

\box_new:N \c_empty_box

(End of definition for \c_empty_box. This variable is documented on page 297.)
92.8 Scratch boxes

Scratch boxes.

(End of definition for \l_tmpa_box and others. These variables are documented on page 297.)

92.9 Viewing box contents

\TeX's \showbox is not really that helpful in many cases, and it is also inconsistent with other \E\TeX3 show functions as it does not actually shows material in the terminal. So we provide a richer set of functionality.

Essentially a wrapper around the internal function, but evaluating the breadth and depth arguments now outside the group.

(End of definition for \box_show:N and \box_show:Nnn. These functions are documented on page 298.)

\TeX to write to the log without interruption the run is done by altering the interaction mode. For that, the \e-\TeX extensions are needed.

Getting \TeX to write to the log without interruption the run is done by altering the interaction mode. For that, the \e-\TeX extensions are needed.

The internal auxiliary to actually do the output uses a group to deal with breadth and depth values. The use:n here gives better output appearance. Setting \tracingonline and \errorcontextlines is used to control what appears in the terminal.

(End of definition for \box_log:N, \box_log:Nnn, and __box_log:nNnn. These functions are documented on page 298.)
92.10 Horizontal mode boxes

\hbox:n

(The test suite for this command, and others in this file, is m3box002.ltx.)

Put a horizontal box directly into the input stream.

\hbox_set:Nn

\hbox_set:cn

\hbox_set:cn

\hbox_gset:Nn

\hbox_gset:cn

\hbox_gset_to_wd:Nnn

\hbox_gset_to_wd:cnn

Storing material in a horizontal box with a specified width. Again, put the dimension
expression in parentheses when debugging.

\hbox_to_wd:Nnn

\hbox_to_wd:cnn

(End of definition for __box_show:NNnn.)
(End of definition for \hbox_set_to_wd:Nnw and \hbox_gset_to_wd:Nnw. These functions are documented on page 299.)

\hbox_set:Nw Storing material in a horizontal box. This type is useful in environment definitions.
\hbox_set:cw
\hbox_gset:Nw
\hbox_gset:cw
\hbox_set_end:
\hbox_gset_end:

\cs_new_protected:Npn \hbox_set:Nw #1
{\tex_setbox:D #1 \tex_hbox:D \c_group_begin_token \color_group_begin:\}
\cs_new_protected:Npn \hbox_gset:Nw #1
{\tex_global:D \tex_setbox:D #1 \tex_hbox:D \c_group_begin_token \color_group_begin:\}
\cs_generate_variant:Nn \hbox_set:Nw { c }
\cs_generate_variant:Nn \hbox_gset:Nw { c }
\cs_new_protected:Npn \hbox_set_end:
{\color_group_end:\c_group_end_token}
\cs_new_eq:NN \hbox_gset_end: \hbox_set_end:

(End of definition for \hbox_set:Nw and others. These functions are documented on page 299.)

\hbox_set_to_wd:Nnw Combining the above ideas.
\hbox_set_to_wd:cnw
\hbox_gset_to_wd:Nnw
\hbox_gset_to_wd:cnw

\cs_new_protected:Npn \hbox_set_to_wd:Nnw #1#2
{\tex_hbox:D to __box_dim_eval:n {#1} {#2} \color_group_begin: #2 \color_group_end: }
\cs_new_protected:Npn \hbox_to_wd:nn
{\tex_hbox:D to \c_zero_dim}
\cs_new_protected:Npn \hbox_to_zero:n
{\tex_hbox:D to \c_zero_dim

(End of definition for \hbox_set_to_wd:nn and \hbox_gset_to_wd:nn. These functions are documented on page 299.)

\hbox_to_wd:nn Put a horizontal box directly into the input stream.
\hbox_to_zero:n

\cs_new_protected:Npn \hbox_to_wd:nn #1#2
{\tex_hbox:D to __box_dim_eval:n {#1} \color_group_begin: #2 \color_group_end: }
\cs_new_protected:Npn \hbox_to_zero:n #1
{\tex_hbox:D to \c_zero_dim

1338
Put a zero-sized box with the contents pushed against one side (which makes it stick out on the other) directly into the input stream.

```
\cs_new_protected:Npn \hbox_overlap_center:n #1 { \hbox_to_zero:n { \tex_hss:D #1 \tex_hss:D } }
\cs_new_protected:Npn \hbox_overlap_left:n #1 { \hbox_to_zero:n { \tex_hss:D #1 } }
\cs_new_protected:Npn \hbox_overlap_right:n #1 { \hbox_to_zero:n { #1 \tex_hss:D } }
```

Put a zero-sized box with the contents pushed against one side (which makes it stick out on the other) directly into the input stream.

```
\cs_new_protected:Npm \hbox_overlap_center:n #1
\cs_new_protected:Npm \hbox_overlap_left:n #1
\cs_new_protected:Npm \hbox_overlap_right:n #1
```

Unpacking a box and if requested also clear it.

```
\cs_new_eq:NN \hbox_unpack:N \tex_unhcopy:D
\cs_new_eq:NN \hbox_unpack_drop:N \tex_unhbox:D
\cs_generate_variant:Nn \hbox_unpack:N { c }
\cs_generate_variant:Nn \hbox_unpack_drop:N { c }
```

```
\hbox_unpack:N
\hbox_unpack:c
\hbox_unpack_drop:N
\hbox_unpack_drop:c
```

```
\hbox_to_ht:nn
\hbox_to_zero:n
\hbox_to_ht:nn
\hbox_to_zero:n
```

\section{Vertical mode boxes}

\LaTeX{} ends these boxes directly with the internal \texttt{end_graf} routine. This means that there is no \texttt{\par} at the end of vertical boxes unless we insert one. Thus all vertical boxes include a \texttt{\par} just before closing the color group.

```
\vbox:n
\vbox_top:n
```

Put a vertical box directly into the input stream.

```
\cs_new_protected:Npm \vbox:n #1
\cs_new_protected:Npm \vbox_top:n #1
```

Put a vertical box directly into the input stream.

```
\cs_new_protected:Npm \vbox_to_ht:nn #1#2
```

Put a vertical box directly into the input stream.

```
\cs_new_protected:Npm \vbox_to_zero:n #1
```
(End of definition for `\vbox_to_ht:nn` and others. These functions are documented on page 300.)

\vbox_set:Nn Storing material in a vertical box with a natural height.
\vbox_set:cn \vbox_gset:Nn \vbox_gset:cn
\cs_new_protected:Npn \vbox_set:Nn #1#2
\tex_setbox:D #1 \tex_vbox:D
\{ \color_group_begin: #2 \par \color_group_end: \}
\cs_new_protected:Npn \vbox_gset:Nn #1#2
\tex_global:D \tex_setbox:D #1 \tex_vbox:D
\{ \color_group_begin: #2 \par \color_group_end: \}
\cs_generate_variant:Nn \vbox_set:Nn { c }
\cs_generate_variant:Nn \vbox_gset:Nn { c }
(End of definition for `\vbox_set:Nn` and `\vbox_gset:Nn`. These functions are documented on page 300.)

\vbox_set_top:Nn Storing material in a vertical box with a natural height and reference point at the baseline of the first object in the box.
\vbox_set_top:cn \vbox_gset_top:Nn \vbox_gset_top:cn
\cs_new_protected:Npn \vbox_set_top:Nn #1#2
\tex_setbox:D #1 \tex_vtop:D
\{ \color_group_begin: #2 \par \color_group_end: \}
\cs_new_protected:Npn \vbox_gset_top:Nn #1#2
\tex_global:D \tex_setbox:D #1 \tex_vtop:D
\{ \color_group_begin: #2 \par \color_group_end: \}
\cs_generate_variant:Nn \vbox_set_top:Nn { c }
\cs_generate_variant:Nn \vbox_gset_top:Nn { c }
(End of definition for `\vbox_set_top:Nn` and `\vbox_gset_top:Nn`. These functions are documented on page 300.)

\vbox_to_ht:Nnn \vbox_to_ht:cmn \vbox_gset_to_ht:Nnn \vbox_gset_to_ht:cmn
\cs_new_protected:Npn \vbox_set_to_ht:Nnn #1#2#3
\tex_setbox:D #1 \tex_vbox:D to _box_dim_eval:n {#2}
\{ \color_group_begin: #3 \par \color_group_end: \}
\cs_new_protected:Npn \vbox_gset_to_ht:Nnn #1#2#3
\tex_global:D \tex_setbox:D #1 \tex_vbox:D to _box_dim_eval:n {#2}
\{ \color_group_begin: #3 \par \color_group_end: \}
\cs_generate_variant:Nn \vbox_set_to_ht:Nnn { c }
\cs_generate_variant:Nn \vbox_gset_to_ht:Nnn { c }
(End of definition for `\vbox_set_to_ht:Nnn` and `\vbox_gset_to_ht:Nnn`. These functions are documented on page 300.)
Storing material in a vertical box. This type is useful in environment definitions.

\vbox_set:Nw \vbox_set:cw \vbox_gset:Nw \vbox_gset:cw \vbox_set_end: \vbox_gset_end:

\cs_new_protected:Npn \vbox_set:Nw #1 \vbox_set:Nw #1
{ \tex_setbox:D #1 \tex_vbox:D \c_group_begin_token \color_group_begin:
 \par \color_group_end:
};
\cs_new_protected:Npn \vbox_gset:Nw #1 \vbox_gset:Nw #1
{ \tex_global:D \tex_setbox:D #1 \tex_vbox:D \c_group_begin_token \
 \color_group_begin:
};
\cs_generate_variant:Nn \vbox_set:Nw { c }
\cs_generate_variant:Nn \vbox_gset:Nw { c }
\cs_new_protected:Npn \vbox_set_end:
 \par \color_group_end:
\cs_new_eq:NN \vbox_gset_end: \vbox_set_end:

(A end of definition for \vbox_set:Nw and others. These functions are documented on page 300.)

\vbox_set_to_ht:Nnw \vbox_set_to_ht:cnw \vbox_gset_to_ht:Nnw \vbox_gset_to_ht:cnw

A combination of the above ideas.

\cs_new_protected:Npn \vbox_set_to_ht:Nnw #1#2 \vbox_set_to_ht:Nnw #1#2
{ \tex_setbox:D #1 \tex_vbox:D \tex_vbox:D to __box_dim_eval:n {#2} \c_group_begin_token \color_group_begin:
 \color_group_end:
};
\cs_new_protected:Npn \vbox_gset_to_ht:Nnw #1#2 \vbox_gset_to_ht:Nnw #1#2
{ \tex_global:D \tex_setbox:D #1 \tex_vbox:D to __box_dim_eval:n {#2} \c_group_begin_token \color_group_begin:
 \color_group_end:
};
\cs_generate_variant:Nn \vbox_set_to_ht:Nnw { c }
\cs_generate_variant:Nn \vbox_gset_to_ht:Nnw { c }
\cs_new_eq:NN \vbox_gset_to_ht:cnw \vbox_set_to_ht:cnw

(A end of definition for \vbox_set_to_ht:Nnw and \vbox_gset_to_ht:cnw. These functions are documented on page 301.)

\vbox_unpack:N \vbox_unpack:c \vbox_unpack_drop:N \vbox_unpack_drop:c

Unpacking a box and if requested also clear it.

\cs_new_eq:NN \vbox_unpack:N \tex_unvcopy:D
\cs_new_eq:NN \vbox_unpack_drop:N \tex_unvbox:D
\cs_generate_variant:Nn \vbox_unpack:N { c }
\cs_generate_variant:Nn \vbox_unpack_drop:N { c }

(A end of definition for \vbox_unpack:N and \vbox_unpack_drop:N. These functions are documented on page 301.)
92.12 Affine transformations

When rotating boxes, the angle itself may be needed by the engine-dependent code. This is done using the fp module so that the value is tidied up properly.

```
\fp_new:N \l__box_angle_fp
```

(End of definition for \l__box_angle_fp.)

```
\fp_new:N \l__box_cos_fp
\fp_new:N \l__box_sin_fp
```

(End of definition for \l__box_cos_fp and \l__box_sin_fp.)

```
\dim_new:N \l__box_top_dim
\dim_new:N \l__box_bottom_dim
\dim_new:N \l__box_left_dim
\dim_new:N \l__box_right_dim
```

(End of definition for \l__box_top_dim and others.)

```
\dim_new:N \l__box_top_new_dim
\dim_new:N \l__box_bottom_new_dim
\dim_new:N \l__box_left_new_dim
\dim_new:N \l__box_right_new_dim
```

(End of definition for \l__box_top_new_dim and others.)

```
\box_new:N \l__box_internal_box
```

(End of definition for \l__box_internal_box.)
Rotation of a box starts with working out the relevant sine and cosine. The actual rotation is in an auxiliary to keep the flow slightly clearer.

\begin{verbatim}
\cs_new_protected:Npn \box_rotate:Nn #1#2 { __box_rotate:NnN #1 {#2} \hbox_set:Nn }
\cs_generate_variant:Nn \box_rotate:Nn { c }
\cs_new_protected:Npn \box_grotate:Nn #1#2 { __box_rotate:NnN #1 {#2} \hbox_gset:Nn }
\cs_generate_variant:Nn \box_grotate:Nn { c }
\cs_new_protected:Npn __box_rotate:NnN #1#2#3 {
 #3 #1 {
 \fp_set:Nn \l__box_angle_fp {#2}
 \fp_set:Nn \l__box_sin_fp { sind (\l__box_angle_fp)}
 \fp_set:Nn \l__box_cos_fp { cosd (\l__box_angle_fp)}
 __box_rotate:N #1
 }
}
\end{verbatim}

The next step is to work out the x and y coordinates of vertices of the rotated box in relation to its original coordinates. The box can be visualized with vertices B, C, D and E is illustrated (Figure 1). The vertex O is the reference point on the baseline, and in this implementation is also the centre of rotation. The formulae are, for a point P and angle α:

\[P'_x = P_x - O_x \]
\[P'_y = P_y - O_y \]
\[P''_x = (P'_x \cos(\alpha)) - (P'_y \sin(\alpha)) \]
\[P''_y = (P'_y \sin(\alpha)) + (P'_x \cos(\alpha)) \]
\[P'''_x = P''_x + O_x + L_x \]
\[P'''_y = P''_y + O_y \]

Figure 1: Co-ordinates of a box prior to rotation.
The “extra” horizontal translation L_x at the end is calculated so that the leftmost point of the resulting box has x-coordinate 0. This is desirable as TeX boxes must have the reference point at the left edge of the box. (As O is always $(0,0)$, this part of the calculation is omitted here.)

\[\text{fp_compare:nNnTF } \l_{\text{box}} \text{sin_fp} > \c_{\text{zero_fp}} \]
\[\text{fp_compare:nNnTF } \l_{\text{box}} \text{cos_fp} > \c_{\text{zero_fp}} \]
\[\text{\{} \l_{\text{box}} \text{rotate_quadrant_one: } \text{\} \]
\[\text{\{} \l_{\text{box}} \text{rotate_quadrant_two: } \text{\} \]
\[\text{\} \]
\[\text{fp_compare:nNnTF } \l_{\text{box}} \text{cos_fp} < \c_{\text{zero_fp}} \]
\[\text{\{} \l_{\text{box}} \text{rotate_quadrant_three: } \text{\} \]
\[\text{\{} \l_{\text{box}} \text{rotate_quadrant_four: } \text{\} \]

The position of the box edges are now known, but the box at this stage be misplaced relative to the current TeX reference point. So the content of the box is moved such that the reference point of the rotated box is in the same place as the original.

\[\text{\hbox_set:Nn } \l_{\text{box}} \text{internal_box} \{ \text{box_use:N } \#1 \} \]
\[\text{\hbox_set:Nn } \l_{\text{box}} \text{internal_box} \{
\text{__kernel_kern:n } \{-\l_{\text{box}} \text{left_new_dim} \}
\text{\hbox:n \{ __box_backend_rotate:Nn \}
\text{__box_internal_box \}
\text{__box_angle_fp \}
\}
\]

Tidy up the size of the box so that the material is actually inside the bounding box. The result can then be used to reset the original box.

\[\text{\box_set_ht:Nn } \l_{\text{box}} \text{internal_box} \{ \l_{\text{box}} \text{top_new_dim} \} \]
\[\text{\box_set_dp:Nn } \l_{\text{box}} \text{internal_box} \{-\l_{\text{box}} \text{bottom_new_dim} \} \]
\[\text{\box_set_wd:Nn } \l_{\text{box}} \text{internal_box} \{
\l_{\text{box}} \text{right_new_dim} - \l_{\text{box}} \text{left_new_dim} \}
\text{\box_use_drop:N } \l_{\text{box}} \text{internal_box} \}
\]

These functions take a general point $(#1,#2)$ and rotate its location about the origin, using the previously-set sine and cosine values. Each function gives only one component of the location of the updated point. This is because for rotation of a box each step needs only one value, and so performance is gained by avoiding working out both x' and y' at the same time. Contrast this with the equivalent function in the l3coffins module, where both parts are needed.

\[\text{cs_new_protected:Npn } ___box_rotate_xdir:mmN \#1\#2\#3 \]
\[\{ \text{dim_set:Nn } \#3 \]
\[\{ \text{fp_to_dim:n \{ \l_{\text{box}} \text{cos_fp} * \dim_to_fp:n \{#1\}
- \l_{\text{box}} \text{sin_fp} * \dim_to_fp:n \{#2\} \}
\]

1344
Rotation of the edges is done using a different formula for each quadrant. In every case, the top and bottom edges only need the resulting \(y\)-values, whereas the left and right edges need the \(x\)-values. Each case is a question of picking out which corner ends up at with the maximum top, bottom, left and right value. Doing this by hand means a lot less calculating and avoids lots of comparisons.

\begin{verbatim}
\cs_new_protected:Npn __box_rotate_ydir:nnN #1#2#3
{\dim_set:Nn #3
{\fp_to_dim:n
{l__box_sin_fp * \dim_to_fp:n \#1}
+ \l__box_cos_fp * \dim_to_fp:n \#2}
}
\cs_new_protected:Npn __box_rotate_xdir:nnN #1#2#3
{\dim_set:Nn #3
{\fp_to_dim:n
{l__box_sin_fp * \dim_to_fp:n \#1}
+ \l__box_cos_fp * \dim_to_fp:n \#2}
}
\end{verbatim}
{\
 _box_rotate_ydir:nnN \l__box_left_dim \l__box_top_dim
 \l__box_top_new_dim
 _box_rotate_ydir:nnN \l__box_right_dim \l__box_bottom_dim
 \l__box_bottom_new_dim
 _box_rotate_xdir:nnN \l__box_left_dim \l__box_bottom_dim
 \l__box_left_new_dim
 _box_rotate_xdir:nnN \l__box_right_dim \l__box_top_dim
 \l__box_right_new_dim
}\)

(End of definition for \box_rotate:Nn and others. These functions are documented on page 305.)

__box_scale_x_fp
__box_scale_y_fp
Scaling is potentially different in the two axes.
\fp_new:N \l__box_scale_x_fp
\fp_new:N \l__box_scale_y_fp
(End of definition for \l__box_scale_x_fp and \l__box_scale_y_fp.)

Resizing a box starts by working out the various dimensions of the existing box.
\cs_new_protected:Npn \box_resize_to_wd_and_ht_plus_dp:Nnn #1#2#3
 {__box_resize_to_wd_and_ht_plus_dp:NnnN #1 {#2} {#3}
 \hbox_set:Nn}
\cs_generate_variant:Nn \box_resize_to_wd_and_ht_plus_dp:Nnn { c }
\cs_new_protected:Npn \box_gresize_to_wd_and_ht_plus_dp:Nnn #1#2#3
 {__box_resize_to_wd_and_ht_plus_dp:NnnN #1 {#2} {#3}
 \hbox_gset:Nn}
\cs_generate_variant:Nn \box_gresize_to_wd_and_ht_plus_dp:Nnn { c }
\cs_new_protected:Npn __box_resize_to_wd_and_ht_plus_dp:NnnN #1#2#3#4
 {
 #4 #1
 __box_resize_set_corners:N #1}
__box_resize:N
__box_resize:NNN

The \textit{x}-scaling and resulting box size is easy enough to work out: the dimension is that
given as \textit{#2}, and the scale is simply the new width divided by the old one.
\fp_new:N \l__box_scale_x_fp
 { \dim_to_fp:n {#2} / \dim_to_fp:n { \l__box_right_dim } }

The \textit{y}-scaling needs both the height and the depth of the current box.
\fp_new:N \l__box_scale_y_fp
 \dim_to_fp:n { \l__box_right_dim } }
\fp_new:N \l__box_scale_y_fp
 \dim_to_fp:n { \l__box_top_dim - \l__box_bottom_dim }

Hand off to the auxiliary which does the rest of the work.
\cs_new_protected:Npn __box_resize_set_corners:N #1
 {__box_resize:N #1}
__box_resize:NNN

1346
With at least one real scaling to do, the next phase is to find the new edge co-ordinates. In the x direction this is relatively easy: just scale the right edge. In the y direction, both dimensions have to be scaled, and this again needs the absolute scale value. Once that is all done, the common resize/rescale code can be employed.

Scaling to a (total) height or to a width is a simplified version of the main resizing operation, with the scale simply copied between the two parts. The internal auxiliary is called using the scaling value twice, as the sign for both parts is needed (as this allows the same internal code to be used as for the general case).
When scaling a box, setting the scaling itself is easy enough. The new dimensions are also relatively easy to find, allowing only for the need to keep them positive in all cases. Once that is done then after a check for the trivial scaling a hand-off can be made to the common code. The code here is split into two as this allows sharing with the auto-resizing functions.

\begin{verbatim}
\cs_new_protected:Npn \box_scale:Nnn #1#2#3
\{
__box_scale:NnnN #1 {#2} {#3} \hbox_set:Nn
\}
\cs_generate_variant:Nn \box_scale:Nnn { c }
\cs_new_protected:Npn \box_gscale:Nnn #1#2#3
\{
__box_scale:NnnN #1 {#2} {#3} \hbox_gset:Nn
\}
\cs_generate_variant:Nn \box_gscale:Nnn { c }
\cs_new_protected:Npn __box_scale:NnnN #1#2#3#4
\{
#4 #1
\{
\fp_set:Nn \l__box_scale_x_fp {#2}
\fp_set:Nn \l__box_scale_y_fp {#3}
__box_scale:N #1
\}
\}
\cs_new_protected:Npn __box_scale:N #1
\{
\dim_set:Nn \l__box_top_dim { \box_ht:N #1 }
\dim_set:Nn \l__box_bottom_dim { -\box_dp:N #1 }
\dim_set:Nn \l__box_right_dim { \box_wd:N #1 }
\dim_zero:N \l__box_left_dim
\dim_set:Nn \l__box_top_new_dim
\fp_abs:n { \l__box_scale_y_fp } \l__box_top_dim
\dim_set:Nn \l__box_bottom_new_dim
\fp_abs:n { \l__box_scale_y_fp } \l__box_bottom_dim
\dim_set:Nn \l__box_right_new_dim
\fp_abs:n { \l__box_scale_x_fp } \l__box_right_dim
__box_resize_common:N #1
\}
\end{verbatim}

Although autosizing a box uses dimensions, it has more in common in implementation with scaling. As such, most of the real work here is done elsewhere.

\begin{verbatim}
\cs_new_protected:Npn \box_autosize_to_wd_and_ht:Nnn #1#2#3
\{
__box_autosize:NnnnN #1 {#2} {#3} { \box_ht:N #1 } \hbox_set:Nn
\}
\cs_generate_variant:Nn \box_autosize_to_wd_and_ht:Nnn { c }
\cs_new_protected:Npn \box_gautosize_to_wd_and_ht:Nnn #1#2#3
\{
__box_autosize:NnnnN #1 {#2} {#3} { \box_ht:N #1 } \hbox_gset:Nn
\}
\cs_generate_variant:Nn \box_gautosize_to_wd_and_ht:Nnn { c }
\cs_new_protected:Npn \box_autosize_to_wd_and_ht_plus_dp:Nnn #1#2#3
\{
__box_autosize:NnnnN #1 {#2} {#3} { \box_ht:N #1 + \box_dp:N #1 }
\}
\end{verbatim}
__box_resize_common:N

The main resize function places its input into a box which start off with zero width, and includes the handles for engine rescaling.

__box_backend_scale:Nnn

\l__box_scale_x_fp
\l__box_scale_y_fp

The new height and depth can be applied directly.

\fp_compare:nNnTF \l__box_scale_y_fp > \c_zero_fp

\fp_compare:nNnTF \l__box_scale_x_fp < \c_zero_fp

Things are not quite as obvious for the width, as the reference point needs to remain unchanged. For positive scaling factors resizing the box is all that is needed. However, for case of a negative scaling the material must be shifted such that the reference point ends up in the right place.

(End of definition for \box_autosize_to_wd_and ht:Nnn and others. These functions are documented on page 303.)
92.13 Viewing part of a box

A wrapper around the driver-dependent code.

\cs_new_protected:Npn \box_set_clipped:N #1
\{ \hbox_set:Nn #1 { __box_backend_clip:N #1 } \}
\cs_generate_variant:Nn \box_set_clipped:N { c }
\cs_new_protected:Npn \box_gset_clipped:N #1
\{ \hbox_gset:Nn #1 { __box_backend_clip:N #1 } \}
\cs_generate_variant:Nn \box_gset_clipped:N { c }

(End of definition for \box_set_clipped:N and \box_gset_clipped:N. These functions are documented on page 305.)

Trimming from the left- and right-hand edges of the box is easy: kern the appropriate parts off each side.

\cs_new_protected:Npn \box_set_trim:Nnnnn __box_set_trim:Nnnnn \box_gset_trim:Nnnnn
__box_set_trim:Nnnnn

For the height and depth, there is a need to watch the baseline is respected. Material always has to stay on the correct side, so trimming has to check that there is enough material to trim. First, the bottom edge. If there is enough depth, simply set the depth, or if not move down so the result is zero depth. \box_move_down:nn is used in both
cases so the resulting box always contains a \lower primitive. The internal box is used here as it allows safe use of \box_set_dp:Nn.

\dim_compare:nNnTF { \box_dp:N #1 } > {#3}
 \begin{verbatim}
 { \ hbox_set:Nn _box_internal_box
 \box_move_down:nn \c_zero_dim
 { \box_use_drop:N _box_internal_box }
 }
 \end{verbatim}
 { \box_set_dp:Nn _box_internal_box { \box_dp:N #1 - (#3) } }
\end{verbatim}

{ \hbox_set:Nn \l__box_internal_box
 \box_move_down:nn \c_zero_dim
 { \box_use_drop:N \l__box_internal_box }
 \box_set_dp:Nn \l__box_internal_box { \box_dp:N #1 - (#3) }
\}

Same thing, this time from the top of the box.
\dim_compare:nNnTF { \box_ht:N \l__box_internal_box } > {#5}
 \begin{verbatim}
 { \ hbox_set:Nn _box_internal_box
 \box_move_up:nn \c_zero_dim
 { \box_use_drop:N _box_internal_box }
 }
 \end{verbatim}
 { \box_set_ht:Nn _box_internal_box { \box_ht:N \l__box_internal_box - (#5) } }
\end{verbatim}

{ \hbox_set:Nn _box_internal_box
 \box_move_up:nn \c_zero_dim
 { \box_use_drop:N _box_internal_box }
 \box_set_ht:Nn _box_internal_box \c_zero_dim
\}

(End of definition for \box_set_trim:Nnnnn, \box_gset_trim:Nnnnn, and _box_set_trim:NnnnnN. These functions are documented on page 305.)

\box_set_viewport:Nnnnn
\box_set_viewport:cnnnn
\box_gset_viewport:Nnnnn
\box_gset_viewport:cnnnn
_box_viewport:NnnnnN

The same general logic as for the trim operation, but with absolute dimensions. As a result, there are some things to watch out for in the vertical direction.
\begin{verbatim}
\cs_new_protected:Npn \box_set_viewport:Nnnnn #1#2#3#4#5
 __box_set_viewport:NnnnnN #1 {#2} {#3} {#4} {#5} \box_set_eq:NN
\cs_generate_variant:Nn \box_set_viewport:Nnnnn { c }
\cs_new_protected:Npn \box_gset_viewport:Nnnnn #1#2#3#4#5
 __box_set_viewport:NnnnnN #1 {#2} {#3} {#4} {#5} \box_gset_eq:NN
\cs_generate_variant:Nn \box_gset_viewport:Nnnnn { c }
\cs_new_protected:Npn _box_set_viewport:NnnnnN #1#2#3#4#5#6
\end{verbatim}

1352
\hbox_set:Nn \l__box_internal_box
{ __kernel_kern:n { -#2 }
 \box_use:N #1
 __kernel_kern:n { #4 - \box_wd:N #1 }
}
\dim_compare:nNnTF {#3} < \c_zero_dim
{ \hbox_set:Nn \l__box_internal_box
 { \box_move_down:nn \c_zero_dim
 \box_use_drop:N \l__box_internal_box
 }
 \box_set_dp:Nn \l__box_internal_box { - __box_dim_eval:n {#3} }
}
\dim_compare:nNnTF {#5} > \c_zero_dim
{ \hbox_set:Nn \l__box_internal_box
 { \box_move_down:nn {#3} \{ \box_use_drop:N \l__box_internal_box
 \box_set_dp:Nn \l__box_internal_box \c_zero_dim
 }
 \dim_compare:nNnTF {#5} > \c_zero_dim
 { \box_set_dp:Nn \l__box_internal_box \c_zero_dim
 }
 \dim_compare:nNnT {#3} > \c_zero_dim
 { - (#3) }
}
\dim_compare:nNnTF {#5} > \c_zero_dim
{ \hbox_set:Nn \l__box_internal_box
 { \box_move_up:nn \c_zero_dim
 \box_use_drop:N \l__box_internal_box
 }
 \box_set_ht:Nn \l__box_internal_box
 { (#5)
 \dim_compare:nNnT {#3} > \c_zero_dim
 }
 \dim_compare:nNnT {#3} > \c_zero_dim
 { - (#3) }
}
\dim_compare:nNnTF {#5} > \c_zero_dim
{ \hbox_set:Nn \l__box_internal_box
 { \box_move_up:nn { - __box_dim_eval:n {#5} }
 \box_use_drop:N \l__box_internal_box
 }
 \box_set_ht:Nn \l__box_internal_box \c_zero_dim
}
#6 \l__box_internal_box

(End of definition for \box_set_viewport:Nnnn, \box_gset_viewport:Nnnn, and __box_viewport:Nnnn. These functions are documented on page 305.)
Chapter 93

l3coffins implementation

93.1 Coffins: data structures and general variables

Scratch variables.

\l__coffin_internal_box
\l__coffin_internal_dim
\l__coffin_internal_tl

\l__coffin_internal_box
\l__coffin_internal_dim
\l__coffin_internal_tl

(The end of definition for \l__coffin_internal_box, \l__coffin_internal_dim, and \l__coffin_internal_tl.)

\c__coffin_corners_prop

The “corners” of a coffin define the real content, as opposed to the \TeX bounding box. They all start off in the same place, of course.

\c__coffin_corners_prop

Pole positions are given for horizontal, vertical and reference-point based values.

\c__coffin_poles_prop

Pole positions are given for horizontal, vertical and reference-point based values.
\l__coffin_slope_A_fp \l__coffin_slope_B_fp

Used for calculations of intersections.

\l__coffin_error_bool

For propagating errors so that parts of the code can work around them.

\l__coffin_offset_x_dim \l__coffin_offset_y_dim

The offset between two sets of coffin handles when typesetting. These values are corrected from those requested in an alignment for the positions of the handles.

\l__coffin_pole_a_tl \l__coffin_pole_b_tl

Needed for finding the intersection of two poles.

\l__coffin_x_dim \l__coffin_y_dim \l__coffin_x_prime_dim \l__coffin_y_prime_dim

For calculating intersections and so forth.

93.2 Basic coffin functions

There are a number of basic functions needed for creating coffins and placing material in them. This all relies on the following data structures.

__coffin_to_value:N

Coffins are a two-part structure and we rely on the internal nature of box allocation to make everything work. As such, we need an interface to turn coffin identifiers into numbers. For the purposes here, the signature allowed is \texttt{N} despite the nature of the underlying primitive.

(End of definition for \texttt{\l__coffin_poles_prop}.)
Several of the higher-level coffin functions would give multiple errors if the coffin does not exist. A cleaner way to handle this is provided here: both the box and the coffin structure are checked.

\prg_new_conditional:Nppnn \coffin_if_exist:N #1 { p, T, F, TF } \{ \cs_if_exist:NTF #1 \{ \cs_if_exist:cTF { coffin __coffin_to_value:N #1 - poles } \{ \prg_return_true: \} \} \{ \prg_return_false: \} \} \prg_generate_conditional_variant:Nnn \coffin_if_exist:N 34812 \{ c \} { p, T, F, TF } \}

\prg_new_protected:Npnn __coffin_if_exist:NTF #1#2 \{ \cs_if_exist:NTF #1 \{ #2 \} \} \prg_generate_variant:Nn __coffin_if_exist:NTF { c } \}

\prg_generate_variant:Nn \coffin_clear:N 34824 \{ c \} \prg_generate_variant:Nn \coffin_gclear:N 34842 \{ c \}

Clearing coffins means emptying the box and resetting all of the structures.

\prg_new_protected:Npnn __coffin_reset_structure:N #1 \}

\prg_generate_variant:Nn __coffin_reset_structure:N { c } \}

\prg_generate_variant:Nn \coffin_greset_structure:N 34848 \{ c \}

(End of definition for \coffin_if_exist:NT. This function is documented on page 307.)

(End of definition for __coffin_if_exist:NT.)

__coffin_if_exist:NT Several of the higher-level coffin functions would give multiple errors if the coffin does not exist. So a wrapper is provided to deal with this correctly, issuing an error on erroneous use.

\prg_new_protected:Npnn __coffin_reset_structure:N #1 \{ \cs_if_exist:NTF #1 \{ \msg_error:nne { coffin } { unknown } \{ \token_to_str:N #1 \} \} \}

(End of definition for __coffin_if_exist:NT.)

(End of definition for \coffin_clear:N and \coffin_gclear:N. These functions are documented on page 307.)
Creating a new coffin means making the underlying box and adding the data structures. The \debug_suspend: and \debug_resume: functions prevent \prop_gclear_new:c from writing useless information to the log file.

\cs_new_protected:Npn \coffin_new:N #1
\box_new:N #1
\debug_suspend:
\prop_gclear_new:c { coffin ~ __coffin_to_value:N #1 ~ corners }
\prop_gclear_new:c { coffin ~ __coffin_to_value:N #1 ~ poles }
\prop_gset_eq:cN \c__coffin_corners_prop
\prop_gset_eq:cN \c__coffin_poles_prop
\debug_resume:
\cs_generate_variant:Nn \coffin_new:N { c }

(End of definition for \coffin_new:N. This function is documented on page 307.)

Horizontal coffins are relatively easy: set the appropriate box, reset the structures then update the handle positions.

\cs_new_protected:Npm \hcoffin_set:Nn \hbox_set:Nn \hcoffin_gset:Nn \hbox_gset:Nn
__coffin_set_vertical:Nnn __coffin_set_vertical_aux:
\cs_new_protected:Npm \hcoffin_set:Nn \hbox_set:Nn \hcoffin_gset:Nn \hbox_gset:Nn
__coffin_set_vertical:Nnn __coffin_set_vertical_aux:

Setting vertical coffins is more complex. First, the material is typeset with a given width. The default handles and poles are set as for a horizontal coffin, before finding the top baseline using a temporary box. No \color_ensure_current: here as that would add a
whatsit to the start of the vertical box and mess up the location of the T pole (see \TeX\ by Topic for discussion of the \vtop\ primitive, used to do the measuring).

\cs_new_protected:Npn \vcoffin_set:Nnn #1#2#3
__coffin_set_vertical:NnnNN #1 {#2} {#3}
\vbox_set:Nn \coffin_reset_poles:N
\cs_generate_variant:Nn \vcoffin_set:Nnn { c }
\cs_new_protected:Npn \vcoffin_gset:Nnn #1#2#3
__coffin_set_vertical:NnnNN #1 {#2} {#3}
\vbox_gset:Nn \coffin_greset_poles:N
\cs_generate_variant:Nn \vcoffin_gset:Nnn { c }
\cs_new_protected:Npn __coffin_set_vertical:NnnNN #1#2#3#4#5
__coffin_if_exist:NT #1
{ #4 #1
 \dim_set:Nn \tex_hsize:D {#2}
 __coffin_set_vertical_aux:
 #3
}
\vbox_set_top:Nn \l__coffin_internal_box { \vbox_unpack:N #1 }
__coffin_set_pole:Nne #1 { T }
{ 0pt }
{ \dim_eval:n { \box_ht:N #1 - \box_ht:N \l__coffin_internal_box } 1000pt 0pt }
\box_clear:N \l__coffin_internal_box
\cs_new_protected:Npe __coffin_set_vertical_aux:
{ \bool_lazy_and:nnT \cs_if_exist_p:N \fmtname \str_if_eq_p:Vn \fmtname { LaTeX2e }
 \dim_set_eq:NN \exp_not:N \linewidth \tex_hsize:D
 \dim_set_eq:NN \exp_not:N \columnwidth \tex_hsize:D }
\cs_new_protected:Npm \vcoffin_set:Nnn #1#2#3
\cs_new_protected:Npm \vcoffin_gset:Nnn #1#2#3
\hcoffin_set:Nw \hcoffin_set:cw \hcoffin_set_end:
\hcoffin_gset:Nw \hcoffin_gset:cw \hcoffin_gset_end:
These are the “begin”/“end” versions of the above: watch the grouping!
\endinput
\vcoffin_set:Nnw
\vcoffin_set:cnw
\vcoffin_gset:Nnw
\vcoffin_gset:cnw
__coffin_set_vertical:NnNNNNw
\vcoffin_set_end:
\vcoffin_gset_end:

The same for vertical coffins.

\cs_new_protected:Npn \vcoffin_set:Nnw #1\#2
{ _coffin_set_vertical:NnNNNNw #1 (#2) \vbox_set:Nw
\vcoffin_set_end:
\vbox_set_end: \coffin_reset_poles:N
}
\cs_new_protected:Npn \vcoffin_gset:Nnw #1\#2
{ _coffin_set_vertical:NnNNNNw #1 (#2) \vbox_gset:Nw
\vcoffin_gset_end:
\vbox_gset_end: \coffin_greset_poles:N
}
\cs_new_protected:Npn \vcoffin_set:Nww \vcoffin_set:cnw \vcoffin_gset:Nww \vcoffin_gset:cnw

(End of definition for \hcoffin_set:Nw and others. These functions are documented on page 308.)
Setting two coffins equal is just a wrapper around other functions.

Special coffins: these cannot be set up earlier as they need \texttt{\coffin_new:N}. The empty coffin is set as a box as the full coffin-setting system needs some material which is not yet available. The empty coffin is created entirely by hand: not everything is in place yet.
93.3 Measuring coffins

Coffins are just boxes when it comes to measurement. However, semantically a separate set of functions are required.

\cs_new_eq:NN \coffin_dp:N \box_dp:N
\cs_new_eq:NN \coffin_dp:c \box_dp:c
\cs_new_eq:NN \coffin_ht:N \box_ht:N
\cs_new_eq:NN \coffin_ht:c \box_ht:c
\cs_new_eq:NN \coffin_wd:N \box_wd:N
\cs_new_eq:NN \coffin_wd:c \box_wd:c

(End of definition for \coffin_dp:N, \coffin_ht:N, and \coffin_wd:N. These functions are documented on page 310.)

93.4 Coffins: handle and pole management

A simple wrapper around the recovery of a coffin pole, with some error checking and recovery built-in.

\cs_new_protected:Npn __coffin_get_pole:NnN #1#2#3
\prop_get:cnNF { coffin __coffin_to_value:N #1 poles } {#2} #3
\msg_error:nnee { coffin } { unknown-pole } {\exp_not:n {#2} } { \token_to_str:N #1 }\tl_set:Nn #3 { { 0pt } { 0pt } { 0pt } { 0pt } }\tl_set:Nn #3 { { 0pt } { 0pt } { 0pt } { 0pt } }

(End of definition for __coffin_get_pole:NnN.)

Resetting the structure is a simple copy job.

\cs_new_protected:Npn __coffin_reset_structure:N #1
\prop_set_eq:cN { coffin __coffin_to_value:N #1 corners } \c__coffin_corners_prop
\prop_set_eq:cN { coffin __coffin_to_value:N #1 poles } \c__coffin_poles_prop

(End of definition for __coffin_reset_structure:N.)
Setting the pole of a coffin at the user/designer level requires a bit more care. The idea here is to provide a reasonable interface to the system, then to do the setting with full expansion. The three-argument version is used internally to do a direct setting.
\cs_generate_variant:Nn __coffin_set_pole:Nnn { Nne }

(End of definition for \coffin_set_horizontal_pole:Nnn and others. These functions are documented on page 308.)

\\coffin_reset_poles:N
\\coffin_greset_poles:N

Simple shortcuts.

\cs_new_protected:Npn \coffin_reset_poles:N #1
\{ __coffin_reset_structure:N #1
__coffin_update_corners:N #1
__coffin_update_poles:N #1
\}

\cs_new_protected:Npn \coffin_greset_poles:N #1
\{ __coffin_greset_structure:N #1
__coffin_gupdate_corners:N #1
__coffin_gupdate_poles:N #1
\}

(End of definition for \coffin_reset_poles:N and \coffin_greset_poles:N. These functions are documented on page 309.)

__coffin_update_corners:N
__coffin_gupdate_corners:N
__coffin_update_corners:NN
__coffin_update_corners:NNN

Updating the corners of a coffin is straight-forward as at this stage there can be no rotation. So the corners of the content are just those of the underlying \TeX\ box.

\cs_new_protected:Npn __coffin_update_corners:N #1
\{ __coffin_update_corners:NN #1 \prop_put:Nne \}

\cs_new_protected:Npn __coffin_gupdate_corners:N #1
\{ __coffin_update_corners:NN #1 \prop_gput:Nne \}

\cs_new_protected:Npn __coffin_update_corners:NN #1#2
\{ \exp_args:Nc __coffin_update_corners:NNN
\{ __coffin_to_value:N #1 __coffin_gupdate_poles:N #2
\}
\}

\cs_new_protected:Npn __coffin_update_corners:NNN #1#2#3
\{ #3 #1
\{ #1 \}
\{ #2 \}
\{ #3 \}
\}

\cs_new_protected:Npn __coffin_gupdate_corners:NNN #1#2#3
\{ #3 #1
\{ #1 \}
\{ #2 \}
\{ #3 \}
\}

1363
This function is called when a coffin is set, and updates the poles to reflect the nature of size of the box. Thus this function only alters poles where the default position is dependent on the size of the box. It also does not set poles which are relevant only to vertical coffins.

\begin{verbatim}
\cs_new_protected:Npn __coffin_update_poles:N #1
 { __coffin_update_poles:NN #1 \prop_put:Nne }
\cs_new_protected:Npn __coffin_gupdate_poles:N #1
 { __coffin_update_poles:NN #1 \prop_gput:Nne }
\cs_new_protected:Npn __coffin_update_poles:NN #1#2
 { \exp_args:Nc __coffin_update_poles:NNN { coffin ~ __coffin_to_value:N #1 ~ poles } #1 #2 }
\cs_new_protected:Npn __coffin_update_poles:NNN #1#2#3
 { __coffin_to_value:N #3 #1 { hc }
 { \dim_eval:n { 0.5 \box_wd:N #2 } } { 0pt } { 0pt } { 1000pt }
 { __coffin_to_value:N #3 #1 { r }
 { \dim_eval:n { \box_wd:N #2 } } { 0pt } { 0pt } { 1000pt }
 { __coffin_to_value:N #3 #1 { vc }
 { 0pt } { \dim_eval:n { (\box_ht:N #2 - \box_dp:N #2) / 2 } } { 1000pt } { 0pt }
 { __coffin_to_value:N #3 #1 { t }
 { 0pt } { \dim_eval:n { \box_ht:N #2 } } { 1000pt } { 0pt }
 { __coffin_to_value:N #3 #1 { b }
 { 0pt } { \dim_eval:n { -\box_dp:N #2 } } { 1000pt } { 0pt }
 }
 }
\end{verbatim}

(End of definition for __coffin_update_poles:N and others.)
93.5 Coffins: calculation of pole intersections

The lead off in finding intersections is to recover the two poles and then hand off to the auxiliary for the actual calculation. There may of course not be an intersection, for which an error trap is needed.

\[
\text{	exttt{\textbackslash cs_new_protected:Npm ___coffin_calculate_intersection:Nnn #1#2#3}}
\]

\[
\text{\texttt{___coffin_get_pole:NnN #1 \{#2\} ___coffin_pole_a_tl}}
\]

\[
\text{\texttt{___coffin_get_pole:NnN #1 \{#3\} ___coffin_pole_b_tl}}
\]

\[
\text{\texttt{\textbackslash bool_set_false:N ___coffin_error_bool}}
\]

\[
\text{\texttt{\textbackslash exp_last_two_unbraced:Noo}}
\]

\[
\text{\texttt{___coffin_calculate_intersection:nnnnnnnn}}
\]

\[
\text{\texttt{___coffin_pole_a_tl ___coffin_pole_b_tl}}
\]

\[
\text{\texttt{\textbackslash bool_if:NT ___coffin_error_bool}}
\]

\[
\text{\texttt{\{}}
\]

\[
\text{\texttt{\textbackslash msg_error:nn \{ coffin \} \{ no-pole-intersection \}}}
\]

\[
\text{\texttt{\textbackslash dim_zero:N ___coffin_x_dim}}
\]

\[
\text{\texttt{\textbackslash dim_zero:N ___coffin_y_dim}}
\]

\[
\}
\]

The two poles passed here each have four values (as dimensions), \((a, b, c, d)\) and \((a', b', c', d')\). These are arguments 1–4 and 5–8, respectively. In both cases \(a\) and \(b\) are the co-ordinates of a point on the pole and \(c\) and \(d\) define the direction of the pole. Finding the intersection depends on the directions of the poles, which are given by \(d/c\) and \(d'/c'\). However, if one of the poles is either horizontal or vertical then one or more of \(c, d, c'\) and \(d'\) are zero and a special case is needed.

\[
\text{\texttt{\textbackslash cs_new_protected:Npm ___coffin_calculate_intersection:nnnnnnn}}
\]

\[
\text{\texttt{___coffin_calculate_intersection:nnnnnnnn\{#1\}#2#3#4#5#6#7#8}}
\]

\[
\text{\texttt{\{}}
\]

\[
\text{\texttt{\textbackslash dim_compare:nNnTF \{#3\} = _c_zero_dim}}
\]

The case where the first pole is vertical. So the \(x\)-component of the interaction is at \(a\). There is then a test on the second pole: if it is also vertical then there is an error.

\[
\text{\texttt{\{}}
\]

\[
\text{\texttt{\textbackslash dim_set:Nn ___coffin_x_dim \{#1\}}}\]

\[
\text{\texttt{\textbackslash dim_compare:nNnTF \{#7\} = _c_zero_dim}}
\]

\[
\text{\texttt{\{ \textbackslash bool_set_true:N ___coffin_error_bool \}}}\]

The second pole may still be horizontal, in which case the \(y\)-component of the intersection is \(b'\). If not,

\[
y = \frac{d'}{c'} (a - a') + b'
\]

with the \(x\)-component already known to be \('#1\).
If the first pole is not vertical then it may be horizontal. If so, then the procedure is essentially the same as that already done but with the x- and y-components interchanged.

Now we deal with the case where the second pole may be vertical, or if not we have

$$x = \frac{c'}{d'} (b - b') + a'$$

which is again handled by the same auxiliary.

The first pole is neither horizontal nor vertical. To avoid even more complexity, we now work out both slopes and pass to an auxiliary.

Assuming the two poles are not parallel, then the intersection point is found in two steps. First we find the x-value with

$$x = \frac{sa - s'a' - b + b'}{s - s'}$$
and then finding the y-value with

$$y = s(x - a) + b$$
The shift of the bounding box of a coffin from the real content.

These are used to hold maxima for the various corner values: these thus define the minimum size of the bounding box after rotation.

Rotating a coffin requires several steps which can be conveniently run together. The sine and cosine of the angle in degrees are computed. This is then used to set \l_coffin_sin_fp and \l_coffin_cos_fp, which are carried through unchanged for the rest of the procedure.

Use a local copy of the property lists to avoid needing to pass the name and scope around.

The corners and poles of the coffin can now be rotated around the origin. This is best achieved using mapping functions.

The bounding box of the coffin needs to be rotated, and to do this the corners have to be found first. They are then rotated in the same way as the corners of the coffin material itself.

At this stage, there needs to be a calculation to find where the corners of the content and the box itself will end up.
The correction of the box position itself takes place here. The idea is that the bounding box for a coffin is tight up to the content, and has the reference point at the bottom-left. The \textit{x}\textsubscript{-}direction is handled by moving the content by the difference in the positions of the bounding box and the content left edge. The \textit{y}\textsubscript{-}direction is dealt with by moving the box down by any depth it has acquired. The internal box is used here to allow for the next step.

\begin{verbatim}
\hbox_set:Nn \l__coffin_internal_box
{ __kernel_kern:n
 { \l__coffin_bounding_shift_dim - \l__coffin_left_corner_dim }
 \box_move_down:nn { \l__coffin_bottom_corner_dim }
 { \box_use:N #1 }
}
\end{verbatim}

If there have been any previous rotations then the size of the bounding box will be bigger than the contents. This can be corrected easily by setting the size of the box to the height and width of the content. As this operation requires setting box dimensions and these transcend grouping, the safe way to do this is to use the internal box and to reset the result into the target box.

\begin{verbatim}
\box_set_ht:Nn \l__coffin_internal_box
{ \l__coffin_top_corner_dim - \l__coffin_bottom_corner_dim }
\box_set_dp:Nn \l__coffin_internal_box { 0pt }
\box_set_wd:Nn \l__coffin_internal_box
{ \l__coffin_right_corner_dim - \l__coffin_left_corner_dim }
#5 #1 { \box_use_drop:N \l__coffin_internal_box }
\end{verbatim}

The final task is to move the poles and corners such that they are back in alignment with the box reference point.

\begin{verbatim}
\prop_map_inline:Nn \l__coffin_corners_prop
{ __coffin_shift_corner:Nnnn #1 {##1} ##2 }
\prop_map_inline:Nn \l__coffin_poles_prop
{ __coffin_shift_pole:Nnnnnn #1 {##1} ##2 }
\end{verbatim}

Update the coffin data.

\begin{verbatim}
#4 { coffin - __coffin_to_value:N #1 - corners } __coffin_corners_prop
#4 { coffin - __coffin_to_value:N #1 - poles } __coffin_poles_prop
\end{verbatim}

(End of definition for \texttt{coffin_rotate:Nn}, \texttt{coffin_grotate:Nn}, and \texttt{__coffin_rotate:NNN}. These functions are documented on page 309.)

\texttt{__coffin_set_bounding:N}

The bounding box corners for a coffin are easy enough to find: this is the same code as for the corners of the material itself, but using a dedicated property list.

\begin{verbatim}
\cs_new_protected:Npn __coffin_set_bounding:N #1
{ \prop_put:Nne \l__coffin_bounding_prop { tl } { 0pt } { \dim_eval:n { \box_ht:N #1 } } }
\prop_put:Nne \l__coffin_bounding_prop { tr }
{ \dim_eval:n { \box_wd:N #1 } } \dim_eval:n { \box_ht:N #1 }
\end{verbatim}

1369
Rotating the position of the corner of the coffin is just a case of treating this as a vector from the reference point. The same treatment is used for the corners of the material itself and the bounding box.

__coffin_rotate_bounding:nnn

Rotating a single pole simply means shifting the co-ordinate of the pole and its direction. The rotation here is about the bottom-left corner of the coffin.

__coffin_rotate_pole:Nnnnnn

A rotation function, which needs only an input vector (as dimensions) and an output space. The values _coffin_cos_fp and _coffin_sin_fp should previously have been set up correctly. Working this way means that the floating point work is kept to a minimum: for any given rotation the sin and cosine values do no change, after all.

__coffin_rotate_vector:nnNN

(End of definition for _coffin_rotate_bounding:nn.)

(End of definition for _coffin_rotate_bounding:nn and _coffin_rotate_corner:NNnn.)

(End of definition for _coffin_rotate_pole:Nnnnnn.)

(End of definition for _coffin_rotate_pole:Nnnnnn.)

End of definition for __coffin_set_bounding:N.
\fp_to_dim:n
\dim_to_fp:n {#1} \l__coffin_cos_fp
- \dim_to_fp:n {#2} \l__coffin_sin_fp
\dim_set:Nn #4
\fp_to_dim:n
\dim_to_fp:n {#1} \l__coffin_sin_fp
+ \dim_to_fp:n {#2} \l__coffin_cos_fp
\dim_set:Nn \l__coffin_top_corner_dim { -c_max_dim }
\dim_set:Nn \l__coffin_right_corner_dim { -c_max_dim }
\dim_set:Nn \l__coffin_bottom_corner_dim { c_max_dim }
\dim_set:Nn \l__coffin_left_corner_dim { c_max_dim }
\prop_map_inline:Nn \l__coffin_corners_prop
{ __coffin_find_corner_maxima_aux:nn ##2 }
\cs_new_protected:Npn __coffin_find_corner_maxima_aux:nn #1#2
{ \dim_set:Nn \l__coffin_left_corner_dim { \dim_min:nn { \l__coffin_left_corner_dim } {#1} }
\dim_set:Nn \l__coffin_right_corner_dim { \dim_max:nn { \l__coffin_right_corner_dim } {#1} }
\dim_set:Nn \l__coffin_bottom_corner_dim { \dim_min:nn { \l__coffin_bottom_corner_dim } {#2} }
\dim_set:Nn \l__coffin_top_corner_dim { \dim_max:nn { \l__coffin_top_corner_dim } {#2} }
\prop_map_inline:Nn \l__coffin_corners_prop
{ \l__coffin_find_corner_maxima_aux:nn nn #2 }
The idea here is to find the extremities of the content of the coffin. This is done by
looking for the smallest values for the bottom and left corners, and the largest values for
the top and right corners. The values start at the maximum dimensions so that the case
where all are positive or all are negative works out correctly.
\cs_new_protected:Npn __coffin_find_bounding_shift:nn
{ \dim_set:Nn \l__coffin_bounding_shift_dim { c_max_dim }
\prop_map_inline:Nn \l__coffin_bounding_prop
{ \l__coffin_find_bounding_shift_aux:nn nn #2 }
The approach to finding the shift for the bounding box is similar to that for the corners.
However, there is only one value needed here and a fixed input property list, so things
are a bit clearer.
Shifting the corners and poles of a coffin means subtracting the appropriate values from the \(x \) - and \(y \)-components. For the poles, this means that the direction vector is unchanged.

\[
\text{\textsc{cs_new_protected:Npm __coffin_shift_corner:Nnnn #1#2#3#4}}
\]

\[
\text{\textsc{cs_new_protected:Npm __coffin_shift_pole:Nnnnnn #1#2#3#4#5#6}}
\]

Storage for the scaling factors in \(x \) and \(y \), respectively.

\[
\text{\textsc{l_coffin_scale_x_fp}} \quad \text{\textsc{l_coffin_scale_y_fp}}
\]

When scaling, the values given have to be turned into absolute values.

\[
\text{\textsc{l_coffin_scaled_total_height_dim}} \quad \text{\textsc{l_coffin_scaled_width_dim}}
\]

Resizing a coffin begins by setting up the user-friendly names for the dimensions of the coffin box. The new sizes are then turned into scale factor. This is the same operation as takes place for the underlying box, but that operation is grouped and so the same calculation is done here.

\[
\text{\textsc{__coffin_resize:NNnN __coffin_resize:cmn __coffin_gresize:NNnN __coffin_gresize:cmn ___coffin_resize:NNnNN}}
\]
The poles and corners of the coffin are scaled to the appropriate places before actually resizing the underlying box.

Negative x-scaling values place the poles in the wrong location: this is corrected here.

For scaling, the opposite calculation is done to find the new dimensions for the coffin. Only the total height is needed, as this is the shift required for corners and poles. The
scaling is done the \TeX{} way as this works properly with floating point values without needing to use the \texttt{fp} module.

\begin{verbatim}
\cs_new_protected:Npn \coffin_scale:Nnn #1#2#3
__coffin_scale:NnnNN #1 {#2} {#3} \box_scale:Nnn \prop_set_eq:cN
d\cs_generate_variant:Nn \coffin_scale:Nnn { c }
\cs_new_protected:Npn \coffin_gscale:Nnn #1#2#3
__coffin_scale:NnnNN #1 {#2} {#3} \box_gscale:Nnn \prop_gset_eq:cN
d\cs_generate_variant:Nn \coffin_gscale:Nnn { c }
\cs_new_protected:Npn __coffin_scale:NnnNN #1#2#3#4#5
\{ \fp_set:Nn \l__coffin_scale_x_fp {#2}\fp_set:Nn \l__coffin_scale_y_fp {#3}#4 \{ \l__coffin_scale_x_fp \} \{ \l__coffin_scale_y_fp \}\dim_set:Nn \l__coffin_internal_dim \{ \coffin_ht:N \#1 + \coffin_dp:N \#1 \}\dim_set:Nn \l__coffin_scaled_total_height_dim \{ \fp_abs:n \{ \l__coffin_scale_y_fp \} \l__coffin_internal_dim \}\dim_set:Nn \l__coffin_scaled_width_dim \{ \fp_abs:n \{ \l__coffin_scale_x_fp \} \coffin_wd:N \#1 \}__coffin_resize_common:NnnN \#5\}
\end{verbatim}

(End of definition for \texttt{\coffin_scale:Nnn}, \texttt{\coffin_gscale:Nnn}, and \texttt{__coffin_scale:NnnNN}. These functions are documented on page 309.)

\texttt{__coffin_scale_vector:nnNN}

This functions scales a vector from the origin using the pre-set scale factors in x and y. This is a much less complex operation than rotation, and as a result the code is a lot clearer.

\begin{verbatim}
\cs_new_protected:Npn __coffin_scale_vector:nnNN #1#2#3#4
\{ \dim_set:Nn \#3 \{ \fp_to_dim:n \{ \dim_to_fp:n \{#1\} * \l__coffin_scale_x_fp \} \}\dim_set:Nn \#4 \{ \fp_to_dim:n \{ \dim_to_fp:n \{#2\} * \l__coffin_scale_y_fp \} \}
\end{verbatim}

(End of definition for \texttt{__coffin_scale_vector:nnNN}.)

\texttt{__coffin_scale_corner:Nnnn}
\texttt{__coffin_scale_pole:Nnnnnn}

Scaling both corners and poles is a simple calculation using the preceding vector scaling.

\begin{verbatim}
\cs_new_protected:Npn __coffin_scale_corner:Nnnn __coffin_scale_pole:Nnnnnn
\{ __coffin_scale_vector:nnNN \{#3\} \{#4\} \l__coffin_x_dim \l__coffin_y_dim
\prop_put:Nne \l__coffin_corners_prop \{#2\} \{ \dim_use:N \l__coffin_x_dim \} \{ \dim_use:N \l__coffin_y_dim \}
\}
\end{verbatim}

\begin{verbatim}
\cs_new_protected:Npn __coffin_scale_pole:Nnnnnn
\{ __coffin_scale_vector:nnNN \{#3\} \{#4\} \l__coffin_x_dim \l__coffin_y_dim
\prop_put:Nne \l__coffin_poles_prop \{#2\} \{ \dim_use:N \l__coffin_x_dim \} \{ \dim_use:N \l__coffin_y_dim \}
\}
\end{verbatim}

1374
These functions correct for the x displacement that takes place with a negative horizontal scaling.

This command joins two coffins, using a horizontal and vertical pole from each coffin and making an offset between the two. The result is stored as a third coffin, which has all of its handles reset to standard values. First, the more basic alignment function is used to get things started.

Correct the placement of the reference point. If the x-offset is negative then the reference point of the second box is to the left of that of the first, which is corrected using a kern. On the right side the first box might stick out, which would show up if it is wider than the sum of the x-offset and the width of the second box. So a second kern may be needed.
The coffin structure is reset, and the corners are cleared: only those from the two parent coffins are needed.

__coffin_reset_structure:N \l__coffin_aligned_coffin
\prop_clear:c
{ coffin \- __coffin_to_value:N \l__coffin_aligned_coffin
_c_space_tl corners }
__coffin_update_poles:N \l__coffin_aligned_coffin
The structures of the parent coffins are now transferred to the new coffin, which requires that the appropriate offsets are applied. That then depends on whether any shift was needed.
\dim_compare:nNnTF \l__coffin_offset_x_dim < \c_zero_dim
\{ __coffin_offset_poles:Nnn #1 { -\l__coffin_offset_x_dim } { 0pt }
__coffin_offset_poles:Nnn #4 { 0pt } { \l__coffin_offset_y_dim }
__coffin_offset_corners:Nnn #1 { -\l__coffin_offset_x_dim } { 0pt }
__coffin_offset_corners:Nnn #4 { 0pt } { \l__coffin_offset_y_dim }
\}
__coffin_update_vertical_poles:NNN #1 #4 \l__coffin_aligned_coffin #9 #1 \l__coffin_aligned_coffin
\cs_new_protected:Npn \coffin_attach:NnnNnnnn #1#2#3#4#5#6#7#8
{ __coffin_attach:NnnNnnnnN #1 {#2} {#3} #4 {#5} {#6} {#7} {#8}
\coffin_set_eq:NN
}
\cs_generate_variant:Nn \coffin_attach:NnnNnnnn { c , Nnnc , cnnc }

A more simple version of the above, as it simply uses the size of the first coffin for the new one. This means that the work here is rather simplified compared to the above code. The function used when marking a position is hear also as it is similar but without the structure updates.
\cs_new_protected:Npn \coffin_attach:NnnNnnnn \coffin_gattach:NnnNnnnn \coffin_gattach:Nnncnnnn __coffin_attach_mark:NnnNnnnnN
__coffin_attach:XnnnnNnnn
\coffin_attach:cnncnnnn
\coffin_gattach:nnnnnnnn
\coffin_gattach:nnnnnnnn
__coffin_attach:nnnnnnnn
__coffin_attach:nnnnnnnn

(End of definition for \coffin_join:NnnNnnnn , \coffin_gjoin:NnnNnnnn , and __coffin_join:NnnNnnnnN. These functions are documented on page 310.)
The internal function aligns the two coffins into a third one, but performs no corrections on the resulting coffin poles. The process begins by finding the points of intersection for the poles for each of the input coffins. Those for the first coffin are worked out after those for the second coffin, as this allows the ‘primed’ storage area to be used for the second coffin. The ‘real’ box offsets are then calculated, before using these to re-box the input coffins. The default poles are then set up, but the final result depends on how the bounding box is being handled.

(End of definition for \coffin_attach:NnnNnnn and others. These functions are documented on page 310.)
Transferring structures from one coffin to another requires that the positions are updated by the offset between the two coffins. This is done by mapping over the property list of the source coffins, moving as appropriate and saving to the new coffin data structures. The test for a - means that the structures from the parent coffins are uniquely labelled and do not depend on the order of alignment. The pay off for this is that - should not be used in coffin pole or handle names, and that multiple alignments do not result in a whole set of values.

Saving the offset corners of a coffin is very similar, except that there is no need to worry about naming: every corner can be saved here as order is unimportant.
The \(T \) and \(B \) poles need to be recalculated after alignment. These functions find the larger absolute value for the poles, but this is of course only logical when the poles are horizontal.

\begin{verbatim}
\cs_new_protected:Npn __coffin_update_vertical_poles:NNN #1#2#3
{__coffin_get_pole:NnN #3 { #1 -T } \l__coffin_pole_a_tl
__coffin_get_pole:NnN #3 { #2 -T } \l__coffin_pole_b_tl
\exp_last_two_unbraced:Noo __coffin_update_T:nnnnnnnnN
\l__coffin_pole_a_tl \l__coffin_pole_b_tl #3
}
\cs_new_protected:Npn __coffin_update_T:nnnnnnnnN #1#2#3#4#5#6#7#8#9
{\dim_compare:nNnTF {#2} < {#6}
{ __coffin_set_pole:Nne #9 { T } \{ { 0pt } {#6} \} }
{ __coffin_set_pole:Nne #9 { T } \{ { 0pt } {#2} \} }
}
\cs_new_protected:Npn __coffin_update_B:nnnnnnnnN #1#2#3#4#5#6#7#8#9
{\dim_compare:nNnTF {#2} < {#6}
{ __coffin_set_pole:Nne #9 { B } \{ { 0pt } {#6} \} }
{ __coffin_set_pole:Nne #9 { B } \{ { 0pt } {#2} \} }
}
\end{verbatim}

(End of definition for __coffin_offset_corners:Nnn and __coffin_offset_corner:Nnnnn.)

(End of definition for __coffin_offset_corners:Nnn and __coffin_offset_corner:Nnnnn.)
\c__coffin_empty_coffin An empty-but-horizontal coffin.

(End of definition for \c__coffin_empty_coffin)

\coffin_typeset:Nnnnn \coffin_typeset:ccnnnn

Typesetting a coffin means aligning it with the current position, which is done using a coffin with no content at all. As well as aligning to the empty coffin, there is also a need to leave vertical mode, if necessary.

(End of definition for \coffin_typeset:Nnnnn. This function is documented on page 310.)

93.8 Coffin diagnostics

\l__coffin_display_coffin \l__coffin_display_coord_coffin \l__coffin_display_pole_coffin

Used for printing coffins with data structures attached.

(End of definition for \l__coffin_display_coffin, \l__coffin_display_coord_coffin, and \l__coffin_display_pole_coffin.)

\l__coffin_display_handles_prop

This property list is used to print coffin handles at suitable positions. The offsets are expressed as multiples of the basic offset value, which therefore acts as a scale-factor.

(End of definition for \l__coffin_display_handles_prop.)
\l__coffin_display_offset_dim \l__coffin_display_offset_dim
The standard offset for the label from the handle position when displaying handles.
\dim_new:N \l__coffin_display_offset_dim \dim_set:Nn \l__coffin_display_offset_dim { 2pt }
(End of definition for \l__coffin_display_offset_dim.)
\l__coffin_display_x_dim \l__coffin_display_y_dim
\dim_new:N \l__coffin_display_x_dim \dim_new:N \l__coffin_display_y_dim
(End of definition for \l__coffin_display_x_dim and \l__coffin_display_y_dim.)
\l__coffin_display_poles_prop
A property list for printing poles: various things need to be deleted from this to get a
“nice” output.
\prop_new:N \l__coffin_display_poles_prop
(End of definition for \l__coffin_display_poles_prop.)
\l__coffin_display_font_tl
Stores the settings used to print coffin data: this keeps things flexible.
\tl_new:N \l__coffin_display_font_tl
\bool_lazy_and:nnT
{ \cs_if_exist_p:N \fmtname }
{ \str_if_eq_p:Vn \fmtname { LaTeX2e } }
{ { \sffamily \tiny } }
{ { \b } { 1 } { 1 } { 1 } }
{ { \b } { 0 } { 1 } { 1 } }
(End of definition for \l__coffin_display_font_tl.)
__coffin_rule:nn
Abstract out creation of rules here until there is a higher-level interface.
\cs_new_protected:Npn __coffin_rule:nn #1#2
{ \mode_leave_vertical:
 \hbox:n { \tex_vrule:D width #1 height #2 \scan_stop: } }
1381
Marking a single handle is relatively easy. The standard attachment function is used, meaning that there are two calculations for the location. However, this is likely to be okay given the load expected. Contrast with the more optimised version for showing all handles which comes next.

```latex
\cs_new_protected:Npn \coffin_mark_handle:Nnnn \#1#2#3#4
\{
    \hcoffin_set:Nn \l__coffin_display_pole_coffin
        \color_select:n {#4}
    \__coffin_rule:nn { 1pt } { 1pt }
\}
\__coffin_attach_mark:Nnnn #1 {#2} {#3}
\l__coffin_display_pole_coffin \hc \vc \Opt \Opt
\hcoffin_set:Nn \l__coffin_display_coord_coffin
\color_select:n {#4}
\l__coffin_display_font_tl \tl_to_str:n { #2 , #3 }
\prop_get:NnN \l__coffin_display_handles_prop { #2 #3 } \l__coffin_internal_tl
\quark_if_no_value:NTF \l__coffin_internal_tl
    \__coffin_attach_mark:Nnnn #1 {#2} {#3}
    \l__coffin_display_coord_coffin \l \vc \Opt \Opt
\}
\prop_get:NnN \l__coffin_display_handles_prop \#2 \#3 \l__coffin_internal_tl
\quark_if_no_value:NTF \l__coffin_internal_tl
    \__coffin_attach_mark:Nnnn #1 {#2} {#3}
    \l__coffin_display_coord_coffin \l \vc \Opt \Opt
\exp_last_unbraced:No \__coffin_mark_handle_aux:nnnnNnn
    \l__coffin_internal_tl \#1 \#2 \#3
\}
\exp_last_unbraced:No \__coffin_mark_handle_aux:nnnnNnn
    \l__coffin_internal_tl \#1 \#2 \#3
\}
\cs_new_protected:Npn \__coffin_mark_handle_aux:nnnnNnn \#1\#2\#3\#4\#5\#6\#7
\{
    \__coffin_attach_mark:Nnnn \#5 \#6 \#7
    \l__coffin_display_coord_coffin \#1 \#2
    \l__coffin_display_offset_dim \#3 \#4
\}
\cs_generate_variant:Nn \coffin_mark_handle:Nnnn \c
```

(End of definition for _coffin_rule:nn.)

This function is documented on page 311.)
Printing the poles starts by removing any duplicates, for which the H poles is used as the definitive version for the baseline and bottom. Two loops are then used to find the combinations of handles for all of these poles. This is done such that poles are removed during the loops to avoid duplication.

For each pole there is a check for an intersection, which here does not give an error if none is found. The successful values are stored and used to align the pole coffin with the main coffin for output. The positions are recovered from the preset list if available.
This is a dedicated version of \coffin_attach:Nnnnnnn with a hard-wired first coffin. As the intersection is already known and stored for the display coffin the code simply uses it directly, with no calculation.
For showing the various internal structures attached to a coffin in a way that keeps things relatively readable. If there is no apparent structure then the code complains.

```
\coffin_show_structure:N
\coffin_show_structure:c
\coffin_log_structure:N
\coffin_log_structure:c
\__coffin_show_structure:NN
```

Essentially a combination of \coffin_show_structure:N and \box_show:Nnn, but we need to avoid having two prompts, so we use \msg_term:nneeee instead of \msg_show:nneeee in the show case.

```
\coffin_log:N
\coffin_log:c
\coffin_log:Nnn
\coffin_log:cmn
\__coffin_show:NNNnn
```

(End of definition for \coffin_display_handles:Nn and others. This function is documented on page 311.)
36008 \{
36009 __coffin_if_exist:NT #3
36010 \{
36011 __coffin_show_structure:NN #1 #3
36012 #2 #3 \{#4} \{#5}
36013 \}
36014 \}

(End of definition for \coffin_show: and others. These functions are documented on page 311.)

93.9 Messages

\msg_new:nnnn { coffin } { no-pole-intersection }
\{ No-intersection-between-coffin-poles. \}

\{ LaTeX-was-asked-to-find-the-intersection-between-two-poles,-
but-they-do-not-have-a-unique-meeting-point:-
the-value-(0pt,-0pt)-will-be-used. \}

\msg_new:nnnn { coffin } { unknown }
\{ Unknown-coffin-’#1’. \}

\{ The-coffin-’#1’-was-never-defined. \}

\msg_new:nnnn { coffin } { unknown-pole }
\{ Pole-’#1’-unknown-for-coffin-’#2’. \}

\{ LaTeX-was-asked-to-find-a-typesetting-pole-for-a-coffin,-
but-either-the-coffin-does-not-exist-or-the-pole-name-is-wrong. \}

\msg_new:nnn { coffin } { show }
\{

\size-of-coffin-#1 : #2 \\
Poles-of-coffin-#1 : #3 .
\}

\(/package)
Chapter 94

\textbf{\texttt{l3color} implementation}

\texttt{__color_current_tl} The color currently active for foreground (text, \textit{etc.}) material. This is stored in the form of a color model followed by one or more values. There are four pre-defined models, three of which take numerical values in the range $[0, 1]$:

- \texttt{gray} \langle \texttt{gray} \rangle Grayscale color with the \langle \texttt{gray} \rangle value running from 0 (fully black) to 1 (fully white)
- \texttt{cmyk} \langle \texttt{cyan} \rangle \langle \texttt{magenta} \rangle \langle \texttt{yellow} \rangle \langle \texttt{black} \rangle
- \texttt{rgb} \langle \texttt{red} \rangle \langle \texttt{green} \rangle \langle \texttt{blue} \rangle

Notice that the value are separated by spaces. There is a fourth pre-defined model using a string value and a numerical one:

- \texttt{spot} \langle \texttt{name} \rangle \langle \texttt{tint} \rangle A pre-defined spot color, where the \langle \texttt{name} \rangle should be a pre-defined string color name and the \langle \texttt{tint} \rangle should be in the range $[0, 1]$.

Additional models may be created to allow mixing of spot colors. The number of data entries these require will depend on the number of colors to be mixed.

\textbf{\texttt{\texttt{T\TeX}hackers note}}: The content of \texttt{__color_current_tl} comprises two brace groups, the first containing the color model and the second containing the value(s) applicable in that model.

\texttt{color_group_begin:} Grouping for color is the same as using the basic \texttt{\texttt{\texttt{__color_current_tl}}} functions. However, for semantic reasons, they are renamed here.

\texttt{color_group_end:} Grouping for color is the same as using the basic \texttt{\texttt{\texttt{__color_current_tl}}} functions. However, for semantic reasons, they are renamed here.

\texttt{(End of definition for \texttt{__color_current_tl}.)}

\texttt{(End of definition for \texttt{color_group_begin: and color_group_end:}. These functions are documented on page 313.)}
\color_ensure_current: A driver-independent wrapper for setting the foreground color to the current color “now”.

\cs_new_protected:Npn \color_ensure_current: __color_select:N \l__color_current_tl

(End of definition for \color_ensure_current:. This function is documented on page 313.)

\s__color_stop Internal scan marks.

\scan_new:N \s__color_stop

(End of definition for \s__color_stop.)

__color_select:N __color_select_math:N __color_select:nn Take an internal color specification and pass it to the driver. This code is needed to ensure the current color but will also be used by the higher-level material.

\cs_new_protected:Npn __color_select:N #1 __color_select_math:N #1 __color_select:nn #1#2

(End of definition for __color_select:N, __color_select_math:N, and __color_select:nn.)

\l__color_current_tl The current color, with the model and

\tl_new:N \l__color_current_tl
\tl_set:Nn \l__color_current_tl \{ \{ gray \} \{ 0 \} \}

(End of definition for \l__color_current_tl.)

94.2 Predefined color names

The ability to predefine colors with a name is a key part of this module and means there has to be a method for storing the results. At first sight, it seems natural to follow the usual expl3 model and create a color variable type for the process. That would then allow both local and global colors, constant colors and the like. However, these names need to be accessible in some form at the user level, for selection of colors either simply by name or as part of a more complex expression. This does not require that the full name is exposed but does require that they can be looked up in a predictable way. As such, it is more useful to expose just the color names as part of the interface, with the result that only local color names can be created. (This is also seen for example in key creation in l3keys.) As a result, color names are declarative (no \new functions).

Since there is no need to manipulate colors en masse, each is stored in a two-part structure: a \prop for the colors themselves, and a \tl for the default model for each color.
94.3 Setup

\l__color_internal_int
\l__color_internal_tl

(int_new:N \l__color_internal_int
\tl_new:N \l__color_internal_tl)

(End of definition for \l__color_internal_int and \l__color_internal_tl.)

\s__color_mark

Internal scan marks. \s__color_stop is already defined in \l3color-base.

\scan_new:N \s__color_mark

(End of definition for \s__color_mark.)

\l__color_ignore_error_bool

Used to avoid issuing multiple errors if there is a change-of-model with input container an error.

\bool_new:N \l__color_ignore_error_bool

(End of definition for \l__color_ignore_error_bool.)

94.4 Utility functions

\color_if_exist_p:n
\color_if_exist:nTF

A simple wrapper to avoid needing to have the lookup repeated in too many places. To guard against a color created in a group, we need to test for entries in the prop.

\prg_new_conditional:Npnn \color_if_exist:n #1 { p , T, F, TF } \color_if_exist:nTF

{ \prop_if_exist:cTF { l__color_named_#1_prop } \prop_if_empty:cTF { l__color_named_#1_prop } \prg_return_false: \prg_return_true: \prg_return_false: }

(End of definition for \color_if_exist:nTF. This function is documented on page 316.)

__color_model:N
__color_values:N

Simple abstractions.

\cs_new:Npn __color_model:N #1 { \exp_after:wN \use_i:nn #1 }
\cs_new:Npn __color_values:N #1 { \exp_after:wN \use_ii:nn #1 }

(End of definition for __color_model:N and __color_values:N.)

__color_extract:nNN
__color_extract:VNN

Recover the values for the standard model for a color.

\cs_new_protected:Npn __color_extract:nNN #1#2#3
\cs_new_protected:Npn __color_extract:VNN #1#2#3

\tl_set_eq:Nc \tl_set_eq:Nc \prop_get:cVN \cs_generate_variant:Nn \cs_generate_variant:nNN

(End of definition for __color_extract:nNN.)
94.5 Model conversion

Model conversion is carried out using standard formulae for base models, as described in the manual for xcolor (see also the PostScript Language Reference Manual). For other models direct conversion might not be defined, so we go through the fallback models if necessary.

```latex
\cs_new_protected:Npn \__color_convert:nnN #1#2\#3
\{ \__color_convert:nnVN {#1} {#2} \#3 \#3 \}
\cs_generate_variant:Nn \__color_convert:nnN { VV }
\cs_generate_variant:Nn \exp_last_unbraced:Nf { c }
\cs_new_protected:Npn \__color_convert:nnnN #1#2#3#4
\{ \tl_set:Ne #4
\cs_if_exist_use:cTF { __color_convert__ #1 _ #2 :w }
\{ \#3 \s__color_stop \}
\cs_if_exist:cTF { __color_convert__ \use:c { c__color_fallback_ #1 _tl } _ #2 :w }
\{ \use:c { __color_convert__ #1 _ \use:c { c__color_fallback_ #1 _tl } :w } \s__color_stop \}
\exp_last_unbraced:cf
\{ __color_convert__ \use:c { c__color_fallback_ #1 _tl } _ #2 :w \}
\{ \use:c { __color_convert__ #1 _ \use:c { c__color_fallback_ #1 _tl } :w } \s__color_stop \}
\exp_last_unbraced:cf
\{ __color_convert__ \use:c { c__color_fallback_ #2 _tl } _ #2 :w \}
\{ \cs_if_exist_use:cTF { __color_convert__ #1 _ _ \use:c { c__color_fallback } \}
\{ \#3 \s__color_stop \}
\exp_last_unbraced:cf
\{ __color_convert__ \use:c { c__color_fallback_ #2 _tl } _ _ \use:c { c__color_fallback } \}
\{ \use:c { __color_convert__ #1 _ _ \use:c { c__color_fallback_ #1 _ _ } \s__color_stop \}
\exp_last_unbraced:cf
\{ __color_convert__ \use:c { c__color_fallback_ #1 _tl } _ _ \use:c { c__color_fallback } \}
\{ \use:c { __color_convert__ #1 _ _ \use:c { c__color_fallback_ #1 _ _ } \s__color_stop \}
\exp_last_unbraced:cf
\{ __color_convert__ \use:c { c__color_fallback_ #2 _tl } _ _ \use:c { c__color_fallback } \}
\{ \use:c { __color_convert__ #1 _ _ \use:c { c__color_fallback_ #1 _ _ } \s__color_stop \}
\exp_last_unbraced:cf
\{ __color_convert__ \use:c { c__color_fallback_ #3 _tl } _ _ \use:c { c__color_fallback } \}
\{ \use:c { __color_convert__ #1 _ _ \use:c { c__color_fallback_ #1 _ _ } \s__color_stop \}
\\s__color_stop
\\s__color_stop
\\s__color_stop
\s__color_stop
\}
\cs_generate_variant:Nn \__color_convert:nnnN { nV , nnV }\cs_new:Npn \__color_convert_gray_gray:w #1 \s__color_stop
\{ #1 \}
\cs_new:Npn \__color_convert_gray_rgb:w #1 \s__color_stop
\{ \fp_eval:n { 0.3 * #1 + 0.59 * #1 + 0.11 * #1 } \}
\cs_new:Npn \__color_convert_gray_cmyk:w #1 \s__color_stop
\{ \fp_eval:n { 0.3 * #1 + 0.59 * #1 + 0.11 * #1 } \}
\cs_new:Npn \__color_convert_rgb_gray:w #1 ~ #2 ~ #3 \s__color_stop
\{ \fp_eval:n { 0.3 * #1 + 0.59 * #2 + 0.11 * #3 } \}
\cs_new:Npn \__color_convert_rgb_rgb:w #1 ~ #2 ~ #3 \s__color_stop
\{ \fp_eval:n { 0.3 * #1 + 0.59 * #2 + 0.11 * #3 } \}
\cs_new:Npn \__color_convert_rgb_cmyk:w #1 ~ #2 ~ #3 \s__color_stop
\{ \fp_eval:n { 0.3 * #1 + 0.59 * #2 + 0.11 * #3 } \}
```

These rather odd values are based on NTSC television: the set are used for the cmyk conversion.
The conversion from rgb to cmyk is the most complex: a two-step procedure which requires black generation and undercolor removal functions. The PostScript reference describes them as device-dependent, but following xcolor we assume they are linear. Moreover, as the likelihood of anyone using a non-unitary matrix here is tiny, we simplify and treat those two concepts as no-ops. To allow code sharing with parsing of cmy values, we have an intermediate function here (_color_convert_rgb_cmyk:nnn) which actually takes cmy values as input.

\cs_new:Npn _color_convert_rgb_cmyk:w #1~#2~#3 \s__color_stop
\exp_args:Neee _color_convert_rgb_cmyk:nnn
\{ \fp_eval:n { 1 - #1 } \}
\{ \fp_eval:n { 1 - #2 } \}
\{ \fp_eval:n { 1 - #3 } \}
\}
\cs_new:Npn _color_convert_rgb_cmyk:nnn #1#2#3
\exp_args:Ne _color_convert_rgb_cmyk:nnnn
\{ \fp_eval:n { \min(#1, #2, #3) } \} {#1} {#2} {#3}
\}
\cs_new:Npn _color_convert_rgb_cmyk:nnnn #1#2#3#4
\fp_eval:n { \min (1 , \max (0 , #2 - #1)) } \c_space_tl
\fp_eval:n { \min (1 , \max (0 , #3 - #1)) } \c_space_tl
\fp_eval:n { \min (1 , \max (0 , #4 - #1)) } \c_space_tl
#1
\}
\cs_new:Npn _color_convert_cmyk_gray:w #1~#2~#3~#4 \s__color_stop
\{ \fp_eval:n { 1 - \min (1 , 0.3 * #1 + 0.59 * #2 + 0.11 * #3 + #4) } \}
\cs_new:Npn _color_convert_cmyk_rgb:w #1~#2~#3~#4 \s__color_stop
\{ \fp_eval:n { 1 - \min (1 , #1 + #4) } \c_space_tl
\fp_eval:n { 1 - \min (1 , #2 + #4) } \c_space_tl
\fp_eval:n { 1 - \min (1 , #3 + #4) } \}
\cs_new:Npn _color_convert_cmyk_cmyk:w #1 \s__color_stop
\{ #1 \}
\endinput

(End of definition for _color_convert:nnn and others.)

94.6 Color expressions

Working space to store the color data whilst doing calculations: keeping it on the stack is attractive but gets tricky (return is non-trivial).

\tl_new:N _color_model_tl
\tl_new:N _color_value_tl
\tl_new:N _color_next_model_tl
\tl_new:N _color_next_value_tl

(End of definition for _color_model_tl and others.)
The main function for parsing color expressions removes actives but otherwise expands, then starts working through the expression itself. At the end, we apply the payload.

Before going to all of the effort of parsing an expression, these two precursor functions look for a pre-defined name, either on its own or with a trailing `!` (which is the same thing).

Here, we have to allow for the case where there is a fixed model: that can’t be swept up by generic conversion as we are dealing with a named color.
Once we establish that a full parse is needed, the next job is to get the detail of the first color. That will determine the model we use for the calculation: splitting here makes checking that a bit easier.

\cs_new_protected:Npn __color_parse_loop_init:Nnn \#1\#2\#3
\group_begin:
__color_extract:nNN \l__color_model_tl \l__color_value_tl
__color_parse_loop:w \#3 ! ! ! ! \s__color_stop
\tl_set:Ne \l__color_internal_tl
\{ \l__color_model_tl \} \{ \l__color_value_tl \}
\exp_args:NNNV \group_end:
\tl_set:Nn \l__color_current_tl \l__color_internal_tl
__color_parse_end:

This is the loop proper: there can be an open-ended set of colors to parse, separated by \! tokens. There are a few cases to look out for. At the end of the expression and with we find a mix of 100 then we simply skip the next color entirely (we can’t stop the loop as there might be a further valid color to mix in). On the other hand, if we get a mix of 0 then drop everything so far and start again. There is also a trailing \white to “read in” if the final explicit data is a mix. Those conditions are separate from actually looping, which is therefore sorted out by checking if we have further data to process: in contrast to \texttt{xcolor}, we don’t allow \!! so the test can be simplified.

\cs_new_protected:Npn __color_parse_loop:w \#1 ! \#2 ! \#3 ! \#4 ! \#5 \s__color_stop
\group_begin:
__color_extract:nNN \#2 \l__color_model_tl \l__color_value_tl
__color_parse_loop:w \#3 ! ! ! ! \s__color_stop
\tl_set:Ne \l__color_internal_tl
\{ \l__color_model_tl \} \{ \l__color_value_tl \}
\exp_args:NNNV \group_end:
\tl_set:Nn \l__color_current_tl \l__color_internal_tl
__color_parse_end:

\use:e
\{
__color_parse_loop:nn \#1
\tl_if_blank:nTF \#2
\{ __color_parse_loop:nn \#1 \tl_if_blank:nTF \#2 \{ white \} \#2 \}
\}
\tl_if_blank:nF \#3
\{ __color_parse_loop:nn \#1 \#2 \}
\tl_if_blank:nF \#3
\{ __color_parse_loop:w \#3 \#4 \#5 \s__color_stop \}
__color_parse_end:

1393
As these are unusual cases, we accept slower performance here for clearer code: check for the error conditions, handle the boundary cases after that.

```latex
\cs_new_protected:Npn \__color_parse_loop_check:nn #1#2
\bool_if:NF \l__color_ignore_error_bool
\bool_lazy_or:nnT
{ \fp_compare_p:nNn {#1} < { 0 } }
{ \fp_compare_p:nNn {#1} > { 100 } }
{ \msg_error:nnn { color } { out-of-range } {#1} { 0 } { 100 } }
\fp_compare:nNnF {#1} > \c_zero_fp
\tl_if_blank:nTF {#2}
{ \__color_extract:nNN { white } }
{ \__color_extract:nNN {#2} }
\l__color_model_tl \l__color_value_tl
\fp_compare:nNnF {#1} > \c_zero_fp
\color_if_exist:nTF {#2}
\__color_extract:nNN {#2} \l__color_next_model_tl \l__color_next_value_tl
\tl_if_eq:NNF \l__color_model_tl \l__color_next_model_tl
\str_if_eq:VnTF \l__color_model_tl { gray }
{ \__color_parse_gray:n {#2} }
{ \__color_parse_std:n {#2} }
\tl_set:Ne \l__color_value_tl
\__color_parse_mix:NVVn
\l__color_model_tl \l__color_value_tl \l__color_next_model_tl {#1}
\msg_error:n { color } { unknown-color } {#2}
\__color_extract:nNN { black } \l__color_model_tl \l__color_value_tl
\__color_parse_break:w
\}
\}
```

The “payload” of calculation in the loop first. If the model for the upcoming color is different from that of the existing (partial) color, convert the model. For gray the two are flipped round so that the outcome is something with “real” color. We are then in a position to do the actual calculation itself. The two auxiliaries here give us a way to break the loop should an invalid name be found.

```latex
\cs_new_protected:Npn \__color_parse_loop:nn #1#2
\color_if_exist:nTF {#2}
\__color_extract:nNN {#2} \l__color_next_model_tl \l__color_next_value_tl
\tl_if_eq:NNF \l__color_model_tl \l__color_next_model_tl
\str_if_eq:VnTF \l__color_model_tl { gray }
{ \__color_parse_gray:n {#2} }
{ \__color_parse_std:n {#2} }
\tl_set:Ne \l__color_value_tl
\__color_parse_mix:NVVn
\l__color_model_tl \l__color_value_tl \l__color_next_model_tl {#1}
\}
\}
```

The gray model needs special handling: the models need to be swapped: we do that using a dedicated function.

```latex
\cs_new_protected:Npn \__color_parse_gray:n #1
\tl_set_eq:NN \l__color_model_tl \l__color_next_model_tl
\msg_error:n { color } { unknown-color } {#2}
\__color_extract:nNN { black } \l__color_model_tl \l__color_value_tl
\__color_parse_break:w
\}
\}
```

1394
Do the vector arithmetic: mainly a question of shuffling input, along with one pre-calculation to keep down the use of division.

\begin{verbatim}
\cs_new_protected:Npn __color_parse_mix:Nnnn #1#2#3#4
{ \exp_args:Nf __color_parse_mix:nNnn { \fp_eval:n { #4 / 100 } } #1 {#2} {#3} }
\cs_generate_variant:Nn __color_parse_mix:Nnnn { NVV }
\cs_new:Npn __color_parse_mix:nNnn #1#2#3#4
{ \use:c { __color_parse_mix_ #2 :nw } {#1} #3 \s__color_mark #4 \s__color_stop }
\cs_new:Npn __color_parse_mix_gray:nw #1#2 \s__color_mark #3 \s__color_stop
{ \fp_eval:n { #2 * #1 + #3 * (1 - #1) } }
\cs_new:Npn __color_parse_mix_rgb:nw #1#2 ~ #3 ~ #4 \s__color_mark #5 ~ #6 ~ #7 \s__color_stop
{ \fp_eval:n { #2 * #1 + #5 * (1 - #1) } \c_space_tl
\fp_eval:n { #3 * #1 + #6 * (1 - #1) } \c_space_tl
\fp_eval:n { #4 * #1 + #7 * (1 - #1) } }
\cs_new:Npn __color_parse_mix_cmyk:nw #1#2 ~ #3 ~ #4 ~ #5 \s__color_mark #6 ~ #7 ~ #8 ~ #9 \s__color_stop
{ \fp_eval:n { #2 * #1 + #6 * (1 - #1) } \c_space_tl
\fp_eval:n { #3 * #1 + #7 * (1 - #1) } \c_space_tl
\fp_eval:n { #4 * #1 + #8 * (1 - #1) } \c_space_tl
\fp_eval:n { #5 * #1 + #9 * (1 - #1) } }
\end{verbatim}

(End of definition for __color_parse:nN and others.)
Turn the input into internal form, also tidying up the number quickly.

```latex
\cs_new:Npn \__color_parse_model_gray:w #1 , #2 \s__color_stop
\__color_parse_model_gray:w \{ gray \} \{ \__color_parse_number:n \{#1\} \}
\cs_new:Npn \__color_parse_model_rgb:w #1 , #2 , #3 , #4 \s__color_stop
\__color_parse_model_rgb:w \{ rgb \}
\__color_parse_model_rgb:w \{ \__color_parse_number:n \{#1\} \}
\__color_parse_model_rgb:w \{ \__color_parse_number:n \{#2\} \}
\__color_parse_model_rgb:w \{ \__color_parse_number:n \{#3\} \}
\__color_parse_model_rgb:w \{ \__color_parse_number:n \{#4\} \}
\cs_new:Npn \__color_parse_model_cmyk:w #1 , #2 , #3 , #4 , #5 \s__color_stop
\__color_parse_model_cmyk:w \{ cmyk \}
\__color_parse_model_cmyk:w \{ \__color_parse_number:n \{#1\} \}
\__color_parse_model_cmyk:w \{ \__color_parse_number:n \{#2\} \}
\__color_parse_model_cmyk:w \{ \__color_parse_number:n \{#3\} \}
\__color_parse_model_cmyk:w \{ \__color_parse_number:n \{#4\} \}
\cs_new:Npn \__color_parse_number:n #1
\__color_parse_number:w #1 . 0 . \s__color_stop
\cs_new:Npn \__color_parse_number:w #1 . #2 . #3 \s__color_stop
\__color_parse_number:w \{ \tl_if_blank:nTF {#1} { 0 } {#1} . #2 \}
```

The conversion here is non-trivial but is described at length in the xcolor manual. For ease, we calculate the integer and fractional parts of the hue first, then use them to work out the possible values for \(r \), \(g \) and \(b \) before putting them in the correct places.

```latex
\cs_new:Npn \__color_parse_model_Gray:w \{ gray \} \{ \fp_eval:n \{ #1 / 15 \} \}
\cs_new:Npn \__color_parse_model_hsb:w #1 , #2 , #3 , #4 \s__color_stop
\__color_parse_model_hsb:w \{ \__color_parse_model_hsb:nnn \{#1\} \{#2\} \{#3\} \}
\cs_new:Npn \__color_parse_model_Hsb:w #1 , #2 , #3 , #4 \s__color_stop
\__color_parse_model_hsb:w \{ \__color_parse_model_hsb_0:nnnn \{\fp_eval:n \{ #1 / 360 \} \} \{#2\} \{#3\} \}
\cs_new:Npn \__color_parse_model_HSB:w #1 , #2 , #3 , #4 \s__color_stop
\__color_parse_model_HSB:w \{ \__color_parse_model_hsb:nnn \{#1\} \{#2\} \{#3\} \}
\__color_parse_model_HSB:w \{ \__color_parse_model_hsb:nnnn \{\fp_eval:n \{ #1 / 360 \} \} \{#2\} \{#3\} \}
\cs_new:Npn \__color_parse_model_HTML:w \{ \__color_parse_model_hsb:nnn \{#1\} \{#2\} \{#3\} \}
\cs_new:Npn \__color_parse_model_RGB:w \{ \__color_parse_model_hsb:nnn \{#1\} \{#2\} \{#3\} \}
\cs_new:Npn \__color_parse_model_html:w \{ \__color_parse_model_hsb:nnn \{#1\} \{#2\} \{#3\} \}
\cs_new:Npn \__color_parse_model_wave:w \{ \__color_parse_model_hsb:nnn \{#1\} \{#2\} \{#3\} \}
\cs_new:Npn \__color_parse_model_wave:s \{ \__color_parse_model_hsb:nnn \{#1\} \{#2\} \{#3\} \}
\cs_new:Npn \__color_parse_model_wave:nnn \{ \__color_parse_model_hsb:nnn \{#1\} \{#2\} \{#3\} \}
\cs_new:Npn \__color_parse_model_wave:nnnn \{ \__color_parse_model_hsb:nnn \{#1\} \{#2\} \{#3\} \}
\cs_new:Npn \__color_parse_model_wave:nnn \{ \__color_parse_model_hsb:nnn \{#1\} \{#2\} \{#3\} \}
\cs_new:Npn \__color_parse_model_wave:nnnn \{ \__color_parse_model_hsb:nnn \{#1\} \{#2\} \{#3\} \}
\cs_new:Npn \__color_parse_model_wave:nnnn \{ \__color_parse_model_hsb:nnn \{#1\} \{#2\} \{#3\} \}
\cs_new:Npn \__color_parse_model_wave:nnnn \{ \__color_parse_model_hsb:nnn \{#1\} \{#2\} \{#3\} \}
```

The conversion here is non-trivial but is described at length in the xcolor manual. For ease, we calculate the integer and fractional parts of the hue first, then use them to work out the possible values for \(r \), \(g \) and \(b \) before putting them in the correct places.
Following the description in the xcolor manual. As we always use rgb, there is no need to find the sixth, we just pass the information straight to the hsb auxiliary defined earlier.
\cs_new:Npn __color_parse_model_wave:wn #1 , #2 \s__color_stop
{
 \{ rgb \}
 \{
 \fp_compare:nNnTF {#1} < { 420 }
 \{ __color_parse_model_wave_auxi:nn {#1} { 0.3 + 0.7 * (#1 - 380) / 40 } \}
 \}
 \{
 \fp_compare:nNnTF {#1} > { 700 }
 \{ __color_parse_model_wave_auxi:nn {#1} { 0.3 + 0.7 * (#1 - 780) / -80 } \}
 \{ __color_parse_model_wave_auxi:nn {#1} { 1 } \}
 \}
 \}
 \cs_new:Npn __color_parse_model_wave_auxi:nn #1#2
{
 \fp_compare:nNnTF {#1} < { 440 }
 \{ __color_parse_model_wave_auxii:nn
 \{ 4 + __color_parse_model_wave_rho:n { (#1 - 440) / -60 } \}
 \{#2\}
 \}
 \{
 \fp_compare:nNnTF {#1} < { 490 }
 \{ __color_parse_model_wave_auxii:nn
 \{ 4 - __color_parse_model_wave_rho:n { (#1 - 440) / 50 } \}
 \{#2\}
 \}
 \{
 \fp_compare:nNnTF {#1} < { 510 }
 \{ __color_parse_model_wave_auxii:nn
 \{ 2 + __color_parse_model_wave_rho:n { (#1 - 510) / -20 } \}
 \{#2\}
 \}
 \{
 \fp_compare:nNnTF {#1} < { 580 }
 \{ __color_parse_model_wave_auxii:nn
 \{ 2 - __color_parse_model_wave_rho:n { (#1 - 510) / 70 } \}
 \{#2\}
 \}
 \{
 \fp_compare:nNnTF {#1} < { 645 }
 \{ __color_parse_model_wave_auxii:nn
 \{ __color_parse_model_wave_rho:n { (#1 - 645) / -65 } \}
 \{#2\}
 \}
 \{ __color_parse_model_wave_auxii:nn { 0 } \{#2\} \}
 \}
}
__color_parse_model_wave
\cs_new:Npn __color_parse_model_wave_auxii:nn #1#2
{ \exp_args:Neee __color_parse_model_hsb_aux:nnn
{ \fp_eval:n {#1} } { 1 } __color_parse_model_wave_rho:n {#2} }
\cs_new:Npn __color_parse_model_wave_rho:n #1
{ \fp_eval:n { min(1, max(0,#1)) } }
__color_parse_model_Gray:w
__color_parse_model_cmy:w
__color_convert_rgb_cmyk:nnn {#1} {#2} {#3}
__color_parse_model_cmy:w #1 , #2 , #3 , #4 \s__color_stop
__color_convert_rgb_cmyk:nnn {#1} {#2} {#3}
__color_parse_model_tHsb:w
__color_parse_model_tHsb:nw
__color_parse_model_tHsb:n
\exp_args:Ne __color_parse_model_tHsb:nnn
{ __color_parse_model_tHsb:nw {#1} } {#2} {#3}
__color_parse_model_tHsb:w #1 , #2 , #3 , #4 \s__color_stop
__color_parse_model_tHsb:nw {#1} #4 , #5 ;
__color_parse_model_tHsb:nw #1
__color_parse_model_tHsb:nw {#1}
0 , 0 ;
60 , 30 ;
120 , 60 ;
180 , 120 ;
210 , 180 ;
240 , 240 ;
360 , 360 ;
\q_recursion_tail , ;
\q_recursion_stop
__color_parse_model_tHsb:nn {#1}
\quark_if_recursion_tail_stop_do:nnn {#4} { 0 }
\fp_compare:nNnTF {#1} > {#4}
__color_parse_model_tHsb:nn {#1} #4 , #5 ;
\use_i_delimit_by_q_recursion_stop:nw
___color_parse_model_\&spot:w

We cannot extract data here from that passed by xcolor, so we fall back on a black tint.

\begin{verbatim}
\cs_new:cpn { __color_parse_model_\&spot:w } #1 , #2 \s__color_stop
{ { gray } { #1 } }
\end{verbatim}

\textbf{94.7 Selecting colors (and color models)}

\texttt{_l_color_fixed_model_tl}

For selecting a single fixed model.

\begin{verbatim}
\tl_new:N \l_color_fixed_model_tl
\end{verbatim}

\texttt{___color_check_model:N ___color_check_model:nn}

Check that the model in use is the one required.

\begin{verbatim}
\cs_new_protected:Npn __color_check_model:N #1
{
\tl_if_empty:NF \l_color_fixed_model_tl
{\exp_after:wN __color_check_model:nn #1
\tl_if_eq:NNF \l__color_model_tl \l_color_fixed_model_tl
{__color_convert:VVN \l__color_model_tl \l_color_fixed_model_tl
\l__color_value_tl}
\tl_set:Ne #1
{ { \l_color_fixed_model_tl } { \l__color_value_tl } }
}
}
\cs_new_protected:Npn __color_check_model:nn #1#2
{\tl_set:Nn \l__color_model_tl {#1}
\tl_set:Nn \l__color_value_tl {#2}}
\end{verbatim}

\texttt{___color_finalise_current:}

A backend-neutral location for “last minute” manipulations before handing off to the backend code. We set the special . syntax here: this will therefore always be available. The finalisation is separate from the main function so it can also be applied to \textit{e.g.} page color.

\begin{verbatim}
\cs_new_protected:Npe __color_finalise_current:
{\tl_set:Ne \exp_not:c { l__color_named_ . _tl }
{\exp_not:N __color_model:N \exp_not:N \l__color_current_tl }
\prop_clear:N \exp_not:N __color_named_ . _prop }
\prop_put:NcN \exp_not:N __color_named_ . _prop }
\exp_not:c { l__color_named_ . _tl }
\end{verbatim}
Parse the input expressions then get the backend to actually activate them. The main complexity here is the need to check through multiple models. That is done “locally” here as the approach is subtly different to when different models are being stored.

If the first color model is the fixed one, or if there is no fixed model, we don’t need most of the data: just set up and apply the backend function.

If a fixed model applies, we need to check each possible value in order. If there is no hit at all, fall back on the generic formula-based interchange.
\begin{verbatim}
\cs_new_protected:Npm __color_select_swap:Nnn #1#2#3
 __color_convert:nVnN {#2} \l_color_fixed_model_tl {#3} \l__color_value_tl
 \tl_set:Ne #1 { { \l_color_fixed_model_tl } { \l__color_value_tl } }
\}

(End of definition for \color_select:n and others. These functions are documented on page 316.)

94.8 Math color

The approach here is the same as for the \LaTeX\ \texttt{\textcolor} command, but as we are working at the expl3 level we can make some minor changes.

\l_color_math_active_tl Tokens representing active sub/superscripts.
\begin{verbatim}
\tl_new:N \l_color_math_active_tl
\tl_set:Nn \l_color_math_active_tl { ' }

(End of definition for \l_color_math_active_tl. This function is documented on page 317.)
\end{verbatim}

\g__color_math_seq Not all engines have multiple color stacks, and at the same time we are not expecting breaking within a colored math fragment. So we track the color stack ourselves.
\begin{verbatim}
\seq_new:N \g__color_math_seq

(End of definition for \g__color_math_seq.)
\end{verbatim}

\texttt{\color_math:nn, \color_math:nnn, __color_math:nn} The basic setup here is relatively simple: store the current color, parse the new color as-normal, then switch color before inserting the tokens we are asked to change. The tricky part is right at the end, handling the reset.
\begin{verbatim}
\cs_new_protected:Npm \color_math:nn #1#2
 __color_math:nn {#2} __color_parse:nN {#1} \l__color_current_tl
\}

\cs_new_protected:Npm \color_math:nnn #1#2#3
 __color_math:nn {#3}
 __color_select_main:Nw \l__color_current_tl #1 / / \s__color_mark #2 / / \s__color_stop
\}

\cs_new_protected:Npm __color_math:nn #1#2
 \seq_gpush:NV \g__color_math_seq \l__color_math_active_tl #1
 \l_color_math_scan:w
\)

(End of definition for \color_math:nn, \color_math:nnn, and __color_math:nn. These functions are documented on page 317.)
\end{verbatim}

1402
The complication when changing the color back is due to the fact that the \color_math:nn(n) may be followed by _ or ^ or the hidden superscript (for example ') and its argument may end in a \mathop in which case the sub- and superscripts may be attached as \limits instead of after the material. All cases need separate treatment. To avoid repeatedly collecting the same token, we first check for an alignment tab: assuming we don’t have one of those, we can “recycle” \l_peek_token safely. As we have an explicit \c_alignment_token, there needs to be an align-safe group present.

Dealing with literal _ and ^ is easy, and as we have exactly two cases, we can hard-code this. We use a hard-coded list for limits: these are all primitives. The \use_none:n here also removes the test token so it is left just in the right place.

The one final case to handle is math-active tokens, most obviously ', as these won’t be covered earlier.
The tricky part of handling sub and superscripts is that we have to reset color to the one that is on the stack but reset it back to what it was before to allow for cases like

$$\color_math:n { \text{red} } { a + \sum } _ { i = 1 } ^ { n }$$

Here, \TeX\ constructs a \vbox\ stacking subscript, summation sign, and superscript. So technically the superscript comes first and the \sum\ that should get colored red is the middle.

The approach here is to set up a brace group immediately after the script token, then to set the color appropriately in that argument. We need an extra group to keep the color contained, and as we need to allow for an explicit closing brace in the source, the inner group also is a brace one rather than \group_begin:-based. At the end of the outer group we need to insert __color_math_scan:w to continue the search for a second script token.

Notice that here we don't need to use the math-specific color selector as we can allow the \group_insert_after:N \@@_backend_reset: to operate normally.

$$\color_math:n { \text{red} } { a + \sum } _ { i = 1 } ^ { n }$$

(End of definition for __color_math_scan:w and others.)
Deal with the case where we do not have an explicit brace pair in the source.

\cs_new_protected:Npn __color_math_script_aux:N #1 \{ \c_group_end_token \}

(End of definition for __color_math_script:Nw and __color_math_script_aux:N.)

94.9 Fill and stroke color

\color_fill:n \color_fill:nn \color_stroke:n \color_stroke:nn __color_draw:nnn

\cs_new_protected:Npn \color_fill:n #1 \{
 __color_parse:nN {#1} \l__color_current_tl
 \exp_after:wN __color_draw:nnn \l__color_current_tl { fill }
\}

\cs_new_protected:Npn \color_stroke:n #1 \{
 __color_parse:nN {#1} \l__color_current_tl
 \exp_after:wN __color_draw:nnn \l__color_current_tl { stroke }
\}

\cs_new_protected:Npn \color_fill:nn #1#2 \{
 __color_select_main:Nw \l__color_current_tl #1 / / \s__color_mark #2 / / \s__color_stop
 \exp_after:wN __color_draw:nnn \l__color_current_tl { fill }
\}

\cs_new_protected:Npn \color_stroke:nn #1#2 \{
 __color_select_main:Nw \l__color_current_tl #1 / / \s__color_mark #2 / / \s__color_stop
 \exp_after:wN __color_draw:nnn \l__color_current_tl { stroke }
\}

\cs_new_protected:Npn __color_draw:nnn #1#2#3 \{
 \use:c { __color_backend_ #3 _ #1 :n } {#2}
 \exp_args:Nc \group_insert_after:N { __color_backend_ #3 _ reset: }
\}

(End of definition for \color_fill:n and others. These functions are documented on page 317.)

94.10 Defining named colors

\l__color_named_tl

Space to store the detail of the named color.

\tl_new:N \l__color_named_tl

(End of definition for \l__color_named_tl.)

\color_set:nn \color_set:nnn \color_set:nn \color_set:nnw \color_set:nnn \color_set:nn
__color_set_loop:nw \color_set_eq:nnnn

Defining named colors means working through the model list and saving both the “main” color and any equivalents in other models. Even if there is only one model, we store a prop as well as a tl, as there could be grouping weirdness, etc. When setting using an expression, we need to avoid any fixed model issues, which is done without a group as in l3keys.

\cs_new_protected:Npn \color_set:nn #1#2 \{

1405
When setting an expression-based color, there could be multiple model data available for one or more of the input colors. Where that is true for the first named color in an expression, we re-parse the expression when they are also parameter-based: only cmyk, gray and rgb make any sense here. There is a bit of a performance hit but this should be rare and taking place during set-up.
A small set of colors are always defined.

\begin{itemize}
 \item \color_set:nn { black } { gray } { 0 }
 \item \color_set:nn { white } { gray } { 1 }
 \item \color_set:nn { cyan } { cmyk } { 1 , 0 , 0 , 0 }
 \item \color_set:nn { magenta } { cmyk } { 0 , 1 , 0 , 0 }
 \item \color_set:nn { yellow } { cmyk } { 0 , 0 , 1 , 0 }
 \item \color_set:nn { red } { rgb } { 1 , 0 , 0 }
 \item \color_set:nn { green } { rgb } { 0 , 1 , 0 }
 \item \color_set:nn { blue } { rgb } { 0 , 0 , 1 }
\end{itemize}

A special named color: this is always defined though not fixed in definition.

\begin{itemize}
 \item \prop_new:c { \l__color_named_.prop }
 \item \tl_new:c { \l__color_named_.tl }
 \item \tl_set:ce { \l__color_named_.tl } { _color_model:N \l__color_current_tl }
\end{itemize}

\begin{itemize}
 \item \color_export:nnN \color_export:nnnN __color_export:nN __color_export:nnnN
\end{itemize}

\begin{verbatim}
\cs_new_protected:Npn \color_export:nnN #1#2#3
{ \group_begin:
 \tl_if_exist:cT { c__color_export_ #2 _tl }
 { \tl_set_eq:Nc \l_color_fixed_model_tl { c__color_export_ #2 _tl } }
 __color_parse:nN {#1} #3
 __color_export:nN {#2} #3
 \exp_args:NNNV \group_end:
 \tl_set:Nn #3 #3
}
\cs_new_protected:Npn \color_export:nnnN #1#2#3#4
{ __color_select_main:Nw #4
 _color_mark #2 / / \s__color_stop
 __color_export:nN {#3} #4
}
\cs_new_protected:Npn __color_export:nnnN #1#2#3#4
{ \cs_if_exist_use:cF { __color_export_format_ #3 :nnN }
 \msg_error:nnn { color } { unknown-export-format } {#3}
 \use_none:nnn
 {#1} {#2} #4
}
\end{verbatim}

94.11 Exporting colors
_color_export_format_backend:nnN
\cs new protected:Npn _color_export_format_backend:nnN #1#2#3
\{ \tl set:Nn #3 \{ \{#1\} \{#2\} \} \}

(End of definition for _color_export_format_backend:nnN.)

_color_export:nnNN
\cs new protected:Npn _color_export:nnNN #1#2#3#4#5
\{ \str if eq:nnTF \{#2\} \{#1\} \}
\{ #5 #4 #3 _s_color_stop \}
_color_convert:nnnNN \{#2\} \{#1\} \{#3\} #4
\exp after:wn \#5 \exp after:wn \#4
\#4 _s_color_stop
\}

(End of definition for _color_export:nnNN.)

\c_color_export_comma-sep-cmyk_tl
\c_color_export_comma-sep-rgb_tl
\c_color_export_HTML_tl
\c_color_export_space-sep-cmyk_tl
\c_color_export_space-sep-rgb_tl
\tl const:cn \{ c_color_export_comma-sep-cmyk_tl \} \{ cmyk \}
\tl const:cn \{ c_color_export_comma-sep-rgb_tl \} \{ rgb \}
\tl const:Nn \c_color_export_HTML_tl \{ rgb \}
\tl const:cn \{ c_color_export_space-sep-cmyk_tl \} \{ cmyk \}
\tl const:cn \{ c_color_export_space-sep-rgb_tl \} \{ rgb \}

(End of definition for \c_color_export_comma-sep-cmyk_tl and others.)

\group begin:
\cs new protected:Npn _color_tmp:w #1#2
\{ \cs new protected:cpe \{ _color_export_format_ \#1 :nnN \} \#1\#2\#3
\{ \exp not:N _color_export:nnNN \#2\{\#1\} \{\#2\} \#3
\exp not:c \{ _color_export_ \#1 :nw \} \}
\}
_color_tmp:w \{ comma-sep-cmyk \} \{ cmyk \}
_color_tmp:w \{ comma-sep-rgb \} \{ rgb \}
_color_tmp:w \{ HTML \} \{ rgb \}
_color_tmp:w \{ space-sep-cmyk \} \{ cmyk \}
_color_tmp:w \{ space-sep-rgb \} \{ rgb \}
\group end:

(End of definition for _color_export_format_comma-sep-cmyk:nnN and others.)
94.12 Additional color models

\l__color_internal_prop
\l__color_internal_prop

(End of definition for \l__color_internal_prop.)

\g__color_model_int
A tracker for the total number of new models.
\g__color_model_int
\g__color_model_int
(End of definition for \g__color_model_int.)

\c__color_fallback_cmyk_tl
\c__color_fallback_gray_tl
\c__color_fallback_rgb_tl
For every colorspace, we define one of the base colorspaces as a fallback. The base
\c__color_fallback_cmyk_tl
\c__color_fallback_gray_tl
\c__color_fallback_rgb_tl

colorspaces themselves are their own fallback.
\c__color_fallback_cmyk_tl
\c__color_fallback_gray_tl
\c__color_fallback_rgb_tl
\g__color_colorants_prop Mapping from names to colorants.
\prop_new:N \g__color_colorants_prop
\prop_gput:Nnn \g__color_colorants_prop { black } { Black }
\prop_gput:Nnn \g__color_colorants_prop { blue } { Blue }
\prop_gput:Nnn \g__color_colorants_prop { cyan } { Cyan }
\prop_gput:Nnn \g__color_colorants_prop { green } { Green }
\prop_gput:Nnn \g__color_colorants_prop { magenta } { Magenta }
\prop_gput:Nnn \g__color_colorants_prop { none } { None }
\prop_gput:Nnn \g__color_colorants_prop { red } { Red }
\prop_gput:Nnn \g__color_colorants_prop { yellow } { Yellow }

(End of definition for \g__color_colorants_prop)

\c__color_model_whitepoint_CIELAB_a_tl\c__color_model_whitepoint_CIELAB_b_tl\c__color_model_whitepoint_CIELAB_e_tl\c__color_model_whitepoint_CIELAB_d50_tl\c__color_model_whitepoint_CIELAB_d55_tl\c__color_model_whitepoint_CIELAB_d65_tl\c__color_model_whitepoint_CIELAB_d75_tl
Whitepoint data for the CIELAB profiles.
\tl_const:Nn \c__color_model_whitepoint_CIELAB_a_tl { 1.0985 ~ 1 ~ 0.3558 }
\tl_const:Nn \c__color_model_whitepoint_CIELAB_b_tl { 0.9807 ~ 1 ~ 1.1822 }
\tl_const:Nn \c__color_model_whitepoint_CIELAB_e_tl { 1 ~ 1 ~ 1 }
\tl_const:cn { \c__color_model_whitepoint_CIELAB_d50_tl } { 0.9642 ~ 1 ~ 0.8251 }
\tl_const:cn { \c__color_model_whitepoint_CIELAB_d55_tl } { 0.9568 ~ 1 ~ 0.9214 }
\tl_const:cn { \c__color_model_whitepoint_CIELAB_d65_tl } { 0.9504 ~ 1 ~ 1.0888 }
\tl_const:cn { \c__color_model_whitepoint_CIELAB_d75_tl } { 0.9497 ~ 1 ~ 1.2261 }

(End of definition for \c__color_model_whitepoint_CIELAB_a_tl and others.)

\c__color_model_range_CIELAB_tl
The range for CIELAB color spaces.
\tl_const:Nn \c__color_model_range_CIELAB_tl { 0 ~ 100 ~ -128 ~ 127 ~ -128 ~ 127 }

(End of definition for \c__color_model_range_CIELAB_tl)

\g__color_alternative_model_prop For tracking the alternative model set up for separations, etc.
\prop_new:N \g__color_alternative_model_prop
\clist_map_inline:nn { cyan , magenta , yellow , black } { \prop_gput:Nnn \g__color_alternative_model_prop {#1} { cmyk } }
\clist_map_inline:nn { red , green , blue } { \prop_gput:Nnn \g__color_alternative_model_prop {#1} { rgb } }

(End of definition for \g__color_alternative_model_prop)

\g__color_alternative_values_prop Same for the values: a bit more involved.
\prop_new:N \g__color_alternative_values_prop
\prop_gput:Nnn \g__color_alternative_values_prop { cyan } { 1 , 0 , 0 , 0 }
\prop_gput:Nnn \g__color_alternative_values_prop { magenta } { 0 , 1 , 0 , 0 }
\prop_gput:Nnn \g__color_alternative_values_prop { yellow } { 0 , 0 , 1 , 0 }
\prop_gput:Nnn \g__color_alternative_values_prop { black } { 0 , 0 , 0 , 1 }
\prop_gput:Nnn \g__color_alternative_values_prop { red } { 1 , 0 , 0 }
\prop_gput:Nnn \g__color_alternative_values_prop { green } { 0 , 1 , 0 }
\prop_gput:Nnn \g__color_alternative_values_prop { blue } { 0 , 0 , 1 }

(End of definition for \g__color_alternative_values_prop)
Set up a new model: in general this has to be handled by a family-dependent function. To avoid some “interesting” questions with casing, we fold the case of the family name. The key-value list should always be present, so we convert it up-front to a prop, then deal with the detail on a per-family basis.

\begin{verbatim}
\color_model_new:nnn \color_model_new:nnn
\cs_new_protected:Npn \color_model_new:nnn #1#2#3
 { \exp_args:Nee __color_model_new:nnn
 { \tl_to_str:n {#1} }
 { \str_casefold:n {#2} } {#3}
 }
\cs_new_protected:Npn __color_model_new:nnn #1#2#3
 { \cs_if_exist:cTF { __color_parse_model_ #1 :w }
 { \msg_error:nnn { color } { model-already-defined } {#1} }
 { \cs_if_exist:cTF { __color_model_ #2 :n }
 { \prop_set_from_keyval:Nn \l__color_internal_prop {#3}
 \use:c { __color_model_ #2 :n } {#1} }
 { \msg_error:nnn { color } { unknown-model-type } {#2} }
 }
 }
\end{verbatim}

(End of definition for \color_model_new:nnn and __color_model_new:nnn. This function is documented on page 319.)

__color_model_init:nnn __color_model_init:nne

A shared auxiliary to do the basics of setting up a new model: reserve a number, create a white-equivalent, set up links to the backend.

\begin{verbatim}
__color_model_init:nnn __color_model_init:nne
\cs_new_protected:Npn __color_model_init:nnn #1#2#3
 { \int_gincr:N \g__color_model_int
 \clist_map_inline:nn { fill , stroke , select }
 { \cs_new_protected:cpe { __color_backend_ ##1 _ #1 :n } ###1
 { \exp_not:c { __color_backend_ ##1 _ #1 :n } } ###1
 }
 }
\cs_generate_variant:Nn __color_model_init:nnn { nne }
\end{verbatim}
Separations must have a “real” name, which is pretty easy to find.

We have two keys to find at this stage: the alternative space model and linked values.

As each alternative space leads to a different requirement for conversion, and as there are only a small number of choices, we manually split the data and then set up. Notice that mixing tints is really just the same as mixing gray. The white color is special, as it
allows tints to be adjusted without an additional color space. To make sure the data is set for that at all group levels, we need to work on a per-level basis. Within the output, only the set-up needs the “real” name of the colorspace: we use a simple tracking number for general usage as this is a clear namespace without issues of escaping chars.

\cs_new_protected:Npn __color_model_separation:w
\#1 , \#2 , \#3 , \#4 , \#5 \s__color_stop \#6#7#8
{
__color_model_init:nnn {\#6} \{ separation \} \{ 0 \}
\cs_new_eq:cN { __color_parse_mix_ \#6 :nw } __color_parse_mix_gray:nw
\cs_new:cN { _color_parse_model_ \#6 :w } \#1 , \#2 \s__color_stop
{ \#6} \{ _color_parse_number:n {\#1} \} \}
\use:c { _color_model_separation_ \#8 :nnnnnn }
\prop_gput:Nnn \g__color_alternative_model_prop {\#6} \{ \}
\prop_gput:Nne \g__color_colorants_prop {\#6}
{ \str_convert_pdfname:n {\#7} }
\cs_new_protected:Npn __color_model_separation_cmyk:nnnnnn #1#2#3#4#5#6
{
\tl_const:cn { c__color_fallback_ #1 _tl } { cmyk }
\cs_new:cN { __color_convert_ #1 _cmyk:w } ##1 \s__color_stop
{\fp_eval:n {##1 * \#3} ~
\fp_eval:n {##1 * \#4} ~
\fp_eval:n {##1 * \#5} ~
\fp_eval:n {##1 * \#6}}
\cs_new:cN { __color_convert_cmyk_ #1 :w } ##1 \s__color_stop { 1 }
\prop_gput:Nnn \g__color_alternative_values_prop {\#1} { \#3 , \#4 , \#5 , \#6 }
__color_backend_separation_init:nnnnn {\#2} /DeviceCMYK \{ \}
{ 0 ~ 0 ~ 0 ~ 0 } { \#3 ~ \#4 ~ \#5 ~ \#6 }
}
\cs_new_protected:Npn __color_model_separation_rgb:nnnnnn #1#2#3#4#5#6
{
\tl_const:cn { c__color_fallback_ #1 _tl } { rgb }
\cs_new:cN { __color_convert_ #1 _rgb:w } ##1 \s__color_stop
{\fp_eval:n {##1 * \#3} ~
\fp_eval:n {##1 * \#4} ~
\fp_eval:n {##1 * \#5}}
\cs_new:cN { __color_convert_rgb_ #1 :w } ##1 \s__color_stop \{ 1 \}
\prop_gput:Nnn \g__color_alternative_values_prop {\#1} { \#3 , \#4 , \#5 }
__color_backend_separation_init:nnnnn {\#2} /DeviceRGB \{ \}
{ 0 ~ 0 ~ 0 } { \#3 ~ \#4 ~ \#5 }
}
\cs_new_protected:Npn __color_model_separation_gray:nnnnnn #1#2#3#4#5#6
{
\tl_const:cn { c__color_fallback_ #1 _tl } { gray }
\cs_new:cN { __color_convert_ #1 _gray:w } ##1 \s__color_stop
{\fp_eval:n {##1 * \#3} ~
\fp_eval:n {##1 * \#3} ~
\fp_eval:n {##1 * \#3} ~
\fp_eval:n {##1 * \#3}}
\cs_new:cN { __color_convert_gray_ #1 :w } ##1 \s__color_stop \{ 1 \}
\prop_gput:Nnn \g__color_alternative_values_prop {\#1} {\#3}
__color_backend_separation_init:nnnnn {\#2} /DeviceGray \{ \}
{ 0 } {\#3} 1414
Generic model conversion via an alternative intermediate.

Setting up for CIELAB needs a bit more work: there is the illuminant and the need for an appropriate object.

If a CIELAB space is being set up, we need the illuminant, then create the appropriate set up. At present, this doesn’t include BlackPoint or Range data, but that may be added later. As CIELAB colors cannot be converted to anything else, we fallback to producing black in the gray colorspace: the user should set up a second model for colors set up this way.

We require a list of component names here: one might call them colorants, but it’s convenient to use TeX names instead so we slightly adjust the terminology.
All valid models will have an alternative listed, either hard-coded for the core device ones, or dynamically added for Separations, etc.

We now complete the data we require by first finding out how many colorants there are, then moving on to begin constructing the function required to map to the alternative
color space.

\begin{verbatim}
\cs_new_protected:Npn __color_model_devicen:nnn #1#2#3
\exp_args:Ne __color_model_devicen:nnnn
\clist_count:n {#2} {#1} {#2} {#3}
\end{verbatim}

At this stage, we have checked everything is in place, so we can set up the \TeX{} and backend data structures. As for separations, it's not really possible in general to have a fallback, so we simply provide "black" for each element.

\begin{verbatim}
\cs_new_protected:Npn __color_model_devicen:nnnn #1#2#3#4
__color_model_init:nne {#4} { devicen }
\foreach \i { 0 \prg_replicate:nn { #1 - 1 } { ~ 0 } } #2
\cs_if_exist_use:cF { __color_model_devicen_parse_ #1 :nn }
__color_model_devicen_parse_generic:nn #4 #1
__color_model_devicen_init:nnn {#1} {#2} {#3}
__color_model_devicen_convert:nnne {#4} {#2} {#3}
\foreach \i { 1 \prg_replicate:nn { #1 - 1 } { ~ 1 } } #2
\end{verbatim}

For short lists of DeviceN colors, we can use hand-tuned parsing. This lines up with other models, where we allow for up to four components. For larger spaces, rather than limit artificially, we use a somewhat slow approach based on open-ended commas-lists.

\begin{verbatim}
\cs_new_protected:cpn { __color_model_devicen_parse_1:nn } #1#2
\cs_new:cpn { __color_parse_model_ #1 :w } ##1 , ##2 \s__color_stop
__color_parse_number:n {##1} __color_parse_number:n {##2}
\cs_new:cpn { __color_parse_mix_ #1 :nw } ##1##2 \s__color_mark ##3 \s__color_stop
\fp_eval:n { ##2 * ##1 + ##4 * (1 - ##1) } \c_space_tl
\fp_eval:n { ##3 * ##1 + ##5 * (1 - ##1) }
\end{verbatim}

\begin{verbatim}
\cs_new_protected:cpn { __color_model_devicen_parse_2:nn } #1#2
\cs_new:cpn { __color_parse_model_ #1 :w } ##1 , ##2 , ##3 \s__color_stop
__color_parse_number:n {##1} __color_parse_number:n {##2} __color_parse_number:n {##3}
\cs_new:cpn { __color_parse_mix_ #1 :nw } ##1##2 \s__color_mark ##3 \s__color_stop
\fp_eval:n { ##2 * ##1 + ##4 * (1 - ##1) } \c_space_tl
\fp_eval:n { ##3 * ##1 + ##5 * (1 - ##1) }
\end{verbatim}

\begin{verbatim}
\cs_new_protected:cpn { __color_model_devicen_parse_3:nn } #1#2
\cs_new:cpn { __color_parse_model_ #1 :w } ##1 , ##2 , ##3 , ##4 \s__color_stop
__color_parse_number:n {##1} __color_parse_number:n {##2} __color_parse_number:n {##3} __color_parse_number:n {##4}
\end{verbatim}

1417
__color_parse_number:n {##3}
__color_parse_mix_ #1 :nw __color_parse_mix_rgb:nw
\cs_new_eq:cN { __color_parse_model_ #1 :w } ##1 , ##2 , ##3 , ##4 , ##5 \s__color_stop
\cs_new_eq:cN { __color_parse_mix_ #1 :nw } __color_parse_mix_cmyk:nw
\cs_new_protected:cpn { __color_model_devicen_parse_4:nn } #1#2
\cs_new_protected:Npn __color_model_devicen_parse_generic:nn #1#2
\cs_new:cpn { __color_parse_model_ #1 :w } ##1 , ##2 \s__color_stop
__color_model_devicen_parse:nw {#1} ##1 , ##2 \q_nil \s__color_stop
\cs_new:Npn __color_model_devicen_mix:nw #1#2 ~ #3 \s__color_mark #4 ~ #5 \s__color_stop
\int_compare:nNnT {#1} > 0
\quark_if_nil:nTF {#2}
\prg_replicate:nn {#1} { 0 - }
__color_parse_number:n {#2}
\int_compare:nNnT {#1} > 1 { - }
\exp_args:Nf __color_model_devicen_parse:nw
\int_eval:n { #1 - 1 } #3 \s__color_stop
\quark_if_nil:oF { \tl_head:w #3 \q_stop }

\int_compare:nNnT {#1} > 0
\quark_if_nil:nTF {#2}
\prg_replicate:nn {#1} { 0 - }
__color_parse_number:n {#2}
\int_compare:nNnT {#1} > 1 { - }
\exp_args:Nf __color_model_devicen_parse:nw
\int_eval:n { #1 - 1 } #3 \s__color_stop
\quark_if_nil:oF { \tl_head:w #3 \q_stop }

1418
To construct the tint transformation, we have to use PostScript. The aim is to have the final tint for each device colorant as

\[1 - \prod_{n} (1 - X_n D X_n) \]

where \(X \) is a DeviceN colorant and \(D \) is the amount of device colorant that the DeviceN colorant maps to. At the start of the process, the PostScript stack will contain the \(X_n \) values, whilst we have the \(D \) values on a per-DeviceN colorant basis. The more convenient approach for us is therefore to take each DeviceN colorant in turn and find the value \(1 - X_n D X_n \), multiplying as we go, and finalise with the subtraction. That contrasts to colorspace: it splits the process up by process color, which works better when you have a fixed list of colorants. (colorspace only supports up to 4 DeviceN colors, and only cmyk as the alternative space.) To set this up, we first need to know the number of values in the target color space: this is easily handled as there are a very small range of possibles. Once we have that information, it’s relatively easy to build the required PostScript using some generic code.

As we always need to split the alternative values into parts, we use a shared auxiliary and only use a minimal difference between code paths. Construction of the tint transformation is as far as possible done using loops, which means there are some inefficiencies for device colors in the DeviceN space: we roll the stack one-at-a-time even if there is a potential shortcut. However, that way there is nothing to special-case. Once this is sorted, we can write the tint transform object, which will remain as the last object until we sort out the final step: the colorant list.

As we always need to split the alternative values into parts, we use a shared auxiliary and only use a minimal difference between code paths. Construction of the tint transformation is as far as possible done using loops, which means there are some inefficiencies for device colors in the DeviceN space: we roll the stack one-at-a-time even if there is a potential shortcut. However, that way there is nothing to special-case. Once this is sorted, we can write the tint transform object, which will remain as the last object until we sort out the final step: the colorant list.
\l__color_value_tl , 0 , 0 , 0 , \s__color_stop \{#1\} \{#2\}

\tl_put_right:Ne \l__color_internal_tl
{
\prg_replicate:nn \{#1\}
{ neg ~ 1.0 ~ add ~ \#1 ~ -1 ~ roll ~ }
\int_eval:n \{ \#2 + \#1 \} ~ \#1 ~ roll
\prg_replicate:nn \{#2\} \{ - pop \} ~
\#1 ~ -1 ~ roll
}
\use:e
{
\l__color_backend_devicen_init:nnn
{
\clist_map_function:nN \{#4\}
\l__color_model_devicen_colorant:n
}
{
\str_case:nn \{#3\}
{
{ cmyk } \{ /DeviceCMYK \}
{ gray } \{ /DeviceGray \}
{ rgb } \{ /DeviceRGB \}
}
}
{ \exp_not:V \l__color_internal_tl }
}
\cs_new_protected:Npn __color_model_devicen_transform:w
#1 , #2 , #3 , #4 , #5 \s__color_stop #6#7
{
\use:c \{ __color_model_devicen_transform_ \#6 :nnnnn \}
\{#1\} \{#2\} \{#3\} \{#4\} \{#7\}
}
\cs_new_protected:cpn \{ __color_model_devicen_transform_1:nnnnn \} #1#2#3#4#5
{ __color_model_devicen_transform:nnn \{#5\} \{ 1 \} \{#1\} }
\cs_new_protected:cpn \{ __color_model_devicen_transform_3:nnnnn \} #1#2#3#4#5
{
\clist_map_inline:nn \{ \#1 , \#2 , \#3 \}
{ __color_model_devicen_transform:nnn \{#5\} \{ 3 \} \{##1\} }
}
\cs_new_protected:cpn \{ __color_model_devicen_transform_4:nnnnn \} #1#2#3#4#5
{ \clist_map_inline:nn \{ \#1 , \#2 , \#3 , \#4 \}
{ __color_model_devicen_transform:nnn \{#5\} \{ 4 \} \{##1\} }
}
\cs_new_protected:Npn __color_model_devicen_transform:nnn
\l__color_internal_tl
{
\fp_compare:nNnF \{#3\} = \c_zero_fp
{ \int_eval:n \{ \#1 - \l__color_internal_int + \#2 \} ~ \exp_not:V \l__color_internal_tl ~ index ~
 - \#3 ~ 1.0 ~ add ~ -mul ~
}
1420
Here we need to set up conversion from the DeviceN space to the alternative at the \TeX level. This also means supplying methods for inter-converting to other parameter-based spaces. Essentially the approach is exactly the same as the PostScript, just expressed in \TeX terms.
\cs_new:Npn __color_model_devicen_convert_aux:w #1 , #2 , #3 , #4 , #5 \s__color_stop
{
 (#1)
 \tl_if_blank:nF {#2}
 \{
 \#2 \}
 \tl_if_blank:nF {#3}
 \{
 \#3 \}
 \tl_if_blank:nF {#4} \{ \#4 \}
 \}
\cs_new:Npn __color_convert_devicen_cmyk:nnnnw #1#2#3#4#5 ~ #6 \s__color_mark #7#8 \s__color_stop
{
 __color_convert_devicen_cmyk:nnnnnnnn #1 #2 #3 #4 #5 #6 \s__color_mark #7 #8 \s__color_stop
\}
\cs_new:Npn __color_convert_devicen_cmyk:nnnnnnn #1#2#3#4#5#6#7#8#9
{
 \use:e
 \{
 \exp_not:N __color_convert_devicen_cmyk_aux:nnnnw \fp_eval:n { #2 * (1 - (#1 * #6)) } \fp_eval:n { #3 * (1 - (#1 * #7)) } \fp_eval:n { #4 * (1 - (#1 * #8)) } \fp_eval:n { #5 * (1 - (#1 * #9)) }
 \}
\}
\cs_new:Npn __color_convert_devicen_gray:nw #1#2 ~ #3 \s__color_mark #4#5 \s__color_stop
{
 __color_convert_devicen_gray:nnn #2 #1 #4
 \#3 \s__color_mark #5 \s__color_stop
\}
\cs_new:Npn __color_convert_devicen_gray:nnn #1#2#3
{

The signatures in the ICC file header indicating the underlying colorspace. We map it to three values: The number of components, the values corresponding to white, and the range.

\prop_const_from_keyval:Nn \c__color_icc_colorspace_signatures_prop
{ % Gray
47524159 = \{1\} \{1\} \{0\} \{\},
% RGB
}
For an ICC profile, we need a file name and a number of components. The file name is processed here so the backend can treat it as a string.

\cs_new_protected:Npn __color_model_iccbased:n #1
{ \prop_get:NnNTF \l__color_internal_prop { file } \l__color_internal_tl
{ \exp_args:NV __color_model_iccbased:nn \l__color_internal_tl {#1}
}
{ \msg_error:nnn { color } { ICCBased-requires-file } {#1} } }

\cs_new_protected:Npn __color_model_iccbased:nn #1#2
{ \prop_get:NeNTF \c__color_icc_colorspace_signatures_prop { \file_hex_dump:nnn { #1 } { 17 } { 20 } } \l__color_internal_tl
{ \exp_last_unbraced:NV __color_model_iccbased_aux:nnnnnn \l__color_internal_tl { #2 } { #1 }
}
{ \msg_error:nnn { color } { ICCBased-unsupported-colorspace } {#2} } }

Here, we can use the same internals as for DeviceN approach as we know the number of components. No conversion is possible, so there is no need to worry about that at all.

\cs_new_protected:Npn __color_model_iccbased_aux:nnnnnn #1#2#3#4#5#6
{ __color_model_init:nnn #5 { iccbased } {#3}
\tl_const:cn { c__color_fallback_ #5 _tl } { gray }
\cs_new:c { __color_convert_ #5_gray:w } \#1 _s__color_stop { 0 }
\cs_new:c { __color_convert_gray_ #5 :w } \#1 _s__color_stop { #2 }
\use:c { __color_model_deviceic_parse_ #1 :nn } {#5} {#1}
\exp_args:Ne __color_backend_iccbased_init:nnn
{ \file_full_name:n {#6} } {#1} {#4} }

(End of definition for \c__color_icc_colorspace_signatures_prop.)

__color_model_iccbased:n __color_model_iccbased:nn __color_model_iccbased:nnn
__color_model_iccbased_aux:nnnnnn
__color_model_init:nnn
94.13 Applying profiles

With a limited range of outcomes, this is largely about getting data to the backend.

```
color_profile_apply:nn
__color_profile_apply:nn
__color_profile_apply_gray:n
__color_profile_apply_rgb:n
__color_profile_apply_cmyk:n
```

```
cs_new_protected:Npn \color_profile_apply:nn #1#2
{|}
  \exp_args:Ne \__color_profile_apply:nn
  { \file_full_name:n {#1} } {#2}
|
}\cs_new_protected:Npn \__color_profile_apply:nn #1#2
{|}
  \cs_if_exist_use:cF { __color_profile_apply_ \tl_to_str:n {#2} :n }
  |
  { \msg_error:nnn { color } { ICC-Device-unknown } {#2} }
  |
  \use_none:n
  |
}{#1}
}
cs_new_protected:Npn \__color_profile_apply_gray:n #1
{|}
  \int_gincr:N \g__color_model_int
  \__color_backend_iccbased_device:nnn {#1} { Gray } { 1 }
|
cs_new_protected:Npn \__color_profile_apply_rgb:n #1
{|}
  \int_gincr:N \g__color_model_int
  \__color_backend_iccbased_device:nnn {#1} { RGB } { 3 }
|
cs_new_protected:Npn \__color_profile_apply_cmyk:n #1
{|}
  \int_gincr:N \g__color_model_int
  \__color_backend_iccbased_device:nnn {#1} { CMYK } { 4 }
|
(End of definition for \color_profile_apply:nn and others. This function is documented on page 320.)

94.14 Diagnostics

```
color_show:n
__color_show:Nn
__color_show:n
```

```
cs_new_protected:Npn \color_show:n
{|}
 __color_show:Nn \msg_show:nneeee
|
cs_new_protected:Npn \color_log:n
{|}
 __color_show:Nn \msg_log:nneeee
|
cs_new_protected:Npn __color_show:Nn \msg_show:nneeee
{|}
 __color_show:Nn \msg_log:nneeee
|
cs_new_protected:Npn __color_show:Nn \msg_show:nneeee
{|}
 \color_if_exist:nT {#2}
| |
 \exp_args:Nv __color_show:n { l__color_named_ #2 _tl }
 |
 \prop_map_function:cN
 |
 { l__color_named_ #2 _prop }
```

1425
\msg_show_item_unbraced:nn
}
%

\cs_new:Npn \__color_show:n #1
{
\msg_show_item_unbraced:nn { model } {#1}
}
\msg_new:nnnn { color } { CIELAB-requires-illuminant }
{ CIELAB-color-space-'#1'-require-an-illuminant. }
{
 LaTeX\-has\-been\-asked\-to\-create\-a\-separation\-color\-space\-using-
 CIELAB\-specifications,\-but\-no-\\\  \
\iow_indent:n { illuminant=--<basis> }  
  \  
 key\-was\-given\-with\-the\-correct\-information.\-LaTeX\-will\-use\-illuminant-
 'd50'-\for\-recovery.
}
\msg_new:nnnn { color } { conversion-not-available }
{ No\-model\-conversion\-available\-from-'#1'-\to-#'2'. }
{
 LaTeX\-has\-been\-asked\-to\-convert\-a\-color\-from\-model-'#1'-
 to-model#'2',\-but\-there\-is\-no\-method\-available\-to\-do\-that.
}
\msg_new:nnnn { color } { DeviceN-inconsistent-alternative }
{ DeviceN\-color\-spaces\-require\-a\-single\-alternative\-space. }
{ LaTeX\-has\-been\-asked\-to\-create\-a\-DeviceN\-color\-space-'#1',-
 but\-the\-constituent\-colors\-do\-not\-have\-a\-common\-alternative-
 color. }
\msg_new:nnnn { color } { DeviceN-no-alternative }
{ DeviceN\-color\-spaces\-require\-an\-alternative\-space. }
{ LaTeX\-has\-been\-asked\-to\-create\-a\-DeviceN\-color\-space-'#1',-
 but\-the\-constituent\-colors\-do\-not\-all\-have\-a\-device-based\-alternative. }
\msg_new:nnnn { color } { DeviceN-requires-names }
{ DeviceN\-color\-space-#'1'-require-a-list-of-names. }
{ LaTeX\-has\-been\-asked\-to\-create\-a\-DeviceN\-color\-space,-
 but\-no-\\\  
 \iow_indent:n { names=--<names> }  
 \  
 key\-was\-given\-with\-the\-correct\-information.
}
\msg_new:nnnn { color } { ICC-Device-unknown }

(End of definition for \color_show:n and others. These functions are documented on page 316.)

94.15 Messages
LaTeX has been asked to apply an ICC-profile but the device color space '#1' is unknown.

LaTeX has been asked to create a ICCBased-colorspace, but the used data colorspace is not supported. ICC-profiles used for defining a ICCBased-colorspace should use a Lab, RGB, or CMYK data colorspace. LaTeX will ignore this request.

LaTeX has been asked to create an ICCBased colorspace, but no file was given with the correct information. LaTeX will ignore this request.

LaTeX was asked to define a new color model called '#1', but this color model already exists.

LaTeX was expecting a value in the range [#2,-#3] as part of a color, but you gave #1. LaTeX will assume you meant the limit of the range and continue.

LaTeX has been asked to create a separation color space, but no alternative model was given with the correct information.

LaTeX has been asked to create a separation color space, but no alternative values were given with the correct information.
LaTeX has been asked to create a separation color space, but no
\iow_indent:n { name=-<formal-name> } \ \ \ \key-was-given-with-the-correct-information.
\msg_new:nnn { color } { unhandled-model }
{ Unhandled-color-model-in-LaTeX2e-value="#1":
 \ \ \falling-back-on-grayscale.
 \msg_new:nnnn { color } { unknown-color }
{ Unknown-color-"#1". }
{ LaTeX-has-been-asked-to-use-a-color-named-"#1",-
 but-this-has-never-been-defined.
 \msg_new:nnnn { color } { unknown-alternative-model }
{ Separation-color-space-"#1"-require-an-valid-alternative-space. }
{ LaTeX-has-been-asked-to-create-a-separation-color-space,-
 but-the-model-given-as\ \ \ \is-unknown.
 \msg_new:nnnn { color } { unknown-export-format }
{ Unknown-export-format-"#1". }
{ LaTeX-has-been-asked-to-export-a-color-in-format-"#1",-
 but-this-has-never-been-defined.
 \msg_new:nnnn { color } { unknown-CIELAB-illuminant }
{ Unknown-illuminant-model-"#1". }
{ LaTeX-has-been-asked-to-use-create-a-color-space-using-CIELAB-
 illuminant-"#1",-but-this-does-not-exist.
 \msg_new:nnnn { color } { unknown-model }
{ Unknown-color-model-"#1". }
{ LaTeX-has-been-asked-to-use-a-color-model-called-"#1",-
 but-this-model-is-not-set-up.
 \msg_new:nnnn { color } { unknown-model-type }
{ Unknown-color-model-type-"#1". }
{ LaTeX-has-been-asked-to-create-a-new-color-model-called-"#1",-
 but-this-type-of-model-was-never-set-up.
 \prop_gput:Nnn \g_msg_module_name_prop { color } { LaTeX }
\prop_gput:Nnn \g_msg_module_type_prop { color } { }
\msg_new:nnn { color } { show }
{
\tl_if_empty:nTF {#2}
\tl_if_empty:nTF {#2}
{ is-undefined. }
\tl_if_empty:nTF {#2}
\tl_if_empty:nTF {#2}
{ has-the-properties: #2 }
}

} /package
Chapter 95

l3pdf implementation

\s__pdf_stop Internal scan marks.
\scan_new:N \s__pdf_stop
(End of definition for \s__pdf_stop.)

\g__pdf_init_bool A flag so we have some chance of avoiding setting things we are not allowed to. As we are potentially early in the format, we have to work a bit harder than ideal.
\bool_new:N \g__pdf_init_bool
\bool_lazy_and:nnT
{ \str_if_eq_p:Vn \fmtname { LaTeX2e } }
{ \tl_if_exist_p:N \@expl@finalise@setup@@ }
{ \tl_gput_right:Nn \@expl@finalise@setup@@
  { \tl_gput_right:Nn \@kernel@after@begindocument
    { \bool_gset_true:N \g__pdf_init_bool } }
}
(End of definition for \g__pdf_init_bool.)

95.1 Compression

\pdf_uncompress: Simple to do.
\cs_new_protected:Npn \pdf_uncompress:
{ \bool_if:NF \g__pdf_init_bool
  { \__pdf_backend_compresslevel:n { 0 }
    \__pdf_backend_compress_objects:n { \c_false_bool } }
}
(End of definition for \pdf_uncompress:. This function is documented on page 323.)
95.2 Objects

Simple to do: all objects create a constant int so it is not a backend-specific name.

\pdf_object_new:n
\pdf_object_write:nnn \pdf_object_write:nn \pdf_object_write:nx \pdf_object_unnamed_write:nn \pdf_object_unnamed_write:nx \pdf_object_if_exist_p:n \pdf_object_if_exist:n

(End of definition for \pdf_object_new:n and others. These functions are documented on page 321.)

\pdf_pageobject_ref:n

(End of definition for \pdf_pageobject_ref:n. This function is documented on page 322.)

95.3 Version

To compare version, we need to split the given value then deal with both major and minor version

\pdf_version_compare_p:Nn \pdf_version_compare:Nn \pdf_version_compare=:w \pdf_version_compare_<:w \pdf_version_compare>:w

\prg_new_conditional:Nnnn \pdf_version_compare:Nn #1#2 \{ \use:c { __pdf_version_compare_ #1 :w } #2 \.. \s__pdf_stop \}
\cs_new:cpn { __pdf_version_compare=:w } #1 \.. \s__pdf_stop
\cs_new:cpn { __pdf_version_compare_<:w } #1 \.. \s__pdf_stop
\cs_new:cpn { __pdf_version_compare>:w } #1 \.. \s__pdf_stop

\bool_lazy_and:nnTF
\bool_lazy_and:nTF

1431
\cs_new:cpn { __pdf_version_compare_<:w } #1 . #2 . #3 \s__pdf_stop
{
  \bool_lazy_or:nnTF
  \{ \int_compare_p:nNn __pdf_backend_version_major: < {#1} \}
  \{
    \bool_lazy_and:p:nn
    \{ \int_compare_p:nNn __pdf_backend_version_major: = {#1} \}
    \{ \int_compare_p:nNn __pdf_backend_version_minor: < {#2} \}
  \}
  \{ \prg_return_true: \}
  \{ \prg_return_false: \}
}\cs_new:cpn { __pdf_version_compare_>:w } #1 . #2 . #3 \s__pdf_stop
{
  \bool_lazy_or:nnTF
  \{ \int_compare_p:nNn __pdf_backend_version_major: > {#1} \}
  \{
    \bool_lazy_and:p:nn
    \{ \int_compare_p:nNn __pdf_backend_version_major: = {#1} \}
    \{ \int_compare_p:nNn __pdf_backend_version_minor: > {#2} \}
  \}
  \{ \prg_return_true: \}
  \{ \prg_return_false: \}
\endinput

\pdf_version_gset:n \pdf_version_min_gset:n \__pdf_version_gset:w
\pdf_version_gset:n \pdf_version_major: \pdf_version_minor:
\pdf_version_gset:w
\pdf_version: \pdf_version_major: \pdf_version_minor:
\endinput

\pdf_version_gset:n \pdf_version_gset:w
\pdf_version_gset:n \pdf_version_min_gset:n \__pdf_version_gset:w
\pdf_version_gset:n \pdf_version_major: \pdf_version_minor:
\pdf_version_gset:w
\pdf_version: \pdf_version_major: \pdf_version_minor:
\endinput

(End of definition for \pdf_version_compare:NnTF and others. This function is documented on page 322.)

Split the version and set.
\pdf_version_gset:n \pdf_version_min_gset:n \__pdf_version_gset:w
\pdf_version_gset:n \pdf_version_major: \pdf_version_minor:
\pdf_version_gset:w
\pdf_version: \pdf_version_major: \pdf_version_minor:
\endinput

(End of definition for \pdf_version_gset:n, \pdf_version_min_gset:n, and \__pdf_version_gset:w. These functions are documented on page 322.)

Wrappers.
\pdf_version_gset:n \pdf_version_gset:w
\pdf_version_gset:n \pdf_version_major: \pdf_version_minor:
\pdf_version_gset:w
\pdf_version: \pdf_version_major: \pdf_version_minor:
\endinput

(End of definition for \pdf_version:, \pdf_version_major:, and \pdf_version_minor:. These functions are documented on page 322.)
95.4 Page size

\pdf_pagesize_gset:nn

(End of definition for \pdf_pagesize_gset:nn. This function is documented on page 323.)

95.5 Destinations

\pdf_destination:nn

(End of definition for \pdf_destination:nn. This function is documented on page 324.)

\pdf_destination:nnnn

(End of definition for \pdf_destination:nnnn. This function is documented on page 324.)

95.6 PDF Page size (media box)

Everything here is delayed to the start of the document so that the backend will definitely be loaded.

\cs_if_exist:NT \@kernel@before@begindocument

1433
{ \dim_compare_p:nNn \stockwidth < { 0 pt } } 
{ \bool_lazy_and:nnT 
  { \dim_compare_p:nNn \paperheight > { 0 pt } } 
  { \dim_compare_p:nNn \paperwidth > { 0 pt } } 
  { 
    \_pdf_backend_pagesize_gset:nnn 
    \paperwidth \paperheight 
  } 
} 
{ /package }
Chapter 96

\textbf{l3candidates implementation}

\section*{96.1 Additions to l3seq}

Similar to \texttt{\_\_seq_map_inline:Nn}, without a \texttt{\_\_prg_break_point:}: because the user's code is performed within the evaluation of a boolean expression, and skipping out of that would break horribly. The \texttt{\_\_seq_wrap_item:n} function inserts the relevant \texttt{\_\_seq_item:n} without expansion in the input stream, hence in the e-expanding assignment.

\begin{verbatim}
\cs_new_protected:Npn \seq_set_filter:NNn { \__seq_set_filter:NNNn \__kernel_tl_set:Ne }
\cs_new_protected:Npn \seq_gset_filter:NNn { \__seq_set_filter:NNNn \__kernel_tl_gset:Ne }
\cs_new_protected:Npn \__seq_set_filter:NNNn #1#2#3#4
{ \__seq_push_item_def:n { \bool_if:nT {#4} { \__seq_wrap_item:n {##1} } } #1 #2 { #3 }
\__seq_pop_item_def: }

(End of definition for \texttt{\_\_seq_set_filter:NNn}, \texttt{\_\_seq_gset_filter:NNn}, and \texttt{\_\_seq_set_filter:NNNn}. These functions are documented on page 327.)
\end{verbatim}

\section*{96.2 Additions to l3tl}

\subsection*{96.2.1 Building a token list}

\begin{verbatim}
\cs_new_protected:Npn \tl_build_get:NNn \__kernel_tl_set:Ne
\cs_new_protected:Npn \tl_build_get:NNn \__kernel_tl_get:Ne
\cs_new_protected:Npn \__seq_push_item_def:n \bool_if:nT {#4} \__seq_wrap_item:n {#1} }
\__seq_pop_item_def: 

(End of definition for \texttt{\_\_seq_set_filter:NNn}, \texttt{\_\_seq_gset_filter:NNn}, and \texttt{\_\_seq_set_filter:NNNn}. These functions are documented on page 327.)
\end{verbatim}

\subsection*{96.2.2 Further additions to l3tl}

\begin{verbatim}
\tl_build_get:NNn
\end{verbatim}

(End of definition for \texttt{\_\_seq_set_filter:NNn}, \texttt{\_\_seq_gset_filter:NNn}, and \texttt{\_\_seq_set_filter:NNNn}. These functions are documented on page 327.)
Chapter 97

\textbf{l3deprecation implementation}

\section*{97.1 Patching definitions to deprecate}

\texttt{\_\_kernel_patch_deprecation:nnNpn} \{\langle date\rangle\} \{\langle replacement\rangle\} \{\langle definition\rangle\} \{\langle function\rangle\} \{\langle parameters\rangle\} \{\langle code\rangle\}

defines the \langle function\rangle to produce a warning and run its \langle code\rangle, or to produce an error and not run any \langle code\rangle, depending on the \texttt{expl3} date.

\begin{itemize}
  \item If the \texttt{expl3} date is less than the \langle date\rangle (plus 6 months in case \texttt{undo-recent-deprecations} is used) then we define the \langle function\rangle to produce a warning and run its code. The warning is actually suppressed in two cases:
    \begin{itemize}
      \item if neither \texttt{undo-recent-deprecations} nor \texttt{enable-debug} are in effect we may be in an end-user’s document so it is suppressed;
      \item if the command is expandable then we cannot produce a warning.
    \end{itemize}
  \item Otherwise, we define the \langle function\rangle to produce an error.
\end{itemize}

In both cases we additionally make \texttt{\debug_on:n} \texttt{\{deprecation\}} turn the \langle function\rangle into an \texttt{\outer} error, and \texttt{\debug_off:n} \texttt{\{deprecation\}} restore whatever the behaviour was without \texttt{\debug_on:n} \texttt{\{deprecation\}}.

In later sections we use the \texttt{l3doc} key \texttt{deprecated} with a date equal to that \langle date\rangle plus 6 months, so that \texttt{l3doc} will complain if we forget to remove the stale \langle parameters\rangle and \langle code\rangle.

In the explanations below, \langle definition\rangle \langle function\rangle \langle parameters\rangle \{\langle code\rangle\} or assignments that only differ in the scope of the \langle definition\rangle will be called “the standard definition”.

\begin{itemize}
  \item \texttt{\_\_kernel_deprecation:nNn}\{\langle code\rangle\} \{\langle definition\rangle\} \{\langle function\rangle\} \{\langle parameters\rangle\} \{\langle code\rangle\}
\end{itemize}

(The parameter text is grabbed using \#5#.) The arguments of \texttt{\_\_kernel_deprecation_-code:nNn} are run upon \texttt{\debug_on:n} \texttt{\{deprecation\}} and \texttt{\debug_off:n} \texttt{\{deprecation\}}, respectively. In both scenarios we the \langle function\rangle may be \texttt{\outer} so we undefine it with \texttt{\tex_let:D} before redefining it, with \texttt{\_\_kernel_deprecation_error:nNn} or with some code added shortly.
In case we want a warning, the \textit{function} is defined to produce such a warning without grabbing any argument, then redefine it to the standard definition that the \textit{function} should have, with arguments, and call that definition. The \texttt{e-type} expansion and \texttt{exp-not:n} avoid needing to double the \# which we could not do anyways. We then deal with the code for \texttt{\texttt{debug_off:n \{deprecation\}}: presumably someone doing that does not need the warning so we simply do the standard definition.

In case we want neither warning nor error, the \textit{function} is given its standard definition. Here \#1 is \texttt{\texttt{\texttt{cs_new_protected:Npn}} or \texttt{\texttt{cs_new_protected:Npn}}} and \#2 is \textit{(function)} \texttt{\{parameters\}} \texttt{\{\texttt{code}\}}, so \#1\#2 performs the assignment. For \texttt{\texttt{debug_off:n \{deprecation\}}} we want to use the same assignment but with a different scope, hence the \texttt{\texttt{cs_if_eq:NNTF}} test.

\begin{verbatim}
\cs_new_protected:Npn \__kernel_patch_deprecation:nnNNpn #1#2#3#4#5#6 \cs_new_protected:Npn \__deprecation_patch_aux:nnNNnn \{ \{ \} \} \cs_new_protected:Npn \__deprecation_patch_aux:nnNNnn \{ \} \cs_if_eq:NNTF \#2 \cs_gset_protected:Npn \{ \__deprecation_warn_once:nnNnn \{ \} \} \cs_set_protected:Npn \__deprecation_patch_aux:Nn \{ \} \end{verbatim}
\_kernel\_deprecation\_error:Nnn The \texttt{\verb|\outer|} definition here ensures the command cannot appear in an argument. Use this auxiliary on all commands that have been removed since 2015.

\verbatimcode{\cs_new_protected:Npn \_kernel\_deprecation\_error:Nnn #1#2#3}{\tex_protected:D \tex\_outer:D \tex\_edef:D #1}{\exp_not:N \msg\_expandable\_error:nmmm}{\exp_not:N \msg\_error:nnnn}{\exp_not:N \msg\_error:nnnn}{\exp_not:N \msg\_error:nnnn}{\msg\_new:nnn { deprecation } { deprecated\_command } { \tl\_to\_str:n {#3} } { \token\_to\_str:N #1 } { \tl\_to\_str:n {#2} }}\verbatimcode{\cs_new_protected:Npn \_deprecation\_old\_protected:Nnn #1#2#3}{\__kernel\_patch\_deprecation:nnNNpn {#3} {#2}}\verbatimcode{\cs\_gset\_protected:Npn #1 { }}\verbatimcode{\__deprecation\_old\_protected:Nnn \c\_job\_name\_tl}{\c\_sys\_jobname\_str}{2017-01-01}\verbatimcode{\__deprecation\_old\_protected:Nnn \c\_minus\_one}{2019-01-01}\verbatimcode{\__deprecation\_old\_protected:Nnn \c\_zero}{2020-01-01}\verbatimcode{\__deprecation\_old\_protected:Nnn \c\_one}{2020-01-01} \end{verbatimcode} (End of definition for \_kernel\_deprecation\_error:Nnn.)

97.2 Removed functions

\_deprecation\_old\_protected:Nnn \_deprecation\_old\_Nnn Short-hands for old commands whose definition does not matter any more as they were removed.

\verbatimcode{\cs_new_protected:Npn \_deprecation\_old\_protected:Nnn #1#2#3}{\__kernel\_patch\_deprecation:nnNNpn {#3} {#2}}\verbatimcode{\cs\_gset\_protected:Npn #1 { }}\verbatimcode{\__deprecation\_old\_protected:Nnn \box\_gset\_eq\_clear\_NN}{2021-07-01}\verbatimcode{\__deprecation\_old\_protected:Nnn \box\_set\_eq\_clear\_NN}{2021-07-01}\verbatimcode{\__deprecation\_old\_protected:Nnn \box\_resize\_Nn}{2019-01-01}\verbatimcode{\__deprecation\_old\_protected:Nnn \c\_job\_name\_tl}{2017-01-01}\verbatimcode{\__deprecation\_old\_Nnn \c\_minus\_one}{2019-01-01}\verbatimcode{\__deprecation\_old\_Nnn \c\_zero}{2020-01-01}\verbatimcode{\__deprecation\_old\_Nnn \c\_one}{2020-01-01}
\__deprecation_old:Nnn \c_two
{ 2 } { 2020-01-01 }
\__deprecation_old:Nnn \c_three
{ 3 } { 2020-01-01 }
\__deprecation_old:Nnn \c_four
{ 4 } { 2020-01-01 }
\__deprecation_old:Nnn \c_five
{ 5 } { 2020-01-01 }
\__deprecation_old:Nnn \c_six
{ 6 } { 2020-01-01 }
\__deprecation_old:Nnn \c_seven
{ 7 } { 2020-01-01 }
\__deprecation_old:Nnn \c_eight
{ 8 } { 2020-01-01 }
\__deprecation_old:Nnn \c_nine
{ 9 } { 2020-01-01 }
\__deprecation_old:Nnn \c_ten
{ 10 } { 2020-01-01 }
\__deprecation_old:Nnn \c_eleven
{ 11 } { 2020-01-01 }
\__deprecation_old:Nnn \c_twelve
{ 12 } { 2020-01-01 }
\__deprecation_old:Nnn \c_thirteen
{ 13 } { 2020-01-01 }
\__deprecation_old:Nnn \c_fourteen
{ 14 } { 2020-01-01 }
\__deprecation_old:Nnn \c_fifteen
{ 15 } { 2020-01-01 }
\__deprecation_old:Nnn \c_sixteen
{ 16 } { 2020-01-01 }
\__deprecation_old:Nnn \c_thirty_two
{ 32 } { 2020-01-01 }
\__deprecation_old:Nnn \c_one_hundred
{ 100 } { 2020-01-01 }
\__deprecation_old:Nnn \c_two_hundred_fifty_five
{ 255 } { 2020-01-01 }
\__deprecation_old:Nnn \c_two_hundred_fifty_six
{ 256 } { 2020-01-01 }
\__deprecation_old:Nnn \c_one_thousand
{ 1000 } { 2020-01-01 }
\__deprecation_old:Nnn \c_ten_thousand
{ 10000 } { 2020-01-01 }
\__deprecation_old:Nnn \c_term_ior
{ -1 } { 2021-07-01 }
\__deprecation_old:Nnn \dim_case:nnn
{ \dim_case:nnF } { 2015-07-14 }
\__deprecation_old_protected:Nnn \file_add_path:nN
{ \file_get_full_name:nN } { 2019-01-01 }
\__deprecation_old_protected:Nnn \file_if_exist_input:nT
{ \file_if_exist:nT and \file_input:n } { 2018-03-05 }
\__deprecation_old_protected:Nnn \file_if_exist_input:nTF
{ \file_if_exist:nT and \file_input:n } { 2018-03-05 }
\__deprecation_old_protected:Nnn \file_list:
{ \file_log_list: } { 2019-01-01 }
\_\_deprecation_old_protected:Nnn \tl_set_from_file:Nnn
\_\_deprecation_old_protected:Nnn \tl_set_from_file_x:Nnn
\_\_deprecation_old_protected:Nnn \tl_to_lowercase:n
\_\_deprecation_old_protected:Nnn \tl_to_uppercase:n
\_\_deprecation_old:Nnn \token_get_arg_spec:N
\_\_deprecation_old:Nnn \token_get_prefix_spec:N
\_\_deprecation_old:Nnn \token_get_replacement_spec:N
\_\_deprecation_old_protected:Nnn \token_new:Nn
\_\_deprecation_old_protected:Nnn \vbox_unpack_clear:N
\_\_deprecation_old:Nnn \xetex_if_engine_p:
\_\_deprecation_old:Nnn \xetex_if_engine:F
\_\_deprecation_old:Nnn \xetex_if_engine:T
\_\_deprecation_old:Nnn \xetex_if_engine:TF
\_\_deprecation_old_protected:Nnn \token_get_arg_spec:N
\_\_deprecation_old_protected:Nnn \token_prefix_spec:N
\_\_deprecation_old_protected:Nnn \token_replacement_spec:N
\_\_deprecation_old_protected:Nnn \token_new:Nn
\_\_deprecation_old_protected:Nnn \vbox_unpack_clear:N
\_\_deprecation_old_protected:Nnn \vbox_unpack_drop:N
\_\_deprecation_old_protected:Nnn \xetex_if_engine_p:
\_\_deprecation_old_protected:Nnn \xetex_if_engine:T
\_\_deprecation_old_protected:Nnn \xetex_if_engine:TF
\_\_deprecation_old_protected:Nnn \xetex_if_engine:TF
(End of definition for \_\_deprecation_old_protected:Nnn and \_\_deprecation_old:Nnn.)

97.3 Deprecated l3basics functions

\cs_argument_spec:N For the present, do not deprecate fully as \LaTeX2ε will need to catch up: one for Fall 2022.
\cs_parameter_spec:N { \cs_argument_spec:N }
(End of definition for \cs_argument_spec:N.)

97.4 Deprecated l3file functions

\iow_shipout_x:Nn Previously described as x-type, but the hash behaviour is really e-type. Currently not “live” as we need to have a transition.
\iow_shipout_x:Nx
\iow_shipout_x:cn
\iow_shipout_x:cx
(End of definition for \iow_shipout_x:Nn.)
97.5 Deprecated l3keys functions

\begin{verbatim}
\cs_new_protected:cpn { \c__keys_props_root_str .str_set_x:N } #1
\cs_new_protected:cpn { \c__keys_props_root_str .str_set_x:c } #1
\cs_new_protected:cpn { \c__keys_props_root_str .str_gset_x:N } #1
\cs_new_protected:cpn { \c__keys_props_root_str .str_gset_x:c } #1
\cs_new_protected:cpn { \c__keys_props_root_str .tl_set_x:N } #1
\cs_new_protected:cpn { \c__keys_props_root_str .tl_set_x:c } #1
\cs_new_protected:cpn { \c__keys_props_root_str .tl_gset_x:N } #1
\cs_new_protected:cpn { \c__keys_props_root_str .tl_gset_x:c } #1
\end{verbatim}

(End of definition for .str_set_x:N and .str_gset_x:N.)

\begin{verbatim}
\cs_new_protected:cpn { \c__keys_props_root_str .tl_set_x:N } #1
\cs_new_protected:cpn { \c__keys_props_root_str .tl_set_x:c } #1
\cs_new_protected:cpn { \c__keys_props_root_str .tl_gset_x:N } #1
\cs_new_protected:cpn { \c__keys_props_root_str .tl_gset_x:c } #1
\end{verbatim}

(End of definition for .tl_set_x:N and .tl_gset_x:N.)

97.6 Deprecated l3pdf functions

\begin{verbatim}
\g__pdf_object_prop
\prop_new:N \g__pdf_object_prop
\end{verbatim}

For tracking objects.

\begin{verbatim}
\pdf_object_new:nn
\pdf_object_write:nn
\pdf_object_write:nx
\end{verbatim}

(End of definition for \g__pdf_object_prop.)

\begin{verbatim}
\__kernel_patch_deprecation:nnNNpn { 2022-08-30 } { \pdf_object_new:n }
\cs_new_protected:Npn \pdf_object_new:nn #1#2
\__kernel_patch_deprecation:nnNNpn { 2022-08-30 } { \pdf_object_write:n }
\cs_new_protected:Npn \pdf_object_write:nn #1#2
\cs_generate_variant:Nn \pdf_object_write:nn { nx }
\end{verbatim}

(End of definition for \pdf_object_new:nn and \pdf_object_write:nn.)
97.7 Deprecated l3prg functions

\bool_case_true:n
\bool_case_true:nTF

\__kernel_patch_deprecation:nnNNpn { 2023-05-03 } { \bool_case:n }
\cs_gset:Npn \bool_case_true:n { \bool_case:n }
\__kernel_patch_deprecation:nnNNpn { 2023-05-03 } { \bool_case:nT }
\cs_gset:Npn \bool_case_true:nT { \bool_case:nT }
\__kernel_patch_deprecation:nnNNpn { 2023-05-03 } { \bool_case:nF }
\cs_gset:Npn \bool_case_true:nF { \bool_case:nF }
\__kernel_patch_deprecation:nnNNpn { 2023-05-03 } { \bool_case:nTF }
\cs_gset:Npn \bool_case_true:nTF { \bool_case:nTF }

(End of definition for \bool_case_true:nTF.)

97.8 Deprecated l3str functions

\str_lower_case:n
\str_lower_case:f
\str_upper_case:n
\str_upper_case:f
\str_fold_case:n
\str_fold_case:V

\__kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_lowercase:n }
\cs_gset:Npn \str_lower_case:n { \str_lowercase:n }
\__kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_lowercase:f }
\cs_gset:Npn \str_lower_case:f { \str_lowercase:f }
\__kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_uppercase:n }
\cs_gset:Npn \str_upper_case:n { \str_uppercase:n }
\__kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_uppercase:f }
\cs_gset:Npn \str_upper_case:f { \str_uppercase:f }
\__kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_casefold:n }
\cs_gset:Npn \str_fold_case:n { \str_casefold:n }
\__kernel_patch_deprecation:nnNNpn { 2020-01-03 } { \str_casefold:V }
\cs_gset:Npn \str_fold_case:V { \str_casefold:V }

(End of definition for \str_lower_case:n, \str_upper_case:n, and \str_fold_case:n.)

\str_foldcase:n
\str_foldcase:V

\__kernel_patch_deprecation:nnNNpn { 2020-10-17 } { \str_casefold:n }
\cs_gset:Npn \str_foldcase:n { \str_casefold:n }
\__kernel_patch_deprecation:nnNNpn { 2022-10-17 } { \str_casefold:V }
\cs_gset:Npn \str_foldcase:V { \str_casefold:V }

(End of definition for \str_foldcase:n.)

\str_declare_eight_bit_encoding:nnn
This command was made internal, with one more argument. There is no easy way to compute a reasonable value for that extra argument so we take a value that is big enough to accommodate all of Unicode.

\__kernel_patch_deprecation:nnNNpn { 2020-08-20 } { }
\cs_gset_protected:Npn \str_declare_eight_bit_encoding:nnn \str_declare_eight_bit_encoding:nnn \str_declare_eight_bit_encoding:nnn #1
\{ \str_declare_eight_bit_encoding:nnn \str_declare_eight_bit_encoding:nnn \str_declare_eight_bit_encoding:nnn \str_declare_eight_bit_encoding:nnn \str_declare_eight_bit_encoding:nnn \str_declare_eight_bit_encoding:nnn \str_declare_eight_bit_encoding:nnn #1 \} { 1114112 } }

(End of definition for \str_declare_eight_bit_encoding:nnn.)
97.9 Deprecated \texttt{l3seq} functions

\seq_indexed_map_inline:Nn
\seq_indexed_map_function:NN

(End of definition for \seq_indexed_map_inline:Nn and \seq_indexed_map_function:NN.)

\seq_mapthread_function:NNN

(End of definition for \seq_mapthread_function:NNN.)

\seq_set_map_x:NNn
\seq_gset_map_x:NNn

(End of definition for \seq_set_map_x:NNn and \seq_gset_map_x:NNn.)

97.10 Deprecated \texttt{l3sys} functions

\sys_load_deprecation:

(End of definition for \sys_load_deprecation.)

97.11 Deprecated \texttt{l3text} functions

\text_titlecase:n
\text_titlecase:nn

(End of definition for \text_titlecase:n and \text_titlecase:nn.)
### 97.12 Deprecated \l3tl functions

\begin{verbatim}
\tl_lower_case:n
\tl_lower_case:nn
\tl_upper_case:n
\tl_upper_case:nn
\tl_mixed_case:n
\tl_mixed_case:nn
\end{verbatim}

\texttt{\__kernel_patch_deprecation:nnNNpn} \{ 2020-01-03 \} \{ \text{lowercase:n} \}
\begin{verbatim}
\cs_gset:Npn \tl_lower_case:n #1
\{ \text{lowercase:n} {#1} \}
\end{verbatim}

\texttt{\__kernel_patch_deprecation:nnNNpn} \{ 2020-01-03 \} \{ \text{uppercase:n} \}
\begin{verbatim}
\cs_gset:Npn \tl_upper_case:n #1
\{ \text{uppercase:n} {#1} \}
\end{verbatim}

\texttt{\__kernel_patch_deprecation:nnNNpn} \{ 2020-01-03 \} \{ \text{titlecase_first:n} \}
\begin{verbatim}
\cs_gset:Npn \tl_mixed_case:n #1
\{ \text{titlecase_first:n} {#1} \}
\end{verbatim}

\texttt{\__kernel_patch_deprecation:nnNNpn} \{ 2020-01-03 \} \{ \text{titlecase_first:nn} \}
\begin{verbatim}
\cs_gset:Npn \tl_mixed_case:nn #1#2
\{ \text{titlecase_first:nn} {#1} {#2} \}
\end{verbatim}

(End of definition for \tl_lower_case:n and others.)

\begin{verbatim}
\tl_case:Nn
\tl_case:cn
\tl_case:NnTF
\tl_case:cnTF
\end{verbatim}

\texttt{\__kernel_patch_deprecation:nnNNpn} \{ 2022-05-23 \} \{ \text{token_case_meaning:Nn} \}
\begin{verbatim}
\cs_gset:Npn \tl_case:Nn \{ \text{token_case_meaning:Nn} \}
\end{verbatim}

\texttt{\__kernel_patch_deprecation:nnNNpn} \{ 2022-05-23 \} \{ \text{token_case_meaning:NnT} \}
\begin{verbatim}
\cs_gset:Npn \tl_case:NnT \{ \text{token_case_meaning:NnT} \}
\end{verbatim}

\texttt{\__kernel_patch_deprecation:nnNNpn} \{ 2022-05-23 \} \{ \text{token_case_meaning:NnF} \}
\begin{verbatim}
\cs_gset:Npn \tl_case:NnF \{ \text{token_case_meaning:NnF} \}
\end{verbatim}

\texttt{\__kernel_patch_deprecation:nnNNpn} \{ 2022-05-23 \} \{ \text{token_case_meaning:NnTF} \}
\begin{verbatim}
\cs_gset:Npn \tl_case:NnTF \{ \text{token_case_meaning:NnTF} \}
\end{verbatim}

\begin{verbatim}
\cs_generate_variant:Nn \tl_case:Nn { c }
\prg_generate_conditional_variant:Nnn \tl_case:Nn
\{ c \} \{ T , F , TF \}
\end{verbatim}

(End of definition for \tl_case:NnTF.)

\begin{verbatim}
\tl_build_clear:N
\tl_build_gclear:N
\end{verbatim}

\texttt{\__kernel_patch_deprecation:nnNNpn} \{ 2023-10-18 \} \{ \text{build_begin:N} \}
\begin{verbatim}
\cs_new_protected:Npn \tl_build_clear:N \{ \text{build_begin:N} \}
\end{verbatim}

\texttt{\__kernel_patch_deprecation:nnNNpn} \{ 2023-10-18 \} \{ \text{build_gbegin:N} \}
\begin{verbatim}
\cs_new_protected:Npn \tl_build_gclear:N \{ \text{build_gbegin:N} \}
\end{verbatim}

(End of definition for \tl_build_clear:N and \tl_build_gclear:N.)

### 97.13 Deprecated \l3token functions

\begin{verbatim}
\char_to_utfviii_bytes:n
\end{verbatim}

\texttt{\__kernel_patch_deprecation:nnNNpn} \{ 2022-10-09 \} \{ \text{codepoint_generate:nn} \}
\begin{verbatim}
\cs_gset:Npn \char_to_utfviii_bytes:n \{ \text{codepoint_generate_to_bytes:n} \}
\end{verbatim}
A little extra fun here to deal with the expansion.

```latex
\tl_map_inline:nn
\{ \{ \text{catcode} \} \{ \text{catcode}_\text{remove} \}
\{ \{ \text{charcode} \} \{ \text{charcode}_\text{remove} \}
\{ \{ \text{meaning} \} \{ \text{meaning}_\text{remove} \}
\}
\}
\use:e
\{ _\text{kernel}_\text{patch}_\text{deprecation}:\text{nnNNpn} { 2022-01-11 } \{ \text{\textbackslash peek}_\text{remove}_\text{spaces}:n \} \}
\cs_gset_protected:Npn \exp_not:c { \text{\textbackslash peek}_\text{\textbackslash #1}_{\text{ignore}_\text{spaces}}:\text{NTF} } \{ \text{\textbackslash \text{peek}_\text{\textbackslash #1}_{\text{ignore}_\text{spaces}}:\text{NT}} \}
\{ \text{\textbackslash \text{\textbackslash peek}_\text{\textbackslash #1}_{\text{ignore}_\text{spaces}}:\text{N}} \}
\cs_gset_protected:Npn \exp_not:c { \text{\textbackslash peek}:\text{NTF} } \{ \text{\textbackslash \text{peek}_\text{\textbackslash #1}_{\text{ignore}_\text{spaces}}:\text{N}} \}
\cs_gset_protected:Npn \exp_not:c { \text{\textbackslash peek}:\text{NF} } \{ \text{\textbackslash \text{peek}_\text{\textbackslash #1}_{\text{ignore}_\text{spaces}}:\text{N}} \}
\}
\}
\}
\} _\text{kernel}_\text{patch}_\text{deprecation}:\text{nnNNpn} { 2022-01-11 } \{ \text{\textbackslash \text{peek}_\text{\textbackslash #1}_{\text{ignore}_\text{spaces}}:\text{NT}:n} \}
\cs_gset_protected:Npn \exp_not:c { \text{\textbackslash \text{peek}_\text{\textbackslash #1}_{\text{ignore}_\text{spaces}}:\text{NT}:F} } \{ \text{\textbackslash \text{\textbackslash peek}_\text{\textbackslash #1}_{\text{ignore}_\text{spaces}}:\text{NT}:N} \}
\cs_gset_protected:Npn \exp_not:c { \text{\textbackslash \text{peek}:\text{NT}:F} } \{ \text{\textbackslash \text{\textbackslash peek}_\text{\textbackslash #1}_{\text{ignore}_\text{spaces}}:\text{NT}:N} \}
\cs_gset_protected:Npn \exp_not:c { \text{\textbackslash \text{peek}:\text{NF}} } \{ \text{\textbackslash \text{\textbackslash peek}_\text{\textbackslash #1}_{\text{ignore}_\text{spaces}}:\text{NT}:N} \}
\}
\} _\text{kernel}_\text{patch}_\text{deprecation}:\text{nnNNpn} { 2022-01-11 } \{ \text{\textbackslash \text{peek}_\text{\textbackslash #1}_{\text{ignore}_\text{spaces}}:\text{N}} \}
\cs_gset_protected:Npn \exp_not:c { \text{\textbackslash \text{peek}:\text{N}} } \{ \text{\textbackslash \text{\textbackslash peek}_\text{\textbackslash #1}_{\text{ignore}_\text{spaces}}:\text{N}} \}
\}
\}
\}
\}
\}
\}
\}
\}
(End of definition for \textbackslash \text{peek}_\text{\textbackslash \text{catcode}_\text{ignore}_\text{spaces}}:\text{NTF} and others.)
\}
Chapter 98

l3debug implementation

__kernel_chk_var_local:N __kernel_chk_var_local:N \var\)
__kernel_chk_var_global:N __kernel_chk_var_local:N \var\)

Applies __kernel_chk_var_exist:N \var\ as well as __kernel_chk_var_scope:NN \scope\ \var, where \scope\ is l or g.

__kernel_chk_var_scope:NN __kernel_chk_var_scope:NN \scope\ \var\)

Checks the \var\ has the correct \scope, and if not raises a kernel-level error. This function is only created if debugging is enabled. The \scope\ is a single letter l, g, c denoting local variables, global variables, or constants. More precisely, if the variable name starts with a letter and an underscore (normal expl3 convention) the function checks that this single letter matches the \scope. Otherwise the function cannot know the scope \var\ the first time; instead, it defines __debug_chk_/\var name\ to store that information for the next call. Thus, if a given \var\ is subject to assignments of different scopes a kernel error will result.

__kernel_cs_exist:N __kernel_cs_exist:N \cs\)
__kernel_cs_exist:c __kernel_cs_exist:N \var\)
__kernel_chk_var_exist:N __kernel_chk_var_exist:N \scope\ \var\)

These functions are only created if debugging is enabled. They check that their argument is defined according to the criteria for \cs_if_exist_p:N, and if not raises a kernel-level error. Error messages are different.

__kernel_chk_flag_exist:n __kernel_chk_flag_exist:n \{\flag\})

This function is only created if debugging is enabled. It checks that the \flag\ is defined according to the criterion for \flag_if_exist_p:n, and if not raises a kernel-level error.

__kernel_debug_log:e __kernel_debug_log:e \{\message text\})

If the log-functions option is active, this function writes the \message text\ to the log file using \iow_log:e. Otherwise, the \message text\ is ignored using \use_none:n. This function is only created if debugging is enabled.
Standard file identification.

\ProvidesExplFile{l3debug.def}{2023-12-11}{L3 Debugging support}

\s__debug_stop Internal scan marks.

\scan_new:N \s__debug_stop

(End of definition for \s__debug_stop.)

__debug_use_i_delimit_by_s_stop:nw Functions to gobble up to a scan mark.

\cs_new:Npn __debug_use_i_delimit_by_s_stop:nw #1 #2 \s__debug_stop {#1}

(End of definition for __debug_use_i_delimit_by_s_stop:nw.)

\q__debug_recursion_tail \q__debug_recursion_stop Internal quarks.

\quark_new:N \q__debug_recursion_tail
\quark_new:N \q__debug_recursion_stop

(End of definition for \q__debug_recursion_tail and \q__debug_recursion_stop.)

__debug_if_recursion_tail_stop:N Functions to query recursion quarks.

\cs_new:Npn __debug_use_none_delimit_by_q_recursion_stop:w #1 \q__debug_recursion_stop { }
__kernel_quark_new_test:N __debug_if_recursion_tail_stop:N

(End of definition for __debug_if_recursion_tail_stop:N.)

\debug_on:n \debug_off:n __debug_all_on: __debug_all_off:

\cs_set_protected:Npn \debug_on:n #1
{ \exp_args:No \clist_map_inline:nn { \tl_to_str:n {#1} } { \cs_if_exist_use:cF { __debug_ ##1 _on: } { \msg_error:nnn { debug } { debug } {##1} } } }

\cs_set_protected:Npn \debug_off:n #1
{ \exp_args:No \clist_map_inline:nn { \tl_to_str:n {#1} } { \cs_if_exist_use:cF { __debug_ ##1 _off: } { \msg_error:nnn { debug } { debug } {##1} } } }

\cs_new_protected:Npn __debug_all_on:
{ \debug_on:n
 _check-declarations ,
 _check-expressions ,
 _deprecation ,
 _log-functions ,
}

\cs_new_protected:Npn __debug_all_off:
{ }

1450
\debug_suspend: \debug_resume:
__debug_suspend:T \l__debug_suspend_tl
\debug_suspend:n
{
 check-declarations ,
 check-expressions ,
 deprecation ,
 log-functions ,
}
(End of definition for \debug_on:n and others. These functions are documented on page 30.)
Suspend and resume locally all debug-related errors and logging except deprecation errors.
The \debug_suspend: and \debug_resume: pairs can be nested. We keep track of nesting
in a token list containing a number of periods. At first begin with the “non-suspended” version
of __debug_suspend:T.
\tl_new:N \l__debug_suspend_tl { }
\cs_set_protected:Npn \debug_suspend:
{
 \tl_put_right:Nn \l__debug_suspend_tl { . }
 \cs_set_eq:NN __debug_suspend:T \use:n
}
\cs_set_protected:Npn \debug_resume:
{
 __kernel_tl_set:Ne \l__debug_suspend_tl
 { \tl_tail:N \l__debug_suspend_tl }
 \tl_if_empty:NT \l__debug_suspend_tl
 {
 \cs_set_eq:NN __debug_suspend:T \use_none:n
 }
}
\cs_new_eq:NN __debug_suspend:T \use_none:n
(End of definition for \debug_suspend: and others. These functions are documented on page 30.)
__debug_check-declarations_on:
__debug_check-declarations_off:
__kernel_chk_var_exist:N __kernel_chk_cs_exist:N __kernel_chk_cs_exist:c
__kernel_chk_flag_exist:n __kernel_chk_var_local:N __kernel_chk_var_global:N
__kernel_chk_var_scope:NN
When debugging is enabled these two functions set up functions that test their argument
when \check-declarations is active)
• __kernel_chk_var_exist:N and __kernel_chk_cs_exist:N, two functions
 that test that their argument is defined;
• __kernel_chk_var_scope:NN that checks that its argument #2 has scope #1.
• __kernel_chk_var_local:N and __kernel_chk_var_global:N that perform
 both checks.
\begin{verbatim}
{ __debug_suspended:T \use_none:n \cs_if_exist:NF ##1
 { \msg_error:nne { debug } { non-declared-variable }
 { \token_to_str:N ##1 } }
}
\cs_set_protected:Npn __kernel_chk_cs_exist:N ##1
 { __debug_suspended:T \use_none:n \cs_if_exist:NF ##1
 { \msg_error:nne { kernel } { command-not-defined }
 { \token_to_str:N ##1 } }
 }
\cs_set:Npn __kernel_chk_flag_exist:n ##1
 { __debug_suspended:T \use_none:nnn
 \flag_if_exist:nF {##1}
 { \msg_expandable_error:nnn { kernel } { bad-variable } { flag~##1~ } }
 }
\cs_set_protected:Npn __kernel_chk_var_scope:NN ##1##2
 { __debug_suspended:T \use_none:nnn
 __debug_chk_var_scope_aux:NN l ##1
 }
\cs_set_protected:Npn __kernel_chk_var_global:N ##1
 { __debug_suspended:T \use_none:nnnnn
 __debug_chk_var_scope_aux:NN g ##1
 }
\cs_new_protected:cpn { __debug_check-declarations_off: }
 { \cs_set_protected:Npn __kernel_chk_var_exist:N ##1 { }
 \cs_set_protected:Npn __kernel_chk_cs_exist:N #1 { }
 \cs_set:Npn __kernel_chk_flag_exist:N #1 { }
 \cs_set_protected:Npn __kernel_chk_var_local:N #1 { }
 \cs_set_protected:Npn __kernel_chk_var_global:N #1 { }
 \cs_set_protected:Npn __kernel_chk_var_scope:NN #1#2 { }
 }
\end{verbatim}

(End of definition for __debug_check-declarations_on: and others.)
First check whether the name of the variable \#2 starts with \langle letter \rangle_. If it does then pass that letter, the \langle scope \rangle, and the variable name to _debug_chk_var_scope_aux:NNn. That function compares the two letters and triggers an error if they differ (the \scan_stop: case is not reachable here). If the second character was not _ then pass the same data to the same auxiliary, except for its first argument which is now a control sequence. That control sequence is actually a token list (but to avoid triggering the checking code we manipulate it using \cs_set_nopar:Npn) containing a single letter \langle scope \rangle according to what the first assignment to the given variable was.

\cs_new_protected:Npn _debug_chk_var_scope_aux:NN \#1\#2
\cs_new_protected:Npn _debug_chk_var_scope_aux:Nn \#1 { \cs_to_str:N \#2 }
\cs_new_protected:Npn _debug_chk_var_scope_aux:NNn \#1\#2\#3
\if:w \#1 \#2
\else:\if:w \#1 \scan_stop:
\cs_gset_nopar:Npn \#1 { \#2 }
\else:\msg_error:nneee { debug } { local-global } { \iow_char:N \#3 }
\fi:\fi:
\fi:
\use:c { __debug_check-declarations_off: }

(End of definition for _debug_chk_var_scope_aux:NN, _debug_chk_var_scope_aux:Nn, and _debug_chk_var_scope_aux:NNn.)

\cs_new_protected:cpn { __debug_log-functions_on: }
\cs_new_protected:cpn { __debug_log-functions_off: }
\cs_new_protected:Npn _kernel_debug_log:e
\cs_set_protected:Npn _kernel_debug_log:e { \use_none:n \iow_log:e }
\cs_set_protected:Nn _kernel_debug_log:e { \use_none:n }

(End of definition for _debug_log-functions_on:, _debug_log-functions_off:, and _kernel-debug_log:e.)

1453
When debugging is enabled these two functions set `__kernel_chk_expr:nNnN` to test or not whether the given expression is valid. The idea is to evaluate the expression within a brace group (to catch trailing `\use_none:nn` or similar), then test that the result is what we expect. This is done by turning it to an integer and hitting that with `\tex_\romannumeral:D` after replacing the first character by `-0`. If all goes well, that primitive finds a non-positive integer and gives an empty output. If the original expression evaluation stopped early it leaves a trailing `\tex_relax:D`, which stops the second evaluation (used to convert to integer) before it encounters the final `\tex_relax:D`. Since `\tex_\romannumeral:D` does not absorb `\tex_relax:D` the output will be nonempty. Note that `#3` is empty except for `\mu` expressions for which it is `\tex_mutoglue:D` to avoid an “incompatible glue units” error. Note also that if we had omitted the first `\tex_\relax:D` then for instance `1+2\relax+3` would incorrectly be accepted as a valid integer expression.

Some commands were more recently deprecated and not yet removed; only make these into errors if the user requests it. This relies on two token lists, filled up in `\l3deprecation` by calls to `__kernel_deprecation_code:nn`.
For patching.

```
\tl_new:N \l__debug_internal_tl
\tl_new:N \l__debug_tmpa_tl
\tl_new:N \l__debug_tmpb_tl
```

(End of definition for \l__debug_internal_tl, \l__debug_tmpa_tl, and \l__debug_tmpb_tl.)

Some functions don’t take the arguments their signature indicates. For instance, \clist_concat:NNN doesn’t take (directly) any argument, so patching it with something that uses \#1, \#2, or \#3 results in “Illegal parameter number in definition of \clist_concat:NNN”.

Instead of changing the definition of the macros, we’ll create a copy of such macros, say, _debug_clist_concat:NNN which will be defined as \debug code with \#1, \#2 and \#3\clist_concat:NNN. For that we need to identify the signature of every function and build the appropriate parameter list.

__debug_generate_parameter_list:NNN takes a function in \#1 and returns two parameter lists: \#2 contains the simple \#1\#2\#3 as would be used in the ⟨parameter text⟩ of the definition and \#3 contains the same parameters but with braces where necessary.

With the current implementation the resulting \#3 is, for example for some_function:NnNn, \#1\{\#2\}\{\#3\}. While this is correct, it might be unnecessary. Bracing everything will usually have the same outcome (unless the function was misused in the first place). What should be done?

```
\cs_new_protected:Npn \__debug_generate_parameter_list:NNN #1#2#3
\{
\__kernel_tl_set:Ne \l__debug_internal_tl
\{ \exp_last_unbraced:Nf \use_ii:nnn \cs_split_function:N #1 \}
\__kernel_tl_set:Ne #2
\{ \exp_args:NV \__debug_build_parm_text:n \l__debug_internal_tl \}
\__kernel_tl_set:Ne #3
\{ \exp_args:NV \__debug_build_arg_list:n \l__debug_internal_tl \}
\}
```

Argument types \(w, p, T, \text{ and } F\) shouldn’t be included in the parameter lists, so we abort the loop if either is found.
The macro below gets the base form of an argument type given a variant. It serves only to differentiate arguments which should be braced from ones which shouldn’t. If all were to be braced this would be unnecessary. I moved the n and N variants to the beginning of the test as the are much more common here.
Simple patching by adding material at the start and end of (a collection of) functions is straight-forward as we know the catcode set up. The approach is essentially that in etoolbox. Notice the need to worry about spaces: those are otherwise lost as normally in expl3 code they would be ~.

As discussed above, some functions don’t take arguments, so we can’t patch something that uses an argument in them. For these functions __kernel_patch:nnn is used. It starts by creating a copy of the function (say, \clist_concat:NNN) with a __debug_ prefix in the name. This copy won’t be changed. The code redefines the original function to take the exact same arguments as advertised in its signature (see __debug_generate_parameter_list:NNN above). The redefined function also contains the debug code in the proper position. If a function with the same name and the __debug_ prefix was already defined, then the macro patches that definition by adding more debug code to it.

\begin{verbatim}
\cs_set_protected:Npn __kernel_patch:nnn
 { \group_begin: \char_set_catcode_other:N #1 \group_end: }
\cs_set_protected:Npn __kernel_patch_aux:nnn #1#2#3
 { \char_set_catcode_parameter:N #1 \char_set_catcode_space:N % \tl_map_inline:nn {#3}
 \cs_if_exist:cTF { __debug_ \cs_to_str:N ##1 }
 { __debug_add_to_debug_code:Nnn }
 { __debug_setup_debug_code:Nnn }
 ##1 {#1} {#2} }

\cs_set_protected:Npn __kernel_patch:nnn #1#2#3
 { \group_begin: \char_set_catcode_other:N #1 \group_end: }
\cs_set_protected:Npn __debug_setup_debug_code:Nnn #1#2#3
 { \cs_gset_eq:cN { __debug_ \cs_to_str:N #1 } #1 __debug_generate_parameter_list:NNN #1 \l__debug_tmpa_tl \l__debug_tmpb_tl \exp_args:Ne \tex_scantokens:D
 \group_begin:
 \cs_set_eq:Nc \cs_to_str:N #1 __debug_ \cs_to_str:N #1 \group_end: }
\cs_set_protected:Npn __debug_generate_parameter_list:NNN #1#2#3
 \cs_gset_eq:Nc \cs_to_str:N #1 __debug_ \cs_to_str:N #1 \group_end: }
\cs_gset_eq:Nc \cs_to_str:N #1 __debug_ \cs_to_str:N #1 \group_end: }
\cs_gset_eq:Nc \cs_to_str:N #1 __debug_ \cs_to_str:N #1 \group_end: }
\end{verbatim}
Some functions, however, won’t work with the signature reading setup above because their signature contains weird arguments. These functions need to be patched using __kernel_patch_weird:nnn, which won’t make a copy of the function, rather it will patch the debug code directly into it. This means that whatever argument the debug code uses must be actually used by the patched function.
(End of definition for _kernel_patch:nnn and others.)

Patching the second argument to ensure it exists. This happens before we alter #1 so the ordering is correct. For many variable types such as int a low-level error occurs when #2 is unknown, so adding a check is not needed.

_kernel_patch:nnn
{ _kernel.chk_var_exist:N #2 }
{ }
{ }
\bool_set_eq:NN \bool_gset_eq:NN \clist_set_eq:NN \clist_gset_eq:NN \fp_set_eq:NN \fp_gset_eq:NN \prop_set_eq:NN \prop_gset_eq:NN \seq_set_eq:NN \seq_gset_eq:NN \str_set_eq:NN \str_gset_eq:NN \tl_set_eq:NN \tl_gset_eq:NN

Patching both second and third arguments.

_kernel_patch:nnn
{ _kernel.chk_var_exist:N #2 _kernel.chk_var_exist:N #3 }
{ }
{ }
\clist_concat:NNN \clist_gconcat:NNN \seq_concat:NNN \seq_gconcat:NNN \str_concat:NNN 1459
\str_gconcat:NNN
\tl_concat:NNN
\tl_gconcat:NNN
\}
% \tracingnone
\cs_gset_protected:Npn __kernel_tl_set:Ne { \cs_set_nopar:Npe }
\cs_gset_protected:Npn __kernel_tl_gset:Ne { \cs_gset_nopar:Npe }

Patching where the first argument to a function needs scope-checking: either local or global (so two lists).
__kernel_patch:nnn
{ __kernel_chk_var_local:N #1 }
{ }
{ }
\bool_set:Nn
\bool_set_eq:NN
\bool_set_true:N
\bool_set_false:N
\box_set_eq:NN
\box_set_eq_drop:NN
\box_set_to_last:N
\clist_clear:N
\clist_set_eq:NN
\dim_zero:N
\dim_set:Nn
\dim_set_eq:NN
\dim_add:Nn
\dim_sub:Nn
\fp_set_eq:NN
\int_zero:N
\int_set_eq:NN
\int_add:Nn
\int_sub:Nn
\int_incr:N
\int_decr:N
\int_set:Nn
\hbox_set:Nn
\hbox_set_to_wd:Nnn
\hbox_set:Nw
\hbox_set_to_wd:Nnw
\muskip_zero:N
\muskip_set:Nn
\muskip_add:Nn
\muskip_sub:Nn
\muskip_set_eq:NN
\seq_set_eq:NN
\skip_zero:N
\skip_set:Nn
\skip_set_eq:NN
\skip_add:Nn
\skip_sub:Nn
\str_clear:N
\str_set_eq:NN
\str_put_left:Nn

1460
\hbox_gset_to_wd:Nnw
\muskip_gzero:N
\muskip_gset:Nn
\muskip_gadd:Nn
\muskip_gsub:Nn
\muskip_gset_eq:NN
\seq_gset_eq:NN
\skip_gzero:N
\skip_gset:Nn
\skip_gset_eq:NN
\skip_gadd:Nn
\skip_gsub:Nn
\str_gclear:N
\str_gset_eq:NN
\str_gput_left:Nn
__kernel_tl_gset:Ne
\tl_gclear:N
\tl_gset_eq:NN
\tl_gput_left:Nn
\tl_gput_left:NV
\tl_gput_left:Nv
\tl_gput_left:Ne
\tl_gput_left:No
\tl_gput_right:Nn
\tl_gput_right:NV
\tl_gput_right:Nv
\tl_gput_right:Ne
\tl_gput_right:No
\tl_build_gbegin:N
\tl_build_gput_right:Nn
\tl_build_gput_left:Nn
\vbox_gset:Nn
\vbox_gset_top:Nn
\vbox_gset_to_ht:Nnn
\vbox_gset:NN
\vbox_gset_to_ht:Nw
\vbox_gset_split_to_ht:NNnn

Scoping for constants.
__kernel_patch:nnn
{ __kernel_chk_var_scope:NN c #1 }
{ }
{ }
\bool const:Nn
\cctab const:Nn
\dim const:Nn
\int const:Nn
\intarray const_fromclist:Nn
\muskip const:Nn
\skip const:Nn
\str const:Nn
\tl const:Nn
}
Flag functions.
__kernel_patch:nnn
 \{ __kernel_chk_flag_exist:n \{#1\} \}
 \{ \}
 \flag_if_raised:nT
 \flag_if_raised:nF
 \flag_if_raised:nTF
 \flag_if_raised:p:n
 \flag_height:n
 \flag_ensure_raised:n
 \flag_clear:n
Various one-offs.
__kernel_patch:nnn
 \{ __kernel_chk_cs_exist:N #1 \}
 \{ \}
 \cs_generate_variant:Nn
 __kernel_patch:nnn
 \{ __kernel_chk_var_scope:NN g #1 \}
 \{ \}
 \cctab_new:N
 __kernel_patch:nnn
 \{ __kernel_chk_var_scope:NN g #1 \}
 \{ \}
 \intarray_new:Nn
 __kernel_patch:nnn
 \{ __kernel_chk_var_scope:NN q #1 \}
 \{ \}
 \quark_new:N
 __kernel_patch:nnn
 \{ __kernel_chk_var_scope:NN s #1 \}
 \{ \}
 \scan_new:N
 __kernel_patch:nnn
__kernel_patch:nnn
 \{ \}
 \{ __kernel_debug_log:e \}
 \{ Defining:\token_to_str:N #1- \msg_line_context: \}
 \}
 __kernel_chk_if_free_cs:N
 ⟨@@=cs⟩
__kernel_patch_weird:nnn
 \{ \}
 \cs_if_free:NF #4
 \{ __kernel_debug_log:e
 \{ Variant:\token_to_str:N #4-%
 already-defined;- not- changing- it- \msg_line_context: \}
 \}
__cs_generate_variant:wwNN }
__kernel_patch:nn
\cs_if_exist:cF { \c__keys_code_root_str #1 }
__kernel_debug_log:e { Defining-key-\#1-\msg_line_context: } }
__keys_cmd_set_direct:nn
__kernel_patch:nn
__kernel_debug_log:e { Defining-message- \#1 / \#2 -\msg_line_context: }
__msg_chk_free:nn
__kernel_patch_weird:nnn
__kernel_chk_cs_exist:c { #5 _p : #6 } }
__kernel_patch_weird:nnn
__kernel_chk_cs_exist:c { #5 : #6 TF }
__kernel_patch_weird:nnn
__kernel_chk_cs_exist:c { #5 : #6 T }
__kernel_patch_weird:nnn
__kernel_patch_weird:nnn
__kernel_patch_weird:nnn
__regex_trace_push:nnN { regex } { 1 } __regex_escape_use:nnnn
\group_begin:
__kernel_tl_set:Ne \l__regex_internal_a_tl
__regex_trace_pop:nnN { regex } { 1 } __regex_escape_use:nnnn
\use_none:nnn
__regex_escape_use:nnn
__regex_trace_push:nnN { regex } { 1 } __regex_build:N
__regex_trace_pop:nnN { regex } { 1 } __regex_build:N

Internal functions from \texttt{prg} module.

__regex_trace_push:nnN { regex } { 1 } __regex_escape_use:nnnn
\group_begin:
__kernel_tl_set:Ne \l__regex_internal_a_tl
__regex_trace_pop:nnN { regex } { 1 } __regex_escape_use:nnnn
\use_none:nnn
__regex_escape_use:nnn
__regex_trace_push:nnN { regex } { 1 } __regex_build:N
__regex_trace_pop:nnN { regex } { 1 } __regex_build:N

Internal functions from \texttt{regex} module.
{ _regex_trace:nnn { 2 }
 _regex_trace_pop:nnN { regex } { 1 } _regex_build:n
 }
{ _regex_build:n }
_kernel_patch:nnn
{ _regex_trace_push:nnN { regex } { 1 } _regex_build_for_cs:n }
{ _regex_trace_states:n { 2 }
 _regex_trace_pop:nnN { regex } { 1 } _regex_build_for_cs:n
 }
{ _regex_build_for_cs:n }
_kernel_patch:nnn
{ _regex_trace:nne { regex } { 2 }
 _regex_new-state-
 L=\int_use:N \l__regex_left_state_int -> -
 R=\int_use:N \l__regex_right_state_int -> -
 M=\int_use:N \l__regex_max_state_int -> -
 \int_eval:n { \l__regex_max_state_int + 1 }
 }
{ }
{ _regex_build_new_state: }
_kernel_patch:nnn
{ _regex_trace_push:nnN { regex } { 1 } _regex_group_aux:nnnnN }
{ _regex_trace_pop:nnN { regex } { 1 } _regex_group_aux:nnnnN }
_kernel_patch:nnn
{ _regex_trace_push:nnN { regex } { 1 } _regex_branch:n }
{ _regex_trace_pop:nnN { regex } { 1 } _regex_branch:n }
{ _regex_branch:n }
_kernel_patch:nnn
{ _regex_trace_push:nnN { regex } { 1 } _regex_match:n
 _regex_trace:nne { regex } { 1 } { analyzing-query-token-list }
 }
{ _regex_trace_pop:nnN { regex } { 1 } _regex_match:n }
{ _regex_match:n }
_kernel_patch:nnn
{ _regex_trace_push:nnN { regex } { 1 } _regex_match_cs:n
 _regex_trace:nne { regex } { 1 } { analyzing-query-token-list }
 }
{ _regex_trace_pop:nnN { regex } { 1 } _regex_match_cs:n }
{ _regex_match_cs:n }
_kernel_patch:nnn
{ _regex_trace:nne { regex } { 1 } { initializing }
 }
{ _regex_match_init: }
_kernel_patch:nnn
{ _regex_trace:nne { regex } { 2 }

Patching arguments is a bit more involved: we do these one at a time. The basic idea is the same, using a \# token that is a string.

The functions here can get a bit repetitive, so we define a helper which can re-use the same patch code repeatedly. The main part of the patch is the same, so we just have to deal with the part which varies depending on the type of expression.
Patching expandable expressions, first the one-argument versions, then the two-
argument ones.

\cs_set_protected:Npn __kernel_patch_eval:nn #1#2
 { \tl_map_inline:nn {#1}
 \exp_args:NNe __kernel_patch:Nn ##1
 { __kernel_chk_expr:nNnN { \c_hash_str 1 } }
 }

Patching expandable \texttt{expr:D} \texttt{mutoglue:D} \texttt{glueexpr:D}
\exp_not:N \#1

__kernel_patch_eval:nn
\{ \dim_max:nn \dim_min:nn \}
\{ __dim_eval:w \}

\{ __int_eval:w \}

__kernel_patch_eval:nn
\{ \int_max:nn \int_min:nn \int_div_truncate:nn \int_mod:nn \}
\{ __int_eval:w \}

Conditionals: three argument ones then one argument ones
\cs_set_protected:Npn __kernel_patch_cond:nn {dim:compare} \{ __dim_eval:w \}
\cs_set_protected:Npn __kernel_patch_cond:nn {int:compare} \{ __int_eval:w \}
\clist_map_inline:nn \{ :nT , :nF , :nTF , _p:n \}
\exp_args:Nce __kernel_patch:Nn \{ \#1 \#1 \}
\exp_not:N __kernel_chk_expr:nNnN \{ \c_hash_str 1 \}
\exp_not:n \{ \#2 \}
\exp_not:c \{ \#1 \#1 \}
\{ \c_hash_str 2 \}
\{ \exp_not:N __kernel_chk_expr:nNnN \{ \c_hash_str 3 \}
\exp_not:n \{ \#2 \}
\exp_not:c \{ \#1 \#1 \}
\}
\}
\{ __kernel_patch_cond:nn \{ int_compare \} \{ __int_eval:w \} \}
\classList \{ :nT , :nF , :nTF , _p:n \}
\exp_args:Nce __kernel_patch:Nn \{ \#1 \#1 \}
\exp_not:N __kernel_chk_expr:nNnN \{ \c_hash_str 1 \}
Step functions.

Odds and ends

This one has catcode changes so must be done by hand.
\exp_after:wN __skip_if_finite:wwNw
\skip_use:N \tex_glueexpr:D
__kernel_chk_expr:nNnN
{##1} \tex_glueexpr:D { } \skip_if_finite:n
; \prg_return_false:
#1 ; \prg_return_true: \s__skip_stop
}
}
\exp_args:No __skip_tmp:w { \tl_to_str:n { fil } }
⟨@@=msg⟩

Messages.
\msg_new:nnnn { debug } { debug }
\msg_new:nnn { debug } { expr } { '#2' in #1 }
\msg_new:nnnn { debug } { local-global }
{ Inconsistent local/global assignment }
{ The-debugging-option-"#1'-does-not-exist\msg_line_context:. }
{ The-functions-"\iow_char:N\debug_on:n'-and-
 '\iow_char:N\debug_off:n'-only-accept-the-arguments-
 'all',-"check-declarations",-"check-expressions",-
 'deprecation',-"log-functions",-not-"#1'. }
\msg_new:nnn { debug } { non-declared-variable }
{ The-variable-"#1'-has-not-been-declared\msg_line_context:. }
{ Checking-is-active,-and-you-have-tried-do-so-something-like: \}
\tl_set:Nn - #1 - \{ - ... - \} \}
without-first-having: \}
\tl_new:N - #1 \}
LaTeX-will-create-the-variable-and-continue.

__kernel_if_debug:TF Flip the switch for deprecated code.
\cs_set_protected:Npn __kernel_if_debug:TF #1#2 {#1}
(End of definition for _kernel_if_debug:TF.)

39435 ⟨/package⟩
Index

The italic numbers denote the pages where the corresponding entry is described, numbers underlined point to the definition, all others indicate the places where it is used.

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>"</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>,</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>;</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>&</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>'</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>></td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td><</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>></td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>1473</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>1473</td>
<td></td>
</tr>
</tbody>
</table>

\::error \::f \::f_unbraced \::n \::o \::o_unbraced \::p \::v \::v_unbraced \::x \::x_unbraced

\::error \::f \::f_unbraced \::n \::o \::o_unbraced

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>::f</td>
<td>43, 2435, 2593</td>
<td></td>
</tr>
<tr>
<td>::f_unbraced</td>
<td>43, 2519</td>
<td></td>
</tr>
<tr>
<td>::n</td>
<td>43, 895, 2366, 2591, 2594</td>
<td></td>
</tr>
<tr>
<td>::o</td>
<td>43, 2441, 2592</td>
<td></td>
</tr>
<tr>
<td>::o_unbraced</td>
<td>43, 2519, 2591, 2592, 2593, 2594</td>
<td></td>
</tr>
<tr>
<td>::p</td>
<td>43, 398, 2338</td>
<td></td>
</tr>
<tr>
<td>::v</td>
<td>43, 2558</td>
<td></td>
</tr>
<tr>
<td>::v_unbraced</td>
<td>43, 2519</td>
<td></td>
</tr>
<tr>
<td>::x</td>
<td>43, 2552</td>
<td></td>
</tr>
<tr>
<td>::x_unbraced</td>
<td>43, 2519, 2605</td>
<td></td>
</tr>
</tbody>
</table>

1473
Index

\begingroup 3, 7, 12, 16, 35, 63, 68, 142, 165
\beginL 473
\beginR 474
\belowdisplayskip 166
\belowdisplayshortskip 167
\bfseries 3364
\binoppenalty 168
\bitset\ commands:
\bitset_addto_named_index:Nn 278, 29535, 29535
\bitset_clear:N 279, 29631, 29631, 29639
\bitset_gclear:N 279, 29631, 29635, 29640
\bitset_gset_false:Nn 279, 29597, 29603, 29630
\bitset_gset_true:Nn 279, 29597, 29599, 29628
\bitset_if_exist:N 29547, 29549
\bitset_if_exist:NtF 279, 29546
\bitset_item:Nn 279, 29663, 29663, 29678
\bitset_log:N 280, 29679, 29681, 29682
\bitset_new:N 279, 29517, 29517, 29533
\bitset_new:Nn 279, 29517, 29524
\bitset_set_false:N 279, 29597, 29601, 29629
\bitset_set_true:N 279, 29597, 29597, 29627
\bitset_show:N 279, 280, 29679, 29679, 29680
\bitset_show_named_index:N 29683, 29684
\bitset_to_arabic:N 277, 280, 1228, 29641, 29641, 29692
\bitset_to_bin:N 278, 280, 29641, 29657, 29662, 29691
\bitset internal\ commands:
\bitset_gset_false:Nn 29550, 29556, 29604
\bitset_gset_true:Nn 29550, 29552, 29600
\bitset_internal_int 29581, 29585, 29589
\bitset_set:NNn 29598, 29600, 29602, 29604, 29605
\bitset_set:NNNn 29550, 29551, 29553, 29555, 29557, 29558
\bitset_set_aux:NNn 29597
\bitset_set_false:NNn 29550, 29554, 29602
\bitset_set_true:NNn 29550, 29550, 29598

\bool\ commands:
\bool_case:n 71, 8491, 8497, 38270, 38271
\bool_case:nT 71, 8491, 8491, 8493, 8495, 8522, 38273, 38274, 38275, 38276, 38277
\bool_case:nT 38270, 38271, 38272, 38277
\bool_case:nT 236, 21630
\bool_case:nT 66, 8256, 8261, 8267, 38906
\bool_case_eq:NN 66, 4433, 6602, 8252, 8253, 8255, 38800, 38907
\bool_case_eq:F 66, 6549, 8240, 8246, 8251, 8272, 14182, 14191, 38909
\bool_case_inverse:N 236, 21638
\bool_case_inverse:N 66, 8268, 8271, 8273
\bool_case_true:N 66, 6615, 8240, 8244, 8250, 8272, 8803, 14172, 37800, 37821, 37828, 38266, 38908
\bool_if:n 8279, 8287
\bool_if:nT 67, 108, 2095, 5325, 5334, 5775, 5948, 6034, 6052, 6070, 6224, 6443, 6451, 6684, 7296, 7319, 7392, 7614, 7784, 7790, 7831, 8198, 8203, 8269, 8272, 8279, 8290, 8349,
\g_tmbp_bool 68, 8322
\tmbp_bool 67, 8322
\c_true_bool 68, 8322
 65, 67, 382, 577, 580–582, 698,
 1703, 1735, 1796, 1814, 2053, 2497,
 4430, 4868, 4942, 4999, 5187, 5189,
 5191, 5193, 5195, 5205, 5243, 5250,
 5743, 5753, 5775, 5776, 5969, 6090,
 6092, 6115, 6210, 6381, 6392, 6407,
 6568, 7433, 7460, 7573, 8241, 8245,
 8313, 8349, 8381, 8382, 8401, 8429,
 8435, 8502, 8588, 19766, 19774,
 19783, 21311, 21320, 37911, 38634
box internal commands:
 bool!::Nw 8360
 bool&::Nw 8372
 bool&::1 8372
 bool&::2 8372
 bool(:::Nw 8365
 bool():0 8372
 bool():1 8372
 bool():2 8372
 _bool_case::NnTF 8491
 _bool_case::nTF 8492, 8494, 8496, 8498, 8499
 _bool_case::w 8 8491, 8501, 8504, 8508
 _bool_case_end::nw ... 8507, 8510
 _bool_choose::NNN 8367, 8371, 8372, 8372
 _bool_get_next::NNN 581, 8346, 8350, 8362, 8368, 8383, 8384, 8385, 8386, 8387, 8388
 _bool_if_p::n 8338, 8338, 8339
 _bool_if_p::aux::w 8380, 8388, 8341, 8348
 _bool_if_recursion_tail_stop_-
do::nn 8278, 8278, 8401, 8427
 _bool_lazy_all::n 8380, 8390, 8399, 8404
 _bool_lazy_any::n 8415, 8416, 8425, 8430
 _bool_p::Nw 8370
 _bool_show::NN 8303, 8303, 8305, 8307
 _bool_use_i_delimit_by_q_-
 recursion_stop::nw 8276, 8276, 8403, 8429
 bool::0 8372
 bool::1 8372
 bool::2 8372
\botmark 169
\botmarks 475
\boundary 792
\box 170
box commands:
 \box_autosize_to_w_and_ht::NnNn ..
 303, 34599, 34599, 34601, 34604
 \box_autosize_to_w_and_ht_plus_-
 dp::NnN ... 303, 34599, 34605, 34610
 \box_clear::NnN 294, 295, 33997, 33997, 34001, 34004, 34837, 34924, 35001
 \box_clear_new::NnN
 295, 34003, 34003, 34007
 \box_dp::N 296, 1333,
 23585, 34025, 34026, 34029, 34032,
 34037, 34041, 34344, 34473, 34588,
 34607, 34613, 34686, 34693, 34698,
 35038, 35039, 35145, 35150, 35178,
 35192, 35363, 35661, 35662, 35965
 \box_gautosize_to_w_and_ht::NnN
 303, 34599, 34602
 \box_gautosize_to_w_and_ht_-
 plus_dp::NnN 303, 34599, 34611, 34616
 \box_gclear::N 294, 33997, 33999, 34002, 34006, 34846
 \box_gclear_new::N
 295, 34003, 34005, 34008
 \box_gresize_to_bt::NnN 303, 34492, 34495, 34497
 \box_gresize_to_bt_plus_dp::NnN
 304, 34492, 34515, 34517
 \box_gresize_to_ud::N 304, 34492, 34535, 34537
 \box_gresize_to_ud_and_ht::NnN
 304, 34492, 34552, 34554
 \box_gresize_to_ud_and_ht_plus_-
 dp::NnN 304, 34443, 34449, 34454, 34577
 \box_grotate::NnN 305, 34325, 34328, 34330, 35312
 \box_gscale::NnN 305, 34570, 34573, 34575, 35519
 \box_gset_clipped::N 305, 34666, 34669, 34671
 \box_gset_dp::N 296, 34034, 34040, 34042
 \box_gset_eq::NN 295, 34000, 34009, 34111,
 34104, 3414, 34676, 34727, 35023, 38910
 \box_gset_eq_clear::NN 38025
 \box_gset_eq_drop::NN 392, 34015, 34017, 34020, 38026, 38911
 \box_gset_ht::N 296, 34034, 34049, 34051
 \box_gset_to_last::N 297, 34088, 34090, 34093, 38912
 \box_gset_trim::Nnnnn 305, 34072, 34675, 34677
Index

1480

cctab internal commands:
\g_cctab_allocate_int 29734, 29872, 29874, 29876
\c_cctab_begin_aux: 1236, 29860, 29862, 29870, 29884
\c_cctab_chk_group_begin:n 1237, 29885, 29904, 29910
\c_cctab_chk_group_end:n 1237, 29898, 29904, 29911
\c_cctab_chk_if_valid:N 29971
\c_cctab_chk_if_valid:NTF 29805, 29817, 29832, 29881, 29971
\c_cctab_chk_if_valid_aux:NTF 29971, 29976, 29992, 29998, 30005
\g_cctab_endslinechar_prop 1233, 29737, 29784, 29786, 29839
\g_cctab_group_seq 29733, 29906, 29913
\c_cctab_gset:n 29776, 29778, 29792, 29810, 29818, 29888, 30068
\c_cctab_gset_aux:n 29776, 29779, 29780
\c_cctab_gstore:hn 29738, 29754, 29753, 29764, 29765, 29766, 29768, 29769, 29771, 29772
\l_cctab_internal_a tl 1236, 29735, 29839, 29840, 29865, 29875, 29883, 29886, 29887, 29888, 29895, 29897, 29899, 29900
\l_cctab_internal_b tl 29735, 29913, 29917, 29924
\g_cctab_internal_cctab 29821
\l_cctab_internal_cctab_name: 29821, 29824, 29842, 29843, 29844, 29845
\c_cctab_item:n 29952, 29955, 29959
\c_cctab_nesting_number:N 29886, 29899, 29929, 29930, 29932
\c_cctab_nesting_number:w 29929, 29934, 29939
\c_cctab_new:N 1232, 1236, 29738, 29743, 29745, 29752, 29759, 29823, 29843, 29864, 29873, 30035
\g_cctab_next_cctab 29600
\l_cctab_select:N 1235, 29831, 29832, 29836, 29849, 29889, 29900
\g_cctab_stack_seq 1231, 29731, 29887, 29895, 29947
\g_cctab_unused_seq 1231, 1236, 1237, 29731, 29883, 29897

cell 269
\char 174, 19300
char commands:
\l_char_active_seq 90, 196, 18941
\clist_gremove_duplicates:N
\clist_greverse:N
\clist_gset:N
\clist_gset:Nn
\clist_gsort:Nn
\clist_greverse:N
\clist_gremove_duplicates:N
\clist_use:nn
\clist_set_eq:NN
\clist_put_right:Nn
\clist_map_variable:nNn
\clist_map_variable:NNn
\clist_map_tokens:nn
\clist_map_function:NN
\clist_map_break:
\clist_if_exist:nTF
\clist_if_empty:n
\clist_if_empty:N
\clist_if_empty:N
\clist_if_empty:nTF
\clist_if_empty:N
\clist_if_empty:P:n
\clist_if_empty:P
\clist_if_empty:NTF
\clist_if_exist:N
\clist_if_exist:NTF
\clist_if_exist:n
\clist_if_exist:N
\clist_if_exist:NTF
\clist_if_empty:NTF
\clist_if_in:N
\clist_if_empty:n
\clist_if_empty:N
\clist_rand_item:n
\clist_pop:NN
\clist_map_variable:NNn
\clist_map_variable:nNn
\clist_map_tokens:nn
\clist_map_function:NN
\clist_map_break:
\clist_log:N
\clist_log:n
\clist_map_break:n
\clist_map_function:NN
\clist_map_break:n
\clist_map_function:NN
\clist_map_inline:nn
\clist_map_tokens:nn
\clist_map_break:n
\clist_map_function:NN
\clist_map_break:n
\clist_map_function:NN
\clist_map_inline:NN
\clist_map_tokens:nn
\clist_map_break:n
\clist_map_function:NN
\clist_map_break:n
\clist_map_function:NN
\clist_map_inline:NN
\clist_map_tokens:nn
\clist_map_break:n
\clist_map_function:NN
clist internal commands:

__clist_concat:NNNN 18262, 18263, 18265, 18266
__clist_count:n 18638, 18643, 18647
__clist_count:w 18638, 18655, 18659, 18663
__clist_get:WN 18319, 18324, 18327, 18361
__clist_if_empty:n:w 18470, 18472, 18477, 18480
__clist_if_empty:n:wW 18470, 18481, 18483
__clist_if_in_return:nnN 18484, 18486, 18491, 18494
__clist_if_wrap:n 18187
__clist_if_wrap:nTP 859, 18187, 18212, 18254, 18401, 18415, 18496
__clist_if_wrap:w 859, 18187, 18191, 18210
\l__clist_internal_clist 862, 18161, 18295, 18296, 18308, 18309, 18490, 18491, 18492, 18579, 18580, 18590, 18591
\l__clist_internal_remove_clist 18385, 18393, 18396, 18398, 18400, 18405
\l__clist_internal_remove_seq 18385, 18417, 18418, 18419
\l__clist_item:nnN 18774, 18736, 18742, 18757, 18767
\l__clist_item:n:nn 18765, 18771, 18774
\l__clist_item:end:n 18705, 18782, 18790
\l__clist_item:n:loop:nn 18734, 18740, 18758, 18762
\l__clist_item:n:loop:nn:nn 18705, 18773, 18776, 18779, 18784
\l__clist_item:strip:n 18705, 18791, 18792
\l__clist_item:strip:w 18705, 18792, 18793
__clist_map_function:end:w 869, 18521, 18525, 18531, 18536, 18568
__clist_map_function:NN 869, 18521, 18534, 18538, 18542
__clist_map_function:N:NN 870, 18545, 18547, 18553, 18557
__clist_map_tokens:nn 18593, 18597, 18603, 18609
__clist_map_tokens:end:w 18593, 18606, 18611, 18615
__clist_map_tokens:nn:nn 18618, 18620, 18624, 18632
__clist_map_unbracket:wn 870, 18545, 18556, 18560, 18630, 18718
__clist_map_variable:NN 871, 18583, 18584, 18586
__clist_pop:NN 18330, 18331, 18333, 18334
__clist_pop:WN 18330, 18347, 18353
__clist_pop:wNN 864, 18339, 18342, 18375
__clist_pop_TP:NN 18356, 18367, 18369, 18370
__clist_put_left:NNNN 18299, 18299, 18299, 18299, 18293
__clist_put_right:NNNN 18299, 18303, 18305, 18306
__clist_rand_item:nn 18794, 18795, 18796
__clist_remove_all: 18409, 18426, 18430, 18443
__clist_remove_all:NNNN 18409, 18410, 18412, 18413
__clist_remove_all:w 866, 18409, 18444, 18445
__clist_remove_duplicates:NN 18387, 18388, 18390, 18391
__clist_reverse:wwNw 867, 18454, 18456, 18457, 18461
__clist_reverse:end:ww 867, 18454, 18458, 18464
__clist_sanitize:n 18174, 18174, 18216, 18282, 18284
__clist_sanitize:NN 859, 18174, 18176, 18180, 18184
__clist_set_from_seq:n 18235, 18247, 18251
__clist_set_from_seq:NNNN 18235, 18236, 18238, 18239
__clist_show:NN 18807, 18807, 18809, 18811
__clist_show:NN 18829, 18829, 18830, 18831
__clist(tmp:w 866, 18167, 18167, 18222, 18444, 18498, 18507, 18511, 18513, 18648, 18666
Index

_clist_trim_next:w 859, 870, 18168, 18168, 18171, 18177, 18185, 18548, 18558
_clist_use:Nw 874, 18701, 18703, 18704, 18705, 18711, 18714, 18730
_clist_use:nn 18668, 18682, 18696
_clist_use:nnnnnnnnn 873, 18668, 18679, 18681, 18693
_clist_use:wn 18668, 18675, 18676, 18692
_clist_use_end:w 874, 18701, 18705, 18724, 18730
_clist_use_i_delimit_by_s-stop:wn 81164, 18166, 18671
_clist_use_more:w 874, 18701, 18706, 18727, 18730
_clist_use_none_delimit_by_s-mark:w 18164, 18164, 18176
_clist_use_none_delimit_by_s-stop:w 866, 18164, 18165, 18182, 18425, 18533, 18540, 18555, 18605, 18613, 18628, 18661, 18703, 18747, 18752
_clist_use_one:w 18701, 18704, 18722
_clist_wrap_item:w 859, 18183, 18211, 18211
\closein 177
\closeout 178
\clubpenalties 476
\clubpenalty 179
cm ... 273
code commands:
 \code:n 237, 21388
codepoint commands:
 \codepoint_generate:nn 286, 30129, 30139, 30176, 30329, 31827, 31834, 31844, 31922, 31926, 31930, 32008, 32015, 32054, 32197, 32201, 32261, 32586, 32675, 32677, 32691, 32693, 32758, 32760, 32762, 32775, 32812, 32838, 32919, 32934, 32958, 32966, 32978, 33690, 33742, 33769, 38354
 \codepoint_str_generate:a 286, 13955, 13958, 13960, 30129, 30133, 30150, 30380, 30420, 30607, 30618, 30646, 30670, 30692, 31977, 31993
 \codepoint_to_category:n 287, 30296, 30296, 31854
 \codepoint_to_nfd:n 287, 30305, 30305, 30243, 32599, 38356, 38357, 38358, 38359
codepoint internal commands:
 _codepoint_block_size_int ...
 _codepoint_case:nn 30336, 30346, 30430, 30460, 30471, 30474, 30479, 30482, 30485, 30533, 30547, 30579, 30584, 30596
 _codepoint_case:nnn 30681, 30682, 30683, 30684, 30685
 _codepoint_case:nnnn 30667, 30669, 30672
 _codepoint_casefold:n 30667, 30684
 \l_codepoint_category_Cn_tl . 30438
 \l_codepoint_data:nnn 30573, 30575, 30593
 \l_codepoint_data_auxi:w 30550, 30555, 30557, 30567, 30568, 30600, 30628, 30633, 30663
 \l_codepoint_data_auxii:w 30373, 30377, 30612, 30616, 30636, 30637, 30639, 30641
 \l_codepoint_data_auxiii:w 30375, 30386
 \l_codepoint_data_auxiv:w ...
 \l_codepoint_data_auxv:nnnnww ...
 \l_codepoint_data_offset:nn 30411, 30433
 \l_codepoint_data_category:n .. 30393, 30399
 \g_codepoint_data_ior 30337, 30560, 30563, 30599, 30625, 30631, 30632, 30654, 30665
 \l_codepoint_data_offset:nnn 30394, 30395, 30401, 30417
 \l_codepoint_finalise_blocks: ...
 \l_codepoint_finalise_blocks:nn ...
 \l_codepoint_finalise_blocks:nnn ... 30520, 30570
 \l_codepoint_finalise_blocks:n .. 30525, 30528
 \l_codepoint_finalise_blocks:nnn
 \l_codepoint_finalise_blocks:nnww
 \l_codepoint_finalise_blocks:nnnww
 \l_codepoint_finalise_blocks:nnnn
 \l_codepoint_generate:a 30129, 30201, 30202, 30205, 30207, 30212
 \l_codepoint_generate:nnn 30129, 30189, 30195
 \l_codepoint_lowercase:nn 30667, 30682
 \l_codepoint_matched_block_tl
 \l_codepoint_matched_block_tl
 \l_codepoint_next_codepoint-fint_tl .. 30348, 30409, 30423, 30451
 \l_codepoint_nfd:n 30323, 30667, 30684
 \l_codepoint_nfd:nn 30691, 30692, 30693
\\coffin_show_structure:N \ldots \ldots
... 311, 312, 1385, 35797, 35970, 35972
\\coffin_typeset:N \ldots \ldots \ldots 310, 35759, 35759, 35766
\\coffin_wd:N \ldots \ldots \ldots 311, 35038,
35402, 35043, 35484, 35531, 35985
\\c_empty_coffin \ldots \ldots \ldots 312, 35031
\\g_tapa_coffin \ldots \ldots \ldots 312, 35034
\\l_tapa_coffin \ldots \ldots \ldots 312, 35034
\\g_tamp_coffin \ldots \ldots \ldots 312, 35034
\\l_tamp_coffin \ldots \ldots \ldots 312, 35034

coffin internal commands:

__coffin_align:NNNNNN \ldots \ldots \ldots 35857, 35638, 35659, 35666, 35666, 35762

\l__coffin_aligned_coffin \ldots \ldots \ldots 35631, 35588, 35589, 35599, 35602, 35605, 35621, 35622, 35639, 35640, 35641, 35642, 35643, 35646, 35650, 35654, 35655, 35660, 35661, 35662, 35663, 35664, 35697, 35713, 35763, 35764, 35953, 35962, 35964, 35966, 35968

\l__coffin_aligned_internal_coffin \ldots \ldots \ldots 35631, 35676, 35683
__coffin_attach:NNNNNN \ldots \ldots \ldots 35624, 35625, 35632, 35636
__coffin_attach_max:NNNNNN \ldots \ldots \ldots 35624, 35657, 35832, 35848, 35864

\l__coffin_bottom_corner_dim \ldots \ldots \ldots 35394, 35396, 35340, 35419, 35430, 35431, 35451, 35459

\l__coffin_bounding_prop \ldots \ldots \ldots 35300, 35327, 35356, 35358, 35364, 35366, 35375, 35438

\l__coffin_bounding_shift_dim \ldots \ldots \ldots 35303, 35335, 35437, 35443, 35444

__coffin_calculate_intersection:N \ldots \ldots \ldots 35197, 35197, 35197, 35197, 35197, 35197, 35197, 35197

__coffin_calculate_intersection:NNNNNN \ldots \ldots \ldots 35197, 35203, 35212, 35269

\c_coffin_corners_prop \ldots \ldots \ldots 34781, 34858, 35057, 35064

\l__coffin_corners_prop \ldots \ldots \ldots 34781, 34858, 35057, 35064

\l__coffin_internal_box \ldots \ldots \ldots 34781, 34858, 35057, 35064

__coffin_internal_dim \ldots \ldots \ldots 34778, 35363, 35365, 35369,
_c_color_icc_colors_signatures_prop 37533, 37559
_l_color_ignore_error_bool 36058, 36245, 36770
_l_color_internal_int 36055, 37326, 37385
_l_color_internal_prop 36943, 36993, 37024, 37037, 37052, 37131, 37159, 37546
_l_color_internal_tl 36055, 36218, 36221, 36765, 36772, 36774, 36776, 36777, 36815, 36817, 36818, 37025, 37028, 37038, 37041, 37053, 37055, 37132, 37136, 37139, 37160, 37163, 37176, 37179, 37181, 37324, 37335, 37358, 37381, 37547, 37550, 37560, 37563
____color_math_nn 36011, 36013, 36018, 36024, 36030, 36632, 36632, 36663, 36684, 36700
_color_math_scan_w: 1/0, 36630, 36632, 36632, 36644, 36648
_color_math_scan_auxi 36632, 36644, 36648
_color_math_script_aux_N 36665, 36692, 36692
_color_math_scripts_Nw 36610, 36626, 36690, 36697
_color_model_N 36009, 36009, 36016, 36054, 36754, 36776, 36815, 36832, 36855
_color_model_convert_nn 37022, 37119
_color_model_device_n 37157, 37157
_color_model_device_mn 37157, 37162, 37170
_color_model_device_mn 37157, 37204, 37206
_color_model_device_nn 37157, 37208, 37211
_color_model_device_colorant_n 37157, 37348, 37391
_color_model_device_convert_n 37157, 37423, 37428
_color_model_device_convert_nn 37157
5420, 5437, 5456, 5458, 5481, 5493,
5513, 5534, 5541, 5548, 5559, 5566,
5572, 5630, 5682, 5691, 5704, 5719,
5728, 5747, 5766, 5923, 5994, 6004,
6006, 6008, 6015, 6060, 6073, 6089,
6091, 6093, 6098, 6113, 6119, 6142,
6165, 6180, 6187, 6194, 6196, 6198,
6205, 6219, 6235, 6244, 6258, 6270,
6287, 6296, 6298, 6310, 6319, 6331,
6344, 6351, 6371, 6402, 6436, 6454,
6463, 6469, 6475, 6481, 6524, 6533,
6547, 6566, 6593, 6598, 6608, 6620,
6658, 6697, 6686, 6688, 6690,
6710, 6715, 6721, 6732, 6737, 6742,
6758, 6810, 6829, 6831, 6874, 6898,
6915, 6921, 6923, 6943, 6969, 6980,
6989, 6998, 7031, 7045, 7056, 7062,
7071, 7079, 7114, 7120, 7123, 7131,
7137, 7140, 7149, 7152, 7155, 7158,
7163, 7172, 7175, 7178, 7183, 7189,
7194, 7199, 7204, 7205, 7206, 7214,
7215, 7216, 7239, 7241, 7245, 7253,
7255, 7257, 7261, 7262, 7267, 7299,
7301, 7303, 7305, 7322, 7324, 7326,
7341, 7349, 7359, 7370, 7379, 7396,
7408, 7418, 7427, 7467, 7504, 7506,
7535, 7540, 7571, 7593, 7606, 7608,
7639, 7641, 7670, 7686, 7697, 7702,
7716, 7722, 7724, 7725, 7731, 7733,
7734, 7740, 7742, 7744, 7750, 7752,
7754, 7762, 7782, 7788, 7794, 7800,
7808, 7810, 7812, 7814, 7816, 7818,
7820, 7822, 7824, 7829, 7858, 7868,
7873, 7882, 7884, 7894, 8207, 8209,
8211, 8218, 8232, 8234, 8240, 8242,
8244, 8246, 8256, 8261, 8268, 8271,
8299, 8301, 8303, 8305, 8307, 8581,
8723, 8740, 8793, 8799, 8807, 8818,
8841, 8871, 8875, 8903, 8907, 8911,
8916, 8968, 9028, 9034, 9112, 9120,
9126, 9129, 9136, 9138, 9145, 9186,
9215, 9235, 9240, 9251, 9327, 9329,
9362, 9385, 9441, 9455, 9498, 9520,
9521, 9534, 9539, 9565, 9574, 9576,
9578, 9595, 9622, 9624, 9626, 9627,
9629, 9631, 9633, 9635, 9637, 9639,
9641, 10048, 10052, 10066, 10077,
10098, 10104, 10120, 10132, 10134,
10136, 10148, 10149, 10150, 10177,
10179, 10190, 10192, 10211, 10213,
10215, 10230, 10232, 10234, 10240,
10247, 10256, 10258, 10260, 10265,
10305, 10309, 10321, 10335, 10343,
10349, 10359, 10371, 10373, 10375,
Index
. 16, 1454, 1459, 1461, 1961, 1962,
6221, 10506, 10507, 10508, 10509,
10510, 12344, 14447, 14475, 18498,
19508, 19525, 19565, 19571, 29207
\cs_set:Npn 14,
16, 63, 64, 378, 387, 391, 908, 1454,
1457, 1492, 1499, 1501, 1502, 1503,
1504, 1505, 1506, 1507, 1508, 1509,
1510, 1511, 1512, 1513, 1514, 1515,
1516, 1517, 1518, 1519, 1520, 1521,
1522, 1523, 1524, 1525, 1526, 1527,
1528, 1529, 1530, 1531, 1532, 1533,
1534, 1535, 1536, 1537, 1538, 1539,
1540, 1541, 1542, 1543, 1544, 1545,
1546, 1547, 1548, 1549, 1550, 1551,
1552, 1553, 1554, 1555, 1556, 1558,
1559, 1560, 1561, 1562, 1563, 1564,
1565, 1566, 1589, 1591, 1593, 1596,
1617, 1619, 1670, 1673, 1735, 1736,
1737, 1738, 1788, 1790, 1792, 1794,
1799, 1805, 1806, 1810, 1817, 1820,
1880, 1882, 1884, 1886, 1888, 1890,
1892, 1894, 1913, 1930, 1950, 1961,
1961, 2076, 2153, 3154, 4517, 4518,
4519, 4845, 4846, 5424, 5426, 5443,
5445, 5685, 5686, 5950, 5951, 5952,
5953, 5979, 6024, 6569, 6876, 8924,
9131, 9133, 10448, 10770, 11622,
12273, 12342, 12468, 13336, 15092,
15249, 16419, 16441, 17294, 17302,
18422, 18511, 19002, 19510, 19524,
19791, 21399, 21401, 21978, 22992,
23000, 23009, 23026, 23034, 23062,
29071, 29277, 30399, 30401, 37996,
38513, 38544, 38586, 38595, 38741
\cs_set:Npx
. 16, 398, 1454, 1461, 1961, 1963
\cs_set_eq:NN
20, 65, 388, 577, 1740, 1988, 1988,
2682, 2832, 3417, 3418, 3422, 3614,
3657, 3682, 4048, 4088, 4374, 5942,
5976, 6575, 6625, 7471, 7499, 7797,
7835, 7836, 7838, 7839, 7840, 7862,
8241, 8243, 8615, 10512, 10513,
10514, 10515, 10517, 10519, 10520,
11943, 11945, 14184, 14193, 14994,
16752, 16753, 16755, 16901, 16902,
16913, 18101, 18960, 19162, 19504,
19563, 19570, 21142, 21158, 21162,
21170, 21246, 21257, 21267, 29108,
29109, 29125, 29140, 29248, 29257,
29335, 29336, 29908, 38474, 38482
\cs_set_nopar:Nn 18, 2076, 2153

1505
\cs_set_nopar:Npe . . . 16, 455, 720,
950, 954, 969, 1454, 1455, 1950,
1953, 2354, 2541, 4006, 4242, 4248,
11963, 13140, 13156, 13187, 20994,
21007, 21014, 21021, 21022, 21147,
21741, 21746, 29268, 30721, 38832
\cs_set_nopar:Npn 15, 16, 197, 387,
1453, 1454, 1454, 1491, 1581, 1582,
1950, 1952, 21093, 21753, 29142,
30342, 30343, 30344, 30348, 30349,
30353, 30703, 30704, 30713, 30715
\cs_set_nopar:Npx
16, 1454, 1456, 1495, 1950, 1954, 2097
\cs_set_protected:Nn . 18, 2076, 2153
.cs_set_protected:Np 237, 21398
\cs_set_protected:Npe
. 16, 110, 1454, 1469,
1471, 1979, 1980, 9506, 21130, 30433
\cs_set_protected:Npn 15, 16, 388,
123, 1454, 1467, 1475, 1477, 1480,
1482, 1485, 1487, 1493, 1568, 1569,
1574, 1579, 1580, 1583, 1595, 1597,
1599, 1601, 1602, 1603, 1605, 1607,
1616, 1618, 1620, 1622, 1623, 1624,
1626, 1628, 1637, 1649, 1675, 1692,
1711, 1719, 1727, 1739, 1741, 1743,
1745, 1757, 1771, 1808, 1896, 1909,
1911, 1915, 1917, 1919, 1927, 1932,
1979, 1979, 2016, 2037, 2850, 2997,
3419, 3962, 5161, 5198, 5927, 5936,
5938, 5940, 5943, 5945, 5954, 5956,
5961, 5963, 5968, 5970, 5972, 5974,
5977, 6734, 6735, 7259, 9259, 9324,
9975, 10427, 10430, 10569, 10650,
10750, 10766, 11631, 12475, 12665,
12852, 13245, 14593, 14646, 16818,
18648, 18949, 19034, 19247, 19266,
19646, 20422, 20587, 20701, 20830,
20872, 21127, 21403, 21405, 21913,
22945, 23441, 23517, 24097, 24171,
24185, 24403, 24420, 24455, 24491,
24506, 24523, 26140, 28912, 28944,
30350, 30367, 30377, 30386, 30407,
30426, 30448, 30453, 30466, 30488,
30520, 30528, 30544, 30551, 30600,
30616, 30633, 30641, 30705, 30719,
31037, 32990, 33023, 33685, 33738,
33764, 34942, 34955, 34986, 35269,
36901, 37989, 37995, 38434, 38442,
38471, 38476, 38495, 38504, 38522,
38527, 38533, 38542, 38543, 38545,
38546, 38547, 38578, 38582, 38700,
38706, 38720, 38737, 38762, 38768,
38777, 39149, 39155, 39167, 39228,


Index

39276, 39311, 39335, 39387, 39438
\cs_set_protected:Npx 16, 1454, 1471, 1979, 1981
\cs_set_protected:nopar:Nn 18, 2076, 2153
\cs_show:N 20, 21, 28, 395, 2242, 2242, 2243, 2244
\cs_split_function:N 22, 1612, 1633, 1750, 1751, 1808, 1810, 2048, 2089, 2051, 2940, 16296, 16317, 38621
\cs_to_str:N 6, 22, 114, 127, 382, 722, 743, 1799, 1799, 1814, 4526, 5575, 5893, 10433, 13144, 13206, 13211, 13219, 13966, 13967, 13968, 13969, 13970, 13971, 13972, 13973, 13974, 13975, 13976, 13977, 16424, 16446, 22943, 29521, 29528, 29530, 29541, 29607, 29611, 29618, 29665, 29670, 29702, 31314, 33673, 38550, 38713, 38722, 38731, 38745, 38754
\cs internal commands:
 __cs_generate_from_signature:N 381, 2047, 2047, 2059, 2060
 __cs_generate_from_signature:n 2047, 2048, 2049
 __cs_generate_from_signature:nn 2047, 2050, 2051
 __cs_generate_from_signature:n ... 2098, 2112
 __cs_generate_from_signature:Nn 2080, 2084
 __cs_generate_from_signature:nnnnnNn ... 2088, 2093
 __cs_generate_internal_c:N 2903
 __cs_generate_internal_end:w 2886, 2920
 __cs_generate_internal_long:nnnnnNn 2924, 2928
 __cs_generate_internal_long:w 2887, 2922
 __cs_generate_internal_loop:nnnN 2884, 2890, 2902, 2904, 2006, 2008, 2911
 __cs_generate_internal_loop:nnnnN 2890, 2902, 2904, 2006, 2008, 2911
Index

__cs_generate_variant_loop_-
 special:NWNNnn 2712, 2722, 2794, 2811
__cs_generate_variant_p_-
 form:mmn 2935, 2973
__cs_generate_variant_same:N-
 441, 2757, 2805, 2805
__cs_generate_variant_T_-
 form:mmn 2935, 2975
__cs_parm_from_arg_count_-test:mmTF 2016, 2018, 2037
__cs_split_function_auxi:w
 1808, 1813, 1817
__cs_split_function_auxi:i:w
 1808, 1819, 1820
__cs_tmp:w 381, 409, 444, 418, 1808,
 1823, 1930, 1930, 1939, 1939, 1940,
 1941, 1942, 1943, 1944, 1945, 1946,
 1984, 1985, 1986, 1987, 2076, 2097,
 2099, 2102, 2117, 2118, 2119, 2120,
 2121, 2122, 2123, 2124, 2125, 2126,
 2127, 2128, 2129, 2130, 2131, 2132,
 2133, 2134, 2135, 2136, 2137, 2138,
 2139, 2140, 2141, 2142, 2143, 2144,
 2145, 2146, 2147, 2148, 2149, 2150,
 2151, 2152, 2153, 2161, 2162, 2163,
 2164, 2165, 2166, 2167, 2168, 2169,
 2170, 2171, 2172, 2173, 2174, 2175,
 2176, 2177, 2178, 2179, 2180, 2181,
 2182, 2183, 2184, 2185, 2186, 2187,
 2188, 2189, 2190, 2191, 2192, 2193,
 2194, 2195, 2196, 2664, 2682, 2824,
 2832, 2850, 2881, 2997, 3004, 3005,
 3006, 3007, 3008, 3009, 3010, 3011,
 3012, 3013, 3014, 3015, 3016, 3017,
 3018, 3019, 3020, 3021, 3022, 3023,
 3024, 3025, 3026, 3027, 3028, 3029,
 3030, 3031, 3032, 3033, 3034, 3035,
 3036, 3037, 3038, 3039, 3040, 3041,
 3042, 3043, 3044, 3045, 3046, 3047
__cs_to_str:N 382, 1799, 1803, 1805, 1806
__cs_to_str:w 382, 1799, 1802, 1806
__cs_use_i_delimit_by_s_stop:nw ...
 2641, 2642, 2948
__cs_use_none_delimit_by_q_-
 recursion_stop:w 2641, 2643, 2688, 2695, 2961
__cs_use_none_delimit_by_s_-stop:w 2641, 2641, 2952
csc 269
ccsd 270
\csname 635,
 4, 8, 13, 17, 30, 53, 54, 61, 94, 185
\csstring 805
\currentcjktoken 1136, 1200
\currentgrouplevel 477
\currentgroupytype 478
\currentifbranch 479
\currentiflevel 480
\currentiftype 481
\currentspacingmode 1137
\currentxspacingmode 1138

D
\d 31412, 33735, 33757
\date 360
\day 186, 1290, 8948
\dd 273
\deadcycles 187
dragon commands:
 \debug_on: 360
 \debug_off:n 30, 1436, 1497
 \debug_on:n 30, 684, 1436
 \debug_resume: 30, 1357,
 \debug_suspend: 30, 1357,
 1431, 1570, 1580, 34861, 38470, 43876
 \debug_suspend: 30, 1357,
 1431, 1570, 1579, 34854, 38470, 38471
dragon internal commands:
 __debug_add_to_debug_code:NnNn ..
 38699, 38714, 38737
 __debug_all_off: 38434, 38460
 __debug_all_on: 38434, 38450
 __debug_arg_check_invalid:N
 38618, 38640, 38646
 __debug_arg_if_braced:N 38661
 __debug_arg_if_braced:n
 38618, 38662, 38663
 __debug_arg_if_braced:NTF
 38618, 38641
 __debug_arg_list_from_signature:nNn ..
 38618, 38629, 38634, 38637, 38643
 __debug_arg_return:N 38618, 38676,
 __debug_make_arg_list:n 38677, 38678, 38679, 38680, 38681,
 38682, 38683, 38684, 38685, 38697
 __debug_build_arg_list:n
 38618, 38625, 38632
Index

__debug_build_parm_text:n 38618, 38623, 38627
__debug_check_declarations_off: ... 38486
__debug_check_declarations_on: ... 38486
__debug_check_expressions_off: ... 38584
__debug_check_expressions_on: ... 38584
__debug_chk_expr_aux:N__N ... 38584, 38589, 38597
__debug_chk_var_scope_aux:NN ... 38525, 38531, 38537, 38549, 38549
__debug_chk_var_scope_aux:_N ... 38549, 38550, 38551
__debug_chk_var_scope_aux:NN ... 38551
__debug_chk_var_scope_aux:NN ... 38549, 38648, 38649, 38650, 38651, 38659
__debug_generate_parameter_list::NN 1455, 1457, 38618, 38618, 38723
__debug_get_base_form:N ... 38618, 38662, 38674
__debug_if_recursion_tail_stop:N 38431, 38433, 38639
__debug_insert_debug_code:NN .. 38699
__debug_internal_tl 38615, 38620, 38623, 38625
__debug_log_functions_off: ... 38576
__debug_log_functions_on: ... 38576
__debug_parm_terminate:w ... 38618, 38648, 38649, 38650, 38651, 38659
__debug_patch_weird:NN ... 38699, 38774, 38777
__debug_setup_debug_code:NN ... 38699, 38715, 38720
__debug_suspended:TF 1451, 38470, 38474, 38482, 38485, 38497, 38506, 38515, 38524, 38529, 38535, 38579, 38588
__debug_suspended_tl 38470
__debug_tmp_w ... 38741, 38760
__debug_tmp_a ... 38615, 38723, 38728
__debug_tmp_b ... 38615, 38723, 38732
__debug_use_i_delim_by_s_stop:nw ... 38428, 38428, 38553, 38555
__debug_use_none_delim_by_q_recursion_stop:w ... 38431, 38660
\\ ... 38618, 38623, 38627
\def ... 36, 37, 38, 60, 62, 67, 70, 84, 106, 143, 188
default commands: ... 277, 21414
\defaulthyphenchar ... 189
\deftautokernchar ... 190
\deferred ... 806
deg ... 272
delcode ... 191
delimiter ... 192
delimitershortfactor ... 193
deprecation internal commands:
__deprecation_just_error:mmNN ... 37958
__deprecation_old:Nn ... 38015, 38020, 38033, 38035, 38037, 38039, 38041, 38043, 38045, 38047, 38049, 38051, 38053, 38055, 38057, 38059, 38061, 38063, 38065, 38067, 38069, 38071, 38073, 38075, 38077, 38079, 38081, 38083, 38085, 38095, 38099, 38103, 38105, 38107, 38109, 38111, 38113, 38115, 38127, 38129, 38133, 38135, 38137, 38139, 38147, 38149, 38151, 38153, 38155, 38157, 38159, 38161, 38163, 38165, 38167, 38169, 38171, 38173, 38175, 38177, 38179, 38181, 38183, 38185, 38187, 38189, 38195, 38197, 38211, 38213, 38215, 38221, 38223, 38225, 38227
__deprecation_old_protected:NN ... 38015
__deprecation_old_protected:NN ... 3815
__deprecation_old_protected:NN ... 38015
__deprecation_patch_aux:mmNN ... 37965, 37970, 37991
__deprecation_patch_aux:mmNN ... 37965, 37969, 37976
__deprecation_warn_once:mmNN ... 37965, 37970, 37969, 37972
__detokenize 30, 94, 482
__DH ... 31418, 33002, 33708
__dh ... 30, 94, 482
__dim commands: ... 219, 20143, 20143, 20150, 38850, 39187
__dim_abs:n ... 219, 20143, 20161, 20161, 39252
__dim_add:N ... 219, 20143, 20143, 20150, 38850, 39187
__dim_case:nn ... 222, 20241, 20256
__dim_case:mm ... 38085
\dim_case:nnTF 222, 20241, 20244, 20246, 20251, 38086
\dim_compare:n 20201
\dim_compare:n:Nn 20196
\dim_compare:n:Nnn 222 \ldots \ldots 222, 223, 237, 20196,
20205, 20301, 20309, 20318, 20324,
20336, 20339, 20350, 20504, 34866,
34703, 34737, 34751, 34761, 35215,
35218, 35223, 35237, 35240, 35245,
35591, 35596, 35606, 35735, 35747
\dim_compare:n:NTF 220, 221,
222, 20201, 20273, 20281, 20290, 20296
\dim_compare:n:Np 222, 20201
\dim_compare:p:Nn 220, 20196, 37916,
37917, 37924, 37925, 37928, 37929
\dim_const:N 218, 919, 933, 20110, 20110, 20115,
20525, 20526, 22365, 38977, 39191
\dim_do_until:nn 223, 20271, 20293, 20297
\dim_do_until:nNn 222, 20299, 20321, 20325
\dim_do_while:nn 223, 20271, 20287, 20291
\dim_do_while:nNn 222, 20299, 20315, 20319
\dim_eval:n 220, 221, 224, 919, 1332, 1333, 20113,
20244, 20249, 20254, 20259, 20354,
20382, 20382, 20520, 20524, 34918,
34995, 35081, 35099, 35136, 35140,
35141, 35145, 35149, 35150, 35167,
35172, 35178, 35185, 35192, 35357,
35360, 35361, 35368, 35450, 35451,
35458, 35459, 35562, 35569, 35718,
35719, 35983, 35984, 35985, 39249
\dim_gadd:NN 219, 20143, 20145, 20151, 38191, 39188
\dim_gset:N 237, 21424
\dim_gset:NN 219, 919, 20131, 20133, 20136, 38918, 39186
\dim_gset_eq:NN 219, 20137, 20140, 20142, 38916
\dim_gsub:NN 219, 20143, 20154, 20160, 38920, 39190
\dim_gzero:N 218, 20116,
20117, 20120, 20124, 20546, 38917
\dim_gzero_new:N 218, 20121, 20123, 20126
\dim_if_exist:N 20127, 20129
\dim_if_exist:NTF 219, 20122, 20124, 20127
\dim_if_exist_p:N 219, 20127
\dim_log:N 226, 20521, 20521, 20523
\dim_log:n 227, 20521, 20523
\dim_max:n 219, 20161,
20176, 35427, 35431, 35444, 39298
\dim_min:n 219, 20161,
20176, 35427, 35431, 35444, 39298
\dim_new:N 218,
20104, 20104, 20109, 20112, 20122,
20124, 20527, 20528, 20529, 20530,
34316, 34317, 34318, 34319, 34320,
34321, 34322, 34323, 34779, 34803,
34804, 34807, 34808, 34809, 34810,
35303, 35304, 35305, 35306, 35307,
35465, 35466, 35807, 35809, 35810
\dim_ratio:n 226, 20192, 20192
\dim_set:N 227, 21424
\dim_set:NN 219,
20131, 20131, 20135, 34343, 34344,
34345, 34377, 34388, 34472, 34473,
34474, 34489, 34587, 34588, 34589,
34591, 34593, 34595, 34908, 34984,
35217, 35221, 35239, 35243, 35274,
35288, 35363, 35398, 35406, 35417,
35418, 35419, 35420, 35426, 35428,
35430, 35432, 35437, 35443, 35526,
35528, 35530, 35538, 35540, 35594,
35669, 35670, 35672, 35674, 35692,
35693, 35808, 35902, 35903, 35949,
35950, 35951, 35953, 38848, 39185
\dim_set_eq:NN 219, 20137,
20137, 20139, 34343, 34344, 34349,
\dim_show:N 226, 20517, 20517, 20518
\dim_show:n 226, 228, 20519, 20519
\dim_sign:n 224, 20384, 20384, 39253
\dim_step_function:nnnN 223, 925, 20327, 20327,
20379, 39353, 39357, 39361, 39365
\dim_step_inline:nnnn 223, 20357, 20364
\dim_sub:NN 219, 20143, 20152, 20159, 38851, 39189
\dim_to_decimal:n 224, 929, 20404, 20404,
20440, 20468, 20505, 20514, 39250
\dim_to_decimal_in_bp:n 225, 20421
\dim_to_decimal_in_cc:n 225, 20421
\dim_to_decimal_in_cm:n 225, 20421
\dim_to_decimal_in_dp:n 225, 20421
\dim_to_decimal_in_in:n 225, 20421
\dim_to_decimal_in_mm:n 225, 20421
\dim_to_decimal_in_pc:n 225, 20421
exp commands:
\exp:w \ldots \ldots \ldots 41, 42

\ldots 375, 382, 400, 401, 408, 564, 566-568, 586, 646, 712, 721, 735, 859,
1027, 1029, 1030, 1033, 1034, 1052,
1057, 1414, 1590, 1592, 2348, 2361,
2367, 2409, 2413, 2418, 2424, 2430,
2442, 2454, 2460, 2466, 2471, 2473,
2480, 2487, 2525, 2530, 2537, 2546,
2548, 2552, 2559, 2565, 2573, 2582,
2589, 2603, 2616, 2620, 2625, 2627,
2915, 7798, 7806, 7844, 7883, 7891,
7899, 8345, 8492, 8494, 8496, 8498,
8515, 8572, 10615, 12270, 12512,
12918, 12999, 13157, 13163, 13180,
13198, 13417, 13422, 13427, 13432,
13452, 13457, 13462, 13467, 13632,
13641, 13696, 17535, 17540, 17545,
17550, 18177, 18185, 18246, 18548,
18558, 18970, 19447, 19449, 19451,
19453, 19455, 19457, 19459, 19461,
19463, 19465, 19467, 19469, 19536,
20208, 20243, 20248, 20253, 20258,
22666, 22781, 22785, 23151, 23277,
23278, 23279, 23280, 23399, 23417,
23446, 23490, 25502, 25505, 25515,
23523, 23544, 23550, 23622, 23635,
23636, 23645, 23658, 23676, 23677,
23697, 23710, 23714, 23736, 23764,
23777, 23790, 23814, 23823, 23855,
23854, 23867, 23880, 23883, 23899,
23918, 23947, 23961, 23978, 23998,
24009, 24015, 24025, 24067, 24074,
24105, 24120, 24128, 24145, 24161,
24165, 24174, 24211, 24220, 24229,
24234, 24236, 24247, 24249, 24264,
24267, 24274, 24285, 24369, 24415,
24433, 24436, 24450, 24463, 24513,
24531, 24602, 24614, 24643, 24645,
24649, 24651, 24709, 24719, 24729,
24741, 24923, 24940, 24950, 25116,
25117, 25118, 25299, 25302, 25310,
25320, 25328, 26341, 26872, 26894,
27049, 27225, 27501, 28244, 28259,
28276, 28313, 28330, 28372, 28391,
28404, 28436, 28451, 28462, 28558,
28605, 28645, 28681, 28881, 28883,
28886, 28891, 28903, 28949, 29060,
29062, 29238, 29403, 29503, 31072,
31111, 31381, 31456, 31535, 31549,
31680, 33417, 38652, 38660, 38698
\expafter:w \ldots \ldots \ldots 39, 41, 42, 204, 375, 378, 398,
401, 438, 455, 545, 564, 566, 567,
Index

12490, 12491, 12492, 12527, 12557, 12567, 12588, 12657, 12660, 12662, 12718, 12727, 12934, 12936, 12960, 12967, 12969, 13026, 13035, 13491, 13518, 13523, 13537, 13558, 13605, 13616, 13666, 13677, 13744, 13763, 13801, 13816, 14332, 14385, 14671, 16584, 17799, 17805, 18437, 18449, 18451, 18486, 18491, 18666, 18778, 18782, 18816, 20597, 21385, 21421, 21451, 21483, 21572, 21581, 21587, 21622, 21629, 21684, 21877, 21910, 21923, 29098, 29113, 29133, 29184, 29260, 29329, 29644, 30809, 31464, 34109, 38436, 38444, 39163, 39399
\exp_args:Noe 37, 2907
\exp_args:Nof 37, 2907
\exp_args:NVo 37, 3023
\exp_args:Nxo 38, 3023
\exp_args:NNo 37, 2907
\exp_args:NV 36, 2408, 2415, 10682, 10758, 10897, 11458, 11463, 21224, 21381, 21417, 21447, 21479, 29888, 31055, 31578, 33207, 36178, 36738, 37027, 37040, 37138, 37162, 37204, 37549, 38623, 38625
\exp_args:NV 36, 2408, 2410, 30536, 31359, 33156, 33314, 33560, 36177, 37620
\exp_args:NVo 37, 2907, 21216
\exp_args:NVV 37, 2420, 2468, 10593
\exp_args:Nx 36, 2517, 2517, 2924, 21387, 21423, 21453, 21485
\exp_args:Nxo 37, 2907
\exp_args:Nxx 37, 2907
\exp_args:generate:n 37, 2907
\exp_args:No 34, 2981, 2981, 9986, 11331
\exp_args:Nn 37490
\exp_end: 41, 42, 375, 378, 382, 400, 401, 408, 564, 566, 567, 588, 705, 712, 720, 721, 735, 1027, 1057, 1415, 1703, 1716, 1724, 1732, 2379, 2388, 2607, 2915, 7798, 7803, 7853, 7883, 7891, 7897, 8511, 8547, 8550, 8551, 8552, 8553, 8554, 8555, 8556, 8557, 8558, 8560, 12286, 12888, 13007, 13150, 13169, 13481, 13665, 17562, 18172, 18997, 19004, 19007, 19046, 19050, 19484, 20270, 23282, 24241, 26896, 28607, 28609, 28681, 28884, 28901, 29063, 31091, 31507, 33436, 38657
\exp_end_continue:f:nw 42, 2627, 2635
\exp_end_continue:f:w 42, 400, 1029, 1690, 2348, 2409, 2442, 2466, 2537, 2552, 2565, 2589, 2603, 2616, 2627, 2629, 8345, 9914, 10615, 12512, 18246, 19536, 20208, 22666, 22781, 22785, 23399, 23417, 23438, 23502, 23507, 23515, 23523, 23544, 23622, 23685, 23666, 23697, 24067, 24074, 24120, 24167, 24174, 24211, 24255, 24261, 24264, 24274, 24285, 24450, 24643, 24654, 24669, 24651, 24709, 24719, 24729, 24741, 24923, 24940, 24950, 25116, 25117, 25118, 25299, 25310, 25320, 25328, 26341, 27049, 27225, 27501, 28244, 28259, 28276, 28313, 28330, 28372, 28391, 28404, 28436, 28451, 28460, 28558, 28645, 28868, 28891, 28949, 29298, 29403, 29503, 31381, 38598
\exp_last_two_unbraced:Nnn 39, 2606, 2606, 35202, 35726, 35730
\exp_last_unbraced:cf 36090, 36096, 36102
\exp_last_unbraced:Nco 38, 2544, 2567, 18568
\exp_last_unbraced:Ncv 38, 2544, 2569
\exp_last_unbraced:Nc 38, 2544, 2569
\exp_last_unbraced:Ne 38, 2544, 2549, 28515
\exp_last_unbraced:Nff 38, 2544, 2551, 4580, 5910, 14555, 14840, 15029, 15201, 16295, 16316, 16423, 16445, 17811, 17831, 22500, 22515, 22942, 24914, 25392, 28834, 29046, 36080, 38621
\exp_last_unbraced:Nfo 38, 2544, 2593, 29353
\exp_last_unbraced:Nmf 38, 2544, 2561
\exp_last_unbraced:NNNf 38, 2544, 2584, 8258
\exp_last_unbraced:NNNNf 38, 2544, 2597, 8263
\exp_last_unbraced:NNNO 38, 2544, 2595, 2675, 2679, 2842, 10824, 13859, 14672, 21046, 22734, 22752, 30850
\exp_last_unbraced:NNNV 38, 2544, 2575
\exp_last_unbraced:NNNo 38, 2544, 2594
\exp_last_unbraced:NNNV 38, 2544, 2577
\exp_last_unbraced:NNO 38, 2544, 2533, 10447, 12896, 31117, 33451, 35697
Index

\c_fifteen 38676

file commands:

\file_add_path:n 38087
\file_compare_timestamp:nN 11197, 11205
\file_compare_timestamp:nNTF 101, 11197
\file_compare_timestamp:p:nN 101, 11197
\g_file_curr_dir_str 98, 10761, 11290, 11296, 11309
\g_file_curr_ext_str 98, 10761, 11292, 11298, 11311
\g_file_curr_name_str 98, 9026, 9155, 10761, 11291, 11297, 11310, 38100
\g_file_current_name_tl 38099
\file_full_name:n 101, 10930, 10935, 10937, 11047, 11064, 11072, 11079, 11126, 11201, 11202, 11242, 11314, 37578, 37583
\file_get:nN 102, 10887, 10887, 10892, 10893, 10904, 38200, 38202, 38204, 38206
\file_get:nNNTF 101, 10930, 10935, 10937, 11047, 11064, 11072, 11079, 11126, 11201, 11202, 11242, 11314, 37578, 37583
\file_get_full_name:n 101, 10930, 10935, 10937, 11047, 11064, 11072, 11079, 11126, 11201, 11202, 11242, 11314, 37578, 37583
\file_get_hex_dump:n 99, 11143, 11143, 11145, 11155, 11157
\file_get_hex_dump:nN 99, 11179, 11179, 11184, 11185, 11194
\file_get_hex_dump:nNNTF 99, 11179, 11181
\file_get_hex_dump:nNTF 99, 11143, 11144
\file_get_mdfive_hash:n 100, 11143, 11143, 11145, 11148, 11159, 11161
\file_get_mdfive_hash:nNTF 100, 11143, 11147
\file_get_size:n 100, 11143, 11143, 11149, 11151, 11163, 11165
\file_get_size:nNTF 100, 11143, 11150
\file_get_timestamp:n 100, 11143, 11152, 11154, 11167, 11169
\file_get_timestamp:nNTF 100, 11143, 11153
\file_hex_dump:n 99, 11076, 11125, 11127
\file_hex_dump:nN 99, 11076, 11076, 11083, 11189, 37560
\file_if_exist:n 11240, 11246
\file_if_exist:nFT 99, 101, 102, 11240, 11572, 11574, 11578, 14252, 38090, 38092
\file_if_exist_input:n 102, 11247, 11247, 11252
\file_if_exist_input:nNTF 102, 11247, 11253, 11259, 38089, 38091
\file_if_exist_p:n 99, 11240

26788, 26790, 26800, 26818, 26819, 26851, 26854, 26863, 26865, 26867, 26881, 26895, 26919, 27003, 27011, 27042, 27050, 27056, 27067, 27070, 27073, 27082, 27091, 27093, 27099, 27106, 27109, 27118, 27126, 27147, 27180, 27181, 27208, 27210, 27228, 27229, 27248, 27259, 27268, 27271, 27282, 27285, 27288, 27306, 27316, 27327, 27329, 27338, 27385, 27400, 27415, 27430, 27445, 27460, 27463, 27465, 27482, 27527, 27834, 27870, 27871, 27881, 27922, 27923, 27947, 27974, 27975, 27978, 27980, 27981, 27986, 27998, 28017, 28022, 28030, 28033, 28065, 28075, 28076, 28086, 28108, 28123, 28141, 28149, 28152, 28180, 28188, 28204, 28276, 28294, 28330, 28348, 28381, 28404, 28410, 28483, 28484, 28539, 28590, 28599, 28606, 28611, 28621, 28631, 28656, 28659, 28672, 28704, 28712, 28713, 28741, 28763, 28764, 28765, 28768, 28773, 28793, 28794, 29311, 29314, 29388, 29389, 29430, 29438, 29491, 29497, 29510, 29593, 30260, 30261, 30264, 30567, 30609, 30613, 30614, 30629, 30771, 30775, 30786, 30801, 30813, 30817, 30833, 30845, 30877, 30878, 30879, 30880, 30881, 30882, 30883, 30977, 30981, 30995, 30996, 31398, 32343, 32346, 32347, 32350, 32351, 32379, 32380, 32381, 32382, 32383, 32384, 32399, 32447, 32448, 32449, 32450, 32451, 32452, 32453, 32454, 32455, 32456, 32457, 32458, 32459, 32460, 32461, 32462, 32479, 32480, 32497, 32498, 32520, 32521, 32522, 32523, 32542, 32543, 32544, 34077, 34079, 34085, 35861, 35872, 35873, 35863, 35864, 35865, 35866, 35869, 35870, 35868, 35867, 35868, 35869, 35890, 35891, 35892, 35893, 35894, 39414, 39417, 39422, 39423
\c minus_inf_fp .. 262, 272, 22594, 25667, 25751, 26084, 26622, 27468, 29509
\c minus_zero_fp .. 262, 22594, 25663, 28187, 29507
\c nan_fp .. 262, 272, 1014, 1039, 22594, 23006, 23014, 23086, 23292, 23311, 23317, 23340, 23507, 23515, 23523, 23601, 23658, 23697, 24088, 24165, 24177, 24666, 24681, 25154, 27046, 28564, 29143, 29422, 29480, 29506
\c one_degree_fp .. 263, 272, 24179, 24897
\c one_fp .. 262, 1067, 1176, 24180, 24609, 24630, 24895, 25254, 26107, 26841, 27041, 27092, 27277, 27391, 27421, 27970, 28580
\c pi_fp .. 262, 272, 1049, 24178, 24897
\g_tapa_fp .. 263, 24899
\l_tapa_fp .. 263, 24899
\l_tapb_fp .. 263, 24899
\c_zero_fp .. 262, 1071, 1088, 1220, 22594, 22648, 24181, 24621, 24633, 24781, 24796, 24797, 25256, 25259, 25495, 25662, 26850, 26871, 27069, 27105, 28185, 28291, 28475, 29505, 34347, 34349, 34354, 34638, 34647, 35503, 36252, 37383
\c_minus_fp ... 262, 1071, 1088, 1220, 22594, 22648, 24181, 24621, 24633, 24781, 24796, 24797, 25256, 25259, 25495, 25662, 26850, 26871, 27069, 27105, 28185, 28291, 28475, 29505, 34347, 34349, 34354, 34638, 34647, 35503, 36252, 37383
fp internal commands:
_fp 25263, 25270, 25279, 25280
_fp_kw 1074, 1083, 25260
_fp_kw :ww 28012
_fp_kw_symbolic :ww 25626
_fp_kw :o 26134
_fp_kw :o :w 1086, 1087, 1116, 25348
_fp_kw :o 28012
_fp_kw :o 28012
_fp_kw :o :w 1095, 1096, 1139, 25739
_fp_kw :o 28012
_fp_kw :o 1206
_fp_kw :o 27037
_fp_kw :o 28012
_fp_kacost :w 1180, 1183, 28126, 28126
_fp_acos :w 27366, 27368, 27958, 29764
_fp_acos :w 27968, 27971, 27991
_fp_acos :w 1176
_fp_acsc :w :Nw 28207, 28207
_fp_acsc :w 24778, 28187
_fp_add :NNN 24780, 24806, 24807, 24808, 24809, 24810
_fp_add_big_i :Nw 1089
_fp_add_big_i :Nw 25422, 25422
_fp_add :Nw 25418, 25422, 25430
_fp_add :Nw 25364, 25384, 25384
_fp_add :Nw 1089, 25363, 25390, 25399
_fp_add :Nw 25362, 25402, 25418, 25418
_fp_add :Nw 25362, 25372, 25372, 25377
_fp_add :Nw 25348, 25442, 25445
_fp_add :Nw 25438, 25440, 25452
_fp_add :Nw 25362, 25374, 25374
_fp_add :Nw 25260, 25266, 25273, 25285
_fp_array :bounds :NNnn 29377, 29377, 29408, 29478
_fp_array :bounds_error :NN 29377, 29377, 29384, 29391
_fp_array :count :n 22697, 22697, 23726, 23726, 25014, 25015, 26147, 28226
_fp_array :gsset :NNN 29396, 29399, 29406
_fp_array :gsset :w 29396, 29412, 29423
_fp_array :gsset :normal :w 29396, 29427, 29433
_fp_array :gsset :recover :Nw 29396, 29413, 29418
_fp_array :gsset :special :nnN 29396, 29426, 29428, 29429, 29441, 29453
_fp_array :gsset :zero :N 2220
_fp_array :if_all :fp :TF 22709, 22709, 24659
_fp_array :if_all :fp :loop :w 22709, 22711, 22714, 22717
\g :fp :array :int 29342, 29349, 29351, 29363
_fp_array :item :N 29400, 29484, 29489
Index

_fp_case_return_same_o:w 1006, 1007, 22878, 22878, 25895, 25899, 26087, 26099, 26102, 26625, 26853, 27066, 27281, 27284, 27376, 27384, 27399, 27414, 27429, 27436, 27444, 27459, 28114, 28122, 28140, 28186, 28203

_fp_case_use:nw 1006, 22874, 22874, 25390, 25658, 25659, 25664, 25665, 25747, 25750, 25897, 26083, 26618, 26621, 27077, 27287, 27377, 27382, 27392, 27397, 27407, 27412, 27422, 27427, 27437, 27442, 27452, 27457, 28116, 28119, 28129, 28131, 28137, 28181, 28183, 28194, 28197, 28202, 28281, 28288, 28335, 28342

_fp_change_func_type:NNN 22737, 22737, 24092, 26130, 28263, 28317, 28394, 28440, 28445, 29410

_fp_change_func_type_aux:w 22737, 22746, 22753

_fp_change_func_type_chk:NNN 22737, 22743, 22754

_fp_chk:w 992–994, 1049, 1087, 1089, 1091, 1097, 1100, 1207, 22581, 22582, 22583, 22594, 22595, 22596, 22597, 22598, 22608, 22613, 22615, 22616, 22644, 22647, 22649, 22659, 22672, 22691, 22886, 22902, 23062, 23067, 23294, 23348, 23357, 23359, 24190, 24830, 24848, 24865, 24870, 24871, 24891, 24982, 25134, 25150, 25154, 25218, 25219, 25222, 25233, 25234, 25242, 25243, 25251, 25263, 25266, 25270, 25273, 25349, 25369, 25370, 25372, 25373, 25374, 25382, 25385, 25396, 25397, 25399, 25408, 25484, 25485, 25636, 25670, 25671, 25674, 25755, 25893, 25901, 25903, 26080, 26089, 26091, 26096, 26104, 26106, 26108, 26112, 26115, 26165, 26267, 26629, 26838, 26855, 26857, 27083, 27057, 27059, 27060, 27063, 27080, 27083, 27086, 27110, 27111, 27113, 27129, 27218, 27231, 27234, 27327, 27327, 27327, 27341, 27401, 27403, 27416, 27418, 27431, 27433, 27446, 27448, 27461, 27471, 27472, 27498, 27899, 27993, 28004, 28111, 28124, 28126, 28142, 28145, 28155, 28178, 28189, 28191, 28205, 28207, 28212, 28274, 28295, 28298, 28328, 28349, 28352, 28402, 28418, 28421, 28496, 28497, 28581, 28583, 28615, 29423, 29431, 29434, 29513

_fp_clear_function:n 24936, 24939, 24947

_fp_compare_after:ww 1198, 24952, 24952, 24968, 25232, 28599

_fp_compare_after_any:ww 1074–1077, 24624, 24949, 24952, 24963, 25031

_fp_compare_back_tuple:ww 25008, 25008

_fp_compare_signif:ww 1076, 24952, 24985, 24986, 25007

_fp_compare_tie:ww 1074, 1076, 1078, 24991, 25037, 25037, 25486, 26394

_fp_compare_return:w 24920, 24922, 24925

_fp_compare_signifand:nnnnnnn 25037, 25040, 25045

_fp_cos:o:w 27388, 27388

_fp_cou:o:w 1161, 27448, 27448

_fp_cou_zero:o:NNw 1160, 1161, 27406, 27448, 27451, 27463

_fp_csc:o:w 27403, 27403

_fp_decimate:NNnn 1004, 1007, 1155, 22828, 22828, 22893, 22920, 23361, 25424, 25432, 25511, 26884, 26888, 27256, 28358

_fp_decimate:NNnn 22840, 22840

_fp_decimate_auxi:NNnn 1005, 22841

_fp_decimate_auxii:NNnn 22841

_fp_decimate_auxiii:NNnn 22841

_fp_decimate_auxiv:NNnn 22841

_fp_decimate_auxv:NNnn 22841

_fp_decimate_auxvi:NNnn 22841
Index

_fp_decimate_pack:nnnnnnnnnnw

_fp_decimate_pack:nnnnnnn

_fp_decimate_tiny:Nnnn

_fp_div_npos_o:Nww

_fp_div_significand_v:NNw

_fp_div_significand_v:NN

_fp_div_division_by_zero_o:Nww

_fp_div_division_by_zero_o:Nww

_fp_div_division_by_zero_o:Nww

_fp_division_by_zero_o:Nww

_fp_division_by_zero_o:Nww

_fp_division_by_zero_o:Nww

_fp_division_by_zero_o:Nww

_fp_division_by_zero_o:Nww

_fp_division_by_zero_o:Nww

_fp_empty_tuple_fp

_fp_empty_tuple_fp
_fp_if_has_symbolic:nTF 28868, 28869, 28895
_fp_if_has_symbolic_aux:w 28869, 28870, 28875
_fp_if_type_fp:NTwFw 999, 1067, 22629,
22708, 22708, 22716, 22723, 22739,
22766, 24671, 24685, 24928, 24965,
24966, 25123, 25124, 25125, 25291
_fp_inf_fp:N 22612, 22614, 23050
_fp_int:w 22886
_fp_int:wTF 22886, 22886
_fp_int_eval:w 1002,
1017, 1019, 1034, 1049, 1089, 1097,
1101, 1105, 1134, 22566, 22566,
22626, 22701, 22832, 22835, 22323,
22371, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
22392, 22392, 22392, 22392, 22392,
Index

__fp_show_validate:nn 24826, 24828, 24837, 24839
__fp_show_validate:w 24826, 24847, 24864
__fp_show_validate_aux:n 24826, 24835, 24872, 24879, 24887, 24888
__fp_sign_o:w 26096, 26100, 26101, 26106
__fp_sign:o: 25340, 26096, 26096
__fp_sign:o: 1009, 1052, 1181, 27373, 27373
__fp_signo: 1159, 1173, 27379, 27394, 27409, 27424, 27560, 27860
__fp_small_int:wTF 1155, 22902, 22902, 23333, 27294
__fp_small_int_normal:wTF 22902, 22906, 22918
__fp_small_int_normal:wTF 22902, 22906, 22918
__fp_small_int_test:NNwN 22921, 22924
__fp_small_int_true:wTF 22902, 22905, 22910, 22917, 22927
__fp_sqrt_auxi_o:NNNNNNw 25927, 25935, 25935
__fp_sqrt_auxii_o:NNNNNNw 1110, 1112, 25937, 25941, 25941, 26021, 26033
__fp_sqrt_auxiii_o:NNNNNNw 25938, 25976, 25976, 26022
__fp_sqrt_auxiv_o:NNNNNNw 25976, 25980, 25997
__fp_sqrt_auxv_o:NNNNNNw 26010, 26012, 26019
__fp_sqrt_auxv_o:NNNNNNw 25976, 25984, 25999
__fp_sqrt_auxvi_o:NNNNNNw 25976, 25988, 26001
__fp_sqrt_auxvii_o:NNNNNNw 25976, 25991, 26003
__fp_sqrt_auxviii_o:NNNNNNn 25998, 26000, 26002, 26008, 26010, 26010
__fp_sqrt_auxv:o:NNNNNNn 26006, 26024, 26024
__fp_sqrt_auxvi_o:NNNNNNn 26024, 26026, 26031
__fp_sqrt_auxvii_o:NNNNNNn 26034, 26038, 26038
__fp_sqrt_auxviii_o:w 26038, 26045, 26058
__fp_sqrt_auxvii:o:NNNNNNn 26038, 26045, 26058
_fp_sqrt_auxxiv:o:NNNNNNNn 26050, 26053, 26061, 26063, 26063
__fp_sqrt_Newton:o:w 1109, 25912, 25923, 25924, 25931
__fp_sqrt_npos_auxi_o:wNNNNN 25903, 25909, 25914
__fp_sqrt_npos_auxii_o:wNNNNNNN 25903, 25918, 25922
__fp_sqrt_npos_o:w 25000, 25903, 25903
__fp_sqrt_o:w 25342, 25893, 25893
__fp_step:NNnnnn 25173, 25176, 25183, 25192
__fp_step:NNnnnN 1086, 25113, 25139, 25140, 25156, 25167, 25172
__fp_step:NNnN 25113, 25113, 25121
__fp_step_fp:wwN 25113, 25126, 25134
__fp_str_if_eq:nn 22902
_fp_step:NnnnnN 25342, 25606
__fp_step:NNnnnn 25113
__fp_step:NNnN ... 25113
_fp_step:NnnnnN 25342, 25606
_fp_sqrt_o:w 26038, 26045, 26058
__fp_sqrt_npos_auxii_o:wNNNNNNN 25903, 25903, 25903
_fp_sqrt_o:w 25342, 25893, 25893
_fp_step:NNnnnn 25113
_fp_step:NNnnnN 25113
_fp_step:NNnN 25113
_fp_to_int_recover:w 28446, 28455, 28458
_fp_to_scientific:w 1187, 28264, 28274, 28274
_fp_to_scientific_dispatch:w 1185, 1189, 28254, 28258, 28261, 28261, 28273, 28955
_fp_to_scientific_normal:wnnnnn 28274, 28279, 28297
_fp_to_scientific_normal:wWw ... 28274, 28300, 28305
_fp_to_scientific_recover:w 28261, 28264, 28267
_fp_to_tl:w ... 28394, 28402, 28402, 29473
_fp_to_tl_dispatch:w 1184, 1188, 28386, 28390, 28393, 28401, 28526, 28864, 28907, 29004, 29006
_fp_to_tl_normal:wnnnnn 28402, 28407, 28412
_fp_to_tl_recover:w 28393, 28394, 28395
_fp_to_tl_scientific:wnnnnn 28402, 28417, 28420
_fp_to_tl_scientific:wWw 28402, 28423, 28428
\c_fp_trailing_shift_int 22789, 26172, 26194, 26267, 27167, 27806, 27843
_fp_trig_division_by_zero-_set:N 23017, 23018, 23020, 23022, 23023
_fp_trig_division_by_zero_set-_error: 23017, 23017
_fp_trig_division_by_zero_set-_flag: 23017, 23017
_fp_trig_division_by_zero_set-_none: 23017, 23021
_fp_trig_invalid_operation-_set:N 22983, 22984, 22986, 22988, 22989
_fp_trig_invalid_operation-_set_error: 22983, 22983
_fp_trig_invalid_operation-_set_flag: 22983, 22985
_fp_trig_invalid_operation-_set_none: 22983, 22987
_fp_trap_overflow_set:N 23043, 23043
_fp_trap_overflow_set_flag: 23043, 23045
_fp_trap_overflow_set_none: 23043, 23047
_fp_trap_underflow_set:N 23043, 23052, 23054, 23056, 23057
_fp_trap_underflow_set_error: 23043, 23051
_fp_trap_underflow_set_flag: 23043, 23053
_fp_trap_underflow_set_none: 23043, 23055
_fp_trig:NNNNNN 27379, 27394, 27409, 27424, 27439, 27454, 27471, 27471
\c_fp_trig_intarray 1169, 27532, 27762, 27765, 27768, 27771, 27774, 27777, 27780, 27783, 27786
_fp_trig_large:ww 27479, 27479, 27479
_fp_trig_large_auxi:w 27746, 27746, 27753
_fp_trig_large_auxii:w 1169, 27746, 27756, 27790
_fp_trig_large_auxiii:w 1169, 27746, 27764, 27767, 27770, 27773, 27776, 27779, 27782, 27785, 27798
_fp_trig_large_auxix:Ww 27819, 27829, 27832, 27836
_fp_trig_large_auxx:ww 27796, 27799, 27799
_fp_trig_large_auxvi:wnnnnnnn ... 27799, 27805, 27810
_fp_trig_large_auxvii:w ... 27802, 27819, 27819
_fp_trig_large_auxviii:w 27819
_fp_trig_large_auxixi:ww 27821, 27825
_fp_trig_large_auxx:Wwnnnnnn 27819, 27842, 27846
_fp_trig_large_auxii:w 27819, 27839, 27853
_fp_trig_large_pack:NNNNWw 27799, 27812, 27817, 27848
_fp_trig_small:ww 1163, 1171, 27481, 27485, 27485, 27491, 27858
_fp_trigd_large:ww 27479, 27493, 27493
_fp_trigd_large_auxi:nnnnnn 27493, 27499, 27505
_fp_trigd_large_auxii:Ww 27493, 27507, 27513
_fp_trigd_large_auxiii:ww 27493, 27516, 27520
commands: 239
\futurelet 238
\global 834
\glet
\gleaders
\GetIdInfo
\fparray
\fparray_new:Nn
\fparray_item_to_tl:Nn
\fparray_item:Nn
__fp_|_symbolic_o:ww
__fp_variable_o:w 1206
__fp_variable_set:Nn 20042, 29042, 29054, 29059, 29075
__fp_variable_set:Nn:Nn 29069, 29069, 29109, 29127, 29140
__fp_variable_set:parsing:-aux:Nn 29069, 29077, 29080
__fp_zero_fp:N 22612, 22612, 23058, 23406
__fp_l:o:ww 1074, 25260
__fp_l:symbolic:o:ww 28012
__fp_l:tuple:o:ww 25260
\fparray commands:
\fparray_count:N 276, 29371, 29371, 29376, 29383, 29394, 29450
\fparray_gset:Nnn 276, 1221, 29396, 29396, 29405
\fparray_gzero:N 276, 29447, 29447, 29459
\fparray_item:Nn 276, 1221, 29460, 29460, 29467
\fparray_item_to_tl:Nn 276, 29460, 29468, 29475
\fparray_new:Nn 276, 29344, 29344, 29356
\futurelet 238
\G
\def 239
get commands:
\getluadata 11916
\GetIdInfo 10, 11420
\gleaders 833
\glet 834
\global 140, 240
\globaldefs 241
\glueexpr 495
\glueshrink 496
\glueshrinkorder 497
\gluestretch 498
\gluestretchorder 499
\glutmou 500
\glyphdimensionsmode 835
\group commands:
\group_align_safe:begin/end: 441, 588
\group_align_safe:begin: 73, 581, 695, 700, 3525, 3960, 8342, 8569, 8571, 12341, 12905, 15072, 15593, 15590, 15590, 31090, 31506, 33435, 36639, 36643
\group_align_safe:end: 73, 695, 700, 3528, 3970, 8344, 8569, 8574, 12362, 12888, 19116, 19518, 19627, 19657, 19673, 31090, 31506, 33435, 36639, 36643
\group_begin: 13, 691, 1387, 1404, 1421, 1422, 2244, 2247, 2250, 2627, 2822, 2999, 3164, 3201, 3481, 3524, 3531, 3551, 3628, 3783, 3976, 4044, 4423, 4515, 4693, 5350, 5684, 5925, 6026, 6456, 6833, 7113, 7372, 7398, 7410, 7420, 7429, 7610, 7643, 7764, 8569, 8614, 8827, 9203, 9242, 9258, 9323, 10217, 10457, 10653, 10765, 10905, 11427, 12017, 12203, 12432, 12445, 13244, 13565, 13588, 14089, 14199, 14254, 14549, 14597, 14643, 14650, 14979, 15161, 16785, 16816, 18947, 18953, 19000, 19062, 19119, 19137, 19161, 19246, 19265, 19645, 20421, 20700, 20829, 20871, 21977, 25260, 29258, 29807, 30036, 30338, 30561, 30598, 30701, 31036, 32989, 33922, 33675, 33737, 34121, 36039, 36215, 36769, 36858, 36900, 38699, 38702, 38764, 38765, 39148, 39151
\c_group_begin_token 113, 204, 460, 708, 887, 3593, 4148, 12749, 12789, 19096, 19119, 19433, 3824, 34164, 34170, 34184, 34190, 34268, 34274, 34289, 34295, 36695, 36696, 36697, 36703
\group_end: 13, 14, 563, 818, 1334, 1337, 1338, 1387, 1421, 1423, 2244, 2247, 2253, 2636, 2825, 3092, 3168, 3210, 3419, 3494, 3529, 3550, 3571, 3635, 3817, 3966, 4066, 4435, 4529, 4872, 4880, 5363, 5688, 5985, 6033, 6040, 6048, 6460, 6461, 6870, 7177, 7377, 7405, 7493, 7637, 7683, 7765, 7766, 8573, 8633, 8844, 8951, 9237, 9250, 9269, 9469, 10223, 10461, 10532, 10788, 10926, 11430, 12020, 12225, 12275, 12435, 12449, 13262, 13570, 13593, 14099, 14214, 14257, 14562, 14620, 14686, 14730, 15160, 15292, 16797, 16826, 16831, 18955, 18962, 19061, 19066, 19136, 19140, 19168, 19264, 19313, 19669, 20437, 20826, 20852, 20911, 20991, 25284, 29303, 29811, 30069, 30571, 30572, 30666, 30736, 30778, 31056, 33015, 33048, 33679, 33982, 34127, 36040, 36220, 36773, 36863, 36915, 38718, 38775, 39146, 39165, 39385
\c_group_end_token: 887, 3596, 19099, 19119, 1948, 30825, 34178, 34283, 36699, 36707
\group_insert_after:N
Index
\int_from_binary:n 38105
\int_from_hex:n 175, 18007,
18009, 36417, 36418, 36419, 38108
\int_from_hexadecimal:n 38107
\int_from_oct:n
. 175, 18007, 18011, 38110
\int_from_octal:n 38109
\int_from_roman:n . . 175, 18027, 18027
\int_gadd:Nn
167, 17417, 17421, 17426, 38924, 39200
\int_gdecr:N 167, 3844,
10245, 12554, 13515, 17028, 17084,
17429, 17435, 17440, 17703, 18574,
20037, 20380, 25196, 33407, 38927
\int_gincr:N
. . . 167, 3833, 3961, 6136, 10236,
12545, 13504, 17020, 17078, 17429,
17433, 17439, 17678, 17689, 18565,
20032, 20359, 20366, 22146, 22370,
25175, 25182, 29349, 29872, 33401,
37003, 37596, 37601, 37606, 38926
.int_gset:N 238, 21454
\int_gset:Nn . 167, 835, 6156, 9275,
17441, 17443, 17446, 38928, 39198
\int_gset_eq:NN
. . . . 167, 17409, 17411, 17412, 38923
\int_gsub:Nn 168, 17417,
17423, 17428, 29363, 38925, 39202
\int_gzero:N 167, 6116, 6133,
17399, 17400, 17402, 17406, 38922
\int_gzero_new:N
. 167, 17403, 17405, 17408
\int_if_even:n 17571
\int_if_even:nTF 170, 17563
\int_if_even_p:n 170, 17563
\int_if_exist:N 17413, 17415
\int_if_exist:NTF
. 167, 5462, 5517, 17404,
17406, 17413, 18041, 18045, 37834
\int_if_exist_p:N 167, 17413
\int_if_odd:n 17563
\int_if_odd:nTF 170,
7284, 7307, 7381, 10858, 17563, 26481
\int_if_odd_p:n 170, 6064, 17563
\int_if_zero:n 17525
\int_if_zero:nTF 170, 17525
\int_if_zero_p:n 170, 17525
\int_incr:N . 167, 3150, 3247, 3248,
3624, 3666, 3679, 3697, 4236, 4237,
5353, 5996, 6163, 6203, 6292, 6623,
6719, 7054, 7126, 7361, 7366, 7401,
7459, 7544, 7545, 7581, 7603, 7706,
7707, 7870, 16804, 17429, 17429,

1551
17437, 21112, 22303, 22458, 22492,
22543, 29262, 29452, 37329, 38857
\int_log:N . . . 176, 18067, 18067, 18068
\int_log:n 176, 18069, 18069
\int_max:nn . 166, 1192, 5841, 5842,
5849, 5850, 6148, 6316, 7673, 7675,
17286, 17294, 26342, 27502, 39305
\int_min:nn
166, 1196, 17286, 17302, 30457, 39306
\int_mod:nn 166, 8674, 8695,
8945, 14426, 14490, 14774, 14775,
15012, 17318, 17341, 17714, 17814,
17834, 30270, 30485, 30596, 39308
\int_new:N 166, 167, 3055,
3056, 3057, 3058, 3059, 3060, 3061,
3062, 3063, 3064, 3065, 3495, 3496,
3497, 3498, 3950, 4287, 4288, 4289,
4299, 4710, 4711, 4718, 4719, 4736,
6081, 6083, 6084, 6085, 6088, 6111,
6112, 6496, 6497, 6498, 6499, 6500,
6501, 6502, 6504, 6505, 6506, 6507,
6510, 6511, 6512, 6773, 7328, 7331,
7332, 7333, 7339, 7340, 8217, 8576,
10434, 10437, 10439, 10452, 14472,
17357, 17357, 17362, 17370, 17376,
17404, 17406, 18083, 18084, 18085,
18086, 18087, 18088, 20920, 22130,
22133, 22134, 22366, 29245, 29342,
29343, 29581, 29734, 36055, 36944
\int_rand:n
. . . . 175, 22295, 22479, 28777, 28777
\int_rand:nn
77, 175, 1195, 1202, 12965, 16977,
18071, 18799, 18804, 28683, 28683
\int_range:nn 1196
.int_set:N 238, 21454
\int_set:Nn 167, 359, 2251,
2265, 2266, 2269, 2271, 2273, 3070,
3072, 3074, 3096, 3097, 3112, 3120,
3121, 3133, 3134, 3152, 3155, 3578,
3641, 3982, 4081, 4084, 4224, 5544,
6082, 6144, 6146, 6152, 6190, 6192,
6261, 6312, 6313, 6323, 6334, 6358,
6376, 6425, 6557, 6559, 6562, 6583,
6627, 6628, 6669, 6704, 7406, 7478,
7480, 7619, 7649, 7672, 7674, 10196,
10198, 10414, 10416, 10435, 10445,
10458, 10505, 10511, 10523, 10528,
12207, 12242, 14551, 14600, 14653,
16805, 17441, 17441, 17445, 21117,
22534, 29840, 29841, 29856, 30022,
30037, 30073, 34112, 34114, 34122,
34123, 34124, 34125, 38859, 39197
\int_set_eq:NN


int internal commands:
__int_abs:n 17286, 17288, 17292
__int_case:mmTF 17533,
17536, 17541, 17546, 17551, 17553
__int_case:mmN
__int_case:mm 17533, 17554, 17555, 17559
__int_compare:mmN 17533, 17558, 17561
__int_compare:mmW 17363, 17364, 17366, 17386
__int_compare:mmW 17363,
17363, 17364, 17366, 17386
__int_compare:mmN 17363,
17363, 17364, 17366, 17386
__int_compare:mmW 17371, 17375, 17297, 17298,
17305, 17306, 17320, 17322, 17323,
17340, 17343, 17344, 17345, 17352,
17384, 17418, 17420, 17422, 17424,
17442, 17444, 17467, 17501, 17519,
17527, 17565, 17573, 17638, 17639,
17640, 17666, 17851, 17878, 17884,
17911, 39205, 39263, 39310, 39334,
39350, 39351, 39372, 39376, 39380
__int_compare:mmW 17363,
17363, 17364, 17366, 17386
__int_compare:mmN 17363,
17363, 17364, 17366, 17386
__int_compare:mmW 17371, 17375, 17297, 17298,
17305, 17306, 17320, 17322, 17323,
17340, 17343, 17344, 17345, 17352,
17384, 17418, 17420, 17422, 17424,
17442, 17444, 17467, 17501, 17519,
17527, 17565, 17573, 17638, 17639,
17640, 17666, 17851, 17878, 17884,
17911, 39205, 39263, 39310, 39334,
39350, 39351, 39372, 39376, 39380
__int_compare:mmW 17363,
17363, 17364, 17366, 17386
__int_compare:mmN 17363,
17363, 17364, 17366, 17386
__int_compare:mmW 17371, 17375, 17297, 17298,
17305, 17306, 17320, 17322, 17323,
17340, 17343, 17344, 17345, 17352,
17384, 17418, 17420, 17422, 17424,
17442, 17444, 17467, 17501, 17519,
17527, 17565, 17573, 17638, 17639,
17640, 17666, 17851, 17878, 17884,
17911, 39205, 39263, 39310, 39334,
39350, 39351, 39372, 39376, 39380
__int_compare:mmW 17363,
17363, 17364, 17366, 17386
__int_compare:mmN 17363,
17363, 17364, 17366, 17386
__int_compare:mmW 17371, 17375, 17297, 17298,
17305, 17306, 17320, 17322, 17323,
17340, 17343, 17344, 17345, 17352,
17384, 17418, 17420, 17422, 17424,
17442, 17444, 17467, 17501, 17519,
17527, 17565, 17573, 17638, 17639,
17640, 17666, 17851, 17878, 17884,
17911, 39205, 39263, 39310, 39334,
39350, 39351, 39372, 39376, 39380
__int_compare:mmW 17363,
17363, 17364, 17366, 17386
__int_compare:mmN 17363,
17363, 17364, 17366, 17386
__int_compare:mmW 17371, 17375, 17297, 17298,
17305, 17306, 17320, 17322, 17323,
17340, 17343, 17344, 17345, 17352,
17384, 17418, 17420, 17422, 17424,
17442, 17444, 17467, 17501, 17519,
17527, 17565, 17573, 17638, 17639,
17640, 17666, 17851, 17878, 17884,
17911, 39205, 39263, 39310, 39334,
39350, 39351, 39372, 39376, 39380
__int_compare:mmW 17363,
17363, 17364, 17366, 17386
__int_compare:mmN 17363,
17363, 17364, 17366, 17386
__int_compare:mmW 17371, 17375, 17297, 17298,
17305, 17306, 17320, 17322, 17323,
17340, 17343, 17344, 17345, 17352,
17384, 17418, 17420, 17422, 17424,
17442, 17444, 17467, 17501, 17519,
Index

\l__iow_line_target_int
 649, 10437, 10523,
 10525, 10528, 10690, 10695, 10730
\l__iow_line_tl 10453, 10562, 10579,
 10669, 10685, 10701, 10702, 10710,
 10718, 10740, 10741, 10746, 10748
_iow_list:N 10387, 10388, 10389
_iow_new:N 10309, 10313, 10314, 10329
_iow_new_aux:N 10313, 10317
_iow_neu:line_tl 10436,
 10521, 10522, 10524, 10527, 10745
_iow_one:indent_int 10438, 10712, 10720
_iow_one:indent_tl 642, 10438, 10713
_iow_open_stream:Nn .. 10321, 10327, 10331, 10335, 10342
_iow_set:indent:n 641, 10438, 10441, 10450
_iow_shell_open:nW 10343, 10346, 10349, 10358
_iow_show:NN 10371, 10371, 10373, 10375
_iow_stream_tl 10286, 10326, 10330, 10337
_iow_streams_prop 639, 10287, 10338, 10364, 10379, 10394
_iow_streams_seq 10285, 10326, 10365, 10366
_iow_temp:w 647, 10569,
 10593, 10650, 10682, 10750, 10758
_iow_unindent:w 641, 10438, 10440, 10448, 10722
_iow_use_i_delimit_by_s_-
 stop:nw 10303, 10303, 10554
_iow_with:nNn 10406, 10410, 10412, 10418
_iow_wrap_allow_break: 642, 10472, 10477, 10514
_iow_wrap_allow:break:n .. 10699, 10699
_iow_wrap_allow_break:.. 642, 10472, 10477, 10619
_iow_wrap_allow_break:mark-
 er-tl 10457, 10477
_iow_wrap_break:w 10457, 10477
_iow_wrap_break:nw 10457, 10477
_iow_wrap_chunk:nw 10571, 10705, 10706, 10714, 10723, 10730
_iow_wrap_chunk:nw 10567, 10569, 10571,
 10705, 10706, 10714, 10723, 10730
_iow_wrap_do: 10531, 10536, 10536
_iow_wrap_end:n 10725, 10732
_iow_wrap_end:chunk:w 645, 10587, 10594, 10644, 10686
_c__iow_wrap_end:marker_tl 10457, 10541
_iow_wrap_fix:neu:line:w 10536, 10545, 10550, 10557
_iow_wrap-indent:n 10708, 10708
_c__iow_wrap_indent:marker_tl 10457, 10491
_iow_wrap_line:nw 645,
 10581, 10585, 10594, 10594, 10693
_iow_wrap_line:aux:Nw 10309, 10313, 10317
_iow_wrap_line_end:NnnnnnnN 10594, 10604, 10610
_iow_wrap_line_end:neu:line:nw 10635, 10638, 10670, 10671, 10680
_iow_wrap_line:loop:w 10594, 10598, 10601, 10607
_iow_wrap_line:seven:nnnnnnn ... 10594, 10625, 10629
_c__iow_wrap_marker:tl 642, 645, 10457, 10593
_iow_wrap_new:line:n 10725, 10725
_c__iow_wrap_newline:marker_tl ... 644, 10457, 10556
_iow_wrap_next:nw 10569, 10576, 10590, 10648, 10690
_iow_wrap_next:line:w 10642, 10683, 10683
_iow_wrap_start:w 10536, 10548, 10559
_iow_wrap_store:do:n 10641, 10728, 10735, 10738, 10738
_iow_wrap_tl 644, 649, 650, 10456,
 10518, 10533, 10538, 10540, 10543,
 10545, 10548, 10564, 10742, 10744
_iow_wrap_trim:N 650, 10671,
 10702, 10728, 10735, 10750, 10752
_iow_wrap_trim:w 10750, 10753, 10754
_iow_wrap_trim:aux:w 10750, 10755, 10756
_iow_unindent:n 10708, 10716
Index

1559

\c__iow_wrap_unindent_marker_tl .
------------------------------------ 10457, 10493
\itshape 33648

J
\j 33014, 33711, 33881, 33960
\chardivopenalty 1157
\fam 1158
\fond 1159
\jis 1160
\jobname 287

K
\k 31412, 33755, 33759, 33834,
33835, 33852, 33853, 33875, 33876,
33877, 33932, 33933, 33958, 33959
\kanjijskip 1161
\kansuji 1162
\kansujichar 1163
\kcattode 1164
\kchar 1204
\kchardef 1205
\kern 287

kernel internal commands:
_kernel_backend_align_begin: 366
_kernel_backend_align_end: 366
_kernel_backend_header_bool: 366
_kernel_backend_literal:n 366
_kernel_backend_literal_pdf:n 366
_kernel_backend_literal_postscript:n 366
_kernel_backend_literal_svg:n 366
_kernel_backend_matrix:n 366
_kernel_backend_postscript:n 366
_kernel_backend_scope_begin: 366
_kernel_backend_scope_end: 366
_kernel_chk_cs_exist:N 366
_kernel_chk_defined:NTF 359, 1449, 1451,
38486, 38487, 38488, 38504, 38543,
38908, 38956, 39060, 39064, 39068
_kernel_chk_defined:NTF 359, 2215, 2215,
2234, 8309, 10138, 10377, 13073,
13108, 18115, 22553, 29687, 29698
_kernel_chk_exp:nNnN 359, 1449, 38584, 38586, 38595,
38596, 39175, 39235, 39283, 39288,
39318, 39324, 39342, 39356, 39360,
39364, 39372, 39376, 39380, 39393
_kernel_chk_flag_exist:N 38544
_kernel_chk_flag_exist:n 1449, 38486, 38489, 38513, 38986
_kernel_chk_if_free_cs:N 605, 587, 1919, 1919, 1927, 1928,
1934, 1998, 8236, 11967, 11973,
13277, 16180, 16494, 17359, 17380,
19120, 19122, 19132, 19703, 20106,
20535, 20626, 22145, 22369, 29519,
29526, 29742, 29758, 33993, 39023
_kernel_chk_tl_type:NnnTF 359, 829, 877,
916, 7218, 13106, 13106, 13857,
13994, 17231, 18813, 20076, 24822
_kernel_chk_var_exist:N 1449,
1451, 38486, 38486, 38495, 38530,
38536, 38542, 38796, 38817, 38818
_kernel_chk_var_global:N 1449, 1451,
38480, 38491, 38533, 38546, 38903
_kernel_chk_var_local:N 1449, 1451,
38486, 38490, 38527, 38545, 38835
_kernel_chk_var_scope:N 1449,
1451, 38486, 38492, 38522, 38547,
38972, 39002, 39006, 39010, 39014
_kernel_codepoint_case:mm 367, 13941, 30667, 30667, 31899
_kernel_codepoint_data:mm 365, 30301, 30573, 30573, 30604, 30687
_kernel_codepoint_to_bytes:n 360, 13311,
30158, 30190, 320218, 320218, 38355
_kernel_color_stack_int 367
_kernel_cs_parm_from_arg:-
count:mmTF 360, 1639, 2016, 2016, 2063
_kernel_debug_log:n 1449, 1453, 38576, 38578, 38582,
38583, 39020, 39029, 39042, 39050
_kernel_dependency_version-
check:mm 360, 11457, 11457
_kernel_dependency_version-
check:mm 360, 11457, 11458, 11459
_kernel_deprecation_code:mm 360, 1436, 1454,
1581, 1583, 37962, 37988, 37995, 37996
_kernel_deprecation_error:Nnn .. 1436, 37965, 37998, 37998
_kernel_exp_not:w 360, 407, 438, 455,
705, 725, 911, 2610, 2610, 2612,
2614, 2616, 2619, 2624, 4011, 11974,
12000, 12001, 12008, 12009, 12023,
12025, 12027, 12029, 12041, 12046,
12051, 12057, 12058, 12065, 12066,
12072, 12077, 12082, 12088, 12089,
12096, 12097, 12113, 12117, 12122,
12128, 12129, 12136, 12137, 12141,
Index

__kernel_sys_everyjob:
__kernel_tl_gaet: Nn .
558, 684, 725, 3166, 3715, 4521, 5730, 7472, 7483, 7547, 7689, 9054, 11963, 11964, 12006, 12027, 12029, 12071, 12076, 12081, 12086, 12094, 12141, 12144, 12149, 12154, 12162, 12290, 12294, 12662, 12936, 13210, 13274, 13287, 13297, 1330, 13314, 14135, 14151, 14201, 14212, 14331, 14383, 14394, 14552, 14601, 14654, 14660, 14893, 15093, 15250, 16530, 16535, 16553, 16557, 16615, 16655, 16684, 16690, 16749, 16898, 16941, 17129, 17139, 18238, 18265, 18284, 18333, 18369, 18412, 18451, 19905, 19948, 24786, 37945, 38833, 38948
__kernel_tl_set: Nn .
4111, 5300, 5305, 5576, 5645, 7624, 7658, 10984, 10923, 10330, 10443, 10518, 10521, 10522, 10538, 10543, 10701, 10721, 10740, 10742, 11046, 11173, 11188, 11963, 11963, 11998, 12023, 12025, 12040, 12045, 12050, 12055, 12063, 12113, 12116, 12121, 12126, 12134, 12288, 12292, 12260, 12934, 13025, 13272, 13282, 13292, 13308, 13312, 14090, 16525, 16551, 16555, 16577, 16607, 16653, 16682, 16688, 16747, 16854, 16879, 16896, 16910, 16938, 17127, 17137, 18236, 18263, 18282, 18331, 18367, 18410, 18449, 19904, 19946, 21595, 21596, 21637, 21638, 21711, 21909, 24784, 37943, 37954, 38478, 38620, 38622, 38624, 38832, 38879, 39076
__kernel_tl_to_str:
365, 701, 725, 1418, 1420, 12403, 12497, 12595, 13272, 13274, 13278, 13283, 13288, 13293, 13298, 13486, 13554, 16278
__kernel_sys_everyjob
__kernel_tl_gaet
__kernel_tl_set
__kernel_tl_to_str
keys commands:
\l__keys_choice_int . 236, 239, 241, 243, 20920, 21109, 21112, 21118
\l__keys_choice_tl .
236, 239, 241, 243, 20920, 21116
\l__keys_define
235, 9820, 20559, 20595, 20961
\keys_if_choice_exist:nn . 22018
\keys_if_choice_exist:nnTF
\keys_if_choice_exist:pp.nn
246, 22018
\keys_if_choice_exist:nn . 22010, 22017
\keys_if_choice_exist:nnTF
246, 22010
\l__keys_key_str
244, 20924, 21184, 21185, 21270, 21721, 21820, 21824, 21849, 21852, 21853, 21889, 21946
\l__keys_key_tl
20925, 21184, 21815, 21721
\keys_log:nn . 246, 20206, 20209
\l__keys_path_str
244, 20929, 20988, 21007, 21014, 21022, 21023, 21024, 21041, 21059, 21061, 21063, 21066, 21078, 21081, 21085, 21093, 21095, 21096, 21099, 21114, 21130, 21143, 21148, 21158, 21162, 21170, 21176, 21180, 21183, 21187, 21198, 21200, 21202, 21205, 21216, 21225, 21230, 21322, 21247, 21258, 21264, 21268, 21284, 21293, 21335, 21346, 21389, 21711, 21719, 21757, 21760, 21799, 21803, 21808, 21817, 21831, 21833, 21834, 21838, 21846, 21869, 21889, 21922, 21934, 21943
\l__keys_path_tl
20930, 21024, 21085
\keys_precompile:nnN . 246, 21691, 21691
\keys_set:nn . 235, 237, 238, 239
\keys_set_filter:nn
\keys_set_filter:nnN
\keys_set_filter:nnNN
\keys_set_group:nn
\keys_set_known:nn
\keys_show:nn . 246, 20206, 20209
\l__keys_usage_load_prop
243, 20945, 21303, 21310, 21317
\l__keys_usage_preamble_prop
243, 20945, 21305, 21312, 21319
\l__keys_value_tl
244, 20939, 21186, 21187, 21284, 21802, 21806, 21812, 21823, 21834, 21853, 21866, 21891, 21901, 21929
\keys internal commands:
\l__keys_bool_set: Nn . 21049, 21049, 21051,
_keys_set_keyval:nnn
 21699, 21702, 21707, 21709, 21728
_keys_set_known:nnn
 21579, 21594, 21599, 21601
_keys_set_known:nnnN
 21579, 21581, 21587, 21591
_keys_set_selective:nnn
 21699, 21724, 21775
_keys_set_selective:nnn
 21620, 21651, 21671, 21683
_keys_set_selective:nnn
 21620, 21684, 21685
_keys_show:n 22026, 22039, 22052
_keys_show:Nn
 22026, 22071, 22075
_keys_store_unused:w
 22026, 22054, 22063
_keys_store_unused: ... 21766,
 21786, 21792, 21829, 21862, 21883
_keys_store_unused:w
 21913, 21934, 21939
_keys_store_unused_aux:
 21829, 21904, 21907
_keys_tmp:w 21978,
 21990
l_keys_tmp.Bool
 20940, 21771, 21778, 21783
l_keys_tmpa_tl ... 20940, 21231,
 21332, 21333, 21337, 21338, 21340
l_keys_tmpb_tl ... 20940, 21231,
 21236, 21334, 21337, 21338
_keys_trim_spaces:n 950,
 20964, 20994, 21023, 21114, 21575,
 21715, 21910, 21951, 21952, 21977,
 21980, 22013, 22022, 22033, 22044
_keys_trim_spaces:aux:w
 21977, 21982, 21983, 21992, 22002
_keys_trim_spaces:auxii:w 21977,
 21984, 21986, 21996, 22003, 22005
_keys_trim_spaces:auxiii:w
 21977, 21987, 22000, 22006
c_keys_type_root_str
 20913, 21078, 21081, 21093
_keys_undefined:
 21168, 21241, 21241, 21543
l_keys_unused_clist
 2097, 20988, 21582, 21588, 21593,
 21595, 21596, 21623, 21630, 21635,
 21637, 21638, 21887, 21897, 21925
_keys_usage:n 21297, 21297, 21545
_keys_usage:NN
 21297, 21303, 21305, 21310, 21312,
 21317, 21319, 21330
_keys_usage:w 21297, 21335, 21342
_keys_value_or_default:n
 21722, 21795, 21795
_keys_value_requirement:nnn
 21550, 21551, 21557, 21547, 21549
_keys_variable_set:NNN
 21343, 21343, 21353, 21356, 21391,
 21393, 21395, 21397, 21511, 21513,
 21515, 21517, 21519, 21521, 21523,
 21525, 21527, 21529, 21531, 21533,
 21535, 21537, 21539, 21541, 38238,
 38240, 38242, 38244, 38246, 38248,
 38250, 38252
_keys_variable_set_required:NNN ...
 21343, 21354, 21359, 21425, 21427,
 21429, 21431, 21433, 21435, 21437,
 21439, 21455, 21457, 21459, 21461,
 21478, 21489, 21491, 21493, 21503,
 21505, 21507, 21509
keyval commands:
_keyval_parse:NNn 249,
 946, 20702, 20713, 20827, 20965, 21576
_keyval_parse:nn
 248, 249, 946, 945, 19784, 20703,
 20703, 20703, 20828
keyval internal commands:
_keyval_blank_key_error:w
 20834, 20843, 20856, 20858
_keyval_blank_true:w
 20788, 20856, 20856
_keyval_clean_up_active:w 943, 20730,
 20743, 20764, 20796, 20816
_keyval_clean_up_other:w 943, 20769, 20774, 20785,
 20785
_keyval_end_loop_active:w 20717, 20810, 20818
_keyval_end_loop_other:w 944, 20727, 20810, 20810
_keyval_if_blank:w 20788, 20834, 20843, 20853,
 20854
_keyval_if_empty:w 20853, 20853, 20854
_keyval_if_recursion_tail:w ... 20716, 20726, 20853, 20855
_keyval_if_recursion_tail:w ...
 20716, 20726, 20853, 20855
_keyval_key:n 943, 20790, 20829, 20841, 20856
_keyval_loop_active:nnn 20708, 20714, 20817
_keyval_loop_other:nnn 941, 20718,
 20724, 20724, 20800, 20808, 20820,
 20839, 20848, 20857, 20858, 20863
_keyval_misplaced_equal_after:-
 active_error:w
Index

\msg_info:nnn 85, 9385
\msg_info:nnnn 85, 9385, 9632
\msg_info:nnnnn 85, 9385
\msg_info:nnnnnn .. 85, 86, 9385
\msg_info:nnn_prop 85, 9385
\msg_line_context: 82, 9276, 9290, 9414, 9419
\msg_interrupt:nnn 38141
\msg_line_number: 82, 606, 1913, 1913, 9179, 9180, 20866, 20868, 30090, 39021, 39032, 39042, 39051, 39042, 39428
\msg_log:nn 38143
\msg_log:nn 86, 9422
\msg_log:nnn 86, 9422
\msg_log:nnnn 86, 9422
\msg_log:nnnnn 86, 9422
\msg_log:nnnnnn 86, 9422
\msg_module_name:n 81, 87, 9189, 9295, 9312, 9312, 9320, 9388
\msg_module_name_prop 81, 3471, 8189, 9303, 9314, 9315, 10012, 10020, 10023, 10025, 11655, 14884, 20869, 22122, 22957, 29722, 30124, 37779
\msg_module_type:n 81, 82, 9294, 9296, 9306
\msg_module_type_prop 81, 3472, 8190, 9303, 9308, 9309, 10013, 10021, 10024, 10026, 11656, 14885, 20870, 22123, 22958, 29723, 30125, 37780
\msg_new:nnnn 81, 4212, 7903, 7905, 7910, 8171, 8183, 9120, 9126, 9128, 9630, 9759, 9792, 9805, 9805, 9807, 9809, 9811, 9913, 9915, 9917, 9919, 9921, 9923, 9925, 9927, 9929, 9936, 9938, 9945, 9952, 11535, 14501, 14503, 14512, 20865, 20867, 22115, 22128, 23117, 23119, 23121, 23123, 23125, 23127, 23129, 24744, 24746, 24748, 24750, 24752, 24754, 24756, 24758, 24760, 24762, 24764, 24766, 24768, 24770, 24774, 25198, 25200, 25202, 29707, 29713, 29720, 36031, 37734, 37781, 38010, 38672, 39409
\msg_new:nnn 81, 605, 3430, 3447, 3454, 3463, 7916, 7923, 7929, 7939, 7945, 7969, 7976, 7984, 7992, 7999, 8006, 8012, 8019, 8025, 8033, 8039, 8045, 8055, 8062, 8071, 8074, 8082, 8088, 8094, 8101, 8108, 8118, 8129, 8139, 8149, 8158, 8164, 8173, 8176, 9120, 9120, 9125, 9127, 9626, 9649, 9657, 9665, 9672, 9683, 9691, 9700, 9707, 9716, 9720, 9730, 9739, 9746, 9752, 9761, 9768, 9776, 9784, 9813, 9816, 9825, 9831, 9838, 9845, 9857, 9864, 9873, 9881, 9888, 9904, 9969, 9969, 10114, 11496, 11529, 11541, 11547, 11554, 11559, 11638, 11645, 14372, 14505, 14520, 14534, 14540, 14587, 14632, 14722, 14857, 15019, 15026, 15198, 22079, 22082, 22085, 22091, 22097, 22103, 22102, 22949, 23091, 23106, 29155, 29161, 29167, 29173, 30083, 30089, 30095, 30101, 30108, 30615, 30622, 30625, 37633, 37643, 37649, 37656, 37662, 37671, 37677, 37685, 37694, 37700, 37707, 37716, 37725, 37740, 37746, 37755, 37761, 37767, 37773, 39401, 39410, 39427
\msg_none:nnn 86, 9434
\msg_none:nn 86, 9434
\msg_none:nnn 86, 9434
\msg_none:nnnn 86, 9434
\msg_note:nn 85, 9385
\msg_note:nnn 85, 9385
\msg_note:nnnn 85, 9385
\msg_note:nnnnn 85, 9385
\msg_redirect_class:nnn ... 89, 9574, 9574
\msg_redirect_module:nnn 89, 9574, 9576
\msg_redirect_name:nnn ... 89, 9565, 9565
\msg_redirect_name:nnn 89, 9565, 9565
\msg_set documentation:nnn ... 85, 9312, 9318
\msg_set:nnn 81, 9120, 9136
\msg_set:nnn 81, 9120, 9129, 9137
\msg_show:nn 87, 9435
\msg_show:nnn 87, 9435
\msg_show:nnnn 87, 9435
\msg_show:nnnnnn 87, 9435
\msg_show:nnnnnnnn 87, 1385, 3853, 3867, 7204, 7214, 9435, 10148, 10387, 11391, 17225, 18807, 18829, 20070, 22027, 22547, 29679, 29683, 35971, 37610
\msg_show_item:nnn 87, 9470, 9470, 17240, 18820, 18834
\msg_show_item:nnn 87, 9470, 9470, 9474, 20085, 29702
\pagetopoffset ... 897
\pagetotal ... 366
\pagewidth ... 951
\paperheight ... 37928, 37932
\paperwidth ... 37929, 37932
\par ... 15-19, 93, 388, 1339, 367, 34216, 34218, 34222, 34227, 34232, 34237, 34244, 34249, 34256, 34261, 34281
\pardir ... 898
\pardirection ... 899
\parfillskip ... 368
\parindent ... 369
\parindent ... 370
\parshapedimen ... 514
\parshape ... 515
\parshapeindent ... 516
\parshapelength ... 517
\parshapeindent ... 518
\partokencontext ... 1216
\partokenname ... 1217
\patterns ... 372
\pausing ... 373
\pc ... 273
\pdf commands:
\pdf_destination:nn 324, 37895, 37895
\pdf_destination:nnnn
\pdf_destination:nnn 324, 37897, 37897
\pdf_destination:nnnn ... 324, 37897, 37897
\pdf_object_if_exist:n ... 37832
\pdf_object_if_exist:n:TF 322, 37811
\pdf_object_if_exist:p:n 322, 37811
\pdf_object_new:n 321, 37811, 37811, 38255
\pdf_object_new:nn ... 38255, 38256
\pdf_object_ref:n ... 321, 37811, 37824
\pdf_object_ref_last:
\pdf_object_unnamed_write:nnn ... 322, 37811, 37825, 37830
\pdf_object_write:n ... 38261
\pdf_object_write:nn ... 321, 38255, 38262, 38268
\pdf_object_write:nnnn
\pdf_pageobject_ref:n ... 322, 37811, 37818, 37823
\pdf_pageobject_ref:n ... 322, 37838, 37838
\pdf_pagesize_gset:nn 323, 37893, 37893
\pdf_pagobject_ref:n 322, 37838, 37838
\pdf_uncompress: ... 322, 37803, 37803
\pdf_version: ... 322, 37889, 37889
\pdf_version_compare:NN ... 322, 37840
\pdf_version_compare:NN:TF ... 322, 37840
\pdf_version_if_exist:NN 322, 37840
\pdf_version_gset:nn 322, 37874, 37874
\pdfdraftmode
__peek_search_token 898, 19488, 19563, 19592
__peek_tmp:w 19490, 19493, 19504, 19646, 19668
__peek_token_generic:NNTF . 902, 903, 19578, 19579, 19580, 19581, 19582, 19583, 19679, 19683, 19685
__peek_token_generic_aux:NNTF . 19560, 19560, 19579, 19585
__peek_token_remove_generic:NNTF 902, 19578, 19584, 19586, 19587, 19588, 19589
__peek_true:w 902, 19490, 19490, 19570, 19593, 19616, 19626, 19660, 19674, 19675
__peek_true_aux:w 899, 19490, 19490, 19491, 19503, 19510, 19511, 19524, 19565, 19579
__peek_true_remove:w 899, 900, 19501, 19501, 19516, 19541, 19545, 19585
__peek_use_none_delimit_by_s-stop:w 902, 19490, 19496, 19658
\penalty 374
\pi 23589, 23590
\pi 272
\postbreakpenalty 1172
\postdisplaypenalty 375
\postexhyphenchar 903
\posthyphenchar 904
\prebinoppenalty 905
\prebreakpenalty 1173
\predisplaydirection 517
\predisplaygapfactor 906
\predisplaypenalty 376
\predisplaysize 377
\preexhyphenchar 907
\prehyphenchar 908
\prelinepenalty 378
\prevdepth 379
\prevgraf 380
\prg commands:
\prg_break: 73, 535, 770, 822, 823, 2321, 2322, 3344, 3419, 3800, 3878, 3908, 3909, 3910, 3911, 3912, 3913, 4280, 4548, 552, 5810, 5820, 5825, 5834, 5858, 5903, 6770, 6798, 7595, 8577, 12955, 14139, 14155, 14275, 14307, 14413, 14416, 14457, 14604, 14657, 14663, 14896, 14977, 15149, 15290, 16057, 16990, 17041, 17094, 17109, 17115, 17651, 18178, 18656, 22702, 22711, 24711, 24731, 24732, 25019, 25020, 25033, 25123, 25124, 25125, 28517, 28543, 28767
\prg_break:n 73, 2321, 2323, 6306, 8577, 12957, 14041, 14049, 14061, 16831, 16970, 17661, 22507, 22526, 22540, 22718, 29027, 29038
\prg_break_point: 73, 425, 432, 1435, 2321, 2321, 2322, 2323, 3171, 3213, 3337, 3344, 3718, 3879, 3915, 4276, 4526, 5806, 5855, 6307, 6640, 6792, 7589, 7955, 8577, 12945, 14042, 14050, 14140, 14156, 14276, 14308, 14414, 14417, 14558, 14605, 14658, 14664, 14897, 15097, 15254, 16828, 16958, 16992, 17043, 17094, 17110, 17161, 17656, 18178, 18656, 22501, 22520, 22535, 22703, 22712, 24712, 24733, 25021, 25127, 28518, 28543, 28775, 29028
\prg_break_point:Nn 73, 73, 147, 397, 434, 465, 823, 843, 902, 2312, 2312, 2313, 3843, 3969, 6531, 6545, 6591, 7778, 8577, 10244, 10263, 12524, 12553, 12564, 13488, 13514, 13534, 13556, 16993, 17034, 17044, 17067, 17074, 17083, 17703, 18528, 18550, 18573, 18600, 18622, 20013, 20035, 20051, 20380, 25196, 33067, 33986, 33906
\prg_do nothing: 73, 73, 73, 397, 434, 465, 823, 843, 902, 2312, 2312, 2313, 3843, 3969, 6531, 6545, 6591, 7778, 8577, 10244, 10263, 12524, 12553, 12564, 13488, 13514, 13534, 13556, 16993, 17034, 17044, 17067, 17074, 17083, 17703, 18528, 18550, 18573, 18600, 18622, 20013, 20035, 20051, 20380, 25196, 33067, 33986, 33906
\prop_clear:

\prop_clear_new:

\prop_concat:

__prg_replicate_first:

__prg_replicate_first:-

__prg_replicate_first:0

__prg_replicate_first:1

__prg_replicate_first:2

__prg_replicate_first:3

__prg_replicate_first:4

__prg_replicate_first:5

__prg_replicate_first:6

__prg_replicate_first:7

__prg_replicate_first:8

__prg_replicate_first:9

__prg_set_eq_conditional:

\prop_count:

\prop_gclear:

\prop_gclear_new:

\prop_gconcat:

\prop_gget:

\prop_gget_new:

\prop_gif_empty:

\prop_gif_empty:N

\prop_gif_not_empty:

\prop_gif_not_empty:N

\prop_gpop:

\prop_gpop_new:

\prop_gput:

\prop_gput_new:

\prop_gremove:

\prop_gset:

\prop_gset_eq:

\prop_gset_from_keyval:

\prop_gset_if_empty:

\prop_gset_if_empty:N

\prop_gset_new:

\prop_gset:NN

\prop_gset_new:N

\prop_if_empty:

\prop_if_empty:N
\prop_if_empty:NTF 214, 19867, 19968, 36063
\prop_if_empty:p:N 214, 19968
\prop_if_exist:N 19964, 19966
\prop_if_exist:NTF 213, 19714, 19717, 19964, 21229, 36061
\prop_if_exist:p:N 213, 19964
\prop_if_in:N 19975, 19986
\prop_if_in:NTF 214, 9308, 9314, 19975, 29607, 29665, 36767
\prop_if_in:p:N 214, 19975
\prop_item:Nn 213, 215, 9309, 9315, 19843, 19843, 19853, 29611, 29670, 37393, 37432, 38156, 38158, 38265
\prop_log:N 217, 20070, 20072, 20073
\prop_map_break: ... 216, 915, 916, 20009, 20010, 20011, 20012, 20013, 20035, 20047, 20048, 20049, 20050, 20051, 20060, 20066, 20067, 20069
\prop_map_break:n 216, 19851, 19984, 20066, 20068
\prop_map_function:NN 87, 215, 916, 10155, 10394, 19859, 19875, 20003, 20003, 20027, 20085, 20702, 35988, 37621
\prop_map_inline:Nn 215, 19741, 20028, 20028, 20042, 29538, 35322, 35342, 35357, 35345, 35347, 35421, 35438, 35499, 35501, 35505, 35507, 35587, 35706, 35878, 35996
\prop_map_tokens:Nn 215, 824, 910, 914, 19845, 19977, 20043, 20043, 20065
\prop_new:N 209, 9303, 9304, 9326, 9495, 10034, 10287, 14008, 19701, 19701, 19706, 19714, 19717, 19727, 19728, 19729, 19730, 19731, 20945, 20946, 21229, 29521, 29528, 29534, 29737, 35300, 35301, 35302, 35770, 35811, 36853, 36943, 36948, 36965, 36970, 38254
\prop_pop:NN 212, 19821, 19821, 19839, 19840, 19882, 19902
\prop_pop:NNTF 212, 214, 19882
\prop_put:N 239, 21494
\prop_put:NN 211, 212, 410, 904, 905, 9571, 9587, 9604, 19741, 19768, 19904, 19904, 19917, 19922, 19924, 19929, 21339, 35069, 35087, 35106, 35123, 35154, 35356, 35358, 35364, 35366, 35375, 35381, 35389, 35448, 35456, 35546, 35552, 35560, 35567, 35711, 35771, 35773, 35775, 35777, 35779, 35781, 35783, 35785, 35787, 35789, 35791, 35793, 35795, 35797, 35799, 35801, 35803, 35805, 36161, 36556, 36756, 36775, 36818, 36833, 37014
\prop_set_from_keyval:n 213, 19744, 19747, 19763, 19770
\prop_set_from_keyval:N 211, 19945, 19945, 19960
\prop_remove:N 213, 9568, 9583, 19798, 19798, 19810, 35882, 35885, 35889
\prop_set_eq:NN 210, 19708, 19719, 19719, 19720, 19721, 19722, 19733, 19740, 35012, 35014, 35056, 35058, 35309, 35318, 35320, 35471, 35495, 35497, 35516, 35644, 35877, 36388, 38805
\prop_set_from_keyval:N 210, 19707, 20071, 20071
\prop_show:N 216, 20070, 20070, 20071
\prop_to_keyval:N 215, 19864, 19864
\g_tapa_prop 217, 19727
\l_tapa_prop 217, 19727
\l_tmba_prop 217, 19727
\l_tmbb_prop 217, 19727
prop internal commands:
___prop_concat:NNN 19732, 19733, 19736, 19738
___prop_count:nn 19854, 19859, 19862
___prop_from_keyval:key:w 907
___prop_from_keyval:value:w ... 907
___prop_if_in:nn 19975, 19978, 19981
___prop_if_recursion_tail:stop:n 19699, 19699, 19700
___prop_internal_prop 19731, 19740, 19741, 19742, 19758, 19759, 19760
___prop_internal_tl 912, 19690, 19693, 19908, 19914, 19915, 19951, 19958
___prop_item:nn 910, 19843, 19846, 19848
___prop_keyval_parse:NNnn 19766, 19767, 19774, 19775, 19781
___prop_map_function:Nw 915, 20003, 20006, 20015, 20025
___prop_map_tokens:nw 20043, 20046, 20053, 20063
___prop_missing_eq:n 19744, 19779, 19784
___prop_pair:wn 904, 908, 915, 916, 19690, 19691, 19691, 19702, 19795, 19910, 19953, 20009, 20010, 20011, 20012, 20016, 20017, 20018,
\q_recurion_tail
...... 146, 147, 798, 799, 5795, 5913, 16187, 16193, 16199, 16208, 16215, 16220, 16225, 16232, 17235, 20080, 29647, 30365, 30549, 33011, 33046, 33308, 33719, 33762, 33980, 36516
\q_stop
...... 26, 27, 38, 119, 144, 145, 373, 798, 1552, 1555, 10981, 10983, 12716, 16183, 30373, 30377, 30387, 30412, 30433, 30568, 30600, 30612, 30616, 30627, 30628, 30634, 30636, 30637, 30639, 30642, 30656, 30663, 30705, 30717, 30719, 30729, 30732, 37303
quark internal commands:
\q_bool_recurion_stop
...... 8274, 8277, 8390, 8416
\q_char_no_value
...... 8274, 8390, 8416
\q_cs_nil
...... 18845
\q_cs_recurion_stop
...... 2958
\q_debug_recurion_stop
...... 38429, 38432, 38630, 38635
\q_file_nll
...... 10798, 10865, 10879, 11005, 11011
\q_file_recurion_stop
...... 10800, 10844, 10855
\q_int_recurion_stop
...... 10800, 10844, 10848
\q_intercurion_tail
...... 17265, 17974, 17991, 18034, 18061
\q_int_recurion_tail
...... 17265, 17974, 17991, 18034
\q_iow_nll
...... 10304, 10546, 10553
\q_keys_no_value
...... 972, 20933, 20959, 21558, 21582, 21599, 21624, 21641, 21670
\q_prsg_recurion_stop
...... 380, 1594, 1667, 1754
\q_prsg_recurion_tail
...... 380, 1667, 1677, 1754, 1773
\q_prop_recurion_stop
...... 19697
\q_prop_recurion_tail
...... 19697
\q_quark_if_empty_if:n
...... 16253, 16255, 16265, 16275, 16414
\q_quark_if_nil:w
...... 808, 16253, 16256, 16262
\q_quark_if_no_value:w
...... 16253, 16266, 16272
__quark_if_recurion_tail:w 799, 804, 16205, 16208, 16215, 16219, 16232
__quark_module_name:N
...... 805, 16281, 16304, 16419, 16421
__quark_module_name:w
...... 16419, 16423, 16426
__quark_module_namend:w
...... 16419, 16434, 16437
__quark_module_nameloop:w
...... 16419, 16427, 16428, 16432
__quark_new_conditional:Nnnn
...... 16280, 16302, 16306, 16323
__quark_new_conditional_aux:-do:Nnnn
...... 16281, 16404, 16404
__quark_new_conditional:_-define:Nnnn
...... 16281, 16404, 16404
__quark_new_conditional:N:nnn
...... 16400, 16402
__quark_new_conditional:n:nnn
...... 16400, 16400
__quark_new_test:Nnnn
...... 16280, 16288, 16293, 16299
__quark_new_test:n:Nnnn
...... 16281, 16282, 16292
__quark_new_test:nnnnnnnn
...... 16280, 16295, 16316, 16324
__quark_new_test:do:nNnnnnnn
...... 803, 804, 16335, 16340, 16345, 16350, 16355, 16361, 16364, 16364
__quark_new_test_define_break:-ifx:nNNnnn
...... 16362, 16377, 16398
__quark_new_test_define_break:-tl:nNNnnnn
...... 16346, 16377, 16396
__quark_new_test_define:-ifx:nNNNN
...... 803, 804, 16351, 16356, 16377, 16386, 16399
__quark_new_test_define:-tl:nNNNN
...... 803, 804, 16336, 16341, 16377, 16386, 16397
__quark_new_test_N:Nnnn
...... 16333, 16334
__quark_new_test_n:Nnnn
...... 16333, 16333
__quark_new_test_NN:nnnn
...... 16333, 16359
__quark_new_test_NN:nnnn
...... 16333, 16353
__quark_new_test_NN:nnn
...... 16333, 16338
\q_quark_nll
...... 16190
__quark_quark_conditional:-name:N
...... 806, 16303, 16441, 16443
Index

\regex_replace_once:nnNTF 58, 567, 7259
\regex_set:Nn 47, 55, 56, 7180, 7189
\regex_show:N 55, 494, 506, 7204, 7214
\regex_show:n 48, 53, 55, 7204, 7204
\regex_split:NnN 58, 7259, 7281
\regex_split:nN 58, 7259, 7281
\regex_split:nnNTF 58, 7259
\regex_split:nnN 58, 7259
\g_tapa_regex 7185
\l_tapa_regex 60, 7185
\g_tampb_regex 7185
\l_tampb_regex 7185
\regex_internal_commands:

__regex_A_test: 478, 5187, 5209, 5825, 5828, 5834, 5952, 6436, 6449
__regex_action_cost:n 514, 518, 6225, 6226, 6234, 6684, 6710, 6711
__regex_action_free:n 514, 514, 514, 514, 6328, 6328, 6398, 6411, 6412
__regex_action_free_aux:nn 6096, 6098, 6099, 6099
__regex_action_free_group:n 514, 514, 514, 514, 514, 6089, 6089, 6089
__regex_action_start_wildcard:n 514, 514, 6106, 6126, 6679, 6679
__regex_action_submatch:n 60, 6155, 6347, 6348, 6486, 6735, 6737
__regex_action_submatch_aux:w 6737, 6739, 6742
__regex_action_submatch_auxi:w 6737, 6748, 6753
__regex_action_submatch_auxii:w 6737, 6749, 6754, 6755, 6756
__regex_action_submatch_auxiaw 7187, 7237
__regex_action_success: 514, 6109, 6158, 6176, 6758, 6758
__regex_action_wildcard: 531
__regex_added_begin_int 7339, 7478, 7486, 7490, 7544, 7672, 7677, 7680, 7691, 7706
__regex_added_end_int 7339, 7478, 7486, 7491, 7545, 7674, 7677, 7681, 7693, 7707
\c_regex_ascii_max_int 4300, 4475, 4483, 4673
\c_regex_ascii_min_int 4300, 4474, 4481
__regex_assertion:Nn 478, 492, 524, 5183, 5205, 5814, 5945, 6436, 6436
__regex_b_test: 478, 524, 5195, 5197, 5831, 5950, 6436, 6454
__regex_balance_int 466, 538, 561, 4299, 6835, 6867, 7126, 7143, 7351, 7364, 7366, 7367, 7619, 7649, 7673, 7675
__regex_balance_intarray 463, 552, 6814, 6821, 7338, 7363
__regex_balance_tl 518, 6776, 6836, 6866, 6892, 6909, 6919, 6994
__regex_begin 7329
__regex_branch:n 478, 496, 529, 4296, 4848, 4923, 5355, 5408, 5593, 5703, 5711, 5795, 5797, 5800, 5927, 6319, 6319, 39114, 39115, 39116
__regex_break_point:TF 467, 491, 518, 4312, 4313, 4314, 4318, 6225, 6226, 6442, 6449
__regex_break_true:w 467, 468, 4312, 4318, 4323, 4330, 4337, 4341, 4348, 4403, 4415, 4431, 5158, 6466, 6472, 6478
__regex_build:N 550, 6089, 6091, 7235, 7242, 7262, 7266, 39083, 39086, 39088
__regex_build:n 515, 550, 6089, 6089, 7229, 7240, 7261, 7264
__regex_build_aux:NN 562, 6089, 6092, 6096, 6098, 7728, 7747, 7817
__regex_build_aux:Hn 562, 6089, 6090, 6093, 7719, 7737, 7809
__regex_build_for_cs:n 4426, 6165, 6165, 39090, 39093, 39095
__regex_build_new_state: 6023, 6104, 6104, 6123, 6124, 6128, 6168, 6169, 6198, 6198, 6207, 6239, 6273, 6277, 6321, 6336, 6411, 6380, 6399, 6434, 6438, 6483, 39108
__regex_build_build:tl 496, 567, 4293, 4840, 4847, 4865, 4870, 4873, 4874, 4877, 4878, 4881, 4941, 4944, 4984, 4998, 5002, 5127, 5141, 5182, 5204, 5217, 5249, 5262, 5266, 5348, 5351, 5354, 5360, 5361, 5364, 5407, 5697, 5701, 5708, 5714, 5735, 5751, 5769, 5926, 5983, 3986, 5997, 6027, 6042, 6046, 6049, 6055, 6834, 6857,
Index

1586

\c_regex_catcode_U_int 4721
\l_regex_catcodes_bool 4718, 5504, 5508, 5543
\l_regex_catcodes_int 4779, 4718, 4844, 4946, 4948, 4954, 5235, 5252, 5352, 5365, 5464, 5501, 5536, 5538, 5544, 5545
\l_regex_char_if_alphanumeric:N 4691
\l_regex_char_if_alphanumeric:NTF 4669, 4894, 7100
\l_regex_char_if_special:N ... 4669
\l_regex_char_if_special:NTF ... 4669, 4890
\l_regex_class:NnnnN 478, 486, 487, 493, 4297, 4942, 5243, 5244, 5250, 5610, 5743, 5753, 5815, 5942, 6219, 6219
\c_regex_class_mode_int 4711, 4818, 4833
\l_regex_class_repeat:n 519, 6229, 6235, 6235, 6251, 6260
\l_regex_class_repeat:nN 6230, 6244, 6244
\l_regex_class_repeat:nnN 6231, 6258, 6258
\l_regex_class_repeat:nnnN 5772, 5814, 5822
\l_regex_clean_assertion:Nn 5772, 5772, 5824, 5839, 5843, 5851
\c_regex_clean_branch:n 5772, 5800, 5803
\l_regex_clean_branch_loop:n 5772, 5805, 5808, 5813, 5835, 5844, 5852
\l_regex_clean_class:n 5772, 5840, 5854, 5865, 5886
\l_regex_clean_class:NnnnnN 5772, 5815, 5837
\l_regex_clean_class_loop:nN 5772, 5855, 5856, 5867, 5877, 5887, 5901
\l_regex_clean_exact_cs:n 5772, 5852, 5862, 5908
\l_regex_clean_exact_cs:w 5772, 5912, 5917, 5921
\l_regex_clean_group:A 5772, 5816, 5817, 5818, 5846
\l_regex_clean_int 5772, 5778, 5781, 5841, 5842, 5849, 5850, 5863, 5864, 5876, 5886
\c_regex_clean_int 5772, 5782, 5784
\c_regex_clean_int_aux:Nn 5805, 5808, 5813, 5835, 5844, 5852
\c_regex_clean_int_aux:A 5772, 5840, 5854, 5865, 5886
\c_regex_clean_int_aux:nN 5772, 5815, 5837
\c_regex_clean_int_aux:nn 5772, 5855, 5856, 5867, 5877, 5887, 5901
\c_regex_clean_int_aux:nnN 5772, 5852, 5862, 5908
\c_regex_clean_int_aux:nN 5772, 5816, 5817, 5818, 5846
__regex_match:n (6524, 6524, 7376, 7403, 7413, 7423, 7449, 7613, 7646, 39119, 39122, 39123)
__regex_match_case:nn__T
(7247, 7379, 7379)
__regex_match_case:n__T
(7379, 7395)
l__regex_match_count_int
(532, 554, 7328, 7400, 7401, 7406)
l__regex_match_init:
(6524, 6526, 6536, 6547, 7769, 39134)
l__regex_match_once_init:
(6527, 6537, 6566, 6566, 6617, 7771)
l__regex_match_once_init_aux:
(6587, 6593)
l__regex_match_one_active:n
(6620, 6638, 6649)
l__regex_match_one_token:nn__T
(6620, 6638, 6649)
l__regex_match_state_int
(513, 516, 575, 6081, 6102, 6122, 6160, 6162, 6163, 6167, 6200, 6202, 6203, 6262, 6334, 6354, 6356, 6364, 6408, 6414, 6422, 6432, 6551, 8222, 39103, 39104)
l__regex_mode_quit_c
(7711, 7765, 7785, 7791, 7844)
l__regex_mode_quit_c
(7827, 7829, 7829)
l__regex_mode_quote:n
(7835, 7873, 7873)
l__regex_mode_quote:-
submatch Aux:nn
(837, 7884, 7884)
l__regex_mode_quote:-
token:n
(567, 7839, 7882, 7882)
l__regex_posix_word:
(6140, 6172, 6180, 6187, 6280)
l__regex_posix_word:
(4467, 4467)
l__regex_posix_alpha:
(508, 4467, 4468, 4469)
l__regex_posix_ascii:
(4467, 4471)
l__regex_posix_blank:
(4467, 4477)
l__regex_posix_upper:
(4467, 4478)
l__regex_pop_lr_states:
(4467, 4485, 4509)
l__regex_pop_lr_states:
(4467, 4486)
l__regex_posix_digit:
(4467, 4485, 4509)
l__regex_posix_graph:
(4467, 4486)
l__regex_posix_lower:
(4467, 4470, 4488)
l__regex_posix_print:
(4467, 4490)
l__regex_posix_punct:
(4467, 4492)
l__regex_posix_space:
(4467, 4499)
l__regex_posix_upper:
(4467, 4470, 4504)
l__regex_posix_word:
(4467, 4506)
Index

\s__clist_mark
\s__char_stop
\s__cs_stop
\s__cs_mark
\s__clist_stop
\s__color_mark
\s__color_stop
\s_stop
\s_bool_mark
\s_bool_stop
\s_char_stop
\sclist_mark
\s_char_stop

1595

\sclist_stop

867, 869, 873, 18162, 18165, 18166,
18178, 18182, 18324, 18327, 18339,
18342, 18350, 18353, 18361, 18375,
18431, 18459, 18462, 18463, 18475,
18483, 18526, 18527, 18534, 18538,
18540, 18542, 18549, 18555, 18571,
18572, 18598, 18599, 18606, 18611,
18613, 18615, 18621, 18628, 18656,
18661, 18683, 18694, 18695, 18696,
18709, 18722, 18725, 18755, 18790

18210, 18339, 18349, 18353, 18375,
18431, 18459, 18462, 18463, 18475,
18483, 18526, 18527, 18534, 18538,
18540, 18542, 18549, 18555, 18571,
18572, 18598, 18599, 18606, 18611,
18613, 18615, 18621, 18628, 18656,
18661, 18683, 18694, 18695, 18696,
18709, 18722, 18725, 18755, 18790

\s__color_stop

1389,
36043, 36069, 36092, 36093, 36100,
36104, 36105, 36108, 36114, 36116,
36118, 36120, 36122, 36124, 36143,
36145, 36151, 36171, 36200, 36217,
36223, 36240, 36316, 36318, 36321,
36328, 36335, 36337, 36346, 36357,
36358, 36360, 36362, 36364, 36404,
36411, 36412, 36413, 36422, 36431,
36496, 36501, 36529, 36569, 36574,
36580, 36583, 36590, 36598, 36621,
36721, 36727, 36758, 36761, 36795,
36801, 36807, 36810, 36820, 36869,
36888, 36892, 36917, 36919, 36921,
36923, 36941, 37056, 37069, 37073,
37084, 37091, 37099, 37105, 37113,
37115, 37121, 37125, 37126, 37147,
37149, 37228, 37234, 37237, 37245,
37259, 37273, 37276, 37279, 37283,
37286, 37296, 37300, 37306, 37333,
37362, 37417, 37418, 37425, 37436,
37437, 37451, 37454, 37468, 37479,
37483, 37486, 37494, 37500, 37504,
37507, 37520, 37530, 37574, 37575

\s_color_mark

36057, 36316, 36318, 36321, 36328,
36359, 36360, 36380, 36583, 36590,
36621, 36627, 36637, 36807, 36810,
36820, 36869, 37237, 37279, 37282,
37300, 37306, 37422, 37451, 37454,
37468, 37479, 37483, 37486, 37494,
37500, 37504, 37507, 37520, 37530

\s_stop

148, 807, 16465, 16476

\s_bool_mark

3848, 8502, 8510

\s_bool_stop

3848, 8502, 8510

\s_char_stop

18844

\sclist_mark

864, 866-868,
873, 18162, 18164, 18192, 18193,
18210, 18339, 18349, 18353, 18375,
18425, 18431, 18445, 18457, 18458,
18459, 18462, 18463, 18464, 18473,
18474, 18483, 18681, 18682, 18694,
18695, 18708, 18716, 18722, 18725

scan internal commands:
Index

\seq_gset_from_clist:NN 150, 16518, 16528, 16541, 16542
\seq_gset_from_clist:Nn 150, 16518, 16533, 16543
\seq_gset_item:Nnn 154, 16681, 16683, 16686, 16689, 16692
\seq_gset_item:NnnTF 154, 16681
\seq_gset_map:NN 157, 17136, 17138
\seq_gset_map:e:NNn 158, 17126, 17128, 38307, 38308
\seq_gset_map:x:NNn 38305, 38308
\seq_gset_split:NN 150, 16550, 16552, 16591, 16592
\seq_gset_split_keep_spaces:NNn 150, 16550, 16556, 16594
\seq_gshuffle:Nn 155, 16774, 16776, 16812
\seq_gsort:Nn 155, 3181, 3184, 3186, 16764
\seq_if_empty:N 16764, 16772
\seq_if_empty:NTF 155, 6860, 16674, 16976, 18241, 29947
\seq_if_empty_p:N 155, 16764
\seq_if_exist:N 16601, 16603
\seq_if_exist:NTF 151, 16505, 16508, 16601, 17172
\seq_if_exist_p:N 151, 16601
\seq_if_in:NN 868, 16813, 16832
\seq_if_in:NTF 155, 160, 161, 10126, 10365, 16645, 16813
\seq_indexed_map_function:NNn 38299, 38302
\seq_indexed_map_inline:NNn 38299, 38300
\seq_item:NN 57, 152, 822, 9007, 9008, 9013, 16950, 16950, 16973, 16977
\seq_log:N 162, 17225, 17227, 17228
\seq_map_break: 157, 158, 327, 16980, 16980, 16980, 16980, 16980
\seq_map_break:n 157, 823, 3182, 3185, 9546, 9560, 10963, 16980, 16982
\seq_map_function:NN 6, 87, 155, 164, 825, 6000, 6008, 9511, 11404, 16984, 16984, 17007, 17240, 18247
\seq_map_function:NNn 156, 17071, 17071, 17071, 38301, 38302
\seq_map_indexed:NNn 156, 17071, 17076, 38299, 38300
\seq_map_indexed:NN 155, 156, 161, 1435, 3182, 3185, 9541, 16643, 17030, 17030, 17036, 21772
\seq_map_map_function:NNn 156, 17104, 17104, 17125, 38303, 38304
\seq_map_tokens:Nn 155, 156, 10962, 11513, 17037, 17037, 17046
\seq_map_variable:NNn 156, 17059, 17059, 17069, 17070
\seq_map_thread_function:NNn 38303, 38304
\seq_new:N 6, 149, 3053, 4291, 4735, 6086, 6087, 6775, 9496, 9497, 10032, 10225, 10764, 10789, 10795, 10796, 16492, 16492, 16497, 16505, 16508, 16635, 16674, 17250, 17251, 17252, 17253, 18386, 18941, 18944, 20937, 29731, 29732, 29733, 36610
\seq_pop:NN 159, 6151, 6189, 6191, 6933, 17213, 17215, 17216, 17221, 17222
\seq_pop:NTF 160, 17219
\seq_pop:left:NN 152, 16863, 16863, 16875, 16930, 16942, 17215, 17216, 17221, 17222
\seq_pop:left:NTF 153, 16930
\seq_pop_right:NN 152, 5929, 6007, 16895, 16895, 16920, 16936, 15604
\seq_pop_right:NTF 153, 16930
\seq_push:NN 160, 6161, 6182, 6184, 7093, 17207, 17207, 17208, 17209
\seq_put_left:NN 151, 9536, 16605, 16605, 16622, 16623, 17207
\seq_put_right:NN 151, 160, 161, 5932, 6005, 7508, 9597, 11400, 16626, 16626, 16630, 16631, 16646, 38096
\seq_rand_item:NN 152, 16974, 16974, 16979
\seq_remove_all:NN 150, 154, 160, 161, 16652, 16652, 16676, 16677, 18418, 38098
\seq_remove_duplicates:NN 154, 160, 161, 11402, 16636, 16636, 16650
\seq_reverse:NN 154, 816, 16746, 16746, 16762
\seq_set_eq:NN 149, 161, 3182, 16499, 16510, 16510, 16511, 16512, 16513, 16637, 16775, 38807, 38869
\seq_set_filter:NNn 327, 826, 6063, 37942, 37942
\seq_set_from_clist:NN 150, 16518, 16518, 16538, 16539, 18417
\seq_set_from_clist:NN 150, 182, 810, 11398, 11412, 16518, 16523, 16540, 21687
__seq_remove_all_aux:NNn
__seq_remove_duplicates:NN
__seq_remove_seq
__seq_reverse:NN
__seq_reverse_item:n
__seq_set_split_end:
__seq_set_split:NNnn
__seq_set_split:NNNnn
__seq_set_map_e:NNNn
__seq_set_filter:NNNn
__seq_set_item:NNNN
__seq_set_item:nnNNN
__seq_set_item:w
__seq_set_item_end:w
__seq_set_map:NNn
__seq_set_split:NNmm
__seq_set_split:NNN
__seq_set_split:NNNN
__seq_set_split:NNNN:
__seq_set_split_end:
__seq_use_setup:w
__seq_wrap_item:n
\\box
\\boxwidth
\\boxdepth
\\boxheight
\\boxmod
\\boxtype
\\boxed
\\boxvmod
\\boxvtype
\\boxedv
\\boxwmod
\\boxwtype
\\boxedw
\\boxwidth
_sort_merge_blocks: \ldots \ldots
<table>
<thead>
<tr>
<th>Command</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>\sys_load_debug</td>
<td>78, 1571, 1576, 8799, 8799</td>
</tr>
<tr>
<td>\sys_load_deprecation</td>
<td>38310, 38311</td>
</tr>
<tr>
<td>\c_sys_minute_int</td>
<td>74, 8921</td>
</tr>
<tr>
<td>\c_sys_month_int</td>
<td>74, 8921</td>
</tr>
<tr>
<td>\c_sys_output_str</td>
<td>76, 9037</td>
</tr>
<tr>
<td>\c_sys_platform_str</td>
<td>76, 8723, 11566, 11587</td>
</tr>
<tr>
<td>\sys_rand_seed</td>
<td>76, 155, 272, 8962, 8964</td>
</tr>
<tr>
<td>\c_sys_shell_escape_int</td>
<td>77, 9005, 9020, 9022, 9024</td>
</tr>
<tr>
<td>\c_sys_shell_now:n</td>
<td>78, 8849, 8871, 8875, 8878</td>
</tr>
<tr>
<td>\c_sys_shell_logout:n</td>
<td>74, 8953</td>
</tr>
<tr>
<td>\c_sys_year_int</td>
<td>74, 8921</td>
</tr>
</tbody>
</table>

sys internal commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>\g_sys_backend_tl</td>
<td>8733, 8734, 8735, 9051</td>
</tr>
<tr>
<td>_sys_count:n</td>
<td>8581, 8581, 8611, 9003, 9019, 9021, 9023, 9046, 9048</td>
</tr>
<tr>
<td>\g_sys_debug_bool</td>
<td>8798, 8801, 8803</td>
</tr>
<tr>
<td>_sys_elapsedtime</td>
<td>8971, 8985, 9004</td>
</tr>
<tr>
<td>_sys_everyjob:n</td>
<td>8901, 8916, 8919, 8921, 8949, 8966, 9006, 9017, 9026</td>
</tr>
<tr>
<td>\g_sys_finalise:n</td>
<td>8911</td>
</tr>
<tr>
<td>_sys_finalise:n</td>
<td>9028, 9034, 9035, 9052, 9069</td>
</tr>
<tr>
<td>\g_sys_finalise_tl</td>
<td>9028</td>
</tr>
<tr>
<td>_sys_get:nN</td>
<td>8807, 8815, 8818</td>
</tr>
<tr>
<td>_sys_get_do:Nw</td>
<td>8807, 8832, 8841</td>
</tr>
<tr>
<td>\l_sys_internal_tl</td>
<td>8805</td>
</tr>
<tr>
<td>_sys_load_backend_check:N</td>
<td>8723, 8734, 8740</td>
</tr>
<tr>
<td>\c_sys_marker_tl</td>
<td>8806, 8830, 8842</td>
</tr>
<tr>
<td>_sys_shell_now:n</td>
<td>8849, 8872</td>
</tr>
<tr>
<td>_sys_shell_logout:n</td>
<td>8880, 8904</td>
</tr>
<tr>
<td>\c_sys_shell_stream_int</td>
<td>8847, 8876, 8908</td>
</tr>
<tr>
<td>_sys_tmp:w</td>
<td>8924, 8945, 8947, 8948, 8949, 8950</td>
</tr>
</tbody>
</table>

syst commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>\c_syst_catcodes_n</td>
<td>29996, 30000</td>
</tr>
<tr>
<td>\c_syst_last_allocated_toks</td>
<td>3127</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th>Command</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>\T</td>
<td>65</td>
</tr>
<tr>
<td>\t</td>
<td>31412, 33735, 33761</td>
</tr>
<tr>
<td>\tabskip</td>
<td>418</td>
</tr>
<tr>
<td>\tagcode</td>
<td>685</td>
</tr>
</tbody>
</table>

\TeX and \LaTeX \texttt{2e} commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>@afterbegindocument</td>
<td>1611</td>
</tr>
<tr>
<td>@currnamestack</td>
<td>13967</td>
</tr>
<tr>
<td>@currentcmd</td>
<td>354</td>
</tr>
<tr>
<td>@end</td>
<td>1225, 1226</td>
</tr>
<tr>
<td>@escape</td>
<td>1229, 1232</td>
</tr>
<tr>
<td>@input</td>
<td>1227</td>
</tr>
<tr>
<td>@italiccorr</td>
<td>1233</td>
</tr>
<tr>
<td>@template</td>
<td>1235, 1236</td>
</tr>
<tr>
<td>@tracingfonts</td>
<td>355, 1271</td>
</tr>
<tr>
<td>@underline</td>
<td>1234</td>
</tr>
<tr>
<td>\changedcmd</td>
<td>31344, 33593</td>
</tr>
<tr>
<td>\classoptionlist</td>
<td>11276</td>
</tr>
<tr>
<td>\filelist</td>
<td>103, 651, 664, 667, 11275, 11309, 11399, 11408, 11413</td>
</tr>
<tr>
<td>\firstofone</td>
<td>24</td>
</tr>
<tr>
<td>\firstoftwo</td>
<td>372</td>
</tr>
<tr>
<td>\gobble</td>
<td>26</td>
</tr>
<tr>
<td>\gobble</td>
<td>26</td>
</tr>
<tr>
<td>\kernel@after@begindocument</td>
<td>31034, 33020, 37799</td>
</tr>
<tr>
<td>\kernel@before@begindocument</td>
<td>37902, 37904</td>
</tr>
<tr>
<td>\protected@testopt</td>
<td>1272, 31331</td>
</tr>
<tr>
<td>\secondoftwo</td>
<td>372</td>
</tr>
<tr>
<td>\setmark</td>
<td>1243, 1257, 1260</td>
</tr>
<tr>
<td>\textmark</td>
<td>355, 1243</td>
</tr>
<tr>
<td>\textmark</td>
<td>1309, 33045</td>
</tr>
<tr>
<td>\textmark</td>
<td>1309, 33045</td>
</tr>
<tr>
<td>\unexpandable@protect</td>
<td>1036</td>
</tr>
<tr>
<td>\unusedoptionlist</td>
<td>9090</td>
</tr>
<tr>
<td>\active@prefix</td>
<td>31192</td>
</tr>
<tr>
<td>\afterassignment</td>
<td>458, 557</td>
</tr>
<tr>
<td>\aftergroup</td>
<td>14</td>
</tr>
<tr>
<td>\AtBeginDocument</td>
<td>355</td>
</tr>
<tr>
<td>\botmark</td>
<td>893</td>
</tr>
<tr>
<td>\box</td>
<td>302</td>
</tr>
<tr>
<td>\catcodetable</td>
<td>1232, 1236, 1238</td>
</tr>
<tr>
<td>\char</td>
<td>208</td>
</tr>
<tr>
<td>\chardef</td>
<td>199, 200, 577, 580, 835, 1261</td>
</tr>
<tr>
<td>\conditionally@traceoff</td>
<td>643, 9500, 10504</td>
</tr>
<tr>
<td>\conditionally@traceon</td>
<td>9518</td>
</tr>
</tbody>
</table>
Index

\tl_build_put_right:Nn 116, 510, 721, 4847, 4985, 4873, 4877, 4971, 4944, 4984, 4998, 5002, 5127, 5141, 5182, 5204, 5217, 5249, 5262, 5266, 5348, 5354, 5360, 5364, 5407, 5697, 5701, 5708, 5714, 5735, 5751, 5769, 5997, 6042, 6055, 6029, 6857, 6922, 6991, 7048, 7051, 7065, 7133, 7774, 7876, 7879, 7887, 7890, 13154, 13155, 13159, 38993
\tl_case:Nn 38338, 38339, 38346, 38347
\tl_case:Nnn 38195, 38197
\tl_case:NNn 38338, 38341, 38343, 38345
\tl_clear:N 110, 4174, 4516, 6561, 6596, 10562, 10563, 10566, 10575, 10685, 10688, 10748, 11978, 11979, 11982, 11985, 12196, 13206, 14260, 18219, 18220, 21333, 21694, 21806, 31039, 36743, 37172, 38880
\tl_clear_new:N 110, 11422, 11423, 11424, 11425, 11426, 11984, 11985, 11988, 18223, 18224, 31079, 31965, 31981, 31997, 31999, 33608, 36752, 36786, 38257
\tl_concat:NNN 110, 907, 11996, 11996, 12012, 12367, 38828
\tl_concat:Nn 110, 576, 3483, 4210, 4294, 7202, 8806, 9105, 9106, 9147, 9152, 9154, 9156, 9158, 9160, 9165, 9166, 9173, 10459, 10465, 10886, 11971, 11971, 11976, 11977, 12016, 12019, 12021, 12187, 14095, 14100, 16491, 16546, 18216, 19040, 19065, 19067, 19139, 19694, 19759, 22594, 22595, 22596, 22597, 22598, 22606, 22609, 24788, 26159, 26606, 26607, 26608, 26609, 26610, 26611, 26612, 26613, 26614, 30379, 30419, 30606, 30618, 30646, 32993, 32995, 33013, 33014, 33031, 33038, 33741, 33767, 36895, 36896, 36897, 36898, 36899, 36945, 36946, 36947, 36957, 36958, 36959, 36960, 36961, 36962, 36963, 36964, 37083, 37098, 37112, 37146, 37402, 37407, 37412, 37573, 38983
\tl_count:N 115, 12619, 12619, 12632
\tl_count_tokens:n 115, 425, 5170, 6836, 8914, 9032, 11978, 11980, 11983, 11987, 1211, 18221, 18222, 38949
\tl_gconcat:NNN 110, 11996, 12004, 12013, 13268, 38829
\tl_gclear:N 110, 12038, 12069, 12074, 12079, 12084, 12092, 12106, 12107, 12108, 12109, 12110, 12111, 14955, 15168, 38951, 38952, 38953, 38954, 38955
\tl_gconcat:N 111, 1585, 1586, 6866, 6917, 6918, 6994, 8917, 9035, 12112, 12140, 12142, 12147, 12152, 12160, 12174, 12175, 12176, 12177, 12178, 12179, 16461, 16629, 29350, 30032, 31032, 31034, 33018, 33020, 37797, 37799, 37904, 38956, 38957, 38958, 38959, 38960
\tl_gmove_all:N 110, 12375, 12375, 12379, 12380
\tl_gmove_once:N 123, 12207, 12069, 12372
\tl_greplace_all:Nn 122, 12287, 12293, 12307, 12309, 12376
\tl_greplace_once:Nn 122, 12287, 12293, 12299, 12301, 12370
\tl_greverse:N 115, 12933, 12935, 12938
\tl_gset:N 240, 21526
\tl_gset:Nn 110, 126, 151, 684, 693, 722, 6900, 6909, 8733, 8747, 8753, 8762, 8763, 8773, 8774, 8788, 9080, 9082, 9084, 9086, 9088, 12022, 12026, 12028, 12034, 12035, 12036, 12037, 12200, 16598, 16866, 16935, 19807, 19835, 19897
\tl_gset_e:N 240, 21526
\tl_gset_eq:NN 110, 3160, 6906, 7197, 8253, 11990, 11992, 11995, 13264, 14178, 14194, 16514, 16515, 16516, 16517, 18231, 18232, 18233, 18234, 19723, 19724, 19725, 19726, 24793, 38812, 38950
\tl_gset_from_file:Nn 38199
\tl_gset_from_file:x:Nn 38201
\tl_gset_rescan:NNn 124, 12188, 12199, 12230, 12231
\tl_gset_x:N 38245
\tl_gsort:N 110, 3160, 3161, 32705
\tl_gtrim_spaces:N 116, 12649, 12661, 12664
Index

19218, 19222, 19252, 19253, 19287, 19302, 19304, 19306, 19395, 19668, 19673, 19788, 19846, 19910, 19953, 19978, 20092, 20212, 20412, 20597, 21982, 22056, 22058, 22064, 22065, 22539, 22732, 22736, 22753, 22947, 22948, 23561, 23562, 23567, 23571, 28269, 28323, 28397, 28804, 28812, 28990, 29098, 29113, 29133, 29150, 29184, 29249, 29260, 29329, 29420, 29585, 29623, 29721, 29940, 30851, 31465, 31470, 31475, 31788, 31791, 31794, 31797, 35838, 35911, 36165, 36788, 36981, 37587, 37815, 37881, 37834, 37982, 38004, 38007, 38387, 38389, 38436, 38444, 38730, 38733, 38742, 38743, 38744, 38753, 38755, 38788, 38790, 39163, 39399
\tl_to_uppercase:n............38209
\tl_trims_spaces:N.............116, 12049, 12569, 12663
\tl_trims_spaces:n......116, 706, 974, 10873, 12649, 12649, 12655, 12660, 12662, 16551, 16553, 30724, 38012
\tl_trims_spaces_apply:n...116, 946, 10870, 12049, 12066, 12658, 18172, 18329, 18717, 18791, 29585
\tl_upper_case:n.............38320, 38327
\tl_upper_case:nn............38320, 38330
\tl_use:N...................114, 224, 229, 232, 8913, 9061, 12597, 12597, 12605, 21247, 30491, 30498, 30503, 30507, 30512, 30515, 30533, 30534, 30676, 30696, 38728, 38732
\tg_temp_t1..................125, 13131
\tl_temp_t1...............6, 59, 123, 125, 1239, 1241, 1258, 1283, 1285, 1289, 1291, 1295, 1297, 1301, 1303, 13131
\g_temp_t2..................125, 13131
\tl_temp_t2...............125, 1240, 1241, 1256, 1258, 1284, 1285, 1290, 1291, 1296, 1297, 1302, 1303, 13133

tl internal commands:
 ___tl_act:NNN..................713, 719, 12623, 12852, 12903, 12919
 ___tl_act_count_group:n 12625, 12632
 ___tl_act_count_group:nn......12619
 ___tl_act_count_normal:NN 12624, 12630
 ___tl_act_count_normal:n......12619
 ___tl_act_count_space:.12626, 12631
 ___tl_act_count_space:n........12619
 ___tl_act_end:wn...............705, 12852, 12887, 12891
 ___tl_act_group:nNNN............12852, 12874, 12889
 ___tl_act_if_head_is_space:nTF......713, 12852, 12854, 12870, 12879
 ___tl_act_if_head_is_space:w........12852, 12856, 12860
 ___tl_act_if_head_is_space:-true:w......12852, 12857, 12863
 ___tl_act_loop:w........713, 12852, 12868, 12883, 12893, 12900, 12906
 ___tl_act_normal:NNNN............12852, 12875, 12880
 ___tl_act_output:n..713, 12852, 12910
 ___tl_act_result:n......713, 12887, 12908, 12910, 12911, 12912, 12913
 ___tl_act_reverse........713
 ___tl_act_reverse_output:n.....12852, 12912, 12928, 12930, 12932
 ___tl_act_space:wwNNN............713, 12852, 12871, 12897
 ___tl_analysis:n........441, 451, 3522, 3522, 3832, 3860, 3872
 ___tl_analysis_a:n......3526, 3575, 3575
 ___tl_analysis_a:bgroup:w........3006, 3028, 3630
 ___tl_analysis_a:cs:w.........3685, 3699, 3702
 ___tl_analysis_a:egroup:w.....3008, 3628, 3633
 ___tl_analysis_a:group:nw......3628, 3631, 3634, 3636
 ___tl_analysis_a:group:wux:w......3628, 3644, 3646
 ___tl_analysis_a:group:auxi:w.......3628, 3651, 3654
 ___tl_analysis_a:group:test:w.......3628, 3656, 3661
 ___tl_analysis_a:loop:w......3582, 3585, 3626, 3668, 3682, 3700
 ___tl_analysis_a:space:N...........3607, 3649, 3685, 3685
 ___tl_analysis_a:space:w........3605, 3611, 3611
 ___tl_analysis_a:space_test:w.......444, 4611, 3613, 3618
 ___tl_analysis_a:store:........444, 3622, 3664, 3670, 3670
 ___tl_analysis_a:type:w........3586, 3587, 3587
 ___tl_analysis_b:n.......3527, 3713, 3713
 ___tl_analysis_b:char:NNn........457, 3740, 3747, 3747, 4055
 ___tl_analysis_b:char:aux:nnw........448, 3741, 3747, 3769
Index

_tl_analysis_b_cs:ww
__tl_analysis_b_cs:nn
_tl_analysis_b_loop:w
_tl_analysis_b_normal:ww
__tl_analysis_map:NwNw
_tl_analysis_b_normal:ww
_tl_analysis_map:Nn
_tl_analysis_b_special:w
__tl_analysis_b_special_char:wN
__tl_analysis_b_special:w
__tl_analysis_b_normals:ww
__tl_analysis_b_normal:wwN
_tl_analysis_b_loop:w
__tl_analysis_b_cs_test:ww
__tl_analysis_map:Nn
__tl_analysis_b_cs:Nww
__tl_analysis_token
__tl_analysis_disable_char:N
__tl_analysis_char_token
__tl_analysis_char_arg_aux:Nw
__tl_analysis_b_special_space:w
__tl_analysis_b_special:w
__tl_analysis_extract_charcode:
__tl_analysis_show_value:N
__tl_analysis_char_arg:ww
__tl_analysis_char_arg:ww
__tl_analysis_index_int
__tl_analysis_map:Nn
__tl_analysis_map:NNww
__tl_analysis_extract_charcode:
__tl_analysis_extract_charcode_aux:w
__tl_analysis_nesting_int
__tl_analysis_next_token
__tl_analysis_normal_int
__tl_analysis_result_tl
__tl_analysis_disable_char:N
__tl_analysis_char_token
__tl_analysis_char_arg_aux:Nw
__tl_analysis_b_special:w
__tl_analysis_b_special_char:wN
__tl_analysis_b_special_space:w
__tl_analysis_char_token
__tl_analysis_disable_char:N
__tl_analysis_char_token
__tl_analysis_char_arg_aux:Nw
__tl_analysis_b_special:w
\token_if_macro:NTF \dots 199, 2285, 2294, 2303, 19212, 19390
\token_if_math_macro_p:N \dots 199, 19212
\token_if_math_subscript:N \dots 19175
\token_if_math_subscript:NTF \dots 198, 19175
\token_if_math_subscript_p:N \dots 198, 19175
\token_if_math_superscript:N \dots 19169
\token_if_math_superscript:NTF \dots 198, 19169
\token_if_math_superscript_p:N \dots 198, 19169
\token_if_math_toggle:N \dots 198, 19151
\token_if_math_toggle_p:N \dots 198, 19151
\token_if_protected_macro_p:N \dots 19169
\token_if_protected_long_macro_p:N \dots 198, 19169
\token_if_protected_long_macro_:macro:NTF \dots 199, 19265
\token_if_protected_long_macro_p:N \dots 199, 19265, 30892, 31045, 31188
\token_if_protected_macro:NTF \dots 199, 19265
\token_if_primitive:NTF \dots 19378, 19387
\token_if_primitive_p:N \dots 199, 19314
\token_if_primitive:NTF \dots 200, 19314
\token_if_parameter:N \dots 19163
\token_if_parameter:NTF \dots 198, 19161
\token_if_parameter_p:N \dots 198, 19161
\token_if_math_toggle:N \dots 198, 19151
\token_if_math_toggle_p:N \dots 198, 19151
\token_if_protected_long_-
macro:NTF \dots 199, 19265
\token_if_protected_longMacro_p:N \dots 199, 19265, 30891, 31044, 31187
\token_if_protected_macro:NTF \dots 199, 19265
\token_if_skip_register:NTF \dots 200, 3912, 19265
\token_if_skip_register_p:N \dots 200, 19265
\token_if_space:N \dots 19180
\token_if_space:NTF \dots 198, 19180
\token_if_space_p:N \dots 198, 19180
\token_if_tokens_register:NTF \dots 200, 3913, 19265
\token_if_tokens_register_p:N \dots 200, 19265
\token_new:N \dots 38217
\token_to_catcode:N \token_if_math_subscript:NTF \dots 199, 19071, 19071
Index

undefined commands:
\texttt{\textbackslash define:} \hspace{1em} 240, 21542
\texttt{\textbackslash underline} \hspace{1em} 441
\texttt{\textbackslash unexpanded} \hspace{1em} 536
\texttt{\textbackslash unhbox} \hspace{1em} 442
\texttt{\textbackslash unhcopy} \hspace{1em} 443
\texttt{\textbackslash uniformdeviate} \hspace{1em} 962
\texttt{\textbackslash unkern} \hspace{1em} 444
\texttt{\textbackslash unles} \hspace{1em} 537
\texttt{\textbackslash Unosubscript} \hspace{1em} 1117
\texttt{\textbackslash Unosuperscript} \hspace{1em} 1118
\texttt{\textbackslash unpamalty} \hspace{1em} 445
\texttt{\textbackslash unskip} \hspace{1em} 446
\texttt{\textbackslash unvbox} \hspace{1em} 447
\texttt{\textbackslash unvcopy} \hspace{1em} 448
\texttt{\textbackslash Uverterdelinter} \hspace{1em} 1119
\texttt{\textbackslash uppercase} \hspace{1em} 449
\texttt{\textbackslash upshape} \hspace{1em} 33561
\texttt{\textbackslash upxversion} \hspace{1em} 1207
\texttt{\textbackslash upxversion} \hspace{1em} 1208
\texttt{\textbackslash Uradical} \hspace{1em} 1120
\texttt{\textbackslash Uright} \hspace{1em} 1121
\texttt{\textbackslash Uroot} \hspace{1em} 1122
usage commands:
\texttt{\textbackslash usage:n} \hspace{1em} 243, 21544
\texttt{\textbackslash use:n} \hspace{1em} 24, 1501, 1504
\texttt{\textbackslash use:nn} \hspace{1em} 24, 1501, 1504
\texttt{\textbackslash usage:nn} \hspace{1em} 24, 1501, 1504
\texttt{\textbackslash use:nnn} \hspace{1em} 25, 370, 377, 378, 805, 814, 815, 908, 916, 1159, 1162, 1175, 1179, 1180, 1436, 1505, 1505, 1590, 1674, 1696, 1738, 1829, 1867, 2042, 2868, 2925, 3250, 3305, 3315, 3325, 3691, 4264, 4776, 4878, 4796, 4799, 4808, 5695, 8587, 12286, 14622, 14627, 14708, 14712, 16401, 16596, 16598, 16682, 16684, 17040, 17091, 17150, 17234, 19794, 19984, 20046, 20079, 22402, 22404, 22712, 23336, 23526, 24966, 25292, 25587, 26075, 26359, 26878, 27044, 27356, 27366, 27370, 27878, 28083, 28618, 28643, 28871, 30609, 36675, 38553
\texttt{\textbackslash use:nnnn} \hspace{1em} 25, 762, 1507, 1507, 2288, 2959, 4587, 4612, 7010, 14106, 14536, 16311, 15095, 18105, 23495, 25544, 27019, 29373, 29587
\texttt{\textbackslash use:nnnnn} \hspace{1em} 25, 1507, 1515
\texttt{\textbackslash use:nnnnnn} \hspace{1em} 25, 1507, 1520
\texttt{\textbackslash use:nnnnnnn} \hspace{1em} 25, 1507, 1526
\texttt{\textbackslash use:nnnnnnnn} \hspace{1em} 25, 1507, 1533
\texttt{\textbackslash use:nnnnnnnnn} \hspace{1em} 25, 1507, 1541