% \iffalse meta-comment % %% File: l3backend-draw.dtx % % Copyright (C) 2019-2024 The LaTeX Project % % It may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this % license or (at your option) any later version. The latest version % of this license is in the file % % https://www.latex-project.org/lppl.txt % % This file is part of the "l3backend bundle" (The Work in LPPL) % and all files in that bundle must be distributed together. % % ----------------------------------------------------------------------- % % The development version of the bundle can be found at % % https://github.com/latex3/latex3 % % for those people who are interested. % %<*driver> \documentclass[full,kernel]{l3doc} \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \title{^^A % The \pkg{l3backend-draw} package\\ Backend drawing support^^A % } % % \author{^^A % The \LaTeX{} Project\thanks % {^^A % E-mail: % \href{mailto:latex-team@latex-project.org} % {latex-team@latex-project.org}^^A % }^^A % } % % \date{Released 2024-03-14} % % \maketitle % % \begin{documentation} % % \end{documentation} % % \begin{implementation} % % \section{\pkg{l3backend-draw} implementation} % % \begin{macrocode} %<*package> %<@@=draw> % \end{macrocode} % % \subsection{\texttt{dvips} backend} % % \begin{macrocode} %<*dvips> % \end{macrocode} % % \begin{macro}{\@@_backend_literal:n, \@@_backend_literal:e} % The same as literal PostScript: same arguments about positioning apply % here. % \begin{macrocode} \cs_new_eq:NN \@@_backend_literal:n \__kernel_backend_literal_postscript:n \cs_generate_variant:Nn \@@_backend_literal:n { e } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_backend_begin:, \@@_backend_end:} % The |ps::[begin]| special here deals with positioning but allows us to % continue on to a matching |ps::[end]|: contrast with |ps:|, which positions % but where we can't split material between separate calls. The % |@beginspecial|/|@endspecial| pair are from |special.pro| and correct the % scale and $y$-axis direction. % As for \pkg{pgf}, we need to save the current point as this is % required for box placement. (Note that % |@beginspecial|/|@endspecial| forms a backend scope.) % \begin{macrocode} \cs_new_protected:Npn \@@_backend_begin: { \@@_backend_literal:n { [begin] } \@@_backend_literal:n { /draw.x~currentpoint~/draw.y~exch~def~def } \@@_backend_literal:n { @beginspecial } } \cs_new_protected:Npn \@@_backend_end: { \@@_backend_literal:n { @endspecial } \@@_backend_literal:n { [end] } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_backend_scope_begin:, \@@_backend_scope_end:} % Scope here may need to contain saved definitions, so the entire memory % rather than just the graphic state has to be sent to the stack. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_scope_begin: { \@@_backend_literal:n { save } } \cs_new_protected:Npn \@@_backend_scope_end: { \@@_backend_literal:n { restore } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_backend_moveto:nn, \@@_backend_lineto:nn} % \begin{macro}{\@@_backend_rectangle:nnnn} % \begin{macro}{\@@_backend_curveto:nnnnnn} % Path creation operations mainly resolve directly to PostScript primitive % steps, with only the need to convert to \texttt{bp}. Notice that % \texttt{x}-type expansion is included here to ensure that any variable % values are forced to literals before any possible caching. There is % no native rectangular path command (without also clipping, filling or % stroking), so that task is done using a small amount of PostScript. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_moveto:nn #1#2 { \@@_backend_literal:e { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ moveto } } \cs_new_protected:Npn \@@_backend_lineto:nn #1#2 { \@@_backend_literal:e { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ lineto } } \cs_new_protected:Npn \@@_backend_rectangle:nnnn #1#2#3#4 { \@@_backend_literal:e { \dim_to_decimal_in_bp:n {#4} ~ \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ moveto~dup~0~rlineto~exch~0~exch~rlineto~neg~0~rlineto~closepath } } \cs_new_protected:Npn \@@_backend_curveto:nnnnnn #1#2#3#4#5#6 { \@@_backend_literal:e { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#4} ~ \dim_to_decimal_in_bp:n {#5} ~ \dim_to_decimal_in_bp:n {#6} ~ curveto } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_backend_evenodd_rule:, \@@_backend_nonzero_rule:} % \begin{variable}{\g_@@_draw_eor_bool} % The even-odd rule here can be implemented as a simply switch. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_evenodd_rule: { \bool_gset_true:N \g_@@_draw_eor_bool } \cs_new_protected:Npn \@@_backend_nonzero_rule: { \bool_gset_false:N \g_@@_draw_eor_bool } \bool_new:N \g_@@_draw_eor_bool % \end{macrocode} % \end{variable} % \end{macro} % % \begin{macro} % { % \@@_backend_closepath: , % \@@_backend_stroke: , % \@@_backend_closestroke: , % \@@_backend_fill: , % \@@_backend_fillstroke: , % \@@_backend_clip: , % \@@_backend_discardpath: % } % \begin{variable}{\g_@@_draw_clip_bool} % Unlike PDF, PostScript doesn't track separate colors for strokes and other % elements. It is also desirable to have the |clip| keyword after a stroke or % fill. To achieve those outcomes, there is some work to do. For color, the % stoke color is simple but the fill one has to be inserted by hand. For % clipping, the required ordering is achieved using a \TeX{} switch. All of % the operations end with a new path instruction as they do not terminate % (again in contrast to PDF). % \begin{macrocode} \cs_new_protected:Npn \@@_backend_closepath: { \@@_backend_literal:n { closepath } } \cs_new_protected:Npn \@@_backend_stroke: { \@@_backend_literal:n { gsave } \@@_backend_literal:n { color.sc } \@@_backend_literal:n { stroke } \@@_backend_literal:n { grestore } \bool_if:NT \g_@@_draw_clip_bool { \@@_backend_literal:e { \bool_if:NT \g_@@_draw_eor_bool { eo } clip } } \@@_backend_literal:n { newpath } \bool_gset_false:N \g_@@_draw_clip_bool } \cs_new_protected:Npn \@@_backend_closestroke: { \@@_backend_closepath: \@@_backend_stroke: } \cs_new_protected:Npn \@@_backend_fill: { \@@_backend_literal:e { \bool_if:NT \g_@@_draw_eor_bool { eo } fill } \bool_if:NT \g_@@_draw_clip_bool { \@@_backend_literal:e { \bool_if:NT \g_@@_draw_eor_bool { eo } clip } } \@@_backend_literal:n { newpath } \bool_gset_false:N \g_@@_draw_clip_bool } \cs_new_protected:Npn \@@_backend_fillstroke: { \@@_backend_literal:e { \bool_if:NT \g_@@_draw_eor_bool { eo } fill } \@@_backend_literal:n { gsave } \@@_backend_literal:n { color.sc } \@@_backend_literal:n { stroke } \@@_backend_literal:n { grestore } \bool_if:NT \g_@@_draw_clip_bool { \@@_backend_literal:e { \bool_if:NT \g_@@_draw_eor_bool { eo } clip } } \@@_backend_literal:n { newpath } \bool_gset_false:N \g_@@_draw_clip_bool } \cs_new_protected:Npn \@@_backend_clip: { \bool_gset_true:N \g_@@_draw_clip_bool } \bool_new:N \g_@@_draw_clip_bool \cs_new_protected:Npn \@@_backend_discardpath: { \bool_if:NT \g_@@_draw_clip_bool { \@@_backend_literal:e { \bool_if:NT \g_@@_draw_eor_bool { eo } clip } } \@@_backend_literal:n { newpath } \bool_gset_false:N \g_@@_draw_clip_bool } % \end{macrocode} % \end{variable} % \end{macro} % % \begin{macro}{\@@_backend_dash_pattern:nn} % \begin{macro}{\@@_backend_dash:n} % \begin{macro}{\@@_backend_linewidth:n} % \begin{macro}{\@@_backend_miterlimit:n} % \begin{macro} % { % \@@_backend_cap_butt:, \@@_backend_cap_round:, \@@_backend_cap_rectangle:, % \@@_backend_join_miter:, \@@_backend_join_round:, \@@_backend_join_bevel: % } % Converting paths to output is again a case of mapping directly to % PostScript operations. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_dash_pattern:nn #1#2 { \@@_backend_literal:e { [ \exp_args:Nf \use:n { \clist_map_function:nN {#1} \@@_backend_dash:n } ] ~ \dim_to_decimal_in_bp:n {#2} ~ setdash } } \cs_new:Npn \@@_backend_dash:n #1 { ~ \dim_to_decimal_in_bp:n {#1} } \cs_new_protected:Npn \@@_backend_linewidth:n #1 { \@@_backend_literal:e { \dim_to_decimal_in_bp:n {#1} ~ setlinewidth } } \cs_new_protected:Npn \@@_backend_miterlimit:n #1 { \@@_backend_literal:n { #1 ~ setmiterlimit } } \cs_new_protected:Npn \@@_backend_cap_butt: { \@@_backend_literal:n { 0 ~ setlinecap } } \cs_new_protected:Npn \@@_backend_cap_round: { \@@_backend_literal:n { 1 ~ setlinecap } } \cs_new_protected:Npn \@@_backend_cap_rectangle: { \@@_backend_literal:n { 2 ~ setlinecap } } \cs_new_protected:Npn \@@_backend_join_miter: { \@@_backend_literal:n { 0 ~ setlinejoin } } \cs_new_protected:Npn \@@_backend_join_round: { \@@_backend_literal:n { 1 ~ setlinejoin } } \cs_new_protected:Npn \@@_backend_join_bevel: { \@@_backend_literal:n { 2 ~ setlinejoin } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % % \begin{macro}{\@@_backend_cm:nnnn} % In \texttt{dvips}, keeping the transformations in line with the engine % is unfortunately not possible for scaling and rotations: even if we % decompose the matrix into those operations, there is still no backend % tracking (\emph{cf.}~\texttt{dvipdfmx}/\XeTeX{}). Thus we take the shortest % path available and simply dump the matrix as given. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_cm:nnnn #1#2#3#4 { \@@_backend_literal:n { [ #1 ~ #2 ~ #3 ~ #4 ~ 0 ~ 0 ] ~ concat } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_backend_box_use:Nnnnn} % Inside a picture |@beginspecial|/|@endspecial| are active, which is % normally a good thing but means that the position and scaling would be off % if the box was inserted directly. To deal with that, there are a number of % possible approaches. A previous implementation suggested by Tom Rokici % used |@endspecial|/|@beginspecial|. This avoids needing internals of % \texttt{dvips}, but fails if there the box is used inside a scope % (see \url{https://github.com/latex3/latex3/issues/1504}). Instead, % we use the same method as \pkg{pgf}, which means tracking the position % at the PostScript level. Also note that using |@endspecial| would % close the scope it creates, meaning that after a box insertion, any % local changes would be lost. Keeping \texttt{dvips} on track is % non-trivial, hence the |[begin]|/|[end]| pair before the % |save| and around the |restore|. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_box_use:Nnnnn #1#2#3#4#5 { \@@_backend_literal:n { save } \@@_backend_literal:n { 72~Resolution~div~72~VResolution~div~neg~scale } \@@_backend_literal:n { magscale { 1~DVImag~div~dup~scale } if } \@@_backend_literal:n { draw.x~neg~draw.y~neg~translate } \@@_backend_literal:n { [end] } \@@_backend_literal:n { [begin] } \@@_backend_literal:n { save } \@@_backend_literal:n { currentpoint } \@@_backend_literal:n { currentpoint~translate } \@@_backend_cm:nnnn { 1 } { 0 } { 0 } { -1 } \@@_backend_cm:nnnn {#2} {#3} {#4} {#5} \@@_backend_cm:nnnn { 1 } { 0 } { 0 } { -1 } \@@_backend_literal:n { neg~exch~neg~exch~translate } \@@_backend_literal:n { [end] } \hbox_overlap_right:n { \box_use:N #1 } \@@_backend_literal:n { [begin] } \@@_backend_literal:n { restore } \@@_backend_literal:n { [end] } \@@_backend_literal:n { [begin] } \@@_backend_literal:n { restore } } % \end{macrocode} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \subsection{\LuaTeX{}, \pdfTeX{}, \texttt{dvipdfmx} and \XeTeX{}} % % \LuaTeX{}, \pdfTeX{}, \texttt{dvipdfmx} and \XeTeX{} directly produce PDF output % and understand a shared set of specials for drawing commands. % % \begin{macrocode} %<*dvipdfmx|luatex|pdftex|xetex> % \end{macrocode} % % \subsubsection{Drawing} % % \begin{macro}{\@@_backend_literal:n, \@@_backend_literal:e} % Pass data through using a dedicated interface. % \begin{macrocode} \cs_new_eq:NN \@@_backend_literal:n \__kernel_backend_literal_pdf:n \cs_generate_variant:Nn \@@_backend_literal:n { e } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_backend_begin:, \@@_backend_end:} % No special requirements here, so simply set up a drawing scope. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_begin: { \@@_backend_scope_begin: } \cs_new_protected:Npn \@@_backend_end: { \@@_backend_scope_end: } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_backend_scope_begin:, \@@_backend_scope_end:} % Use the backend-level scope mechanisms. % \begin{macrocode} \cs_new_eq:NN \@@_backend_scope_begin: \__kernel_backend_scope_begin: \cs_new_eq:NN \@@_backend_scope_end: \__kernel_backend_scope_end: % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_backend_moveto:nn, \@@_backend_lineto:nn} % \begin{macro}{\@@_backend_curveto:nnnnnn} % \begin{macro}{\@@_backend_rectangle:nnnn} % Path creation operations all resolve directly to PDF primitive steps, with % only the need to convert to \texttt{bp}. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_moveto:nn #1#2 { \@@_backend_literal:e { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ m } } \cs_new_protected:Npn \@@_backend_lineto:nn #1#2 { \@@_backend_literal:e { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ l } } \cs_new_protected:Npn \@@_backend_curveto:nnnnnn #1#2#3#4#5#6 { \@@_backend_literal:e { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#4} ~ \dim_to_decimal_in_bp:n {#5} ~ \dim_to_decimal_in_bp:n {#6} ~ c } } \cs_new_protected:Npn \@@_backend_rectangle:nnnn #1#2#3#4 { \@@_backend_literal:e { \dim_to_decimal_in_bp:n {#1} ~ \dim_to_decimal_in_bp:n {#2} ~ \dim_to_decimal_in_bp:n {#3} ~ \dim_to_decimal_in_bp:n {#4} ~ re } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_backend_evenodd_rule:, \@@_backend_nonzero_rule:} % \begin{variable}{\g_@@_draw_eor_bool} % The even-odd rule here can be implemented as a simply switch. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_evenodd_rule: { \bool_gset_true:N \g_@@_draw_eor_bool } \cs_new_protected:Npn \@@_backend_nonzero_rule: { \bool_gset_false:N \g_@@_draw_eor_bool } \bool_new:N \g_@@_draw_eor_bool % \end{macrocode} % \end{variable} % \end{macro} % % \begin{macro} % { % \@@_backend_closepath: , % \@@_backend_stroke: , % \@@_backend_closestroke: , % \@@_backend_fill: , % \@@_backend_fillstroke: , % \@@_backend_clip: , % \@@_backend_discardpath: % } % Converting paths to output is again a case of mapping directly to % PDF operations. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_closepath: { \@@_backend_literal:n { h } } \cs_new_protected:Npn \@@_backend_stroke: { \@@_backend_literal:n { S } } \cs_new_protected:Npn \@@_backend_closestroke: { \@@_backend_literal:n { s } } \cs_new_protected:Npn \@@_backend_fill: { \@@_backend_literal:e { f \bool_if:NT \g_@@_draw_eor_bool * } } \cs_new_protected:Npn \@@_backend_fillstroke: { \@@_backend_literal:e { B \bool_if:NT \g_@@_draw_eor_bool * } } \cs_new_protected:Npn \@@_backend_clip: { \@@_backend_literal:e { W \bool_if:NT \g_@@_draw_eor_bool * } } \cs_new_protected:Npn \@@_backend_discardpath: { \@@_backend_literal:n { n } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_backend_dash_pattern:nn} % \begin{macro}{\@@_backend_dash:n} % \begin{macro}{\@@_backend_linewidth:n} % \begin{macro}{\@@_backend_miterlimit:n} % \begin{macro} % { % \@@_backend_cap_butt:, \@@_backend_cap_round:, \@@_backend_cap_rectangle:, % \@@_backend_join_miter:, \@@_backend_join_round:, \@@_backend_join_bevel: % } % Converting paths to output is again a case of mapping directly to % PDF operations. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_dash_pattern:nn #1#2 { \@@_backend_literal:e { [ \exp_args:Nf \use:n { \clist_map_function:nN {#1} \@@_backend_dash:n } ] ~ \dim_to_decimal_in_bp:n {#2} ~ d } } \cs_new:Npn \@@_backend_dash:n #1 { ~ \dim_to_decimal_in_bp:n {#1} } \cs_new_protected:Npn \@@_backend_linewidth:n #1 { \@@_backend_literal:e { \dim_to_decimal_in_bp:n {#1} ~ w } } \cs_new_protected:Npn \@@_backend_miterlimit:n #1 { \@@_backend_literal:e { #1 ~ M } } \cs_new_protected:Npn \@@_backend_cap_butt: { \@@_backend_literal:n { 0 ~ J } } \cs_new_protected:Npn \@@_backend_cap_round: { \@@_backend_literal:n { 1 ~ J } } \cs_new_protected:Npn \@@_backend_cap_rectangle: { \@@_backend_literal:n { 2 ~ J } } \cs_new_protected:Npn \@@_backend_join_miter: { \@@_backend_literal:n { 0 ~ j } } \cs_new_protected:Npn \@@_backend_join_round: { \@@_backend_literal:n { 1 ~ j } } \cs_new_protected:Npn \@@_backend_join_bevel: { \@@_backend_literal:n { 2 ~ j } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_backend_cm:nnnn} % \begin{macro}{\@@_backend_cm_aux:nnnn} % Another split here between \LuaTeX{}/pdfTeX{} and \texttt{dvipdfmx}/\XeTeX{}. % In the former, we have a direct method to maintain alignment: the backend % can use a matrix itself. For \texttt{dvipdfmx}/\XeTeX{}, we can to decompose the % matrix into rotations and a scaling, then use those operations as they % are handled by the backend. (There is backend support for matrix operations in % \texttt{dvipdfmx}/\XeTeX{}, but as a matched pair so not suitable for the % \enquote{stand alone} transformation set up here.) The specials used here % are from \texttt{xdvipdfmx} originally: they are well-tested, but probably % equivalent to the \texttt{pdf:} versions! % \begin{macrocode} \cs_new_protected:Npn \@@_backend_cm:nnnn #1#2#3#4 { %<*luatex|pdftex> \__kernel_backend_matrix:n { #1 ~ #2 ~ #3 ~ #4 } % %<*dvipdfmx|xetex> \@@_backend_cm_decompose:nnnnN {#1} {#2} {#3} {#4} \@@_backend_cm_aux:nnnn % } %<*dvipdfmx|xetex> \cs_new_protected:Npn \@@_backend_cm_aux:nnnn #1#2#3#4 { \__kernel_backend_literal:e { x:rotate~ \fp_compare:nNnTF {#1} = \c_zero_fp { 0 } { \fp_eval:n { round ( -#1 , 5 ) } } } \__kernel_backend_literal:e { x:scale~ \fp_eval:n { round ( #2 , 5 ) } ~ \fp_eval:n { round ( #3 , 5 ) } } \__kernel_backend_literal:e { x:rotate~ \fp_compare:nNnTF {#4} = \c_zero_fp { 0 } { \fp_eval:n { round ( -#4 , 5 ) } } } } % % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_backend_cm_decompose:nnnnN} % \begin{macro} % { % \@@_backend_cm_decompose_auxi:nnnnN, % \@@_backend_cm_decompose_auxii:nnnnN, % \@@_backend_cm_decompose_auxiii:nnnnN, % } % Internally, transformations for drawing are tracked as a matrix. Not all % engines provide a way of dealing with this: if we use a raw matrix, the % engine looses track of positions (for example for hyperlinks), and this is % not desirable. They do, however, allow us to track rotations and scalings. % Luckily, we can decompose any (two-dimensional) matrix into two rotations % and a single scaling: % \[ % \begin{bmatrix} % A & B \\ C & D % \end{bmatrix} % = % \begin{bmatrix} % \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta % \end{bmatrix} % \begin{bmatrix} % w_{1} & 0 \\ 0 & w_{2} % \end{bmatrix} % \begin{bmatrix} % \cos\gamma & \sin\gamma \\ -\sin\gamma & \cos\gamma % \end{bmatrix} % \] % The parent matrix can be converted to % \[ % \begin{bmatrix} % A & B \\ C & D % \end{bmatrix} % = % \begin{bmatrix} % E & H \\-H & E % \end{bmatrix} % + % \begin{bmatrix} % F & G \\ G & -F % \end{bmatrix} % \] % From these, we can find that % \begin{align*} % \frac{w_{1} + w_{2}}{2} &= \sqrt{E^{2} + H^{2}} \\ % \frac{w_{1} - w_{2}}{2} &= \sqrt{F^{2} + G^{2}} \\ % \gamma - \beta &= \tan^{-1}(G/F) \\ % \gamma + \beta &= \tan^{-1}(H/E) % \end{align*} % at which point we just have to do various pieces of re-arrangement to % get all of the values. (See J.~Blinn, \emph{IEEE Comput.\ Graph.\ Appl.}, % 1996, \textbf{16}, 82--88.) There is one wrinkle: the PostScript (and PDF) % way of specifying a transformation matrix exchanges where one would % normally expect $B$ and $C$ to be. % \begin{macrocode} %<*dvipdfmx|xetex> \cs_new_protected:Npn \@@_backend_cm_decompose:nnnnN #1#2#3#4#5 { \use:e { \@@_backend_cm_decompose_auxi:nnnnN { \fp_eval:n { (#1 + #4) / 2 } } { \fp_eval:n { (#1 - #4) / 2 } } { \fp_eval:n { (#3 + #2) / 2 } } { \fp_eval:n { (#3 - #2) / 2 } } } #5 } \cs_new_protected:Npn \@@_backend_cm_decompose_auxi:nnnnN #1#2#3#4#5 { \use:e { \@@_backend_cm_decompose_auxii:nnnnN { \fp_eval:n { 2 * sqrt ( #1 * #1 + #4 * #4 ) } } { \fp_eval:n { 2 * sqrt ( #2 * #2 + #3 * #3 ) } } { \fp_eval:n { atand ( #3 , #2 ) } } { \fp_eval:n { atand ( #4 , #1 ) } } } #5 } \cs_new_protected:Npn \@@_backend_cm_decompose_auxii:nnnnN #1#2#3#4#5 { \use:e { \@@_backend_cm_decompose_auxiii:nnnnN { \fp_eval:n { ( #4 - #3 ) / 2 } } { \fp_eval:n { ( #1 + #2 ) / 2 } } { \fp_eval:n { ( #1 - #2 ) / 2 } } { \fp_eval:n { ( #4 + #3 ) / 2 } } } #5 } \cs_new_protected:Npn \@@_backend_cm_decompose_auxiii:nnnnN #1#2#3#4#5 { \fp_compare:nNnTF { abs( #2 ) } > { abs ( #3 ) } { #5 {#1} {#2} {#3} {#4} } { #5 {#1} {#3} {#2} {#4} } } % % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_backend_box_use:Nnnnn} % Inserting a \TeX{} box transformed to the requested position and using % the current matrix is done using a mixture of \TeX{} and low-level % manipulation. The offset can be handled by \TeX{}, so only any rotation/^^A % skew/scaling component needs to be done using the matrix operation. As this % operation can never be cached, the scope is set directly not using the % \texttt{draw} version. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_box_use:Nnnnn #1#2#3#4#5 { \__kernel_backend_scope_begin: %<*luatex|pdftex> \@@_backend_cm:nnnn {#2} {#3} {#4} {#5} % %<*dvipdfmx|xetex> \__kernel_backend_literal:n { pdf:btrans~matrix~ #2 ~ #3 ~ #4 ~ #5 ~ 0 ~ 0 } % \hbox_overlap_right:n { \box_use:N #1 } %<*dvipdfmx|xetex> \__kernel_backend_literal:n { pdf:etrans } % \__kernel_backend_scope_end: } % \end{macrocode} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \subsection{\texttt{dvisvgm} backend} % % \begin{macrocode} %<*dvisvgm> % \end{macrocode} % % \begin{macro}{\@@_backend_literal:n, \@@_backend_literal:e} % The same as the more general literal call. % \begin{macrocode} \cs_new_eq:NN \@@_backend_literal:n \__kernel_backend_literal_svg:n \cs_generate_variant:Nn \@@_backend_literal:n { e } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_backend_scope_begin:, \@@_backend_scope_end:} % Use the backend-level scope mechanisms. % \begin{macrocode} \cs_new_eq:NN \@@_backend_scope_begin: \__kernel_backend_scope_begin: \cs_new_eq:NN \@@_backend_scope_end: \__kernel_backend_scope_end: % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_backend_begin:, \@@_backend_end:} % A drawing needs to be set up such that the co-ordinate system is % translated. That is done inside a scope, which as described below % \begin{macrocode} \cs_new_protected:Npn \@@_backend_begin: { \__kernel_backend_scope_begin: \__kernel_backend_scope:n { transform="translate({?x},{?y})~scale(1,-1)" } } \cs_new_eq:NN \@@_backend_end: \__kernel_backend_scope_end: % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_backend_moveto:nn, \@@_backend_lineto:nn} % \begin{macro}{\@@_backend_rectangle:nnnn} % \begin{macro}{\@@_backend_curveto:nnnnnn} % \begin{macro}{\@@_backend_add_to_path:n} % \begin{variable}{\g_@@_backend_path_tl} % Once again, some work is needed to get path constructs correct. Rather % then write the values as they are given, the entire path needs to be % collected up before being output in one go. For that we use a dedicated % storage routine, which adds spaces as required. Since paths should % be fully expanded there is no need to worry about the internal % \texttt{x}-type expansion. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_moveto:nn #1#2 { \@@_backend_add_to_path:n { M ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} } } \cs_new_protected:Npn \@@_backend_lineto:nn #1#2 { \@@_backend_add_to_path:n { L ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} } } \cs_new_protected:Npn \@@_backend_rectangle:nnnn #1#2#3#4 { \@@_backend_add_to_path:n { M ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} h ~ \dim_to_decimal:n {#3} ~ v ~ \dim_to_decimal:n {#4} ~ h ~ \dim_to_decimal:n { -#3 } ~ Z } } \cs_new_protected:Npn \@@_backend_curveto:nnnnnn #1#2#3#4#5#6 { \@@_backend_add_to_path:n { C ~ \dim_to_decimal:n {#1} ~ \dim_to_decimal:n {#2} ~ \dim_to_decimal:n {#3} ~ \dim_to_decimal:n {#4} ~ \dim_to_decimal:n {#5} ~ \dim_to_decimal:n {#6} } } \cs_new_protected:Npn \@@_backend_add_to_path:n #1 { \tl_gset:Ne \g_@@_backend_path_tl { \g_@@_backend_path_tl \tl_if_empty:NF \g_@@_backend_path_tl { \c_space_tl } #1 } } \tl_new:N \g_@@_backend_path_tl % \end{macrocode} % \end{variable} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_backend_evenodd_rule:, \@@_backend_nonzero_rule:} % The fill rules here have to be handled as scopes. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_evenodd_rule: { \__kernel_backend_scope:n { fill-rule="evenodd" } } \cs_new_protected:Npn \@@_backend_nonzero_rule: { \__kernel_backend_scope:n { fill-rule="nonzero" } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_backend_path:n} % \begin{macro} % { % \@@_backend_closepath: , % \@@_backend_stroke: , % \@@_backend_closestroke: , % \@@_backend_fill: , % \@@_backend_fillstroke: , % \@@_backend_clip: , % \@@_backend_discardpath: % } % \begin{variable}{\g_@@_draw_clip_bool} % \begin{variable}{\g_@@_draw_path_int} % Setting fill and stroke effects and doing clipping all has to be done using % scopes. This means setting up the various requirements in a shared % auxiliary which deals with the bits and pieces. Clipping paths are reused % for path drawing: not essential but avoids constructing them twice. % Discarding a path needs a separate function as it's not quite the same. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_closepath: { \@@_backend_add_to_path:n { Z } } \cs_new_protected:Npn \@@_backend_path:n #1 { \bool_if:NTF \g_@@_draw_clip_bool { \int_gincr:N \g__kernel_clip_path_int \@@_backend_literal:e { < clipPath~id = " l3cp \int_use:N \g__kernel_clip_path_int " > { ?nl } { ?nl } < /clipPath > { ? nl } < use~xlink:href = "\c_hash_str l3path \int_use:N \g_@@_backend_path_int " ~ #1 /> } \__kernel_backend_scope:e { clip-path = "url( \c_hash_str l3cp \int_use:N \g__kernel_clip_path_int)" } } { \@@_backend_literal:e { } } \tl_gclear:N \g_@@_backend_path_tl \bool_gset_false:N \g_@@_draw_clip_bool } \int_new:N \g_@@_backend_path_int \cs_new_protected:Npn \@@_backend_stroke: { \@@_backend_path:n { style="fill:none" } } \cs_new_protected:Npn \@@_backend_closestroke: { \@@_backend_closepath: \@@_backend_stroke: } \cs_new_protected:Npn \@@_backend_fill: { \@@_backend_path:n { style="stroke:none" } } \cs_new_protected:Npn \@@_backend_fillstroke: { \@@_backend_path:n { } } \cs_new_protected:Npn \@@_backend_clip: { \bool_gset_true:N \g_@@_draw_clip_bool } \bool_new:N \g_@@_draw_clip_bool \cs_new_protected:Npn \@@_backend_discardpath: { \bool_if:NT \g_@@_draw_clip_bool { \int_gincr:N \g__kernel_clip_path_int \@@_backend_literal:e { < clipPath~id = " l3cp \int_use:N \g__kernel_clip_path_int " > { ?nl } { ?nl } < /clipPath > } \__kernel_backend_scope:e { clip-path = "url( \c_hash_str l3cp \int_use:N \g__kernel_clip_path_int)" } } \tl_gclear:N \g_@@_backend_path_tl \bool_gset_false:N \g_@@_draw_clip_bool } % \end{macrocode} % \end{variable} % \end{variable} % \end{macro} % \end{macro} % % \begin{macro}{\@@_backend_dash_pattern:nn} % \begin{macro}{\@@_backend_dash:n} % \begin{macro}{\@@_backend_dash_aux:nn} % \begin{macro}{\@@_backend_linewidth:n} % \begin{macro}{\@@_backend_miterlimit:n} % \begin{macro} % { % \@@_backend_cap_butt:, \@@_backend_cap_round:, \@@_backend_cap_rectangle:, % \@@_backend_join_miter:, \@@_backend_join_round:, \@@_backend_join_bevel: % } % All of these ideas are properties of scopes in SVG. The only slight % complexity is converting the dash array properly (doing any required % maths). % \begin{macrocode} \cs_new_protected:Npn \@@_backend_dash_pattern:nn #1#2 { \use:e { \@@_backend_dash_aux:nn { \clist_map_function:nN {#1} \@@_backend_dash:n } { \dim_to_decimal:n {#2} } } } \cs_new:Npn \@@_backend_dash:n #1 { , \dim_to_decimal_in_bp:n {#1} } \cs_new_protected:Npn \@@_backend_dash_aux:nn #1#2 { \__kernel_backend_scope:e { stroke-dasharray = " \tl_if_empty:nTF {#1} { none } { \use_none:n #1 } " ~ stroke-offset=" #2 " } } \cs_new_protected:Npn \@@_backend_linewidth:n #1 { \__kernel_backend_scope:e { stroke-width=" \dim_to_decimal:n {#1} " } } \cs_new_protected:Npn \@@_backend_miterlimit:n #1 { \__kernel_backend_scope:e { stroke-miterlimit=" #1 " } } \cs_new_protected:Npn \@@_backend_cap_butt: { \__kernel_backend_scope:n { stroke-linecap="butt" } } \cs_new_protected:Npn \@@_backend_cap_round: { \__kernel_backend_scope:n { stroke-linecap="round" } } \cs_new_protected:Npn \@@_backend_cap_rectangle: { \__kernel_backend_scope:n { stroke-linecap="square" } } \cs_new_protected:Npn \@@_backend_join_miter: { \__kernel_backend_scope:n { stroke-linejoin="miter" } } \cs_new_protected:Npn \@@_backend_join_round: { \__kernel_backend_scope:n { stroke-linejoin="round" } } \cs_new_protected:Npn \@@_backend_join_bevel: { \__kernel_backend_scope:n { stroke-linejoin="bevel" } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_backend_cm:nnnn} % The four arguments here are floats (the affine matrix), the last % two are a displacement vector. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_cm:nnnn #1#2#3#4 { \__kernel_backend_scope:n { transform = " matrix ( #1 , #2 , #3 , #4 , 0pt , 0pt ) " } } % \end{macrocode} % \end{macro} % % \begin{macro}{\@@_backend_box_use:Nnnnn} % No special savings can be made here: simply displace the box inside % a scope. As there is nothing to re-box, just make the box passed of % zero size. % \begin{macrocode} \cs_new_protected:Npn \@@_backend_box_use:Nnnnn #1#2#3#4#5 { \__kernel_backend_scope_begin: \@@_backend_cm:nnnn {#2} {#3} {#4} {#5} \__kernel_backend_literal_svg:n { < g~ stroke="none"~ transform="scale(-1,1)~translate({?x},{?y})~scale(-1,-1)" > } \box_set_wd:Nn #1 { 0pt } \box_set_ht:Nn #1 { 0pt } \box_set_dp:Nn #1 { 0pt } \box_use:N #1 \__kernel_backend_literal_svg:n { } \__kernel_backend_scope_end: } % \end{macrocode} % \end{macro} % % \begin{macrocode} % % \end{macrocode} % % \begin{macrocode} % % \end{macrocode} % % \end{implementation} % % \PrintIndex