The **HEP-PAPER** package*
Publications in high energy physics

Jan Hajer†

Department of Physics, University of Basel, Klingelbergstraße 82, 4056 Basel, Switzerland

2021/08/01

Abstract

The **HEP-PAPER** package aims to provide a single style file containing most configurations and macros necessary to write appealing publications in High Energy Physics. Instead of reinventing the wheel by introducing newly created macros **HEP-PAPER** preferably loads third party packages as long as they are lightweight enough.

Contents

1 Introduction .. 2
 1.1 Options .. 2

2 Macros and environments ... 3
 2.1 Title page ... 4
 2.2 Text .. 4
 2.3 Math .. 6
 2.4 Floats ... 8
 2.5 Bibliography ... 9

3 Conclusion ... 9

*This document corresponds to **HEP-PAPER** v1.8.
†jan.hajer@unibas.ch
1 Introduction

For usual publications it is enough to load additionally to the \texttt{article} class without optional arguments only the \texttt{hep-paper} package \cite{hep-paper}.

\texttt{\usepackage{hep-paper}}

The most notable changes after loading the \texttt{hep-paper} package is the change of some \LaTeX{} defaults. The paper and font sizes are set to A4 and 11pt, respectively. Additionally, the paper geometry is adjusted using the \texttt{geometry} package \cite{geometry}. Furthermore, the font is changed to latin modern using the \texttt{cfr-lm} package \cite{cfr-lm} with \texttt{microtype} \cite{microtype} optimizations. Finally, portable document format (PDF) hyperlinks are implemented with the \texttt{hyperref} package \cite{hyperref}. If only subset of the functionality is needed one of the smaller style files \texttt{hep-title}, \texttt{hep-acronyms}, and \texttt{hep-bibliography} containing only the macros relevant to sections 2.1, 2.2.2, and 2.5, respectively.

1.1 Options

\texttt{paper} The \texttt{paper=\{format\}} option loads the specified paper format. The possible \texttt{\{formats\}} are: \texttt{ao}, \texttt{a1}, \texttt{a2}, \texttt{a3}, \texttt{a4}, \texttt{a5}, \texttt{a6}, \texttt{b0}, \texttt{b1}, \texttt{b2}, \texttt{b3}, \texttt{b4}, \texttt{b5}, \texttt{b6}, \texttt{c0}, \texttt{c1}, \texttt{c2}, \texttt{c3}, \texttt{c4}, \texttt{c5}, \texttt{c6}, \texttt{ansia}, \texttt{ansib}, \texttt{ansic}, \texttt{ansid}, \texttt{ansie}, \texttt{letter}, \texttt{executive}, \texttt{legal}. The default is \texttt{a4}.

\texttt{font} The \texttt{font=\{size\}} option loads the specified font size. The possible \texttt{\{sizes\}} are: \texttt{8pt}, \texttt{9pt}, \texttt{10pt}, \texttt{11pt}, \texttt{12pt}, \texttt{14pt}, \texttt{17pt}, \texttt{20pt}. The default is \texttt{11pt}.

\texttt{lang} The \texttt{lang=\{name\}} option switches the document language to one of the values provided by the \texttt{babel} package \cite{babel}. The default is \texttt{british}.

\texttt{sansserif} The \texttt{sansserif} option switches the document including math to sans serif font shape.

\texttt{oldstyle} The \texttt{oldstyle} option activates the use of oldstyle text- \texttt{(123)} in favour of lining- \texttt{(123)} figures in text mode.

\texttt{parskip} The \texttt{parskip} option changes how paragraphs are separated from each other using the \texttt{parskip} package \cite{parskip}. The \LaTeX{} default is separation via indentation the \texttt{parskip} option switches to separation via vertical space.\footnote{Although the \texttt{parskip} option is used for this document, it is recommended only for very few document types such as technical manuals or answers to referees.}

\texttt{symbols} The \texttt{symbols=\{family\}} set the family of the symbol fonts. \texttt{symbols=ams} loads the two \texttt{AMS} fonts \cite{amsfonts} and the \texttt{bm} bold fonts. The default \texttt{symbols=true} replaces additionally the blackboard font with the \texttt{dsfont} \cite{dsfont}. \texttt{symbols=minion} switches the symbol fonts to the Adobe MinionPro companion font from the \texttt{MnSymbol} package \cite{MnSymbol}. \texttt{symbols=false} deactivates loading any additional symbol fonts.

1.1.1 Deactivation

The \texttt{hep-paper} package loads few bigger packages which have a large impact on the document. The deactivation options can prevent such and other adjustments.
The **defaults** option prevents the adjustment of the page geometry and the font size set by the document class.

The **title=false** option deactivates the title page adjustments.

The **bibliography=⟨key⟩** option prevents the automatic loading of the BibLaTeX package [11] if ⟨key⟩=false. Otherwise the ⟨key⟩ is passed as style string to the BibLaTeX package.

The **glossaries=false** option deactives acronyms and the use of the glossaries package [12].

The **references=false** option prevents the cleveref package [13] from being loaded and deactivates further redefinitions of reference macros.

1.1.2 Compatibility

The compatibility options activate the compatibility mode for certain classes and packages used for publications in high energy physics. They are mostly suitable combinations of options described in the previous section. If hep-paper is able to detect the presence of such a class or package, *i.e.* if it is loaded before the hep-paper package, the compatibility mode is activated automatically.

The **beamer** option activates the beamer [14] compatibility mode.

- The **jhep** option activates the JHEP [15] compatibility mode.
- The **jcap** option activates the JCAP [16] compatibility mode.
- The **revtex** option activates the REVTEX [17] compatibility mode.
- The **pos** option activates the PoS compatibility mode.
- The **springer** option activates the compatibility mode the svjour class [18].

1.1.3 Reactivation

The hep-paper package deactivates unrecommended macros, which can be reactivated manually.

The **manualplacement** option reactivates manual float placement.

The **eqnarray** option reactivates the depreciated eqnarray environment.

2 Macros and environments

The **twocolumn** option is present the page geometry is changed to cover almost the entire page. Additionally the **abstract** environment is defined that generates a one column abstract and takes care of placing the title information.
2.1 Title page

\series The \series{⟨series⟩} macro is defined using the titling package [19].
\title The PDF meta information is set according to the \title{⟨text⟩} and \author{⟨text⟩} information.
\subtitle The \subtitle{⟨subtitle⟩} macro is defined.
\editor In order to facilitate multiple authors with different affiliations the authblk package \[one.oldstyle/two.oldstyle\] is loaded. The following lines add e.g. two authors with different affiliations
\author \author[1]{Author one \email{email one}} \affiliation[1]{Affiliation one}
\email \author[2]{Author two \email{email two}} \affiliation[1,2]{Affiliation two}
\preprint The \preprint{⟨number⟩} macro places a pre-print number in the upper right corner of the title page.
\abstract The abstract environment is adjusted to not start with an indentation.
\titlefont Various title font macros are defined, allowing to change the appearance of the \maketitle output.
\subtitlefont
\authorfont
\affiliationfont
\preprintfont
\enquote
\MakeOuterQuote
\eg
\vs
\no{⟨number⟩} macro is typeset as № 123.
\software{⟨version⟩}{⟨name⟩} macro is typeset as HEP-PAPER v1.8.
\online The \online{⟨url⟩}{⟨text⟩} macro combines the features of the \href{⟨url⟩}{⟨text⟩} [5] and the \url{⟨text⟩} [23] macros, resulting in e.g. ctan.org/pkg/hep-paper.
\inlinelist The inlinelist and enumdescript environments are defined using the enumitem package [24].
\begin{inlinelist}
\item one
\item two
\item three
\end{inlinelist}
The three main points are i) one, ii) two, and iii) three.

2.2 Text

Hyphenation is provided by the babel package [6] and quotation commands are provided by the csquotes package [21]. The latter package provides the convenient macros \enquote{⟨text⟩} and \MakeOuterQuote{} allowing to leave the choice of quotation marks to \LaTeX and use ... instead of the pair ... and ..., respectively.
\eg
\vs
The \no{⟨number⟩} macro is typeset as № 123.
\software{⟨version⟩}{⟨name⟩} macro is typeset as HEP-PAPER v1.8.
\online The \online{⟨url⟩}{⟨text⟩} macro combines the features of the \href{⟨url⟩}{⟨text⟩} [5] and the \url{⟨text⟩} [23] macros, resulting in e.g. ctan.org/pkg/hep-paper.
\inlinelist The inlinelist and enumdescript environments are defined using the enumitem package [24].
\begin{inlinelist}
\item one
\item two
\item three
\end{inlinelist}
The three main points are i) one, ii) two, and iii) three.
A bold versions **SMALL CAPS** and a sans serif version of **SMALL CAPS** based on the computer modern font \textsc{} is provided, the latter using the \sansmathfonts package.

The \underline{} macro is redefined to allow line-breaks using the ulem package.

The \overline{} macro is extended to also overline text outside of math environments.

If the \parskip option is activated the \useparindent macro switches to the usual \useparskip parindent mode, while the \useparindent macro switches to the parskip mode.

\subsection*{2.2.1 References and footnotes}

References are extended with the \cleveref package, which allows to \textit{e.g.} just type \cref{(key)} in order to write ‘figure 1’. Furthermore, the \cleveref package allows to reference multiple objects within one \cref{(key1, key2)}.

Citations are adjusted to not start on a new line in order to avoid the repeated use of -\cite{(key)}.

References are also adjusted to not start on a new line.

Footnotes are adjusted to swallow white space before the footnote mark and at the beginning of the footnote text.

\subsection*{2.2.2 Acronyms}

The \acronym{(*)}[(\textit{typeset abbreviation})\{(abbreviation)\}(\textit{definition})\{(plural definition)\}] macro generates the singular \{(abbreviation)\} and plural \{(abbreviation)s\} macros. The first star prevents the addition of an ‘s’ to the abbreviation plural. The second star restores the \TeX{} default of swallowing subsequent white space. The long form is only shown at the first appearance of these macros, later appearances generate the abbreviation with a hyperlink to the long form. The long form is never used in math mode. Capitalization at the beginning of paragraphs and sentences is (mostly) ensured. The \shortacronym and \longacronym macros are drop-in replacements of the \acronym macro showing only the short or long form of their acronym. The first use form of the acronym can be enforced by resetting the acronym counter with \resetacronym{(⟨key⟩)}. If the acronym counter equals one at the end of the document the short form of the acronym is not introduced. Placing a \dummyacronym{⟨key⟩} at the end of the document ensures that the short form is introduced.
2.3 Math

The \texttt{mathtools} [28] and \texttt{amssymb} [8] packages are loaded. They in turn load the \texttt{AMS-LaTeX} \texttt{amsmath} [29] and \texttt{amsfonts} [8] packages. Bold math, via \texttt{mathbf} is improved by the \texttt{bm} package [30], \textit{i.e.} \texttt{(AbΓδAbΓδ)}. Macros switching to \texttt{bfseries} such as \texttt{\textsection{(text)}} are ensured to also typeset math in bold. The \texttt{\texttext{(text)}} macro makes it possible to write text within math mode, \textit{i.e.} \texttt{(AbΓδAbΓδ)}. The math sans serif alphabet is redefined to be italic sans serif if the main text is serif and italic serif if the main text is sans serif, \textit{i.e.} \texttt{(AbΓδAbΓδ)}. The \texttt{\textcal} font is \texttt{i.e.} \texttt{(AaBb12)}. Finally, the \texttt{\textfrak} font is also available \textit{i.e.} \texttt{(AaBb12)}. Details about the font handling in \TeX{} can be found in reference [31].

\begin{itemize}
\item \texttt{nicefrac} The \texttt{\textfrac{⟨number⟩}{⟨number⟩}} macro is accompanied by \texttt{nicefrac{⟨number⟩}{⟨number⟩}}, \texttt{\textfractext{⟨number⟩}{⟨number⟩}}, and \texttt{\flafractext{⟨number⟩}{⟨number⟩}} leading to \texttt{\frac{1}{2}}, \texttt{\frac{1}{2}}, \texttt{\frac{1}{2}}, and \texttt{\frac{1}{2}}. Diagonal matrix \texttt{\textfrak{diag}} and signum \texttt{\textfrak{sgn}} operators are defined.
\item \texttt{\textdef} The \texttt{\textfrak{\textdef{⟨name⟩}{⟨arguments⟩}{⟨code⟩}}} macro (re-)defines macros only within math mode without changing the text mode definition.
\item \texttt{\textfraktex} The imaginary unit \texttt{i} and the differential \texttt{d} are defined using this functionality.
\end{itemize}

For longer paper it can be useful to re-number the equation in accordance with the section numbering \texttt{\textfrak{\textnumberwithin{equation}{section}}}. In order to further reduce the size the of equation counter it can be useful to wrap \texttt{align} environments with multiple rows in a \texttt{subequations} environment. Both macros are provided by the \texttt{amsmath} package.

\texttt{eqnarray} The deprecated \texttt{\textfraktex{eqnarray}} environment is undefined as long this behaviour is not prevented by the \texttt{\textfraktex{eqnarray}} package option. The \texttt{\textfraktex{split}}, \texttt{\textfraktex{multiline}}, \texttt{\textfraktex{align}}, \texttt{\textfraktex{multlined}}, \texttt{\textfraktex{aligned}}, \texttt{\textfraktex{alignedat}}, and \texttt{cases} environments of the \texttt{amsmath} and \texttt{mathtools} packages should be used instead.

\texttt{equation} Use the \texttt{\textfraktex{equation}} environment for short equations.
\begin{verbatim}
\begin{equation}
 \mathfrak{left} = \mathfrak{right} \ . \quad (1)
\end{equation}
\end{verbatim}

\texttt{multiline} Use the \texttt{\textfraktex{multiline}} environment for longer equations.
\begin{verbatim}
\begin{multiline}
 \mathfrak{left} = \mathfrak{right 1} \ \ \\
 \mathfrak{+ right 2} \ . \quad (2)
\end{multiline}
\end{verbatim}

\texttt{split} Use the \texttt{\textfraktex{split}} sub environment for equations in which multiple equal signs should be aligned.
\begin{equation} \begin{split}
\text{left} &= \text{right 1} \\
&= \text{right 2} \ .
\end{split} \end{equation}

\begin{equation}
\begin{split}
\text{left} &= \text{right 1} \\
&= \text{right 2} \ .
\end{split} \end{equation}

\begin{equation}
\begin{split}
\text{left} &= \text{right 1} \\
&= \text{right 2} \ .
\end{split} \end{equation}

align

Use the \texttt{align} environment for the vertical alignment and horizontal distribution of multiple equations.

\begin{equation}
\begin{aligned}
\text{left} &= \text{right} \ ,
& \text{left} &= \text{right} ,
& \text{left} &= \text{right} .
\end{aligned} \end{equation}

multlined

Use the \texttt{multlined} environment if either \texttt{split} or \texttt{align} contain very long lines.

\begin{equation}
\begin{split}
\text{left} &= \text{right 1} \ & \text{&}
\text{\begin{multlined}[t]}
\text{right 2} \ & + \text{right 3}
\end{multlined} \ .
\end{split} \end{equation}

\begin{equation}
\begin{split}
\text{left} &= \text{right 1} \ & \text{&}
\text{\begin{multlined}[t]}
\text{right 2} \ & + \text{right 3}
\end{multlined} \ .
\end{split} \end{equation}

As a rule of thumb if you have to use \texttt{\notag}, \texttt{\nonumber}, or perform manual spacing via \texttt{\quad} you are probably using the wrong environment.

2.3.1 Physics

\begin{equation}
\begin{split}
\text{σ} &= 5 \text{ fb} \ ,
& \text{at 5 σ C.L.} ,
& \text{μ} &= 5 \text{ cm} ,
& \text{l} &= 5 \mu \text{m} .
\end{split} \end{equation}
\begin{panels}{2}
\text{code}
\end{panels}
\begin{tabular}{|c|c|c|c|}
\hline
\text{one} & \text{two} \\
\hline
a & b & c & d \\
\hline
b & c & d & \\
\hline
\end{tabular}
\end{panels}

(a) Code for this panel environment. (b) The \texttt{booktabs} and \texttt{multirow} features.

Table 1: Example use of the \texttt{panels} environment in Panel (a) and the features from the \texttt{booktabs} and \texttt{multirow} packages in Panel (b).

Additionally, Greek letters can also be directly typed using Unicode.

\begin{align}
\langle \phi \rangle, \quad \frac{\partial^n f}{\partial x^n}, \quad [A, B], \quad \mathcal{O}(x^2), \quad x|_0^\infty, \quad \det(M). \quad (8)
\end{align}

The \texttt{physics} package \cite{5} provides additional macros such as

\begin{align}
\langle \text{characters} \rangle, \quad \overrightarrow{\partial f}, \quad \overrightarrow{\partial^n f}, \quad [A, B], \quad \mathcal{O}(x^2), \quad x|_0^\infty, \quad \det(M).
\end{align}

The \texttt{cancel}{} macro from the \texttt{cancel} package \cite{6}, and the \texttt{slashed} \{(\text{character})\} macro from the \texttt{slashed} package \cite{7} allow to cancel math and use the Dirac slash notation \texttt{i.e.} ∂, respectively.

\texttt{\overleftarrow{\partial}} A better looking over left right arrow is defined \texttt{i.e.} ∂.

\subsection{2.4 Floats}

Automatic float placement is adjusted to place a single float at the top of pages and to reduce the number of float pages, using the \LaTeX~macros.

\setcounter{bottomnumber}{0} \no floats at the bottom of a page (default 1)
\setcounter{topnumber}{1} \texttt{a single float at the top of a page (default 2)}
\setcounter{dbltopnumber}{1} \texttt{same for full widths floats in two-column mode}
\renewcommand{\textfraction}{.1} \texttt{large floats are allowed (default 0.2)}
\renewcommand{\topfraction}{.9} \texttt{(default 0.7)}
\renewcommand{\dbltopfraction}{.9} \texttt{(default 0.7)}
\renewcommand{\floatpagefraction}{.8} \texttt{float pages must be full (default 0.5)}

Additionally, manual float placement is deactivated but can be reactivated using the \texttt{manualplacement} package option. It is however recommended to archive the desired design by adjusting above macros. The most useful float placement is usually archived by placing the float \textit{in front} of the paragraph it is referenced in first. The float environments have been adjusted to center their content. The usual behaviour can be reactivated using \texttt{raggedright}.

\begin{panels}{2}
\text{panels}
\end{panels}
\begin{tabular}{|c|c|c|c|}
\hline
\text{panels} & \text{panels} & \text{panels} & \text{panels} \\
\hline
\text{panels} & \text{panels} & \text{panels} & \text{panels} \\
\hline
\end{tabular}

The \texttt{panels} environment makes use of the \texttt{subcaption} package \cite{8}. It provides sub-floats and takes as mandatory argument either the number of sub-floats (default 2) or the width of the first sub-float as fraction of the \texttt{\linewidth}. Within the \begin{panels}{vertical alignment}{(width)} environment the \panel macro initiates a new sub-float. In the case that the width of the first sub-float has been
given as an optional argument to the `panels` environment the `\panel{(width)}` macro takes the width of the next sub-float as mandatory argument. The example code is presented in table 1a.

`\tabular` The `booktabs` [39] and `multirow` [40] packages are loaded enabling publication quality tabulars such as in table 1b.

`\graphic` The `graphicx` package [41] is loaded and the `\graphic{(width)\{figure\}}` macro is defined, which is a wrapper for the `\includegraphics\{figure\}` macro and takes the figure width as fraction of the `\linewidth` as optional argument (default 1). If the graphics are located in a sub-folder its path can be indicated by `\graphics\{(subfolder)\}`.

2.5 Bibliography

`\bibliography` The `biblatex` package [11] is loaded for bibliography management. The user has to add the line `\bibliography\{my.bib\}` to the preamble of the document and `\printbibliography` at the end of the document. The bibliography is generated by `Biber` [42]. `biblatex` is extended to be able to cope with the `collaboration` and `reportNumber` fields provided by `inspirehep.net` and a bug in the volume number is fixed. Additionally, the PubMed IDs are recognized and `ctan.org`, `github.com`, `gitlab.com`, `bitbucket.org`, `launchpad.net`, `sourceforge.net`, and `hepforge.org` are valid `eprinttype` s. Errata can be included using the `related` feature.

```latex
\article{key1,  
    ...,  
    relatedtype="erratum",  
    related="key2",  
}  
\article{key2,  
    ... ,  
}
```

3 Conclusion

The `hep-paper` package provides a matching selection of preloaded packages and additional macros enabling the user to focus on the content instead of the layout by reducing the amount of manual tasks. The majority of the loaded packages are fairly lightweight, the others can be deactivated with package options.

`arxiv-collector` `arxiv.org` [43] requires the setup dependent `bbl` files instead of the original `bib` files, which causes trouble if the local `\LaTeX` version differs from the one used by arXiv. The `arxiv-collector` python script [44] alleviates this problem by collecting all files necessary for publication on arXiv (including figures).
References

[31] \LaTeX Team. \LaTeX ϵ font selection: Documentation of \LaTeX font commands’ (1995). CTAN: fntguide.

