// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file tests some commonly used argument matchers. // Silence warning C4244: 'initializing': conversion from 'int' to 'short', // possible loss of data and C4100, unreferenced local parameter #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4244) # pragma warning(disable:4100) #endif #include "gmock/gmock-matchers.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gmock/gmock-more-matchers.h" #include "gmock/gmock.h" #include "gtest/gtest-spi.h" #include "gtest/gtest.h" namespace testing { namespace gmock_matchers_test { namespace { using std::greater; using std::less; using std::list; using std::make_pair; using std::map; using std::multimap; using std::multiset; using std::ostream; using std::pair; using std::set; using std::stringstream; using std::vector; using testing::internal::DummyMatchResultListener; using testing::internal::ElementMatcherPair; using testing::internal::ElementMatcherPairs; using testing::internal::ElementsAreArrayMatcher; using testing::internal::ExplainMatchFailureTupleTo; using testing::internal::FloatingEqMatcher; using testing::internal::FormatMatcherDescription; using testing::internal::IsReadableTypeName; using testing::internal::MatchMatrix; using testing::internal::PredicateFormatterFromMatcher; using testing::internal::RE; using testing::internal::StreamMatchResultListener; using testing::internal::Strings; // Helper for testing container-valued matchers in mock method context. It is // important to test matchers in this context, since it requires additional type // deduction beyond what EXPECT_THAT does, thus making it more restrictive. struct ContainerHelper { MOCK_METHOD1(Call, void(std::vector>)); }; std::vector> MakeUniquePtrs(const std::vector& ints) { std::vector> pointers; for (int i : ints) pointers.emplace_back(new int(i)); return pointers; } // For testing ExplainMatchResultTo(). template class GreaterThanMatcher : public MatcherInterface { public: explicit GreaterThanMatcher(T rhs) : rhs_(rhs) {} void DescribeTo(ostream* os) const override { *os << "is > " << rhs_; } bool MatchAndExplain(T lhs, MatchResultListener* listener) const override { if (lhs > rhs_) { *listener << "which is " << (lhs - rhs_) << " more than " << rhs_; } else if (lhs == rhs_) { *listener << "which is the same as " << rhs_; } else { *listener << "which is " << (rhs_ - lhs) << " less than " << rhs_; } return lhs > rhs_; } private: const T rhs_; }; template Matcher GreaterThan(T n) { return MakeMatcher(new GreaterThanMatcher(n)); } std::string OfType(const std::string& type_name) { #if GTEST_HAS_RTTI return IsReadableTypeName(type_name) ? " (of type " + type_name + ")" : ""; #else return ""; #endif } // Returns the description of the given matcher. template std::string Describe(const Matcher& m) { return DescribeMatcher(m); } // Returns the description of the negation of the given matcher. template std::string DescribeNegation(const Matcher& m) { return DescribeMatcher(m, true); } // Returns the reason why x matches, or doesn't match, m. template std::string Explain(const MatcherType& m, const Value& x) { StringMatchResultListener listener; ExplainMatchResult(m, x, &listener); return listener.str(); } TEST(MonotonicMatcherTest, IsPrintable) { stringstream ss; ss << GreaterThan(5); EXPECT_EQ("is > 5", ss.str()); } TEST(MatchResultListenerTest, StreamingWorks) { StringMatchResultListener listener; listener << "hi" << 5; EXPECT_EQ("hi5", listener.str()); listener.Clear(); EXPECT_EQ("", listener.str()); listener << 42; EXPECT_EQ("42", listener.str()); // Streaming shouldn't crash when the underlying ostream is NULL. DummyMatchResultListener dummy; dummy << "hi" << 5; } TEST(MatchResultListenerTest, CanAccessUnderlyingStream) { EXPECT_TRUE(DummyMatchResultListener().stream() == nullptr); EXPECT_TRUE(StreamMatchResultListener(nullptr).stream() == nullptr); EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream()); } TEST(MatchResultListenerTest, IsInterestedWorks) { EXPECT_TRUE(StringMatchResultListener().IsInterested()); EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested()); EXPECT_FALSE(DummyMatchResultListener().IsInterested()); EXPECT_FALSE(StreamMatchResultListener(nullptr).IsInterested()); } // Makes sure that the MatcherInterface interface doesn't // change. class EvenMatcherImpl : public MatcherInterface { public: bool MatchAndExplain(int x, MatchResultListener* /* listener */) const override { return x % 2 == 0; } void DescribeTo(ostream* os) const override { *os << "is an even number"; } // We deliberately don't define DescribeNegationTo() and // ExplainMatchResultTo() here, to make sure the definition of these // two methods is optional. }; // Makes sure that the MatcherInterface API doesn't change. TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) { EvenMatcherImpl m; } // Tests implementing a monomorphic matcher using MatchAndExplain(). class NewEvenMatcherImpl : public MatcherInterface { public: bool MatchAndExplain(int x, MatchResultListener* listener) const override { const bool match = x % 2 == 0; // Verifies that we can stream to a listener directly. *listener << "value % " << 2; if (listener->stream() != nullptr) { // Verifies that we can stream to a listener's underlying stream // too. *listener->stream() << " == " << (x % 2); } return match; } void DescribeTo(ostream* os) const override { *os << "is an even number"; } }; TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) { Matcher m = MakeMatcher(new NewEvenMatcherImpl); EXPECT_TRUE(m.Matches(2)); EXPECT_FALSE(m.Matches(3)); EXPECT_EQ("value % 2 == 0", Explain(m, 2)); EXPECT_EQ("value % 2 == 1", Explain(m, 3)); } // Tests default-constructing a matcher. TEST(MatcherTest, CanBeDefaultConstructed) { Matcher m; } // Tests that Matcher can be constructed from a MatcherInterface*. TEST(MatcherTest, CanBeConstructedFromMatcherInterface) { const MatcherInterface* impl = new EvenMatcherImpl; Matcher m(impl); EXPECT_TRUE(m.Matches(4)); EXPECT_FALSE(m.Matches(5)); } // Tests that value can be used in place of Eq(value). TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) { Matcher m1 = 5; EXPECT_TRUE(m1.Matches(5)); EXPECT_FALSE(m1.Matches(6)); } // Tests that NULL can be used in place of Eq(NULL). TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) { Matcher m1 = nullptr; EXPECT_TRUE(m1.Matches(nullptr)); int n = 0; EXPECT_FALSE(m1.Matches(&n)); } // Tests that matchers can be constructed from a variable that is not properly // defined. This should be illegal, but many users rely on this accidentally. struct Undefined { virtual ~Undefined() = 0; static const int kInt = 1; }; TEST(MatcherTest, CanBeConstructedFromUndefinedVariable) { Matcher m1 = Undefined::kInt; EXPECT_TRUE(m1.Matches(1)); EXPECT_FALSE(m1.Matches(2)); } // Test that a matcher parameterized with an abstract class compiles. TEST(MatcherTest, CanAcceptAbstractClass) { Matcher m = _; } // Tests that matchers are copyable. TEST(MatcherTest, IsCopyable) { // Tests the copy constructor. Matcher m1 = Eq(false); EXPECT_TRUE(m1.Matches(false)); EXPECT_FALSE(m1.Matches(true)); // Tests the assignment operator. m1 = Eq(true); EXPECT_TRUE(m1.Matches(true)); EXPECT_FALSE(m1.Matches(false)); } // Tests that Matcher::DescribeTo() calls // MatcherInterface::DescribeTo(). TEST(MatcherTest, CanDescribeItself) { EXPECT_EQ("is an even number", Describe(Matcher(new EvenMatcherImpl))); } // Tests Matcher::MatchAndExplain(). TEST(MatcherTest, MatchAndExplain) { Matcher m = GreaterThan(0); StringMatchResultListener listener1; EXPECT_TRUE(m.MatchAndExplain(42, &listener1)); EXPECT_EQ("which is 42 more than 0", listener1.str()); StringMatchResultListener listener2; EXPECT_FALSE(m.MatchAndExplain(-9, &listener2)); EXPECT_EQ("which is 9 less than 0", listener2.str()); } // Tests that a C-string literal can be implicitly converted to a // Matcher or Matcher. TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) { Matcher m1 = "hi"; EXPECT_TRUE(m1.Matches("hi")); EXPECT_FALSE(m1.Matches("hello")); Matcher m2 = "hi"; EXPECT_TRUE(m2.Matches("hi")); EXPECT_FALSE(m2.Matches("hello")); } // Tests that a string object can be implicitly converted to a // Matcher or Matcher. TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) { Matcher m1 = std::string("hi"); EXPECT_TRUE(m1.Matches("hi")); EXPECT_FALSE(m1.Matches("hello")); Matcher m2 = std::string("hi"); EXPECT_TRUE(m2.Matches("hi")); EXPECT_FALSE(m2.Matches("hello")); } #if GTEST_INTERNAL_HAS_STRING_VIEW // Tests that a C-string literal can be implicitly converted to a // Matcher or Matcher. TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) { Matcher m1 = "cats"; EXPECT_TRUE(m1.Matches("cats")); EXPECT_FALSE(m1.Matches("dogs")); Matcher m2 = "cats"; EXPECT_TRUE(m2.Matches("cats")); EXPECT_FALSE(m2.Matches("dogs")); } // Tests that a std::string object can be implicitly converted to a // Matcher or Matcher. TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromString) { Matcher m1 = std::string("cats"); EXPECT_TRUE(m1.Matches("cats")); EXPECT_FALSE(m1.Matches("dogs")); Matcher m2 = std::string("cats"); EXPECT_TRUE(m2.Matches("cats")); EXPECT_FALSE(m2.Matches("dogs")); } // Tests that a StringView object can be implicitly converted to a // Matcher or Matcher. TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromStringView) { Matcher m1 = internal::StringView("cats"); EXPECT_TRUE(m1.Matches("cats")); EXPECT_FALSE(m1.Matches("dogs")); Matcher m2 = internal::StringView("cats"); EXPECT_TRUE(m2.Matches("cats")); EXPECT_FALSE(m2.Matches("dogs")); } #endif // GTEST_INTERNAL_HAS_STRING_VIEW // Tests that a std::reference_wrapper object can be implicitly // converted to a Matcher or Matcher via Eq(). TEST(StringMatcherTest, CanBeImplicitlyConstructedFromEqReferenceWrapperString) { std::string value = "cats"; Matcher m1 = Eq(std::ref(value)); EXPECT_TRUE(m1.Matches("cats")); EXPECT_FALSE(m1.Matches("dogs")); Matcher m2 = Eq(std::ref(value)); EXPECT_TRUE(m2.Matches("cats")); EXPECT_FALSE(m2.Matches("dogs")); } // Tests that MakeMatcher() constructs a Matcher from a // MatcherInterface* without requiring the user to explicitly // write the type. TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) { const MatcherInterface* dummy_impl = new EvenMatcherImpl; Matcher m = MakeMatcher(dummy_impl); } // Tests that MakePolymorphicMatcher() can construct a polymorphic // matcher from its implementation using the old API. const int g_bar = 1; class ReferencesBarOrIsZeroImpl { public: template bool MatchAndExplain(const T& x, MatchResultListener* /* listener */) const { const void* p = &x; return p == &g_bar || x == 0; } void DescribeTo(ostream* os) const { *os << "g_bar or zero"; } void DescribeNegationTo(ostream* os) const { *os << "doesn't reference g_bar and is not zero"; } }; // This function verifies that MakePolymorphicMatcher() returns a // PolymorphicMatcher where T is the argument's type. PolymorphicMatcher ReferencesBarOrIsZero() { return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl()); } TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) { // Using a polymorphic matcher to match a reference type. Matcher m1 = ReferencesBarOrIsZero(); EXPECT_TRUE(m1.Matches(0)); // Verifies that the identity of a by-reference argument is preserved. EXPECT_TRUE(m1.Matches(g_bar)); EXPECT_FALSE(m1.Matches(1)); EXPECT_EQ("g_bar or zero", Describe(m1)); // Using a polymorphic matcher to match a value type. Matcher m2 = ReferencesBarOrIsZero(); EXPECT_TRUE(m2.Matches(0.0)); EXPECT_FALSE(m2.Matches(0.1)); EXPECT_EQ("g_bar or zero", Describe(m2)); } // Tests implementing a polymorphic matcher using MatchAndExplain(). class PolymorphicIsEvenImpl { public: void DescribeTo(ostream* os) const { *os << "is even"; } void DescribeNegationTo(ostream* os) const { *os << "is odd"; } template bool MatchAndExplain(const T& x, MatchResultListener* listener) const { // Verifies that we can stream to the listener directly. *listener << "% " << 2; if (listener->stream() != nullptr) { // Verifies that we can stream to the listener's underlying stream // too. *listener->stream() << " == " << (x % 2); } return (x % 2) == 0; } }; PolymorphicMatcher PolymorphicIsEven() { return MakePolymorphicMatcher(PolymorphicIsEvenImpl()); } TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) { // Using PolymorphicIsEven() as a Matcher. const Matcher m1 = PolymorphicIsEven(); EXPECT_TRUE(m1.Matches(42)); EXPECT_FALSE(m1.Matches(43)); EXPECT_EQ("is even", Describe(m1)); const Matcher not_m1 = Not(m1); EXPECT_EQ("is odd", Describe(not_m1)); EXPECT_EQ("% 2 == 0", Explain(m1, 42)); // Using PolymorphicIsEven() as a Matcher. const Matcher m2 = PolymorphicIsEven(); EXPECT_TRUE(m2.Matches('\x42')); EXPECT_FALSE(m2.Matches('\x43')); EXPECT_EQ("is even", Describe(m2)); const Matcher not_m2 = Not(m2); EXPECT_EQ("is odd", Describe(not_m2)); EXPECT_EQ("% 2 == 0", Explain(m2, '\x42')); } // Tests that MatcherCast(m) works when m is a polymorphic matcher. TEST(MatcherCastTest, FromPolymorphicMatcher) { Matcher m = MatcherCast(Eq(5)); EXPECT_TRUE(m.Matches(5)); EXPECT_FALSE(m.Matches(6)); } // For testing casting matchers between compatible types. class IntValue { public: // An int can be statically (although not implicitly) cast to a // IntValue. explicit IntValue(int a_value) : value_(a_value) {} int value() const { return value_; } private: int value_; }; // For testing casting matchers between compatible types. bool IsPositiveIntValue(const IntValue& foo) { return foo.value() > 0; } // Tests that MatcherCast(m) works when m is a Matcher where T // can be statically converted to U. TEST(MatcherCastTest, FromCompatibleType) { Matcher m1 = Eq(2.0); Matcher m2 = MatcherCast(m1); EXPECT_TRUE(m2.Matches(2)); EXPECT_FALSE(m2.Matches(3)); Matcher m3 = Truly(IsPositiveIntValue); Matcher m4 = MatcherCast(m3); // In the following, the arguments 1 and 0 are statically converted // to IntValue objects, and then tested by the IsPositiveIntValue() // predicate. EXPECT_TRUE(m4.Matches(1)); EXPECT_FALSE(m4.Matches(0)); } // Tests that MatcherCast(m) works when m is a Matcher. TEST(MatcherCastTest, FromConstReferenceToNonReference) { Matcher m1 = Eq(0); Matcher m2 = MatcherCast(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that MatcherCast(m) works when m is a Matcher. TEST(MatcherCastTest, FromReferenceToNonReference) { Matcher m1 = Eq(0); Matcher m2 = MatcherCast(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that MatcherCast(m) works when m is a Matcher. TEST(MatcherCastTest, FromNonReferenceToConstReference) { Matcher m1 = Eq(0); Matcher m2 = MatcherCast(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that MatcherCast(m) works when m is a Matcher. TEST(MatcherCastTest, FromNonReferenceToReference) { Matcher m1 = Eq(0); Matcher m2 = MatcherCast(m1); int n = 0; EXPECT_TRUE(m2.Matches(n)); n = 1; EXPECT_FALSE(m2.Matches(n)); } // Tests that MatcherCast(m) works when m is a Matcher. TEST(MatcherCastTest, FromSameType) { Matcher m1 = Eq(0); Matcher m2 = MatcherCast(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } // Tests that MatcherCast(m) works when m is a value of the same type as the // value type of the Matcher. TEST(MatcherCastTest, FromAValue) { Matcher m = MatcherCast(42); EXPECT_TRUE(m.Matches(42)); EXPECT_FALSE(m.Matches(239)); } // Tests that MatcherCast(m) works when m is a value of the type implicitly // convertible to the value type of the Matcher. TEST(MatcherCastTest, FromAnImplicitlyConvertibleValue) { const int kExpected = 'c'; Matcher m = MatcherCast('c'); EXPECT_TRUE(m.Matches(kExpected)); EXPECT_FALSE(m.Matches(kExpected + 1)); } struct NonImplicitlyConstructibleTypeWithOperatorEq { friend bool operator==( const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */, int rhs) { return 42 == rhs; } friend bool operator==( int lhs, const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */) { return lhs == 42; } }; // Tests that MatcherCast(m) works when m is a neither a matcher nor // implicitly convertible to the value type of the Matcher, but the value type // of the matcher has operator==() overload accepting m. TEST(MatcherCastTest, NonImplicitlyConstructibleTypeWithOperatorEq) { Matcher m1 = MatcherCast(42); EXPECT_TRUE(m1.Matches(NonImplicitlyConstructibleTypeWithOperatorEq())); Matcher m2 = MatcherCast(239); EXPECT_FALSE(m2.Matches(NonImplicitlyConstructibleTypeWithOperatorEq())); // When updating the following lines please also change the comment to // namespace convertible_from_any. Matcher m3 = MatcherCast(NonImplicitlyConstructibleTypeWithOperatorEq()); EXPECT_TRUE(m3.Matches(42)); EXPECT_FALSE(m3.Matches(239)); } // ConvertibleFromAny does not work with MSVC. resulting in // error C2440: 'initializing': cannot convert from 'Eq' to 'M' // No constructor could take the source type, or constructor overload // resolution was ambiguous #if !defined _MSC_VER // The below ConvertibleFromAny struct is implicitly constructible from anything // and when in the same namespace can interact with other tests. In particular, // if it is in the same namespace as other tests and one removes // NonImplicitlyConstructibleTypeWithOperatorEq::operator==(int lhs, ...); // then the corresponding test still compiles (and it should not!) by implicitly // converting NonImplicitlyConstructibleTypeWithOperatorEq to ConvertibleFromAny // in m3.Matcher(). namespace convertible_from_any { // Implicitly convertible from any type. struct ConvertibleFromAny { ConvertibleFromAny(int a_value) : value(a_value) {} template ConvertibleFromAny(const T& /*a_value*/) : value(-1) { ADD_FAILURE() << "Conversion constructor called"; } int value; }; bool operator==(const ConvertibleFromAny& a, const ConvertibleFromAny& b) { return a.value == b.value; } ostream& operator<<(ostream& os, const ConvertibleFromAny& a) { return os << a.value; } TEST(MatcherCastTest, ConversionConstructorIsUsed) { Matcher m = MatcherCast(1); EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); } TEST(MatcherCastTest, FromConvertibleFromAny) { Matcher m = MatcherCast(Eq(ConvertibleFromAny(1))); EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); } } // namespace convertible_from_any #endif // !defined _MSC_VER struct IntReferenceWrapper { IntReferenceWrapper(const int& a_value) : value(&a_value) {} const int* value; }; bool operator==(const IntReferenceWrapper& a, const IntReferenceWrapper& b) { return a.value == b.value; } TEST(MatcherCastTest, ValueIsNotCopied) { int n = 42; Matcher m = MatcherCast(n); // Verify that the matcher holds a reference to n, not to its temporary copy. EXPECT_TRUE(m.Matches(n)); } class Base { public: virtual ~Base() {} Base() {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(Base); }; class Derived : public Base { public: Derived() : Base() {} int i; }; class OtherDerived : public Base {}; // Tests that SafeMatcherCast(m) works when m is a polymorphic matcher. TEST(SafeMatcherCastTest, FromPolymorphicMatcher) { Matcher m2 = SafeMatcherCast(Eq(32)); EXPECT_TRUE(m2.Matches(' ')); EXPECT_FALSE(m2.Matches('\n')); } // Tests that SafeMatcherCast(m) works when m is a Matcher where // T and U are arithmetic types and T can be losslessly converted to // U. TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) { Matcher m1 = DoubleEq(1.0); Matcher m2 = SafeMatcherCast(m1); EXPECT_TRUE(m2.Matches(1.0f)); EXPECT_FALSE(m2.Matches(2.0f)); Matcher m3 = SafeMatcherCast(TypedEq('a')); EXPECT_TRUE(m3.Matches('a')); EXPECT_FALSE(m3.Matches('b')); } // Tests that SafeMatcherCast(m) works when m is a Matcher where T and U // are pointers or references to a derived and a base class, correspondingly. TEST(SafeMatcherCastTest, FromBaseClass) { Derived d, d2; Matcher m1 = Eq(&d); Matcher m2 = SafeMatcherCast(m1); EXPECT_TRUE(m2.Matches(&d)); EXPECT_FALSE(m2.Matches(&d2)); Matcher m3 = Ref(d); Matcher m4 = SafeMatcherCast(m3); EXPECT_TRUE(m4.Matches(d)); EXPECT_FALSE(m4.Matches(d2)); } // Tests that SafeMatcherCast(m) works when m is a Matcher. TEST(SafeMatcherCastTest, FromConstReferenceToReference) { int n = 0; Matcher m1 = Ref(n); Matcher m2 = SafeMatcherCast(m1); int n1 = 0; EXPECT_TRUE(m2.Matches(n)); EXPECT_FALSE(m2.Matches(n1)); } // Tests that MatcherCast(m) works when m is a Matcher. TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) { Matcher> m1 = IsNull(); Matcher&> m2 = SafeMatcherCast&>(m1); EXPECT_TRUE(m2.Matches(std::unique_ptr())); EXPECT_FALSE(m2.Matches(std::unique_ptr(new int))); } // Tests that SafeMatcherCast(m) works when m is a Matcher. TEST(SafeMatcherCastTest, FromNonReferenceToReference) { Matcher m1 = Eq(0); Matcher m2 = SafeMatcherCast(m1); int n = 0; EXPECT_TRUE(m2.Matches(n)); n = 1; EXPECT_FALSE(m2.Matches(n)); } // Tests that SafeMatcherCast(m) works when m is a Matcher. TEST(SafeMatcherCastTest, FromSameType) { Matcher m1 = Eq(0); Matcher m2 = SafeMatcherCast(m1); EXPECT_TRUE(m2.Matches(0)); EXPECT_FALSE(m2.Matches(1)); } #if !defined _MSC_VER namespace convertible_from_any { TEST(SafeMatcherCastTest, ConversionConstructorIsUsed) { Matcher m = SafeMatcherCast(1); EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); } TEST(SafeMatcherCastTest, FromConvertibleFromAny) { Matcher m = SafeMatcherCast(Eq(ConvertibleFromAny(1))); EXPECT_TRUE(m.Matches(ConvertibleFromAny(1))); EXPECT_FALSE(m.Matches(ConvertibleFromAny(2))); } } // namespace convertible_from_any #endif // !defined _MSC_VER TEST(SafeMatcherCastTest, ValueIsNotCopied) { int n = 42; Matcher m = SafeMatcherCast(n); // Verify that the matcher holds a reference to n, not to its temporary copy. EXPECT_TRUE(m.Matches(n)); } TEST(ExpectThat, TakesLiterals) { EXPECT_THAT(1, 1); EXPECT_THAT(1.0, 1.0); EXPECT_THAT(std::string(), ""); } TEST(ExpectThat, TakesFunctions) { struct Helper { static void Func() {} }; void (*func)() = Helper::Func; EXPECT_THAT(func, Helper::Func); EXPECT_THAT(func, &Helper::Func); } // Tests that A() matches any value of type T. TEST(ATest, MatchesAnyValue) { // Tests a matcher for a value type. Matcher m1 = A(); EXPECT_TRUE(m1.Matches(91.43)); EXPECT_TRUE(m1.Matches(-15.32)); // Tests a matcher for a reference type. int a = 2; int b = -6; Matcher m2 = A(); EXPECT_TRUE(m2.Matches(a)); EXPECT_TRUE(m2.Matches(b)); } TEST(ATest, WorksForDerivedClass) { Base base; Derived derived; EXPECT_THAT(&base, A()); // This shouldn't compile: EXPECT_THAT(&base, A()); EXPECT_THAT(&derived, A()); EXPECT_THAT(&derived, A()); } // Tests that A() describes itself properly. TEST(ATest, CanDescribeSelf) { EXPECT_EQ("is anything", Describe(A())); } // Tests that An() matches any value of type T. TEST(AnTest, MatchesAnyValue) { // Tests a matcher for a value type. Matcher m1 = An(); EXPECT_TRUE(m1.Matches(9143)); EXPECT_TRUE(m1.Matches(-1532)); // Tests a matcher for a reference type. int a = 2; int b = -6; Matcher m2 = An(); EXPECT_TRUE(m2.Matches(a)); EXPECT_TRUE(m2.Matches(b)); } // Tests that An() describes itself properly. TEST(AnTest, CanDescribeSelf) { EXPECT_EQ("is anything", Describe(An())); } // Tests that _ can be used as a matcher for any type and matches any // value of that type. TEST(UnderscoreTest, MatchesAnyValue) { // Uses _ as a matcher for a value type. Matcher m1 = _; EXPECT_TRUE(m1.Matches(123)); EXPECT_TRUE(m1.Matches(-242)); // Uses _ as a matcher for a reference type. bool a = false; const bool b = true; Matcher m2 = _; EXPECT_TRUE(m2.Matches(a)); EXPECT_TRUE(m2.Matches(b)); } // Tests that _ describes itself properly. TEST(UnderscoreTest, CanDescribeSelf) { Matcher m = _; EXPECT_EQ("is anything", Describe(m)); } // Tests that Eq(x) matches any value equal to x. TEST(EqTest, MatchesEqualValue) { // 2 C-strings with same content but different addresses. const char a1[] = "hi"; const char a2[] = "hi"; Matcher m1 = Eq(a1); EXPECT_TRUE(m1.Matches(a1)); EXPECT_FALSE(m1.Matches(a2)); } // Tests that Eq(v) describes itself properly. class Unprintable { public: Unprintable() : c_('a') {} bool operator==(const Unprintable& /* rhs */) const { return true; } // -Wunused-private-field: dummy accessor for `c_`. char dummy_c() { return c_; } private: char c_; }; TEST(EqTest, CanDescribeSelf) { Matcher m = Eq(Unprintable()); EXPECT_EQ("is equal to 1-byte object <61>", Describe(m)); } // Tests that Eq(v) can be used to match any type that supports // comparing with type T, where T is v's type. TEST(EqTest, IsPolymorphic) { Matcher m1 = Eq(1); EXPECT_TRUE(m1.Matches(1)); EXPECT_FALSE(m1.Matches(2)); Matcher m2 = Eq(1); EXPECT_TRUE(m2.Matches('\1')); EXPECT_FALSE(m2.Matches('a')); } // Tests that TypedEq(v) matches values of type T that's equal to v. TEST(TypedEqTest, ChecksEqualityForGivenType) { Matcher m1 = TypedEq('a'); EXPECT_TRUE(m1.Matches('a')); EXPECT_FALSE(m1.Matches('b')); Matcher m2 = TypedEq(6); EXPECT_TRUE(m2.Matches(6)); EXPECT_FALSE(m2.Matches(7)); } // Tests that TypedEq(v) describes itself properly. TEST(TypedEqTest, CanDescribeSelf) { EXPECT_EQ("is equal to 2", Describe(TypedEq(2))); } // Tests that TypedEq(v) has type Matcher. // Type::IsTypeOf(v) compiles if and only if the type of value v is T, where // T is a "bare" type (i.e. not in the form of const U or U&). If v's type is // not T, the compiler will generate a message about "undefined reference". template struct Type { static bool IsTypeOf(const T& /* v */) { return true; } template static void IsTypeOf(T2 v); }; TEST(TypedEqTest, HasSpecifiedType) { // Verfies that the type of TypedEq(v) is Matcher. Type >::IsTypeOf(TypedEq(5)); Type >::IsTypeOf(TypedEq(5)); } // Tests that Ge(v) matches anything >= v. TEST(GeTest, ImplementsGreaterThanOrEqual) { Matcher m1 = Ge(0); EXPECT_TRUE(m1.Matches(1)); EXPECT_TRUE(m1.Matches(0)); EXPECT_FALSE(m1.Matches(-1)); } // Tests that Ge(v) describes itself properly. TEST(GeTest, CanDescribeSelf) { Matcher m = Ge(5); EXPECT_EQ("is >= 5", Describe(m)); } // Tests that Gt(v) matches anything > v. TEST(GtTest, ImplementsGreaterThan) { Matcher m1 = Gt(0); EXPECT_TRUE(m1.Matches(1.0)); EXPECT_FALSE(m1.Matches(0.0)); EXPECT_FALSE(m1.Matches(-1.0)); } // Tests that Gt(v) describes itself properly. TEST(GtTest, CanDescribeSelf) { Matcher m = Gt(5); EXPECT_EQ("is > 5", Describe(m)); } // Tests that Le(v) matches anything <= v. TEST(LeTest, ImplementsLessThanOrEqual) { Matcher m1 = Le('b'); EXPECT_TRUE(m1.Matches('a')); EXPECT_TRUE(m1.Matches('b')); EXPECT_FALSE(m1.Matches('c')); } // Tests that Le(v) describes itself properly. TEST(LeTest, CanDescribeSelf) { Matcher m = Le(5); EXPECT_EQ("is <= 5", Describe(m)); } // Tests that Lt(v) matches anything < v. TEST(LtTest, ImplementsLessThan) { Matcher m1 = Lt("Hello"); EXPECT_TRUE(m1.Matches("Abc")); EXPECT_FALSE(m1.Matches("Hello")); EXPECT_FALSE(m1.Matches("Hello, world!")); } // Tests that Lt(v) describes itself properly. TEST(LtTest, CanDescribeSelf) { Matcher m = Lt(5); EXPECT_EQ("is < 5", Describe(m)); } // Tests that Ne(v) matches anything != v. TEST(NeTest, ImplementsNotEqual) { Matcher m1 = Ne(0); EXPECT_TRUE(m1.Matches(1)); EXPECT_TRUE(m1.Matches(-1)); EXPECT_FALSE(m1.Matches(0)); } // Tests that Ne(v) describes itself properly. TEST(NeTest, CanDescribeSelf) { Matcher m = Ne(5); EXPECT_EQ("isn't equal to 5", Describe(m)); } class MoveOnly { public: explicit MoveOnly(int i) : i_(i) {} MoveOnly(const MoveOnly&) = delete; MoveOnly(MoveOnly&&) = default; MoveOnly& operator=(const MoveOnly&) = delete; MoveOnly& operator=(MoveOnly&&) = default; bool operator==(const MoveOnly& other) const { return i_ == other.i_; } bool operator!=(const MoveOnly& other) const { return i_ != other.i_; } bool operator<(const MoveOnly& other) const { return i_ < other.i_; } bool operator<=(const MoveOnly& other) const { return i_ <= other.i_; } bool operator>(const MoveOnly& other) const { return i_ > other.i_; } bool operator>=(const MoveOnly& other) const { return i_ >= other.i_; } private: int i_; }; struct MoveHelper { MOCK_METHOD1(Call, void(MoveOnly)); }; // Disable this test in VS 2015 (version 14), where it fails when SEH is enabled #if defined(_MSC_VER) && (_MSC_VER < 1910) TEST(ComparisonBaseTest, DISABLED_WorksWithMoveOnly) { #else TEST(ComparisonBaseTest, WorksWithMoveOnly) { #endif MoveOnly m{0}; MoveHelper helper; EXPECT_CALL(helper, Call(Eq(ByRef(m)))); helper.Call(MoveOnly(0)); EXPECT_CALL(helper, Call(Ne(ByRef(m)))); helper.Call(MoveOnly(1)); EXPECT_CALL(helper, Call(Le(ByRef(m)))); helper.Call(MoveOnly(0)); EXPECT_CALL(helper, Call(Lt(ByRef(m)))); helper.Call(MoveOnly(-1)); EXPECT_CALL(helper, Call(Ge(ByRef(m)))); helper.Call(MoveOnly(0)); EXPECT_CALL(helper, Call(Gt(ByRef(m)))); helper.Call(MoveOnly(1)); } // Tests that IsNull() matches any NULL pointer of any type. TEST(IsNullTest, MatchesNullPointer) { Matcher m1 = IsNull(); int* p1 = nullptr; int n = 0; EXPECT_TRUE(m1.Matches(p1)); EXPECT_FALSE(m1.Matches(&n)); Matcher m2 = IsNull(); const char* p2 = nullptr; EXPECT_TRUE(m2.Matches(p2)); EXPECT_FALSE(m2.Matches("hi")); Matcher m3 = IsNull(); void* p3 = nullptr; EXPECT_TRUE(m3.Matches(p3)); EXPECT_FALSE(m3.Matches(reinterpret_cast(0xbeef))); } TEST(IsNullTest, StdFunction) { const Matcher> m = IsNull(); EXPECT_TRUE(m.Matches(std::function())); EXPECT_FALSE(m.Matches([]{})); } // Tests that IsNull() describes itself properly. TEST(IsNullTest, CanDescribeSelf) { Matcher m = IsNull(); EXPECT_EQ("is NULL", Describe(m)); EXPECT_EQ("isn't NULL", DescribeNegation(m)); } // Tests that NotNull() matches any non-NULL pointer of any type. TEST(NotNullTest, MatchesNonNullPointer) { Matcher m1 = NotNull(); int* p1 = nullptr; int n = 0; EXPECT_FALSE(m1.Matches(p1)); EXPECT_TRUE(m1.Matches(&n)); Matcher m2 = NotNull(); const char* p2 = nullptr; EXPECT_FALSE(m2.Matches(p2)); EXPECT_TRUE(m2.Matches("hi")); } TEST(NotNullTest, LinkedPtr) { const Matcher> m = NotNull(); const std::shared_ptr null_p; const std::shared_ptr non_null_p(new int); EXPECT_FALSE(m.Matches(null_p)); EXPECT_TRUE(m.Matches(non_null_p)); } TEST(NotNullTest, ReferenceToConstLinkedPtr) { const Matcher&> m = NotNull(); const std::shared_ptr null_p; const std::shared_ptr non_null_p(new double); EXPECT_FALSE(m.Matches(null_p)); EXPECT_TRUE(m.Matches(non_null_p)); } TEST(NotNullTest, StdFunction) { const Matcher> m = NotNull(); EXPECT_TRUE(m.Matches([]{})); EXPECT_FALSE(m.Matches(std::function())); } // Tests that NotNull() describes itself properly. TEST(NotNullTest, CanDescribeSelf) { Matcher m = NotNull(); EXPECT_EQ("isn't NULL", Describe(m)); } // Tests that Ref(variable) matches an argument that references // 'variable'. TEST(RefTest, MatchesSameVariable) { int a = 0; int b = 0; Matcher m = Ref(a); EXPECT_TRUE(m.Matches(a)); EXPECT_FALSE(m.Matches(b)); } // Tests that Ref(variable) describes itself properly. TEST(RefTest, CanDescribeSelf) { int n = 5; Matcher m = Ref(n); stringstream ss; ss << "references the variable @" << &n << " 5"; EXPECT_EQ(ss.str(), Describe(m)); } // Test that Ref(non_const_varialbe) can be used as a matcher for a // const reference. TEST(RefTest, CanBeUsedAsMatcherForConstReference) { int a = 0; int b = 0; Matcher m = Ref(a); EXPECT_TRUE(m.Matches(a)); EXPECT_FALSE(m.Matches(b)); } // Tests that Ref(variable) is covariant, i.e. Ref(derived) can be // used wherever Ref(base) can be used (Ref(derived) is a sub-type // of Ref(base), but not vice versa. TEST(RefTest, IsCovariant) { Base base, base2; Derived derived; Matcher m1 = Ref(base); EXPECT_TRUE(m1.Matches(base)); EXPECT_FALSE(m1.Matches(base2)); EXPECT_FALSE(m1.Matches(derived)); m1 = Ref(derived); EXPECT_TRUE(m1.Matches(derived)); EXPECT_FALSE(m1.Matches(base)); EXPECT_FALSE(m1.Matches(base2)); } TEST(RefTest, ExplainsResult) { int n = 0; EXPECT_THAT(Explain(Matcher(Ref(n)), n), StartsWith("which is located @")); int m = 0; EXPECT_THAT(Explain(Matcher(Ref(n)), m), StartsWith("which is located @")); } // Tests string comparison matchers. template std::string FromStringLike(internal::StringLike str) { return std::string(str); } TEST(StringLike, TestConversions) { EXPECT_EQ("foo", FromStringLike("foo")); EXPECT_EQ("foo", FromStringLike(std::string("foo"))); #if GTEST_INTERNAL_HAS_STRING_VIEW EXPECT_EQ("foo", FromStringLike(internal::StringView("foo"))); #endif // GTEST_INTERNAL_HAS_STRING_VIEW // Non deducible types. EXPECT_EQ("", FromStringLike({})); EXPECT_EQ("foo", FromStringLike({'f', 'o', 'o'})); const char buf[] = "foo"; EXPECT_EQ("foo", FromStringLike({buf, buf + 3})); } TEST(StrEqTest, MatchesEqualString) { Matcher m = StrEq(std::string("Hello")); EXPECT_TRUE(m.Matches("Hello")); EXPECT_FALSE(m.Matches("hello")); EXPECT_FALSE(m.Matches(nullptr)); Matcher m2 = StrEq("Hello"); EXPECT_TRUE(m2.Matches("Hello")); EXPECT_FALSE(m2.Matches("Hi")); #if GTEST_INTERNAL_HAS_STRING_VIEW Matcher m3 = StrEq(internal::StringView("Hello")); EXPECT_TRUE(m3.Matches(internal::StringView("Hello"))); EXPECT_FALSE(m3.Matches(internal::StringView("hello"))); EXPECT_FALSE(m3.Matches(internal::StringView())); Matcher m_empty = StrEq(""); EXPECT_TRUE(m_empty.Matches(internal::StringView(""))); EXPECT_TRUE(m_empty.Matches(internal::StringView())); EXPECT_FALSE(m_empty.Matches(internal::StringView("hello"))); #endif // GTEST_INTERNAL_HAS_STRING_VIEW } TEST(StrEqTest, CanDescribeSelf) { Matcher m = StrEq("Hi-\'\"?\\\a\b\f\n\r\t\v\xD3"); EXPECT_EQ("is equal to \"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"", Describe(m)); std::string str("01204500800"); str[3] = '\0'; Matcher m2 = StrEq(str); EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2)); str[0] = str[6] = str[7] = str[9] = str[10] = '\0'; Matcher m3 = StrEq(str); EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3)); } TEST(StrNeTest, MatchesUnequalString) { Matcher m = StrNe("Hello"); EXPECT_TRUE(m.Matches("")); EXPECT_TRUE(m.Matches(nullptr)); EXPECT_FALSE(m.Matches("Hello")); Matcher m2 = StrNe(std::string("Hello")); EXPECT_TRUE(m2.Matches("hello")); EXPECT_FALSE(m2.Matches("Hello")); #if GTEST_INTERNAL_HAS_STRING_VIEW Matcher m3 = StrNe(internal::StringView("Hello")); EXPECT_TRUE(m3.Matches(internal::StringView(""))); EXPECT_TRUE(m3.Matches(internal::StringView())); EXPECT_FALSE(m3.Matches(internal::StringView("Hello"))); #endif // GTEST_INTERNAL_HAS_STRING_VIEW } TEST(StrNeTest, CanDescribeSelf) { Matcher m = StrNe("Hi"); EXPECT_EQ("isn't equal to \"Hi\"", Describe(m)); } TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) { Matcher m = StrCaseEq(std::string("Hello")); EXPECT_TRUE(m.Matches("Hello")); EXPECT_TRUE(m.Matches("hello")); EXPECT_FALSE(m.Matches("Hi")); EXPECT_FALSE(m.Matches(nullptr)); Matcher m2 = StrCaseEq("Hello"); EXPECT_TRUE(m2.Matches("hello")); EXPECT_FALSE(m2.Matches("Hi")); #if GTEST_INTERNAL_HAS_STRING_VIEW Matcher m3 = StrCaseEq(internal::StringView("Hello")); EXPECT_TRUE(m3.Matches(internal::StringView("Hello"))); EXPECT_TRUE(m3.Matches(internal::StringView("hello"))); EXPECT_FALSE(m3.Matches(internal::StringView("Hi"))); EXPECT_FALSE(m3.Matches(internal::StringView())); #endif // GTEST_INTERNAL_HAS_STRING_VIEW } TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { std::string str1("oabocdooeoo"); std::string str2("OABOCDOOEOO"); Matcher m0 = StrCaseEq(str1); EXPECT_FALSE(m0.Matches(str2 + std::string(1, '\0'))); str1[3] = str2[3] = '\0'; Matcher m1 = StrCaseEq(str1); EXPECT_TRUE(m1.Matches(str2)); str1[0] = str1[6] = str1[7] = str1[10] = '\0'; str2[0] = str2[6] = str2[7] = str2[10] = '\0'; Matcher m2 = StrCaseEq(str1); str1[9] = str2[9] = '\0'; EXPECT_FALSE(m2.Matches(str2)); Matcher m3 = StrCaseEq(str1); EXPECT_TRUE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(str2 + "x")); str2.append(1, '\0'); EXPECT_FALSE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(std::string(str2, 0, 9))); } TEST(StrCaseEqTest, CanDescribeSelf) { Matcher m = StrCaseEq("Hi"); EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m)); } TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) { Matcher m = StrCaseNe("Hello"); EXPECT_TRUE(m.Matches("Hi")); EXPECT_TRUE(m.Matches(nullptr)); EXPECT_FALSE(m.Matches("Hello")); EXPECT_FALSE(m.Matches("hello")); Matcher m2 = StrCaseNe(std::string("Hello")); EXPECT_TRUE(m2.Matches("")); EXPECT_FALSE(m2.Matches("Hello")); #if GTEST_INTERNAL_HAS_STRING_VIEW Matcher m3 = StrCaseNe(internal::StringView("Hello")); EXPECT_TRUE(m3.Matches(internal::StringView("Hi"))); EXPECT_TRUE(m3.Matches(internal::StringView())); EXPECT_FALSE(m3.Matches(internal::StringView("Hello"))); EXPECT_FALSE(m3.Matches(internal::StringView("hello"))); #endif // GTEST_INTERNAL_HAS_STRING_VIEW } TEST(StrCaseNeTest, CanDescribeSelf) { Matcher m = StrCaseNe("Hi"); EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m)); } // Tests that HasSubstr() works for matching string-typed values. TEST(HasSubstrTest, WorksForStringClasses) { const Matcher m1 = HasSubstr("foo"); EXPECT_TRUE(m1.Matches(std::string("I love food."))); EXPECT_FALSE(m1.Matches(std::string("tofo"))); const Matcher m2 = HasSubstr("foo"); EXPECT_TRUE(m2.Matches(std::string("I love food."))); EXPECT_FALSE(m2.Matches(std::string("tofo"))); const Matcher m_empty = HasSubstr(""); EXPECT_TRUE(m_empty.Matches(std::string())); EXPECT_TRUE(m_empty.Matches(std::string("not empty"))); } // Tests that HasSubstr() works for matching C-string-typed values. TEST(HasSubstrTest, WorksForCStrings) { const Matcher m1 = HasSubstr("foo"); EXPECT_TRUE(m1.Matches(const_cast("I love food."))); EXPECT_FALSE(m1.Matches(const_cast("tofo"))); EXPECT_FALSE(m1.Matches(nullptr)); const Matcher m2 = HasSubstr("foo"); EXPECT_TRUE(m2.Matches("I love food.")); EXPECT_FALSE(m2.Matches("tofo")); EXPECT_FALSE(m2.Matches(nullptr)); const Matcher m_empty = HasSubstr(""); EXPECT_TRUE(m_empty.Matches("not empty")); EXPECT_TRUE(m_empty.Matches("")); EXPECT_FALSE(m_empty.Matches(nullptr)); } #if GTEST_INTERNAL_HAS_STRING_VIEW // Tests that HasSubstr() works for matching StringView-typed values. TEST(HasSubstrTest, WorksForStringViewClasses) { const Matcher m1 = HasSubstr(internal::StringView("foo")); EXPECT_TRUE(m1.Matches(internal::StringView("I love food."))); EXPECT_FALSE(m1.Matches(internal::StringView("tofo"))); EXPECT_FALSE(m1.Matches(internal::StringView())); const Matcher m2 = HasSubstr("foo"); EXPECT_TRUE(m2.Matches(internal::StringView("I love food."))); EXPECT_FALSE(m2.Matches(internal::StringView("tofo"))); EXPECT_FALSE(m2.Matches(internal::StringView())); const Matcher m3 = HasSubstr(""); EXPECT_TRUE(m3.Matches(internal::StringView("foo"))); EXPECT_TRUE(m3.Matches(internal::StringView(""))); EXPECT_TRUE(m3.Matches(internal::StringView())); } #endif // GTEST_INTERNAL_HAS_STRING_VIEW // Tests that HasSubstr(s) describes itself properly. TEST(HasSubstrTest, CanDescribeSelf) { Matcher m = HasSubstr("foo\n\""); EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m)); } TEST(KeyTest, CanDescribeSelf) { Matcher&> m = Key("foo"); EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m)); EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m)); } TEST(KeyTest, ExplainsResult) { Matcher > m = Key(GreaterThan(10)); EXPECT_EQ("whose first field is a value which is 5 less than 10", Explain(m, make_pair(5, true))); EXPECT_EQ("whose first field is a value which is 5 more than 10", Explain(m, make_pair(15, true))); } TEST(KeyTest, MatchesCorrectly) { pair p(25, "foo"); EXPECT_THAT(p, Key(25)); EXPECT_THAT(p, Not(Key(42))); EXPECT_THAT(p, Key(Ge(20))); EXPECT_THAT(p, Not(Key(Lt(25)))); } TEST(KeyTest, WorksWithMoveOnly) { pair, std::unique_ptr> p; EXPECT_THAT(p, Key(Eq(nullptr))); } template struct Tag {}; struct PairWithGet { int member_1; std::string member_2; using first_type = int; using second_type = std::string; const int& GetImpl(Tag<0>) const { return member_1; } const std::string& GetImpl(Tag<1>) const { return member_2; } }; template auto get(const PairWithGet& value) -> decltype(value.GetImpl(Tag())) { return value.GetImpl(Tag()); } TEST(PairTest, MatchesPairWithGetCorrectly) { PairWithGet p{25, "foo"}; EXPECT_THAT(p, Key(25)); EXPECT_THAT(p, Not(Key(42))); EXPECT_THAT(p, Key(Ge(20))); EXPECT_THAT(p, Not(Key(Lt(25)))); std::vector v = {{11, "Foo"}, {29, "gMockIsBestMock"}}; EXPECT_THAT(v, Contains(Key(29))); } TEST(KeyTest, SafelyCastsInnerMatcher) { Matcher is_positive = Gt(0); Matcher is_negative = Lt(0); pair p('a', true); EXPECT_THAT(p, Key(is_positive)); EXPECT_THAT(p, Not(Key(is_negative))); } TEST(KeyTest, InsideContainsUsingMap) { map container; container.insert(make_pair(1, 'a')); container.insert(make_pair(2, 'b')); container.insert(make_pair(4, 'c')); EXPECT_THAT(container, Contains(Key(1))); EXPECT_THAT(container, Not(Contains(Key(3)))); } TEST(KeyTest, InsideContainsUsingMultimap) { multimap container; container.insert(make_pair(1, 'a')); container.insert(make_pair(2, 'b')); container.insert(make_pair(4, 'c')); EXPECT_THAT(container, Not(Contains(Key(25)))); container.insert(make_pair(25, 'd')); EXPECT_THAT(container, Contains(Key(25))); container.insert(make_pair(25, 'e')); EXPECT_THAT(container, Contains(Key(25))); EXPECT_THAT(container, Contains(Key(1))); EXPECT_THAT(container, Not(Contains(Key(3)))); } TEST(PairTest, Typing) { // Test verifies the following type conversions can be compiled. Matcher&> m1 = Pair("foo", 42); Matcher > m2 = Pair("foo", 42); Matcher > m3 = Pair("foo", 42); Matcher > m4 = Pair(25, "42"); Matcher > m5 = Pair("25", 42); } TEST(PairTest, CanDescribeSelf) { Matcher&> m1 = Pair("foo", 42); EXPECT_EQ("has a first field that is equal to \"foo\"" ", and has a second field that is equal to 42", Describe(m1)); EXPECT_EQ("has a first field that isn't equal to \"foo\"" ", or has a second field that isn't equal to 42", DescribeNegation(m1)); // Double and triple negation (1 or 2 times not and description of negation). Matcher&> m2 = Not(Pair(Not(13), 42)); EXPECT_EQ("has a first field that isn't equal to 13" ", and has a second field that is equal to 42", DescribeNegation(m2)); } TEST(PairTest, CanExplainMatchResultTo) { // If neither field matches, Pair() should explain about the first // field. const Matcher > m = Pair(GreaterThan(0), GreaterThan(0)); EXPECT_EQ("whose first field does not match, which is 1 less than 0", Explain(m, make_pair(-1, -2))); // If the first field matches but the second doesn't, Pair() should // explain about the second field. EXPECT_EQ("whose second field does not match, which is 2 less than 0", Explain(m, make_pair(1, -2))); // If the first field doesn't match but the second does, Pair() // should explain about the first field. EXPECT_EQ("whose first field does not match, which is 1 less than 0", Explain(m, make_pair(-1, 2))); // If both fields match, Pair() should explain about them both. EXPECT_EQ("whose both fields match, where the first field is a value " "which is 1 more than 0, and the second field is a value " "which is 2 more than 0", Explain(m, make_pair(1, 2))); // If only the first match has an explanation, only this explanation should // be printed. const Matcher > explain_first = Pair(GreaterThan(0), 0); EXPECT_EQ("whose both fields match, where the first field is a value " "which is 1 more than 0", Explain(explain_first, make_pair(1, 0))); // If only the second match has an explanation, only this explanation should // be printed. const Matcher > explain_second = Pair(0, GreaterThan(0)); EXPECT_EQ("whose both fields match, where the second field is a value " "which is 1 more than 0", Explain(explain_second, make_pair(0, 1))); } TEST(PairTest, MatchesCorrectly) { pair p(25, "foo"); // Both fields match. EXPECT_THAT(p, Pair(25, "foo")); EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o"))); // 'first' doesnt' match, but 'second' matches. EXPECT_THAT(p, Not(Pair(42, "foo"))); EXPECT_THAT(p, Not(Pair(Lt(25), "foo"))); // 'first' matches, but 'second' doesn't match. EXPECT_THAT(p, Not(Pair(25, "bar"))); EXPECT_THAT(p, Not(Pair(25, Not("foo")))); // Neither field matches. EXPECT_THAT(p, Not(Pair(13, "bar"))); EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a")))); } TEST(PairTest, WorksWithMoveOnly) { pair, std::unique_ptr> p; p.second.reset(new int(7)); EXPECT_THAT(p, Pair(Eq(nullptr), Ne(nullptr))); } TEST(PairTest, SafelyCastsInnerMatchers) { Matcher is_positive = Gt(0); Matcher is_negative = Lt(0); pair p('a', true); EXPECT_THAT(p, Pair(is_positive, _)); EXPECT_THAT(p, Not(Pair(is_negative, _))); EXPECT_THAT(p, Pair(_, is_positive)); EXPECT_THAT(p, Not(Pair(_, is_negative))); } TEST(PairTest, InsideContainsUsingMap) { map container; container.insert(make_pair(1, 'a')); container.insert(make_pair(2, 'b')); container.insert(make_pair(4, 'c')); EXPECT_THAT(container, Contains(Pair(1, 'a'))); EXPECT_THAT(container, Contains(Pair(1, _))); EXPECT_THAT(container, Contains(Pair(_, 'a'))); EXPECT_THAT(container, Not(Contains(Pair(3, _)))); } TEST(FieldsAreTest, MatchesCorrectly) { std::tuple p(25, "foo", .5); // All fields match. EXPECT_THAT(p, FieldsAre(25, "foo", .5)); EXPECT_THAT(p, FieldsAre(Ge(20), HasSubstr("o"), DoubleEq(.5))); // Some don't match. EXPECT_THAT(p, Not(FieldsAre(26, "foo", .5))); EXPECT_THAT(p, Not(FieldsAre(25, "fo", .5))); EXPECT_THAT(p, Not(FieldsAre(25, "foo", .6))); } TEST(FieldsAreTest, CanDescribeSelf) { Matcher&> m1 = FieldsAre("foo", 42); EXPECT_EQ( "has field #0 that is equal to \"foo\"" ", and has field #1 that is equal to 42", Describe(m1)); EXPECT_EQ( "has field #0 that isn't equal to \"foo\"" ", or has field #1 that isn't equal to 42", DescribeNegation(m1)); } TEST(FieldsAreTest, CanExplainMatchResultTo) { // The first one that fails is the one that gives the error. Matcher> m = FieldsAre(GreaterThan(0), GreaterThan(0), GreaterThan(0)); EXPECT_EQ("whose field #0 does not match, which is 1 less than 0", Explain(m, std::make_tuple(-1, -2, -3))); EXPECT_EQ("whose field #1 does not match, which is 2 less than 0", Explain(m, std::make_tuple(1, -2, -3))); EXPECT_EQ("whose field #2 does not match, which is 3 less than 0", Explain(m, std::make_tuple(1, 2, -3))); // If they all match, we get a long explanation of success. EXPECT_EQ( "whose all elements match, " "where field #0 is a value which is 1 more than 0" ", and field #1 is a value which is 2 more than 0" ", and field #2 is a value which is 3 more than 0", Explain(m, std::make_tuple(1, 2, 3))); // Only print those that have an explanation. m = FieldsAre(GreaterThan(0), 0, GreaterThan(0)); EXPECT_EQ( "whose all elements match, " "where field #0 is a value which is 1 more than 0" ", and field #2 is a value which is 3 more than 0", Explain(m, std::make_tuple(1, 0, 3))); // If only one has an explanation, then print that one. m = FieldsAre(0, GreaterThan(0), 0); EXPECT_EQ( "whose all elements match, " "where field #1 is a value which is 1 more than 0", Explain(m, std::make_tuple(0, 1, 0))); } #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606 TEST(FieldsAreTest, StructuredBindings) { // testing::FieldsAre can also match aggregates and such with C++17 and up. struct MyType { int i; std::string str; }; EXPECT_THAT((MyType{17, "foo"}), FieldsAre(Eq(17), HasSubstr("oo"))); // Test all the supported arities. struct MyVarType1 { int a; }; EXPECT_THAT(MyVarType1{}, FieldsAre(0)); struct MyVarType2 { int a, b; }; EXPECT_THAT(MyVarType2{}, FieldsAre(0, 0)); struct MyVarType3 { int a, b, c; }; EXPECT_THAT(MyVarType3{}, FieldsAre(0, 0, 0)); struct MyVarType4 { int a, b, c, d; }; EXPECT_THAT(MyVarType4{}, FieldsAre(0, 0, 0, 0)); struct MyVarType5 { int a, b, c, d, e; }; EXPECT_THAT(MyVarType5{}, FieldsAre(0, 0, 0, 0, 0)); struct MyVarType6 { int a, b, c, d, e, f; }; EXPECT_THAT(MyVarType6{}, FieldsAre(0, 0, 0, 0, 0, 0)); struct MyVarType7 { int a, b, c, d, e, f, g; }; EXPECT_THAT(MyVarType7{}, FieldsAre(0, 0, 0, 0, 0, 0, 0)); struct MyVarType8 { int a, b, c, d, e, f, g, h; }; EXPECT_THAT(MyVarType8{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0)); struct MyVarType9 { int a, b, c, d, e, f, g, h, i; }; EXPECT_THAT(MyVarType9{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0)); struct MyVarType10 { int a, b, c, d, e, f, g, h, i, j; }; EXPECT_THAT(MyVarType10{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); struct MyVarType11 { int a, b, c, d, e, f, g, h, i, j, k; }; EXPECT_THAT(MyVarType11{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); struct MyVarType12 { int a, b, c, d, e, f, g, h, i, j, k, l; }; EXPECT_THAT(MyVarType12{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); struct MyVarType13 { int a, b, c, d, e, f, g, h, i, j, k, l, m; }; EXPECT_THAT(MyVarType13{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); struct MyVarType14 { int a, b, c, d, e, f, g, h, i, j, k, l, m, n; }; EXPECT_THAT(MyVarType14{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); struct MyVarType15 { int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o; }; EXPECT_THAT(MyVarType15{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); struct MyVarType16 { int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p; }; EXPECT_THAT(MyVarType16{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)); } #endif TEST(ContainsTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(Contains(Pointee(2)))); helper.Call(MakeUniquePtrs({1, 2})); } TEST(PairTest, UseGetInsteadOfMembers) { PairWithGet pair{7, "ABC"}; EXPECT_THAT(pair, Pair(7, "ABC")); EXPECT_THAT(pair, Pair(Ge(7), HasSubstr("AB"))); EXPECT_THAT(pair, Not(Pair(Lt(7), "ABC"))); std::vector v = {{11, "Foo"}, {29, "gMockIsBestMock"}}; EXPECT_THAT(v, ElementsAre(Pair(11, std::string("Foo")), Pair(Ge(10), Not("")))); } // Tests StartsWith(s). TEST(StartsWithTest, MatchesStringWithGivenPrefix) { const Matcher m1 = StartsWith(std::string("")); EXPECT_TRUE(m1.Matches("Hi")); EXPECT_TRUE(m1.Matches("")); EXPECT_FALSE(m1.Matches(nullptr)); const Matcher m2 = StartsWith("Hi"); EXPECT_TRUE(m2.Matches("Hi")); EXPECT_TRUE(m2.Matches("Hi Hi!")); EXPECT_TRUE(m2.Matches("High")); EXPECT_FALSE(m2.Matches("H")); EXPECT_FALSE(m2.Matches(" Hi")); #if GTEST_INTERNAL_HAS_STRING_VIEW const Matcher m_empty = StartsWith(internal::StringView("")); EXPECT_TRUE(m_empty.Matches(internal::StringView())); EXPECT_TRUE(m_empty.Matches(internal::StringView(""))); EXPECT_TRUE(m_empty.Matches(internal::StringView("not empty"))); #endif // GTEST_INTERNAL_HAS_STRING_VIEW } TEST(StartsWithTest, CanDescribeSelf) { Matcher m = StartsWith("Hi"); EXPECT_EQ("starts with \"Hi\"", Describe(m)); } // Tests EndsWith(s). TEST(EndsWithTest, MatchesStringWithGivenSuffix) { const Matcher m1 = EndsWith(""); EXPECT_TRUE(m1.Matches("Hi")); EXPECT_TRUE(m1.Matches("")); EXPECT_FALSE(m1.Matches(nullptr)); const Matcher m2 = EndsWith(std::string("Hi")); EXPECT_TRUE(m2.Matches("Hi")); EXPECT_TRUE(m2.Matches("Wow Hi Hi")); EXPECT_TRUE(m2.Matches("Super Hi")); EXPECT_FALSE(m2.Matches("i")); EXPECT_FALSE(m2.Matches("Hi ")); #if GTEST_INTERNAL_HAS_STRING_VIEW const Matcher m4 = EndsWith(internal::StringView("")); EXPECT_TRUE(m4.Matches("Hi")); EXPECT_TRUE(m4.Matches("")); EXPECT_TRUE(m4.Matches(internal::StringView())); EXPECT_TRUE(m4.Matches(internal::StringView(""))); #endif // GTEST_INTERNAL_HAS_STRING_VIEW } TEST(EndsWithTest, CanDescribeSelf) { Matcher m = EndsWith("Hi"); EXPECT_EQ("ends with \"Hi\"", Describe(m)); } // Tests WhenBase64Unescaped. TEST(WhenBase64UnescapedTest, MatchesUnescapedBase64Strings) { const Matcher m1 = WhenBase64Unescaped(EndsWith("!")); EXPECT_FALSE(m1.Matches("invalid base64")); EXPECT_FALSE(m1.Matches("aGVsbG8gd29ybGQ=")); // hello world EXPECT_TRUE(m1.Matches("aGVsbG8gd29ybGQh")); // hello world! const Matcher m2 = WhenBase64Unescaped(EndsWith("!")); EXPECT_FALSE(m2.Matches("invalid base64")); EXPECT_FALSE(m2.Matches("aGVsbG8gd29ybGQ=")); // hello world EXPECT_TRUE(m2.Matches("aGVsbG8gd29ybGQh")); // hello world! #if GTEST_INTERNAL_HAS_STRING_VIEW const Matcher m3 = WhenBase64Unescaped(EndsWith("!")); EXPECT_FALSE(m3.Matches("invalid base64")); EXPECT_FALSE(m3.Matches("aGVsbG8gd29ybGQ=")); // hello world EXPECT_TRUE(m3.Matches("aGVsbG8gd29ybGQh")); // hello world! #endif // GTEST_INTERNAL_HAS_STRING_VIEW } TEST(WhenBase64UnescapedTest, CanDescribeSelf) { const Matcher m = WhenBase64Unescaped(EndsWith("!")); EXPECT_EQ("matches after Base64Unescape ends with \"!\"", Describe(m)); } // Tests MatchesRegex(). TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) { const Matcher m1 = MatchesRegex("a.*z"); EXPECT_TRUE(m1.Matches("az")); EXPECT_TRUE(m1.Matches("abcz")); EXPECT_FALSE(m1.Matches(nullptr)); const Matcher m2 = MatchesRegex(new RE("a.*z")); EXPECT_TRUE(m2.Matches("azbz")); EXPECT_FALSE(m2.Matches("az1")); EXPECT_FALSE(m2.Matches("1az")); #if GTEST_INTERNAL_HAS_STRING_VIEW const Matcher m3 = MatchesRegex("a.*z"); EXPECT_TRUE(m3.Matches(internal::StringView("az"))); EXPECT_TRUE(m3.Matches(internal::StringView("abcz"))); EXPECT_FALSE(m3.Matches(internal::StringView("1az"))); EXPECT_FALSE(m3.Matches(internal::StringView())); const Matcher m4 = MatchesRegex(internal::StringView("")); EXPECT_TRUE(m4.Matches(internal::StringView(""))); EXPECT_TRUE(m4.Matches(internal::StringView())); #endif // GTEST_INTERNAL_HAS_STRING_VIEW } TEST(MatchesRegexTest, CanDescribeSelf) { Matcher m1 = MatchesRegex(std::string("Hi.*")); EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1)); Matcher m2 = MatchesRegex(new RE("a.*")); EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2)); #if GTEST_INTERNAL_HAS_STRING_VIEW Matcher m3 = MatchesRegex(new RE("0.*")); EXPECT_EQ("matches regular expression \"0.*\"", Describe(m3)); #endif // GTEST_INTERNAL_HAS_STRING_VIEW } // Tests ContainsRegex(). TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) { const Matcher m1 = ContainsRegex(std::string("a.*z")); EXPECT_TRUE(m1.Matches("az")); EXPECT_TRUE(m1.Matches("0abcz1")); EXPECT_FALSE(m1.Matches(nullptr)); const Matcher m2 = ContainsRegex(new RE("a.*z")); EXPECT_TRUE(m2.Matches("azbz")); EXPECT_TRUE(m2.Matches("az1")); EXPECT_FALSE(m2.Matches("1a")); #if GTEST_INTERNAL_HAS_STRING_VIEW const Matcher m3 = ContainsRegex(new RE("a.*z")); EXPECT_TRUE(m3.Matches(internal::StringView("azbz"))); EXPECT_TRUE(m3.Matches(internal::StringView("az1"))); EXPECT_FALSE(m3.Matches(internal::StringView("1a"))); EXPECT_FALSE(m3.Matches(internal::StringView())); const Matcher m4 = ContainsRegex(internal::StringView("")); EXPECT_TRUE(m4.Matches(internal::StringView(""))); EXPECT_TRUE(m4.Matches(internal::StringView())); #endif // GTEST_INTERNAL_HAS_STRING_VIEW } TEST(ContainsRegexTest, CanDescribeSelf) { Matcher m1 = ContainsRegex("Hi.*"); EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1)); Matcher m2 = ContainsRegex(new RE("a.*")); EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2)); #if GTEST_INTERNAL_HAS_STRING_VIEW Matcher m3 = ContainsRegex(new RE("0.*")); EXPECT_EQ("contains regular expression \"0.*\"", Describe(m3)); #endif // GTEST_INTERNAL_HAS_STRING_VIEW } // Tests for wide strings. #if GTEST_HAS_STD_WSTRING TEST(StdWideStrEqTest, MatchesEqual) { Matcher m = StrEq(::std::wstring(L"Hello")); EXPECT_TRUE(m.Matches(L"Hello")); EXPECT_FALSE(m.Matches(L"hello")); EXPECT_FALSE(m.Matches(nullptr)); Matcher m2 = StrEq(L"Hello"); EXPECT_TRUE(m2.Matches(L"Hello")); EXPECT_FALSE(m2.Matches(L"Hi")); Matcher m3 = StrEq(L"\xD3\x576\x8D3\xC74D"); EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D")); EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E")); ::std::wstring str(L"01204500800"); str[3] = L'\0'; Matcher m4 = StrEq(str); EXPECT_TRUE(m4.Matches(str)); str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; Matcher m5 = StrEq(str); EXPECT_TRUE(m5.Matches(str)); } TEST(StdWideStrEqTest, CanDescribeSelf) { Matcher< ::std::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v"); EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"", Describe(m)); Matcher< ::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D"); EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"", Describe(m2)); ::std::wstring str(L"01204500800"); str[3] = L'\0'; Matcher m4 = StrEq(str); EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4)); str[0] = str[6] = str[7] = str[9] = str[10] = L'\0'; Matcher m5 = StrEq(str); EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5)); } TEST(StdWideStrNeTest, MatchesUnequalString) { Matcher m = StrNe(L"Hello"); EXPECT_TRUE(m.Matches(L"")); EXPECT_TRUE(m.Matches(nullptr)); EXPECT_FALSE(m.Matches(L"Hello")); Matcher< ::std::wstring> m2 = StrNe(::std::wstring(L"Hello")); EXPECT_TRUE(m2.Matches(L"hello")); EXPECT_FALSE(m2.Matches(L"Hello")); } TEST(StdWideStrNeTest, CanDescribeSelf) { Matcher m = StrNe(L"Hi"); EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m)); } TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) { Matcher m = StrCaseEq(::std::wstring(L"Hello")); EXPECT_TRUE(m.Matches(L"Hello")); EXPECT_TRUE(m.Matches(L"hello")); EXPECT_FALSE(m.Matches(L"Hi")); EXPECT_FALSE(m.Matches(nullptr)); Matcher m2 = StrCaseEq(L"Hello"); EXPECT_TRUE(m2.Matches(L"hello")); EXPECT_FALSE(m2.Matches(L"Hi")); } TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) { ::std::wstring str1(L"oabocdooeoo"); ::std::wstring str2(L"OABOCDOOEOO"); Matcher m0 = StrCaseEq(str1); EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0'))); str1[3] = str2[3] = L'\0'; Matcher m1 = StrCaseEq(str1); EXPECT_TRUE(m1.Matches(str2)); str1[0] = str1[6] = str1[7] = str1[10] = L'\0'; str2[0] = str2[6] = str2[7] = str2[10] = L'\0'; Matcher m2 = StrCaseEq(str1); str1[9] = str2[9] = L'\0'; EXPECT_FALSE(m2.Matches(str2)); Matcher m3 = StrCaseEq(str1); EXPECT_TRUE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(str2 + L"x")); str2.append(1, L'\0'); EXPECT_FALSE(m3.Matches(str2)); EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9))); } TEST(StdWideStrCaseEqTest, CanDescribeSelf) { Matcher< ::std::wstring> m = StrCaseEq(L"Hi"); EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m)); } TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) { Matcher m = StrCaseNe(L"Hello"); EXPECT_TRUE(m.Matches(L"Hi")); EXPECT_TRUE(m.Matches(nullptr)); EXPECT_FALSE(m.Matches(L"Hello")); EXPECT_FALSE(m.Matches(L"hello")); Matcher< ::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello")); EXPECT_TRUE(m2.Matches(L"")); EXPECT_FALSE(m2.Matches(L"Hello")); } TEST(StdWideStrCaseNeTest, CanDescribeSelf) { Matcher m = StrCaseNe(L"Hi"); EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m)); } // Tests that HasSubstr() works for matching wstring-typed values. TEST(StdWideHasSubstrTest, WorksForStringClasses) { const Matcher< ::std::wstring> m1 = HasSubstr(L"foo"); EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food."))); EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo"))); const Matcher m2 = HasSubstr(L"foo"); EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food."))); EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo"))); } // Tests that HasSubstr() works for matching C-wide-string-typed values. TEST(StdWideHasSubstrTest, WorksForCStrings) { const Matcher m1 = HasSubstr(L"foo"); EXPECT_TRUE(m1.Matches(const_cast(L"I love food."))); EXPECT_FALSE(m1.Matches(const_cast(L"tofo"))); EXPECT_FALSE(m1.Matches(nullptr)); const Matcher m2 = HasSubstr(L"foo"); EXPECT_TRUE(m2.Matches(L"I love food.")); EXPECT_FALSE(m2.Matches(L"tofo")); EXPECT_FALSE(m2.Matches(nullptr)); } // Tests that HasSubstr(s) describes itself properly. TEST(StdWideHasSubstrTest, CanDescribeSelf) { Matcher< ::std::wstring> m = HasSubstr(L"foo\n\""); EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m)); } // Tests StartsWith(s). TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) { const Matcher m1 = StartsWith(::std::wstring(L"")); EXPECT_TRUE(m1.Matches(L"Hi")); EXPECT_TRUE(m1.Matches(L"")); EXPECT_FALSE(m1.Matches(nullptr)); const Matcher m2 = StartsWith(L"Hi"); EXPECT_TRUE(m2.Matches(L"Hi")); EXPECT_TRUE(m2.Matches(L"Hi Hi!")); EXPECT_TRUE(m2.Matches(L"High")); EXPECT_FALSE(m2.Matches(L"H")); EXPECT_FALSE(m2.Matches(L" Hi")); } TEST(StdWideStartsWithTest, CanDescribeSelf) { Matcher m = StartsWith(L"Hi"); EXPECT_EQ("starts with L\"Hi\"", Describe(m)); } // Tests EndsWith(s). TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) { const Matcher m1 = EndsWith(L""); EXPECT_TRUE(m1.Matches(L"Hi")); EXPECT_TRUE(m1.Matches(L"")); EXPECT_FALSE(m1.Matches(nullptr)); const Matcher m2 = EndsWith(::std::wstring(L"Hi")); EXPECT_TRUE(m2.Matches(L"Hi")); EXPECT_TRUE(m2.Matches(L"Wow Hi Hi")); EXPECT_TRUE(m2.Matches(L"Super Hi")); EXPECT_FALSE(m2.Matches(L"i")); EXPECT_FALSE(m2.Matches(L"Hi ")); } TEST(StdWideEndsWithTest, CanDescribeSelf) { Matcher m = EndsWith(L"Hi"); EXPECT_EQ("ends with L\"Hi\"", Describe(m)); } #endif // GTEST_HAS_STD_WSTRING typedef ::std::tuple Tuple2; // NOLINT // Tests that Eq() matches a 2-tuple where the first field == the // second field. TEST(Eq2Test, MatchesEqualArguments) { Matcher m = Eq(); EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); } // Tests that Eq() describes itself properly. TEST(Eq2Test, CanDescribeSelf) { Matcher m = Eq(); EXPECT_EQ("are an equal pair", Describe(m)); } // Tests that Ge() matches a 2-tuple where the first field >= the // second field. TEST(Ge2Test, MatchesGreaterThanOrEqualArguments) { Matcher m = Ge(); EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); } // Tests that Ge() describes itself properly. TEST(Ge2Test, CanDescribeSelf) { Matcher m = Ge(); EXPECT_EQ("are a pair where the first >= the second", Describe(m)); } // Tests that Gt() matches a 2-tuple where the first field > the // second field. TEST(Gt2Test, MatchesGreaterThanArguments) { Matcher m = Gt(); EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 6))); } // Tests that Gt() describes itself properly. TEST(Gt2Test, CanDescribeSelf) { Matcher m = Gt(); EXPECT_EQ("are a pair where the first > the second", Describe(m)); } // Tests that Le() matches a 2-tuple where the first field <= the // second field. TEST(Le2Test, MatchesLessThanOrEqualArguments) { Matcher m = Le(); EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); EXPECT_TRUE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); } // Tests that Le() describes itself properly. TEST(Le2Test, CanDescribeSelf) { Matcher m = Le(); EXPECT_EQ("are a pair where the first <= the second", Describe(m)); } // Tests that Lt() matches a 2-tuple where the first field < the // second field. TEST(Lt2Test, MatchesLessThanArguments) { Matcher m = Lt(); EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); EXPECT_FALSE(m.Matches(Tuple2(5L, 4))); } // Tests that Lt() describes itself properly. TEST(Lt2Test, CanDescribeSelf) { Matcher m = Lt(); EXPECT_EQ("are a pair where the first < the second", Describe(m)); } // Tests that Ne() matches a 2-tuple where the first field != the // second field. TEST(Ne2Test, MatchesUnequalArguments) { Matcher m = Ne(); EXPECT_TRUE(m.Matches(Tuple2(5L, 6))); EXPECT_TRUE(m.Matches(Tuple2(5L, 4))); EXPECT_FALSE(m.Matches(Tuple2(5L, 5))); } // Tests that Ne() describes itself properly. TEST(Ne2Test, CanDescribeSelf) { Matcher m = Ne(); EXPECT_EQ("are an unequal pair", Describe(m)); } TEST(PairMatchBaseTest, WorksWithMoveOnly) { using Pointers = std::tuple, std::unique_ptr>; Matcher matcher = Eq(); Pointers pointers; // Tested values don't matter; the point is that matcher does not copy the // matched values. EXPECT_TRUE(matcher.Matches(pointers)); } // Tests that IsNan() matches a NaN, with float. TEST(IsNan, FloatMatchesNan) { float quiet_nan = std::numeric_limits::quiet_NaN(); float other_nan = std::nanf("1"); float real_value = 1.0f; Matcher m = IsNan(); EXPECT_TRUE(m.Matches(quiet_nan)); EXPECT_TRUE(m.Matches(other_nan)); EXPECT_FALSE(m.Matches(real_value)); Matcher m_ref = IsNan(); EXPECT_TRUE(m_ref.Matches(quiet_nan)); EXPECT_TRUE(m_ref.Matches(other_nan)); EXPECT_FALSE(m_ref.Matches(real_value)); Matcher m_cref = IsNan(); EXPECT_TRUE(m_cref.Matches(quiet_nan)); EXPECT_TRUE(m_cref.Matches(other_nan)); EXPECT_FALSE(m_cref.Matches(real_value)); } // Tests that IsNan() matches a NaN, with double. TEST(IsNan, DoubleMatchesNan) { double quiet_nan = std::numeric_limits::quiet_NaN(); double other_nan = std::nan("1"); double real_value = 1.0; Matcher m = IsNan(); EXPECT_TRUE(m.Matches(quiet_nan)); EXPECT_TRUE(m.Matches(other_nan)); EXPECT_FALSE(m.Matches(real_value)); Matcher m_ref = IsNan(); EXPECT_TRUE(m_ref.Matches(quiet_nan)); EXPECT_TRUE(m_ref.Matches(other_nan)); EXPECT_FALSE(m_ref.Matches(real_value)); Matcher m_cref = IsNan(); EXPECT_TRUE(m_cref.Matches(quiet_nan)); EXPECT_TRUE(m_cref.Matches(other_nan)); EXPECT_FALSE(m_cref.Matches(real_value)); } // Tests that IsNan() matches a NaN, with long double. TEST(IsNan, LongDoubleMatchesNan) { long double quiet_nan = std::numeric_limits::quiet_NaN(); long double other_nan = std::nan("1"); long double real_value = 1.0; Matcher m = IsNan(); EXPECT_TRUE(m.Matches(quiet_nan)); EXPECT_TRUE(m.Matches(other_nan)); EXPECT_FALSE(m.Matches(real_value)); Matcher m_ref = IsNan(); EXPECT_TRUE(m_ref.Matches(quiet_nan)); EXPECT_TRUE(m_ref.Matches(other_nan)); EXPECT_FALSE(m_ref.Matches(real_value)); Matcher m_cref = IsNan(); EXPECT_TRUE(m_cref.Matches(quiet_nan)); EXPECT_TRUE(m_cref.Matches(other_nan)); EXPECT_FALSE(m_cref.Matches(real_value)); } // Tests that IsNan() works with Not. TEST(IsNan, NotMatchesNan) { Matcher mf = Not(IsNan()); EXPECT_FALSE(mf.Matches(std::numeric_limits::quiet_NaN())); EXPECT_FALSE(mf.Matches(std::nanf("1"))); EXPECT_TRUE(mf.Matches(1.0)); Matcher md = Not(IsNan()); EXPECT_FALSE(md.Matches(std::numeric_limits::quiet_NaN())); EXPECT_FALSE(md.Matches(std::nan("1"))); EXPECT_TRUE(md.Matches(1.0)); Matcher mld = Not(IsNan()); EXPECT_FALSE(mld.Matches(std::numeric_limits::quiet_NaN())); EXPECT_FALSE(mld.Matches(std::nanl("1"))); EXPECT_TRUE(mld.Matches(1.0)); } // Tests that IsNan() can describe itself. TEST(IsNan, CanDescribeSelf) { Matcher mf = IsNan(); EXPECT_EQ("is NaN", Describe(mf)); Matcher md = IsNan(); EXPECT_EQ("is NaN", Describe(md)); Matcher mld = IsNan(); EXPECT_EQ("is NaN", Describe(mld)); } // Tests that IsNan() can describe itself with Not. TEST(IsNan, CanDescribeSelfWithNot) { Matcher mf = Not(IsNan()); EXPECT_EQ("isn't NaN", Describe(mf)); Matcher md = Not(IsNan()); EXPECT_EQ("isn't NaN", Describe(md)); Matcher mld = Not(IsNan()); EXPECT_EQ("isn't NaN", Describe(mld)); } // Tests that FloatEq() matches a 2-tuple where // FloatEq(first field) matches the second field. TEST(FloatEq2Test, MatchesEqualArguments) { typedef ::std::tuple Tpl; Matcher m = FloatEq(); EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(0.3f, 0.1f + 0.1f + 0.1f))); EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); } // Tests that FloatEq() describes itself properly. TEST(FloatEq2Test, CanDescribeSelf) { Matcher&> m = FloatEq(); EXPECT_EQ("are an almost-equal pair", Describe(m)); } // Tests that NanSensitiveFloatEq() matches a 2-tuple where // NanSensitiveFloatEq(first field) matches the second field. TEST(NanSensitiveFloatEqTest, MatchesEqualArgumentsWithNaN) { typedef ::std::tuple Tpl; Matcher m = NanSensitiveFloatEq(); EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits::quiet_NaN(), 1.0f))); } // Tests that NanSensitiveFloatEq() describes itself properly. TEST(NanSensitiveFloatEqTest, CanDescribeSelfWithNaNs) { Matcher&> m = NanSensitiveFloatEq(); EXPECT_EQ("are an almost-equal pair", Describe(m)); } // Tests that DoubleEq() matches a 2-tuple where // DoubleEq(first field) matches the second field. TEST(DoubleEq2Test, MatchesEqualArguments) { typedef ::std::tuple Tpl; Matcher m = DoubleEq(); EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0))); EXPECT_TRUE(m.Matches(Tpl(0.3, 0.1 + 0.1 + 0.1))); EXPECT_FALSE(m.Matches(Tpl(1.1, 1.0))); } // Tests that DoubleEq() describes itself properly. TEST(DoubleEq2Test, CanDescribeSelf) { Matcher&> m = DoubleEq(); EXPECT_EQ("are an almost-equal pair", Describe(m)); } // Tests that NanSensitiveDoubleEq() matches a 2-tuple where // NanSensitiveDoubleEq(first field) matches the second field. TEST(NanSensitiveDoubleEqTest, MatchesEqualArgumentsWithNaN) { typedef ::std::tuple Tpl; Matcher m = NanSensitiveDoubleEq(); EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(1.1f, 1.0f))); EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits::quiet_NaN(), 1.0f))); } // Tests that DoubleEq() describes itself properly. TEST(NanSensitiveDoubleEqTest, CanDescribeSelfWithNaNs) { Matcher&> m = NanSensitiveDoubleEq(); EXPECT_EQ("are an almost-equal pair", Describe(m)); } // Tests that FloatEq() matches a 2-tuple where // FloatNear(first field, max_abs_error) matches the second field. TEST(FloatNear2Test, MatchesEqualArguments) { typedef ::std::tuple Tpl; Matcher m = FloatNear(0.5f); EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(1.3f, 1.0f))); EXPECT_FALSE(m.Matches(Tpl(1.8f, 1.0f))); } // Tests that FloatNear() describes itself properly. TEST(FloatNear2Test, CanDescribeSelf) { Matcher&> m = FloatNear(0.5f); EXPECT_EQ("are an almost-equal pair", Describe(m)); } // Tests that NanSensitiveFloatNear() matches a 2-tuple where // NanSensitiveFloatNear(first field) matches the second field. TEST(NanSensitiveFloatNearTest, MatchesNearbyArgumentsWithNaN) { typedef ::std::tuple Tpl; Matcher m = NanSensitiveFloatNear(0.5f); EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f))); EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits::quiet_NaN(), 1.0f))); } // Tests that NanSensitiveFloatNear() describes itself properly. TEST(NanSensitiveFloatNearTest, CanDescribeSelfWithNaNs) { Matcher&> m = NanSensitiveFloatNear(0.5f); EXPECT_EQ("are an almost-equal pair", Describe(m)); } // Tests that FloatEq() matches a 2-tuple where // DoubleNear(first field, max_abs_error) matches the second field. TEST(DoubleNear2Test, MatchesEqualArguments) { typedef ::std::tuple Tpl; Matcher m = DoubleNear(0.5); EXPECT_TRUE(m.Matches(Tpl(1.0, 1.0))); EXPECT_TRUE(m.Matches(Tpl(1.3, 1.0))); EXPECT_FALSE(m.Matches(Tpl(1.8, 1.0))); } // Tests that DoubleNear() describes itself properly. TEST(DoubleNear2Test, CanDescribeSelf) { Matcher&> m = DoubleNear(0.5); EXPECT_EQ("are an almost-equal pair", Describe(m)); } // Tests that NanSensitiveDoubleNear() matches a 2-tuple where // NanSensitiveDoubleNear(first field) matches the second field. TEST(NanSensitiveDoubleNearTest, MatchesNearbyArgumentsWithNaN) { typedef ::std::tuple Tpl; Matcher m = NanSensitiveDoubleNear(0.5f); EXPECT_TRUE(m.Matches(Tpl(1.0f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(1.1f, 1.0f))); EXPECT_TRUE(m.Matches(Tpl(std::numeric_limits::quiet_NaN(), std::numeric_limits::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(1.6f, 1.0f))); EXPECT_FALSE(m.Matches(Tpl(1.0f, std::numeric_limits::quiet_NaN()))); EXPECT_FALSE(m.Matches(Tpl(std::numeric_limits::quiet_NaN(), 1.0f))); } // Tests that NanSensitiveDoubleNear() describes itself properly. TEST(NanSensitiveDoubleNearTest, CanDescribeSelfWithNaNs) { Matcher&> m = NanSensitiveDoubleNear(0.5f); EXPECT_EQ("are an almost-equal pair", Describe(m)); } // Tests that Not(m) matches any value that doesn't match m. TEST(NotTest, NegatesMatcher) { Matcher m; m = Not(Eq(2)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); } // Tests that Not(m) describes itself properly. TEST(NotTest, CanDescribeSelf) { Matcher m = Not(Eq(5)); EXPECT_EQ("isn't equal to 5", Describe(m)); } // Tests that monomorphic matchers are safely cast by the Not matcher. TEST(NotTest, NotMatcherSafelyCastsMonomorphicMatchers) { // greater_than_5 is a monomorphic matcher. Matcher greater_than_5 = Gt(5); Matcher m = Not(greater_than_5); Matcher m2 = Not(greater_than_5); Matcher m3 = Not(m); } // Helper to allow easy testing of AllOf matchers with num parameters. void AllOfMatches(int num, const Matcher& m) { SCOPED_TRACE(Describe(m)); EXPECT_TRUE(m.Matches(0)); for (int i = 1; i <= num; ++i) { EXPECT_FALSE(m.Matches(i)); } EXPECT_TRUE(m.Matches(num + 1)); } // Tests that AllOf(m1, ..., mn) matches any value that matches all of // the given matchers. TEST(AllOfTest, MatchesWhenAllMatch) { Matcher m; m = AllOf(Le(2), Ge(1)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(2)); EXPECT_FALSE(m.Matches(0)); EXPECT_FALSE(m.Matches(3)); m = AllOf(Gt(0), Ne(1), Ne(2)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); EXPECT_FALSE(m.Matches(1)); EXPECT_FALSE(m.Matches(0)); m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); EXPECT_TRUE(m.Matches(4)); EXPECT_FALSE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); EXPECT_FALSE(m.Matches(1)); EXPECT_FALSE(m.Matches(0)); m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); EXPECT_TRUE(m.Matches(0)); EXPECT_TRUE(m.Matches(1)); EXPECT_FALSE(m.Matches(3)); // The following tests for varying number of sub-matchers. Due to the way // the sub-matchers are handled it is enough to test every sub-matcher once // with sub-matchers using the same matcher type. Varying matcher types are // checked for above. AllOfMatches(2, AllOf(Ne(1), Ne(2))); AllOfMatches(3, AllOf(Ne(1), Ne(2), Ne(3))); AllOfMatches(4, AllOf(Ne(1), Ne(2), Ne(3), Ne(4))); AllOfMatches(5, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5))); AllOfMatches(6, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6))); AllOfMatches(7, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7))); AllOfMatches(8, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8))); AllOfMatches(9, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9))); AllOfMatches(10, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9), Ne(10))); AllOfMatches( 50, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9), Ne(10), Ne(11), Ne(12), Ne(13), Ne(14), Ne(15), Ne(16), Ne(17), Ne(18), Ne(19), Ne(20), Ne(21), Ne(22), Ne(23), Ne(24), Ne(25), Ne(26), Ne(27), Ne(28), Ne(29), Ne(30), Ne(31), Ne(32), Ne(33), Ne(34), Ne(35), Ne(36), Ne(37), Ne(38), Ne(39), Ne(40), Ne(41), Ne(42), Ne(43), Ne(44), Ne(45), Ne(46), Ne(47), Ne(48), Ne(49), Ne(50))); } // Tests that AllOf(m1, ..., mn) describes itself properly. TEST(AllOfTest, CanDescribeSelf) { Matcher m; m = AllOf(Le(2), Ge(1)); EXPECT_EQ("(is <= 2) and (is >= 1)", Describe(m)); m = AllOf(Gt(0), Ne(1), Ne(2)); std::string expected_descr1 = "(is > 0) and (isn't equal to 1) and (isn't equal to 2)"; EXPECT_EQ(expected_descr1, Describe(m)); m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); std::string expected_descr2 = "(is > 0) and (isn't equal to 1) and (isn't equal to 2) and (isn't equal " "to 3)"; EXPECT_EQ(expected_descr2, Describe(m)); m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); std::string expected_descr3 = "(is >= 0) and (is < 10) and (isn't equal to 3) and (isn't equal to 5) " "and (isn't equal to 7)"; EXPECT_EQ(expected_descr3, Describe(m)); } // Tests that AllOf(m1, ..., mn) describes its negation properly. TEST(AllOfTest, CanDescribeNegation) { Matcher m; m = AllOf(Le(2), Ge(1)); std::string expected_descr4 = "(isn't <= 2) or (isn't >= 1)"; EXPECT_EQ(expected_descr4, DescribeNegation(m)); m = AllOf(Gt(0), Ne(1), Ne(2)); std::string expected_descr5 = "(isn't > 0) or (is equal to 1) or (is equal to 2)"; EXPECT_EQ(expected_descr5, DescribeNegation(m)); m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3)); std::string expected_descr6 = "(isn't > 0) or (is equal to 1) or (is equal to 2) or (is equal to 3)"; EXPECT_EQ(expected_descr6, DescribeNegation(m)); m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7)); std::string expected_desr7 = "(isn't >= 0) or (isn't < 10) or (is equal to 3) or (is equal to 5) or " "(is equal to 7)"; EXPECT_EQ(expected_desr7, DescribeNegation(m)); m = AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8), Ne(9), Ne(10), Ne(11)); AllOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); EXPECT_THAT(Describe(m), EndsWith("and (isn't equal to 11)")); AllOfMatches(11, m); } // Tests that monomorphic matchers are safely cast by the AllOf matcher. TEST(AllOfTest, AllOfMatcherSafelyCastsMonomorphicMatchers) { // greater_than_5 and less_than_10 are monomorphic matchers. Matcher greater_than_5 = Gt(5); Matcher less_than_10 = Lt(10); Matcher m = AllOf(greater_than_5, less_than_10); Matcher m2 = AllOf(greater_than_5, less_than_10); Matcher m3 = AllOf(greater_than_5, m2); // Tests that BothOf works when composing itself. Matcher m4 = AllOf(greater_than_5, less_than_10, less_than_10); Matcher m5 = AllOf(greater_than_5, less_than_10, less_than_10); } TEST(AllOfTest, ExplainsResult) { Matcher m; // Successful match. Both matchers need to explain. The second // matcher doesn't give an explanation, so only the first matcher's // explanation is printed. m = AllOf(GreaterThan(10), Lt(30)); EXPECT_EQ("which is 15 more than 10", Explain(m, 25)); // Successful match. Both matchers need to explain. m = AllOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 20 more than 10, and which is 10 more than 20", Explain(m, 30)); // Successful match. All matchers need to explain. The second // matcher doesn't given an explanation. m = AllOf(GreaterThan(10), Lt(30), GreaterThan(20)); EXPECT_EQ("which is 15 more than 10, and which is 5 more than 20", Explain(m, 25)); // Successful match. All matchers need to explain. m = AllOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); EXPECT_EQ("which is 30 more than 10, and which is 20 more than 20, " "and which is 10 more than 30", Explain(m, 40)); // Failed match. The first matcher, which failed, needs to // explain. m = AllOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 less than 10", Explain(m, 5)); // Failed match. The second matcher, which failed, needs to // explain. Since it doesn't given an explanation, nothing is // printed. m = AllOf(GreaterThan(10), Lt(30)); EXPECT_EQ("", Explain(m, 40)); // Failed match. The second matcher, which failed, needs to // explain. m = AllOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 less than 20", Explain(m, 15)); } // Helper to allow easy testing of AnyOf matchers with num parameters. static void AnyOfMatches(int num, const Matcher& m) { SCOPED_TRACE(Describe(m)); EXPECT_FALSE(m.Matches(0)); for (int i = 1; i <= num; ++i) { EXPECT_TRUE(m.Matches(i)); } EXPECT_FALSE(m.Matches(num + 1)); } static void AnyOfStringMatches(int num, const Matcher& m) { SCOPED_TRACE(Describe(m)); EXPECT_FALSE(m.Matches(std::to_string(0))); for (int i = 1; i <= num; ++i) { EXPECT_TRUE(m.Matches(std::to_string(i))); } EXPECT_FALSE(m.Matches(std::to_string(num + 1))); } // Tests that AnyOf(m1, ..., mn) matches any value that matches at // least one of the given matchers. TEST(AnyOfTest, MatchesWhenAnyMatches) { Matcher m; m = AnyOf(Le(1), Ge(3)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(4)); EXPECT_FALSE(m.Matches(2)); m = AnyOf(Lt(0), Eq(1), Eq(2)); EXPECT_TRUE(m.Matches(-1)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(2)); EXPECT_FALSE(m.Matches(0)); m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); EXPECT_TRUE(m.Matches(-1)); EXPECT_TRUE(m.Matches(1)); EXPECT_TRUE(m.Matches(2)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(0)); m = AnyOf(Le(0), Gt(10), 3, 5, 7); EXPECT_TRUE(m.Matches(0)); EXPECT_TRUE(m.Matches(11)); EXPECT_TRUE(m.Matches(3)); EXPECT_FALSE(m.Matches(2)); // The following tests for varying number of sub-matchers. Due to the way // the sub-matchers are handled it is enough to test every sub-matcher once // with sub-matchers using the same matcher type. Varying matcher types are // checked for above. AnyOfMatches(2, AnyOf(1, 2)); AnyOfMatches(3, AnyOf(1, 2, 3)); AnyOfMatches(4, AnyOf(1, 2, 3, 4)); AnyOfMatches(5, AnyOf(1, 2, 3, 4, 5)); AnyOfMatches(6, AnyOf(1, 2, 3, 4, 5, 6)); AnyOfMatches(7, AnyOf(1, 2, 3, 4, 5, 6, 7)); AnyOfMatches(8, AnyOf(1, 2, 3, 4, 5, 6, 7, 8)); AnyOfMatches(9, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9)); AnyOfMatches(10, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)); } // Tests the variadic version of the AnyOfMatcher. TEST(AnyOfTest, VariadicMatchesWhenAnyMatches) { // Also make sure AnyOf is defined in the right namespace and does not depend // on ADL. Matcher m = ::testing::AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); EXPECT_THAT(Describe(m), EndsWith("or (is equal to 11)")); AnyOfMatches(11, m); AnyOfMatches(50, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)); AnyOfStringMatches( 50, AnyOf("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50")); } TEST(ConditionalTest, MatchesFirstIfCondition) { Matcher eq_red = Eq("red"); Matcher ne_red = Ne("red"); Matcher m = Conditional(true, eq_red, ne_red); EXPECT_TRUE(m.Matches("red")); EXPECT_FALSE(m.Matches("green")); StringMatchResultListener listener; StringMatchResultListener expected; EXPECT_FALSE(m.MatchAndExplain("green", &listener)); EXPECT_FALSE(eq_red.MatchAndExplain("green", &expected)); EXPECT_THAT(listener.str(), Eq(expected.str())); } TEST(ConditionalTest, MatchesSecondIfCondition) { Matcher eq_red = Eq("red"); Matcher ne_red = Ne("red"); Matcher m = Conditional(false, eq_red, ne_red); EXPECT_FALSE(m.Matches("red")); EXPECT_TRUE(m.Matches("green")); StringMatchResultListener listener; StringMatchResultListener expected; EXPECT_FALSE(m.MatchAndExplain("red", &listener)); EXPECT_FALSE(ne_red.MatchAndExplain("red", &expected)); EXPECT_THAT(listener.str(), Eq(expected.str())); } // Tests the variadic version of the ElementsAreMatcher TEST(ElementsAreTest, HugeMatcher) { vector test_vector{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; EXPECT_THAT(test_vector, ElementsAre(Eq(1), Eq(2), Lt(13), Eq(4), Eq(5), Eq(6), Eq(7), Eq(8), Eq(9), Eq(10), Gt(1), Eq(12))); } // Tests the variadic version of the UnorderedElementsAreMatcher TEST(ElementsAreTest, HugeMatcherStr) { vector test_vector{ "literal_string", "", "", "", "", "", "", "", "", "", "", ""}; EXPECT_THAT(test_vector, UnorderedElementsAre("literal_string", _, _, _, _, _, _, _, _, _, _, _)); } // Tests the variadic version of the UnorderedElementsAreMatcher TEST(ElementsAreTest, HugeMatcherUnordered) { vector test_vector{2, 1, 8, 5, 4, 6, 7, 3, 9, 12, 11, 10}; EXPECT_THAT(test_vector, UnorderedElementsAre( Eq(2), Eq(1), Gt(7), Eq(5), Eq(4), Eq(6), Eq(7), Eq(3), Eq(9), Eq(12), Eq(11), Ne(122))); } // Tests that AnyOf(m1, ..., mn) describes itself properly. TEST(AnyOfTest, CanDescribeSelf) { Matcher m; m = AnyOf(Le(1), Ge(3)); EXPECT_EQ("(is <= 1) or (is >= 3)", Describe(m)); m = AnyOf(Lt(0), Eq(1), Eq(2)); EXPECT_EQ("(is < 0) or (is equal to 1) or (is equal to 2)", Describe(m)); m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); EXPECT_EQ("(is < 0) or (is equal to 1) or (is equal to 2) or (is equal to 3)", Describe(m)); m = AnyOf(Le(0), Gt(10), 3, 5, 7); EXPECT_EQ( "(is <= 0) or (is > 10) or (is equal to 3) or (is equal to 5) or (is " "equal to 7)", Describe(m)); } // Tests that AnyOf(m1, ..., mn) describes its negation properly. TEST(AnyOfTest, CanDescribeNegation) { Matcher m; m = AnyOf(Le(1), Ge(3)); EXPECT_EQ("(isn't <= 1) and (isn't >= 3)", DescribeNegation(m)); m = AnyOf(Lt(0), Eq(1), Eq(2)); EXPECT_EQ("(isn't < 0) and (isn't equal to 1) and (isn't equal to 2)", DescribeNegation(m)); m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3)); EXPECT_EQ( "(isn't < 0) and (isn't equal to 1) and (isn't equal to 2) and (isn't " "equal to 3)", DescribeNegation(m)); m = AnyOf(Le(0), Gt(10), 3, 5, 7); EXPECT_EQ( "(isn't <= 0) and (isn't > 10) and (isn't equal to 3) and (isn't equal " "to 5) and (isn't equal to 7)", DescribeNegation(m)); } // Tests that monomorphic matchers are safely cast by the AnyOf matcher. TEST(AnyOfTest, AnyOfMatcherSafelyCastsMonomorphicMatchers) { // greater_than_5 and less_than_10 are monomorphic matchers. Matcher greater_than_5 = Gt(5); Matcher less_than_10 = Lt(10); Matcher m = AnyOf(greater_than_5, less_than_10); Matcher m2 = AnyOf(greater_than_5, less_than_10); Matcher m3 = AnyOf(greater_than_5, m2); // Tests that EitherOf works when composing itself. Matcher m4 = AnyOf(greater_than_5, less_than_10, less_than_10); Matcher m5 = AnyOf(greater_than_5, less_than_10, less_than_10); } TEST(AnyOfTest, ExplainsResult) { Matcher m; // Failed match. Both matchers need to explain. The second // matcher doesn't give an explanation, so only the first matcher's // explanation is printed. m = AnyOf(GreaterThan(10), Lt(0)); EXPECT_EQ("which is 5 less than 10", Explain(m, 5)); // Failed match. Both matchers need to explain. m = AnyOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20", Explain(m, 5)); // Failed match. All matchers need to explain. The second // matcher doesn't given an explanation. m = AnyOf(GreaterThan(10), Gt(20), GreaterThan(30)); EXPECT_EQ("which is 5 less than 10, and which is 25 less than 30", Explain(m, 5)); // Failed match. All matchers need to explain. m = AnyOf(GreaterThan(10), GreaterThan(20), GreaterThan(30)); EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20, " "and which is 25 less than 30", Explain(m, 5)); // Successful match. The first matcher, which succeeded, needs to // explain. m = AnyOf(GreaterThan(10), GreaterThan(20)); EXPECT_EQ("which is 5 more than 10", Explain(m, 15)); // Successful match. The second matcher, which succeeded, needs to // explain. Since it doesn't given an explanation, nothing is // printed. m = AnyOf(GreaterThan(10), Lt(30)); EXPECT_EQ("", Explain(m, 0)); // Successful match. The second matcher, which succeeded, needs to // explain. m = AnyOf(GreaterThan(30), GreaterThan(20)); EXPECT_EQ("which is 5 more than 20", Explain(m, 25)); } // The following predicate function and predicate functor are for // testing the Truly(predicate) matcher. // Returns non-zero if the input is positive. Note that the return // type of this function is not bool. It's OK as Truly() accepts any // unary function or functor whose return type can be implicitly // converted to bool. int IsPositive(double x) { return x > 0 ? 1 : 0; } // This functor returns true if the input is greater than the given // number. class IsGreaterThan { public: explicit IsGreaterThan(int threshold) : threshold_(threshold) {} bool operator()(int n) const { return n > threshold_; } private: int threshold_; }; // For testing Truly(). const int foo = 0; // This predicate returns true if and only if the argument references foo and // has a zero value. bool ReferencesFooAndIsZero(const int& n) { return (&n == &foo) && (n == 0); } // Tests that Truly(predicate) matches what satisfies the given // predicate. TEST(TrulyTest, MatchesWhatSatisfiesThePredicate) { Matcher m = Truly(IsPositive); EXPECT_TRUE(m.Matches(2.0)); EXPECT_FALSE(m.Matches(-1.5)); } // Tests that Truly(predicate_functor) works too. TEST(TrulyTest, CanBeUsedWithFunctor) { Matcher m = Truly(IsGreaterThan(5)); EXPECT_TRUE(m.Matches(6)); EXPECT_FALSE(m.Matches(4)); } // A class that can be implicitly converted to bool. class ConvertibleToBool { public: explicit ConvertibleToBool(int number) : number_(number) {} operator bool() const { return number_ != 0; } private: int number_; }; ConvertibleToBool IsNotZero(int number) { return ConvertibleToBool(number); } // Tests that the predicate used in Truly() may return a class that's // implicitly convertible to bool, even when the class has no // operator!(). TEST(TrulyTest, PredicateCanReturnAClassConvertibleToBool) { Matcher m = Truly(IsNotZero); EXPECT_TRUE(m.Matches(1)); EXPECT_FALSE(m.Matches(0)); } // Tests that Truly(predicate) can describe itself properly. TEST(TrulyTest, CanDescribeSelf) { Matcher m = Truly(IsPositive); EXPECT_EQ("satisfies the given predicate", Describe(m)); } // Tests that Truly(predicate) works when the matcher takes its // argument by reference. TEST(TrulyTest, WorksForByRefArguments) { Matcher m = Truly(ReferencesFooAndIsZero); EXPECT_TRUE(m.Matches(foo)); int n = 0; EXPECT_FALSE(m.Matches(n)); } // Tests that Truly(predicate) provides a helpful reason when it fails. TEST(TrulyTest, ExplainsFailures) { StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult(Truly(IsPositive), -1, &listener)); EXPECT_EQ(listener.str(), "didn't satisfy the given predicate"); } // Tests that Matches(m) is a predicate satisfied by whatever that // matches matcher m. TEST(MatchesTest, IsSatisfiedByWhatMatchesTheMatcher) { EXPECT_TRUE(Matches(Ge(0))(1)); EXPECT_FALSE(Matches(Eq('a'))('b')); } // Tests that Matches(m) works when the matcher takes its argument by // reference. TEST(MatchesTest, WorksOnByRefArguments) { int m = 0, n = 0; EXPECT_TRUE(Matches(AllOf(Ref(n), Eq(0)))(n)); EXPECT_FALSE(Matches(Ref(m))(n)); } // Tests that a Matcher on non-reference type can be used in // Matches(). TEST(MatchesTest, WorksWithMatcherOnNonRefType) { Matcher eq5 = Eq(5); EXPECT_TRUE(Matches(eq5)(5)); EXPECT_FALSE(Matches(eq5)(2)); } // Tests Value(value, matcher). Since Value() is a simple wrapper for // Matches(), which has been tested already, we don't spend a lot of // effort on testing Value(). TEST(ValueTest, WorksWithPolymorphicMatcher) { EXPECT_TRUE(Value("hi", StartsWith("h"))); EXPECT_FALSE(Value(5, Gt(10))); } TEST(ValueTest, WorksWithMonomorphicMatcher) { const Matcher is_zero = Eq(0); EXPECT_TRUE(Value(0, is_zero)); EXPECT_FALSE(Value('a', is_zero)); int n = 0; const Matcher ref_n = Ref(n); EXPECT_TRUE(Value(n, ref_n)); EXPECT_FALSE(Value(1, ref_n)); } TEST(ExplainMatchResultTest, WorksWithPolymorphicMatcher) { StringMatchResultListener listener1; EXPECT_TRUE(ExplainMatchResult(PolymorphicIsEven(), 42, &listener1)); EXPECT_EQ("% 2 == 0", listener1.str()); StringMatchResultListener listener2; EXPECT_FALSE(ExplainMatchResult(Ge(42), 1.5, &listener2)); EXPECT_EQ("", listener2.str()); } TEST(ExplainMatchResultTest, WorksWithMonomorphicMatcher) { const Matcher is_even = PolymorphicIsEven(); StringMatchResultListener listener1; EXPECT_TRUE(ExplainMatchResult(is_even, 42, &listener1)); EXPECT_EQ("% 2 == 0", listener1.str()); const Matcher is_zero = Eq(0); StringMatchResultListener listener2; EXPECT_FALSE(ExplainMatchResult(is_zero, 1.5, &listener2)); EXPECT_EQ("", listener2.str()); } MATCHER(ConstructNoArg, "") { return true; } MATCHER_P(Construct1Arg, arg1, "") { return true; } MATCHER_P2(Construct2Args, arg1, arg2, "") { return true; } TEST(MatcherConstruct, ExplicitVsImplicit) { { // No arg constructor can be constructed with empty brace. ConstructNoArgMatcher m = {}; (void)m; // And with no args ConstructNoArgMatcher m2; (void)m2; } { // The one arg constructor has an explicit constructor. // This is to prevent the implicit conversion. using M = Construct1ArgMatcherP; EXPECT_TRUE((std::is_constructible::value)); EXPECT_FALSE((std::is_convertible::value)); } { // Multiple arg matchers can be constructed with an implicit construction. Construct2ArgsMatcherP2 m = {1, 2.2}; (void)m; } } MATCHER_P(Really, inner_matcher, "") { return ExplainMatchResult(inner_matcher, arg, result_listener); } TEST(ExplainMatchResultTest, WorksInsideMATCHER) { EXPECT_THAT(0, Really(Eq(0))); } TEST(DescribeMatcherTest, WorksWithValue) { EXPECT_EQ("is equal to 42", DescribeMatcher(42)); EXPECT_EQ("isn't equal to 42", DescribeMatcher(42, true)); } TEST(DescribeMatcherTest, WorksWithMonomorphicMatcher) { const Matcher monomorphic = Le(0); EXPECT_EQ("is <= 0", DescribeMatcher(monomorphic)); EXPECT_EQ("isn't <= 0", DescribeMatcher(monomorphic, true)); } TEST(DescribeMatcherTest, WorksWithPolymorphicMatcher) { EXPECT_EQ("is even", DescribeMatcher(PolymorphicIsEven())); EXPECT_EQ("is odd", DescribeMatcher(PolymorphicIsEven(), true)); } TEST(AllArgsTest, WorksForTuple) { EXPECT_THAT(std::make_tuple(1, 2L), AllArgs(Lt())); EXPECT_THAT(std::make_tuple(2L, 1), Not(AllArgs(Lt()))); } TEST(AllArgsTest, WorksForNonTuple) { EXPECT_THAT(42, AllArgs(Gt(0))); EXPECT_THAT('a', Not(AllArgs(Eq('b')))); } class AllArgsHelper { public: AllArgsHelper() {} MOCK_METHOD2(Helper, int(char x, int y)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(AllArgsHelper); }; TEST(AllArgsTest, WorksInWithClause) { AllArgsHelper helper; ON_CALL(helper, Helper(_, _)) .With(AllArgs(Lt())) .WillByDefault(Return(1)); EXPECT_CALL(helper, Helper(_, _)); EXPECT_CALL(helper, Helper(_, _)) .With(AllArgs(Gt())) .WillOnce(Return(2)); EXPECT_EQ(1, helper.Helper('\1', 2)); EXPECT_EQ(2, helper.Helper('a', 1)); } class OptionalMatchersHelper { public: OptionalMatchersHelper() {} MOCK_METHOD0(NoArgs, int()); MOCK_METHOD1(OneArg, int(int y)); MOCK_METHOD2(TwoArgs, int(char x, int y)); MOCK_METHOD1(Overloaded, int(char x)); MOCK_METHOD2(Overloaded, int(char x, int y)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(OptionalMatchersHelper); }; TEST(AllArgsTest, WorksWithoutMatchers) { OptionalMatchersHelper helper; ON_CALL(helper, NoArgs).WillByDefault(Return(10)); ON_CALL(helper, OneArg).WillByDefault(Return(20)); ON_CALL(helper, TwoArgs).WillByDefault(Return(30)); EXPECT_EQ(10, helper.NoArgs()); EXPECT_EQ(20, helper.OneArg(1)); EXPECT_EQ(30, helper.TwoArgs('\1', 2)); EXPECT_CALL(helper, NoArgs).Times(1); EXPECT_CALL(helper, OneArg).WillOnce(Return(100)); EXPECT_CALL(helper, OneArg(17)).WillOnce(Return(200)); EXPECT_CALL(helper, TwoArgs).Times(0); EXPECT_EQ(10, helper.NoArgs()); EXPECT_EQ(100, helper.OneArg(1)); EXPECT_EQ(200, helper.OneArg(17)); } // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value // matches the matcher. TEST(MatcherAssertionTest, WorksWhenMatcherIsSatisfied) { ASSERT_THAT(5, Ge(2)) << "This should succeed."; ASSERT_THAT("Foo", EndsWith("oo")); EXPECT_THAT(2, AllOf(Le(7), Ge(0))) << "This should succeed too."; EXPECT_THAT("Hello", StartsWith("Hell")); } // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value // doesn't match the matcher. TEST(MatcherAssertionTest, WorksWhenMatcherIsNotSatisfied) { // 'n' must be static as it is used in an EXPECT_FATAL_FAILURE(), // which cannot reference auto variables. static unsigned short n; // NOLINT n = 5; EXPECT_FATAL_FAILURE(ASSERT_THAT(n, Gt(10)), "Value of: n\n" "Expected: is > 10\n" " Actual: 5" + OfType("unsigned short")); n = 0; EXPECT_NONFATAL_FAILURE( EXPECT_THAT(n, AllOf(Le(7), Ge(5))), "Value of: n\n" "Expected: (is <= 7) and (is >= 5)\n" " Actual: 0" + OfType("unsigned short")); } // Tests that ASSERT_THAT() and EXPECT_THAT() work when the argument // has a reference type. TEST(MatcherAssertionTest, WorksForByRefArguments) { // We use a static variable here as EXPECT_FATAL_FAILURE() cannot // reference auto variables. static int n; n = 0; EXPECT_THAT(n, AllOf(Le(7), Ref(n))); EXPECT_FATAL_FAILURE(ASSERT_THAT(n, Not(Ref(n))), "Value of: n\n" "Expected: does not reference the variable @"); // Tests the "Actual" part. EXPECT_FATAL_FAILURE(ASSERT_THAT(n, Not(Ref(n))), "Actual: 0" + OfType("int") + ", which is located @"); } // Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is // monomorphic. TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) { Matcher starts_with_he = StartsWith("he"); ASSERT_THAT("hello", starts_with_he); Matcher ends_with_ok = EndsWith("ok"); ASSERT_THAT("book", ends_with_ok); const std::string bad = "bad"; EXPECT_NONFATAL_FAILURE(EXPECT_THAT(bad, ends_with_ok), "Value of: bad\n" "Expected: ends with \"ok\"\n" " Actual: \"bad\""); Matcher is_greater_than_5 = Gt(5); EXPECT_NONFATAL_FAILURE(EXPECT_THAT(5, is_greater_than_5), "Value of: 5\n" "Expected: is > 5\n" " Actual: 5" + OfType("int")); } // Tests floating-point matchers. template class FloatingPointTest : public testing::Test { protected: typedef testing::internal::FloatingPoint Floating; typedef typename Floating::Bits Bits; FloatingPointTest() : max_ulps_(Floating::kMaxUlps), zero_bits_(Floating(0).bits()), one_bits_(Floating(1).bits()), infinity_bits_(Floating(Floating::Infinity()).bits()), close_to_positive_zero_( Floating::ReinterpretBits(zero_bits_ + max_ulps_/2)), close_to_negative_zero_( -Floating::ReinterpretBits(zero_bits_ + max_ulps_ - max_ulps_/2)), further_from_negative_zero_(-Floating::ReinterpretBits( zero_bits_ + max_ulps_ + 1 - max_ulps_/2)), close_to_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_)), further_from_one_(Floating::ReinterpretBits(one_bits_ + max_ulps_ + 1)), infinity_(Floating::Infinity()), close_to_infinity_( Floating::ReinterpretBits(infinity_bits_ - max_ulps_)), further_from_infinity_( Floating::ReinterpretBits(infinity_bits_ - max_ulps_ - 1)), max_(Floating::Max()), nan1_(Floating::ReinterpretBits(Floating::kExponentBitMask | 1)), nan2_(Floating::ReinterpretBits(Floating::kExponentBitMask | 200)) { } void TestSize() { EXPECT_EQ(sizeof(RawType), sizeof(Bits)); } // A battery of tests for FloatingEqMatcher::Matches. // matcher_maker is a pointer to a function which creates a FloatingEqMatcher. void TestMatches( testing::internal::FloatingEqMatcher (*matcher_maker)(RawType)) { Matcher m1 = matcher_maker(0.0); EXPECT_TRUE(m1.Matches(-0.0)); EXPECT_TRUE(m1.Matches(close_to_positive_zero_)); EXPECT_TRUE(m1.Matches(close_to_negative_zero_)); EXPECT_FALSE(m1.Matches(1.0)); Matcher m2 = matcher_maker(close_to_positive_zero_); EXPECT_FALSE(m2.Matches(further_from_negative_zero_)); Matcher m3 = matcher_maker(1.0); EXPECT_TRUE(m3.Matches(close_to_one_)); EXPECT_FALSE(m3.Matches(further_from_one_)); // Test commutativity: matcher_maker(0.0).Matches(1.0) was tested above. EXPECT_FALSE(m3.Matches(0.0)); Matcher m4 = matcher_maker(-infinity_); EXPECT_TRUE(m4.Matches(-close_to_infinity_)); Matcher m5 = matcher_maker(infinity_); EXPECT_TRUE(m5.Matches(close_to_infinity_)); // This is interesting as the representations of infinity_ and nan1_ // are only 1 DLP apart. EXPECT_FALSE(m5.Matches(nan1_)); // matcher_maker can produce a Matcher, which is needed in // some cases. Matcher m6 = matcher_maker(0.0); EXPECT_TRUE(m6.Matches(-0.0)); EXPECT_TRUE(m6.Matches(close_to_positive_zero_)); EXPECT_FALSE(m6.Matches(1.0)); // matcher_maker can produce a Matcher, which is needed in some // cases. Matcher m7 = matcher_maker(0.0); RawType x = 0.0; EXPECT_TRUE(m7.Matches(x)); x = 0.01f; EXPECT_FALSE(m7.Matches(x)); } // Pre-calculated numbers to be used by the tests. const Bits max_ulps_; const Bits zero_bits_; // The bits that represent 0.0. const Bits one_bits_; // The bits that represent 1.0. const Bits infinity_bits_; // The bits that represent +infinity. // Some numbers close to 0.0. const RawType close_to_positive_zero_; const RawType close_to_negative_zero_; const RawType further_from_negative_zero_; // Some numbers close to 1.0. const RawType close_to_one_; const RawType further_from_one_; // Some numbers close to +infinity. const RawType infinity_; const RawType close_to_infinity_; const RawType further_from_infinity_; // Maximum representable value that's not infinity. const RawType max_; // Some NaNs. const RawType nan1_; const RawType nan2_; }; // Tests floating-point matchers with fixed epsilons. template class FloatingPointNearTest : public FloatingPointTest { protected: typedef FloatingPointTest ParentType; // A battery of tests for FloatingEqMatcher::Matches with a fixed epsilon. // matcher_maker is a pointer to a function which creates a FloatingEqMatcher. void TestNearMatches( testing::internal::FloatingEqMatcher (*matcher_maker)(RawType, RawType)) { Matcher m1 = matcher_maker(0.0, 0.0); EXPECT_TRUE(m1.Matches(0.0)); EXPECT_TRUE(m1.Matches(-0.0)); EXPECT_FALSE(m1.Matches(ParentType::close_to_positive_zero_)); EXPECT_FALSE(m1.Matches(ParentType::close_to_negative_zero_)); EXPECT_FALSE(m1.Matches(1.0)); Matcher m2 = matcher_maker(0.0, 1.0); EXPECT_TRUE(m2.Matches(0.0)); EXPECT_TRUE(m2.Matches(-0.0)); EXPECT_TRUE(m2.Matches(1.0)); EXPECT_TRUE(m2.Matches(-1.0)); EXPECT_FALSE(m2.Matches(ParentType::close_to_one_)); EXPECT_FALSE(m2.Matches(-ParentType::close_to_one_)); // Check that inf matches inf, regardless of the of the specified max // absolute error. Matcher m3 = matcher_maker(ParentType::infinity_, 0.0); EXPECT_TRUE(m3.Matches(ParentType::infinity_)); EXPECT_FALSE(m3.Matches(ParentType::close_to_infinity_)); EXPECT_FALSE(m3.Matches(-ParentType::infinity_)); Matcher m4 = matcher_maker(-ParentType::infinity_, 0.0); EXPECT_TRUE(m4.Matches(-ParentType::infinity_)); EXPECT_FALSE(m4.Matches(-ParentType::close_to_infinity_)); EXPECT_FALSE(m4.Matches(ParentType::infinity_)); // Test various overflow scenarios. Matcher m5 = matcher_maker(ParentType::max_, ParentType::max_); EXPECT_TRUE(m5.Matches(ParentType::max_)); EXPECT_FALSE(m5.Matches(-ParentType::max_)); Matcher m6 = matcher_maker(-ParentType::max_, ParentType::max_); EXPECT_FALSE(m6.Matches(ParentType::max_)); EXPECT_TRUE(m6.Matches(-ParentType::max_)); Matcher m7 = matcher_maker(ParentType::max_, 0); EXPECT_TRUE(m7.Matches(ParentType::max_)); EXPECT_FALSE(m7.Matches(-ParentType::max_)); Matcher m8 = matcher_maker(-ParentType::max_, 0); EXPECT_FALSE(m8.Matches(ParentType::max_)); EXPECT_TRUE(m8.Matches(-ParentType::max_)); // The difference between max() and -max() normally overflows to infinity, // but it should still match if the max_abs_error is also infinity. Matcher m9 = matcher_maker( ParentType::max_, ParentType::infinity_); EXPECT_TRUE(m8.Matches(-ParentType::max_)); // matcher_maker can produce a Matcher, which is needed in // some cases. Matcher m10 = matcher_maker(0.0, 1.0); EXPECT_TRUE(m10.Matches(-0.0)); EXPECT_TRUE(m10.Matches(ParentType::close_to_positive_zero_)); EXPECT_FALSE(m10.Matches(ParentType::close_to_one_)); // matcher_maker can produce a Matcher, which is needed in some // cases. Matcher m11 = matcher_maker(0.0, 1.0); RawType x = 0.0; EXPECT_TRUE(m11.Matches(x)); x = 1.0f; EXPECT_TRUE(m11.Matches(x)); x = -1.0f; EXPECT_TRUE(m11.Matches(x)); x = 1.1f; EXPECT_FALSE(m11.Matches(x)); x = -1.1f; EXPECT_FALSE(m11.Matches(x)); } }; // Instantiate FloatingPointTest for testing floats. typedef FloatingPointTest FloatTest; TEST_F(FloatTest, FloatEqApproximatelyMatchesFloats) { TestMatches(&FloatEq); } TEST_F(FloatTest, NanSensitiveFloatEqApproximatelyMatchesFloats) { TestMatches(&NanSensitiveFloatEq); } TEST_F(FloatTest, FloatEqCannotMatchNaN) { // FloatEq never matches NaN. Matcher m = FloatEq(nan1_); EXPECT_FALSE(m.Matches(nan1_)); EXPECT_FALSE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(FloatTest, NanSensitiveFloatEqCanMatchNaN) { // NanSensitiveFloatEq will match NaN. Matcher m = NanSensitiveFloatEq(nan1_); EXPECT_TRUE(m.Matches(nan1_)); EXPECT_TRUE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(FloatTest, FloatEqCanDescribeSelf) { Matcher m1 = FloatEq(2.0f); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); Matcher m2 = FloatEq(0.5f); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); Matcher m3 = FloatEq(nan1_); EXPECT_EQ("never matches", Describe(m3)); EXPECT_EQ("is anything", DescribeNegation(m3)); } TEST_F(FloatTest, NanSensitiveFloatEqCanDescribeSelf) { Matcher m1 = NanSensitiveFloatEq(2.0f); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); Matcher m2 = NanSensitiveFloatEq(0.5f); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); Matcher m3 = NanSensitiveFloatEq(nan1_); EXPECT_EQ("is NaN", Describe(m3)); EXPECT_EQ("isn't NaN", DescribeNegation(m3)); } // Instantiate FloatingPointTest for testing floats with a user-specified // max absolute error. typedef FloatingPointNearTest FloatNearTest; TEST_F(FloatNearTest, FloatNearMatches) { TestNearMatches(&FloatNear); } TEST_F(FloatNearTest, NanSensitiveFloatNearApproximatelyMatchesFloats) { TestNearMatches(&NanSensitiveFloatNear); } TEST_F(FloatNearTest, FloatNearCanDescribeSelf) { Matcher m1 = FloatNear(2.0f, 0.5f); EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); EXPECT_EQ( "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); Matcher m2 = FloatNear(0.5f, 0.5f); EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); EXPECT_EQ( "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); Matcher m3 = FloatNear(nan1_, 0.0); EXPECT_EQ("never matches", Describe(m3)); EXPECT_EQ("is anything", DescribeNegation(m3)); } TEST_F(FloatNearTest, NanSensitiveFloatNearCanDescribeSelf) { Matcher m1 = NanSensitiveFloatNear(2.0f, 0.5f); EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); EXPECT_EQ( "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); Matcher m2 = NanSensitiveFloatNear(0.5f, 0.5f); EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); EXPECT_EQ( "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); Matcher m3 = NanSensitiveFloatNear(nan1_, 0.1f); EXPECT_EQ("is NaN", Describe(m3)); EXPECT_EQ("isn't NaN", DescribeNegation(m3)); } TEST_F(FloatNearTest, FloatNearCannotMatchNaN) { // FloatNear never matches NaN. Matcher m = FloatNear(ParentType::nan1_, 0.1f); EXPECT_FALSE(m.Matches(nan1_)); EXPECT_FALSE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(FloatNearTest, NanSensitiveFloatNearCanMatchNaN) { // NanSensitiveFloatNear will match NaN. Matcher m = NanSensitiveFloatNear(nan1_, 0.1f); EXPECT_TRUE(m.Matches(nan1_)); EXPECT_TRUE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } // Instantiate FloatingPointTest for testing doubles. typedef FloatingPointTest DoubleTest; TEST_F(DoubleTest, DoubleEqApproximatelyMatchesDoubles) { TestMatches(&DoubleEq); } TEST_F(DoubleTest, NanSensitiveDoubleEqApproximatelyMatchesDoubles) { TestMatches(&NanSensitiveDoubleEq); } TEST_F(DoubleTest, DoubleEqCannotMatchNaN) { // DoubleEq never matches NaN. Matcher m = DoubleEq(nan1_); EXPECT_FALSE(m.Matches(nan1_)); EXPECT_FALSE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(DoubleTest, NanSensitiveDoubleEqCanMatchNaN) { // NanSensitiveDoubleEq will match NaN. Matcher m = NanSensitiveDoubleEq(nan1_); EXPECT_TRUE(m.Matches(nan1_)); EXPECT_TRUE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(DoubleTest, DoubleEqCanDescribeSelf) { Matcher m1 = DoubleEq(2.0); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); Matcher m2 = DoubleEq(0.5); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); Matcher m3 = DoubleEq(nan1_); EXPECT_EQ("never matches", Describe(m3)); EXPECT_EQ("is anything", DescribeNegation(m3)); } TEST_F(DoubleTest, NanSensitiveDoubleEqCanDescribeSelf) { Matcher m1 = NanSensitiveDoubleEq(2.0); EXPECT_EQ("is approximately 2", Describe(m1)); EXPECT_EQ("isn't approximately 2", DescribeNegation(m1)); Matcher m2 = NanSensitiveDoubleEq(0.5); EXPECT_EQ("is approximately 0.5", Describe(m2)); EXPECT_EQ("isn't approximately 0.5", DescribeNegation(m2)); Matcher m3 = NanSensitiveDoubleEq(nan1_); EXPECT_EQ("is NaN", Describe(m3)); EXPECT_EQ("isn't NaN", DescribeNegation(m3)); } // Instantiate FloatingPointTest for testing floats with a user-specified // max absolute error. typedef FloatingPointNearTest DoubleNearTest; TEST_F(DoubleNearTest, DoubleNearMatches) { TestNearMatches(&DoubleNear); } TEST_F(DoubleNearTest, NanSensitiveDoubleNearApproximatelyMatchesDoubles) { TestNearMatches(&NanSensitiveDoubleNear); } TEST_F(DoubleNearTest, DoubleNearCanDescribeSelf) { Matcher m1 = DoubleNear(2.0, 0.5); EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); EXPECT_EQ( "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); Matcher m2 = DoubleNear(0.5, 0.5); EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); EXPECT_EQ( "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); Matcher m3 = DoubleNear(nan1_, 0.0); EXPECT_EQ("never matches", Describe(m3)); EXPECT_EQ("is anything", DescribeNegation(m3)); } TEST_F(DoubleNearTest, ExplainsResultWhenMatchFails) { EXPECT_EQ("", Explain(DoubleNear(2.0, 0.1), 2.05)); EXPECT_EQ("which is 0.2 from 2", Explain(DoubleNear(2.0, 0.1), 2.2)); EXPECT_EQ("which is -0.3 from 2", Explain(DoubleNear(2.0, 0.1), 1.7)); const std::string explanation = Explain(DoubleNear(2.1, 1e-10), 2.1 + 1.2e-10); // Different C++ implementations may print floating-point numbers // slightly differently. EXPECT_TRUE(explanation == "which is 1.2e-10 from 2.1" || // GCC explanation == "which is 1.2e-010 from 2.1") // MSVC << " where explanation is \"" << explanation << "\"."; } TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanDescribeSelf) { Matcher m1 = NanSensitiveDoubleNear(2.0, 0.5); EXPECT_EQ("is approximately 2 (absolute error <= 0.5)", Describe(m1)); EXPECT_EQ( "isn't approximately 2 (absolute error > 0.5)", DescribeNegation(m1)); Matcher m2 = NanSensitiveDoubleNear(0.5, 0.5); EXPECT_EQ("is approximately 0.5 (absolute error <= 0.5)", Describe(m2)); EXPECT_EQ( "isn't approximately 0.5 (absolute error > 0.5)", DescribeNegation(m2)); Matcher m3 = NanSensitiveDoubleNear(nan1_, 0.1); EXPECT_EQ("is NaN", Describe(m3)); EXPECT_EQ("isn't NaN", DescribeNegation(m3)); } TEST_F(DoubleNearTest, DoubleNearCannotMatchNaN) { // DoubleNear never matches NaN. Matcher m = DoubleNear(ParentType::nan1_, 0.1); EXPECT_FALSE(m.Matches(nan1_)); EXPECT_FALSE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST_F(DoubleNearTest, NanSensitiveDoubleNearCanMatchNaN) { // NanSensitiveDoubleNear will match NaN. Matcher m = NanSensitiveDoubleNear(nan1_, 0.1); EXPECT_TRUE(m.Matches(nan1_)); EXPECT_TRUE(m.Matches(nan2_)); EXPECT_FALSE(m.Matches(1.0)); } TEST(PointeeTest, RawPointer) { const Matcher m = Pointee(Ge(0)); int n = 1; EXPECT_TRUE(m.Matches(&n)); n = -1; EXPECT_FALSE(m.Matches(&n)); EXPECT_FALSE(m.Matches(nullptr)); } TEST(PointeeTest, RawPointerToConst) { const Matcher m = Pointee(Ge(0)); double x = 1; EXPECT_TRUE(m.Matches(&x)); x = -1; EXPECT_FALSE(m.Matches(&x)); EXPECT_FALSE(m.Matches(nullptr)); } TEST(PointeeTest, ReferenceToConstRawPointer) { const Matcher m = Pointee(Ge(0)); int n = 1; EXPECT_TRUE(m.Matches(&n)); n = -1; EXPECT_FALSE(m.Matches(&n)); EXPECT_FALSE(m.Matches(nullptr)); } TEST(PointeeTest, ReferenceToNonConstRawPointer) { const Matcher m = Pointee(Ge(0)); double x = 1.0; double* p = &x; EXPECT_TRUE(m.Matches(p)); x = -1; EXPECT_FALSE(m.Matches(p)); p = nullptr; EXPECT_FALSE(m.Matches(p)); } TEST(PointeeTest, SmartPointer) { const Matcher> m = Pointee(Ge(0)); std::unique_ptr n(new int(1)); EXPECT_TRUE(m.Matches(n)); } TEST(PointeeTest, SmartPointerToConst) { const Matcher> m = Pointee(Ge(0)); // There's no implicit conversion from unique_ptr to const // unique_ptr, so we must pass a unique_ptr into the // matcher. std::unique_ptr n(new int(1)); EXPECT_TRUE(m.Matches(n)); } TEST(PointerTest, RawPointer) { int n = 1; const Matcher m = Pointer(Eq(&n)); EXPECT_TRUE(m.Matches(&n)); int* p = nullptr; EXPECT_FALSE(m.Matches(p)); EXPECT_FALSE(m.Matches(nullptr)); } TEST(PointerTest, RawPointerToConst) { int n = 1; const Matcher m = Pointer(Eq(&n)); EXPECT_TRUE(m.Matches(&n)); int* p = nullptr; EXPECT_FALSE(m.Matches(p)); EXPECT_FALSE(m.Matches(nullptr)); } TEST(PointerTest, SmartPointer) { std::unique_ptr n(new int(10)); int* raw_n = n.get(); const Matcher> m = Pointer(Eq(raw_n)); EXPECT_TRUE(m.Matches(n)); } TEST(PointerTest, SmartPointerToConst) { std::unique_ptr n(new int(10)); const int* raw_n = n.get(); const Matcher> m = Pointer(Eq(raw_n)); // There's no implicit conversion from unique_ptr to const // unique_ptr, so we must pass a unique_ptr into the // matcher. std::unique_ptr p(new int(10)); EXPECT_FALSE(m.Matches(p)); } TEST(AddressTest, NonConst) { int n = 1; const Matcher m = Address(Eq(&n)); EXPECT_TRUE(m.Matches(n)); int other = 5; EXPECT_FALSE(m.Matches(other)); int& n_ref = n; EXPECT_TRUE(m.Matches(n_ref)); } TEST(AddressTest, Const) { const int n = 1; const Matcher m = Address(Eq(&n)); EXPECT_TRUE(m.Matches(n)); int other = 5; EXPECT_FALSE(m.Matches(other)); } TEST(AddressTest, MatcherDoesntCopy) { std::unique_ptr n(new int(1)); const Matcher> m = Address(Eq(&n)); EXPECT_TRUE(m.Matches(n)); } TEST(AddressTest, Describe) { Matcher matcher = Address(_); EXPECT_EQ("has address that is anything", Describe(matcher)); EXPECT_EQ("does not have address that is anything", DescribeNegation(matcher)); } MATCHER_P(FieldIIs, inner_matcher, "") { return ExplainMatchResult(inner_matcher, arg.i, result_listener); } #if GTEST_HAS_RTTI TEST(WhenDynamicCastToTest, SameType) { Derived derived; derived.i = 4; // Right type. A pointer is passed down. Base* as_base_ptr = &derived; EXPECT_THAT(as_base_ptr, WhenDynamicCastTo(Not(IsNull()))); EXPECT_THAT(as_base_ptr, WhenDynamicCastTo(Pointee(FieldIIs(4)))); EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo(Pointee(FieldIIs(5))))); } TEST(WhenDynamicCastToTest, WrongTypes) { Base base; Derived derived; OtherDerived other_derived; // Wrong types. NULL is passed. EXPECT_THAT(&base, Not(WhenDynamicCastTo(Pointee(_)))); EXPECT_THAT(&base, WhenDynamicCastTo(IsNull())); Base* as_base_ptr = &derived; EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo(Pointee(_)))); EXPECT_THAT(as_base_ptr, WhenDynamicCastTo(IsNull())); as_base_ptr = &other_derived; EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo(Pointee(_)))); EXPECT_THAT(as_base_ptr, WhenDynamicCastTo(IsNull())); } TEST(WhenDynamicCastToTest, AlreadyNull) { // Already NULL. Base* as_base_ptr = nullptr; EXPECT_THAT(as_base_ptr, WhenDynamicCastTo(IsNull())); } struct AmbiguousCastTypes { class VirtualDerived : public virtual Base {}; class DerivedSub1 : public VirtualDerived {}; class DerivedSub2 : public VirtualDerived {}; class ManyDerivedInHierarchy : public DerivedSub1, public DerivedSub2 {}; }; TEST(WhenDynamicCastToTest, AmbiguousCast) { AmbiguousCastTypes::DerivedSub1 sub1; AmbiguousCastTypes::ManyDerivedInHierarchy many_derived; // Multiply derived from Base. dynamic_cast<> returns NULL. Base* as_base_ptr = static_cast(&many_derived); EXPECT_THAT(as_base_ptr, WhenDynamicCastTo(IsNull())); as_base_ptr = &sub1; EXPECT_THAT( as_base_ptr, WhenDynamicCastTo(Not(IsNull()))); } TEST(WhenDynamicCastToTest, Describe) { Matcher matcher = WhenDynamicCastTo(Pointee(_)); const std::string prefix = "when dynamic_cast to " + internal::GetTypeName() + ", "; EXPECT_EQ(prefix + "points to a value that is anything", Describe(matcher)); EXPECT_EQ(prefix + "does not point to a value that is anything", DescribeNegation(matcher)); } TEST(WhenDynamicCastToTest, Explain) { Matcher matcher = WhenDynamicCastTo(Pointee(_)); Base* null = nullptr; EXPECT_THAT(Explain(matcher, null), HasSubstr("NULL")); Derived derived; EXPECT_TRUE(matcher.Matches(&derived)); EXPECT_THAT(Explain(matcher, &derived), HasSubstr("which points to ")); // With references, the matcher itself can fail. Test for that one. Matcher ref_matcher = WhenDynamicCastTo(_); EXPECT_THAT(Explain(ref_matcher, derived), HasSubstr("which cannot be dynamic_cast")); } TEST(WhenDynamicCastToTest, GoodReference) { Derived derived; derived.i = 4; Base& as_base_ref = derived; EXPECT_THAT(as_base_ref, WhenDynamicCastTo(FieldIIs(4))); EXPECT_THAT(as_base_ref, WhenDynamicCastTo(Not(FieldIIs(5)))); } TEST(WhenDynamicCastToTest, BadReference) { Derived derived; Base& as_base_ref = derived; EXPECT_THAT(as_base_ref, Not(WhenDynamicCastTo(_))); } #endif // GTEST_HAS_RTTI // Minimal const-propagating pointer. template class ConstPropagatingPtr { public: typedef T element_type; ConstPropagatingPtr() : val_() {} explicit ConstPropagatingPtr(T* t) : val_(t) {} ConstPropagatingPtr(const ConstPropagatingPtr& other) : val_(other.val_) {} T* get() { return val_; } T& operator*() { return *val_; } // Most smart pointers return non-const T* and T& from the next methods. const T* get() const { return val_; } const T& operator*() const { return *val_; } private: T* val_; }; TEST(PointeeTest, WorksWithConstPropagatingPointers) { const Matcher< ConstPropagatingPtr > m = Pointee(Lt(5)); int three = 3; const ConstPropagatingPtr co(&three); ConstPropagatingPtr o(&three); EXPECT_TRUE(m.Matches(o)); EXPECT_TRUE(m.Matches(co)); *o = 6; EXPECT_FALSE(m.Matches(o)); EXPECT_FALSE(m.Matches(ConstPropagatingPtr())); } TEST(PointeeTest, NeverMatchesNull) { const Matcher m = Pointee(_); EXPECT_FALSE(m.Matches(nullptr)); } // Tests that we can write Pointee(value) instead of Pointee(Eq(value)). TEST(PointeeTest, MatchesAgainstAValue) { const Matcher m = Pointee(5); int n = 5; EXPECT_TRUE(m.Matches(&n)); n = -1; EXPECT_FALSE(m.Matches(&n)); EXPECT_FALSE(m.Matches(nullptr)); } TEST(PointeeTest, CanDescribeSelf) { const Matcher m = Pointee(Gt(3)); EXPECT_EQ("points to a value that is > 3", Describe(m)); EXPECT_EQ("does not point to a value that is > 3", DescribeNegation(m)); } TEST(PointeeTest, CanExplainMatchResult) { const Matcher m = Pointee(StartsWith("Hi")); EXPECT_EQ("", Explain(m, static_cast(nullptr))); const Matcher m2 = Pointee(GreaterThan(1)); // NOLINT long n = 3; // NOLINT EXPECT_EQ("which points to 3" + OfType("long") + ", which is 2 more than 1", Explain(m2, &n)); } TEST(PointeeTest, AlwaysExplainsPointee) { const Matcher m = Pointee(0); int n = 42; EXPECT_EQ("which points to 42" + OfType("int"), Explain(m, &n)); } // An uncopyable class. class Uncopyable { public: Uncopyable() : value_(-1) {} explicit Uncopyable(int a_value) : value_(a_value) {} int value() const { return value_; } void set_value(int i) { value_ = i; } private: int value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(Uncopyable); }; // Returns true if and only if x.value() is positive. bool ValueIsPositive(const Uncopyable& x) { return x.value() > 0; } MATCHER_P(UncopyableIs, inner_matcher, "") { return ExplainMatchResult(inner_matcher, arg.value(), result_listener); } // A user-defined struct for testing Field(). struct AStruct { AStruct() : x(0), y(1.0), z(5), p(nullptr) {} AStruct(const AStruct& rhs) : x(rhs.x), y(rhs.y), z(rhs.z.value()), p(rhs.p) {} int x; // A non-const field. const double y; // A const field. Uncopyable z; // An uncopyable field. const char* p; // A pointer field. }; // A derived struct for testing Field(). struct DerivedStruct : public AStruct { char ch; }; // Tests that Field(&Foo::field, ...) works when field is non-const. TEST(FieldTest, WorksForNonConstField) { Matcher m = Field(&AStruct::x, Ge(0)); Matcher m_with_name = Field("x", &AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(a)); EXPECT_TRUE(m_with_name.Matches(a)); a.x = -1; EXPECT_FALSE(m.Matches(a)); EXPECT_FALSE(m_with_name.Matches(a)); } // Tests that Field(&Foo::field, ...) works when field is const. TEST(FieldTest, WorksForConstField) { AStruct a; Matcher m = Field(&AStruct::y, Ge(0.0)); Matcher m_with_name = Field("y", &AStruct::y, Ge(0.0)); EXPECT_TRUE(m.Matches(a)); EXPECT_TRUE(m_with_name.Matches(a)); m = Field(&AStruct::y, Le(0.0)); m_with_name = Field("y", &AStruct::y, Le(0.0)); EXPECT_FALSE(m.Matches(a)); EXPECT_FALSE(m_with_name.Matches(a)); } // Tests that Field(&Foo::field, ...) works when field is not copyable. TEST(FieldTest, WorksForUncopyableField) { AStruct a; Matcher m = Field(&AStruct::z, Truly(ValueIsPositive)); EXPECT_TRUE(m.Matches(a)); m = Field(&AStruct::z, Not(Truly(ValueIsPositive))); EXPECT_FALSE(m.Matches(a)); } // Tests that Field(&Foo::field, ...) works when field is a pointer. TEST(FieldTest, WorksForPointerField) { // Matching against NULL. Matcher m = Field(&AStruct::p, static_cast(nullptr)); AStruct a; EXPECT_TRUE(m.Matches(a)); a.p = "hi"; EXPECT_FALSE(m.Matches(a)); // Matching a pointer that is not NULL. m = Field(&AStruct::p, StartsWith("hi")); a.p = "hill"; EXPECT_TRUE(m.Matches(a)); a.p = "hole"; EXPECT_FALSE(m.Matches(a)); } // Tests that Field() works when the object is passed by reference. TEST(FieldTest, WorksForByRefArgument) { Matcher m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(a)); a.x = -1; EXPECT_FALSE(m.Matches(a)); } // Tests that Field(&Foo::field, ...) works when the argument's type // is a sub-type of Foo. TEST(FieldTest, WorksForArgumentOfSubType) { // Note that the matcher expects DerivedStruct but we say AStruct // inside Field(). Matcher m = Field(&AStruct::x, Ge(0)); DerivedStruct d; EXPECT_TRUE(m.Matches(d)); d.x = -1; EXPECT_FALSE(m.Matches(d)); } // Tests that Field(&Foo::field, m) works when field's type and m's // argument type are compatible but not the same. TEST(FieldTest, WorksForCompatibleMatcherType) { // The field is an int, but the inner matcher expects a signed char. Matcher m = Field(&AStruct::x, Matcher(Ge(0))); AStruct a; EXPECT_TRUE(m.Matches(a)); a.x = -1; EXPECT_FALSE(m.Matches(a)); } // Tests that Field() can describe itself. TEST(FieldTest, CanDescribeSelf) { Matcher m = Field(&AStruct::x, Ge(0)); EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); } TEST(FieldTest, CanDescribeSelfWithFieldName) { Matcher m = Field("field_name", &AStruct::x, Ge(0)); EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m)); EXPECT_EQ("is an object whose field `field_name` isn't >= 0", DescribeNegation(m)); } // Tests that Field() can explain the match result. TEST(FieldTest, CanExplainMatchResult) { Matcher m = Field(&AStruct::x, Ge(0)); AStruct a; a.x = 1; EXPECT_EQ("whose given field is 1" + OfType("int"), Explain(m, a)); m = Field(&AStruct::x, GreaterThan(0)); EXPECT_EQ( "whose given field is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, a)); } TEST(FieldTest, CanExplainMatchResultWithFieldName) { Matcher m = Field("field_name", &AStruct::x, Ge(0)); AStruct a; a.x = 1; EXPECT_EQ("whose field `field_name` is 1" + OfType("int"), Explain(m, a)); m = Field("field_name", &AStruct::x, GreaterThan(0)); EXPECT_EQ("whose field `field_name` is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, a)); } // Tests that Field() works when the argument is a pointer to const. TEST(FieldForPointerTest, WorksForPointerToConst) { Matcher m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(&a)); a.x = -1; EXPECT_FALSE(m.Matches(&a)); } // Tests that Field() works when the argument is a pointer to non-const. TEST(FieldForPointerTest, WorksForPointerToNonConst) { Matcher m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(&a)); a.x = -1; EXPECT_FALSE(m.Matches(&a)); } // Tests that Field() works when the argument is a reference to a const pointer. TEST(FieldForPointerTest, WorksForReferenceToConstPointer) { Matcher m = Field(&AStruct::x, Ge(0)); AStruct a; EXPECT_TRUE(m.Matches(&a)); a.x = -1; EXPECT_FALSE(m.Matches(&a)); } // Tests that Field() does not match the NULL pointer. TEST(FieldForPointerTest, DoesNotMatchNull) { Matcher m = Field(&AStruct::x, _); EXPECT_FALSE(m.Matches(nullptr)); } // Tests that Field(&Foo::field, ...) works when the argument's type // is a sub-type of const Foo*. TEST(FieldForPointerTest, WorksForArgumentOfSubType) { // Note that the matcher expects DerivedStruct but we say AStruct // inside Field(). Matcher m = Field(&AStruct::x, Ge(0)); DerivedStruct d; EXPECT_TRUE(m.Matches(&d)); d.x = -1; EXPECT_FALSE(m.Matches(&d)); } // Tests that Field() can describe itself when used to match a pointer. TEST(FieldForPointerTest, CanDescribeSelf) { Matcher m = Field(&AStruct::x, Ge(0)); EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); } TEST(FieldForPointerTest, CanDescribeSelfWithFieldName) { Matcher m = Field("field_name", &AStruct::x, Ge(0)); EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m)); EXPECT_EQ("is an object whose field `field_name` isn't >= 0", DescribeNegation(m)); } // Tests that Field() can explain the result of matching a pointer. TEST(FieldForPointerTest, CanExplainMatchResult) { Matcher m = Field(&AStruct::x, Ge(0)); AStruct a; a.x = 1; EXPECT_EQ("", Explain(m, static_cast(nullptr))); EXPECT_EQ("which points to an object whose given field is 1" + OfType("int"), Explain(m, &a)); m = Field(&AStruct::x, GreaterThan(0)); EXPECT_EQ("which points to an object whose given field is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, &a)); } TEST(FieldForPointerTest, CanExplainMatchResultWithFieldName) { Matcher m = Field("field_name", &AStruct::x, Ge(0)); AStruct a; a.x = 1; EXPECT_EQ("", Explain(m, static_cast(nullptr))); EXPECT_EQ( "which points to an object whose field `field_name` is 1" + OfType("int"), Explain(m, &a)); m = Field("field_name", &AStruct::x, GreaterThan(0)); EXPECT_EQ("which points to an object whose field `field_name` is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, &a)); } // A user-defined class for testing Property(). class AClass { public: AClass() : n_(0) {} // A getter that returns a non-reference. int n() const { return n_; } void set_n(int new_n) { n_ = new_n; } // A getter that returns a reference to const. const std::string& s() const { return s_; } const std::string& s_ref() const & { return s_; } void set_s(const std::string& new_s) { s_ = new_s; } // A getter that returns a reference to non-const. double& x() const { return x_; } private: int n_; std::string s_; static double x_; }; double AClass::x_ = 0.0; // A derived class for testing Property(). class DerivedClass : public AClass { public: int k() const { return k_; } private: int k_; }; // Tests that Property(&Foo::property, ...) works when property() // returns a non-reference. TEST(PropertyTest, WorksForNonReferenceProperty) { Matcher m = Property(&AClass::n, Ge(0)); Matcher m_with_name = Property("n", &AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_TRUE(m.Matches(a)); EXPECT_TRUE(m_with_name.Matches(a)); a.set_n(-1); EXPECT_FALSE(m.Matches(a)); EXPECT_FALSE(m_with_name.Matches(a)); } // Tests that Property(&Foo::property, ...) works when property() // returns a reference to const. TEST(PropertyTest, WorksForReferenceToConstProperty) { Matcher m = Property(&AClass::s, StartsWith("hi")); Matcher m_with_name = Property("s", &AClass::s, StartsWith("hi")); AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(a)); EXPECT_TRUE(m_with_name.Matches(a)); a.set_s("hole"); EXPECT_FALSE(m.Matches(a)); EXPECT_FALSE(m_with_name.Matches(a)); } // Tests that Property(&Foo::property, ...) works when property() is // ref-qualified. TEST(PropertyTest, WorksForRefQualifiedProperty) { Matcher m = Property(&AClass::s_ref, StartsWith("hi")); Matcher m_with_name = Property("s", &AClass::s_ref, StartsWith("hi")); AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(a)); EXPECT_TRUE(m_with_name.Matches(a)); a.set_s("hole"); EXPECT_FALSE(m.Matches(a)); EXPECT_FALSE(m_with_name.Matches(a)); } // Tests that Property(&Foo::property, ...) works when property() // returns a reference to non-const. TEST(PropertyTest, WorksForReferenceToNonConstProperty) { double x = 0.0; AClass a; Matcher m = Property(&AClass::x, Ref(x)); EXPECT_FALSE(m.Matches(a)); m = Property(&AClass::x, Not(Ref(x))); EXPECT_TRUE(m.Matches(a)); } // Tests that Property(&Foo::property, ...) works when the argument is // passed by value. TEST(PropertyTest, WorksForByValueArgument) { Matcher m = Property(&AClass::s, StartsWith("hi")); AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(a)); a.set_s("hole"); EXPECT_FALSE(m.Matches(a)); } // Tests that Property(&Foo::property, ...) works when the argument's // type is a sub-type of Foo. TEST(PropertyTest, WorksForArgumentOfSubType) { // The matcher expects a DerivedClass, but inside the Property() we // say AClass. Matcher m = Property(&AClass::n, Ge(0)); DerivedClass d; d.set_n(1); EXPECT_TRUE(m.Matches(d)); d.set_n(-1); EXPECT_FALSE(m.Matches(d)); } // Tests that Property(&Foo::property, m) works when property()'s type // and m's argument type are compatible but different. TEST(PropertyTest, WorksForCompatibleMatcherType) { // n() returns an int but the inner matcher expects a signed char. Matcher m = Property(&AClass::n, Matcher(Ge(0))); Matcher m_with_name = Property("n", &AClass::n, Matcher(Ge(0))); AClass a; EXPECT_TRUE(m.Matches(a)); EXPECT_TRUE(m_with_name.Matches(a)); a.set_n(-1); EXPECT_FALSE(m.Matches(a)); EXPECT_FALSE(m_with_name.Matches(a)); } // Tests that Property() can describe itself. TEST(PropertyTest, CanDescribeSelf) { Matcher m = Property(&AClass::n, Ge(0)); EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); EXPECT_EQ("is an object whose given property isn't >= 0", DescribeNegation(m)); } TEST(PropertyTest, CanDescribeSelfWithPropertyName) { Matcher m = Property("fancy_name", &AClass::n, Ge(0)); EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m)); EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0", DescribeNegation(m)); } // Tests that Property() can explain the match result. TEST(PropertyTest, CanExplainMatchResult) { Matcher m = Property(&AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_EQ("whose given property is 1" + OfType("int"), Explain(m, a)); m = Property(&AClass::n, GreaterThan(0)); EXPECT_EQ( "whose given property is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, a)); } TEST(PropertyTest, CanExplainMatchResultWithPropertyName) { Matcher m = Property("fancy_name", &AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int"), Explain(m, a)); m = Property("fancy_name", &AClass::n, GreaterThan(0)); EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, a)); } // Tests that Property() works when the argument is a pointer to const. TEST(PropertyForPointerTest, WorksForPointerToConst) { Matcher m = Property(&AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_TRUE(m.Matches(&a)); a.set_n(-1); EXPECT_FALSE(m.Matches(&a)); } // Tests that Property() works when the argument is a pointer to non-const. TEST(PropertyForPointerTest, WorksForPointerToNonConst) { Matcher m = Property(&AClass::s, StartsWith("hi")); AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(&a)); a.set_s("hole"); EXPECT_FALSE(m.Matches(&a)); } // Tests that Property() works when the argument is a reference to a // const pointer. TEST(PropertyForPointerTest, WorksForReferenceToConstPointer) { Matcher m = Property(&AClass::s, StartsWith("hi")); AClass a; a.set_s("hill"); EXPECT_TRUE(m.Matches(&a)); a.set_s("hole"); EXPECT_FALSE(m.Matches(&a)); } // Tests that Property() does not match the NULL pointer. TEST(PropertyForPointerTest, WorksForReferenceToNonConstProperty) { Matcher m = Property(&AClass::x, _); EXPECT_FALSE(m.Matches(nullptr)); } // Tests that Property(&Foo::property, ...) works when the argument's // type is a sub-type of const Foo*. TEST(PropertyForPointerTest, WorksForArgumentOfSubType) { // The matcher expects a DerivedClass, but inside the Property() we // say AClass. Matcher m = Property(&AClass::n, Ge(0)); DerivedClass d; d.set_n(1); EXPECT_TRUE(m.Matches(&d)); d.set_n(-1); EXPECT_FALSE(m.Matches(&d)); } // Tests that Property() can describe itself when used to match a pointer. TEST(PropertyForPointerTest, CanDescribeSelf) { Matcher m = Property(&AClass::n, Ge(0)); EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); EXPECT_EQ("is an object whose given property isn't >= 0", DescribeNegation(m)); } TEST(PropertyForPointerTest, CanDescribeSelfWithPropertyDescription) { Matcher m = Property("fancy_name", &AClass::n, Ge(0)); EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m)); EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0", DescribeNegation(m)); } // Tests that Property() can explain the result of matching a pointer. TEST(PropertyForPointerTest, CanExplainMatchResult) { Matcher m = Property(&AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_EQ("", Explain(m, static_cast(nullptr))); EXPECT_EQ( "which points to an object whose given property is 1" + OfType("int"), Explain(m, &a)); m = Property(&AClass::n, GreaterThan(0)); EXPECT_EQ("which points to an object whose given property is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, &a)); } TEST(PropertyForPointerTest, CanExplainMatchResultWithPropertyName) { Matcher m = Property("fancy_name", &AClass::n, Ge(0)); AClass a; a.set_n(1); EXPECT_EQ("", Explain(m, static_cast(nullptr))); EXPECT_EQ("which points to an object whose property `fancy_name` is 1" + OfType("int"), Explain(m, &a)); m = Property("fancy_name", &AClass::n, GreaterThan(0)); EXPECT_EQ("which points to an object whose property `fancy_name` is 1" + OfType("int") + ", which is 1 more than 0", Explain(m, &a)); } // Tests ResultOf. // Tests that ResultOf(f, ...) compiles and works as expected when f is a // function pointer. std::string IntToStringFunction(int input) { return input == 1 ? "foo" : "bar"; } TEST(ResultOfTest, WorksForFunctionPointers) { Matcher matcher = ResultOf(&IntToStringFunction, Eq(std::string("foo"))); EXPECT_TRUE(matcher.Matches(1)); EXPECT_FALSE(matcher.Matches(2)); } // Tests that ResultOf() can describe itself. TEST(ResultOfTest, CanDescribeItself) { Matcher matcher = ResultOf(&IntToStringFunction, StrEq("foo")); EXPECT_EQ("is mapped by the given callable to a value that " "is equal to \"foo\"", Describe(matcher)); EXPECT_EQ("is mapped by the given callable to a value that " "isn't equal to \"foo\"", DescribeNegation(matcher)); } // Tests that ResultOf() can explain the match result. int IntFunction(int input) { return input == 42 ? 80 : 90; } TEST(ResultOfTest, CanExplainMatchResult) { Matcher matcher = ResultOf(&IntFunction, Ge(85)); EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int"), Explain(matcher, 36)); matcher = ResultOf(&IntFunction, GreaterThan(85)); EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int") + ", which is 5 more than 85", Explain(matcher, 36)); } // Tests that ResultOf(f, ...) compiles and works as expected when f(x) // returns a non-reference. TEST(ResultOfTest, WorksForNonReferenceResults) { Matcher matcher = ResultOf(&IntFunction, Eq(80)); EXPECT_TRUE(matcher.Matches(42)); EXPECT_FALSE(matcher.Matches(36)); } // Tests that ResultOf(f, ...) compiles and works as expected when f(x) // returns a reference to non-const. double& DoubleFunction(double& input) { return input; } // NOLINT Uncopyable& RefUncopyableFunction(Uncopyable& obj) { // NOLINT return obj; } TEST(ResultOfTest, WorksForReferenceToNonConstResults) { double x = 3.14; double x2 = x; Matcher matcher = ResultOf(&DoubleFunction, Ref(x)); EXPECT_TRUE(matcher.Matches(x)); EXPECT_FALSE(matcher.Matches(x2)); // Test that ResultOf works with uncopyable objects Uncopyable obj(0); Uncopyable obj2(0); Matcher matcher2 = ResultOf(&RefUncopyableFunction, Ref(obj)); EXPECT_TRUE(matcher2.Matches(obj)); EXPECT_FALSE(matcher2.Matches(obj2)); } // Tests that ResultOf(f, ...) compiles and works as expected when f(x) // returns a reference to const. const std::string& StringFunction(const std::string& input) { return input; } TEST(ResultOfTest, WorksForReferenceToConstResults) { std::string s = "foo"; std::string s2 = s; Matcher matcher = ResultOf(&StringFunction, Ref(s)); EXPECT_TRUE(matcher.Matches(s)); EXPECT_FALSE(matcher.Matches(s2)); } // Tests that ResultOf(f, m) works when f(x) and m's // argument types are compatible but different. TEST(ResultOfTest, WorksForCompatibleMatcherTypes) { // IntFunction() returns int but the inner matcher expects a signed char. Matcher matcher = ResultOf(IntFunction, Matcher(Ge(85))); EXPECT_TRUE(matcher.Matches(36)); EXPECT_FALSE(matcher.Matches(42)); } // Tests that the program aborts when ResultOf is passed // a NULL function pointer. TEST(ResultOfDeathTest, DiesOnNullFunctionPointers) { EXPECT_DEATH_IF_SUPPORTED( ResultOf(static_cast(nullptr), Eq(std::string("foo"))), "NULL function pointer is passed into ResultOf\\(\\)\\."); } // Tests that ResultOf(f, ...) compiles and works as expected when f is a // function reference. TEST(ResultOfTest, WorksForFunctionReferences) { Matcher matcher = ResultOf(IntToStringFunction, StrEq("foo")); EXPECT_TRUE(matcher.Matches(1)); EXPECT_FALSE(matcher.Matches(2)); } // Tests that ResultOf(f, ...) compiles and works as expected when f is a // function object. struct Functor { std::string operator()(int input) const { return IntToStringFunction(input); } }; TEST(ResultOfTest, WorksForFunctors) { Matcher matcher = ResultOf(Functor(), Eq(std::string("foo"))); EXPECT_TRUE(matcher.Matches(1)); EXPECT_FALSE(matcher.Matches(2)); } // Tests that ResultOf(f, ...) compiles and works as expected when f is a // functor with more than one operator() defined. ResultOf() must work // for each defined operator(). struct PolymorphicFunctor { typedef int result_type; int operator()(int n) { return n; } int operator()(const char* s) { return static_cast(strlen(s)); } std::string operator()(int *p) { return p ? "good ptr" : "null"; } }; TEST(ResultOfTest, WorksForPolymorphicFunctors) { Matcher matcher_int = ResultOf(PolymorphicFunctor(), Ge(5)); EXPECT_TRUE(matcher_int.Matches(10)); EXPECT_FALSE(matcher_int.Matches(2)); Matcher matcher_string = ResultOf(PolymorphicFunctor(), Ge(5)); EXPECT_TRUE(matcher_string.Matches("long string")); EXPECT_FALSE(matcher_string.Matches("shrt")); } TEST(ResultOfTest, WorksForPolymorphicFunctorsIgnoringResultType) { Matcher matcher = ResultOf(PolymorphicFunctor(), "good ptr"); int n = 0; EXPECT_TRUE(matcher.Matches(&n)); EXPECT_FALSE(matcher.Matches(nullptr)); } TEST(ResultOfTest, WorksForLambdas) { Matcher matcher = ResultOf( [](int str_len) { return std::string(static_cast(str_len), 'x'); }, "xxx"); EXPECT_TRUE(matcher.Matches(3)); EXPECT_FALSE(matcher.Matches(1)); } TEST(ResultOfTest, WorksForNonCopyableArguments) { Matcher> matcher = ResultOf( [](const std::unique_ptr& str_len) { return std::string(static_cast(*str_len), 'x'); }, "xxx"); EXPECT_TRUE(matcher.Matches(std::unique_ptr(new int(3)))); EXPECT_FALSE(matcher.Matches(std::unique_ptr(new int(1)))); } const int* ReferencingFunction(const int& n) { return &n; } struct ReferencingFunctor { typedef const int* result_type; result_type operator()(const int& n) { return &n; } }; TEST(ResultOfTest, WorksForReferencingCallables) { const int n = 1; const int n2 = 1; Matcher matcher2 = ResultOf(ReferencingFunction, Eq(&n)); EXPECT_TRUE(matcher2.Matches(n)); EXPECT_FALSE(matcher2.Matches(n2)); Matcher matcher3 = ResultOf(ReferencingFunctor(), Eq(&n)); EXPECT_TRUE(matcher3.Matches(n)); EXPECT_FALSE(matcher3.Matches(n2)); } class DivisibleByImpl { public: explicit DivisibleByImpl(int a_divider) : divider_(a_divider) {} // For testing using ExplainMatchResultTo() with polymorphic matchers. template bool MatchAndExplain(const T& n, MatchResultListener* listener) const { *listener << "which is " << (n % divider_) << " modulo " << divider_; return (n % divider_) == 0; } void DescribeTo(ostream* os) const { *os << "is divisible by " << divider_; } void DescribeNegationTo(ostream* os) const { *os << "is not divisible by " << divider_; } void set_divider(int a_divider) { divider_ = a_divider; } int divider() const { return divider_; } private: int divider_; }; PolymorphicMatcher DivisibleBy(int n) { return MakePolymorphicMatcher(DivisibleByImpl(n)); } // Tests that when AllOf() fails, only the first failing matcher is // asked to explain why. TEST(ExplainMatchResultTest, AllOf_False_False) { const Matcher m = AllOf(DivisibleBy(4), DivisibleBy(3)); EXPECT_EQ("which is 1 modulo 4", Explain(m, 5)); } // Tests that when AllOf() fails, only the first failing matcher is // asked to explain why. TEST(ExplainMatchResultTest, AllOf_False_True) { const Matcher m = AllOf(DivisibleBy(4), DivisibleBy(3)); EXPECT_EQ("which is 2 modulo 4", Explain(m, 6)); } // Tests that when AllOf() fails, only the first failing matcher is // asked to explain why. TEST(ExplainMatchResultTest, AllOf_True_False) { const Matcher m = AllOf(Ge(1), DivisibleBy(3)); EXPECT_EQ("which is 2 modulo 3", Explain(m, 5)); } // Tests that when AllOf() succeeds, all matchers are asked to explain // why. TEST(ExplainMatchResultTest, AllOf_True_True) { const Matcher m = AllOf(DivisibleBy(2), DivisibleBy(3)); EXPECT_EQ("which is 0 modulo 2, and which is 0 modulo 3", Explain(m, 6)); } TEST(ExplainMatchResultTest, AllOf_True_True_2) { const Matcher m = AllOf(Ge(2), Le(3)); EXPECT_EQ("", Explain(m, 2)); } TEST(ExplainmatcherResultTest, MonomorphicMatcher) { const Matcher m = GreaterThan(5); EXPECT_EQ("which is 1 more than 5", Explain(m, 6)); } // The following two tests verify that values without a public copy // ctor can be used as arguments to matchers like Eq(), Ge(), and etc // with the help of ByRef(). class NotCopyable { public: explicit NotCopyable(int a_value) : value_(a_value) {} int value() const { return value_; } bool operator==(const NotCopyable& rhs) const { return value() == rhs.value(); } bool operator>=(const NotCopyable& rhs) const { return value() >= rhs.value(); } private: int value_; GTEST_DISALLOW_COPY_AND_ASSIGN_(NotCopyable); }; TEST(ByRefTest, AllowsNotCopyableConstValueInMatchers) { const NotCopyable const_value1(1); const Matcher m = Eq(ByRef(const_value1)); const NotCopyable n1(1), n2(2); EXPECT_TRUE(m.Matches(n1)); EXPECT_FALSE(m.Matches(n2)); } TEST(ByRefTest, AllowsNotCopyableValueInMatchers) { NotCopyable value2(2); const Matcher m = Ge(ByRef(value2)); NotCopyable n1(1), n2(2); EXPECT_FALSE(m.Matches(n1)); EXPECT_TRUE(m.Matches(n2)); } TEST(IsEmptyTest, ImplementsIsEmpty) { vector container; EXPECT_THAT(container, IsEmpty()); container.push_back(0); EXPECT_THAT(container, Not(IsEmpty())); container.push_back(1); EXPECT_THAT(container, Not(IsEmpty())); } TEST(IsEmptyTest, WorksWithString) { std::string text; EXPECT_THAT(text, IsEmpty()); text = "foo"; EXPECT_THAT(text, Not(IsEmpty())); text = std::string("\0", 1); EXPECT_THAT(text, Not(IsEmpty())); } TEST(IsEmptyTest, CanDescribeSelf) { Matcher > m = IsEmpty(); EXPECT_EQ("is empty", Describe(m)); EXPECT_EQ("isn't empty", DescribeNegation(m)); } TEST(IsEmptyTest, ExplainsResult) { Matcher > m = IsEmpty(); vector container; EXPECT_EQ("", Explain(m, container)); container.push_back(0); EXPECT_EQ("whose size is 1", Explain(m, container)); } TEST(IsEmptyTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(IsEmpty())); helper.Call({}); } TEST(IsTrueTest, IsTrueIsFalse) { EXPECT_THAT(true, IsTrue()); EXPECT_THAT(false, IsFalse()); EXPECT_THAT(true, Not(IsFalse())); EXPECT_THAT(false, Not(IsTrue())); EXPECT_THAT(0, Not(IsTrue())); EXPECT_THAT(0, IsFalse()); EXPECT_THAT(nullptr, Not(IsTrue())); EXPECT_THAT(nullptr, IsFalse()); EXPECT_THAT(-1, IsTrue()); EXPECT_THAT(-1, Not(IsFalse())); EXPECT_THAT(1, IsTrue()); EXPECT_THAT(1, Not(IsFalse())); EXPECT_THAT(2, IsTrue()); EXPECT_THAT(2, Not(IsFalse())); int a = 42; EXPECT_THAT(a, IsTrue()); EXPECT_THAT(a, Not(IsFalse())); EXPECT_THAT(&a, IsTrue()); EXPECT_THAT(&a, Not(IsFalse())); EXPECT_THAT(false, Not(IsTrue())); EXPECT_THAT(true, Not(IsFalse())); EXPECT_THAT(std::true_type(), IsTrue()); EXPECT_THAT(std::true_type(), Not(IsFalse())); EXPECT_THAT(std::false_type(), IsFalse()); EXPECT_THAT(std::false_type(), Not(IsTrue())); EXPECT_THAT(nullptr, Not(IsTrue())); EXPECT_THAT(nullptr, IsFalse()); std::unique_ptr null_unique; std::unique_ptr nonnull_unique(new int(0)); EXPECT_THAT(null_unique, Not(IsTrue())); EXPECT_THAT(null_unique, IsFalse()); EXPECT_THAT(nonnull_unique, IsTrue()); EXPECT_THAT(nonnull_unique, Not(IsFalse())); } TEST(SizeIsTest, ImplementsSizeIs) { vector container; EXPECT_THAT(container, SizeIs(0)); EXPECT_THAT(container, Not(SizeIs(1))); container.push_back(0); EXPECT_THAT(container, Not(SizeIs(0))); EXPECT_THAT(container, SizeIs(1)); container.push_back(0); EXPECT_THAT(container, Not(SizeIs(0))); EXPECT_THAT(container, SizeIs(2)); } TEST(SizeIsTest, WorksWithMap) { map container; EXPECT_THAT(container, SizeIs(0)); EXPECT_THAT(container, Not(SizeIs(1))); container.insert(make_pair("foo", 1)); EXPECT_THAT(container, Not(SizeIs(0))); EXPECT_THAT(container, SizeIs(1)); container.insert(make_pair("bar", 2)); EXPECT_THAT(container, Not(SizeIs(0))); EXPECT_THAT(container, SizeIs(2)); } TEST(SizeIsTest, WorksWithReferences) { vector container; Matcher&> m = SizeIs(1); EXPECT_THAT(container, Not(m)); container.push_back(0); EXPECT_THAT(container, m); } TEST(SizeIsTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(SizeIs(3))); helper.Call(MakeUniquePtrs({1, 2, 3})); } // SizeIs should work for any type that provides a size() member function. // For example, a size_type member type should not need to be provided. struct MinimalistCustomType { int size() const { return 1; } }; TEST(SizeIsTest, WorksWithMinimalistCustomType) { MinimalistCustomType container; EXPECT_THAT(container, SizeIs(1)); EXPECT_THAT(container, Not(SizeIs(0))); } TEST(SizeIsTest, CanDescribeSelf) { Matcher > m = SizeIs(2); EXPECT_EQ("size is equal to 2", Describe(m)); EXPECT_EQ("size isn't equal to 2", DescribeNegation(m)); } TEST(SizeIsTest, ExplainsResult) { Matcher > m1 = SizeIs(2); Matcher > m2 = SizeIs(Lt(2u)); Matcher > m3 = SizeIs(AnyOf(0, 3)); Matcher > m4 = SizeIs(Gt(1u)); vector container; EXPECT_EQ("whose size 0 doesn't match", Explain(m1, container)); EXPECT_EQ("whose size 0 matches", Explain(m2, container)); EXPECT_EQ("whose size 0 matches", Explain(m3, container)); EXPECT_EQ("whose size 0 doesn't match", Explain(m4, container)); container.push_back(0); container.push_back(0); EXPECT_EQ("whose size 2 matches", Explain(m1, container)); EXPECT_EQ("whose size 2 doesn't match", Explain(m2, container)); EXPECT_EQ("whose size 2 doesn't match", Explain(m3, container)); EXPECT_EQ("whose size 2 matches", Explain(m4, container)); } #if GTEST_HAS_TYPED_TEST // Tests ContainerEq with different container types, and // different element types. template class ContainerEqTest : public testing::Test {}; typedef testing::Types< set, vector, multiset, list > ContainerEqTestTypes; TYPED_TEST_SUITE(ContainerEqTest, ContainerEqTestTypes); // Tests that the filled container is equal to itself. TYPED_TEST(ContainerEqTest, EqualsSelf) { static const int vals[] = {1, 1, 2, 3, 5, 8}; TypeParam my_set(vals, vals + 6); const Matcher m = ContainerEq(my_set); EXPECT_TRUE(m.Matches(my_set)); EXPECT_EQ("", Explain(m, my_set)); } // Tests that missing values are reported. TYPED_TEST(ContainerEqTest, ValueMissing) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {2, 1, 8, 5}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 4); const Matcher m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which doesn't have these expected elements: 3", Explain(m, test_set)); } // Tests that added values are reported. TYPED_TEST(ContainerEqTest, ValueAdded) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8, 46}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 6); const Matcher m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 46", Explain(m, test_set)); } // Tests that added and missing values are reported together. TYPED_TEST(ContainerEqTest, ValueAddedAndRemoved) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 8, 46}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 5); const Matcher m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 46,\n" "and doesn't have these expected elements: 5", Explain(m, test_set)); } // Tests duplicated value -- expect no explanation. TYPED_TEST(ContainerEqTest, DuplicateDifference) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 5); const Matcher m = ContainerEq(my_set); // Depending on the container, match may be true or false // But in any case there should be no explanation. EXPECT_EQ("", Explain(m, test_set)); } #endif // GTEST_HAS_TYPED_TEST // Tests that multiple missing values are reported. // Using just vector here, so order is predictable. TEST(ContainerEqExtraTest, MultipleValuesMissing) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {2, 1, 5}; vector my_set(vals, vals + 6); vector test_set(test_vals, test_vals + 3); const Matcher > m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which doesn't have these expected elements: 3, 8", Explain(m, test_set)); } // Tests that added values are reported. // Using just vector here, so order is predictable. TEST(ContainerEqExtraTest, MultipleValuesAdded) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 92, 3, 5, 8, 46}; list my_set(vals, vals + 6); list test_set(test_vals, test_vals + 7); const Matcher&> m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 92, 46", Explain(m, test_set)); } // Tests that added and missing values are reported together. TEST(ContainerEqExtraTest, MultipleValuesAddedAndRemoved) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 92, 46}; list my_set(vals, vals + 6); list test_set(test_vals, test_vals + 5); const Matcher > m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 92, 46,\n" "and doesn't have these expected elements: 5, 8", Explain(m, test_set)); } // Tests to see that duplicate elements are detected, // but (as above) not reported in the explanation. TEST(ContainerEqExtraTest, MultiSetOfIntDuplicateDifference) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8}; vector my_set(vals, vals + 6); vector test_set(test_vals, test_vals + 5); const Matcher > m = ContainerEq(my_set); EXPECT_TRUE(m.Matches(my_set)); EXPECT_FALSE(m.Matches(test_set)); // There is nothing to report when both sets contain all the same values. EXPECT_EQ("", Explain(m, test_set)); } // Tests that ContainerEq works for non-trivial associative containers, // like maps. TEST(ContainerEqExtraTest, WorksForMaps) { map my_map; my_map[0] = "a"; my_map[1] = "b"; map test_map; test_map[0] = "aa"; test_map[1] = "b"; const Matcher&> m = ContainerEq(my_map); EXPECT_TRUE(m.Matches(my_map)); EXPECT_FALSE(m.Matches(test_map)); EXPECT_EQ("which has these unexpected elements: (0, \"aa\"),\n" "and doesn't have these expected elements: (0, \"a\")", Explain(m, test_map)); } TEST(ContainerEqExtraTest, WorksForNativeArray) { int a1[] = {1, 2, 3}; int a2[] = {1, 2, 3}; int b[] = {1, 2, 4}; EXPECT_THAT(a1, ContainerEq(a2)); EXPECT_THAT(a1, Not(ContainerEq(b))); } TEST(ContainerEqExtraTest, WorksForTwoDimensionalNativeArray) { const char a1[][3] = {"hi", "lo"}; const char a2[][3] = {"hi", "lo"}; const char b[][3] = {"lo", "hi"}; // Tests using ContainerEq() in the first dimension. EXPECT_THAT(a1, ContainerEq(a2)); EXPECT_THAT(a1, Not(ContainerEq(b))); // Tests using ContainerEq() in the second dimension. EXPECT_THAT(a1, ElementsAre(ContainerEq(a2[0]), ContainerEq(a2[1]))); EXPECT_THAT(a1, ElementsAre(Not(ContainerEq(b[0])), ContainerEq(a2[1]))); } TEST(ContainerEqExtraTest, WorksForNativeArrayAsTuple) { const int a1[] = {1, 2, 3}; const int a2[] = {1, 2, 3}; const int b[] = {1, 2, 3, 4}; const int* const p1 = a1; EXPECT_THAT(std::make_tuple(p1, 3), ContainerEq(a2)); EXPECT_THAT(std::make_tuple(p1, 3), Not(ContainerEq(b))); const int c[] = {1, 3, 2}; EXPECT_THAT(std::make_tuple(p1, 3), Not(ContainerEq(c))); } TEST(ContainerEqExtraTest, CopiesNativeArrayParameter) { std::string a1[][3] = { {"hi", "hello", "ciao"}, {"bye", "see you", "ciao"} }; std::string a2[][3] = { {"hi", "hello", "ciao"}, {"bye", "see you", "ciao"} }; const Matcher m = ContainerEq(a2); EXPECT_THAT(a1, m); a2[0][0] = "ha"; EXPECT_THAT(a1, m); } TEST(WhenSortedByTest, WorksForEmptyContainer) { const vector numbers; EXPECT_THAT(numbers, WhenSortedBy(less(), ElementsAre())); EXPECT_THAT(numbers, Not(WhenSortedBy(less(), ElementsAre(1)))); } TEST(WhenSortedByTest, WorksForNonEmptyContainer) { vector numbers; numbers.push_back(3); numbers.push_back(1); numbers.push_back(2); numbers.push_back(2); EXPECT_THAT(numbers, WhenSortedBy(greater(), ElementsAre(3, 2, 2, 1))); EXPECT_THAT(numbers, Not(WhenSortedBy(greater(), ElementsAre(1, 2, 2, 3)))); } TEST(WhenSortedByTest, WorksForNonVectorContainer) { list words; words.push_back("say"); words.push_back("hello"); words.push_back("world"); EXPECT_THAT(words, WhenSortedBy(less(), ElementsAre("hello", "say", "world"))); EXPECT_THAT(words, Not(WhenSortedBy(less(), ElementsAre("say", "hello", "world")))); } TEST(WhenSortedByTest, WorksForNativeArray) { const int numbers[] = {1, 3, 2, 4}; const int sorted_numbers[] = {1, 2, 3, 4}; EXPECT_THAT(numbers, WhenSortedBy(less(), ElementsAre(1, 2, 3, 4))); EXPECT_THAT(numbers, WhenSortedBy(less(), ElementsAreArray(sorted_numbers))); EXPECT_THAT(numbers, Not(WhenSortedBy(less(), ElementsAre(1, 3, 2, 4)))); } TEST(WhenSortedByTest, CanDescribeSelf) { const Matcher > m = WhenSortedBy(less(), ElementsAre(1, 2)); EXPECT_EQ("(when sorted) has 2 elements where\n" "element #0 is equal to 1,\n" "element #1 is equal to 2", Describe(m)); EXPECT_EQ("(when sorted) doesn't have 2 elements, or\n" "element #0 isn't equal to 1, or\n" "element #1 isn't equal to 2", DescribeNegation(m)); } TEST(WhenSortedByTest, ExplainsMatchResult) { const int a[] = {2, 1}; EXPECT_EQ("which is { 1, 2 } when sorted, whose element #0 doesn't match", Explain(WhenSortedBy(less(), ElementsAre(2, 3)), a)); EXPECT_EQ("which is { 1, 2 } when sorted", Explain(WhenSortedBy(less(), ElementsAre(1, 2)), a)); } // WhenSorted() is a simple wrapper on WhenSortedBy(). Hence we don't // need to test it as exhaustively as we test the latter. TEST(WhenSortedTest, WorksForEmptyContainer) { const vector numbers; EXPECT_THAT(numbers, WhenSorted(ElementsAre())); EXPECT_THAT(numbers, Not(WhenSorted(ElementsAre(1)))); } TEST(WhenSortedTest, WorksForNonEmptyContainer) { list words; words.push_back("3"); words.push_back("1"); words.push_back("2"); words.push_back("2"); EXPECT_THAT(words, WhenSorted(ElementsAre("1", "2", "2", "3"))); EXPECT_THAT(words, Not(WhenSorted(ElementsAre("3", "1", "2", "2")))); } TEST(WhenSortedTest, WorksForMapTypes) { map word_counts; word_counts["and"] = 1; word_counts["the"] = 1; word_counts["buffalo"] = 2; EXPECT_THAT(word_counts, WhenSorted(ElementsAre(Pair("and", 1), Pair("buffalo", 2), Pair("the", 1)))); EXPECT_THAT(word_counts, Not(WhenSorted(ElementsAre(Pair("and", 1), Pair("the", 1), Pair("buffalo", 2))))); } TEST(WhenSortedTest, WorksForMultiMapTypes) { multimap ifib; ifib.insert(make_pair(8, 6)); ifib.insert(make_pair(2, 3)); ifib.insert(make_pair(1, 1)); ifib.insert(make_pair(3, 4)); ifib.insert(make_pair(1, 2)); ifib.insert(make_pair(5, 5)); EXPECT_THAT(ifib, WhenSorted(ElementsAre(Pair(1, 1), Pair(1, 2), Pair(2, 3), Pair(3, 4), Pair(5, 5), Pair(8, 6)))); EXPECT_THAT(ifib, Not(WhenSorted(ElementsAre(Pair(8, 6), Pair(2, 3), Pair(1, 1), Pair(3, 4), Pair(1, 2), Pair(5, 5))))); } TEST(WhenSortedTest, WorksForPolymorphicMatcher) { std::deque d; d.push_back(2); d.push_back(1); EXPECT_THAT(d, WhenSorted(ElementsAre(1, 2))); EXPECT_THAT(d, Not(WhenSorted(ElementsAre(2, 1)))); } TEST(WhenSortedTest, WorksForVectorConstRefMatcher) { std::deque d; d.push_back(2); d.push_back(1); Matcher&> vector_match = ElementsAre(1, 2); EXPECT_THAT(d, WhenSorted(vector_match)); Matcher&> not_vector_match = ElementsAre(2, 1); EXPECT_THAT(d, Not(WhenSorted(not_vector_match))); } // Deliberately bare pseudo-container. // Offers only begin() and end() accessors, yielding InputIterator. template class Streamlike { private: class ConstIter; public: typedef ConstIter const_iterator; typedef T value_type; template Streamlike(InIter first, InIter last) : remainder_(first, last) {} const_iterator begin() const { return const_iterator(this, remainder_.begin()); } const_iterator end() const { return const_iterator(this, remainder_.end()); } private: class ConstIter { public: using iterator_category = std::input_iterator_tag; using value_type = T; using difference_type = ptrdiff_t; using pointer = const value_type*; using reference = const value_type&; ConstIter(const Streamlike* s, typename std::list::iterator pos) : s_(s), pos_(pos) {} const value_type& operator*() const { return *pos_; } const value_type* operator->() const { return &*pos_; } ConstIter& operator++() { s_->remainder_.erase(pos_++); return *this; } // *iter++ is required to work (see std::istreambuf_iterator). // (void)iter++ is also required to work. class PostIncrProxy { public: explicit PostIncrProxy(const value_type& value) : value_(value) {} value_type operator*() const { return value_; } private: value_type value_; }; PostIncrProxy operator++(int) { PostIncrProxy proxy(**this); ++(*this); return proxy; } friend bool operator==(const ConstIter& a, const ConstIter& b) { return a.s_ == b.s_ && a.pos_ == b.pos_; } friend bool operator!=(const ConstIter& a, const ConstIter& b) { return !(a == b); } private: const Streamlike* s_; typename std::list::iterator pos_; }; friend std::ostream& operator<<(std::ostream& os, const Streamlike& s) { os << "["; typedef typename std::list::const_iterator Iter; const char* sep = ""; for (Iter it = s.remainder_.begin(); it != s.remainder_.end(); ++it) { os << sep << *it; sep = ","; } os << "]"; return os; } mutable std::list remainder_; // modified by iteration }; TEST(StreamlikeTest, Iteration) { const int a[5] = {2, 1, 4, 5, 3}; Streamlike s(a, a + 5); Streamlike::const_iterator it = s.begin(); const int* ip = a; while (it != s.end()) { SCOPED_TRACE(ip - a); EXPECT_EQ(*ip++, *it++); } } TEST(BeginEndDistanceIsTest, WorksWithForwardList) { std::forward_list container; EXPECT_THAT(container, BeginEndDistanceIs(0)); EXPECT_THAT(container, Not(BeginEndDistanceIs(1))); container.push_front(0); EXPECT_THAT(container, Not(BeginEndDistanceIs(0))); EXPECT_THAT(container, BeginEndDistanceIs(1)); container.push_front(0); EXPECT_THAT(container, Not(BeginEndDistanceIs(0))); EXPECT_THAT(container, BeginEndDistanceIs(2)); } TEST(BeginEndDistanceIsTest, WorksWithNonStdList) { const int a[5] = {1, 2, 3, 4, 5}; Streamlike s(a, a + 5); EXPECT_THAT(s, BeginEndDistanceIs(5)); } TEST(BeginEndDistanceIsTest, CanDescribeSelf) { Matcher > m = BeginEndDistanceIs(2); EXPECT_EQ("distance between begin() and end() is equal to 2", Describe(m)); EXPECT_EQ("distance between begin() and end() isn't equal to 2", DescribeNegation(m)); } TEST(BeginEndDistanceIsTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(BeginEndDistanceIs(2))); helper.Call(MakeUniquePtrs({1, 2})); } TEST(BeginEndDistanceIsTest, ExplainsResult) { Matcher > m1 = BeginEndDistanceIs(2); Matcher > m2 = BeginEndDistanceIs(Lt(2)); Matcher > m3 = BeginEndDistanceIs(AnyOf(0, 3)); Matcher > m4 = BeginEndDistanceIs(GreaterThan(1)); vector container; EXPECT_EQ("whose distance between begin() and end() 0 doesn't match", Explain(m1, container)); EXPECT_EQ("whose distance between begin() and end() 0 matches", Explain(m2, container)); EXPECT_EQ("whose distance between begin() and end() 0 matches", Explain(m3, container)); EXPECT_EQ( "whose distance between begin() and end() 0 doesn't match, which is 1 " "less than 1", Explain(m4, container)); container.push_back(0); container.push_back(0); EXPECT_EQ("whose distance between begin() and end() 2 matches", Explain(m1, container)); EXPECT_EQ("whose distance between begin() and end() 2 doesn't match", Explain(m2, container)); EXPECT_EQ("whose distance between begin() and end() 2 doesn't match", Explain(m3, container)); EXPECT_EQ( "whose distance between begin() and end() 2 matches, which is 1 more " "than 1", Explain(m4, container)); } TEST(WhenSortedTest, WorksForStreamlike) { // Streamlike 'container' provides only minimal iterator support. // Its iterators are tagged with input_iterator_tag. const int a[5] = {2, 1, 4, 5, 3}; Streamlike s(std::begin(a), std::end(a)); EXPECT_THAT(s, WhenSorted(ElementsAre(1, 2, 3, 4, 5))); EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3)))); } TEST(WhenSortedTest, WorksForVectorConstRefMatcherOnStreamlike) { const int a[] = {2, 1, 4, 5, 3}; Streamlike s(std::begin(a), std::end(a)); Matcher&> vector_match = ElementsAre(1, 2, 3, 4, 5); EXPECT_THAT(s, WhenSorted(vector_match)); EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3)))); } TEST(IsSupersetOfTest, WorksForNativeArray) { const int subset[] = {1, 4}; const int superset[] = {1, 2, 4}; const int disjoint[] = {1, 0, 3}; EXPECT_THAT(subset, IsSupersetOf(subset)); EXPECT_THAT(subset, Not(IsSupersetOf(superset))); EXPECT_THAT(superset, IsSupersetOf(subset)); EXPECT_THAT(subset, Not(IsSupersetOf(disjoint))); EXPECT_THAT(disjoint, Not(IsSupersetOf(subset))); } TEST(IsSupersetOfTest, WorksWithDuplicates) { const int not_enough[] = {1, 2}; const int enough[] = {1, 1, 2}; const int expected[] = {1, 1}; EXPECT_THAT(not_enough, Not(IsSupersetOf(expected))); EXPECT_THAT(enough, IsSupersetOf(expected)); } TEST(IsSupersetOfTest, WorksForEmpty) { vector numbers; vector expected; EXPECT_THAT(numbers, IsSupersetOf(expected)); expected.push_back(1); EXPECT_THAT(numbers, Not(IsSupersetOf(expected))); expected.clear(); numbers.push_back(1); numbers.push_back(2); EXPECT_THAT(numbers, IsSupersetOf(expected)); expected.push_back(1); EXPECT_THAT(numbers, IsSupersetOf(expected)); expected.push_back(2); EXPECT_THAT(numbers, IsSupersetOf(expected)); expected.push_back(3); EXPECT_THAT(numbers, Not(IsSupersetOf(expected))); } TEST(IsSupersetOfTest, WorksForStreamlike) { const int a[5] = {1, 2, 3, 4, 5}; Streamlike s(std::begin(a), std::end(a)); vector expected; expected.push_back(1); expected.push_back(2); expected.push_back(5); EXPECT_THAT(s, IsSupersetOf(expected)); expected.push_back(0); EXPECT_THAT(s, Not(IsSupersetOf(expected))); } TEST(IsSupersetOfTest, TakesStlContainer) { const int actual[] = {3, 1, 2}; ::std::list expected; expected.push_back(1); expected.push_back(3); EXPECT_THAT(actual, IsSupersetOf(expected)); expected.push_back(4); EXPECT_THAT(actual, Not(IsSupersetOf(expected))); } TEST(IsSupersetOfTest, Describe) { typedef std::vector IntVec; IntVec expected; expected.push_back(111); expected.push_back(222); expected.push_back(333); EXPECT_THAT( Describe(IsSupersetOf(expected)), Eq("a surjection from elements to requirements exists such that:\n" " - an element is equal to 111\n" " - an element is equal to 222\n" " - an element is equal to 333")); } TEST(IsSupersetOfTest, DescribeNegation) { typedef std::vector IntVec; IntVec expected; expected.push_back(111); expected.push_back(222); expected.push_back(333); EXPECT_THAT( DescribeNegation(IsSupersetOf(expected)), Eq("no surjection from elements to requirements exists such that:\n" " - an element is equal to 111\n" " - an element is equal to 222\n" " - an element is equal to 333")); } TEST(IsSupersetOfTest, MatchAndExplain) { std::vector v; v.push_back(2); v.push_back(3); std::vector expected; expected.push_back(1); expected.push_back(2); StringMatchResultListener listener; ASSERT_FALSE(ExplainMatchResult(IsSupersetOf(expected), v, &listener)) << listener.str(); EXPECT_THAT(listener.str(), Eq("where the following matchers don't match any elements:\n" "matcher #0: is equal to 1")); v.push_back(1); listener.Clear(); ASSERT_TRUE(ExplainMatchResult(IsSupersetOf(expected), v, &listener)) << listener.str(); EXPECT_THAT(listener.str(), Eq("where:\n" " - element #0 is matched by matcher #1,\n" " - element #2 is matched by matcher #0")); } TEST(IsSupersetOfTest, WorksForRhsInitializerList) { const int numbers[] = {1, 3, 6, 2, 4, 5}; EXPECT_THAT(numbers, IsSupersetOf({1, 2})); EXPECT_THAT(numbers, Not(IsSupersetOf({3, 0}))); } TEST(IsSupersetOfTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(IsSupersetOf({Pointee(1)}))); helper.Call(MakeUniquePtrs({1, 2})); EXPECT_CALL(helper, Call(Not(IsSupersetOf({Pointee(1), Pointee(2)})))); helper.Call(MakeUniquePtrs({2})); } TEST(IsSubsetOfTest, WorksForNativeArray) { const int subset[] = {1, 4}; const int superset[] = {1, 2, 4}; const int disjoint[] = {1, 0, 3}; EXPECT_THAT(subset, IsSubsetOf(subset)); EXPECT_THAT(subset, IsSubsetOf(superset)); EXPECT_THAT(superset, Not(IsSubsetOf(subset))); EXPECT_THAT(subset, Not(IsSubsetOf(disjoint))); EXPECT_THAT(disjoint, Not(IsSubsetOf(subset))); } TEST(IsSubsetOfTest, WorksWithDuplicates) { const int not_enough[] = {1, 2}; const int enough[] = {1, 1, 2}; const int actual[] = {1, 1}; EXPECT_THAT(actual, Not(IsSubsetOf(not_enough))); EXPECT_THAT(actual, IsSubsetOf(enough)); } TEST(IsSubsetOfTest, WorksForEmpty) { vector numbers; vector expected; EXPECT_THAT(numbers, IsSubsetOf(expected)); expected.push_back(1); EXPECT_THAT(numbers, IsSubsetOf(expected)); expected.clear(); numbers.push_back(1); numbers.push_back(2); EXPECT_THAT(numbers, Not(IsSubsetOf(expected))); expected.push_back(1); EXPECT_THAT(numbers, Not(IsSubsetOf(expected))); expected.push_back(2); EXPECT_THAT(numbers, IsSubsetOf(expected)); expected.push_back(3); EXPECT_THAT(numbers, IsSubsetOf(expected)); } TEST(IsSubsetOfTest, WorksForStreamlike) { const int a[5] = {1, 2}; Streamlike s(std::begin(a), std::end(a)); vector expected; expected.push_back(1); EXPECT_THAT(s, Not(IsSubsetOf(expected))); expected.push_back(2); expected.push_back(5); EXPECT_THAT(s, IsSubsetOf(expected)); } TEST(IsSubsetOfTest, TakesStlContainer) { const int actual[] = {3, 1, 2}; ::std::list expected; expected.push_back(1); expected.push_back(3); EXPECT_THAT(actual, Not(IsSubsetOf(expected))); expected.push_back(2); expected.push_back(4); EXPECT_THAT(actual, IsSubsetOf(expected)); } TEST(IsSubsetOfTest, Describe) { typedef std::vector IntVec; IntVec expected; expected.push_back(111); expected.push_back(222); expected.push_back(333); EXPECT_THAT( Describe(IsSubsetOf(expected)), Eq("an injection from elements to requirements exists such that:\n" " - an element is equal to 111\n" " - an element is equal to 222\n" " - an element is equal to 333")); } TEST(IsSubsetOfTest, DescribeNegation) { typedef std::vector IntVec; IntVec expected; expected.push_back(111); expected.push_back(222); expected.push_back(333); EXPECT_THAT( DescribeNegation(IsSubsetOf(expected)), Eq("no injection from elements to requirements exists such that:\n" " - an element is equal to 111\n" " - an element is equal to 222\n" " - an element is equal to 333")); } TEST(IsSubsetOfTest, MatchAndExplain) { std::vector v; v.push_back(2); v.push_back(3); std::vector expected; expected.push_back(1); expected.push_back(2); StringMatchResultListener listener; ASSERT_FALSE(ExplainMatchResult(IsSubsetOf(expected), v, &listener)) << listener.str(); EXPECT_THAT(listener.str(), Eq("where the following elements don't match any matchers:\n" "element #1: 3")); expected.push_back(3); listener.Clear(); ASSERT_TRUE(ExplainMatchResult(IsSubsetOf(expected), v, &listener)) << listener.str(); EXPECT_THAT(listener.str(), Eq("where:\n" " - element #0 is matched by matcher #1,\n" " - element #1 is matched by matcher #2")); } TEST(IsSubsetOfTest, WorksForRhsInitializerList) { const int numbers[] = {1, 2, 3}; EXPECT_THAT(numbers, IsSubsetOf({1, 2, 3, 4})); EXPECT_THAT(numbers, Not(IsSubsetOf({1, 2}))); } TEST(IsSubsetOfTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(IsSubsetOf({Pointee(1), Pointee(2)}))); helper.Call(MakeUniquePtrs({1})); EXPECT_CALL(helper, Call(Not(IsSubsetOf({Pointee(1)})))); helper.Call(MakeUniquePtrs({2})); } // Tests using ElementsAre() and ElementsAreArray() with stream-like // "containers". TEST(ElemensAreStreamTest, WorksForStreamlike) { const int a[5] = {1, 2, 3, 4, 5}; Streamlike s(std::begin(a), std::end(a)); EXPECT_THAT(s, ElementsAre(1, 2, 3, 4, 5)); EXPECT_THAT(s, Not(ElementsAre(2, 1, 4, 5, 3))); } TEST(ElemensAreArrayStreamTest, WorksForStreamlike) { const int a[5] = {1, 2, 3, 4, 5}; Streamlike s(std::begin(a), std::end(a)); vector expected; expected.push_back(1); expected.push_back(2); expected.push_back(3); expected.push_back(4); expected.push_back(5); EXPECT_THAT(s, ElementsAreArray(expected)); expected[3] = 0; EXPECT_THAT(s, Not(ElementsAreArray(expected))); } TEST(ElementsAreTest, WorksWithUncopyable) { Uncopyable objs[2]; objs[0].set_value(-3); objs[1].set_value(1); EXPECT_THAT(objs, ElementsAre(UncopyableIs(-3), Truly(ValueIsPositive))); } TEST(ElementsAreTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(ElementsAre(Pointee(1), Pointee(2)))); helper.Call(MakeUniquePtrs({1, 2})); EXPECT_CALL(helper, Call(ElementsAreArray({Pointee(3), Pointee(4)}))); helper.Call(MakeUniquePtrs({3, 4})); } TEST(ElementsAreTest, TakesStlContainer) { const int actual[] = {3, 1, 2}; ::std::list expected; expected.push_back(3); expected.push_back(1); expected.push_back(2); EXPECT_THAT(actual, ElementsAreArray(expected)); expected.push_back(4); EXPECT_THAT(actual, Not(ElementsAreArray(expected))); } // Tests for UnorderedElementsAreArray() TEST(UnorderedElementsAreArrayTest, SucceedsWhenExpected) { const int a[] = {0, 1, 2, 3, 4}; std::vector s(std::begin(a), std::end(a)); do { StringMatchResultListener listener; EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(a), s, &listener)) << listener.str(); } while (std::next_permutation(s.begin(), s.end())); } TEST(UnorderedElementsAreArrayTest, VectorBool) { const bool a[] = {0, 1, 0, 1, 1}; const bool b[] = {1, 0, 1, 1, 0}; std::vector expected(std::begin(a), std::end(a)); std::vector actual(std::begin(b), std::end(b)); StringMatchResultListener listener; EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(expected), actual, &listener)) << listener.str(); } TEST(UnorderedElementsAreArrayTest, WorksForStreamlike) { // Streamlike 'container' provides only minimal iterator support. // Its iterators are tagged with input_iterator_tag, and it has no // size() or empty() methods. const int a[5] = {2, 1, 4, 5, 3}; Streamlike s(std::begin(a), std::end(a)); ::std::vector expected; expected.push_back(1); expected.push_back(2); expected.push_back(3); expected.push_back(4); expected.push_back(5); EXPECT_THAT(s, UnorderedElementsAreArray(expected)); expected.push_back(6); EXPECT_THAT(s, Not(UnorderedElementsAreArray(expected))); } TEST(UnorderedElementsAreArrayTest, TakesStlContainer) { const int actual[] = {3, 1, 2}; ::std::list expected; expected.push_back(1); expected.push_back(2); expected.push_back(3); EXPECT_THAT(actual, UnorderedElementsAreArray(expected)); expected.push_back(4); EXPECT_THAT(actual, Not(UnorderedElementsAreArray(expected))); } TEST(UnorderedElementsAreArrayTest, TakesInitializerList) { const int a[5] = {2, 1, 4, 5, 3}; EXPECT_THAT(a, UnorderedElementsAreArray({1, 2, 3, 4, 5})); EXPECT_THAT(a, Not(UnorderedElementsAreArray({1, 2, 3, 4, 6}))); } TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfCStrings) { const std::string a[5] = {"a", "b", "c", "d", "e"}; EXPECT_THAT(a, UnorderedElementsAreArray({"a", "b", "c", "d", "e"})); EXPECT_THAT(a, Not(UnorderedElementsAreArray({"a", "b", "c", "d", "ef"}))); } TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) { const int a[5] = {2, 1, 4, 5, 3}; EXPECT_THAT(a, UnorderedElementsAreArray( {Eq(1), Eq(2), Eq(3), Eq(4), Eq(5)})); EXPECT_THAT(a, Not(UnorderedElementsAreArray( {Eq(1), Eq(2), Eq(3), Eq(4), Eq(6)}))); } TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfDifferentTypedMatchers) { const int a[5] = {2, 1, 4, 5, 3}; // The compiler cannot infer the type of the initializer list if its // elements have different types. We must explicitly specify the // unified element type in this case. EXPECT_THAT(a, UnorderedElementsAreArray >( {Eq(1), Ne(-2), Ge(3), Le(4), Eq(5)})); EXPECT_THAT(a, Not(UnorderedElementsAreArray >( {Eq(1), Ne(-2), Ge(3), Le(4), Eq(6)}))); } TEST(UnorderedElementsAreArrayTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(UnorderedElementsAreArray({Pointee(1), Pointee(2)}))); helper.Call(MakeUniquePtrs({2, 1})); } class UnorderedElementsAreTest : public testing::Test { protected: typedef std::vector IntVec; }; TEST_F(UnorderedElementsAreTest, WorksWithUncopyable) { Uncopyable objs[2]; objs[0].set_value(-3); objs[1].set_value(1); EXPECT_THAT(objs, UnorderedElementsAre(Truly(ValueIsPositive), UncopyableIs(-3))); } TEST_F(UnorderedElementsAreTest, SucceedsWhenExpected) { const int a[] = {1, 2, 3}; std::vector s(std::begin(a), std::end(a)); do { StringMatchResultListener listener; EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), s, &listener)) << listener.str(); } while (std::next_permutation(s.begin(), s.end())); } TEST_F(UnorderedElementsAreTest, FailsWhenAnElementMatchesNoMatcher) { const int a[] = {1, 2, 3}; std::vector s(std::begin(a), std::end(a)); std::vector > mv; mv.push_back(1); mv.push_back(2); mv.push_back(2); // The element with value '3' matches nothing: fail fast. StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAreArray(mv), s, &listener)) << listener.str(); } TEST_F(UnorderedElementsAreTest, WorksForStreamlike) { // Streamlike 'container' provides only minimal iterator support. // Its iterators are tagged with input_iterator_tag, and it has no // size() or empty() methods. const int a[5] = {2, 1, 4, 5, 3}; Streamlike s(std::begin(a), std::end(a)); EXPECT_THAT(s, UnorderedElementsAre(1, 2, 3, 4, 5)); EXPECT_THAT(s, Not(UnorderedElementsAre(2, 2, 3, 4, 5))); } TEST_F(UnorderedElementsAreTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(UnorderedElementsAre(Pointee(1), Pointee(2)))); helper.Call(MakeUniquePtrs({2, 1})); } // One naive implementation of the matcher runs in O(N!) time, which is too // slow for many real-world inputs. This test shows that our matcher can match // 100 inputs very quickly (a few milliseconds). An O(100!) is 10^158 // iterations and obviously effectively incomputable. // [ RUN ] UnorderedElementsAreTest.Performance // [ OK ] UnorderedElementsAreTest.Performance (4 ms) TEST_F(UnorderedElementsAreTest, Performance) { std::vector s; std::vector > mv; for (int i = 0; i < 100; ++i) { s.push_back(i); mv.push_back(_); } mv[50] = Eq(0); StringMatchResultListener listener; EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv), s, &listener)) << listener.str(); } // Another variant of 'Performance' with similar expectations. // [ RUN ] UnorderedElementsAreTest.PerformanceHalfStrict // [ OK ] UnorderedElementsAreTest.PerformanceHalfStrict (4 ms) TEST_F(UnorderedElementsAreTest, PerformanceHalfStrict) { std::vector s; std::vector > mv; for (int i = 0; i < 100; ++i) { s.push_back(i); if (i & 1) { mv.push_back(_); } else { mv.push_back(i); } } StringMatchResultListener listener; EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv), s, &listener)) << listener.str(); } TEST_F(UnorderedElementsAreTest, FailMessageCountWrong) { std::vector v; v.push_back(4); StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), v, &listener)) << listener.str(); EXPECT_THAT(listener.str(), Eq("which has 1 element")); } TEST_F(UnorderedElementsAreTest, FailMessageCountWrongZero) { std::vector v; StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), v, &listener)) << listener.str(); EXPECT_THAT(listener.str(), Eq("")); } TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatchers) { std::vector v; v.push_back(1); v.push_back(1); StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2), v, &listener)) << listener.str(); EXPECT_THAT( listener.str(), Eq("where the following matchers don't match any elements:\n" "matcher #1: is equal to 2")); } TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedElements) { std::vector v; v.push_back(1); v.push_back(2); StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 1), v, &listener)) << listener.str(); EXPECT_THAT( listener.str(), Eq("where the following elements don't match any matchers:\n" "element #1: 2")); } TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatcherAndElement) { std::vector v; v.push_back(2); v.push_back(3); StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2), v, &listener)) << listener.str(); EXPECT_THAT( listener.str(), Eq("where" " the following matchers don't match any elements:\n" "matcher #0: is equal to 1\n" "and" " where" " the following elements don't match any matchers:\n" "element #1: 3")); } // Test helper for formatting element, matcher index pairs in expectations. static std::string EMString(int element, int matcher) { stringstream ss; ss << "(element #" << element << ", matcher #" << matcher << ")"; return ss.str(); } TEST_F(UnorderedElementsAreTest, FailMessageImperfectMatchOnly) { // A situation where all elements and matchers have a match // associated with them, but the max matching is not perfect. std::vector v; v.push_back("a"); v.push_back("b"); v.push_back("c"); StringMatchResultListener listener; EXPECT_FALSE(ExplainMatchResult( UnorderedElementsAre("a", "a", AnyOf("b", "c")), v, &listener)) << listener.str(); std::string prefix = "where no permutation of the elements can satisfy all matchers, " "and the closest match is 2 of 3 matchers with the " "pairings:\n"; // We have to be a bit loose here, because there are 4 valid max matches. EXPECT_THAT( listener.str(), AnyOf(prefix + "{\n " + EMString(0, 0) + ",\n " + EMString(1, 2) + "\n}", prefix + "{\n " + EMString(0, 1) + ",\n " + EMString(1, 2) + "\n}", prefix + "{\n " + EMString(0, 0) + ",\n " + EMString(2, 2) + "\n}", prefix + "{\n " + EMString(0, 1) + ",\n " + EMString(2, 2) + "\n}")); } TEST_F(UnorderedElementsAreTest, Describe) { EXPECT_THAT(Describe(UnorderedElementsAre()), Eq("is empty")); EXPECT_THAT( Describe(UnorderedElementsAre(345)), Eq("has 1 element and that element is equal to 345")); EXPECT_THAT( Describe(UnorderedElementsAre(111, 222, 333)), Eq("has 3 elements and there exists some permutation " "of elements such that:\n" " - element #0 is equal to 111, and\n" " - element #1 is equal to 222, and\n" " - element #2 is equal to 333")); } TEST_F(UnorderedElementsAreTest, DescribeNegation) { EXPECT_THAT(DescribeNegation(UnorderedElementsAre()), Eq("isn't empty")); EXPECT_THAT( DescribeNegation(UnorderedElementsAre(345)), Eq("doesn't have 1 element, or has 1 element that isn't equal to 345")); EXPECT_THAT( DescribeNegation(UnorderedElementsAre(123, 234, 345)), Eq("doesn't have 3 elements, or there exists no permutation " "of elements such that:\n" " - element #0 is equal to 123, and\n" " - element #1 is equal to 234, and\n" " - element #2 is equal to 345")); } namespace { // Used as a check on the more complex max flow method used in the // real testing::internal::FindMaxBipartiteMatching. This method is // compatible but runs in worst-case factorial time, so we only // use it in testing for small problem sizes. template class BacktrackingMaxBPMState { public: // Does not take ownership of 'g'. explicit BacktrackingMaxBPMState(const Graph* g) : graph_(g) { } ElementMatcherPairs Compute() { if (graph_->LhsSize() == 0 || graph_->RhsSize() == 0) { return best_so_far_; } lhs_used_.assign(graph_->LhsSize(), kUnused); rhs_used_.assign(graph_->RhsSize(), kUnused); for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { matches_.clear(); RecurseInto(irhs); if (best_so_far_.size() == graph_->RhsSize()) break; } return best_so_far_; } private: static const size_t kUnused = static_cast(-1); void PushMatch(size_t lhs, size_t rhs) { matches_.push_back(ElementMatcherPair(lhs, rhs)); lhs_used_[lhs] = rhs; rhs_used_[rhs] = lhs; if (matches_.size() > best_so_far_.size()) { best_so_far_ = matches_; } } void PopMatch() { const ElementMatcherPair& back = matches_.back(); lhs_used_[back.first] = kUnused; rhs_used_[back.second] = kUnused; matches_.pop_back(); } bool RecurseInto(size_t irhs) { if (rhs_used_[irhs] != kUnused) { return true; } for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { if (lhs_used_[ilhs] != kUnused) { continue; } if (!graph_->HasEdge(ilhs, irhs)) { continue; } PushMatch(ilhs, irhs); if (best_so_far_.size() == graph_->RhsSize()) { return false; } for (size_t mi = irhs + 1; mi < graph_->RhsSize(); ++mi) { if (!RecurseInto(mi)) return false; } PopMatch(); } return true; } const Graph* graph_; // not owned std::vector lhs_used_; std::vector rhs_used_; ElementMatcherPairs matches_; ElementMatcherPairs best_so_far_; }; template const size_t BacktrackingMaxBPMState::kUnused; } // namespace // Implement a simple backtracking algorithm to determine if it is possible // to find one element per matcher, without reusing elements. template ElementMatcherPairs FindBacktrackingMaxBPM(const Graph& g) { return BacktrackingMaxBPMState(&g).Compute(); } class BacktrackingBPMTest : public ::testing::Test { }; // Tests the MaxBipartiteMatching algorithm with square matrices. // The single int param is the # of nodes on each of the left and right sides. class BipartiteTest : public ::testing::TestWithParam {}; // Verify all match graphs up to some moderate number of edges. TEST_P(BipartiteTest, Exhaustive) { size_t nodes = GetParam(); MatchMatrix graph(nodes, nodes); do { ElementMatcherPairs matches = internal::FindMaxBipartiteMatching(graph); EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), matches.size()) << "graph: " << graph.DebugString(); // Check that all elements of matches are in the graph. // Check that elements of first and second are unique. std::vector seen_element(graph.LhsSize()); std::vector seen_matcher(graph.RhsSize()); SCOPED_TRACE(PrintToString(matches)); for (size_t i = 0; i < matches.size(); ++i) { size_t ilhs = matches[i].first; size_t irhs = matches[i].second; EXPECT_TRUE(graph.HasEdge(ilhs, irhs)); EXPECT_FALSE(seen_element[ilhs]); EXPECT_FALSE(seen_matcher[irhs]); seen_element[ilhs] = true; seen_matcher[irhs] = true; } } while (graph.NextGraph()); } INSTANTIATE_TEST_SUITE_P(AllGraphs, BipartiteTest, ::testing::Range(size_t{0}, size_t{5})); // Parameterized by a pair interpreted as (LhsSize, RhsSize). class BipartiteNonSquareTest : public ::testing::TestWithParam > { }; TEST_F(BipartiteNonSquareTest, SimpleBacktracking) { // ....... // 0:-----\ : // 1:---\ | : // 2:---\ | : // 3:-\ | | : // :.......: // 0 1 2 MatchMatrix g(4, 3); constexpr std::array, 4> kEdges = { {{{0, 2}}, {{1, 1}}, {{2, 1}}, {{3, 0}}}}; for (size_t i = 0; i < kEdges.size(); ++i) { g.SetEdge(kEdges[i][0], kEdges[i][1], true); } EXPECT_THAT(FindBacktrackingMaxBPM(g), ElementsAre(Pair(3, 0), Pair(AnyOf(1, 2), 1), Pair(0, 2))) << g.DebugString(); } // Verify a few nonsquare matrices. TEST_P(BipartiteNonSquareTest, Exhaustive) { size_t nlhs = GetParam().first; size_t nrhs = GetParam().second; MatchMatrix graph(nlhs, nrhs); do { EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), internal::FindMaxBipartiteMatching(graph).size()) << "graph: " << graph.DebugString() << "\nbacktracking: " << PrintToString(FindBacktrackingMaxBPM(graph)) << "\nmax flow: " << PrintToString(internal::FindMaxBipartiteMatching(graph)); } while (graph.NextGraph()); } INSTANTIATE_TEST_SUITE_P(AllGraphs, BipartiteNonSquareTest, testing::Values( std::make_pair(1, 2), std::make_pair(2, 1), std::make_pair(3, 2), std::make_pair(2, 3), std::make_pair(4, 1), std::make_pair(1, 4), std::make_pair(4, 3), std::make_pair(3, 4))); class BipartiteRandomTest : public ::testing::TestWithParam > { }; // Verifies a large sample of larger graphs. TEST_P(BipartiteRandomTest, LargerNets) { int nodes = GetParam().first; int iters = GetParam().second; MatchMatrix graph(static_cast(nodes), static_cast(nodes)); auto seed = static_cast(GTEST_FLAG_GET(random_seed)); if (seed == 0) { seed = static_cast(time(nullptr)); } for (; iters > 0; --iters, ++seed) { srand(static_cast(seed)); graph.Randomize(); EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), internal::FindMaxBipartiteMatching(graph).size()) << " graph: " << graph.DebugString() << "\nTo reproduce the failure, rerun the test with the flag" " --" << GTEST_FLAG_PREFIX_ << "random_seed=" << seed; } } // Test argument is a std::pair representing (nodes, iters). INSTANTIATE_TEST_SUITE_P(Samples, BipartiteRandomTest, testing::Values( std::make_pair(5, 10000), std::make_pair(6, 5000), std::make_pair(7, 2000), std::make_pair(8, 500), std::make_pair(9, 100))); // Tests IsReadableTypeName(). TEST(IsReadableTypeNameTest, ReturnsTrueForShortNames) { EXPECT_TRUE(IsReadableTypeName("int")); EXPECT_TRUE(IsReadableTypeName("const unsigned char*")); EXPECT_TRUE(IsReadableTypeName("MyMap")); EXPECT_TRUE(IsReadableTypeName("void (*)(int, bool)")); } TEST(IsReadableTypeNameTest, ReturnsTrueForLongNonTemplateNonFunctionNames) { EXPECT_TRUE(IsReadableTypeName("my_long_namespace::MyClassName")); EXPECT_TRUE(IsReadableTypeName("int [5][6][7][8][9][10][11]")); EXPECT_TRUE(IsReadableTypeName("my_namespace::MyOuterClass::MyInnerClass")); } TEST(IsReadableTypeNameTest, ReturnsFalseForLongTemplateNames) { EXPECT_FALSE( IsReadableTypeName("basic_string >")); EXPECT_FALSE(IsReadableTypeName("std::vector >")); } TEST(IsReadableTypeNameTest, ReturnsFalseForLongFunctionTypeNames) { EXPECT_FALSE(IsReadableTypeName("void (&)(int, bool, char, float)")); } // Tests FormatMatcherDescription(). TEST(FormatMatcherDescriptionTest, WorksForEmptyDescription) { EXPECT_EQ("is even", FormatMatcherDescription(false, "IsEven", {}, Strings())); EXPECT_EQ("not (is even)", FormatMatcherDescription(true, "IsEven", {}, Strings())); EXPECT_EQ("equals (a: 5)", FormatMatcherDescription(false, "Equals", {"a"}, {"5"})); EXPECT_EQ( "is in range (a: 5, b: 8)", FormatMatcherDescription(false, "IsInRange", {"a", "b"}, {"5", "8"})); } // Tests PolymorphicMatcher::mutable_impl(). TEST(PolymorphicMatcherTest, CanAccessMutableImpl) { PolymorphicMatcher m(DivisibleByImpl(42)); DivisibleByImpl& impl = m.mutable_impl(); EXPECT_EQ(42, impl.divider()); impl.set_divider(0); EXPECT_EQ(0, m.mutable_impl().divider()); } // Tests PolymorphicMatcher::impl(). TEST(PolymorphicMatcherTest, CanAccessImpl) { const PolymorphicMatcher m(DivisibleByImpl(42)); const DivisibleByImpl& impl = m.impl(); EXPECT_EQ(42, impl.divider()); } TEST(MatcherTupleTest, ExplainsMatchFailure) { stringstream ss1; ExplainMatchFailureTupleTo( std::make_tuple(Matcher(Eq('a')), GreaterThan(5)), std::make_tuple('a', 10), &ss1); EXPECT_EQ("", ss1.str()); // Successful match. stringstream ss2; ExplainMatchFailureTupleTo( std::make_tuple(GreaterThan(5), Matcher(Eq('a'))), std::make_tuple(2, 'b'), &ss2); EXPECT_EQ(" Expected arg #0: is > 5\n" " Actual: 2, which is 3 less than 5\n" " Expected arg #1: is equal to 'a' (97, 0x61)\n" " Actual: 'b' (98, 0x62)\n", ss2.str()); // Failed match where both arguments need explanation. stringstream ss3; ExplainMatchFailureTupleTo( std::make_tuple(GreaterThan(5), Matcher(Eq('a'))), std::make_tuple(2, 'a'), &ss3); EXPECT_EQ(" Expected arg #0: is > 5\n" " Actual: 2, which is 3 less than 5\n", ss3.str()); // Failed match where only one argument needs // explanation. } // Tests Each(). TEST(EachTest, ExplainsMatchResultCorrectly) { set a; // empty Matcher > m = Each(2); EXPECT_EQ("", Explain(m, a)); Matcher n = Each(1); // NOLINT const int b[1] = {1}; EXPECT_EQ("", Explain(n, b)); n = Each(3); EXPECT_EQ("whose element #0 doesn't match", Explain(n, b)); a.insert(1); a.insert(2); a.insert(3); m = Each(GreaterThan(0)); EXPECT_EQ("", Explain(m, a)); m = Each(GreaterThan(10)); EXPECT_EQ("whose element #0 doesn't match, which is 9 less than 10", Explain(m, a)); } TEST(EachTest, DescribesItselfCorrectly) { Matcher > m = Each(1); EXPECT_EQ("only contains elements that is equal to 1", Describe(m)); Matcher > m2 = Not(m); EXPECT_EQ("contains some element that isn't equal to 1", Describe(m2)); } TEST(EachTest, MatchesVectorWhenAllElementsMatch) { vector some_vector; EXPECT_THAT(some_vector, Each(1)); some_vector.push_back(3); EXPECT_THAT(some_vector, Not(Each(1))); EXPECT_THAT(some_vector, Each(3)); some_vector.push_back(1); some_vector.push_back(2); EXPECT_THAT(some_vector, Not(Each(3))); EXPECT_THAT(some_vector, Each(Lt(3.5))); vector another_vector; another_vector.push_back("fee"); EXPECT_THAT(another_vector, Each(std::string("fee"))); another_vector.push_back("fie"); another_vector.push_back("foe"); another_vector.push_back("fum"); EXPECT_THAT(another_vector, Not(Each(std::string("fee")))); } TEST(EachTest, MatchesMapWhenAllElementsMatch) { map my_map; const char* bar = "a string"; my_map[bar] = 2; EXPECT_THAT(my_map, Each(make_pair(bar, 2))); map another_map; EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1))); another_map["fee"] = 1; EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1))); another_map["fie"] = 2; another_map["foe"] = 3; another_map["fum"] = 4; EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fee"), 1)))); EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fum"), 1)))); EXPECT_THAT(another_map, Each(Pair(_, Gt(0)))); } TEST(EachTest, AcceptsMatcher) { const int a[] = {1, 2, 3}; EXPECT_THAT(a, Each(Gt(0))); EXPECT_THAT(a, Not(Each(Gt(1)))); } TEST(EachTest, WorksForNativeArrayAsTuple) { const int a[] = {1, 2}; const int* const pointer = a; EXPECT_THAT(std::make_tuple(pointer, 2), Each(Gt(0))); EXPECT_THAT(std::make_tuple(pointer, 2), Not(Each(Gt(1)))); } TEST(EachTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(Each(Pointee(Gt(0))))); helper.Call(MakeUniquePtrs({1, 2})); } // For testing Pointwise(). class IsHalfOfMatcher { public: template bool MatchAndExplain(const std::tuple& a_pair, MatchResultListener* listener) const { if (std::get<0>(a_pair) == std::get<1>(a_pair) / 2) { *listener << "where the second is " << std::get<1>(a_pair); return true; } else { *listener << "where the second/2 is " << std::get<1>(a_pair) / 2; return false; } } void DescribeTo(ostream* os) const { *os << "are a pair where the first is half of the second"; } void DescribeNegationTo(ostream* os) const { *os << "are a pair where the first isn't half of the second"; } }; PolymorphicMatcher IsHalfOf() { return MakePolymorphicMatcher(IsHalfOfMatcher()); } TEST(PointwiseTest, DescribesSelf) { vector rhs; rhs.push_back(1); rhs.push_back(2); rhs.push_back(3); const Matcher&> m = Pointwise(IsHalfOf(), rhs); EXPECT_EQ("contains 3 values, where each value and its corresponding value " "in { 1, 2, 3 } are a pair where the first is half of the second", Describe(m)); EXPECT_EQ("doesn't contain exactly 3 values, or contains a value x at some " "index i where x and the i-th value of { 1, 2, 3 } are a pair " "where the first isn't half of the second", DescribeNegation(m)); } TEST(PointwiseTest, MakesCopyOfRhs) { list rhs; rhs.push_back(2); rhs.push_back(4); int lhs[] = {1, 2}; const Matcher m = Pointwise(IsHalfOf(), rhs); EXPECT_THAT(lhs, m); // Changing rhs now shouldn't affect m, which made a copy of rhs. rhs.push_back(6); EXPECT_THAT(lhs, m); } TEST(PointwiseTest, WorksForLhsNativeArray) { const int lhs[] = {1, 2, 3}; vector rhs; rhs.push_back(2); rhs.push_back(4); rhs.push_back(6); EXPECT_THAT(lhs, Pointwise(Lt(), rhs)); EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); } TEST(PointwiseTest, WorksForRhsNativeArray) { const int rhs[] = {1, 2, 3}; vector lhs; lhs.push_back(2); lhs.push_back(4); lhs.push_back(6); EXPECT_THAT(lhs, Pointwise(Gt(), rhs)); EXPECT_THAT(lhs, Not(Pointwise(Lt(), rhs))); } // Test is effective only with sanitizers. TEST(PointwiseTest, WorksForVectorOfBool) { vector rhs(3, false); rhs[1] = true; vector lhs = rhs; EXPECT_THAT(lhs, Pointwise(Eq(), rhs)); rhs[0] = true; EXPECT_THAT(lhs, Not(Pointwise(Eq(), rhs))); } TEST(PointwiseTest, WorksForRhsInitializerList) { const vector lhs{2, 4, 6}; EXPECT_THAT(lhs, Pointwise(Gt(), {1, 2, 3})); EXPECT_THAT(lhs, Not(Pointwise(Lt(), {3, 3, 7}))); } TEST(PointwiseTest, RejectsWrongSize) { const double lhs[2] = {1, 2}; const int rhs[1] = {0}; EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); EXPECT_EQ("which contains 2 values", Explain(Pointwise(Gt(), rhs), lhs)); const int rhs2[3] = {0, 1, 2}; EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs2))); } TEST(PointwiseTest, RejectsWrongContent) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {2, 6, 4}; EXPECT_THAT(lhs, Not(Pointwise(IsHalfOf(), rhs))); EXPECT_EQ("where the value pair (2, 6) at index #1 don't match, " "where the second/2 is 3", Explain(Pointwise(IsHalfOf(), rhs), lhs)); } TEST(PointwiseTest, AcceptsCorrectContent) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {2, 4, 6}; EXPECT_THAT(lhs, Pointwise(IsHalfOf(), rhs)); EXPECT_EQ("", Explain(Pointwise(IsHalfOf(), rhs), lhs)); } TEST(PointwiseTest, AllowsMonomorphicInnerMatcher) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {2, 4, 6}; const Matcher> m1 = IsHalfOf(); EXPECT_THAT(lhs, Pointwise(m1, rhs)); EXPECT_EQ("", Explain(Pointwise(m1, rhs), lhs)); // This type works as a std::tuple can be // implicitly cast to std::tuple. const Matcher> m2 = IsHalfOf(); EXPECT_THAT(lhs, Pointwise(m2, rhs)); EXPECT_EQ("", Explain(Pointwise(m2, rhs), lhs)); } MATCHER(PointeeEquals, "Points to an equal value") { return ExplainMatchResult(::testing::Pointee(::testing::get<1>(arg)), ::testing::get<0>(arg), result_listener); } TEST(PointwiseTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(Pointwise(PointeeEquals(), std::vector{1, 2}))); helper.Call(MakeUniquePtrs({1, 2})); } TEST(UnorderedPointwiseTest, DescribesSelf) { vector rhs; rhs.push_back(1); rhs.push_back(2); rhs.push_back(3); const Matcher&> m = UnorderedPointwise(IsHalfOf(), rhs); EXPECT_EQ( "has 3 elements and there exists some permutation of elements such " "that:\n" " - element #0 and 1 are a pair where the first is half of the second, " "and\n" " - element #1 and 2 are a pair where the first is half of the second, " "and\n" " - element #2 and 3 are a pair where the first is half of the second", Describe(m)); EXPECT_EQ( "doesn't have 3 elements, or there exists no permutation of elements " "such that:\n" " - element #0 and 1 are a pair where the first is half of the second, " "and\n" " - element #1 and 2 are a pair where the first is half of the second, " "and\n" " - element #2 and 3 are a pair where the first is half of the second", DescribeNegation(m)); } TEST(UnorderedPointwiseTest, MakesCopyOfRhs) { list rhs; rhs.push_back(2); rhs.push_back(4); int lhs[] = {2, 1}; const Matcher m = UnorderedPointwise(IsHalfOf(), rhs); EXPECT_THAT(lhs, m); // Changing rhs now shouldn't affect m, which made a copy of rhs. rhs.push_back(6); EXPECT_THAT(lhs, m); } TEST(UnorderedPointwiseTest, WorksForLhsNativeArray) { const int lhs[] = {1, 2, 3}; vector rhs; rhs.push_back(4); rhs.push_back(6); rhs.push_back(2); EXPECT_THAT(lhs, UnorderedPointwise(Lt(), rhs)); EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs))); } TEST(UnorderedPointwiseTest, WorksForRhsNativeArray) { const int rhs[] = {1, 2, 3}; vector lhs; lhs.push_back(4); lhs.push_back(2); lhs.push_back(6); EXPECT_THAT(lhs, UnorderedPointwise(Gt(), rhs)); EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), rhs))); } TEST(UnorderedPointwiseTest, WorksForRhsInitializerList) { const vector lhs{2, 4, 6}; EXPECT_THAT(lhs, UnorderedPointwise(Gt(), {5, 1, 3})); EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), {1, 1, 7}))); } TEST(UnorderedPointwiseTest, RejectsWrongSize) { const double lhs[2] = {1, 2}; const int rhs[1] = {0}; EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs))); EXPECT_EQ("which has 2 elements", Explain(UnorderedPointwise(Gt(), rhs), lhs)); const int rhs2[3] = {0, 1, 2}; EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs2))); } TEST(UnorderedPointwiseTest, RejectsWrongContent) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {2, 6, 6}; EXPECT_THAT(lhs, Not(UnorderedPointwise(IsHalfOf(), rhs))); EXPECT_EQ("where the following elements don't match any matchers:\n" "element #1: 2", Explain(UnorderedPointwise(IsHalfOf(), rhs), lhs)); } TEST(UnorderedPointwiseTest, AcceptsCorrectContentInSameOrder) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {2, 4, 6}; EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs)); } TEST(UnorderedPointwiseTest, AcceptsCorrectContentInDifferentOrder) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {6, 4, 2}; EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs)); } TEST(UnorderedPointwiseTest, AllowsMonomorphicInnerMatcher) { const double lhs[3] = {1, 2, 3}; const int rhs[3] = {4, 6, 2}; const Matcher> m1 = IsHalfOf(); EXPECT_THAT(lhs, UnorderedPointwise(m1, rhs)); // This type works as a std::tuple can be // implicitly cast to std::tuple. const Matcher> m2 = IsHalfOf(); EXPECT_THAT(lhs, UnorderedPointwise(m2, rhs)); } TEST(UnorderedPointwiseTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(UnorderedPointwise(PointeeEquals(), std::vector{1, 2}))); helper.Call(MakeUniquePtrs({2, 1})); } // Sample optional type implementation with minimal requirements for use with // Optional matcher. template class SampleOptional { public: using value_type = T; explicit SampleOptional(T value) : value_(std::move(value)), has_value_(true) {} SampleOptional() : value_(), has_value_(false) {} operator bool() const { return has_value_; } const T& operator*() const { return value_; } private: T value_; bool has_value_; }; TEST(OptionalTest, DescribesSelf) { const Matcher> m = Optional(Eq(1)); EXPECT_EQ("value is equal to 1", Describe(m)); } TEST(OptionalTest, ExplainsSelf) { const Matcher> m = Optional(Eq(1)); EXPECT_EQ("whose value 1 matches", Explain(m, SampleOptional(1))); EXPECT_EQ("whose value 2 doesn't match", Explain(m, SampleOptional(2))); } TEST(OptionalTest, MatchesNonEmptyOptional) { const Matcher> m1 = Optional(1); const Matcher> m2 = Optional(Eq(2)); const Matcher> m3 = Optional(Lt(3)); SampleOptional opt(1); EXPECT_TRUE(m1.Matches(opt)); EXPECT_FALSE(m2.Matches(opt)); EXPECT_TRUE(m3.Matches(opt)); } TEST(OptionalTest, DoesNotMatchNullopt) { const Matcher> m = Optional(1); SampleOptional empty; EXPECT_FALSE(m.Matches(empty)); } TEST(OptionalTest, WorksWithMoveOnly) { Matcher>> m = Optional(Eq(nullptr)); EXPECT_TRUE(m.Matches(SampleOptional>(nullptr))); } class SampleVariantIntString { public: SampleVariantIntString(int i) : i_(i), has_int_(true) {} SampleVariantIntString(const std::string& s) : s_(s), has_int_(false) {} template friend bool holds_alternative(const SampleVariantIntString& value) { return value.has_int_ == std::is_same::value; } template friend const T& get(const SampleVariantIntString& value) { return value.get_impl(static_cast(nullptr)); } private: const int& get_impl(int*) const { return i_; } const std::string& get_impl(std::string*) const { return s_; } int i_; std::string s_; bool has_int_; }; TEST(VariantTest, DescribesSelf) { const Matcher m = VariantWith(Eq(1)); EXPECT_THAT(Describe(m), ContainsRegex("is a variant<> with value of type " "'.*' and the value is equal to 1")); } TEST(VariantTest, ExplainsSelf) { const Matcher m = VariantWith(Eq(1)); EXPECT_THAT(Explain(m, SampleVariantIntString(1)), ContainsRegex("whose value 1")); EXPECT_THAT(Explain(m, SampleVariantIntString("A")), HasSubstr("whose value is not of type '")); EXPECT_THAT(Explain(m, SampleVariantIntString(2)), "whose value 2 doesn't match"); } TEST(VariantTest, FullMatch) { Matcher m = VariantWith(Eq(1)); EXPECT_TRUE(m.Matches(SampleVariantIntString(1))); m = VariantWith(Eq("1")); EXPECT_TRUE(m.Matches(SampleVariantIntString("1"))); } TEST(VariantTest, TypeDoesNotMatch) { Matcher m = VariantWith(Eq(1)); EXPECT_FALSE(m.Matches(SampleVariantIntString("1"))); m = VariantWith(Eq("1")); EXPECT_FALSE(m.Matches(SampleVariantIntString(1))); } TEST(VariantTest, InnerDoesNotMatch) { Matcher m = VariantWith(Eq(1)); EXPECT_FALSE(m.Matches(SampleVariantIntString(2))); m = VariantWith(Eq("1")); EXPECT_FALSE(m.Matches(SampleVariantIntString("2"))); } class SampleAnyType { public: explicit SampleAnyType(int i) : index_(0), i_(i) {} explicit SampleAnyType(const std::string& s) : index_(1), s_(s) {} template friend const T* any_cast(const SampleAnyType* any) { return any->get_impl(static_cast(nullptr)); } private: int index_; int i_; std::string s_; const int* get_impl(int*) const { return index_ == 0 ? &i_ : nullptr; } const std::string* get_impl(std::string*) const { return index_ == 1 ? &s_ : nullptr; } }; TEST(AnyWithTest, FullMatch) { Matcher m = AnyWith(Eq(1)); EXPECT_TRUE(m.Matches(SampleAnyType(1))); } TEST(AnyWithTest, TestBadCastType) { Matcher m = AnyWith(Eq("fail")); EXPECT_FALSE(m.Matches(SampleAnyType(1))); } TEST(AnyWithTest, TestUseInContainers) { std::vector a; a.emplace_back(1); a.emplace_back(2); a.emplace_back(3); EXPECT_THAT( a, ElementsAreArray({AnyWith(1), AnyWith(2), AnyWith(3)})); std::vector b; b.emplace_back("hello"); b.emplace_back("merhaba"); b.emplace_back("salut"); EXPECT_THAT(b, ElementsAreArray({AnyWith("hello"), AnyWith("merhaba"), AnyWith("salut")})); } TEST(AnyWithTest, TestCompare) { EXPECT_THAT(SampleAnyType(1), AnyWith(Gt(0))); } TEST(AnyWithTest, DescribesSelf) { const Matcher m = AnyWith(Eq(1)); EXPECT_THAT(Describe(m), ContainsRegex("is an 'any' type with value of type " "'.*' and the value is equal to 1")); } TEST(AnyWithTest, ExplainsSelf) { const Matcher m = AnyWith(Eq(1)); EXPECT_THAT(Explain(m, SampleAnyType(1)), ContainsRegex("whose value 1")); EXPECT_THAT(Explain(m, SampleAnyType("A")), HasSubstr("whose value is not of type '")); EXPECT_THAT(Explain(m, SampleAnyType(2)), "whose value 2 doesn't match"); } TEST(PointeeTest, WorksOnMoveOnlyType) { std::unique_ptr p(new int(3)); EXPECT_THAT(p, Pointee(Eq(3))); EXPECT_THAT(p, Not(Pointee(Eq(2)))); } TEST(NotTest, WorksOnMoveOnlyType) { std::unique_ptr p(new int(3)); EXPECT_THAT(p, Pointee(Eq(3))); EXPECT_THAT(p, Not(Pointee(Eq(2)))); } // Tests Args(m). TEST(ArgsTest, AcceptsZeroTemplateArg) { const std::tuple t(5, true); EXPECT_THAT(t, Args<>(Eq(std::tuple<>()))); EXPECT_THAT(t, Not(Args<>(Ne(std::tuple<>())))); } TEST(ArgsTest, AcceptsOneTemplateArg) { const std::tuple t(5, true); EXPECT_THAT(t, Args<0>(Eq(std::make_tuple(5)))); EXPECT_THAT(t, Args<1>(Eq(std::make_tuple(true)))); EXPECT_THAT(t, Not(Args<1>(Eq(std::make_tuple(false))))); } TEST(ArgsTest, AcceptsTwoTemplateArgs) { const std::tuple t(4, 5, 6L); // NOLINT EXPECT_THAT(t, (Args<0, 1>(Lt()))); EXPECT_THAT(t, (Args<1, 2>(Lt()))); EXPECT_THAT(t, Not(Args<0, 2>(Gt()))); } TEST(ArgsTest, AcceptsRepeatedTemplateArgs) { const std::tuple t(4, 5, 6L); // NOLINT EXPECT_THAT(t, (Args<0, 0>(Eq()))); EXPECT_THAT(t, Not(Args<1, 1>(Ne()))); } TEST(ArgsTest, AcceptsDecreasingTemplateArgs) { const std::tuple t(4, 5, 6L); // NOLINT EXPECT_THAT(t, (Args<2, 0>(Gt()))); EXPECT_THAT(t, Not(Args<2, 1>(Lt()))); } MATCHER(SumIsZero, "") { return std::get<0>(arg) + std::get<1>(arg) + std::get<2>(arg) == 0; } TEST(ArgsTest, AcceptsMoreTemplateArgsThanArityOfOriginalTuple) { EXPECT_THAT(std::make_tuple(-1, 2), (Args<0, 0, 1>(SumIsZero()))); EXPECT_THAT(std::make_tuple(1, 2), Not(Args<0, 0, 1>(SumIsZero()))); } TEST(ArgsTest, CanBeNested) { const std::tuple t(4, 5, 6L, 6); // NOLINT EXPECT_THAT(t, (Args<1, 2, 3>(Args<1, 2>(Eq())))); EXPECT_THAT(t, (Args<0, 1, 3>(Args<0, 2>(Lt())))); } TEST(ArgsTest, CanMatchTupleByValue) { typedef std::tuple Tuple3; const Matcher m = Args<1, 2>(Lt()); EXPECT_TRUE(m.Matches(Tuple3('a', 1, 2))); EXPECT_FALSE(m.Matches(Tuple3('b', 2, 2))); } TEST(ArgsTest, CanMatchTupleByReference) { typedef std::tuple Tuple3; const Matcher m = Args<0, 1>(Lt()); EXPECT_TRUE(m.Matches(Tuple3('a', 'b', 2))); EXPECT_FALSE(m.Matches(Tuple3('b', 'b', 2))); } // Validates that arg is printed as str. MATCHER_P(PrintsAs, str, "") { return testing::PrintToString(arg) == str; } TEST(ArgsTest, AcceptsTenTemplateArgs) { EXPECT_THAT(std::make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), (Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( PrintsAs("(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); EXPECT_THAT(std::make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), Not(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( PrintsAs("(0, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); } TEST(ArgsTest, DescirbesSelfCorrectly) { const Matcher > m = Args<2, 0>(Lt()); EXPECT_EQ("are a tuple whose fields (#2, #0) are a pair where " "the first < the second", Describe(m)); } TEST(ArgsTest, DescirbesNestedArgsCorrectly) { const Matcher&> m = Args<0, 2, 3>(Args<2, 0>(Lt())); EXPECT_EQ("are a tuple whose fields (#0, #2, #3) are a tuple " "whose fields (#2, #0) are a pair where the first < the second", Describe(m)); } TEST(ArgsTest, DescribesNegationCorrectly) { const Matcher > m = Args<1, 0>(Gt()); EXPECT_EQ("are a tuple whose fields (#1, #0) aren't a pair " "where the first > the second", DescribeNegation(m)); } TEST(ArgsTest, ExplainsMatchResultWithoutInnerExplanation) { const Matcher > m = Args<1, 2>(Eq()); EXPECT_EQ("whose fields (#1, #2) are (42, 42)", Explain(m, std::make_tuple(false, 42, 42))); EXPECT_EQ("whose fields (#1, #2) are (42, 43)", Explain(m, std::make_tuple(false, 42, 43))); } // For testing Args<>'s explanation. class LessThanMatcher : public MatcherInterface > { public: void DescribeTo(::std::ostream* /*os*/) const override {} bool MatchAndExplain(std::tuple value, MatchResultListener* listener) const override { const int diff = std::get<0>(value) - std::get<1>(value); if (diff > 0) { *listener << "where the first value is " << diff << " more than the second"; } return diff < 0; } }; Matcher > LessThan() { return MakeMatcher(new LessThanMatcher); } TEST(ArgsTest, ExplainsMatchResultWithInnerExplanation) { const Matcher > m = Args<0, 2>(LessThan()); EXPECT_EQ( "whose fields (#0, #2) are ('a' (97, 0x61), 42), " "where the first value is 55 more than the second", Explain(m, std::make_tuple('a', 42, 42))); EXPECT_EQ("whose fields (#0, #2) are ('\\0', 43)", Explain(m, std::make_tuple('\0', 42, 43))); } class PredicateFormatterFromMatcherTest : public ::testing::Test { protected: enum Behavior { kInitialSuccess, kAlwaysFail, kFlaky }; // A matcher that can return different results when used multiple times on the // same input. No real matcher should do this; but this lets us test that we // detect such behavior and fail appropriately. class MockMatcher : public MatcherInterface { public: bool MatchAndExplain(Behavior behavior, MatchResultListener* listener) const override { *listener << "[MatchAndExplain]"; switch (behavior) { case kInitialSuccess: // The first call to MatchAndExplain should use a "not interested" // listener; so this is expected to return |true|. There should be no // subsequent calls. return !listener->IsInterested(); case kAlwaysFail: return false; case kFlaky: // The first call to MatchAndExplain should use a "not interested" // listener; so this will return |false|. Subsequent calls should have // an "interested" listener; so this will return |true|, thus // simulating a flaky matcher. return listener->IsInterested(); } GTEST_LOG_(FATAL) << "This should never be reached"; return false; } void DescribeTo(ostream* os) const override { *os << "[DescribeTo]"; } void DescribeNegationTo(ostream* os) const override { *os << "[DescribeNegationTo]"; } }; AssertionResult RunPredicateFormatter(Behavior behavior) { auto matcher = MakeMatcher(new MockMatcher); PredicateFormatterFromMatcher> predicate_formatter( matcher); return predicate_formatter("dummy-name", behavior); } }; TEST_F(PredicateFormatterFromMatcherTest, ShortCircuitOnSuccess) { AssertionResult result = RunPredicateFormatter(kInitialSuccess); EXPECT_TRUE(result); // Implicit cast to bool. std::string expect; EXPECT_EQ(expect, result.message()); } TEST_F(PredicateFormatterFromMatcherTest, NoShortCircuitOnFailure) { AssertionResult result = RunPredicateFormatter(kAlwaysFail); EXPECT_FALSE(result); // Implicit cast to bool. std::string expect = "Value of: dummy-name\nExpected: [DescribeTo]\n" " Actual: 1" + OfType(internal::GetTypeName()) + ", [MatchAndExplain]"; EXPECT_EQ(expect, result.message()); } TEST_F(PredicateFormatterFromMatcherTest, DetectsFlakyShortCircuit) { AssertionResult result = RunPredicateFormatter(kFlaky); EXPECT_FALSE(result); // Implicit cast to bool. std::string expect = "Value of: dummy-name\nExpected: [DescribeTo]\n" " The matcher failed on the initial attempt; but passed when rerun to " "generate the explanation.\n" " Actual: 2" + OfType(internal::GetTypeName()) + ", [MatchAndExplain]"; EXPECT_EQ(expect, result.message()); } // Tests for ElementsAre(). TEST(ElementsAreTest, CanDescribeExpectingNoElement) { Matcher&> m = ElementsAre(); EXPECT_EQ("is empty", Describe(m)); } TEST(ElementsAreTest, CanDescribeExpectingOneElement) { Matcher> m = ElementsAre(Gt(5)); EXPECT_EQ("has 1 element that is > 5", Describe(m)); } TEST(ElementsAreTest, CanDescribeExpectingManyElements) { Matcher> m = ElementsAre(StrEq("one"), "two"); EXPECT_EQ( "has 2 elements where\n" "element #0 is equal to \"one\",\n" "element #1 is equal to \"two\"", Describe(m)); } TEST(ElementsAreTest, CanDescribeNegationOfExpectingNoElement) { Matcher> m = ElementsAre(); EXPECT_EQ("isn't empty", DescribeNegation(m)); } TEST(ElementsAreTest, CanDescribeNegationOfExpectingOneElement) { Matcher&> m = ElementsAre(Gt(5)); EXPECT_EQ( "doesn't have 1 element, or\n" "element #0 isn't > 5", DescribeNegation(m)); } TEST(ElementsAreTest, CanDescribeNegationOfExpectingManyElements) { Matcher&> m = ElementsAre("one", "two"); EXPECT_EQ( "doesn't have 2 elements, or\n" "element #0 isn't equal to \"one\", or\n" "element #1 isn't equal to \"two\"", DescribeNegation(m)); } TEST(ElementsAreTest, DoesNotExplainTrivialMatch) { Matcher&> m = ElementsAre(1, Ne(2)); list test_list; test_list.push_back(1); test_list.push_back(3); EXPECT_EQ("", Explain(m, test_list)); // No need to explain anything. } TEST(ElementsAreTest, ExplainsNonTrivialMatch) { Matcher&> m = ElementsAre(GreaterThan(1), 0, GreaterThan(2)); const int a[] = {10, 0, 100}; vector test_vector(std::begin(a), std::end(a)); EXPECT_EQ( "whose element #0 matches, which is 9 more than 1,\n" "and whose element #2 matches, which is 98 more than 2", Explain(m, test_vector)); } TEST(ElementsAreTest, CanExplainMismatchWrongSize) { Matcher&> m = ElementsAre(1, 3); list test_list; // No need to explain when the container is empty. EXPECT_EQ("", Explain(m, test_list)); test_list.push_back(1); EXPECT_EQ("which has 1 element", Explain(m, test_list)); } TEST(ElementsAreTest, CanExplainMismatchRightSize) { Matcher&> m = ElementsAre(1, GreaterThan(5)); vector v; v.push_back(2); v.push_back(1); EXPECT_EQ("whose element #0 doesn't match", Explain(m, v)); v[0] = 1; EXPECT_EQ("whose element #1 doesn't match, which is 4 less than 5", Explain(m, v)); } TEST(ElementsAreTest, MatchesOneElementVector) { vector test_vector; test_vector.push_back("test string"); EXPECT_THAT(test_vector, ElementsAre(StrEq("test string"))); } TEST(ElementsAreTest, MatchesOneElementList) { list test_list; test_list.push_back("test string"); EXPECT_THAT(test_list, ElementsAre("test string")); } TEST(ElementsAreTest, MatchesThreeElementVector) { vector test_vector; test_vector.push_back("one"); test_vector.push_back("two"); test_vector.push_back("three"); EXPECT_THAT(test_vector, ElementsAre("one", StrEq("two"), _)); } TEST(ElementsAreTest, MatchesOneElementEqMatcher) { vector test_vector; test_vector.push_back(4); EXPECT_THAT(test_vector, ElementsAre(Eq(4))); } TEST(ElementsAreTest, MatchesOneElementAnyMatcher) { vector test_vector; test_vector.push_back(4); EXPECT_THAT(test_vector, ElementsAre(_)); } TEST(ElementsAreTest, MatchesOneElementValue) { vector test_vector; test_vector.push_back(4); EXPECT_THAT(test_vector, ElementsAre(4)); } TEST(ElementsAreTest, MatchesThreeElementsMixedMatchers) { vector test_vector; test_vector.push_back(1); test_vector.push_back(2); test_vector.push_back(3); EXPECT_THAT(test_vector, ElementsAre(1, Eq(2), _)); } TEST(ElementsAreTest, MatchesTenElementVector) { const int a[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; vector test_vector(std::begin(a), std::end(a)); EXPECT_THAT(test_vector, // The element list can contain values and/or matchers // of different types. ElementsAre(0, Ge(0), _, 3, 4, Ne(2), Eq(6), 7, 8, _)); } TEST(ElementsAreTest, DoesNotMatchWrongSize) { vector test_vector; test_vector.push_back("test string"); test_vector.push_back("test string"); Matcher> m = ElementsAre(StrEq("test string")); EXPECT_FALSE(m.Matches(test_vector)); } TEST(ElementsAreTest, DoesNotMatchWrongValue) { vector test_vector; test_vector.push_back("other string"); Matcher> m = ElementsAre(StrEq("test string")); EXPECT_FALSE(m.Matches(test_vector)); } TEST(ElementsAreTest, DoesNotMatchWrongOrder) { vector test_vector; test_vector.push_back("one"); test_vector.push_back("three"); test_vector.push_back("two"); Matcher> m = ElementsAre(StrEq("one"), StrEq("two"), StrEq("three")); EXPECT_FALSE(m.Matches(test_vector)); } TEST(ElementsAreTest, WorksForNestedContainer) { constexpr std::array strings = {{"Hi", "world"}}; vector> nested; for (const auto& s : strings) { nested.emplace_back(s, s + strlen(s)); } EXPECT_THAT(nested, ElementsAre(ElementsAre('H', Ne('e')), ElementsAre('w', 'o', _, _, 'd'))); EXPECT_THAT(nested, Not(ElementsAre(ElementsAre('H', 'e'), ElementsAre('w', 'o', _, _, 'd')))); } TEST(ElementsAreTest, WorksWithByRefElementMatchers) { int a[] = {0, 1, 2}; vector v(std::begin(a), std::end(a)); EXPECT_THAT(v, ElementsAre(Ref(v[0]), Ref(v[1]), Ref(v[2]))); EXPECT_THAT(v, Not(ElementsAre(Ref(v[0]), Ref(v[1]), Ref(a[2])))); } TEST(ElementsAreTest, WorksWithContainerPointerUsingPointee) { int a[] = {0, 1, 2}; vector v(std::begin(a), std::end(a)); EXPECT_THAT(&v, Pointee(ElementsAre(0, 1, _))); EXPECT_THAT(&v, Not(Pointee(ElementsAre(0, _, 3)))); } TEST(ElementsAreTest, WorksWithNativeArrayPassedByReference) { int array[] = {0, 1, 2}; EXPECT_THAT(array, ElementsAre(0, 1, _)); EXPECT_THAT(array, Not(ElementsAre(1, _, _))); EXPECT_THAT(array, Not(ElementsAre(0, _))); } class NativeArrayPassedAsPointerAndSize { public: NativeArrayPassedAsPointerAndSize() {} MOCK_METHOD(void, Helper, (int* array, int size)); private: GTEST_DISALLOW_COPY_AND_ASSIGN_(NativeArrayPassedAsPointerAndSize); }; TEST(ElementsAreTest, WorksWithNativeArrayPassedAsPointerAndSize) { int array[] = {0, 1}; ::std::tuple array_as_tuple(array, 2); EXPECT_THAT(array_as_tuple, ElementsAre(0, 1)); EXPECT_THAT(array_as_tuple, Not(ElementsAre(0))); NativeArrayPassedAsPointerAndSize helper; EXPECT_CALL(helper, Helper(_, _)).With(ElementsAre(0, 1)); helper.Helper(array, 2); } TEST(ElementsAreTest, WorksWithTwoDimensionalNativeArray) { const char a2[][3] = {"hi", "lo"}; EXPECT_THAT(a2, ElementsAre(ElementsAre('h', 'i', '\0'), ElementsAre('l', 'o', '\0'))); EXPECT_THAT(a2, ElementsAre(StrEq("hi"), StrEq("lo"))); EXPECT_THAT(a2, ElementsAre(Not(ElementsAre('h', 'o', '\0')), ElementsAre('l', 'o', '\0'))); } TEST(ElementsAreTest, AcceptsStringLiteral) { std::string array[] = {"hi", "one", "two"}; EXPECT_THAT(array, ElementsAre("hi", "one", "two")); EXPECT_THAT(array, Not(ElementsAre("hi", "one", "too"))); } // Declared here with the size unknown. Defined AFTER the following test. extern const char kHi[]; TEST(ElementsAreTest, AcceptsArrayWithUnknownSize) { // The size of kHi is not known in this test, but ElementsAre() should // still accept it. std::string array1[] = {"hi"}; EXPECT_THAT(array1, ElementsAre(kHi)); std::string array2[] = {"ho"}; EXPECT_THAT(array2, Not(ElementsAre(kHi))); } const char kHi[] = "hi"; TEST(ElementsAreTest, MakesCopyOfArguments) { int x = 1; int y = 2; // This should make a copy of x and y. ::testing::internal::ElementsAreMatcher> polymorphic_matcher = ElementsAre(x, y); // Changing x and y now shouldn't affect the meaning of the above matcher. x = y = 0; const int array1[] = {1, 2}; EXPECT_THAT(array1, polymorphic_matcher); const int array2[] = {0, 0}; EXPECT_THAT(array2, Not(polymorphic_matcher)); } // Tests for ElementsAreArray(). Since ElementsAreArray() shares most // of the implementation with ElementsAre(), we don't test it as // thoroughly here. TEST(ElementsAreArrayTest, CanBeCreatedWithValueArray) { const int a[] = {1, 2, 3}; vector test_vector(std::begin(a), std::end(a)); EXPECT_THAT(test_vector, ElementsAreArray(a)); test_vector[2] = 0; EXPECT_THAT(test_vector, Not(ElementsAreArray(a))); } TEST(ElementsAreArrayTest, CanBeCreatedWithArraySize) { std::array a = {{"one", "two", "three"}}; vector test_vector(std::begin(a), std::end(a)); EXPECT_THAT(test_vector, ElementsAreArray(a.data(), a.size())); const char** p = a.data(); test_vector[0] = "1"; EXPECT_THAT(test_vector, Not(ElementsAreArray(p, a.size()))); } TEST(ElementsAreArrayTest, CanBeCreatedWithoutArraySize) { const char* a[] = {"one", "two", "three"}; vector test_vector(std::begin(a), std::end(a)); EXPECT_THAT(test_vector, ElementsAreArray(a)); test_vector[0] = "1"; EXPECT_THAT(test_vector, Not(ElementsAreArray(a))); } TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherArray) { const Matcher kMatcherArray[] = {StrEq("one"), StrEq("two"), StrEq("three")}; vector test_vector; test_vector.push_back("one"); test_vector.push_back("two"); test_vector.push_back("three"); EXPECT_THAT(test_vector, ElementsAreArray(kMatcherArray)); test_vector.push_back("three"); EXPECT_THAT(test_vector, Not(ElementsAreArray(kMatcherArray))); } TEST(ElementsAreArrayTest, CanBeCreatedWithVector) { const int a[] = {1, 2, 3}; vector test_vector(std::begin(a), std::end(a)); const vector expected(std::begin(a), std::end(a)); EXPECT_THAT(test_vector, ElementsAreArray(expected)); test_vector.push_back(4); EXPECT_THAT(test_vector, Not(ElementsAreArray(expected))); } TEST(ElementsAreArrayTest, TakesInitializerList) { const int a[5] = {1, 2, 3, 4, 5}; EXPECT_THAT(a, ElementsAreArray({1, 2, 3, 4, 5})); EXPECT_THAT(a, Not(ElementsAreArray({1, 2, 3, 5, 4}))); EXPECT_THAT(a, Not(ElementsAreArray({1, 2, 3, 4, 6}))); } TEST(ElementsAreArrayTest, TakesInitializerListOfCStrings) { const std::string a[5] = {"a", "b", "c", "d", "e"}; EXPECT_THAT(a, ElementsAreArray({"a", "b", "c", "d", "e"})); EXPECT_THAT(a, Not(ElementsAreArray({"a", "b", "c", "e", "d"}))); EXPECT_THAT(a, Not(ElementsAreArray({"a", "b", "c", "d", "ef"}))); } TEST(ElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) { const int a[5] = {1, 2, 3, 4, 5}; EXPECT_THAT(a, ElementsAreArray({Eq(1), Eq(2), Eq(3), Eq(4), Eq(5)})); EXPECT_THAT(a, Not(ElementsAreArray({Eq(1), Eq(2), Eq(3), Eq(4), Eq(6)}))); } TEST(ElementsAreArrayTest, TakesInitializerListOfDifferentTypedMatchers) { const int a[5] = {1, 2, 3, 4, 5}; // The compiler cannot infer the type of the initializer list if its // elements have different types. We must explicitly specify the // unified element type in this case. EXPECT_THAT( a, ElementsAreArray>({Eq(1), Ne(-2), Ge(3), Le(4), Eq(5)})); EXPECT_THAT(a, Not(ElementsAreArray>( {Eq(1), Ne(-2), Ge(3), Le(4), Eq(6)}))); } TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherVector) { const int a[] = {1, 2, 3}; const Matcher kMatchers[] = {Eq(1), Eq(2), Eq(3)}; vector test_vector(std::begin(a), std::end(a)); const vector> expected(std::begin(kMatchers), std::end(kMatchers)); EXPECT_THAT(test_vector, ElementsAreArray(expected)); test_vector.push_back(4); EXPECT_THAT(test_vector, Not(ElementsAreArray(expected))); } TEST(ElementsAreArrayTest, CanBeCreatedWithIteratorRange) { const int a[] = {1, 2, 3}; const vector test_vector(std::begin(a), std::end(a)); const vector expected(std::begin(a), std::end(a)); EXPECT_THAT(test_vector, ElementsAreArray(expected.begin(), expected.end())); // Pointers are iterators, too. EXPECT_THAT(test_vector, ElementsAreArray(std::begin(a), std::end(a))); // The empty range of NULL pointers should also be okay. int* const null_int = nullptr; EXPECT_THAT(test_vector, Not(ElementsAreArray(null_int, null_int))); EXPECT_THAT((vector()), ElementsAreArray(null_int, null_int)); } // Since ElementsAre() and ElementsAreArray() share much of the // implementation, we only do a sanity test for native arrays here. TEST(ElementsAreArrayTest, WorksWithNativeArray) { ::std::string a[] = {"hi", "ho"}; ::std::string b[] = {"hi", "ho"}; EXPECT_THAT(a, ElementsAreArray(b)); EXPECT_THAT(a, ElementsAreArray(b, 2)); EXPECT_THAT(a, Not(ElementsAreArray(b, 1))); } TEST(ElementsAreArrayTest, SourceLifeSpan) { const int a[] = {1, 2, 3}; vector test_vector(std::begin(a), std::end(a)); vector expect(std::begin(a), std::end(a)); ElementsAreArrayMatcher matcher_maker = ElementsAreArray(expect.begin(), expect.end()); EXPECT_THAT(test_vector, matcher_maker); // Changing in place the values that initialized matcher_maker should not // affect matcher_maker anymore. It should have made its own copy of them. for (int& i : expect) { i += 10; } EXPECT_THAT(test_vector, matcher_maker); test_vector.push_back(3); EXPECT_THAT(test_vector, Not(matcher_maker)); } // Tests for the MATCHER*() macro family. // Tests that a simple MATCHER() definition works. MATCHER(IsEven, "") { return (arg % 2) == 0; } TEST(MatcherMacroTest, Works) { const Matcher m = IsEven(); EXPECT_TRUE(m.Matches(6)); EXPECT_FALSE(m.Matches(7)); EXPECT_EQ("is even", Describe(m)); EXPECT_EQ("not (is even)", DescribeNegation(m)); EXPECT_EQ("", Explain(m, 6)); EXPECT_EQ("", Explain(m, 7)); } // This also tests that the description string can reference 'negation'. MATCHER(IsEven2, negation ? "is odd" : "is even") { if ((arg % 2) == 0) { // Verifies that we can stream to result_listener, a listener // supplied by the MATCHER macro implicitly. *result_listener << "OK"; return true; } else { *result_listener << "% 2 == " << (arg % 2); return false; } } // This also tests that the description string can reference matcher // parameters. MATCHER_P2(EqSumOf, x, y, std::string(negation ? "doesn't equal" : "equals") + " the sum of " + PrintToString(x) + " and " + PrintToString(y)) { if (arg == (x + y)) { *result_listener << "OK"; return true; } else { // Verifies that we can stream to the underlying stream of // result_listener. if (result_listener->stream() != nullptr) { *result_listener->stream() << "diff == " << (x + y - arg); } return false; } } // Tests that the matcher description can reference 'negation' and the // matcher parameters. TEST(MatcherMacroTest, DescriptionCanReferenceNegationAndParameters) { const Matcher m1 = IsEven2(); EXPECT_EQ("is even", Describe(m1)); EXPECT_EQ("is odd", DescribeNegation(m1)); const Matcher m2 = EqSumOf(5, 9); EXPECT_EQ("equals the sum of 5 and 9", Describe(m2)); EXPECT_EQ("doesn't equal the sum of 5 and 9", DescribeNegation(m2)); } // Tests explaining match result in a MATCHER* macro. TEST(MatcherMacroTest, CanExplainMatchResult) { const Matcher m1 = IsEven2(); EXPECT_EQ("OK", Explain(m1, 4)); EXPECT_EQ("% 2 == 1", Explain(m1, 5)); const Matcher m2 = EqSumOf(1, 2); EXPECT_EQ("OK", Explain(m2, 3)); EXPECT_EQ("diff == -1", Explain(m2, 4)); } // Tests that the body of MATCHER() can reference the type of the // value being matched. MATCHER(IsEmptyString, "") { StaticAssertTypeEq<::std::string, arg_type>(); return arg.empty(); } MATCHER(IsEmptyStringByRef, "") { StaticAssertTypeEq(); return arg.empty(); } TEST(MatcherMacroTest, CanReferenceArgType) { const Matcher<::std::string> m1 = IsEmptyString(); EXPECT_TRUE(m1.Matches("")); const Matcher m2 = IsEmptyStringByRef(); EXPECT_TRUE(m2.Matches("")); } // Tests that MATCHER() can be used in a namespace. namespace matcher_test { MATCHER(IsOdd, "") { return (arg % 2) != 0; } } // namespace matcher_test TEST(MatcherMacroTest, WorksInNamespace) { Matcher m = matcher_test::IsOdd(); EXPECT_FALSE(m.Matches(4)); EXPECT_TRUE(m.Matches(5)); } // Tests that Value() can be used to compose matchers. MATCHER(IsPositiveOdd, "") { return Value(arg, matcher_test::IsOdd()) && arg > 0; } TEST(MatcherMacroTest, CanBeComposedUsingValue) { EXPECT_THAT(3, IsPositiveOdd()); EXPECT_THAT(4, Not(IsPositiveOdd())); EXPECT_THAT(-1, Not(IsPositiveOdd())); } // Tests that a simple MATCHER_P() definition works. MATCHER_P(IsGreaterThan32And, n, "") { return arg > 32 && arg > n; } TEST(MatcherPMacroTest, Works) { const Matcher m = IsGreaterThan32And(5); EXPECT_TRUE(m.Matches(36)); EXPECT_FALSE(m.Matches(5)); EXPECT_EQ("is greater than 32 and (n: 5)", Describe(m)); EXPECT_EQ("not (is greater than 32 and (n: 5))", DescribeNegation(m)); EXPECT_EQ("", Explain(m, 36)); EXPECT_EQ("", Explain(m, 5)); } // Tests that the description is calculated correctly from the matcher name. MATCHER_P(_is_Greater_Than32and_, n, "") { return arg > 32 && arg > n; } TEST(MatcherPMacroTest, GeneratesCorrectDescription) { const Matcher m = _is_Greater_Than32and_(5); EXPECT_EQ("is greater than 32 and (n: 5)", Describe(m)); EXPECT_EQ("not (is greater than 32 and (n: 5))", DescribeNegation(m)); EXPECT_EQ("", Explain(m, 36)); EXPECT_EQ("", Explain(m, 5)); } // Tests that a MATCHER_P matcher can be explicitly instantiated with // a reference parameter type. class UncopyableFoo { public: explicit UncopyableFoo(char value) : value_(value) { (void)value_; } UncopyableFoo(const UncopyableFoo&) = delete; void operator=(const UncopyableFoo&) = delete; private: char value_; }; MATCHER_P(ReferencesUncopyable, variable, "") { return &arg == &variable; } TEST(MatcherPMacroTest, WorksWhenExplicitlyInstantiatedWithReference) { UncopyableFoo foo1('1'), foo2('2'); const Matcher m = ReferencesUncopyable(foo1); EXPECT_TRUE(m.Matches(foo1)); EXPECT_FALSE(m.Matches(foo2)); // We don't want the address of the parameter printed, as most // likely it will just annoy the user. If the address is // interesting, the user should consider passing the parameter by // pointer instead. EXPECT_EQ("references uncopyable (variable: 1-byte object <31>)", Describe(m)); } // Tests that the body of MATCHER_Pn() can reference the parameter // types. MATCHER_P3(ParamTypesAreIntLongAndChar, foo, bar, baz, "") { StaticAssertTypeEq(); StaticAssertTypeEq(); // NOLINT StaticAssertTypeEq(); return arg == 0; } TEST(MatcherPnMacroTest, CanReferenceParamTypes) { EXPECT_THAT(0, ParamTypesAreIntLongAndChar(10, 20L, 'a')); } // Tests that a MATCHER_Pn matcher can be explicitly instantiated with // reference parameter types. MATCHER_P2(ReferencesAnyOf, variable1, variable2, "") { return &arg == &variable1 || &arg == &variable2; } TEST(MatcherPnMacroTest, WorksWhenExplicitlyInstantiatedWithReferences) { UncopyableFoo foo1('1'), foo2('2'), foo3('3'); const Matcher const_m = ReferencesAnyOf(foo1, foo2); EXPECT_TRUE(const_m.Matches(foo1)); EXPECT_TRUE(const_m.Matches(foo2)); EXPECT_FALSE(const_m.Matches(foo3)); const Matcher m = ReferencesAnyOf(foo1, foo2); EXPECT_TRUE(m.Matches(foo1)); EXPECT_TRUE(m.Matches(foo2)); EXPECT_FALSE(m.Matches(foo3)); } TEST(MatcherPnMacroTest, GeneratesCorretDescriptionWhenExplicitlyInstantiatedWithReferences) { UncopyableFoo foo1('1'), foo2('2'); const Matcher m = ReferencesAnyOf(foo1, foo2); // We don't want the addresses of the parameters printed, as most // likely they will just annoy the user. If the addresses are // interesting, the user should consider passing the parameters by // pointers instead. EXPECT_EQ( "references any of (variable1: 1-byte object <31>, variable2: 1-byte " "object <32>)", Describe(m)); } // Tests that a simple MATCHER_P2() definition works. MATCHER_P2(IsNotInClosedRange, low, hi, "") { return arg < low || arg > hi; } TEST(MatcherPnMacroTest, Works) { const Matcher m = IsNotInClosedRange(10, 20); // NOLINT EXPECT_TRUE(m.Matches(36L)); EXPECT_FALSE(m.Matches(15L)); EXPECT_EQ("is not in closed range (low: 10, hi: 20)", Describe(m)); EXPECT_EQ("not (is not in closed range (low: 10, hi: 20))", DescribeNegation(m)); EXPECT_EQ("", Explain(m, 36L)); EXPECT_EQ("", Explain(m, 15L)); } // Tests that MATCHER*() definitions can be overloaded on the number // of parameters; also tests MATCHER_Pn() where n >= 3. MATCHER(EqualsSumOf, "") { return arg == 0; } MATCHER_P(EqualsSumOf, a, "") { return arg == a; } MATCHER_P2(EqualsSumOf, a, b, "") { return arg == a + b; } MATCHER_P3(EqualsSumOf, a, b, c, "") { return arg == a + b + c; } MATCHER_P4(EqualsSumOf, a, b, c, d, "") { return arg == a + b + c + d; } MATCHER_P5(EqualsSumOf, a, b, c, d, e, "") { return arg == a + b + c + d + e; } MATCHER_P6(EqualsSumOf, a, b, c, d, e, f, "") { return arg == a + b + c + d + e + f; } MATCHER_P7(EqualsSumOf, a, b, c, d, e, f, g, "") { return arg == a + b + c + d + e + f + g; } MATCHER_P8(EqualsSumOf, a, b, c, d, e, f, g, h, "") { return arg == a + b + c + d + e + f + g + h; } MATCHER_P9(EqualsSumOf, a, b, c, d, e, f, g, h, i, "") { return arg == a + b + c + d + e + f + g + h + i; } MATCHER_P10(EqualsSumOf, a, b, c, d, e, f, g, h, i, j, "") { return arg == a + b + c + d + e + f + g + h + i + j; } TEST(MatcherPnMacroTest, CanBeOverloadedOnNumberOfParameters) { EXPECT_THAT(0, EqualsSumOf()); EXPECT_THAT(1, EqualsSumOf(1)); EXPECT_THAT(12, EqualsSumOf(10, 2)); EXPECT_THAT(123, EqualsSumOf(100, 20, 3)); EXPECT_THAT(1234, EqualsSumOf(1000, 200, 30, 4)); EXPECT_THAT(12345, EqualsSumOf(10000, 2000, 300, 40, 5)); EXPECT_THAT("abcdef", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f')); EXPECT_THAT("abcdefg", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g')); EXPECT_THAT("abcdefgh", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h")); EXPECT_THAT("abcdefghi", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", 'i')); EXPECT_THAT("abcdefghij", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", 'i', ::std::string("j"))); EXPECT_THAT(1, Not(EqualsSumOf())); EXPECT_THAT(-1, Not(EqualsSumOf(1))); EXPECT_THAT(-12, Not(EqualsSumOf(10, 2))); EXPECT_THAT(-123, Not(EqualsSumOf(100, 20, 3))); EXPECT_THAT(-1234, Not(EqualsSumOf(1000, 200, 30, 4))); EXPECT_THAT(-12345, Not(EqualsSumOf(10000, 2000, 300, 40, 5))); EXPECT_THAT("abcdef ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f'))); EXPECT_THAT("abcdefg ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g'))); EXPECT_THAT("abcdefgh ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h"))); EXPECT_THAT("abcdefghi ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", 'i'))); EXPECT_THAT("abcdefghij ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", 'i', ::std::string("j")))); } // Tests that a MATCHER_Pn() definition can be instantiated with any // compatible parameter types. TEST(MatcherPnMacroTest, WorksForDifferentParameterTypes) { EXPECT_THAT(123, EqualsSumOf(100L, 20, static_cast(3))); EXPECT_THAT("abcd", EqualsSumOf(::std::string("a"), "b", 'c', "d")); EXPECT_THAT(124, Not(EqualsSumOf(100L, 20, static_cast(3)))); EXPECT_THAT("abcde", Not(EqualsSumOf(::std::string("a"), "b", 'c', "d"))); } // Tests that the matcher body can promote the parameter types. MATCHER_P2(EqConcat, prefix, suffix, "") { // The following lines promote the two parameters to desired types. std::string prefix_str(prefix); char suffix_char = static_cast(suffix); return arg == prefix_str + suffix_char; } TEST(MatcherPnMacroTest, SimpleTypePromotion) { Matcher no_promo = EqConcat(std::string("foo"), 't'); Matcher promo = EqConcat("foo", static_cast('t')); EXPECT_FALSE(no_promo.Matches("fool")); EXPECT_FALSE(promo.Matches("fool")); EXPECT_TRUE(no_promo.Matches("foot")); EXPECT_TRUE(promo.Matches("foot")); } // Verifies the type of a MATCHER*. TEST(MatcherPnMacroTest, TypesAreCorrect) { // EqualsSumOf() must be assignable to a EqualsSumOfMatcher variable. EqualsSumOfMatcher a0 = EqualsSumOf(); // EqualsSumOf(1) must be assignable to a EqualsSumOfMatcherP variable. EqualsSumOfMatcherP a1 = EqualsSumOf(1); // EqualsSumOf(p1, ..., pk) must be assignable to a EqualsSumOfMatcherPk // variable, and so on. EqualsSumOfMatcherP2 a2 = EqualsSumOf(1, '2'); EqualsSumOfMatcherP3 a3 = EqualsSumOf(1, 2, '3'); EqualsSumOfMatcherP4 a4 = EqualsSumOf(1, 2, 3, '4'); EqualsSumOfMatcherP5 a5 = EqualsSumOf(1, 2, 3, 4, '5'); EqualsSumOfMatcherP6 a6 = EqualsSumOf(1, 2, 3, 4, 5, '6'); EqualsSumOfMatcherP7 a7 = EqualsSumOf(1, 2, 3, 4, 5, 6, '7'); EqualsSumOfMatcherP8 a8 = EqualsSumOf(1, 2, 3, 4, 5, 6, 7, '8'); EqualsSumOfMatcherP9 a9 = EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, '9'); EqualsSumOfMatcherP10 a10 = EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, 9, '0'); // Avoid "unused variable" warnings. (void)a0; (void)a1; (void)a2; (void)a3; (void)a4; (void)a5; (void)a6; (void)a7; (void)a8; (void)a9; (void)a10; } // Tests that matcher-typed parameters can be used in Value() inside a // MATCHER_Pn definition. // Succeeds if arg matches exactly 2 of the 3 matchers. MATCHER_P3(TwoOf, m1, m2, m3, "") { const int count = static_cast(Value(arg, m1)) + static_cast(Value(arg, m2)) + static_cast(Value(arg, m3)); return count == 2; } TEST(MatcherPnMacroTest, CanUseMatcherTypedParameterInValue) { EXPECT_THAT(42, TwoOf(Gt(0), Lt(50), Eq(10))); EXPECT_THAT(0, Not(TwoOf(Gt(-1), Lt(1), Eq(0)))); } // Tests Contains(). TEST(ContainsTest, ListMatchesWhenElementIsInContainer) { list some_list; some_list.push_back(3); some_list.push_back(1); some_list.push_back(2); some_list.push_back(3); EXPECT_THAT(some_list, Contains(1)); EXPECT_THAT(some_list, Contains(Gt(2.5))); EXPECT_THAT(some_list, Contains(Eq(2.0f))); list another_list; another_list.push_back("fee"); another_list.push_back("fie"); another_list.push_back("foe"); another_list.push_back("fum"); EXPECT_THAT(another_list, Contains(std::string("fee"))); } TEST(ContainsTest, ListDoesNotMatchWhenElementIsNotInContainer) { list some_list; some_list.push_back(3); some_list.push_back(1); EXPECT_THAT(some_list, Not(Contains(4))); } TEST(ContainsTest, SetMatchesWhenElementIsInContainer) { set some_set; some_set.insert(3); some_set.insert(1); some_set.insert(2); EXPECT_THAT(some_set, Contains(Eq(1.0))); EXPECT_THAT(some_set, Contains(Eq(3.0f))); EXPECT_THAT(some_set, Contains(2)); set another_set; another_set.insert("fee"); another_set.insert("fie"); another_set.insert("foe"); another_set.insert("fum"); EXPECT_THAT(another_set, Contains(Eq(std::string("fum")))); } TEST(ContainsTest, SetDoesNotMatchWhenElementIsNotInContainer) { set some_set; some_set.insert(3); some_set.insert(1); EXPECT_THAT(some_set, Not(Contains(4))); set c_string_set; c_string_set.insert("hello"); EXPECT_THAT(c_string_set, Not(Contains(std::string("goodbye")))); } TEST(ContainsTest, ExplainsMatchResultCorrectly) { const int a[2] = {1, 2}; Matcher m = Contains(2); EXPECT_EQ("whose element #1 matches", Explain(m, a)); m = Contains(3); EXPECT_EQ("", Explain(m, a)); m = Contains(GreaterThan(0)); EXPECT_EQ("whose element #0 matches, which is 1 more than 0", Explain(m, a)); m = Contains(GreaterThan(10)); EXPECT_EQ("", Explain(m, a)); } TEST(ContainsTest, DescribesItselfCorrectly) { Matcher> m = Contains(1); EXPECT_EQ("contains at least one element that is equal to 1", Describe(m)); Matcher> m2 = Not(m); EXPECT_EQ("doesn't contain any element that is equal to 1", Describe(m2)); } TEST(ContainsTest, MapMatchesWhenElementIsInContainer) { map my_map; const char* bar = "a string"; my_map[bar] = 2; EXPECT_THAT(my_map, Contains(pair(bar, 2))); map another_map; another_map["fee"] = 1; another_map["fie"] = 2; another_map["foe"] = 3; another_map["fum"] = 4; EXPECT_THAT(another_map, Contains(pair(std::string("fee"), 1))); EXPECT_THAT(another_map, Contains(pair("fie", 2))); } TEST(ContainsTest, MapDoesNotMatchWhenElementIsNotInContainer) { map some_map; some_map[1] = 11; some_map[2] = 22; EXPECT_THAT(some_map, Not(Contains(pair(2, 23)))); } TEST(ContainsTest, ArrayMatchesWhenElementIsInContainer) { const char* string_array[] = {"fee", "fie", "foe", "fum"}; EXPECT_THAT(string_array, Contains(Eq(std::string("fum")))); } TEST(ContainsTest, ArrayDoesNotMatchWhenElementIsNotInContainer) { int int_array[] = {1, 2, 3, 4}; EXPECT_THAT(int_array, Not(Contains(5))); } TEST(ContainsTest, AcceptsMatcher) { const int a[] = {1, 2, 3}; EXPECT_THAT(a, Contains(Gt(2))); EXPECT_THAT(a, Not(Contains(Gt(4)))); } TEST(ContainsTest, WorksForNativeArrayAsTuple) { const int a[] = {1, 2}; const int* const pointer = a; EXPECT_THAT(std::make_tuple(pointer, 2), Contains(1)); EXPECT_THAT(std::make_tuple(pointer, 2), Not(Contains(Gt(3)))); } TEST(ContainsTest, WorksForTwoDimensionalNativeArray) { int a[][3] = {{1, 2, 3}, {4, 5, 6}}; EXPECT_THAT(a, Contains(ElementsAre(4, 5, 6))); EXPECT_THAT(a, Contains(Contains(5))); EXPECT_THAT(a, Not(Contains(ElementsAre(3, 4, 5)))); EXPECT_THAT(a, Contains(Not(Contains(5)))); } // Tests Contains().Times(). TEST(ContainsTimes, ListMatchesWhenElementQuantityMatches) { list some_list; some_list.push_back(3); some_list.push_back(1); some_list.push_back(2); some_list.push_back(3); EXPECT_THAT(some_list, Contains(3).Times(2)); EXPECT_THAT(some_list, Contains(2).Times(1)); EXPECT_THAT(some_list, Contains(Ge(2)).Times(3)); EXPECT_THAT(some_list, Contains(Ge(2)).Times(Gt(2))); EXPECT_THAT(some_list, Contains(4).Times(0)); EXPECT_THAT(some_list, Contains(_).Times(4)); EXPECT_THAT(some_list, Not(Contains(5).Times(1))); EXPECT_THAT(some_list, Contains(5).Times(_)); // Times(_) always matches EXPECT_THAT(some_list, Not(Contains(3).Times(1))); EXPECT_THAT(some_list, Contains(3).Times(Not(1))); EXPECT_THAT(list{}, Not(Contains(_))); } TEST(ContainsTimes, ExplainsMatchResultCorrectly) { const int a[2] = {1, 2}; Matcher m = Contains(2).Times(3); EXPECT_EQ( "whose element #1 matches but whose match quantity of 1 does not match", Explain(m, a)); m = Contains(3).Times(0); EXPECT_EQ("has no element that matches and whose match quantity of 0 matches", Explain(m, a)); m = Contains(3).Times(4); EXPECT_EQ( "has no element that matches and whose match quantity of 0 does not " "match", Explain(m, a)); m = Contains(2).Times(4); EXPECT_EQ( "whose element #1 matches but whose match quantity of 1 does not " "match", Explain(m, a)); m = Contains(GreaterThan(0)).Times(2); EXPECT_EQ("whose elements (0, 1) match and whose match quantity of 2 matches", Explain(m, a)); m = Contains(GreaterThan(10)).Times(Gt(1)); EXPECT_EQ( "has no element that matches and whose match quantity of 0 does not " "match", Explain(m, a)); m = Contains(GreaterThan(0)).Times(GreaterThan(5)); EXPECT_EQ( "whose elements (0, 1) match but whose match quantity of 2 does not " "match, which is 3 less than 5", Explain(m, a)); } TEST(ContainsTimes, DescribesItselfCorrectly) { Matcher> m = Contains(1).Times(2); EXPECT_EQ("quantity of elements that match is equal to 1 is equal to 2", Describe(m)); Matcher> m2 = Not(m); EXPECT_EQ("quantity of elements that match is equal to 1 isn't equal to 2", Describe(m2)); } // Tests AllOfArray() TEST(AllOfArrayTest, BasicForms) { // Iterator std::vector v0{}; std::vector v1{1}; std::vector v2{2, 3}; std::vector v3{4, 4, 4}; EXPECT_THAT(0, AllOfArray(v0.begin(), v0.end())); EXPECT_THAT(1, AllOfArray(v1.begin(), v1.end())); EXPECT_THAT(2, Not(AllOfArray(v1.begin(), v1.end()))); EXPECT_THAT(3, Not(AllOfArray(v2.begin(), v2.end()))); EXPECT_THAT(4, AllOfArray(v3.begin(), v3.end())); // Pointer + size int ar[6] = {1, 2, 3, 4, 4, 4}; EXPECT_THAT(0, AllOfArray(ar, 0)); EXPECT_THAT(1, AllOfArray(ar, 1)); EXPECT_THAT(2, Not(AllOfArray(ar, 1))); EXPECT_THAT(3, Not(AllOfArray(ar + 1, 3))); EXPECT_THAT(4, AllOfArray(ar + 3, 3)); // Array // int ar0[0]; Not usable int ar1[1] = {1}; int ar2[2] = {2, 3}; int ar3[3] = {4, 4, 4}; // EXPECT_THAT(0, Not(AllOfArray(ar0))); // Cannot work EXPECT_THAT(1, AllOfArray(ar1)); EXPECT_THAT(2, Not(AllOfArray(ar1))); EXPECT_THAT(3, Not(AllOfArray(ar2))); EXPECT_THAT(4, AllOfArray(ar3)); // Container EXPECT_THAT(0, AllOfArray(v0)); EXPECT_THAT(1, AllOfArray(v1)); EXPECT_THAT(2, Not(AllOfArray(v1))); EXPECT_THAT(3, Not(AllOfArray(v2))); EXPECT_THAT(4, AllOfArray(v3)); // Initializer EXPECT_THAT(0, AllOfArray({})); // Requires template arg. EXPECT_THAT(1, AllOfArray({1})); EXPECT_THAT(2, Not(AllOfArray({1}))); EXPECT_THAT(3, Not(AllOfArray({2, 3}))); EXPECT_THAT(4, AllOfArray({4, 4, 4})); } TEST(AllOfArrayTest, Matchers) { // vector std::vector> matchers{Ge(1), Lt(2)}; EXPECT_THAT(0, Not(AllOfArray(matchers))); EXPECT_THAT(1, AllOfArray(matchers)); EXPECT_THAT(2, Not(AllOfArray(matchers))); // initializer_list EXPECT_THAT(0, Not(AllOfArray({Ge(0), Ge(1)}))); EXPECT_THAT(1, AllOfArray({Ge(0), Ge(1)})); } TEST(AnyOfArrayTest, BasicForms) { // Iterator std::vector v0{}; std::vector v1{1}; std::vector v2{2, 3}; EXPECT_THAT(0, Not(AnyOfArray(v0.begin(), v0.end()))); EXPECT_THAT(1, AnyOfArray(v1.begin(), v1.end())); EXPECT_THAT(2, Not(AnyOfArray(v1.begin(), v1.end()))); EXPECT_THAT(3, AnyOfArray(v2.begin(), v2.end())); EXPECT_THAT(4, Not(AnyOfArray(v2.begin(), v2.end()))); // Pointer + size int ar[3] = {1, 2, 3}; EXPECT_THAT(0, Not(AnyOfArray(ar, 0))); EXPECT_THAT(1, AnyOfArray(ar, 1)); EXPECT_THAT(2, Not(AnyOfArray(ar, 1))); EXPECT_THAT(3, AnyOfArray(ar + 1, 2)); EXPECT_THAT(4, Not(AnyOfArray(ar + 1, 2))); // Array // int ar0[0]; Not usable int ar1[1] = {1}; int ar2[2] = {2, 3}; // EXPECT_THAT(0, Not(AnyOfArray(ar0))); // Cannot work EXPECT_THAT(1, AnyOfArray(ar1)); EXPECT_THAT(2, Not(AnyOfArray(ar1))); EXPECT_THAT(3, AnyOfArray(ar2)); EXPECT_THAT(4, Not(AnyOfArray(ar2))); // Container EXPECT_THAT(0, Not(AnyOfArray(v0))); EXPECT_THAT(1, AnyOfArray(v1)); EXPECT_THAT(2, Not(AnyOfArray(v1))); EXPECT_THAT(3, AnyOfArray(v2)); EXPECT_THAT(4, Not(AnyOfArray(v2))); // Initializer EXPECT_THAT(0, Not(AnyOfArray({}))); // Requires template arg. EXPECT_THAT(1, AnyOfArray({1})); EXPECT_THAT(2, Not(AnyOfArray({1}))); EXPECT_THAT(3, AnyOfArray({2, 3})); EXPECT_THAT(4, Not(AnyOfArray({2, 3}))); } TEST(AnyOfArrayTest, Matchers) { // We negate test AllOfArrayTest.Matchers. // vector std::vector> matchers{Lt(1), Ge(2)}; EXPECT_THAT(0, AnyOfArray(matchers)); EXPECT_THAT(1, Not(AnyOfArray(matchers))); EXPECT_THAT(2, AnyOfArray(matchers)); // initializer_list EXPECT_THAT(0, AnyOfArray({Lt(0), Lt(1)})); EXPECT_THAT(1, Not(AllOfArray({Lt(0), Lt(1)}))); } TEST(AnyOfArrayTest, ExplainsMatchResultCorrectly) { // AnyOfArray and AllOfArry use the same underlying template-template, // thus it is sufficient to test one here. const std::vector v0{}; const std::vector v1{1}; const std::vector v2{2, 3}; const Matcher m0 = AnyOfArray(v0); const Matcher m1 = AnyOfArray(v1); const Matcher m2 = AnyOfArray(v2); EXPECT_EQ("", Explain(m0, 0)); EXPECT_EQ("", Explain(m1, 1)); EXPECT_EQ("", Explain(m1, 2)); EXPECT_EQ("", Explain(m2, 3)); EXPECT_EQ("", Explain(m2, 4)); EXPECT_EQ("()", Describe(m0)); EXPECT_EQ("(is equal to 1)", Describe(m1)); EXPECT_EQ("(is equal to 2) or (is equal to 3)", Describe(m2)); EXPECT_EQ("()", DescribeNegation(m0)); EXPECT_EQ("(isn't equal to 1)", DescribeNegation(m1)); EXPECT_EQ("(isn't equal to 2) and (isn't equal to 3)", DescribeNegation(m2)); // Explain with matchers const Matcher g1 = AnyOfArray({GreaterThan(1)}); const Matcher g2 = AnyOfArray({GreaterThan(1), GreaterThan(2)}); // Explains the first positive match and all prior negative matches... EXPECT_EQ("which is 1 less than 1", Explain(g1, 0)); EXPECT_EQ("which is the same as 1", Explain(g1, 1)); EXPECT_EQ("which is 1 more than 1", Explain(g1, 2)); EXPECT_EQ("which is 1 less than 1, and which is 2 less than 2", Explain(g2, 0)); EXPECT_EQ("which is the same as 1, and which is 1 less than 2", Explain(g2, 1)); EXPECT_EQ("which is 1 more than 1", // Only the first Explain(g2, 2)); } TEST(AllOfTest, HugeMatcher) { // Verify that using AllOf with many arguments doesn't cause // the compiler to exceed template instantiation depth limit. EXPECT_THAT(0, testing::AllOf(_, _, _, _, _, _, _, _, _, testing::AllOf(_, _, _, _, _, _, _, _, _, _))); } TEST(AnyOfTest, HugeMatcher) { // Verify that using AnyOf with many arguments doesn't cause // the compiler to exceed template instantiation depth limit. EXPECT_THAT(0, testing::AnyOf(_, _, _, _, _, _, _, _, _, testing::AnyOf(_, _, _, _, _, _, _, _, _, _))); } namespace adl_test { // Verifies that the implementation of ::testing::AllOf and ::testing::AnyOf // don't issue unqualified recursive calls. If they do, the argument dependent // name lookup will cause AllOf/AnyOf in the 'adl_test' namespace to be found // as a candidate and the compilation will break due to an ambiguous overload. // The matcher must be in the same namespace as AllOf/AnyOf to make argument // dependent lookup find those. MATCHER(M, "") { (void)arg; return true; } template bool AllOf(const T1& /*t1*/, const T2& /*t2*/) { return true; } TEST(AllOfTest, DoesNotCallAllOfUnqualified) { EXPECT_THAT(42, testing::AllOf(M(), M(), M(), M(), M(), M(), M(), M(), M(), M())); } template bool AnyOf(const T1&, const T2&) { return true; } TEST(AnyOfTest, DoesNotCallAnyOfUnqualified) { EXPECT_THAT(42, testing::AnyOf(M(), M(), M(), M(), M(), M(), M(), M(), M(), M())); } } // namespace adl_test TEST(AllOfTest, WorksOnMoveOnlyType) { std::unique_ptr p(new int(3)); EXPECT_THAT(p, AllOf(Pointee(Eq(3)), Pointee(Gt(0)), Pointee(Lt(5)))); EXPECT_THAT(p, Not(AllOf(Pointee(Eq(3)), Pointee(Gt(0)), Pointee(Lt(3))))); } TEST(AnyOfTest, WorksOnMoveOnlyType) { std::unique_ptr p(new int(3)); EXPECT_THAT(p, AnyOf(Pointee(Eq(5)), Pointee(Lt(0)), Pointee(Lt(5)))); EXPECT_THAT(p, Not(AnyOf(Pointee(Eq(5)), Pointee(Lt(0)), Pointee(Gt(5))))); } MATCHER(IsNotNull, "") { return arg != nullptr; } // Verifies that a matcher defined using MATCHER() can work on // move-only types. TEST(MatcherMacroTest, WorksOnMoveOnlyType) { std::unique_ptr p(new int(3)); EXPECT_THAT(p, IsNotNull()); EXPECT_THAT(std::unique_ptr(), Not(IsNotNull())); } MATCHER_P(UniquePointee, pointee, "") { return *arg == pointee; } // Verifies that a matcher defined using MATCHER_P*() can work on // move-only types. TEST(MatcherPMacroTest, WorksOnMoveOnlyType) { std::unique_ptr p(new int(3)); EXPECT_THAT(p, UniquePointee(3)); EXPECT_THAT(p, Not(UniquePointee(2))); } #if GTEST_HAS_EXCEPTIONS // std::function is used below for compatibility with older copies of // GCC. Normally, a raw lambda is all that is needed. // Test that examples from documentation compile TEST(ThrowsTest, Examples) { EXPECT_THAT( std::function([]() { throw std::runtime_error("message"); }), Throws()); EXPECT_THAT( std::function([]() { throw std::runtime_error("message"); }), ThrowsMessage(HasSubstr("message"))); } TEST(ThrowsTest, PrintsExceptionWhat) { EXPECT_THAT( std::function([]() { throw std::runtime_error("ABC123XYZ"); }), ThrowsMessage(HasSubstr("ABC123XYZ"))); } TEST(ThrowsTest, DoesNotGenerateDuplicateCatchClauseWarning) { EXPECT_THAT(std::function([]() { throw std::exception(); }), Throws()); } TEST(ThrowsTest, CallableExecutedExactlyOnce) { size_t a = 0; EXPECT_THAT(std::function([&a]() { a++; throw 10; }), Throws()); EXPECT_EQ(a, 1u); EXPECT_THAT(std::function([&a]() { a++; throw std::runtime_error("message"); }), Throws()); EXPECT_EQ(a, 2u); EXPECT_THAT(std::function([&a]() { a++; throw std::runtime_error("message"); }), ThrowsMessage(HasSubstr("message"))); EXPECT_EQ(a, 3u); EXPECT_THAT(std::function([&a]() { a++; throw std::runtime_error("message"); }), Throws( Property(&std::runtime_error::what, HasSubstr("message")))); EXPECT_EQ(a, 4u); } TEST(ThrowsTest, Describe) { Matcher> matcher = Throws(); std::stringstream ss; matcher.DescribeTo(&ss); auto explanation = ss.str(); EXPECT_THAT(explanation, HasSubstr("std::runtime_error")); } TEST(ThrowsTest, Success) { Matcher> matcher = Throws(); StringMatchResultListener listener; EXPECT_TRUE(matcher.MatchAndExplain( []() { throw std::runtime_error("error message"); }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("std::runtime_error")); } TEST(ThrowsTest, FailWrongType) { Matcher> matcher = Throws(); StringMatchResultListener listener; EXPECT_FALSE(matcher.MatchAndExplain( []() { throw std::logic_error("error message"); }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("std::logic_error")); EXPECT_THAT(listener.str(), HasSubstr("\"error message\"")); } TEST(ThrowsTest, FailWrongTypeNonStd) { Matcher> matcher = Throws(); StringMatchResultListener listener; EXPECT_FALSE(matcher.MatchAndExplain([]() { throw 10; }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("throws an exception of an unknown type")); } TEST(ThrowsTest, FailNoThrow) { Matcher> matcher = Throws(); StringMatchResultListener listener; EXPECT_FALSE(matcher.MatchAndExplain([]() { (void)0; }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("does not throw any exception")); } class ThrowsPredicateTest : public TestWithParam>> {}; TEST_P(ThrowsPredicateTest, Describe) { Matcher> matcher = GetParam(); std::stringstream ss; matcher.DescribeTo(&ss); auto explanation = ss.str(); EXPECT_THAT(explanation, HasSubstr("std::runtime_error")); EXPECT_THAT(explanation, HasSubstr("error message")); } TEST_P(ThrowsPredicateTest, Success) { Matcher> matcher = GetParam(); StringMatchResultListener listener; EXPECT_TRUE(matcher.MatchAndExplain( []() { throw std::runtime_error("error message"); }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("std::runtime_error")); } TEST_P(ThrowsPredicateTest, FailWrongType) { Matcher> matcher = GetParam(); StringMatchResultListener listener; EXPECT_FALSE(matcher.MatchAndExplain( []() { throw std::logic_error("error message"); }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("std::logic_error")); EXPECT_THAT(listener.str(), HasSubstr("\"error message\"")); } TEST_P(ThrowsPredicateTest, FailWrongTypeNonStd) { Matcher> matcher = GetParam(); StringMatchResultListener listener; EXPECT_FALSE(matcher.MatchAndExplain([]() { throw 10; }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("throws an exception of an unknown type")); } TEST_P(ThrowsPredicateTest, FailNoThrow) { Matcher> matcher = GetParam(); StringMatchResultListener listener; EXPECT_FALSE(matcher.MatchAndExplain([]() {}, &listener)); EXPECT_THAT(listener.str(), HasSubstr("does not throw any exception")); } INSTANTIATE_TEST_SUITE_P( AllMessagePredicates, ThrowsPredicateTest, Values(Matcher>( ThrowsMessage(HasSubstr("error message"))))); // Tests that Throws(Matcher{}) compiles even when E2 != const E1&. TEST(ThrowsPredicateCompilesTest, ExceptionMatcherAcceptsBroadType) { { Matcher> matcher = ThrowsMessage(HasSubstr("error message")); EXPECT_TRUE( matcher.Matches([]() { throw std::runtime_error("error message"); })); EXPECT_FALSE( matcher.Matches([]() { throw std::runtime_error("wrong message"); })); } { Matcher inner = Eq(10); Matcher> matcher = Throws(inner); EXPECT_TRUE(matcher.Matches([]() { throw(uint32_t) 10; })); EXPECT_FALSE(matcher.Matches([]() { throw(uint32_t) 11; })); } } // Tests that ThrowsMessage("message") is equivalent // to ThrowsMessage(Eq("message")). TEST(ThrowsPredicateCompilesTest, MessageMatcherAcceptsNonMatcher) { Matcher> matcher = ThrowsMessage("error message"); EXPECT_TRUE( matcher.Matches([]() { throw std::runtime_error("error message"); })); EXPECT_FALSE(matcher.Matches( []() { throw std::runtime_error("wrong error message"); })); } #endif // GTEST_HAS_EXCEPTIONS } // namespace } // namespace gmock_matchers_test } // namespace testing #ifdef _MSC_VER # pragma warning(pop) #endif