
Package ‘xts’
January 21, 2024

Type Package

Title eXtensible Time Series

Version 0.13.2

Depends R (>= 3.6.0), zoo (>= 1.7-12)

Imports methods

LinkingTo zoo

Suggests timeSeries, timeDate, tseries, chron, tinytest

LazyLoad yes

Description Provide for uniform handling of R's different time-based data classes by extend-
ing zoo, maximizing native format information preservation and allowing for user level cus-
tomization and extension, while simplifying cross-class interoperability.

License GPL (>= 2)

URL https://joshuaulrich.github.io/xts/,

https://github.com/joshuaulrich/xts

BugReports https://github.com/joshuaulrich/xts/issues

NeedsCompilation yes

Author Jeffrey A. Ryan [aut, cph],
Joshua M. Ulrich [cre, aut],
Ross Bennett [ctb],
Corwin Joy [ctb]

Maintainer Joshua M. Ulrich <josh.m.ulrich@gmail.com>

Repository CRAN

Date/Publication 2024-01-21 16:10:02 UTC

R topics documented:
xts-package . 3
.parseISO8601 . 3
addEventLines . 5

1

https://joshuaulrich.github.io/xts/
https://github.com/joshuaulrich/xts
https://github.com/joshuaulrich/xts/issues

2 R topics documented:

addLegend . 6
addPanel . 7
addPolygon . 8
addSeries . 9
align.time . 10
apply.monthly . 11
as.environment.xts . 12
as.xts . 13
as.xts.methods . 15
axTicksByTime . 17
CLASS . 18
coredata.xts . 19
diff.xts . 20
dimnames.xts . 21
endpoints . 23
first . 24
firstof . 26
index.xts . 27
isOrdered . 30
make.index.unique . 32
merge.xts . 33
na.locf.xts . 35
ndays . 36
period.apply . 37
period.max . 38
period.min . 39
period.prod . 40
period.sum . 41
periodicity . 42
plot.xts . 43
print.xts . 46
rbind.xts . 47
sample_matrix . 48
split.xts . 49
tclass . 50
tformat . 52
timeBased . 53
timeBasedSeq . 54
to.period . 55
tzone . 58
window.xts . 60
xts . 61
xtsAPI . 64
xtsAttributes . 65
xtsInternals . 66
[.xts . 67

Index 71

xts-package 3

xts-package xts: extensible time-series

Description

Extensible time series class and methods, extending and behaving like zoo.

Details

Easily convert one of R’s many time-series (and non-time-series) classes to a true time-based object
which inherits all of zoo’s methods, while allowing for new time-based tools where appropriate.

Additionally, one may use xts to create new objects which can contain arbitrary attributes named
during creation as name=value pairs.

Author(s)

Jeffrey A. Ryan and Joshua M. Ulrich

Maintainer: Joshua M. Ulrich <josh.m.ulrich@gmail.com>

See Also

xts as.xts reclass zoo

.parseISO8601 Internal ISO 8601:2004(e) Time Parser

Description

This function is used internally in the subsetting mechanism of xts. The function is unexported,
though documented for use with xts subsetting.

Usage

.parseISO8601(x, start, end, tz="")

.makeISO8601(x)

Arguments

x For .parseISO8601(x), a character string conforming to the ISO 8601:2004(e)
rules. For .makeISO8601(x), x should be a time-like object with start and end
methods.

start lower constraint on range

end upper constraint of range

tz timezone (tzone) to use internally

4 .parseISO8601

Details

This function replicates most of the ISO standard for expressing time and time-based ranges in a
universally accepted way.

The best documentation is now the official ISO page as well as the Wikipedia entry for ISO
8601:2004.

The basic idea is to create the endpoints of a range, given a string representation. These endpoints
are aligned in POSIXct time to the zero second of the day at the beginning, and the 59.9999th
second of the 59th minute of the 23rd hour of the final day.

For dates prior to the epoch (1970-01-01) the ending time is aligned to the 59.0000 second. This is
due to a bug/feature in the R implementation of asPOSIXct and mktime0 at the C-source level. This
limits the precision of ranges prior to 1970 to 1 minute granularity with the current xts workaround.

Recurring times over multiple days may be specified using the T notation. See the examples for
details.

Value

A list of length two, with an entry named ‘first.time’ and one names ‘last.time’.

For .makeISO8601, a character vector of length one describing the ISO-style format for a given
time-based object.

Note

There is no checking done to test for a properly constructed ISO format string. This must be
correctly entered by the user, lest bad things may happen.

When using durations, it is important to note that the time of the duration specified is not necessarily
the same as the realized periods that may be returned when applied to an irregular time series. This
is not a bug, rather it is a standards and implementation gotcha.

Author(s)

Jeffrey A. Ryan

References

https://en.wikipedia.org/wiki/ISO_8601
https://www.iso.org/iso-8601-date-and-time-format.html

Examples

the start and end of 2000
.parseISO8601('2000')

the start of 2000 and end of 2001
.parseISO8601('2000/2001')

May 1, 2000 to Dec 31, 2001
.parseISO8601('2000-05/2001')

https://en.wikipedia.org/wiki/ISO_8601
https://www.iso.org/iso-8601-date-and-time-format.html

addEventLines 5

May 1, 2000 to end of Feb 2001
.parseISO8601('2000-05/2001-02')

Jan 1, 2000 to Feb 29, 2000; note the truncated time on the LHS
.parseISO8601('2000-01/02')

8:30 to 15:00 (used in xts subsetting to extract recurring times)
.parseISO8601('T08:30/T15:00')

addEventLines Add vertical lines to an existing xts plot

Description

Add vertical lines and labels to an existing xts plot

Usage

addEventLines(events, main = "", on = 0, lty = 1, lwd = 1, col = 1, ...)

Arguments

events xts object of events and their associated labels. It is assumed that the first column
of events is the event description/label.

main main title for a new panel if drawn.

on panel number to draw on. A new panel will be drawn if on=NA. The default,
on=0, will add to the active panel. The active panel is defined as the panel on
which the most recent action was performed. Note that only the first element of
on is checked for the default behavior to add to the last active panel.

lty set the line type, same as in par.

lwd set the line width, same as in par.

col color palette to use, set by default to rational choices.

... any other passthrough parameters to text to control how the event labels are
drawn

Author(s)

Ross Bennett

Examples

Not run:
library(xts)
data(sample_matrix)
sample.xts <- as.xts(sample_matrix)
events <- xts(letters[1:3],

as.Date(c("2007-01-12", "2007-04-22", "2007-06-13")))

6 addLegend

plot(sample.xts[,4])
addEventLines(events, srt=90, pos=2)

End(Not run)

addLegend Add Legend

Description

Add Legend

Usage

addLegend(legend.loc = "topright", legend.names = NULL, col = NULL,
ncol = 1, on = 0, ...)

Arguments

legend.loc legend.loc places a legend into one of nine locations on the chart: bottomright,
bottom, bottomleft, left, topleft, top, topright, right, or center.

legend.names character vector of names for the legend. If NULL, the column names of the
current plot object are used.

col fill colors for the legend. If NULL, the colorset of the current plot object data is
used.

ncol number of columns for the legend

on panel number to draw on. A new panel will be drawn if on=NA. The default,
on=0, will add to the active panel. The active panel is defined as the panel on
which the most recent action was performed. Note that only the first element of
on is checked for the default behavior to add to the last active panel.

... any other passthrough parameters to legend.

Author(s)

Ross Bennett

addPanel 7

addPanel Add a panel to an existing xts plot

Description

Apply a function to the data of an existing xts plot object and plot the result. FUN should have
arguments x or R for the data of the existing xts plot object to be passed to. All other additional
arguments for FUN are passed through

Usage

addPanel(FUN, main = "", on = NA, type = "l", col = NULL, lty = 1,
lwd = 1, pch = 1, ...)

Arguments

FUN an xts object to plot.

main main title for a new panel if drawn.

on panel number to draw on. A new panel will be drawn if on=NA.

type the type of plot to be drawn, same as in plot.

col color palette to use, set by default to rational choices.

lty set the line type, same as in par.

lwd set the line width, same as in par.

pch the type of plot to be drawn, same as in par.

... additional named arguments passed through to FUN and any other graphical
passthrough parameters.

Author(s)

Ross Bennett

Examples

library(xts)
data(sample_matrix)
sample.xts <- as.xts(sample_matrix)

calcReturns <- function(price, method = c("discrete", "log")){
px <- try.xts(price)
method <- match.arg(method)[1L]
returns <- switch(method,

simple = ,
discrete = px / lag(px) - 1,
compound = ,
log = diff(log(px)))

reclass(returns, px)

8 addPolygon

}

plot the Close
plot(sample.xts[,"Close"])
calculate returns
addPanel(calcReturns, method="discrete", type="h")
Add simple moving average to panel 1
addPanel(rollmean, k=20, on=1)
addPanel(rollmean, k=40, col="blue", on=1)

addPolygon Add a polygon to an existing xts plot

Description

Draw a polygon on an existing xts plot by specifying a time series of y coordinates. The xts index
is used for the x coordinates and the first two columns are the upper and lower y coordinates,
respectively.

Usage

addPolygon(x, y = NULL, main = "", on = NA, col = NULL, ...)

Arguments

x an xts object to plot. Must contain 2 columns for the upper and lower y coordi-
nates for the polygon. The first column is interpreted as the upper y coordinates
and the second column as the lower y coordinates.

y NULL, not used

main main title for a new panel if drawn.

on panel number to draw on. A new panel will be drawn if on=NA.

col color palette to use, set by default to rational choices.

... passthru parameters to par

Author(s)

Ross Bennett

References

Based on code by Dirk Eddelbuettel from http://dirk.eddelbuettel.com/blog/2011/01/16/

http://dirk.eddelbuettel.com/blog/2011/01/16/

addSeries 9

Examples

Not run:
library(xts)
data(sample_matrix)
x <- as.xts(sample_matrix)[,1]
ix <- index(x["2007-02"])
shade <- xts(matrix(rep(range(x), each = length(ix)), ncol = 2), ix)

plot(x)

set on = -1 to draw the shaded region *behind* the main series
addPolygon(shade, on = -1, col = "lightgrey")

End(Not run)

addSeries Add a time series to an existing xts plot

Description

Add a time series to an existing xts plot

Usage

addSeries(x, main = "", on = NA, type = "l", col = NULL, lty = 1,
lwd = 1, pch = 1, ...)

Arguments

x an xts object to plot.

main main title for a new panel if drawn.

on panel number to draw on. A new panel will be drawn if on=NA.

type the type of plot to be drawn, same as in plot.

col color palette to use, set by default to rational choices.

lty set the line type, same as in par.

lwd set the line width, same as in par.

pch the type of plot to be drawn, same as in par.

... any other passthrough graphical parameters.

Author(s)

Ross Bennett

10 align.time

align.time Align seconds, minutes, and hours to beginning of next period.

Description

Change timestamps to the start of the next period, specified in multiples of seconds.

Usage

align.time(x, ...)

S3 method for class 'xts'
align.time(x, n=60, ...)

shift.time(x, n=60, ...)

adj.time(x, ...)

Arguments

x object to align

n number of seconds to adjust by

... additional arguments. See details.

Details

This function is an S3 generic. The result is to round up to the next period determined by n modulo
x.

Value

A new object of class(x)

Author(s)

Jeffrey A. Ryan with input from Brian Peterson

See Also

to.period

apply.monthly 11

Examples

x <- Sys.time() + 1:1000

every 10 seconds
align.time(x, 10)

align to next whole minute
align.time(x, 60)

align to next whole 10 min interval
align.time(x, 10 * 60)

apply.monthly Apply Function over Calendar Periods

Description

Apply a specified function to each distinct period in a given time series object.

Usage

apply.daily(x, FUN, ...)
apply.weekly(x, FUN, ...)
apply.monthly(x, FUN, ...)
apply.quarterly(x, FUN, ...)
apply.yearly(x, FUN, ...)

Arguments

x an time-series object coercible to xts

FUN an R function

... additional arguments to FUN

Details

Simple mechanism to apply a function to non-overlapping time periods, e.g. weekly, monthly, etc.
Different from rolling functions in that this will subset the data based on the specified time period
(implicit in the call), and return a vector of values for each period in the original data.

Essentially a wrapper to the xts functions endpoints and period.apply, mainly as a convenience.

Value

A vector of results produced by FUN, corresponding to the appropriate periods.

12 as.environment.xts

Note

When FUN = mean the results will contain one column for every column in the input, which is dif-
ferent from other math functions (e.g. median, sum, prod, sd, etc.).

FUN = mean works by column because the default method stats::mean used to work by column
for matrices and data.frames. R Core changed the behavior of mean to always return one column
in order to be consistent with the other math functions. This broke some xts dependencies and
mean.xts was created to maintain the original behavior.

Using FUN = mean will print a message that describes this inconsistency. To avoid the message and
confusion, use FUN = colMeans to calculate means by column and use FUN = function(x) mean to
calculate one mean for all the data. Set options(xts.message.period.apply.mean = FALSE) to
suppress this message.

Author(s)

Jeffrey A. Ryan

See Also

endpoints, period.apply, to.monthly

Examples

xts.ts <- xts(rnorm(231),as.Date(13514:13744,origin="1970-01-01"))

start(xts.ts)
end(xts.ts)

apply.monthly(xts.ts,colMeans)
apply.monthly(xts.ts,function(x) var(x))

as.environment.xts Coerce an ‘xts’ Object to an Environment by Column

Description

Method to automatically convert an ‘xts’ object to an environment containing vectors representing
each column of the original xts object. Each objects will be named according to the column name
it is exracted by.

Usage

S3 method for class 'xts'
as.environment(x)

Arguments

x an xts object

as.xts 13

Details

An experimental tool to convert xts objects into environments for simplifying use withing the
standard R formula/data paradigm.

Value

An environment containing ncol(x) vectors extracted by column from x. Note that environments
do not preserve (or have knowledge) of column position, a.k.a order.

Author(s)

Jeffrey A. Ryan

Examples

x <- xts(1:10, Sys.Date()+1:10)
colnames(x) <- "X"
y <- xts(1:10, Sys.Date()+1:10)
colnames(x) <- "Y"
xy <- cbind(x,y)
colnames(xy)
e <- as.environment(xy) # currently using xts-style positive k
ls(xy)
ls.str(xy)

as.xts Convert Object To And From Class xts

Description

Conversion functions to coerce data objects of arbitrary classes to class xts and back, without losing
any attributes of the original format.

Usage

as.xts(x, ...)
xtsible(x)

Reclass(x)

try.xts(x, ..., error = TRUE)
reclass(x, match.to, error = FALSE, ...)

Arguments

x data object to convert. See details for supported types
match.to xts object whose attributes will be passed to x

error error handling option. See Details.
... additional parameters or attributes

14 as.xts

Details

A simple and reliable way to convert many different objects into a uniform format for use within R.

It is possible with a call to as.xts to convert objects of class timeSeries, ts, irts, matrix,
data.frame, and zoo.

xtsible safely checks whether an object can be converted to an xts object; returning TRUE on
success and FALSE otherwise.

The help file as.xts.methods lists all available xts methods and arguments specific to each co-
ercible type.

Additional name=value pairs may be passed to the function to be added to the new object. A special
print.xts method will assure that the attributes are hidden from view, but will be available via R’s
standard attr function, as well as the xtsAttributes function.

The returned object will preserve all relevant attribute/slot data within itself, allowing for temporary
conversion to use zoo and xts compatible methods. A call to reclass returns the object to its
original class, with all original attributes intact - unless otherwise changed.

It should be obvious, but any attributes added via the . . . argument will not be carried back to the
original data object, as there would be no available storage slot/attribute.

Reclass is designed for top-level use, where it is desirable to have the object returned from an
arbitrary function in the same class as the object passed in. Most functions within R are not designed
to return objects matching the original object’s class. While this tool is highly experimental at
present, it attempts to handle conversion and reconversion transparently. The caveats are that the
original object must be coercible to xts, the returned object must be of the same row length as
the original object, and that the object to reconvert to is the first argument to the function being
wrapped.

try.xts and reclass are functions that enable external developers access to the reclassing tools
within xts to help speed development of time-aware functions, as well as provide a more robust and
seemless end-user experience, regardless of the end-user’s choice of data-classes.

The error argument to try.xts accepts a logical value, indicating where an error should be thrown, a
character string allowing for custom error messages to be displayed, or a function of the form f(x,
...), to be called upon construction error.

See the accompanying vignette for more details on the above usage and the package in general.

Value

An S3 object of class xts.

In the case of Reclass and reclass, the object returned will be of the original class as identified
by CLASS.

Author(s)

Jeffrey A. Ryan

See Also

xts,as.xts.methods

as.xts.methods 15

as.xts.methods Convert Object To And From Class xts

Description

Conversion S3 methods to coerce data objects of arbitrary classes to class xts and back, without
losing any attributes of the original format.

Usage

S3 method for class 'xts'
as.xts(x,...,.RECLASS=FALSE)

S3 method for class 'timeSeries'
as.xts(x, dateFormat="POSIXct", FinCenter, recordIDs,

title, documentation, ..., .RECLASS=FALSE)

S3 method for class 'zoo'
as.xts(x, order.by=index(x), frequency=NULL, ..., .RECLASS=FALSE)

S3 method for class 'ts'
as.xts(x, dateFormat,...,.RECLASS=FALSE)

S3 method for class 'data.frame'
as.xts(x, order.by, dateFormat="POSIXct",

frequency=NULL, ...,.RECLASS=FALSE)

S3 method for class 'matrix'
as.xts(x, order.by, dateFormat="POSIXct",

frequency=NULL, ..., .RECLASS=FALSE)

Arguments

x data object to convert. See details for supported types

dateFormat what format should the dates be converted to

FinCenter see timeSeries help

recordIDs see timeSeries help

title see timeSeries help

documentation see timeSeries help

order.by see zoo help

frequency see zoo help

... additional parameters or attributes

.RECLASS should conversion be reversible?

16 as.xts.methods

Details

A simple and reliable way to convert many different objects into a uniform format for use within R.

It is possible with a call to as.xts to convert objects of class timeSeries, ts, matrix, data.frame,
and zoo.

Additional name=value pairs may be passed to the function to be added to the new object. A special
print.xts method will assure that the attributes are hidden from view, but will be available via R’s
standard attr function.

If .RECLASS=TRUE, the returned object will preserve all relevant attribute/slot data within itself,
allowing for temporary conversion to use zoo and xts compatible methods. A call to reclass
returns the object to its original class, with all original attributes intact - unless otherwise changed.
This is the default behavior when try.xts is used for conversion, and should not be altered by the
user; i.e. don’t touch it unless you are aware of the consequences.

It should be obvious, but any attributes added via the . . . argument will not be carried back to the
original data object, as there would be no available storage slot/attribute.

Value

An S3 object of class xts.

Author(s)

Jeffrey A. Ryan

See Also

xts, zoo

Examples

Not run:
timeSeries
library(timeSeries)
x <- timeSeries(1:10, 1:10)

str(as.xts(x))
str(reclass(as.xts(x)))
str(try.xts(x))
str(reclass(try.xts(x)))

End(Not run)

axTicksByTime 17

axTicksByTime Compute x-Axis Tickmark Locations by Time

Description

Compute x-axis tickmarks like axTicks in base but with respect to time. Additionally the first
argument is the object indexed by time which you are looking to derive tickmark locations for.

It is possible to specify the detail you are seeking, or by passing ’auto’ to the ticks.on argument,
to get a best heuristic fit.

Usage

axTicksByTime(x, ticks.on='auto', k = 1,
labels=TRUE, format.labels=TRUE, ends=TRUE,
gt = 2, lt = 30)

Arguments

x the object indexed by time, or a vector of times/dates

ticks.on what to break on

k frequency of breaks

labels should a labeled vector be returned

format.labels format labels - may be format to use

ends should the ends be adjusted

gt lower bound on number of breaks

lt upper bound on number of breaks

Details

This function is written for internal use, and documented for those wishing to use outside of the
internal function uses. In general it is most unlikely that the end user will call this function directly.

The format.labels argument allows for standard formatting like that used in format, strptime,
and strftime.

Value

A numeric vector of index element locations where tick marks should be drawn. These are locations
(e.g. 1, 2, 3, ...), not the index timestamps.

If possible, the result will be named using formatted values from the index timestamps. The names
will be used for the tick mark labels.

Author(s)

Jeffrey A. Ryan

18 CLASS

See Also

endpoints

Examples

data(sample_matrix)
axTicksByTime(as.xts(sample_matrix),'auto')
axTicksByTime(as.xts(sample_matrix),'weeks')
axTicksByTime(as.xts(sample_matrix),'months',7)

CLASS Extract and Set .CLASS Attribute

Description

Simple extraction and replacement function to access xts .CLASS attribute. The .CLASS attribute
is used by reclass to transform an xts object back to its original class.

Usage

CLASS(x)

CLASS(x) <- value

Arguments

x an xts object

value the new .CLASS value to assign

Details

It is not recommended that CLASS be called in daily use. While it may be possible to coerce objects
to other classes than originally derived from, there is little, if any, chance that the reclass function
will perform as expected.

It is best to use the traditional as methods.

Value

Called for its side-effect of changing the .CLASS attribute

Author(s)

Jeffrey A. Ryan

See Also

as.xts,reclass

coredata.xts 19

coredata.xts Extract/Replace Core Data of an xts Object

Description

Mechanism to extract and replace the core data of an xts object.

Usage

S3 method for class 'xts'
coredata(x, fmt=FALSE, ...)

xcoredata(x,...)
xcoredata(x) <- value

Arguments

x an xts object

fmt should the rownames be formated in a non-standard way

value non-core attributes to assign

... further arguments [unused]

Details

Extract coredata of an xts object - removing all attributes except dim and dimnames and returning
a matrix object with rownames converted from the index of the xts object.

The fmt argument, if TRUE, allows the internal index formatting specified by the user to be used.
Alternatively, it may be a valid formatting string to be passed to format. Setting to FALSE will
return the row names by simply coercing the index class to a character string in the default manner.

xcoredata is the functional complement to coredata, returning all of the attributes normally re-
moved by coredata. Its purpose, along with the replacement function xcoredata<- is primarily
for use by developers using xts to allow for internal replacement of values removed during use of
non xts-aware functions.

Value

Returns either a matrix object for coredata, or a list of named attributes.

The replacement functions are called for their side-effects.

Author(s)

Jeffrey A. Ryan

See Also

coredata, xtsAttributes

20 diff.xts

Examples

data(sample_matrix)
x <- as.xts(sample_matrix, myattr=100)
coredata(x)
xcoredata(x)

diff.xts Lags and Differences of xts Objects

Description

Methods for computing lags and differences on xts objects. This matches most of the functionality
of zoo methods, with some default argument changes.

Usage

S3 method for class 'xts'
lag(x, k = 1, na.pad = TRUE, ...)

S3 method for class 'xts'
diff(x, lag = 1, differences = 1, arithmetic = TRUE, log = FALSE, na.pad = TRUE, ...)

Arguments

x an xts object

k period to lag over

lag period to difference over

differences order of differencing

arithmetic should arithmetic or geometric differencing be used

log should (geometric) log differences be returned

na.pad pad vector back to original size

... additional arguments

Details

The primary motivation for having methods specific to xts was to make use of faster C-level code
within xts. Additionally, it was decided that lag’s default behavior should match the common time-
series interpretation of that operator — specifically that a value at time ‘t’ should be the value at
time ‘t-1’ for a positive lag. This is different than lag.zoo as well as lag.ts.

Another notable difference is that na.pad is set to TRUE by default, to better reflect the transfor-
mation visually and within functions requiring positional matching of data.

Backwards compatability with zoo can be achieved by setting options(xts.compat.zoo.lag=TRUE).
This will change the defaults of lag.xts to k=-1 and na.pad=FALSE.

dimnames.xts 21

Value

An xts object reflected the desired lag and/or differencing.

Author(s)

Jeffrey A. Ryan

References

https://en.wikipedia.org/wiki/Lag

Examples

x <- xts(1:10, Sys.Date()+1:10)
lag(x) # currently using xts-style positive k

lag(x, k=2)

lag(x, k=-1, na.pad=FALSE) # matches lag.zoo(x, k=1)

diff(x)
diff(x, lag=1)
diff(x, diff=2)
diff(diff(x))

dimnames.xts Dimnames of an xts Object

Description

Get or set dimnames of an xts object.

Usage

S3 method for class 'xts'
dimnames(x)

S3 replacement method for class 'xts'
dimnames(x) <- value

Arguments

x an xts object

value a list object of length two. See Details.

https://en.wikipedia.org/wiki/Lag

22 dimnames.xts

Details

The functions dimnames.xts and dimnames<-.xts are methods for the base functions dimnames
and dimnames<-.

xts objects by design are intended for lightweight management of time-indexed data.

Rownames are redundant in this design, as well as quite burdensome with respect to memory con-
sumption and internal copying costs.

rownames and colnames in R make use of dimnames method dispatch internally, and thus require
only modifications to dimnames to enforce the xts no rownames requirement.

To prevent accidental setting of rownames, dimnames<- for xts will simply set the rownames to
NULL when invoked, regardless of attempts to set otherwise.

This is done for internal compatibility reasons, as well as to provide consistency in performance
regardless of object use.

User level interaction with either dimnames or rownames will produce a character vector of the
index, formatted based on the current specification of indexFormat. This occurs within the call by
converting the results of calling index(x) to a character string, which itself first creates the object
type specified internally from the underlying numeric time representation.

Value

A list or character string containing coerced row names and/or actual column names.

Attempts to set rownames on xts objects via rownames or dimnames will silently fail. This is your
warning.

Note

All xts objects have dimension. There are no xts objects representable as named or unnamed
vectors.

Author(s)

Jeffrey A. Ryan

See Also

xts

Examples

x <- xts(1:10, Sys.Date()+1:10)
dimnames(x)
rownames(x)
rownames(x) <- 1:10
rownames(x)
str(x)

endpoints 23

endpoints Locate Endpoints by Time

Description

Extract index locations for an xts object that correspond to the last observation in each period
specified by on.

Usage

endpoints(x, on="months", k=1)

Arguments

x an xts object

on the periods endpoints to find as a character string

k along every k-th element - see notes

Details

endpoints returns a numeric vector corresponding to the last observation in each period. The
vector always begins with zero and ends with the last observation in x.

Periods are always based on the distance from the UNIX epoch (midnight 1970-01-01 UTC), not
the first observation in x. The examples illustrate this behavior.

Valid values for the argument on include: “us” (microseconds), “microseconds”, “ms” (millisec-
onds), “milliseconds”, “secs” (seconds), “seconds”, “mins” (minutes), “minutes”, “hours”, “days”,
“weeks”, “months”, “quarters”, and “years”.

Value

A numeric vector of beginning with 0 and ending with the value equal to the number of observations
in the x argument.

Author(s)

Jeffrey A. Ryan

Examples

data(sample_matrix)

endpoints(sample_matrix)
endpoints(sample_matrix, "weeks")

example of how periods are based on the UNIX epoch,
not the first observation of the data series
x <- xts(1:38, yearmon(seq(2018 - 1/12, 2021, 1/12)))

24 first

endpoints for the end of every other year
ep <- endpoints(x, "years", k = 2)
Dec-2017 is the end of the *first* year in the data. But when you start from
Jan-1970 and use every second year end as your endpoints, the endpoints are
always December of every odd year.
x[ep,]

first Return First or Last n Elements of A Data Object

Description

A generic function to return the first or last elements or rows of a vector or two-dimensional data
object.

A more advanced subsetting is available for zoo objects with indexes inheriting from POSIXt or
Date classes.

Usage

first(x,...)
last(x,...)

Default S3 method:
first(x,n=1,keep=FALSE,...)

Default S3 method:
last(x,n=1,keep=FALSE,...)

S3 method for class 'xts'
first(x,n=1,keep=FALSE,...)

S3 method for class 'xts'
last(x,n=1,keep=FALSE,...)

Arguments

x 1 or 2 dimensional data object

n number of periods to return

keep should removed values be kept?

... additional args - unused

first 25

Details

Provides the ability to identify the first or last n rows or observations of a data set. The generic
method behaves much like head and tail from base, except by default only the first or last obser-
vation will be returned.

The more useful method for the xts class allows for time based subsetting, given an xtsible object.

n may be either a numeric value, indicating the number of observations to return - forward from
first, or backwards from last, or it may be a character string describing the number and type of
periods to return.

n may be positive or negative, in either numeric or character contexts. When positive it will return
the result expected - e.g. last(X,'1 month') will return the last month’s data. If negative, all data
will be returned except for the last month. It is important to note that this is not the same as calling
first(X,'1 month') or first(X,'-1 month'). All 4 variations return different subsets of data
and have distinct purposes.

If n is a character string, it must be of the form ‘n period.type’ or ‘period.type’, where n is a numeric
value (defaults to 1 if not provided) describing the number of period.types to move forward (first)
or back (last).

For example, to return the last 3 weeks of a time oriented zoo object, one could call last(X,'3
weeks'). Valid period.types are: secs, seconds, mins, minutes, hours, days, weeks, months, quar-
ters, and years.

It is possible to use any frequency specification (secs, mins, days, . . .) for the period.type portion
of the string, even if the original data is in a higher frequency. This makes it possible to return the
last ‘2 months’ of data from an oject that has a daily periodicity.

It should be noted that it is only possible to extract data with methods equal to or less than the
frequency of the original data set. Attempting otherwise will result in error.

Requesting more data than is in the original data object will produce a warning advising as such,
and the object returned will simply be the original data.

Value

A subset of elements/rows of the original data.

Author(s)

Jeffrey A. Ryan

Examples

first(1:100)
last(1:100)

data(LakeHuron)
first(LakeHuron,10)
last(LakeHuron)

x <- xts(1:100, Sys.Date()+1:100)
first(x, 10)
first(x, '1 day')

26 firstof

first(x, '4 days')
first(x, 'month')
last(x, '2 months')
last(x, '6 weeks')

firstof Create a POSIXct Object

Description

Enable fast creation of time stamps corresponding to the first or last observation in a specified time
period.

Usage

firstof(year = 1970, month = 1, day = 1, hour = 0, min = 0, sec = 0, tz = "")

Arguments

year,month,day numerical values to specify a day

hour,min,sec numerical vaues to specify time within a day

tz timezone used for conversion

Details

A wrapper to the R function ISOdatetime with defaults corresponding to the first or last possible
time in a given period.

Value

An object of class POSIXct.

Author(s)

Jeffrey A. Ryan

See Also

ISOdatetime

Examples

firstof(2000)
firstof(2005,01,01)

lastof(2007)
lastof(2007,10)

index.xts 27

index.xts Get and Replace the Class of an xts Index

Description

Functions to get and replace an xts object’s index values and it’s components.

Usage

S3 method for class 'xts'
index(x, ...)
S3 replacement method for class 'xts'
index(x) <- value

.index(x, ...)

.index(x) <- value

convertIndex(x, value)

date/time component extraction
.indexsec(x)
.indexmin(x)
.indexhour(x)

.indexDate(x)

.indexday(x)

.indexwday(x)

.indexmday(x)

.indexweek(x)

.indexmon(x)

.indexyear(x)

.indexyday(x)

.indexisdst(x)

Arguments

x an xts object

value new index value

... arguments passed to other methods

Details

Internally, an xts object’s index is a numeric value corresponding to seconds since the epoch in the
UTC timezone. The .index and .index<- functions get and replace the internal numeric value of

28 index.xts

the index, respectively. These functions are primarily for internal use, but are exported because they
may be useful for users.

The index and index<- methods get and replace the xts object’s index, respectively. The replace-
ment method also updates the tclass and tzone of the index to match the class and timezone of the
new index, respectively. The index method converts the index to the class specified by the tclass
attribute and with the timezone specified by the tzone attribute before returning the index values to
the user.

The .indexXXX functions extract time components (similar to POSIXlt components) from the in-
ternal time index:

.indexsec 0 - 61: seconds of the minute (local time)

.indexmin 0 - 59: minutes of the hour (local time)

.indexhour 0 - 23: hours of the day (local time)

.indexDate date as seconds since the epoch (UTC not local time

.indexday date as seconds since the epoch (UTC not local time

.indexwday 0 - 6: day of the week (Sunday - Saturday, local time)

.indexmday 1 - 31: day of the month (local time)

.indexweek weeks since the epoch (UTC not local time

.indexmon 0 - 11: month of the year (local time)

.indexyear years since 1900 (local time)

.indexyday 0 - 365: day of the year (local time, 365 only in leap years)

.indexisdst 1, 0, -1: Daylight Saving Time flag. Positive if Daylight Saving Time is in effect,
zero if not, negative if unknown.

Changes in timezone, index class, and index format internal structure, by xts version:

Version 0.12.0: The .indexTZ, .indexCLASS and .indexFORMAT attributes are no longer stored
on xts objects, only on the index itself.
The indexTZ, indexClass, and indexFormat functions (and their respective replacement
methods) are deprecated in favor of their respective tzone, tclass, and tformat versions.
The previous versions will throw a warning that they’re deprecated, but they will continue to
work. There are no plans to remove them or have them throw an error. Ever.
The latter versions are careful to look for the old attributes on the xts object, in case they’re
ever called on an xts object that was created prior to the attributes being added to the index
itself.
There are options to throw a warning if there is no tzone or tclass attribute on the index,
even if there may be one on the xts object. This gives the user a way to know if an xts object
should be updated to use the new structure.
You can enable the warnings via: options(xts.warn.index.missing.tzone = TRUE, xts.warn.index.missing.tclass
= TRUE) You can identify xts objects with the old structure by printing them. Then you can
update them to the new structure using x <- as.xts(x).

Version 0.9.8: The index timezone is now set to "UTC" for time classes that do not have any intra-
day component (e.g. days, months, quarters). Previously the timezone was blank, which
meant "local time" as determined by R and the OS.

index.xts 29

Version 0.9.2: There are new get/set methods for the timezone, index class, and index format at-
tributes: tzone and, tzone<-, tclass and tclass<-, and tformat and tformat<-.
These new functions are aliases to their indexTZ, indexClass, and indexFormat counter-
parts.

Version 0.7.5: The timezone, index class, and index format were added as attributes to the index
itself, as tzone, tclass, and tformat, respectively. This is in order to remove those three
attributes from the xts object, so they’re only on the index itself.
The indexTZ, indexClass, and indexFormat functions (and their respective replacement
methods) will continue to work as in prior xts versions. The attributes on the index take
priority over their respective counterparts that may be on the xts object.

Versions 0.6.4 and prior: Objects track their timezone and index class in their .indexTZ and
.indexCLASS attributes, respectively.

Author(s)

Jeffrey A. Ryan

See Also

tformat describes how the index values are formatted when printed, tclass provides details how
xts handles the class of the index, and tzone has more information about the index timezone set-
tings.

Examples

x <- timeBasedSeq('2010-01-01/2010-01-01 12:00/H')
x <- xts(seq_along(x), x)

the index values, converted to 'tclass' (POSIXct in this case)
index(x)
class(index(x)) # POSIXct
tclass(x) # POSIXct

the internal numeric index
.index(x)
add 1 hour (3600 seconds) to the numeric index
.index(x) <- index(x) + 3600
index(x)

y <- timeBasedSeq('2010-01-01/2010-01-02 12:00')
y <- xts(seq_along(y), y)

Select all observations in the first 6 and last 3 minutes of the
8th and 15th hours on each day
y[.indexhour(y) %in% c(8, 15) & .indexmin(y) %in% c(0:5, 57:59)]

i <- 0:60000
focal_date <- as.numeric(as.POSIXct("2018-02-01", tz = "UTC"))
y <- .xts(i, c(focal_date + i * 15), tz = "UTC", dimnames = list(NULL, "value"))

30 isOrdered

Select all observations for the first minute of each hour
y[.indexmin(y) == 0]

Select all observations on Monday
mon <- y[.indexwday(y) == 1]
head(mon)
tail(mon)
unique(weekdays(index(mon))) # check

Disjoint time of day selections

Select all observations between 08:30 and 08:59:59.9999 or between 12:00 and 12:14:59.99999:
y[.indexhour(y) == 8 & .indexmin(y) >= 30 | .indexhour(y) == 12 & .indexmin(x) %in% 0:14]

Compound selections

Select all observations for Wednesdays or Fridays between 9am and 4pm (exclusive of 4pm):
y[.indexwday(y) %in% c(3, 5) & (.indexhour(y) %in% c(9:15))]

Select all observations on Monday between 8:59:45 and 09:04:30:

y[.indexwday(y) == 1 & (.indexhour(y) == 8 & .indexmin(y) == 59 & .indexsec(y) >= 45 |
.indexhour(y) == 9 &
(.indexmin(y) < 4 | .indexmin(y) == 4 & .indexsec(y) <= 30))]

i <- 0:30000
u <- .xts(i, c(focal_date + i * 1800), tz = "UTC", dimnames = list(NULL, "value"))

Select all observations for January or February:
u[.indexmon(u) %in% c(0, 1)]

Select all data for the 28th to 31st of each month, excluding any Fridays:
u[.indexmday(u) %in% 28:31 & .indexwday(u) != 5]

Subset by week since origin
unique(.indexweek(u))
origin <- xts(1, as.POSIXct("1970-01-01"))
unique(.indexweek(origin))

Select all observations in weeks 2515 to 2517.
u2 <- u[.indexweek(u) %in% 2515:2517]
head(u2); tail(u2)

Select all observations after 12pm for day 50 and 51 in each year
u[.indexyday(u) %in% 50:51 & .indexhour(u) >= 12]

isOrdered Check If A Vector Is Ordered

isOrdered 31

Description

Performs check to determine if a vector is strictly increasing, strictly decreasing, not decreasing, or
not increasing.

Usage

isOrdered(x, increasing = TRUE, strictly = TRUE)

Arguments

x a numeric vector

increasing test for increasing/decreasing values

strictly are duplicates OK

Details

Designed for internal use with xts, this provides highly optimized tests for ordering.

Value

Logical

Author(s)

Jeffrey A. Ryan

See Also

is.unsorted

Examples

strictly increasing
isOrdered(1:10, increasing=TRUE)
isOrdered(1:10, increasing=FALSE)
isOrdered(c(1,1:10), increasing=TRUE)
isOrdered(c(1,1:10), increasing=TRUE, strictly=FALSE)

decreasing
isOrdered(10:1, increasing=TRUE)
isOrdered(10:1, increasing=FALSE)

32 make.index.unique

make.index.unique Force Time Values To Be Unique

Description

A generic function to force sorted time vectors to be unique. Useful for high-frequency time-series
where original time-stamps may have identical values. For the case of xts objects, the default eps
is set to ten microseconds. In practice this advances each subsequent identical time by eps over the
previous (possibly also advanced) value.

Usage

make.index.unique(x, eps = 1e-06, drop=FALSE, fromLast=FALSE, ...)

make.time.unique(x, eps = 1e-06, drop=FALSE, fromLast=FALSE, ...)

Arguments

x An xts object, or POSIXct vector.

eps value to add to force uniqueness.

drop drop duplicates instead of adjusting by eps

fromLast if drop=TRUE, fromLast controls which duplicated times are dropped. If from-
Last=FALSE, the earliest observation with an identical timestamp is kept with
subsequent observations dropped.

... unused

Details

The returned time-series object will have new time-stamps so that isOrdered(.index(x)) eval-
uates to TRUE.

Value

A modified version of x.

Note

Incoming values must be pre-sorted, and no check is done to make sure that this is the case. If the
index values are of storage.mode ‘integer’, they will be coerced to ‘double’ if drop=FALSE.

Author(s)

Jeffrey A. Ryan

See Also

align.time

merge.xts 33

Examples

ds <- options(digits.secs=6) # so we can see the change

x <- xts(1:10, as.POSIXct("2011-01-21") + c(1,1,1,2:8)/1e3)
x
make.index.unique(x)

options(ds)

merge.xts Merge xts Objects

Description

Used to perform merge operation on xts objects by time (index). Given the inherent ordered nature
of xts time-series, a merge-join style merge allows for optimally efficient joins.

Usage

S3 method for class 'xts'
merge(...,

all = TRUE,
fill = NA,
suffixes = NULL,
join = "outer",
retside = TRUE,
retclass = "xts",
tzone = NULL,
drop=NULL,
check.names=NULL)

Arguments

... one or more xts objects, or objects coercible to class xts

all a logical vector indicating merge type

fill values to be used for missing elements

suffixes to be added to merged column names

join type of database join

retside which side of the merged object should be returned (2-case only)

retclass object to return

tzone time zone of merged object

drop not currently used

check.names not currently used

34 merge.xts

Details

This is an xts method compatible with merge.zoo, as xts extends zoo. That documentation should
also be referenced. Difference are noted where applicable.

Implemented almost entirely in custom C-level code, it is possible using either the all argument
or the join argument to implement all common database join operations along the to-be-merged
objects time-index: ‘outer’ (full outer - all rows), ‘inner’ (only rows with common indexes), ‘left’
(all rows in the left object, and those that match in the right), and ‘right’ (all rows in the right object,
and those that match in the left).

The above join types can also be expressed as a vector of logical values passed to all. c(TRUE,TRUE)
or TRUE for ‘join="outer"’, c(FALSE,FALSE) or FALSE for ‘join="inner"’, c(TRUE, FALSE) for
‘join="left"’, and c(FALSE,TRUE) for ‘join="right"’.

Note that the all and join arguments imply a two case scenario. For merging more than two
objects, they will simply fall back to a full outer or full inner join, depending on the first position of
all, as left and right can be ambiguous with respect to sides.

To do something along the lines of merge.zoo’s method of joining based on an all argument of the
same length of the arguments to join, see the example.

The resultant object will have the timezone of the leftmost argument if available. Use tzone to
override.

If retclass is NULL, the joined objects will be split and reassigned silently back to the original
environment they are called from. This is for backward compatibility with zoo, though unused by
xts.

If retclass is FALSE the object will be stripped of its class attribute. This is for internal use.

Value

A new xts object containing the appropriate elements of the objects passed in to be merged.

Note

This is a highly optimized merge, specifically designed for ordered data. The only supported merg-
ing is based on the underlying time index.

Author(s)

Jeffrey A. Ryan

References

Merge Join Discussion: https://blogs.msdn.microsoft.com/craigfr/2006/08/03/merge-join/

Examples

(x <- xts(4:10, Sys.Date()+4:10))
(y <- xts(1:6, Sys.Date()+1:6))

merge(x,y)
merge(x,y, join='inner')

https://blogs.msdn.microsoft.com/craigfr/2006/08/03/merge-join/

na.locf.xts 35

merge(x,y, join='left')
merge(x,y, join='right')

merge.zoo(zoo(x),zoo(y),zoo(x), all=c(TRUE, FALSE, TRUE))
merge(merge(x,x),y,join='left')[,c(1,3,2)]

zero-width objects (only index values) can be used
xi <- xts(, index(x))
merge(y, xi)

na.locf.xts Last Observation Carried Forward

Description

xts method replace ‘NA’ with most recent non-‘NA’

Usage

S3 method for class 'xts'
na.locf(object, na.rm = FALSE, fromLast = FALSE, maxgap=Inf, ...)

Arguments

object an xts object

na.rm logical. Should leading/trailing ‘NA”s be removed? The default for xts FALSE is
different than the default S3 method in the zoo package.

fromLast logical. Cause observations to be carried backward rather than forward. Default
is FALSE.

maxgap runs of more than ‘maxgap’ will retain ‘NA’s after the maximum gap specified.
See na.locf in the zoo package.

... unused

Details

This is the xts method for the S3 generic na.locf. The primary difference to note is that after
the ‘NA’ fill action is carried out, the default it to leave trailing or leading ‘NA”s in place. This is
different than zoo behavior.

Value

See the documentation in zoo.

Author(s)

Jeffrey A. Ryan

36 ndays

References

‘zoo’

Examples

x <- xts(1:10, Sys.Date()+1:10)
x[c(1,2,5,9,10)] <- NA

x
na.locf(x)
na.locf(x, fromLast=TRUE)
na.locf(x, na.rm=TRUE, fromLast=TRUE)

ndays Number of Periods in Data

Description

Calculate the number of specified periods in a given time series like data object.

Usage

nseconds(x)
nminutes(x)
nhours(x)
ndays(x)
nweeks(x)
nmonths(x)
nquarters(x)
nyears(x)

Arguments

x A time-based object

Details

Essentially a wrapper to endpoints with the appropriate period specified; the resulting value de-
rived from counting the endpoints

As a compromise between simplicity and accuracy, the results will always round up to the nearest
complete period. So n**** - 1 will return the completed periods.

For finer grain detail one should call a higher frequency n**** function.

An alternative summary can be found with periodicity and unclass(periodicity(x)).

Value

The number of observations for the period type specified

period.apply 37

Author(s)

Jeffrey A. Ryan

See Also

endpoints

Examples

Not run:
getSymbols("QQQQ")

ndays(QQQQ)
nweeks(QQQQ)

End(Not run)

period.apply Apply Function Over Specified Interval

Description

Apply a specified function to data over intervals specified by INDEX. The intervals are defined as the
observations from INDEX[k]+1 to INDEX[k+1], for k = 1:(length(INDEX)-1).

Usage

period.apply(x, INDEX, FUN, ...)

Arguments

x The data that FUN will be applied to.

INDEX A numeric vector of index breakpoint locations. The vector should begin with 0
and end with NROW(x).

FUN A function to apply to each interval in x.

... Additional arguments for FUN.

Details

Similar to the rest of the apply family, period.apply() calculates the specified function’s value
over a subset of data. The primary difference is that period.apply() applies the function to non-
overlapping intervals of a vector or matrix.

Useful for applying functions over an entire data object by any non-overlapping intervals. For
example, when INDEX is the result of a call to endpoints().

period.apply() checks that INDEX is sorted, unique, starts with 0, and ends with NROW(x). All
those conditions are true of vectors returned by endpoints().

38 period.max

Value

An object with length(INDEX) - 1 observations (assuming INDEX starts with 0 and ends with
NROW(x)).

Note

When FUN = mean the results will contain one column for every column in the input, which is dif-
ferent from other math functions (e.g. median, sum, prod, sd, etc.).

FUN = mean works by column because the default method stats::mean used to work by column
for matrices and data.frames. R Core changed the behavior of mean to always return one column
in order to be consistent with the other math functions. This broke some xts dependencies and
mean.xts was created to maintain the original behavior.

Using FUN = mean will print a message that describes this inconsistency. To avoid the message and
confusion, use FUN = colMeans to calculate means by column and use FUN = function(x) mean to
calculate one mean for all the data. Set options(xts.message.period.apply.mean = FALSE) to
suppress this message.

Author(s)

Jeffrey A. Ryan, Joshua M. Ulrich

See Also

endpoints apply.monthly

Examples

zoo.data <- zoo(rnorm(31)+10,as.Date(13514:13744,origin="1970-01-01"))
ep <- endpoints(zoo.data,'weeks')
period.apply(zoo.data, INDEX=ep, FUN=function(x) colMeans(x))
period.apply(zoo.data, INDEX=ep, FUN=colMeans) #same

period.apply(letters,c(0,5,7,26), paste0)

period.max Calculate Max By Period

Description

Calculate a maximum for each period of INDEX. Essentially a rolling application of maximum over
a series of non-overlapping sections.

Usage

period.max(x, INDEX)

period.min 39

Arguments

x a univariate data object

INDEX a numeric vector of endpoints to calculate maximum on

Details

Used to calculate a maximum per period given an arbitrary index of sections to be calculated over.
This is an optimized function for maximum. There are additional optimized versions for min, sum,
and prod.

For xts-coercible objects, an appropriate INDEX can be derived from a call to ’endpoints’.

Value

An xts or zoo object of maximums, indexed by the period endpoints.

Author(s)

Jeffrey A. Ryan

See Also

endpoints, period.sum, period.min, period.prod

Examples

period.max(c(1,1,4,2,2,6,7,8,-1,20),c(0,3,5,8,10))

data(sample_matrix)
period.max(sample_matrix[,1],endpoints(sample_matrix))
period.max(as.xts(sample_matrix)[,1],endpoints(sample_matrix))

period.min Calculate Min By Period

Description

Calculate a minimum for each period of INDEX. Essentially a rolling application of minimum over
a series of non-overlapping sections.

Usage

period.min(x, INDEX)

Arguments

x a univariate data object

INDEX a numeric vector of endpoints to calculate maximum on

40 period.prod

Details

Used to calculate a minimum per period given an arbitrary index of sections to be calculated over.
This is an optimized function for minimum. There are additional optimized versions for max, sum,
and prod.

For xts-coercible objects, an appropriate INDEX can be derived from a call to endpoints.

Value

An xts or zoo object of minimums, indexed by the period endpoints.

Author(s)

Jeffrey A. Ryan

See Also

endpoints, period.sum, period.max, period.prod

Examples

period.min(c(1,1,4,2,2,6,7,8,-1,20),c(0,3,5,8,10))

data(sample_matrix)
period.min(sample_matrix[,1],endpoints(sample_matrix))
period.min(as.xts(sample_matrix)[,1],endpoints(sample_matrix))

period.prod Calculate Product By Period

Description

Calculate a product for each period of INDEX. Essentially a rolling application of prod over a series
of non-overlapping sections.

Usage

period.prod(x, INDEX)

Arguments

x a univariate data object
INDEX a vector of breakpoints to calculate product on

Details

Used to calculate a product per period given an arbitrary index of sections to be calculated over.
This is an optimized function for product. There are additionally optimized versions for min, max,
and sum.

For xts-coercible objects, an appropriate INDEX can be derived from a call to endpoints.

period.sum 41

Value

An xts or zoo object of products, indexed by the period endpoints.

Author(s)

Jeffrey A. Ryan

See Also

endpoints, period.sum, period.min, period.max

Examples

period.prod(c(1,1,4,2,2,6,7,8,-1,20),c(0,3,5,8,10))

data(sample_matrix)
period.prod(sample_matrix[,1],endpoints(sample_matrix))
period.prod(as.xts(sample_matrix)[,1],endpoints(sample_matrix))

period.sum Calculate Sum By Period

Description

Calculate a sum for each period of INDEX. Essentially a rolling application of sum over a series of
non-overlapping sections.

Usage

period.sum(x, INDEX)

Arguments

x a univariate data object

INDEX a numeric vector of endpoints to calculate sum on

Details

Used to calculate a sum per period given an arbitrary index of sections to be calculated over. This is
an optimized function for sum. There are additionally optimized versions for min, max, and prod.

For xts-coercible objects, an appropriate INDEX can be derived from a call to endpoints.

Value

An xts or zoo object of sums, indexed by the period endpoints.

42 periodicity

Author(s)

Jeffrey A. Ryan

See Also

endpoints, period.max, period.min, period.prod

Examples

period.sum(c(1,1,4,2,2,6,7,8,-1,20),c(0,3,5,8,10))

data(sample_matrix)
period.sum(sample_matrix[,1],endpoints(sample_matrix))
period.sum(as.xts(sample_matrix)[,1],endpoints(sample_matrix))

periodicity Approximate Series Periodicity

Description

Estimate the periodicity of a time-series-like object by calculating the median time between obser-
vations in days.

Usage

periodicity(x, ...)

Arguments

x time-series-like object

... unused

Details

A simple wrapper to quickly estimate the periodicity of a given data. Returning an object of type
periodicity.

This calculates the median number of days between observations as a difftime object, the numerical
difference, the units of measurement, and the derived scale of the data as a string.

The time index currently must be of either Date or POSIX class, or coercible to such.

The only list item of note is the scale. This is an estimate of the periodicity of the data in common
terms - e.g. 7 day daily data is best described as ‘weekly’, and would be returned as such.

Possible scale values are:

‘minute’,‘hourly’, ‘daily’,‘weekly’, ‘monthly’,‘quarterly’, and ‘yearly’.

Value

An object containing a list containing the difftime object, frequency, units, and suitable scale.

plot.xts 43

Note

This function is only a good estimate for the underlying periodicity. If the series is too short, or has
no real periodicity, the return values will obviously be wrong. That said, it is quite robust and used
internally within xts.

Author(s)

Jeffrey A. Ryan

See Also

difftime

Examples

zoo.ts <- zoo(rnorm(231),as.Date(13514:13744,origin="1970-01-01"))
periodicity(zoo.ts)

plot.xts Plotting xts Objects

Description

Plotting for xts objects.

Usage

S3 method for class 'xts'
plot(x, y = NULL, ..., subset = "",
panels = NULL, multi.panel = FALSE, col = 1:8, up.col = NULL,
dn.col = NULL, bg = "#FFFFFF", type = "l", lty = 1, lwd = 2, lend = 1,
main = deparse(substitute(x)), main.timespan = TRUE, observation.based = FALSE,
log = FALSE, ylim = NULL, yaxis.same = TRUE, yaxis.left = TRUE, yaxis.right = TRUE,
yaxis.ticks = 5, major.ticks = "auto", minor.ticks = NULL,
grid.ticks.on = "auto", grid.ticks.lwd = 1, grid.ticks.lty = 1,
grid.col = "darkgray", labels.col = "#333333", format.labels = TRUE,
grid2 = "#F5F5F5", legend.loc = NULL, extend.xaxis = FALSE)

S3 method for class 'xts'
lines(x, ..., main = "", on = 0, col = NULL, type = "l",
lty = 1, lwd = 1, pch = 1)

S3 method for class 'xts'
points(x, ..., main = "", on = 0, col = NULL, pch = 1)

44 plot.xts

Arguments

x xts object

y NULL, not used

... any passthrough graphical arguments for lines and points

subset character vector of length one of the subset range using subsetting as in xts

panels character vector of expressions to plot as panels

multi.panel TRUE/FALSE or an integer less than or equal to the number of columns in
the data set. If TRUE, each column of the data is plotted in a separate panel.
For example, if multi.panel = 2, then the data will be plotted in groups of 2
columns and each group is plotted in a separate panel.

col color palette to use, set by default to rational choices

up.col color for positive bars if type="h"

dn.col color for negative bars if type="h"

bg background color of plotting area, same as in par

type the type of plot to be drawn, same as in plot

lty set the line type, same as in par

lwd set the line width, same as in par

lend set the line end style, same as in par

main main title

main.timespan include the timespan of the series on the plot? (default TRUE)
observation.based

TRUE/FALSE (default FALSE). If TRUE, the x-axis is drawn based on observa-
tions in the data. If FALSE, the x-axis is drawn based on the time index of the
data.

log TRUE/FALSE (default FALSE). If TRUE, the y-axis is drawn in log-scale

ylim the range of the y axis

yaxis.same TRUE/FALSE. If TRUE, the y axis is drawn with the same ylim for multiple
panels

yaxis.left if TRUE, draws the y axis on the left

yaxis.right if TRUE, draws the y axis on the right

yaxis.ticks desired number of y axis grid lines. The actual number of grid lines is deter-
mined by the n argument to pretty.

major.ticks period that specifies where tick marks and labels will be drawn on the x-axis.
See Details for possible values.

minor.ticks period that specifies where minor ticks on will be drawn on the x-axis. If NULL,
minor ticks are not drawn. See Details for possible values.

grid.ticks.on period that specifies where vertical grid lines will be drawn. See Details for
possible values.

grid.ticks.lwd line width of the grid

grid.ticks.lty line type of the grid

plot.xts 45

grid.col color of the grid

labels.col color of the axis labels

format.labels label format to draw lower frequency x-axis ticks and labels passed to axTicksByTime

grid2 color for secondary x axis grid

legend.loc places a legend into one of nine locations on the chart: bottomright, bottom,
bottomleft, left, topleft, top, topright, right, or center. Default NULL does not
draw a legend.

pch the plotting character to use, same as in par.

on panel number to draw on. A new panel will be drawn if on=NA. The default,
on=0, will add to the active panel. The active panel is defined as the panel on
which the most recent action was performed. Note that only the first element of
on is checked for the default behavior to add to the last active panel.

extend.xaxis TRUE/FALSE (default FALSE). If TRUE, extend the x-axis before and/or after
the plot’s existing time index range, so all of of the time index values of the new
series are included in the plot.

Details

Possible values for arguments major.ticks, minor.ticks, and grid.ticks.on include ‘auto’,
‘minute’, ‘hours’, ‘days’, ‘weeks’, ‘months’, ‘quarters’, and ‘years’. The default is ‘auto’, which
attempts to determine sensible locations from the periodicity and locations of observations. The
other values are based on the possible values for the ticks.on argument of axTicksByTime.

Author(s)

Ross Bennett

References

based on chart_Series in the quantmod package by Jeffrey A. Ryan

See Also

addSeries, addPanel

Examples

Not run:
data(sample_matrix)
sample.xts <- as.xts(sample_matrix)

plot the Close
plot(sample.xts[,"Close"])

plot a subset of the data
plot(sample.xts[,"Close"], subset="2007-04-01/2007-06-31")

function to compute simple returns

46 print.xts

simple.ret <- function(x, col.name){
x[,col.name] / lag(x[,col.name]) - 1

}

plot the close and add a panel with the simple returns
plot(sample.xts[,"Close"])
R <- simple.ret(sample.xts, "Close")
lines(R, type="h", on=NA)

add the 50 period simple moving average to panel 1 of the plot
library(TTR)
lines(SMA(sample.xts[,"Close"], n = 50), on=1, col="blue")

add month end points to the chart
points(sample.xts[endpoints(sample.xts[,"Close"], on = "months"), "Close"],

col="red", pch=17, on=1)

add legend to panel 1
addLegend("topright", on=1,

legend.names = c("Close", "SMA(50)"),
lty=c(1, 1), lwd=c(2, 1),
col=c("black", "blue", "red"))

End(Not run)

print.xts Print An xts Time-Series Object

Description

Method for printing an extensible time-series object.

Usage

S3 method for class 'xts'
print(x, fmt, ..., show.rows = 10, max.rows = 100)

Arguments

x An xts object

fmt Passed to coredata to format the time index

... Arguments passed to other methods

show.rows The number of first and last rows to print if the number of rows is truncated
(default 10, or getOption("xts.print.show.rows"))

max.rows The output will contain at most max.rows rows before being truncated (default
100, or getOption("xts.print.max.rows"))

rbind.xts 47

Value

Returns x invisibly.

Author(s)

Joshua M. Ulrich

Examples

data(sample_matrix)
sample.xts <- as.xts(sample_matrix)

output is truncated and shows first and last 10 observations
print(sample.xts)

show the first and last 5 observations
print(sample.xts, show.rows = 5)

rbind.xts Concatenate Two or More xts Objects by Row

Description

Concatenate or bind by row two or more xts objects along a time-based index.

Usage

S3 method for class 'xts'
c(...)

S3 method for class 'xts'
rbind(..., deparse.level = 1)

Arguments

... objects to bind

deparse.level not implemented

Details

Implemented in C, these functions bind xts objects by row, resulting in another xts object

There may be non-unique index values in either the original series, or the resultant series.

Identical indexed series are bound in the order or the arguments passed to rbind. See examples.

All objects must have the same number of columns, as well as be xts objects or coercible to such.

rbind and c are aliases.

For traditional merge operations, see merge.xts and cbind.xts.

48 sample_matrix

Value

An xts object with one row per row for each object concatenated.

Note

This differs from rbind.zoo in that non-unique index values are allowed, in addition to the com-
pletely different algorithms used internally.

All operations may not behave as expected on objects with non-unique indices. You have been
warned.

rbind is a .Primitive function in R. As such method dispatch occurs at the C-level, and may not
be consistent with expectations. See the details section of the base function, and if needed call
rbind.xts directly to avoid dispatch ambiguity.

Author(s)

Jeffrey A. Ryan

See Also

merge.xts rbind

Examples

x <- xts(1:10, Sys.Date()+1:10)
str(x)

merge(x,x)
rbind(x,x)
rbind(x[1:5],x[6:10])

c(x,x)

this also works on non-unique index values
x <- xts(rep(1,5), Sys.Date()+c(1,2,2,2,3))
y <- xts(rep(2,3), Sys.Date()+c(1,2,3))

overlapping indexes are appended
rbind(x,y)
rbind(y,x)

sample_matrix Sample Data Matrix For xts Example and Unit Testing

Description

Simulated 180 observations on 4 variables.

split.xts 49

Usage

data(sample_matrix)

Format

The format is:
num [1:180, 1:4] 50.0 50.2 50.4 50.4 50.2 ...
- attr(*, "dimnames")=List of 2
..$: chr [1:180] "2007-01-02" "2007-01-03" "2007-01-04" "2007-01-05" ...
..$: chr [1:4] "Open" "High" "Low" "Close"

Examples

data(.sample.matrix)

split.xts Divide into Groups by Time

Description

Creates a list of xts objects split along time periods.

Usage

S3 method for class 'xts'
split(x, f = "months", drop=FALSE, k = 1, ...)

Arguments

x an xts object

f a ’character’ vector describing the period to split by

drop ignored by split.xts

k number of periods to aggregate into each split. See Details.

... further args to non-xts method

Details

A quick way to break up a large xts object by standard time periods; e.g. ’months’, ’quarters’, etc.

endpoints is used to find the start and end of each period (or k-periods). See that function for valid
arguments.

If f is not a character vector, the NextMethod is called, which would in turn dispatch to the split.zoo
method.

Value

A list of xts objects.

50 tclass

Note

aggregate.zoo would be more flexible, though not as fast for xts objects.

Author(s)

Jeffrey A. Ryan

See Also

endpoints, split.zoo, aggregate.zoo

Examples

data(sample_matrix)
x <- as.xts(sample_matrix)

split(x)
split(x, f="weeks")
split(x, f="weeks", k=4)

tclass Get or Replace the Class of an xts Object’s Index

Description

Generic functions to get or replace the class of an xts object’s index.

Usage

tclass(x, ...)
tclass(x) <- value

S3 method for class 'xts'
tclass(x, ...)
S3 replacement method for class 'xts'
tclass(x) <- value

The functions below are DEPRECATED
indexClass(x)
indexClass(x) <- value

Arguments

x an xts object

value new index class (see Details for valid values)

... arguments passed to other methods

tclass 51

Details

Internally, an xts object’s index is a numeric value corresponding to seconds since the epoch in the
UTC timezone. The index class is stored as the tclass attribute on the internal index. This is used
to convert the internal index values to the desired class when the index function is called.

The tclass function retrieves the class of the internal index, and the tclass<- function sets it. The
specified value for tclass<- must be one of the following character strings: "Date", "POSIXct",
"chron", "yearmon", "yearqtr", or "timeDate".

Value

A vector containing the class of the object’s index.

Note

Both indexClass and indexClass<- are deprecated in favor of tclass and tclass<-, respec-
tively.

Replacing the tclass does not change the values of the internal index. See the examples.

Author(s)

Jeffrey A. Ryan

See Also

index has more information on the xts index, tformat details how the index values are formatted
when printed, tzone has more information about the index timezone settings.

The following help pages describe the characteristics of the valid index classes: POSIXct, Date,
chron, yearmon, yearqtr, timeDate.

Examples

x <- timeBasedSeq('2010-01-01/2010-01-02 12:00')
x <- xts(seq_along(x), x)

y <- timeBasedSeq('2010-01-01/2010-01-03 12:00/H')
y <- xts(seq_along(y), y, tzone = "America/New_York")

Changing the tclass does not change the internal index values, but it
does change how the index is printed!
head(y) # the index has times
.index(y)
tclass(y) <- "Date"
head(y) # the index prints without times, but
.index(y) # the internal index is not changed!

52 tformat

tformat Get or Replace the Format of an xts Object’s Index

Description

Generic functions to get or replace the format that determines how an xts object’s index is printed.

Usage

tformat(x, ...)
tformat(x) <- value

S3 method for class 'xts'
tformat(x, ...)
S3 replacement method for class 'xts'
tformat(x) <- value

The functions below are DEPRECATED
indexFormat(x)
indexFormat(x) <- value

Arguments

x an xts object

value new index format string (see Details for valid values)

... arguments passed to other methods

Details

Valid values for the value argument are the same as specified in the Details section of strptime.

An xts object’s tformat is NULL by default, so the index will be formatted according to its tclass
(e.g. Date, POSIXct, timeDate, yearmon, etc.).

tformat only changes how the index is printed and how the row names are formatted when xts
objects are converted to other classes (e.g. matrix or data.frame. It does not affect the internal
index in any way.

Value

A vector containing the format for the object’s index.

Note

Both indexFormat and indexFormat<- are deprecated in favor of tformat and tformat<-, re-
spectively.

timeBased 53

Author(s)

Jeffrey A. Ryan

See Also

index has more information on the xts index, tclass details how xts handles the class of the index,
tzone has more information about the index timezone settings.

Examples

x <- timeBasedSeq('2010-01-01/2010-01-02 12:00')
x <- xts(seq_along(x), x)

set a custom index format
head(x)
tformat(x) <- "%Y-%b-%d %H:%M:%OS3"
head(x)

timeBased Check if Class is Time-Based

Description

Used to verify that the object is one of the known time-based classes in R.

Usage

is.timeBased(x)
timeBased(x)

Arguments

x object to test

Details

Current time-based objects supported are Date, POSIXct, chron, yearmon, yearqtr, and timeDate.

Value

Logical

Author(s)

Jeffrey A. Ryan

54 timeBasedSeq

Examples

timeBased(Sys.time())
timeBased(Sys.Date())

timeBased(200701)

timeBasedSeq Create a Sequence or Range of Times

Description

A function to create a vector of time-based objects suitable for indexing an xts object, given a string
conforming to the ISO 8601 time and date standard for range-based specification. The resultant
series can be of any class supported by xts, including POSIXct, Date, chron, timeDate, yearmon,
and yearqtr.

timeBasedRange creates a vector of length 1 or 2 as seconds since the epoch (1970-01-01) for use
internally.

Usage

timeBasedSeq(x, retclass = NULL, length.out = NULL)

timeBasedRange(x, ...)

Arguments

x a string representing the time-date range desired

retclass the return class desired

length.out passed to seq internally

... unused

Details

Designed to provide uniform creation of valid time-based objects for use within xts, the interface
conforms (mostly) to the ISO recommended format for specifying ranges.

In general, the format is a string specifying a time and/or date from, to, and optionally by delineated
by either ‘"/"’ or ‘"::"’.

The first argument need not be quoted, as it is converted internally if need be.

The general form is from/to/by or from::to::by, where to and by are optional if the length.out arg is
specified.

The from and to elements of the string must be left-specified with respect to the standard CCYYM-
MDD HHMMSS form. All dates-times specified will be set to either the earliest point (from) or the
latest (to), given the level of specificity.

For example ‘1999’ in the from field would set the start to the beginning of 1999. The opposite
occurs in the to field.

to.period 55

The level of detail in the request is interpretted as the level of detail in the result. The maximum
detail of either from or to is the basis of the sequence, unless the optional by element is specified,
which will be covered later.

To request a yearly series, it is only necessary to use ‘"1999/2008"’. Alternately, one could request
a monthly series (returned by default as class yearmon) with ‘"199901/2008"’ or ‘"1999-01/2008"’,
or even ‘"1999/2008-01"’. As the level of granularity increases, so does the resultant sequence
granularity - as does its length.

Using the optional third by field (the third delimited element to the string), will override the gran-
ularity intepretation and return the requested periodicity. The acceptable arguments include Y for
years, m for months, d for days, H for hours, M for minutes and S for seconds.

Value

A sequence or range of time-based objects.

If retclass is NULL, the result is a named list of from, to, by and length.out.

Author(s)

Jeffrey A. Ryan

References

International Organization for Standardization: ISO 8601 https://www.iso.org

See Also

timeBased, xts

Examples

timeBasedSeq('1999/2008')
timeBasedSeq('199901/2008')
timeBasedSeq('199901/2008/d')
timeBasedSeq('20080101 0830',length=100) # 100 minutes
timeBasedSeq('20080101 083000',length=100) # 100 seconds

to.period Convert time series data to an OHLC series

Description

Convert an OHLC or univariate object to a specified periodicity lower than the given data object.
For example, convert a daily series to a monthly series, or a monthly series to a yearly one, or a one
minute series to an hourly series.

The result will contain the open and close for the given period, as well as the maximum and mini-
mum over the new period, reflected in the new high and low, respectively.

If volume for a period was available, the new volume will also be calculated.

https://www.iso.org

56 to.period

Usage

to.minutes(x,k,name,...)
to.minutes3(x,name,...)
to.minutes5(x,name,...)
to.minutes10(x,name,...)
to.minutes15(x,name,...)
to.minutes30(x,name,...)
to.hourly(x,name,...)
to.daily(x,drop.time=TRUE,name,...)

to.weekly(x,drop.time=TRUE,name,...)
to.monthly(x,indexAt='yearmon',drop.time=TRUE,name,...)
to.quarterly(x,indexAt='yearqtr',drop.time=TRUE,name,...)
to.yearly(x,drop.time=TRUE,name,...)

to.period(x,
period = 'months',
k = 1,
indexAt,
name=NULL,
OHLC = TRUE,
...)

Arguments

x a univariate or OHLC type time-series object

period period to convert to. See details.

indexAt convert final index to new class or date. See details

drop.time remove time component of POSIX datestamp (if any)

k number of sub periods to aggregate on (only for minutes and seconds)

name override column names

OHLC should an OHLC object be returned? (only OHLC=TRUE currently supported)

... additional arguments

Details

Essentially an easy and reliable way to convert one periodicity of data into any new periodicity. It
is important to note that all dates will be aligned to the end of each period by default - with the
exception of to.monthly and to.quarterly, which index by ‘yearmon’ and ‘yearqtr’ from the
zoo package, respectively.

Valid period character strings include: "seconds", "minutes", "hours", "days", "weeks", "months",
"quarters", and "years". These are calculated internally via endpoints. See that function’s help
page for further details.

To adjust the final indexing style, it is possible to set indexAt to one of the following: ‘yearmon’,
‘yearqtr’, ‘firstof’, ‘lastof’, ‘startof’, or ‘endof’. The final index will then be yearmon, yearqtr,

to.period 57

the first time of the period, the last time of the period, the starting time in the data for that period,
or the ending time in the data for that period, respectively.

It is also possible to pass a single time series, such as a univariate exchange rate, and return an
OHLC object of lower frequency - e.g. the weekly OHLC of the daily series.

Setting drop.time to TRUE (the default) will convert a series that includes a time component into
one with just a date index, as the time index is often of little value in lower frequency series.

It is not possible to convert a series from a lower periodicity to a higher periodicity - e.g. weekly to
daily or daily to 5 minute bars, as that would require magic.

Value

An object of the original type, with new periodicity.

Note

In order for this function to work properly on OHLC data, it is necessary that the Open, High, Low
and Close columns be names as such; including the first letter capitalized and the full spelling found.
Internally a call is made to reorder the data into the correct column order, and then a verification
step to make sure that this ordering and naming has succeeded. All other data formats must be
aggregated with functions such as aggregate and period.apply.

This method should work on almost all time-series-like objects. Including ‘timeSeries’, ‘zoo’, ‘ts’,
and ‘irts’. It is even likely to work well for other data structures - including ‘data.frames’ and
‘matrix’ objects.

Internally a call to as.xts converts the original x into the universal xts format, and then re-converts
back to the original type.

A special note with respect to ‘ts’ objects. As these are strictly regular they may include NA values.
These are stripped for aggregation purposes, though replaced before returning. This inevitably leads
to many, many additional ‘NA’ values in the data. It is more beneficial to consider using an ‘xts’
object originally, or converting to one in the function call by means of as.xts.

Author(s)

Jeffrey A. Ryan

Examples

data(sample_matrix)

samplexts <- as.xts(sample_matrix)

to.monthly(samplexts)
to.monthly(sample_matrix)

str(to.monthly(samplexts))
str(to.monthly(sample_matrix))

58 tzone

tzone Get or Replace the Timezone of an xts Object’s Index

Description

Generic functions to get or replace the timezone of an xts object’s index.

Usage

tzone(x, ...)
tzone(x) <- value

S3 method for class 'xts'
tzone(x, ...)
S3 replacement method for class 'xts'
tzone(x) <- value

The functions below are DEPRECATED
indexTZ(x, ...)
indexTZ(x) <- value

Arguments

x an xts object

value a valid timezone value (see OlsonNames())

... arguments passed to other methods

Details

Internally, an xts object’s index is a numeric value corresponding to seconds since the epoch in
the UTC timezone. When an xts object is created, all time index values are converted internally to
POSIXct (which is also in seconds since the UNIX epoch), using the underlying OS conventions and
the TZ environment variable. The xts() function manages timezone information as transparently
as possible.

The tzone<- function does not change the internal index values (i.e. the index will remain the same
time in the UTC timezone).

Value

A one element named vector containing the timezone of the object’s index.

Note

Both indexTZ and indexTZ<- are deprecated in favor of tzone and tzone<-, respectively.

Problems may arise when an object that had been created under one timezone are used in a session
using another timezone. This isn’t usually a issue, but when it is a warning is given upon printing
or subsetting. This warning may be suppressed by setting options(xts_check_TZ = FALSE).

tzone 59

Note

Both indexTZ and indexTZ<- are deprecated in favor of tzone and tzone<-, respectively.

Timezones are a difficult issue to manage. It’s best to set the system TZ environment variable to
"GMT" or "UTC" (via Sys.setenv(TZ = "UTC") at the beginning of your scripts if you do not
need intra-daily resolution.

Author(s)

Jeffrey A. Ryan

See Also

POSIXt index has more information on the xts index, tformat describes how the index values are
formatted when printed, and tclass provides details how xts handles the class of the index.

Examples

Date indexes always have a "UTC" timezone
x <- xts(1, Sys.Date())
tzone(x)
str(x)
print(x)

The default 'tzone' is blank -- your machine's local timezone,
determined by the 'TZ' environment variable.
x <- xts(1, Sys.time())
tzone(x)
str(x)

now set 'tzone' to different values
tzone(x) <- "UTC"
str(x)

tzone(x) <- "America/Chicago"
str(x)

y <- timeBasedSeq('2010-01-01/2010-01-03 12:00/H')
y <- xts(seq_along(y), y, tzone = "America/New_York")

Changing the tzone does not change the internal index values, but it
does change how the index is printed!
head(y)
head(.index(y))
tzone(y) <- "Europe/London"
head(y) # the index prints with hours, but
head(.index(y)) # the internal index is not changed!

60 window.xts

window.xts Extract time windows from an xts series

Description

Method for extracting time windows from xts objects.

Usage

S3 method for class 'xts'
window(x, index. = NULL, start = NULL, end = NULL, ...)

Arguments

x an object.

index. a user defined time index. This defaults to the xts index for the series via
.index(x). When supplied, this is typically a subset of the dates in the full
series.
The index. must be a set of dates that are convertible to POSIXct. If you want
fast lookups, then index. should be sorted and of class POSIXct.
If an unsorted index. is passed in, window will sort it.

start a start time. Extract xts rows where index. >= start. start may be any class
that is convertible to POSIXct such as a character variable in the format ‘YYYY-
MM-DD’.
If start is NULL then all index. dates are matched.

end an end time. Extract xts rows where index. <= end. end must be convertible
to POSIXct. If end is NULL then all index. dates are matched.

... currently not used.

Details

The point of having window in addition to the regular subset function is to have a fast way of
extracting time ranges from an xts series. In particular, this method will convert start and end to
POSIXct then do a binary lookup on the internal xts index to quickly return a range of matching
dates. With a user supplied index., a similarly fast invocation of findInterval is used so that
large sets of sorted dates can be retrieved quickly.

Value

The matching time window is extracted.

Author(s)

Corwin Joy

xts 61

See Also

subset.xts, findInterval, xts

Examples

xts example
x.date <- as.Date(paste(2003, rep(1:4, 4:1), seq(1,19,2), sep = "-"))
x <- xts(matrix(rnorm(20), ncol = 2), x.date)
x

window(x, start = "2003-02-01", end = "2003-03-01")
window(x, start = as.Date("2003-02-01"), end = as.Date("2003-03-01"))
window(x, index = x.date[1:6], start = as.Date("2003-02-01"))
window(x, index = x.date[c(4, 8, 10)])

Assign to subset
window(x, index = x.date[c(4, 8, 10)]) <- matrix(1:6, ncol = 2)
x

xts Create Or Test For An xts Time-Series Object

Description

Constructor function for creating an extensible time-series object.

xts is used to create an xts object from raw data inputs.

Usage

xts(x = NULL,
order.by = index(x),
frequency = NULL,
unique = TRUE,
tzone = Sys.getenv("TZ"),
...)

.xts(x = NULL,
index,
tclass = c("POSIXct", "POSIXt"),
tzone = Sys.getenv("TZ"),
check = TRUE,
unique = FALSE,
...)

is.xts(x)

62 xts

Arguments

x an object containing the time series data

order.by a corresponding vector of dates/times of a known time-based class. See Details.

index a corresponding numeric vector specified as seconds since the UNIX epoch
(1970-01-01 00:00:00.000)

frequency numeric indicating frequency of order.by. See Details.

unique check the index for unique timestamps?

check check that the index is ordered?

tclass time class to use for the index. See tclass.

tzone time zone of the index (ignored indices without a time component, e.g. Date,
yearmon, yearqtr). See tzone.

... additional attributes to be added. See Details.

Details

An xts object extends the S3 class zoo from the package of the same name.

The xts() constructor is the preferred way to create xts objects. It performs several checks to
ensure it returns a well-formed xts object. The .xts() constructor is mainly for internal use. It
is more efficient than the regular xts() constructor because it doesn’t perform as many validity
checks. Use it with caution.

Similar to zoo objects, xts objects must have an ordered index. While zoo indexes cannot contain
duplicate values, xts objects have optionally supported duplicate index elements since version 0.5-
0. The xts class has one additional requirement, the index must be a time-based class. Currently
supported classes include: ‘Date’, ‘POSIXct’, ‘timeDate’, as well as ‘yearmon’ and ‘yearqtr’ where
the index values remain unique.

The uniqueness requirement was relaxed in version 0.5-0, but is still enforced by default. Set-
ting unique = FALSE skips the uniqueness check and only ensures that the index is ordered via the
isOrdered function.

As of version 0.10-0, xts no longer allows missing values in the index. This is because many xts
functions expect all index values to be finite. The most important of these is merge.xts, which is
used ubiquitously. Missing values in the index are usually the result of a date-time conversion error
(e.g. incorrect format, non-existent time due to daylight saving time, etc). Because of how non-
finite numbers are represented, a missing timestamp will always be at the end of the index (except
if it is -Inf, which will be first).

Another difference from zoo is that xts object may carry additional attributes that may be desired in
individual time-series handling. This includes the ability to augment the objects data with meta-data
otherwise not cleanly attachable to a standard zoo object.

Examples of usage from finance may include the addition of data for keeping track of sources,
last-update times, financial instrument descriptions or details, etc.

The idea behind xts is to offer the user the ability to utilize a standard zoo object, while providing
an mechanism to customize the object’s meta-data, as well as create custom methods to handle the
object in a manner required by the user.

xts 63

Many xts-specific methods have been written to better handle the unique aspects of xts. These
include, ‘"["’, merge, cbind, rbind, c, Ops, lag, diff, coredata, head and tail. Additionally there are
xts specific methods for converting to/from R’s different time-series classes.

Subsetting via "[" methods offers the ability to specify dates by range, if they are enclosed in quotes.
The style borrows from python by creating ranges with a double colon “"::"” or “"/"” operator. Each
side of the operator may be left blank, which would then default to the beginning and end of the data,
respectively. To specify a subset of times, it is only required that the time specified be in standard
ISO format, with some form of separation between the elements. The time must be ‘left-filled’, that
is to specify a full year one needs only to provide the year, a month would require the full year and
the integer of the month requested - e.g. ’1999-01’. This format would extend all the way down to
seconds - e.g. ’1999-01-01 08:35:23’. Leading zeros are not necessary. See the examples for more
detail.

Users may also extend the xts class to new classes to allow for method overloading.

Additional benefits derive from the use of as.xts and reclass, which allow for lossless two-way
conversion between common R time-series classes and the xts object structure. See those functions
for more detail.

Value

An S3 object of class xts. As it inherits and extends the zoo class, all zoo methods remain valid.
Additional attributes may be assigned and extracted via xtsAttributes.

Note

Most users will benefit the most by using the as.xts and reclass functions to automagically
handle all data objects as one would handle a zoo object.

Author(s)

Jeffrey A. Ryan and Joshua M. Ulrich

References

zoo:

See Also

as.xts, index, tclass, tformat, tzone, xtsAttributes

Examples

data(sample_matrix)
sample.xts <- as.xts(sample_matrix, descr='my new xts object')

class(sample.xts)
str(sample.xts)

head(sample.xts) # attribute 'descr' hidden from view
attr(sample.xts,'descr')

64 xtsAPI

sample.xts['2007'] # all of 2007
sample.xts['2007-03/'] # March 2007 to the end of the data set
sample.xts['2007-03/2007'] # March 2007 to the end of 2007
sample.xts['/'] # the whole data set
sample.xts['/2007'] # the beginning of the data through 2007
sample.xts['2007-01-03'] # just the 3rd of January 2007

xtsAPI xts C API Documentation

Description

This help file is to help in development of xts, as well as provide some clarity and insight into its
purpose and implementation.

By Jeffrey A. Ryan, Dirk Eddelbuettel, and Joshua M. Ulrich Last modified: 2018-05-02 Version:
0.10-3 and above

At present the xts API has publicly available interfaces to the following functions (as defined in
xtsAPI.h):

Callable from other R packages:
SEXP xtsIsOrdered(SEXP x, SEXP increasing, SEXP strictly)
SEXP xtsNaCheck(SEXP x, SEXP check)
SEXP xtsTry(SEXP x)
SEXP xtsRbind(SEXP x, SEXP y, SEXP dup)
SEXP xtsCoredata(SEXP x)
SEXP xtsLag(SEXP x, SEXP k, SEXP pad)

Internal use functions:
SEXP isXts(SEXP x)
void copy_xtsAttributes(SEXP x, SEXP y)
void copy_xtsCoreAttributes(SEXP x, SEXP y)

Internal use macros:
xts_ATTRIB(x)
xts_COREATTRIB(x)
GET_xtsIndex(x)
SET_xtsIndex(x,value)
GET_xtsIndexFormat(x)
SET_xtsIndexFormat(x,value)
GET_xtsCLASS(x)
SET_xtsCLASS(x,value)

Internal use SYMBOLS:
xts_IndexSymbol
xts_ClassSymbol
xts_IndexFormatSymbol

xtsAttributes 65

Callable from R:
SEXP mergeXts(SEXP args)
SEXP rbindXts(SEXP args)
SEXP tryXts(SEXP x)

Author(s)

Jeffrey A. Ryan

Examples

Not run:
some example code to look at

file.show(system.file('api_example/README', package="xts"))
file.show(system.file('api_example/src/checkOrder.c', package="xts"))

End(Not run)

xtsAttributes Extract and Replace xts Attributes

Description

Extract and replace non-core xts attributes.

Usage

xtsAttributes(x, user=NULL)

xtsAttributes(x) <- value

Arguments

x an xts object

user logical; should user-defined attributes be returned? The default of NULL returns
all xts attributes.

value a list of new name=value attributes

Details

Since xts objects are S3 objects with special attributes, a method is necessary to properly assign
and view the user-added attributes.

A call to attributes from the base package will return all attributes, including those specific to
the xts class.

66 xtsInternals

Value

A named list of user settable attributes.

Author(s)

Jeffrey A. Ryan

See Also

attributes

Examples

x <- xts(matrix(1:(9*6),nc=6),
order.by=as.Date(13000,origin="1970-01-01")+1:9,
a1='my attribute')

xtsAttributes(x)
xtsAttributes(x) <- list(a2=2020)

xtsAttributes(x)
xtsAttributes(x) <- list(a1=NULL)
xtsAttributes(x)

xtsInternals Internal Documentation

Description

This help file is to help in development of xts, as well as provide some clarity and insight into its
purpose and implementation.

Last modified: 2008-08-06 by Jeffrey A. Ryan Version: 0.5-0 and above

The xts package xts designed as a drop-in replacement for the very popular zoo package. Most all
functionality of zoo has been extended or carries into the xts package.

Notable changes in direction include the use of time-based indexing, at first explicitely, now im-
plicitely.

An xts object consists of data in the form of a matrix, an index - ordered and increasing, either
numeric or integer, and additional attributes for use internally, or for end-user purposes.

The current implementation enforces two major rules on the object. One is that the index must be
coercible to numeric, by way of as.POSIXct. There are defined types that meet this criteria. See
timeBased for details.

The second requirement is that the object cannot have rownames. The motivation from this comes
in part from the work Matthew Doyle has done in his data.table class, in the package of the same
name. Rownames in R must be character vectors, and as such are inefficient in both storage and
conversion. By eliminating the rownames, and providing a numeric index of R internal type REAL or

[.xts 67

INTEGER, it is possible to maintain a connection to standard R date and time classes via the POSIXct
functions, while at at the same time maximizing efficiencies in data handling.

User level functions index, as well as conversion to other classes proceeds as if there were row-
names. The code for index automatically converts time to numeric in both extraction and replace-
ment functionality. This provides a level of abstraction to facilitate internal, and external package
use and inter-operability.

There is also new work on providing a C-level API to some of the xts functionality to facilitate
external package developers to utilize the fast utility routines such as subsetting and merges, without
having to call only from R. Obviously this places far more burden on the developer to not only
understand the internal xts implementation, but also to understand all of what is documented for
R-internals (and much that isn’t). At present the functions and macros available can be found in the
‘xts.h’ file in the src directory.

There is no current documentation for this API. The adventure starts here. Future documentation is
planned, not implemented.

Author(s)

Jeffrey A. Ryan

[.xts Extract Subsets of xts Objects

Description

Details on efficient subsetting of xts objects for maximum performance and compatibility.

Usage

S3 method for class 'xts'
x[i, j, drop = FALSE, which.i=FALSE, ...]

Arguments

x xts object

i the rows to extract. Numeric, timeBased or ISO-8601 style (see details)

j the columns to extract, numeric or by name

drop should dimension be dropped, if possible. See NOTE.

which.i return the ‘i’ values used for subsetting. No subset will be performed.

... additional arguments (unused)

68 [.xts

Details

One of the primary motivations, and key points of differentiation of the time series class xts, is the
ability to subset rows by specifying ISO-8601 compatible range strings. This allows for natural
range-based time queries without requiring prior knowledge of the underlying time object used in
construction.

When a raw character vector is used for the i subset argument, it is processed as if it was ISO-8601
compliant. This means that it is parsed from left to right, according to the following specification:

CCYYMMDD HH:MM:SS.ss+

A full description will be expanded from a left-specified truncated one.

Additionally, one may specify range-based queries by simply supplying two time descriptions seper-
ated by a forward slash:

CCYYMMDD HH:MM:SS.ss+/CCYYMMDD HH:MM:SS.ss

The algorithm to parse the above is .parseISO8601 from the xts package.

ISO-style subsetting, given a range type query, makes use of a custom binary search mechanism that
allows for very fast subsetting as no linear search though the index is required. ISO-style character
vectors may be longer than length one, allowing for multiple non-contiguous ranges to be selected
in one subsetting call.

If a character vector representing time is used in place of numeric values, ISO-style queries, or
timeBased objects, the above parsing will be carried out on each element of the i-vector. This
overhead can be very costly. If the character approach is used when no ISO range querying is
needed, it is recommended to wrap the ‘i’ character vector with the I() function call, to allow for
more efficient internal processing. Alternately converting character vectors to POSIXct objects will
provide the most performance efficiency.

As xts uses POSIXct time representations of all user-level index classes internally, the fastest time-
Based subsetting will always be from POSIXct objects, regardless of the tclass of the original
object. All non-POSIXct time classes are converted to character first to preserve consistent TZ
behavior.

Value

An extraction of the original xts object. If which.i is TRUE, the corresponding integer ‘i’ values
used to subset will be returned.

Note

By design, drop=FALSE in the default case. This preserves the basic underlying type of matrix
and the dim() to be non-NULL. This is different from both matrix and zoo behavior as R uses
drop=TRUE. Explicitly passing drop=TRUE may be required when performing certain matrix opera-
tions.

Author(s)

Jeffrey A. Ryan

[.xts 69

References

ISO 8601: Date elements and interchange formats - Information interchange - Representation of
dates and time https://www.iso.org

See Also

xts, .parseISO8601, .index

Examples

x <- xts(1:3, Sys.Date()+1:3)
xx <- cbind(x,x)

drop=FALSE for xts, differs from zoo and matrix
z <- as.zoo(xx)
z/z[,1]

m <- as.matrix(xx)
m/m[,1]

this will fail with non-conformable arrays (both retain dim)
tryCatch(

xx/x[,1],
error=function(e) print("need to set drop=TRUE")

)

correct way
xx/xx[,1,drop=TRUE]

or less efficiently
xx/drop(xx[,1])
likewise
xx/coredata(xx)[,1]

x <- xts(1:1000, as.Date("2000-01-01")+1:1000)
y <- xts(1:1000, as.POSIXct(format(as.Date("2000-01-01")+1:1000)))

x.subset <- index(x)[1:20]
x[x.subset] # by original index type
system.time(x[x.subset])
x[as.character(x.subset)] # by character string. Beware!
system.time(x[as.character(x.subset)]) # slow!
system.time(x[I(as.character(x.subset))]) # wrapped with I(), faster!

x['200001'] # January 2000
x['1999/2000'] # All of 2000 (note there is no need to use the exact start)
x['1999/200001'] # January 2000

x['2000/200005'] # 2000-01 to 2000-05
x['2000/2000-04-01'] # through April 01, 2000
y['2000/2000-04-01'] # through April 01, 2000 (using POSIXct series)

https://www.iso.org

70 [.xts

Time of day subsetting

i <- 0:60000
focal_date <- as.numeric(as.POSIXct("2018-02-01", tz = "UTC"))
x <- .xts(i, c(focal_date + i * 15), tz = "UTC", dimnames = list(NULL, "value"))

Select all observations between 9am and 15:59:59.99999:
w1 <- x["T09/T15"] # or x["T9/T15"]
head(w1)

timestring is of the form THH:MM:SS.ss/THH:MM:SS.ss

Select all observations between 13:00:00 and 13:59:59.9999 in two ways:
y1 <- x["T13/T13"]
head(y1)

x[.indexhour(x) == 13]

Select all observations between 9:30am and 30 seconds, and 4.10pm:
x["T09:30:30/T16:10"]

It is possible to subset time of day overnight.
e.g. This is useful for subsetting FX time series which trade 24 hours on week days

Select all observations between 23:50 and 00:15 the following day, in the xts time zone
z <- x["T23:50/T00:14"]
z["2018-02-10 12:00/"] # check the last day

Select all observations between 7pm and 8.30am the following day:
z2 <- x["T19:00/T08:29:59"]
head(z2); tail(z2)

Index

∗ chron
align.time, 10
diff.xts, 20

∗ datasets
sample_matrix, 48

∗ manip
align.time, 10
as.environment.xts, 12
diff.xts, 20
merge.xts, 33

∗ misc
align.time, 10
dimnames.xts, 21
isOrdered, 30
na.locf.xts, 35

∗ package
xts-package, 3

∗ print
print.xts, 46

∗ ts
align.time, 10
index.xts, 27
make.index.unique, 32
tclass, 50
tformat, 52
tzone, 58
window.xts, 60

∗ utilities
.parseISO8601, 3
[.xts, 67
apply.monthly, 11
as.xts, 13
as.xts.methods, 15
axTicksByTime, 17
CLASS, 18
coredata.xts, 19
endpoints, 23
first, 24
firstof, 26

index.xts, 27
merge.xts, 33
ndays, 36
period.apply, 37
period.max, 38
period.min, 39
period.prod, 40
period.sum, 41
periodicity, 42
rbind.xts, 47
split.xts, 49
tclass, 50
tformat, 52
timeBased, 53
timeBasedSeq, 54
to.period, 55
tzone, 58
xts, 61
xtsAPI, 64
xtsAttributes, 65
xtsInternals, 66

.dimnames.xts (xtsInternals), 66

.index, 69

.index (index.xts), 27

.index<- (index.xts), 27

.indexDate (index.xts), 27

.indexday (index.xts), 27

.indexhour (index.xts), 27

.indexisdst (index.xts), 27

.indexmday (index.xts), 27

.indexmin (index.xts), 27

.indexmon (index.xts), 27

.indexsec (index.xts), 27

.indexwday (index.xts), 27

.indexweek (index.xts), 27

.indexyday (index.xts), 27

.indexyear (index.xts), 27

.indexymon (index.xts), 27

.makeISO8601 (.parseISO8601), 3

71

72 INDEX

.parseISO8601, 3, 69

.subset.xts ([.xts), 67

.subset_xts ([.xts), 67

.xts (xts), 61
[.xts, 67

addEventLines, 5
addLegend, 6
addPanel, 7, 45
addPolygon, 8
addSeries, 9, 45
adj.time (align.time), 10
aggregate.zoo, 50
align.time, 10, 32
apply.daily (apply.monthly), 11
apply.monthly, 11, 38
apply.quarterly (apply.monthly), 11
apply.weekly (apply.monthly), 11
apply.yearly (apply.monthly), 11
as.environment.xts, 12
as.timeSeries.xts (as.xts.methods), 15
as.xts, 3, 13, 18, 63
as.xts.data.frame (as.xts.methods), 15
as.xts.matrix (as.xts.methods), 15
as.xts.methods, 14, 15
as.xts.timeSeries (as.xts.methods), 15
as.xts.ts (as.xts.methods), 15
as.xts.xts (as.xts.methods), 15
as.xts.zoo (as.xts.methods), 15
attributes, 66
axTicksByTime, 17, 45

c.xts (rbind.xts), 47
cbind.xts (merge.xts), 33
chron, 51
CLASS, 18
CLASS<- (CLASS), 18
convertIndex (index.xts), 27
coredata, 19, 46
coredata.xts, 19

Date, 51
diff.xts, 20
difftime, 43
dimnames.xts, 21
dimnames.xts<- (xtsInternals), 66
dimnames<-.xts (dimnames.xts), 21

endpoints, 12, 18, 23, 37–42, 50

findInterval, 61
first, 24
firstof, 26

index, 51, 53, 59, 63
index.xts, 27
index<-.xts (index.xts), 27
indexClass (tclass), 50
indexClass<- (tclass), 50
indexFormat (tformat), 52
indexFormat<- (tformat), 52
indexTZ (tzone), 58
indexTZ<- (tzone), 58
is.index.unique (make.index.unique), 32
is.time.unique (make.index.unique), 32
is.timeBased (timeBased), 53
is.unsorted, 31
is.xts (xts), 61
ISO8601 (.parseISO8601), 3
ISOdatetime, 26
isOrdered, 30

lag.xts (diff.xts), 20
lagts.xts (diff.xts), 20
last (first), 24
lastof (firstof), 26
legend, 6
lines.xts (plot.xts), 43

make.index.unique, 32
make.time.unique (make.index.unique), 32
makeISO8601 (.parseISO8601), 3
merge.xts, 33, 48

na.locf.xts, 35
ndays, 36
nhours (ndays), 36
nminutes (ndays), 36
nmonths (ndays), 36
nquarters (ndays), 36
nseconds (ndays), 36
nweeks (ndays), 36
nyears (ndays), 36

OHLC (to.period), 55

par, 5, 7–9, 44, 45
parseISO8601 (.parseISO8601), 3
period.apply, 12, 37
period.max, 38, 40–42

INDEX 73

period.min, 39, 39, 41, 42
period.prod, 39, 40, 40, 42
period.sum, 39–41, 41
periodicity, 42
plot, 7, 9, 44
plot.xts, 43
points.xts (plot.xts), 43
POSIXct, 51, 58
POSIXlt, 28
POSIXt, 59
pretty, 44
print.xts, 46

rbind, 48
rbind.xts, 47
Reclass (as.xts), 13
reclass, 3, 18, 63
reclass (as.xts), 13

sample_matrix, 48
shift.time (align.time), 10
split.xts, 49
split.zoo, 50
strptime, 52
subset.xts, 61
subset.xts ([.xts), 67

tclass, 28, 29, 50, 52, 53, 59, 62, 63
tclass<- (tclass), 50
text, 5
tformat, 29, 51, 52, 59, 63
tformat<- (tformat), 52
timeBased, 53, 55
timeBasedRange (timeBasedSeq), 54
timeBasedSeq, 54
timeDate, 51
TimeZone (tzone), 58
to.daily (to.period), 55
to.hourly (to.period), 55
to.minutes (to.period), 55
to.minutes10 (to.period), 55
to.minutes15 (to.period), 55
to.minutes3 (to.period), 55
to.minutes30 (to.period), 55
to.minutes5 (to.period), 55
to.monthly, 12
to.monthly (to.period), 55
to.period, 10, 55
to.quarterly (to.period), 55

to.weekly (to.period), 55
to.yearly (to.period), 55
to_period (to.period), 55
try.xts (as.xts), 13
tzone, 28, 29, 51, 53, 58, 62, 63
tzone<- (tzone), 58

use.reclass (as.xts), 13
use.xts (as.xts), 13

window.xts, 60

xcoredata (coredata.xts), 19
xcoredata<- (coredata.xts), 19
xts, 3, 14, 16, 22, 44, 55, 61, 61, 69
xts-package, 3
xtsAPI, 64
xtsAttributes, 19, 63, 65
xtsAttributes<- (xtsAttributes), 65
xtsible (as.xts), 13
xtsInternals, 66

yearmon, 51
yearqtr, 51

zoo, 3, 15, 16

	xts-package
	.parseISO8601
	addEventLines
	addLegend
	addPanel
	addPolygon
	addSeries
	align.time
	apply.monthly
	as.environment.xts
	as.xts
	as.xts.methods
	axTicksByTime
	CLASS
	coredata.xts
	diff.xts
	dimnames.xts
	endpoints
	first
	firstof
	index.xts
	isOrdered
	make.index.unique
	merge.xts
	na.locf.xts
	ndays
	period.apply
	period.max
	period.min
	period.prod
	period.sum
	periodicity
	plot.xts
	print.xts
	rbind.xts
	sample_matrix
	split.xts
	tclass
	tformat
	timeBased
	timeBasedSeq
	to.period
	tzone
	window.xts
	xts
	xtsAPI
	xtsAttributes
	xtsInternals
	[.xts
	Index

