## ----include=FALSE------------------------------------------------------------ knitr::opts_chunk$set( comment = "#>", collapse = TRUE, echo = TRUE, message = FALSE, knitr.table.format = "html" ) options( vlkr.fig.settings=list( html = list( dpi = 96, scale = 1, width = 910, pxperline = 12 ) ) ) ## ----warning=FALSE------------------------------------------------------------ # Load the package library(volker) # Set the basic plot theme theme_set(theme_vlkr()) # Load an example dataset ds from the package ds <- volker::chatgpt ## ----------------------------------------------------------------------------- # A single variable tab_counts(ds, use_private) ## ----------------------------------------------------------------------------- # A list of variables tab_counts(ds, c(use_private, use_work)) ## ----------------------------------------------------------------------------- # Variables matched by a pattern tab_counts(ds, starts_with("use_")) ## ----------------------------------------------------------------------------- # One metric variable tab_metrics(ds, sd_age) ## ----------------------------------------------------------------------------- # Multiple metric items tab_metrics(ds, starts_with("cg_adoption_")) ## ----------------------------------------------------------------------------- tab_counts(ds, adopter, sd_gender) ## ----------------------------------------------------------------------------- # Compare the means of one grouping variable (including the confidence interval) tab_metrics(ds, sd_age, sd_gender, ci = TRUE) ## ----------------------------------------------------------------------------- # Correlate two metric variables tab_metrics(ds, sd_age, use_work, metric = TRUE, ci = TRUE) ## ----------------------------------------------------------------------------- ds |> filter(sd_gender != "diverse") |> plot_counts(adopter, sd_gender, prop="rows", numbers=c("p","n")) ## ----------------------------------------------------------------------------- ds |> filter(sd_gender != "diverse") |> effect_counts(adopter, sd_gender) ## ----------------------------------------------------------------------------- ds %>% filter(sd_gender != "diverse") %>% report_metrics(starts_with("cg_adoption_"), sd_gender, box=TRUE, ci=TRUE) ## ----------------------------------------------------------------------------- #> ### Adoption types #> #> ```{r echo=FALSE} #> ds %>% #> filter(sd_gender != "diverse") %>% #> report_counts(adopter, sd_gender, prop="rows", title=FALSE, close=FALSE, box=TRUE, ci=TRUE) #> ``` #> #> ##### Method #> Basis: Only male and female respondents. #> #> #### {-} ## ----echo=FALSE--------------------------------------------------------------- ds %>% filter(sd_gender != "diverse") %>% report_counts(adopter, sd_gender, prop="rows", title=FALSE, close=FALSE, box=TRUE, ci=TRUE) ## ----------------------------------------------------------------------------- theme_set(theme_vlkr( base_fill = c("#F0983A","#3ABEF0","#95EF39","#E35FF5","#7A9B59"), base_gradient = c("#FAE2C4","#F0983A") )) ## ----------------------------------------------------------------------------- codebook(ds) ## ----------------------------------------------------------------------------- ds %>% labs_apply( items = list( "cg_adoption_advantage_01" = "Allgemeine Vorteile", "cg_adoption_advantage_02" = "Finanzielle Vorteile", "cg_adoption_advantage_03" = "Vorteile bei der Arbeit", "cg_adoption_advantage_04" = "Macht mehr Spaß" ) ) %>% tab_metrics(starts_with("cg_adoption_advantage_")) ## ----------------------------------------------------------------------------- ds %>% labs_apply( cols=starts_with("cg_adoption"), values = list( "1" = "Stimme überhaupt nicht zu", "2" = "Stimme nicht zu", "3" = "Unentschieden", "4" = "Stimme zu", "5" = "Stimme voll und ganz zu" ) ) %>% plot_metrics(starts_with("cg_adoption")) ## ----eval = FALSE------------------------------------------------------------- # # library(readxl) # library(writexl) # # # Save codebook to a file # codes <- codebook(ds) # write_xlsx(codes,"codebook.xlsx") # # # Load and apply a codebook from a file # codes <- read_xlsx("codebook_revised.xlsx") # ds <- labs_apply(ds, codebook) # ## ----------------------------------------------------------------------------- ds %>% labs_store() %>% mutate(sd_age = 2024 - sd_age) %>% labs_restore() %>% tab_metrics(sd_age) ## ----------------------------------------------------------------------------- ds %>% add_index(starts_with("cg_adoption_")) %>% tab_metrics(idx_cg_adoption) ## ----------------------------------------------------------------------------- ds %>% add_index(starts_with("cg_adoption_")) %>% tab_metrics(idx_cg_adoption, adopter) ## ----------------------------------------------------------------------------- ds %>% add_index(starts_with("cg_adoption_")) %>% add_index(starts_with("cg_adoption_advantage")) %>% add_index(starts_with("cg_adoption_fearofuse")) %>% add_index(starts_with("cg_adoption_social")) %>% tab_metrics(starts_with("idx_cg_adoption")) ## ----------------------------------------------------------------------------- ds |> report_metrics(starts_with("cg_adoption"), factors = TRUE, clusters = TRUE) ## ----------------------------------------------------------------------------- ds |> add_factors(starts_with("cg_adoption"), k = 3) |> report_metrics(fct_cg_adoption_1, fct_cg_adoption_2, metric = TRUE) ## ----------------------------------------------------------------------------- ds |> add_factors(starts_with("cg_adoption"), k = NULL) |> factor_tab(starts_with("fct_cg_adoption")) ## ----------------------------------------------------------------------------- ds |> add_clusters(starts_with("cg_adoption"), k = 3) |> report_counts(sd_gender, cls_cg_adoption, prop = "cols")