## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( echo = TRUE, eval = TRUE, collapse = TRUE, comment = "#>", fig.width = 8, fig.height = 5, out.width = "100%" ) ## ----setup-------------------------------------------------------------------- library(visStatistics) ## ----install-github, eval = FALSE--------------------------------------------- # install_github("shhschilling/visStatistics") ## ----load, eval = FALSE------------------------------------------------------- # library(visStatistics) ## ----fig-decision-switch, echo=FALSE, results='asis'-------------------------- if (knitr::opts_knit$get("rmarkdown.pandoc.to") == "html") { cat('
Decision tree used to select the appropriate statistical test.

Decision tree used to select the appropriate statistical test for a categorical predictor and numeric response, based on the number of factor levels, normality, and homoscedasticity.

') } else { cat(' \\begin{center} \\fbox{% \\begin{minipage}{0.95\\linewidth} \\centering \\includegraphics[width=\\linewidth]{../man/figures/decision_tree.png}\\\\ \\vspace{0.5em} \\textit{Decision tree used to select the appropriate statistical test for a categorical predictor and numeric response, based on the number of factor levels, normality, and homoscedasticity.} \\end{minipage} } \\end{center} ') } ## ----------------------------------------------------------------------------- mtcars$am <- as.factor(mtcars$am) t_test_statistics <- visstat(mtcars$am, mtcars$mpg) ## ----------------------------------------------------------------------------- mtcars$am <- as.factor(mtcars$am) t_test_statistics_99 <- visstat(mtcars$am, mtcars$mpg, conf.level = 0.99) ## ----------------------------------------------------------------------------- grades_gender <- data.frame( sex = as.factor(c(rep("girl", 21), rep("boy", 23))), grade = c( 19.3, 18.1, 15.2, 18.3, 7.9, 6.2, 19.4, 20.3, 9.3, 11.3, 18.2, 17.5, 10.2, 20.1, 13.3, 17.2, 15.1, 16.2, 17.0, 16.5, 5.1, 15.3, 17.1, 14.8, 15.4, 14.4, 7.5, 15.5, 6.0, 17.4, 7.3, 14.3, 13.5, 8.0, 19.5, 13.4, 17.9, 17.7, 16.4, 15.6, 17.3, 19.9, 4.4, 2.1 ) ) wilcoxon_statistics <- visstat(grades_gender$sex, grades_gender$grade) ## ----------------------------------------------------------------------------- oneway_npk <- visstat(npk$block,npk$yield,conf.level=0.90) ## ----------------------------------------------------------------------------- insect_sprays_tr <- InsectSprays insect_sprays_tr$count_sqrt <- sqrt(InsectSprays$count) test_statistic_anova=visstat(insect_sprays_tr$spray, insect_sprays_tr$count_sqrt) # test_statistic_anova ## ----------------------------------------------------------------------------- visstat(iris$Species, iris$Petal.Width) ## ----------------------------------------------------------------------------- linreg_cars <- visstat(cars$speed, cars$dist) ## ----------------------------------------------------------------------------- linreg_cars <- visstat(cars$speed,cars$dist, conf.level = 0.99) ## ----------------------------------------------------------------------------- linreg_trees <- visstat(trees$Girth, trees$Volume,conf.level = 0.9) ## ----------------------------------------------------------------------------- linreg_cars <- visstat(trees$Girth, trees$Volume, conf.level = 0.9) ## ----------------------------------------------------------------------------- HairEyeColourDataFrame <- counts_to_cases(as.data.frame(HairEyeColor)) ## ----------------------------------------------------------------------------- hair_eye_colour_df <- counts_to_cases(as.data.frame(HairEyeColor)) visstat(hair_eye_colour_df$Eye, hair_eye_colour_df$Hair) ## ----------------------------------------------------------------------------- hair_black_brown_eyes_brown_blue <- HairEyeColor[1:2, 1:2, ] # Transform to data frame hair_black_brown_eyes_brown_blue_df <- counts_to_cases(as.data.frame(hair_black_brown_eyes_brown_blue)) # Chi-squared test visstat(hair_black_brown_eyes_brown_blue_df$Eye, hair_black_brown_eyes_brown_blue_df$Hair) ## ----------------------------------------------------------------------------- hair_eye_colour_male <- HairEyeColor[, , 1] # Slice out a 2 by 2 contingency table black_brown_hazel_green_male <- hair_eye_colour_male[1:2, 3:4] # Transform to data frame black_brown_hazel_green_male <- counts_to_cases(as.data.frame(black_brown_hazel_green_male)) # Fisher test fisher_stats <- visstat(black_brown_hazel_green_male$Eye, black_brown_hazel_green_male$Hair) ## ----------------------------------------------------------------------------- #Graphical output written to plotDirectory: In this example # a bar chart to visualise the Chi-squared test and mosaic plot showing # Pearson's residuals. #chi_squared_or_fisher_Hair_Eye.png and mosaic_complete_Hair_Eye.png visstat(black_brown_hazel_green_male, "Hair", "Eye", graphicsoutput = "png", plotDirectory = tempdir()) ## ----eval=FALSE--------------------------------------------------------------- # file.remove(file.path(tempdir(), "chi_squared_or_fisher_Hair_Eye.png")) # file.remove(file.path(tempdir(), "mosaic_complete_Hair_Eye.png"))