
Package ‘tsdecomp’
October 14, 2022

Version 0.2

Date 2017-01-03

Title Decomposition of Time Series Data

Description ARIMA-model-based decomposition of quarterly and
monthly time series data.
The methodology is developed and described, among others, in
Burman (1980) <DOI:10.2307/2982132> and
Hillmer and Tiao (1982) <DOI:10.2307/2287770>.

Author Javier López-de-Lacalle <javlacalle@yahoo.es>

Maintainer Javier López-de-Lacalle <javlacalle@yahoo.es>

Depends R (>= 3.0.0)

NeedsCompilation no

Encoding UTF-8

License GPL-2

URL https://jalobe.com

Repository CRAN

Date/Publication 2017-01-04 10:56:16

R topics documented:
tsdecomp-package . 2
acgf2poly . 3
acov2ma . 6
ARIMAdec . 7
ARMAacov . 9
canonical.decomposition . 10
compare.acf . 11
filtering . 13
partial.fraction . 14
plot.tsdecFilter . 15
polyeval . 16
pseudo.spectrum . 18
roots.allocation . 19

1

https://doi.org/10.2307/2982132
https://doi.org/10.2307/2287770
https://jalobe.com

2 tsdecomp-package

Index 21

tsdecomp-package ARIMA-Model-Based Decomposition of Time Series Data

Description

ARIMA-model-based decomposition of a time series.

Details

The methods implemented in the package are developed and described (among others) in the refer-
ences given below. The package is mainly intended for annual, quarterly and monthly time series.
The bottom line of the procedure can be summarized as follows. An ARIMA model is fitted to
the observed series. Then the pseudo-spectrum of the model is computed and decomposed into
partial fractions. This gives ARIMA models for the unobserved components (e.g., trend, seasonal
and irregular), which are then used to obtain the weights of double-sided linear filters upon which
estimates of the components are obtained.

For practical purposes, the main function provided in the package is ARIMAdec. This function
relies on other procedures that implement different stages of the procedure: roots.allocation,
pseudo.spectrum, partial.fraction, canonical.decomposition, filtering.

An introduction to the methodology and the package in the form of a vignette is available here:

https://www.jalobe.com/doc/tsdecomp.pdf

Author(s)

Javier López-de-Lacalle <javlacalle@yahoo.es>

https://jalobe.com

References

Box, G. E. P., Hillmer, S. C. and Tiao, G. C. (1978) ‘Analysis and Modeling of Seasonal Time
Series’ in Seasonal Analysis of Economic Time Series, Editor Zellner, A. pp. 309-334. U.S. Dept.
of Commerce - Bureau of the Census. http://www.nber.org/chapters/c3904.pdf

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods, Second Edition.
Springer. doi: 10.1007/978-1-4419-0320-4

Burman, J. P. (1980) ‘Seasonal Adjustment by Signal Extraction’. Journal of the Royal Statistical
Society. Series A (General), 143(3), pp. 321-337. doi: 10.2307/2982132

Gómez, V. and Maravall, A. (2001) ‘Programs TRAMO and SEATS. Instructions for the User (Beta
Version: June 1997)’. Ministerio de Economía y Hacienda. Dirección General de Análisis y Pro-
gramación Presupuestaria, Working paper SGAPE-97001. http://www.bde.es/f/webbde/SES/
servicio/Programas_estadisticos_y_econometricos/Programas/ficheros/manualdos.pdf

Gómez, V. (2015) ‘SSMMATLAB: A Set of MATLAB Programs for the Statistical Analysis of
State Space Models’. Journal of Statistical Software, 66(1), pp. 1-37. doi: 10.18637/jss.v066.i09
http://www.sepg.pap.minhap.gob.es/sitios/sepg/en-GB/Presupuestos/Documentacion/
Paginas/SSMMATLAB.aspx

https://www.jalobe.com/doc/tsdecomp.pdf
https://jalobe.com
http://www.nber.org/chapters/c3904.pdf
http://doi.org/10.1007/978-1-4419-0320-4
http://doi.org/10.2307/2982132
http://www.bde.es/f/webbde/SES/servicio/Programas_estadisticos_y_econometricos/Programas/ficheros/manualdos.pdf
http://www.bde.es/f/webbde/SES/servicio/Programas_estadisticos_y_econometricos/Programas/ficheros/manualdos.pdf
http://doi.org/10.18637/jss.v066.i09
http://www.sepg.pap.minhap.gob.es/sitios/sepg/en-GB/Presupuestos/Documentacion/Paginas/SSMMATLAB.aspx
http://www.sepg.pap.minhap.gob.es/sitios/sepg/en-GB/Presupuestos/Documentacion/Paginas/SSMMATLAB.aspx

acgf2poly 3

Hillmer, S. C. and Tiao, G. C. (1982) ‘An ARIMA-Model-Based Approach to Seasonal Adjust-
ment’. Journal of the American Statistical Association, 77(377), pp. 63-70. doi: 10.1080/01621459.1982.10477767

Maravall, A. and Pierce, D. A. (1987) ‘A Prototypical Seasonal Adjustment Model’. Journal of
Time Series Analysis, 8(2), pp.177-193. doi: 10.1111/j.1467-9892.1987.tb00431.x

Planas, C. (1997) Applied Time Series Analysis: Modelling, Forecasting, Unobserved Components
Analysis and the Wiener-Kolmogorov Filter. Eurostat: Series E, Methods. https://bookshop.
europa.eu/en/applied-time-series-analysis-pbCA0897484/

Pollock, D. S. G. (1999) A Handbook of Time-Series Analysis Signal Processing and Dynamics.
Academic Press. doi: 10.1016/B978-012560990-6/50002-6

acgf2poly Change of Variable in the AutoCovariance Generating Function

Description

Change of variable in the autocovariance generating function (ACGF). This transformation allows
the pseudo-spectrum to be represented as a polynomial liable to be decomposed in partial fractions.

Usage

acgf2poly(x)
poly2acgf(x, type=c("roots2poly", "acov2ma"), tol = 1e-16, maxiter = 100,

init.tol=1e-05, init.maxiter=100)
S3 method for class 'tsdecMAroots'
print(x, units = c("radians", "degrees", "pi"), digits = 4, echo = TRUE, ...)

Arguments

x numeric vector of autocovariances; for poly2acgf, an object of class tsdecMAroots
returned by type="roots2poly"

type character string selecting the method to undo the transformation.

tol convergence tolerance to be used by acov2ma.

maxiter maximum number of iterations allowed in acov2ma.

init.tol convergence tolerance to be used by acov2ma.init.

init.maxiter maximum number of iterations allowed in acov2ma.init.

units character, the units in which the argument of the roots are printed. units="pi"
prints the argument in radians as multiples of π.

digits numeric, the number of significant digits to be used by print.

echo logical, if TRUE the output is printed, otherwise a invisible copy of the matrix
summarizing the results obtained by poly2acgf is returned.

... further arguments to be passed to print.

http://doi.org/10.1080/01621459.1982.10477767
http://doi.org/10.1111/j.1467-9892.1987.tb00431.x
https://bookshop.europa.eu/en/applied-time-series-analysis-pbCA0897484/
https://bookshop.europa.eu/en/applied-time-series-analysis-pbCA0897484/
http://doi.org/10.1016/B978-012560990-6/50002-6

4 acgf2poly

Details

The ACGF is defined as a power series where the coefficients are the autocovariances γτ :

γ(z) = γ0 + γ1(z + z−1) + γ2(z
2 + z−2) + γ3(z

3 + z−3) + · · ·

where z is a complex variable.

Replacing z by e−iω with ω ∈ [0, 2π] yields the spectral density multiplied by 2π. This gives a
power series in the variable 2 cos(ωj) (note that for z = e−iω , which has unit modulus, the inverse
1/z is the complex-conjugate of z):

zj + z−j = cos(ωj) + i sin(ωj) + cos(ωj)− i sin(ωj) = 2 cos(ωj) .

acgf2poly transforms the following expression in the variable 2 cos(ωj):

A(2 cos(jω)) = a0 + a12 cos(ω) + a22 cos(2ω) + · · ·+ an2 cos(nω)

into a polynomial in the variable x = 2 cos(ω):

B(x) = b0 + b1x+ b2x
2 + · · ·+ bnx

n .

poly2acgf recovers the vector of autocovariances by undoing the above transformation and com-
putes the coefficients and the variance of the innovations of the moving average model related to
those autocovariances. Two methods can be employed. 1) type="acov2ma": this method recovers
the autocovariances by undoing the change of variable; then, the the autocovariances are converted
to the coefficients of a moving average by means of acov2ma. In the presence of non-invertible
roots, this method may experience difficulties to converge.

2) type="roots2poly": this method does not explicitly undo the change of variable acgf2poly
(i.e., the vector of autocovariances is not recovered). Instead, the roots of the moving average
polynomial θ(L) are obtained from the polynomial θ(L)θ(L−1), where the coefficients are in terms
of the polynomial B(x) defined above; then, the coefficients of the moving average model are
computed by means of roots2poly.

Value

acgf2poly returns the transformed vector of coefficients.

poly2acgf returns an object of class tsdecMAroots containing the coefficients and the variance
of the innovations in the moving average model related to the autocovariances underlying the
transformed coefficients. print.tsdecMAroots prints a summary of the results computed by
poly2acgf.

Note

Method type="roots2poly" in poly2acgf is based on algorithm pu2ma in the software SSMMAT-
LAB by Gómez, V. URL http://www.sepg.pap.minhap.gob.es/sitios/sepg/en-GB/Presupuestos/
Documentacion/Paginas/SSMMATLAB.aspx.

http://www.sepg.pap.minhap.gob.es/sitios/sepg/en-GB/Presupuestos/Documentacion/Paginas/SSMMATLAB.aspx
http://www.sepg.pap.minhap.gob.es/sitios/sepg/en-GB/Presupuestos/Documentacion/Paginas/SSMMATLAB.aspx

acgf2poly 5

See Also

acov2ma, roots2poly.

Examples

the matrix 'm' performs the mapping from the original
to the transformed coefficients
n <- 30
m <- diag(1, n, n)
n2 <- n - 2
j <- -1
tmp <- seq.int(2, n-1)
for (i in seq.int(3, n-2, 2))
{

id <- cbind(seq_len(n2),seq.int(i,n))
m[id] <- j * tmp
n2 <- n2 - 2
j <- -1 * j
tmp <- cumsum(tmp[seq_len(n2)])

}
if (2*floor(n/2) == n) { # if (n %% 2 == 0)

m[cbind(seq_len(n2),seq.int(n-1,n))] <- j * tmp
} else

m[1,n] <- j * tmp
m[1:10,1:10]

equivalence of the original and transformed coefficients,
example with an ARMA(2,1) model
#
method 1: compute the spectral density upon the
the theoretical autocovariances ('gamma') of the ARMA model
gamma <- ARMAacov(ar=c(0.8,-0.6), ma=0.4, lag.max=n-1)
w <- seq(0, pi, len=length(gamma))
spec1 <- rep(gamma[1], length(w))
for (i in seq_along(w))
{

z <- 2*cos(w[i] * seq_len(length(gamma)-1))
spec1[i] <- spec1[i] + sum(gamma[seq.int(2, n)] * z)

}
spec1 <- spec1/(2*pi)
#plot(w, spec1)

method 2: compute the spectral density upon the
transformed coefficients
newcoefs <- m
spec2 <- rep(newcoefs[1], length(w))
for (i in seq_along(w))
{

x <- (2*cos(w[i]))^seq_len(n-1)
spec2[i] <- spec2[i] + sum(newcoefs[seq.int(2, n)] * x)

}
spec2 <- spec2/(2*pi)

6 acov2ma

both representations are equivalent
all.equal(spec1, spec2, check.names=FALSE)
#[1] TRUE

the original coefficients (the autocovariances)
can be recovered premultiplying by the inverse of the
transformation matrix 'm'
all.equal(c(solve(m) %*% newcoefs), gamma, check.names=FALSE)
#[1] TRUE

acov2ma Convert Autocovariances to Coefficients of a Moving Average

Description

Convert autocovariances to coefficients of a moving average.

Usage

acov2ma.init(x, tol = 0.00001, maxiter = 100)
acov2ma(x, tol = 1e-16, maxiter = 100, init = NULL)

Arguments

x a numeric vector containing the autocovariances.

tol numeric, convergence tolerance.

maxiter numeric, maximum number of iterations.

init numeric, vector of initial coefficients.

Details

acov2ma.init is based on procedure (17.35) described in Pollock (1999). acov2ma is the Newton-
Raphson procedure (17.39) described in the same reference.

Value

A list containing the vector of coefficients and the variance of the innovations in the moving average
model; convergence code and number of iterations.

References

Pollock, D. S. G. (1999) A Handbook of Time-Series Analysis Signal Processing and Dynamics.
Academic Press. Chapter 17. doi: 10.1016/B978-012560990-6/50002-6

http://doi.org/10.1016/B978-012560990-6/50002-6

ARIMAdec 7

Examples

set.seed(123)
x <- arima.sim(n=200, model=list(ma=c(0.7,-0.3)))
#sample autocovariances
a <- c(var(x), cov(x[-1], x[-200]), cov(x[-c(1,2)], x[-c(199,200)]))
#inferred coefficients and variance
acov2ma(a, init=acov2ma.init(a, maxit=10)$macoefs)
#compare with maximum-likelihood
arima(x, order=c(2,0,0), include.mean=FALSE)

ARIMAdec ARIMA-Model-Based Decomposition of Time Series

Description

This is the main function for the ARIMA-model-based decomposition of a time series.

Usage

ARIMAdec(x, mod, width = c(0.035, 0.035), min.modulus = 0.4,
extend = 16, drift = FALSE, optim.tol = 1e-04, ...)

S3 method for class 'ARIMAdec'
print(x, units = c("radians", "degrees", "pi"), digits = 4, ...)
S3 method for class 'ARIMAdec'
plot(x, ...)

Arguments

x for ARIMAdec, a univariate time series; for plot.ARIMAdec and print.ARIMAdec,
an object of class ARIMAdec returned by ARIMAdec.

mod an object of class Arima. See arima.
width numeric of length two, width of the interval of frequencies allocated to the trend

and the seasonal components (measured in radians). If a numeric of length
one is passed as argument, the same width is used for both components. See
roots.allocation.

min.modulus numeric, minimum modulus of the roots assigned to the trend component. See
roots.allocation.

extend integer; if greater than zero, the series is extended by means of forecasts and
backcasts based on the fitted model mod. See filtering.

drift logical, if TRUE the intercept in the fitted model mod or an external regressor
named "drift" is treated as a deterministic linear trend. See filtering.

optim.tol numeric, the convergence tolerance to be used by optimize.
units character, the units in which the argument of the roots are printed. units="pi"

prints the argument in radians as multiples of π.
digits numeric, the number of significant digits to be used by print.
... further arguments to be passed to poly2acgf or to plot.tsdecFilter and

print methods.

8 ARIMAdec

Details

This function is a wrapper to the sequence of calls to roots.allocation, pseudo.spectrum,
canonical.decomposition and filtering.

Value

An object of class ARIMAdec containing the following: 1) ar: the output from {roots.allocation},
2) spectrum: the output from {pseudo.spectrum}, 3) ma: the output from {canonical.decomposition},
4) xextended: the series extended with backcasts and forecasts (if extend > 0), 5) filters: the fil-
ters returned by {filtering}, 6) components: the estimated components returned by {filtering}.

References

Burman, J. P. (1980) ‘Seasonal Adjustment by Signal Extraction’. Journal of the Royal Statistical
Society. Series A (General), 143(3), pp. 321-337. doi: 10.2307/2982132

Hillmer, S. C. and Tiao, G. C. (1982) ‘An ARIMA-Model-Based Approach to Seasonal Adjust-
ment’. Journal of the American Statistical Association, 77(377), pp. 63-70. doi: 10.1080/01621459.1982.10477767

See Also

canonical.decomposition, filtering, pseudo.spectrum, roots.allocation.

Examples

Airlines model and monthly data
y <- log(AirPassengers)
fit <- arima(y, order=c(0,1,1), seasonal=list(order=c(0,1,1)))
dec <- ARIMAdec(y, fit, extend=72)
dec
plot(dec)

JohnsonJohnson quarterly data
y <- log(JohnsonJohnson)
fit <- arima(y, order=c(0,1,1), seasonal=list(order=c(0,1,1)))
dec <- ARIMAdec(y, fit, extend=16)
dec
plot(dec)

Nile annual data
this series is better modelled as a level shift at
observation 29 and a mean (no ARMA structure),
here the shift is ignored for illustration of the
decomposition of the fitted ARIMA(0,1,1) model
y <- Nile
fit <- arima(y, order=c(0,1,1))
dec <- ARIMAdec(y, fit, extend=72)
dec
plot(dec, overlap.trend=TRUE, args.trend=list(col="blue"))

http://doi.org/10.2307/2982132
http://doi.org/10.1080/01621459.1982.10477767

ARMAacov 9

ARMAacov Compute Theoretical Autocovariances of an ARMA Model

Description

Compute the theoretical autocovariances of an ARMA model.

Usage

ARMAacov(ar = numeric(0), ma = numeric(0), lag.max = max(p, q + 1),
sigma2 = 1)

Arguments

ar numeric vector of AR coefficients.

ma numeric vector of MA coefficients.

lag.max integer, maximum lag to be computed. The default is max(p, q+1), where p and
q are orders of the AR and MA terms, length(ar) and length(ma), respec-
tively.

sigma2 numeric, the variance of the innovations.

Value

A vector of autocovariances named by lag order.

Note

Based on ARMAacf.

References

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods, Second Edition.
Springer. doi: 10.1007/978-1-4419-0320-4

Pollock, D. S. G. (1999) A Handbook of Time-Series Analysis Signal Processing and Dynamics.
Academic Press. Chapter 17. doi: 10.1016/B978-012560990-6/50002-6

See Also

ARMAtoMA.

http://doi.org/10.1007/978-1-4419-0320-4
http://doi.org/10.1016/B978-012560990-6/50002-6

10 canonical.decomposition

Examples

Autocovariances of an ARMA(2,1)
method 1: using ARMAacov()
a1 <- ARMAacov(ar=c(0.8,-0.6), ma=0.4, lag.max=10)

method 2: upon the coefficients of the infinite MA representation
psi <- c(1, ARMAtoMA(ar=c(0.8,-0.6), ma=0.4, lag.max=50))
a2 <- c(sum(psi^2), rep(0, length(a1)-1))
for (i in seq_along(a2[-1]))

a2[i+1] <- sum(psi[seq_len(length(psi)-i)] * psi[-seq_len(i)])

for a high enough number of 'psi' coefficients
both methods are equivalent
all.equal(a1, a2, check.names=FALSE)
#[1] TRUE

canonical.decomposition

Canonical Decomposition

Description

Given the partial fraction decomposition of the pseudo-spectrum, the canonical decomposition al-
locates the variance of each component so that the variance of the irregular is maximised. Then, the
coefficients of the numerators in the pseudo-spectrum (relationship given in pseudo.spectrum) are
converted into the MA coefficients of the model for each component by means of acgf2poly.

Usage

canonical.decomposition(num.trend, den.trend,
num.trans, den.trans, num.seas, den.seas, quotient, optim.tol = 1e-04, ...)

S3 method for class 'tsdecCanDec'
print(x, units = c("radians", "degrees", "pi"), digits = 4, ...)

Arguments

num.trend numeric vector, the coefficients of the MA polynomial related to the trend com-
ponent in the relationship given in pseudo.spectrum.

den.trend numeric vector, the coefficients of the AR polynomial related to the trend com-
ponent in the relationship given in pseudo.spectrum.

num.trans numeric vector, the coefficients of the MA polynomial related to the transitory
component in the relationship given in pseudo.spectrum.

den.trans numeric vector, the coefficients of the AR polynomial related to the transitory
component in the relationship given in pseudo.spectrum.

num.seas numeric vector, the coefficients of the MA polynomial related to the seasonal
component in the relationship given in pseudo.spectrum.

compare.acf 11

den.seas numeric vector, the coefficients of the AR polynomial related to the seasonal
component in the relationship given in pseudo.spectrum.

quotient numeric vector, the quotient of the polynomial division of the polynomials in
the LHS of the relationship given in pseudo.spectrum. (Different from zero
only when the degree of the MA polynomial is equal or higher than the degree
of the AR polynomial in the fitted model).

optim.tol numeric, the convergence tolerance to be used by optimize.

units character, the units in which the argument of the roots are printed. units="pi"
prints the argument in radians as multiples of π.

x an object of class tsdecCanDec returned by canonical.decomposition.

digits numeric, the number of significant digits to be used by print.

... further arguments to be passed to poly2acgf or print.

Value

An object of class tsdecCanDec containing the MA coefficients of the ARIMA models obtained for
the unobserved components (e.g., trend, seasonal) and the variance of the corresponding disturbance
terms.

References

Burman, J. P. (1980) ‘Seasonal Adjustment by Signal Extraction’. Journal of the Royal Statistical
Society. Series A (General), 143(3), pp. 321-337. doi: 10.2307/2982132.

Hillmer, S. C. and Tiao, G. C. (1982) ‘An ARIMA-Model-Based Approach to Seasonal Adjust-
ment’. Journal of the American Statistical Association, 77(377), pp. 63-70. doi: 10.1080/01621459.1982.10477767.

See Also

acgf2poly, pseudo.spectrum, optimize.

compare.acf Compare ACF of Theoretical, Estimator and Empirical Component

Description

Compute the AutoCorrelation functions of the following elements: the theoretical ARMA model of
each component, the estimator for each component, the filtered or estimated components.

Usage

compare.acf(x, mod, lag.max = 12, ...)
S3 method for class 'tsdecAcf'
plot(x, component = c("trend", "transitory", "seasonal"), ci = 0.95,
ci.type = c("ma", "white"), ci.class = c("estimator", "theoretical", "empirical"),
plot = TRUE, ...)

http://doi.org/10.2307/2982132
http://doi.org/10.1080/01621459.1982.10477767

12 compare.acf

Arguments

x for compare.acf, an object of class ARIMAdec; for plot.tsdecAcf, an object
of class tsdecAcf returned by compare.acf.

mod the object of class Arima decomposed in x. See arima.

lag.max maximum lag at which to calculate the autocorrelations.

component a character, the label of the component for which the ACF is to be obtained.

ci coverage probability for confidence interval. If this is zero or negative, confi-
dence intervals are not computed

ci.type a character, the type of confidence interval. See details.

ci.class a character, the element that is taken as reference to computed the confidence
intervals. Ignored if ci.class='white'.

plot logical, if TRUE the ACF is plotted.

... further arguments to be passed to acf and plot.

Details

The ACF is obtained upon the stationary transformation of the models for the components and the
estimators; i.e., non-stationary roots (if any) are removed from the AR polynomials. The estimated
components are also transformed according to the polynomials xarpolys.nonstationary that
render the signals stationary.

Argument ci.type behaves similarly to the same argument in plot.acf. If ci.type = "white",
the confidence bands are fixed to tα/2/

√
(n), where n is the number of observations in the fitted

model model. If ci.type = "ma", confidence bands are obtained upon Bartlett’s approximations for
the standard deviations of the autocorrelations.

Value

compare.acf returns the ACF of the components, respectively for their theoretical ARMA model,
estimator and estimates.

plot.tsdecAcf displays a plot and returns a invisible copy of a matrix containing the confidence
intervals.

See Also

ARIMAdec.

Examples

Airlines model and monthly data
y <- log(AirPassengers)
fit <- arima(y, order=c(0,1,1), seasonal=list(order=c(0,1,1)))
dec <- ARIMAdec(y, fit, extend=72)
cacf <- compare.acf(x = dec, mod=fit, lag.max=24)
plot(cacf, component="seasonal")
unexpected discrepancy between the ACF of the estimator and the
ACF of the empirical signal

filtering 13

plot(cacf, component="trend")

Nile time series
y <- Nile
fit <- arima(y, order=c(0,1,1))
dec <- ARIMAdec(y, fit, extend=16)
cacf <- compare.acf(x = dec, mod=fit, lag.max=24)
plot(cacf, component="trend")

filtering Double-Sided Symmetric Linear Filter

Description

Double-sided symmetric linear filter.

Usage

filtering(x, mod,
trend = list(ar=1, ma=1, sigma2=NULL),
transitory = list(ar=1, ma=1, sigma2=NULL),
seasonal = list(ar=1, ma=1, sigma2=NULL),
irregular.sigma2 = NULL,
extend = 16, drift = FALSE)

dsfilter(x, w, mod, extend = 16)

Arguments

x a univariate time series.

mod an object of class Arima. See arima.

trend a list containing the coefficients and variance of the ARIMA model related to
the trend component.

transitory a list containing the coefficients and variance of the ARIMA model related to
the transitory component.

seasonal a list containing the coefficients and variance of the ARIMA model related to
the seasonal component.

irregular.sigma2

numeric, variance of the irregular component. If NULL, the estimate of the irreg-
ular component is not computed.

extend integer; if greater than zero, the series is extended by means of forecasts and
backcasts based on the fitted model mod.

drift logical, if TRUE the intercept in the fitted model mod or an external regressor
named "drift" is treated as a deterministic linear trend.

w a vector of filter coefficients (one side).

14 partial.fraction

Details

These functions perform the convolution of the time series and the double-sided symmetric filter.
They perform:

stats::filter(c(rep(0, n-1), x, rep(0, n-1)),

+ filter=c(rev(w[-1]), w), method="convolution", sides=1)

where n is length(x).

The design of the filter in the ARIMA-model-based decomposition procedure relies on the following
result. The minimum mean squared error estimator of the component is given by the ACGF of the
model:

θ(L)xt = φn(L)θs(L)at ,

where θ(L) is the MA of the model fitted to the observed data, θs(L) is the MA of the component
(signal) to be estimated and φn(L) is the product of the AR polynomials of the remaining com-
ponents. The estimate of the signal, ŝt, is obtained by means of a double-sided symmetrical filter
where the weights, w, are the theoretical autocovariances of the model above:

ŝt =

∞∑
i=−∞

wixt−i .

Value

filtering returns a list of class tsdecFilter containing the series extended with forecasts (if
extend > 0) (based on the ARMA model given as input), the weights of one side of the filter for
each component and the corresponding estimate of the components.

dsfilter returns the filtered time series.

See Also

ARIMAdec, filter.

partial.fraction Partial Fraction Decomposition

Description

Partial fraction decomposition of the pseudo-spectrum of a fitted ARIMA model.

Usage

partial.fraction(numerator, den.trend, den.transitory, den.seasonal)

plot.tsdecFilter 15

Arguments

numerator numeric vector containing the coefficients of the numerator of the ratio of poly-
nomials to be decomposed (numerator in the left-hand-side of the relationship
given in pseudo.spectrum).

den.trend numeric vector containing the coefficients of the denominator in the partial frac-
tion related to the trend component.

den.transitory numeric vector containing the coefficients of the denominator in the partial frac-
tion related to the transitory component.

den.seasonal numeric vector containing the coefficients of the denominator in the partial frac-
tion related to the seasonal component.

Value

A list containing the system of equations which is solved and the numerators of the partial fractions
related, respectively, to the trend, transitory and seasonal components.

See Also

pseudo.spectrum.

plot.tsdecFilter Plot Method for tsdecFilter Objects

Description

Plot the time series containing the components in a tsdecFilter object.

Usage

S3 method for class 'tsdecFilter'
plot(x, select = colnames(X),
overlap.trend = FALSE, args.trend = list(col = "black"),
set.pars = list(mar = c(0, 3, 0, 3), oma = c(4, 0, 2, 0), mfrow = c(nplot, 1)),
main = NULL, range.bars = TRUE, ...,
col.range = "light gray",
args.xlab = list(text = "time", side = 1, line = 2),
args.ylab = list(side = 3, adj = 0, line = -1),
xaxis.line = -0.5)

Arguments

x an object of class tsdecFilter returned by filtering.

select character vector with the labels of the series to be plot. Allowed values are
c("observed", "trend", "transitory", "seasonal", "sadj", "irregular").,

overlap.trend logical, if TRUE the trend component is plot over the observed data; otherwise,
the trend is plot separately.

16 polyeval

args.trend a list containing the arguments to be passed to lines. If overlap.trend=TRUE,
these options are used to plot the trend; otherwise, it is ignored.

set.pars settings for par(.) when setting up the plot.

main plot main title.

range.bars logical indicating if each plot should have a bar at its right side which are of
equal heights in user coordinates. The same as in plot.stl.

... further arguments passed to plot.

col.range colour to be used for the range bars, if plotted. Note this appears after ... and
so cannot be abbreviated.

args.xlab arguments to be passed to mtext when setting the title for the x axis.

args.ylab arguments to be passed to mtext when setting the title for the y axis.

xaxis.line the number of lines into the margin at which the x axis line will be drawn.

Details

This function is based on plot.stl.

See Also

filtering.

polyeval Polynomial Operations and Utilities

Description

Polynomial operations and utilities.

Usage

polystring(x, varchar = "x", brackets = FALSE, ndec = 2, emptychar = "")
polyeval(p, x)
polyprod(x, y, tol = 1.490116e-08)
polydiv(x, y)
roots2poly(x)

Arguments

x numeric vector containing the coefficients of the polynomial (in increasing order
and without gaps). For polyeval, this is the point at which the polynomial is to
be evaluated. For roots2poly, this is a numeric vector containing the roots of
the polynomial.

y numeric vector containing the coefficients of the polynomial (in increasing order
and without gaps).

polyeval 17

p numeric vector containing the coefficients of the polynomial (in increasing order
and without gaps).

varchar character string, the label to be printed representing the variable of the polyno-
mial, defaults to "x".

brackets logical, if TRUE the polynomial is printed within parentheses.

ndec integer, coefficients are rounded up to this number of decimals.

emptychar the character string to be printed if the polynomial is empty.

tol a numeric, tolerance below which coefficients are set to zero.

Details

polystring returns a string of a numeric vector in the format of a polynomial.

polyeval evaluates the polynomial defined in the vector of coefficients p at the point x.

polyprod performs polynomial multiplication.

polydiv performs polynomial division (returning the quotient and the remainder).

roots2poly computes the coefficients of a polynomial from its roots.

Note

polyprod is based on convolve; it is equivalent to convolve(x, rev(y), type="open").

roots2poly is based on poly.from.zeros() in package polynom.

See Also

polyroot.

Examples

print a fitted ARMA model
set.seed(123)
y <- arima.sim(n=120, model=list(ar=c(0.8, -0.3), ma=0.6))
fit <- arima(y, order=c(2,0,1), include.mean=FALSE)
cat(paste0(
polystring(c(1, -fit$model$phi), brackets=TRUE, ndec=3), "y_t = ",
polystring(c(1, fit$model$theta), brackets=TRUE, ndec=3), "e_t\n"))

convert roots to coefficients
p <- c(1, 0.8, -0.3)
cat(polystring(p))
r <- polyroot(p)
roots2poly(r)

https://CRAN.R-project.org/package=polynom

18 pseudo.spectrum

pseudo.spectrum Pseudo-Spectrum of an ARIMA Model

Description

Compute the polynomials in the numerators of a partial fraction decomposition of the pseudo-
spectrum in an ARIMA model. The polynomials are in terms of the variable 2 cosω, with ω ∈
[0, 2π].

Usage

pseudo.spectrum(mod, ar)
S3 method for class 'tsdecPSP'
print(x, ...)

Arguments

mod an object of class Arima, the fitted model.

ar an object of class tsdecARroots returned by roots.allocation.

x an object of class tsdecPSP returned by pseudo.spectrum.

... further arguments to be passed to print.

Details

The coefficients of the ARIMA models for each component (e.g., trend, seasonal) are obtained from
the following relationship.

σ2 θ(B)θ(F)

φ(B)φ(F)
= σ2

a

θT (B)θT (F)

φT (B)φT (F)
+ σ2

b

θS(B)θS(F)

φS(B)φS(F)
+ σ2

e ,

where B is the backshift operator and F = B−1 is the forward operator. Each term in the right-
hand-side is related to the ARIMA models of each one of the unobserved components.

pseudo.spectrum computes the symmetric polynomials of the type ϕ(B)ϕ(F) for the polynomi-
als in the left-hand-side LHS (based on the fitted model) and for the polynomials in the denomi-
nators of the right-hand-side RHS (based on the allocation of roots of the fitted AR polynomial,
roots.allocation). Then coefficients in the numerators of the RHS are obtained by means of
partial.fraction .To do so the terms in the RHS are multiplied by the denominator in the LHS;
then, the coefficients of the numerators in the RHS are obtained by equating the coefficients of the
same order on both sides of the relationship (the orders of the unknown polynomials are set to one
degree lower than those polynomials of the corresponding denominator).

Value

A list of class tsdecPSP containing: the quotient of the polynomial division (if the degree of the
numerator in the LHS is equal or higher than the degree of the denominator); the coefficients of
total polynomials (numerator and denominator in the LHS) and the denominators in the RHS.

roots.allocation 19

References

Burman, J. P. (1980) ‘Seasonal Adjustment by Signal Extraction’. Journal of the Royal Statistical
Society. Series A (General), 143(3), pp. 321-337. doi: 10.2307/2982132

Hillmer, S. C. and Tiao, G. C. (1982) ‘An ARIMA-Model-Based Approach to Seasonal Adjust-
ment’. Journal of the American Statistical Association, 77(377), pp. 63-70. doi: 10.1080/01621459.1982.10477767

See Also

arima, partial.fraction, roots.allocation.

roots.allocation Allocation of Autoregressive Roots

Description

Allocate the roots of the autoregressive polynomial from a fitted ARIMA model to trend, transitory
and seasonal components.

Usage

roots.allocation(x, width = c(0.035, 0.035), min.modulus = 0.4)
S3 method for class 'tsdecARroots'
plot(x, xlim, ylim, ...)
S3 method for class 'tsdecARroots'
print(x, units = c("radians", "degrees", "pi"), digits = 4, ...)

Arguments

x for roots.allocation, an object of class Arima (see arima); for print.tsdecARroots
and plot.tsdecARroots, an object of class tsdecARroots returned by type="roots.allocation".

width numeric of length two, width of the interval of frequencies allocated to the trend
and the seasonal components (measured in radians). If a numeric of length one
is passed as argument, the same width is used for both components.

min.modulus numeric, minimum modulus of the roots assigned to the trend component.

xlim optional numerics, lower and upper limits of the x-axis.

ylim optional numerics, lower and upper limits of the y-axis.

units character, the units in which the argument of the roots are printed. units="pi"
prints the argument in radians as multiples of π.

digits numeric, the number of significant digits to be used by print.

... further arguments to be passed to plot or print.

http://doi.org/10.2307/2982132
http://doi.org/10.1080/01621459.1982.10477767

20 roots.allocation

Details

The roots related to cycles with frequency within the range [0, width[1]] are allocated to the trend
or transitory component. In particular,if the modulus is below min.modulus, then they are are
allocated to the transitory component, otherwise to the trend.

The seasonal frequencies are defined as ωj = 2πj/S, for j = 1, ..., S−1, where S is the periodicity
of the data (e.g., S = 4 in quarterly data and S = 12 in monthly data). Roots related to cycles
of frequency within the range [ωj−seasonal.width, ωj+seasonal.width] are assigned to the
seasonal component.

Value

roots.allocation returns a list of class tsdecARroots. plot.tsdecARroots displays the roots
in the complex plane and print.tsdecARroots shows a summary.

Index

∗ hplot
plot.tsdecFilter, 15

∗ package, ts
tsdecomp-package, 2

∗ ts
acgf2poly, 3
acov2ma, 6
ARIMAdec, 7
ARMAacov, 9
canonical.decomposition, 10
compare.acf, 11
filtering, 13
partial.fraction, 14
plot.tsdecFilter, 15
polyeval, 16
pseudo.spectrum, 18
roots.allocation, 19

acf, 12
acgf2poly, 3, 10, 11
acov2ma, 3–5, 6
acov2ma.init, 3
arima, 7, 12, 13, 19
ARIMAdec, 2, 7, 12, 14
ARMAacf, 9
ARMAacov, 9
ARMAtoMA, 9

canonical.decomposition, 2, 8, 10
compare.acf, 11
convolve, 17

dsfilter (filtering), 13

filter, 14
filtering, 2, 7, 8, 13, 15, 16

invisible, 3, 12

lines, 16

mtext, 16

optimize, 7, 11

par, 16
partial.fraction, 2, 14, 18, 19
plot, 12, 16, 19
plot.acf, 12
plot.ARIMAdec (ARIMAdec), 7
plot.stl, 16
plot.tsdecAcf (compare.acf), 11
plot.tsdecARroots (roots.allocation), 19
plot.tsdecFilter, 7, 15
poly2acgf, 7, 11
poly2acgf (acgf2poly), 3
polydiv (polyeval), 16
polyeval, 16
polyprod (polyeval), 16
polyroot, 17
polystring (polyeval), 16
print, 3, 7, 11, 18, 19
print.ARIMAdec (ARIMAdec), 7
print.tsdecARroots (roots.allocation),

19
print.tsdecCanDec

(canonical.decomposition), 10
print.tsdecMAroots (acgf2poly), 3
print.tsdecPSP (pseudo.spectrum), 18
pseudo.spectrum, 2, 8, 10, 11, 15, 18

roots.allocation, 2, 7, 8, 18, 19, 19
roots2poly, 4, 5
roots2poly (polyeval), 16

tsdecomp (tsdecomp-package), 2
tsdecomp-package, 2

21

	tsdecomp-package
	acgf2poly
	acov2ma
	ARIMAdec
	ARMAacov
	canonical.decomposition
	compare.acf
	filtering
	partial.fraction
	plot.tsdecFilter
	polyeval
	pseudo.spectrum
	roots.allocation
	Index

