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Abstract

In many contexts, confidentiality constraints severely restrict access to unique and
valuable microdata. Synthetic data which mimic the original observed data and preserve
the relationships between variables but do not contain any disclosive records are one
possible solution to this problem. The synthpop package for R, introduced in this paper,
provides routines to generate synthetic versions of original data sets. We describe the
methodology and its consequences for the data characteristics. We illustrate the package
features using a survey data example.
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This introduction to the R package synthpop is a slightly amended version of Nowok B,
Raab GM, Dibben C (2016). synthpop: Bespoke Creation of Synthetic Data in R. Journal of

Statistical Software, 74(11), 1-26. doi:10.18637/jss.v074.i11. URL https://www.jstatsoft.

org/article/view/v074i11.

1. Introduction and background

1.1. Synthetic data for disclosure control

National statistical agencies and other institutions gather large amounts of information about
individuals and organisations. Such data can be used to understand population processes so
as to inform policy and planning. The cost of such data can be considerable, both for the
collectors and the subjects who provide their data. Because of confidentiality constraints and
guarantees issued to data subjects the full access to such data is often restricted to the staff
of the collection agencies. Traditionally, data collectors have used anonymisation along with
simple perturbation methods such as aggregation, recoding, record-swapping, suppression
of sensitive values or adding random noise to prevent the identification of data subjects.
Advances in computer technology have shown that such measures may not prevent disclosure
(Ohm 2010) and in addition they may compromise the conclusions one can draw from such
data (Elliot and Purdam 2007; Winkler 2007).

In response to these limitations there have been several initiatives, most of them centred
around the U.S. Census Bureau, to generate synthetic data which can be released to users
outside the setting where the original data are held. The basic idea of synthetic data is to
replace some or all of the observed values by sampling from appropriate probability distribu-
tions so that the essential statistical features of the original data are preserved. The approach
has been developed along similar lines to recent practical experience with multiple imputation

https://www.jstatsoft.org/article/view/v074i11
https://www.jstatsoft.org/article/view/v074i11
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methods although synthesis is not the same as imputation. Imputation replaces data which
are missing with modelled values and adjusts the inference for the additional uncertainty
due to this process. For synthesis, in the circumstances when some data are missing two
approaches are possible, one being to impute missing values prior to synthesis and the other
to synthesise the observed patterns of missing data without estimating the missing values.
In both cases all data to be synthesised are treated as known and they are used to create
the synthetic data which are then used for inference. The data collection agency generates
multiple synthetic data sets and inferences are obtained by combining the results of models
fitted to each of them. The formulae for the variance of estimates from synthetic data are
different from those used for imputed data.

The synthetic data methods were first proposed by Rubin (1993) and Little (1993) and have
been developed by Raghunathan, Reiter, and Rubin (2003), Reiter (2003) and Reiter and
Raghunathan (2007). They have been discussed and exemplified in a further series of pa-
pers (Abowd and Lane 2004; Abowd and Woodcock 2004; Reiter 2002, 2005a; Drechsler and
Reiter 2010; Kinney, Reiter, and Berger 2010; Kinney, Reiter, Reznek, Miranda, Jarmin,
and Abowd 2011). Non-parametric synthesising methods were introduced by Reiter (2005b)
who first suggested to use classification and regression trees (CART; Breiman, Friedman,
Olshen, and Stone 1984) to generate synthetic data. CART was then compared with more
powerful machine learning procedures such as random forests, bagging and support vector
machines (Caiola and Reiter 2010; Drechsler and Reiter 2011). The monograph by Drechsler
(2011) summarises some of the theoretical, practical and policy developments and provides
an excellent introduction to synthetic data for those new to the field.

The original aim of producing synthetic data has been to provide publicly available datasets
that can be used for inference in place of the actual data. However, such inferences will only be
valid if the model used to construct the synthetic data is the true mechanism that has gener-
ated the observed data, which is very difficult, if at all possible, to achieve. Our aim in writing
the synthpop package (Nowok, Raab, Snoke, and Dibben 2016) for R (R Core Team 2016) is a
more modest one of providing test data for users of confidential datasets. Note that currently
all values of variables chosen for synthesis are replaced but this will be relaxed in future ver-
sions of the package. These test data should resemble the actual data as closely as possible,
but would never be used in any final analyses. The users carry out exploratory analyses and
test models on the synthetic data, but they, or perhaps staff of the data collection agencies,
would use the code developed on the synthetic data to run their final analyses on the original
data. This approach recognises the limitations of synthetic data produced by these meth-
ods. It is interesting to note that a similar approach is currently being used for both of the
synthetic products made available by the U.S. Census Bureau (see https://www.census.

gov/ces/dataproducts/synlbd/ and http://www.census.gov/programs-surveys/sipp/

guidance/sipp-synthetic-beta-data-product.html), where results obtained from the syn-
thetic data are validated on the original data (“gold standard files").

1.2. Motivation for the development of synthpop

The England and Wales Longitudinal Study (ONS LS; Hattersley and Cresser 1995), the
Scottish Longitudinal Study (SLS; Boyle, Feijten, Feng, Hattersley, Huang, Nolan, and Raab
2012) and the Northern Ireland Longitudinal Study (NILS; O’Reilly, Rosato, Catney, John-
ston, and Brolly 2011) are rich micro-datasets linking samples from the national census in

https://www.census.gov/ces/dataproducts/synlbd/
https://www.census.gov/ces/dataproducts/synlbd/
http://www.census.gov/programs-surveys/sipp/guidance/sipp-synthetic-beta-data-product.html
http://www.census.gov/programs-surveys/sipp/guidance/sipp-synthetic-beta-data-product.html
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each country to administrative data (births, deaths, marriages, cancer registrations and other
sources) for individuals and their immediate families across several decades. Whilst unique
and valuable resources, the sensitive nature of the information they contain means that access
to the microdata is restricted to approved researchers and longitudinal study (LS) support
staff, who can only view and work with the data in safe settings controlled by the national
statistical agencies. Consequently, compared to other census data products such as the ag-
gregate statistics or samples of anonymised records, the three longitudinal studies (LSs) are
used by a small number of researchers, a situation which limits their potential impact. Given
that confidentiality constraints and legal restrictions mean that open access is not possible
with the original microdata, alternative options are needed to allow academics and other
users to carry out their research more freely. To address this the SYLLS (Synthetic Data
Estimation for UK Longitudinal Studies) project (see http://www.lscs.ac.uk/projects/

synthetic-data-estimation-for-uk-longitudinal-studies/) has been funded by the
Economic and Social Research Council to develop techniques to produce synthetic data which
mimics the observed data and preserves the relationships between variables and transitions
of individuals over time, but can be made available to accredited researchers to analyse on
their own computers. The synthpop package for R has been written as part of the SYLLS
project to allow LS support staff to produce synthetic data for users of the LSs, that are
tailored to the needs of each individual user. Hereinafter, we will use the term “synthesiser"
for someone like an LS support officer who is producing the synthetic data from the observed
data and hence has access to both. The term “analyst" will refer to someone like an LS user
who has no access to the observed data and will be using the synthetic data for exploratory
analyses. After the exploratory analysis the analyst will develop confirmatory models and
can send the code to a synthesiser to run the gold standard analyses. As well as providing
routines to generate the synthetic data the synthpop package contains routines that can be
used by the analyst to summarise synthetic data and fitted models from synthetic data and
those that can be used by the synthesiser to compare gold standard analyses with those from
the synthetic data.

Although primarily targeted to the data from the LSs, the synthpop package is written in a
form that makes it applicable to other confidential data where the resource of synthetic data
would be valuable. By providing a comprehensive and flexible framework with parametric and
non-parametric methods it fills a gap in tools for generating synthetic versions of original data
sets. The R package simPop (Meindl, Templ, Alfons, and Kowarik 2016) which is a successor
to the simPopulation package (Alfons, Kraft, Templ, and Filzmoser 2011; Alfons and Kraft
2013) implements model-based methods to simulate synthetic populations based on household
survey data and auxiliary information. The approach used concentrates on simulation of close-
to-reality population and is similar to microsimulation rather than multiple imputation. The
software IVEware for SAS (SAS Institute Inc. 2013) and its stand-alone version SRCware

(Raghunathan, Solenberger, and Van Hoewyk 2002; Survey Methodology Program 2011),
originally developed for multiple imputation, include the SYNTHESIZE module that allows to
produce synthetic data. IVEware uses conditionally specified parametric models with proper
imputation and these can be adjusted for clustered, weighted or stratified samples. All item
missing values are imputed when generating synthetic data sets. No analysis methods are
available in this software because only the formulae for imputation are available which are
not appropriate for synthetic data.

http://www.lscs.ac.uk/projects/synthetic-data-estimation-for-uk-longitudinal-studies/
http://www.lscs.ac.uk/projects/synthetic-data-estimation-for-uk-longitudinal-studies/
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1.3. Structure of this paper

The structure of this paper is as follows. The next section introduces the notation, terminology
and the main theoretical results needed for the simplest and, we expect, the most common
use of the package. More details of the theoretical results for the general case can be found in
Raab, Nowok, and Dibben (2016). Readers not interested in the theoretical details can now
proceed directly to Section 3 which presents the package and its basic functionality. Section 4
that follows provides some illustrative examples. The concluding Section 5 indicates directions
for future developments.

2. Overview of method

Observed data from a survey or a sample from a census or population register are available
to the synthesiser. They consist of a sample of n units consisting of (xobs, yobs) where xobs,
which may be null, is a matrix of data that can be released unchanged to the analyst and yobs

is an n × p matrix of p variables that require to be synthesised. We consider here the simple
case when the synthetic data sets (syntheses) will each have the same number of records as
the original data and the method of generating the synthetic sample (e.g., simple random
sampling or a complex sample design) matches that of the observed data. This condition
allows to make inferences from synthetic data generated from distributions with parameters
fitted to the observed data without sampling the parameters from their posterior distributions.
We refer to such synthesis as “simple synthesis". When synthetic data are generated from
distributions with parameters sampled from their posterior distributions we refer to this as
“proper synthesis".

2.1. Generating synthetic data

The observed data are assumed to be a sample from a population with parameters that can
be estimated by the synthesiser, specifically yobs is assumed to be a sample from f(Y |xobs, θ)
where θ is a vector of parameters. This could be a hypothetical infinite super-population or
a finite population which is large enough for finite population corrections to be ignored. The
synthesiser fits the data to the assumed distribution and obtains estimates of its parameters.
In most implementations of synthetic data generation, including synthpop, the joint distri-
bution is defined in terms of a series of conditional distributions. A column of yobs is selected
and the distribution of this variable, conditional on xobs is estimated. Then the next column
is selected and its distribution is estimated conditional on xobs and the column of yobs already
selected. The distribution of subsequent columns of yobs are estimated conditional on xobs

and all previous columns of yobs.

The generation of the synthetic data sets proceeds in parallel to the fitting of each conditional
distribution. Each column of the synthetic data is generated from the assumed distribution,
conditional on xobs, the fitted parameters of the conditional distribution (simple synthesis)
and the synthesised values of all the previous columns of yobs. Alternatively the synthetic
values can be generated from the posterior distribution of the parameters (proper synthesis).
In both cases, a total of m synthetic data sets are generated.



Beata Nowok, Gillian M Raab, Chris Dibben 5

2.2. Inference from the synthetic data

An analyst who wants to estimate a model from the synthetic data will fit the model to
each of the m synthetic data sets and obtain an estimate of its vector of parameters β from
each synthetic data set as (β̂1, · · · , β̂i, · · · , β̂m). If the model for the data is correct the m
estimates from the synthetic data will be centred around the estimate β̂ that would have
been obtained from the observed data. We are assuming that it is the goal of the analyst to
use the synthetic data to estimate β̂ and its variance-covariance matrix V

β̂
. If the method of

inference used to fit the model provides consistent estimates of the parameters and the same

is true for analyses of the synthetic data then the mean of m synthetic estimates,
¯̂
β =

∑
β̂i/m

provides a consistent estimate of β̂. Provided the observed and synthetic data are generated
by the common sampling scheme then V¯̂

β
=

∑
V

β̂i

/m will be a consistent estimate of V
β̂
.

The variance-covariance matrix of
¯̂
β, conditional on β̂ and V

β̂
, becomes V

β̂
/m which can be

estimated from V¯̂
β
/m. Thus the stochastic error in the mean of the synthetic estimates about

the values from the observed data can be reduced to a negligible quantity by increasing m.

It must be remembered, however that the consistency of
¯̂
β only applies when observed data

are a sample from the distribution used for synthesis. In practical applications differences
between the analyses on the observed data and those from the mean of the syntheses will
be found because the data do not conform to the model used for synthesis. Such differences
will not be reduced by increasing m. The synthesiser, with access to the observed data, can

estimate
¯̂
β − β̂ and compare it to its standard error in order to judge the extent that this

model mismatch affects the estimates.

Note that this result is different from the literature cited above which aims to use the results
of the synthetic data to make inference about the population from which the original gold
standard data have been generated. But our aim, in the simplest case we describe above, is
only to make inferences to the results that would have been obtained by the gold standard
analysis, with the expectation that the analyst will run final models on the observed data.
Also, unlike most of the literature above, in the simplest case we do not sample from the
predictive distribution of the parameters to create the synthetic data but an option to do so is
available in synthpop. This approach has been proposed recently by Reiter and Kinney (2012)
for partially synthetic data. The justification for this approach for completely synthesised data
is in Raab et al. (2016) along with the details of how the synthpop package can be used to
make inferences to the population.

3. The synthpop package in practice

3.1. Obtaining the software

The synthpop package is an add-on package to the statistical software R. It is freely avail-
able from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/

package=synthpop. It utilises the structure and some functions of the mice multiple impu-
tation package (Van Buuren and Groothuis-Oudshoorn 2011) but adopts and extends it for
the specific purpose of generating and analysing synthetic data.

http://CRAN.R-project.org/package=synthpop
http://CRAN.R-project.org/package=synthpop
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3.2. Basic functionality

The synthpop package aims to provide a user with an easy way of generating synthetic versions
of original observed data sets. Via the function syn() a synthetic data set is produced using
a single command. The only required argument is data which is a data frame or a matrix
containing the data to be synthesised. By default, a single synthetic data set is produced using
simple synthesis, i.e., without sampling from the posterior distribution of the parameters of
the synthesising models. Multiple data sets can be obtained by setting parameter m to a
desired number. Proper synthesis with synthetic data sampled from the posterior predictive
distribution of the observed data is conducted when argument proper is set to TRUE. Data
synthesis can be further customized with other optional parameters. Below, we only present
the salient features of the syn() function. See examples in Section 4 and the R documentation
for the function syn() for more details (command ?syn at the R console).

Choice of synthesising method

The synthesising models are defined by a parameter method which can be a single string or a
vector of strings. Providing a single method name assumes the same synthesising method for
each variable, unless a variable’s data type precludes it. Note that a variable to be synthesised
first that has no predictors is a special case and its synthetic values are by default generated
by random sampling with replacement from the original data ("sample" method). In general,
a user can choose between parametric and non-parametric methods. The latter are based on
classification and regression trees (CART) that can handle any type of data. By default
"cart" method is used for all variables that have predictors. It utilizes function rpart()

available in package rpart (Therneau, Atkinson, and Ripley 2015). An alternative imple-
mentation of the CART technique from package party (Hothorn, Hornik, and Zeileis 2006)
can be used by selecting "ctree" method. Setting the parameter method to "parametric"

assigns default parametric methods to variables to be synthesised based on their types. The
default parametric methods for numeric, binary, unordered factor and ordered factor data
type are specified in vector default.method which may be customised if desired. Alterna-
tively a method can be chosen out of the available methods for each variable separately. The
methods currently implemented are listed in Table 1. Their default settings can be modified
via additional parameters of the syn() function that have to be named using period-separated
method and parameter name (method.parameter). For instance, in order to set a minbucket

(minimum number of observations in any terminal node of a CART model) for a "cart" syn-
thesising method, cart.minbucket has to be specified. Those arguments are method-specific
and are used for all variables to be synthesised using that method. For variables to be left
unchanged an empty method ("") should be used. A new synthesising method can be easily
introduced by writing a function named syn.newmethod() and then specifying method pa-
rameter of syn() function as "newmethod".

Controlling the predictions

The synthetic values of the variables are generated sequentially from their conditional distri-
butions given variables already synthesised with parameters from the same distributions fitted
with the observed data. Next to choosing model types, a user may determine the order in
which variables should be synthesised (visit.sequence parameter) and also the set of vari-
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Method Description Data type

Non-parametric

ctree, cart Classification and regression trees Any
surv.ctree Classification and regression trees Duration

Parametric

norm Normal linear regression Numeric
normrank* Normal linear regression preserving Numeric

the marginal distribution
logreg* Logistic regression Binary
polyreg* Polytomous logistic regression Factor, > 2 levels
polr* Ordered polytomous logistic regression Ordered factor, > 2 levels
pmm Predictive mean matching Numeric

Other

sample Random sample from the observed data Any
passive Function of other synthesised data Any

Table 1: Built-in synthesising methods. * Indicates default parametric methods.

ables to include as predictors in the synthesising model (predictor.matrix parameter). As
mentioned above, the choice of explanatory variables is restricted by the synthesis sequence
and variables that are not synthesised yet cannot be used in prediction models. It is possible,
however, to include predictor variables in the synthesis that will not be synthesized themselves.

Handling data with missing or restricted values

The aim of producing a synthetic version of observed data here is to mimic their characteristics
in all possible ways, which may include missing and restricted values data. Values representing
missing data in categorical variables are treated as additional categories and reproducing them
is straightforward. Continuous variables with missing data are modelled in two steps. In the
first step, we synthesise an auxiliary binary variable specifying whether a value is missing
or not. Depending on the method specified by a user for the original variable a logit or
CART model is used for synthesis. If there are different types of missing values an auxiliary
categorical variable is created to reflect this and an appropriate model is used for synthesis
(a polytomous or CART model). In the second step, a synthesising model is fitted to the
non-missing values in the original variable and then used to generate synthetic values for the
non-missing category records in our auxiliary variable. The auxiliary variable and a variable
with non-missing values and zeros for remaining records are used instead of the original
variable for prediction of other variables. The missing data codes have to be specified by a
user in cont.na parameter of the syn() function if they differ from the R missing data code
NA. The cont.na argument has to be provided as a named list with names of its elements
corresponding to the variables names for which the missing data codes need to be specified.

Restricted values are those where the values for some cases are determined explicitly by those
of other variables. In such cases the rules and the corresponding values should be specified
using rules and rvalues parameters. They are supplied in the form of named lists in the
same manner as the missing data codes parameter. The variables used in rules have to be
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synthesised prior to the variable they refer to. In the synthesis process the restricted values
are assigned first and then only the records with unrestricted values are synthesised.

3.3. Additional functionality

Disclosure control

Completely synthesised data such as those generated by the syn() function with default
settings do not by definition include real units, so disclosure of a real person is acknowledged
to be unlikely. It has been confirmed by Elliot (2015) in his report on the disclosure risk
associated with the synthetic data produced using synthpop package. Nonetheless, there are
some options that are designed to further protect data and limit the perceived disclosure.
For the CART model ("ctree" or "cart" method), the final leaves to be sampled from may
include only a very small number of individuals, which elevates risk of replicating real persons.
To avoid this, a user can specify, for instance, a minimum size of a final node that a CART
model can produce. It can be done using the cart.minbucket and the ctree.minbucket

parameter for the "cart" and "ctree" methods respectively. However, the right balance
needs to be found between disclosure risk and synthetic data quality. For the "ctree", "cart",
"normrank" and "sample" methods there is also the risk of releasing real unusual values
for continuous variables and therefore use of a smoothing option is essential for protecting
confidentiality. If the smoothing parameter is set to "density" a Gaussian kernel density
smoothing is applied to the synthesised values.

There are also additional precautionary options built into the package, which can be applied
using sdc() function (sdc stands for statistical disclosure control). The function allows top
and bottom coding, adding labels to the synthetic data sets to make it clear that the data
are fake so no one mistakenly believes them to be real and removing from the synthetic data
set any unique cases with variable sequences that are identical to unique individuals in the
real dataset. The last tool reduces the chances of a person who is in the real data believing
that their actual data is in the synthetic data.

4. Illustrative examples

4.1. Data

The synthpop package includes a data frame SD2011 with individual microdata that will
be used for illustration. The data set is a subset of survey data collected in 2011 within
the Social Diagnosis project (Council for Social Monitoring 2011) which aims to investigate
objective and subjective quality of life in Poland. The complete data set is freely available
at http://www.diagnoza.com/index-en.html along with a detailed documentation. The
SD2011 subset contains 35 selected variables of various type for a sample of 5,000 individuals
aged 16 and over.

4.2. Simple example

To get access to synthpop functions and the SD2011 data set we need to load the package via

http://www.diagnoza.com/index-en.html
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Variable name Description Data type

sex Sex Binary
age Age Numeric
edu Highest educational qualification Factor, > 2 levels
marital Marital status Factor, > 2 levels
income Personal monthly net income Numeric
ls Overall life satisfaction Factor, > 2 levels
wkabint Plans to go abroad to work in the next two years Factor, > 2 levels

Table 2: Variables to be synthesised.

R> library("synthpop")

For our illustrative examples of the syn() function we use seven variables of various data
types which are listed in Table 2.

Although function syn() allows synthesis of a subset of variables (see Section 4.3), for ease of
presentation here we extract variables of interest from the SD2011 data set and store them in
a data frame called ods which stands for “observed data set". The structure of the ods data
can be investigated using the head() function which prints the first rows of a data frame.

R> vars <- c("sex", "age", "edu", "marital", "income", "ls", "wkabint")

R> ods <- SD2011[, vars]

R> head(ods)

sex age edu marital income ls wkabint

1 FEMALE 57 VOCATIONAL/GRAMMAR MARRIED 800 PLEASED NO

2 MALE 20 VOCATIONAL/GRAMMAR SINGLE 350 MOSTLY SATISFIED NO

3 FEMALE 18 VOCATIONAL/GRAMMAR SINGLE NA PLEASED NO

4 FEMALE 78 PRIMARY/NO EDUCATION WIDOWED 900 MIXED NO

5 FEMALE 54 VOCATIONAL/GRAMMAR MARRIED 1500 MOSTLY SATISFIED NO

6 MALE 20 SECONDARY SINGLE -8 PLEASED NO

To run a default synthesis only the data to be synthesised have to be provided as a function
argument. Here, an additional parameter seed is used to fix the pseudo random number
generator seed and make the results reproducible. To monitor the progress of the synthesising
process the function syn() prints to the console the current synthesis number and the name
of a variable that is being synthesised. This output can be suppressed by setting an argument
print.flag to FALSE.

R> my.seed <- 17914709

R> sds.default <- syn(ods, seed = my.seed)

The resulting object of class ‘synds’ called here sds.default, where sds stands for “syn-
thesised data set", is a list. The print method displays its selected components (see below).
An element syn contains a synthesised data set which can be accessed using a standard list
referencing (sds.default$syn).



10 synthpop: Synthetic Populations in R

R> sds.default

Call:

($call) syn(data = ods, seed = my.seed)

Number of synthesised data sets:

($m) 1

First rows of synthesised data set:

($syn)

sex age edu marital income ls

1 MALE 72 PRIMARY/NO EDUCATION MARRIED NA MOSTLY SATISFIED

2 MALE 82 PRIMARY/NO EDUCATION MARRIED 861 PLEASED

3 MALE 25 SECONDARY SINGLE 1050 MOSTLY DISSATISFIED

4 MALE 69 PRIMARY/NO EDUCATION MARRIED 960 MOSTLY SATISFIED

5 FEMALE 34 POST-SECONDARY OR HIGHER WIDOWED 1000 MIXED

6 FEMALE 79 SECONDARY MARRIED 1400 PLEASED

wkabint

1 NO

2 NO

3 NO

4 NO

5 NO

6 NO

...

Synthesising methods:

($method)

sex age edu marital income ls wkabint

"sample" "cart" "cart" "cart" "cart" "cart" "cart"

Order of synthesis:

($visit.sequence)

sex age edu marital income ls wkabint

1 2 3 4 5 6 7

Matrix of predictors:

($predictor.matrix)

sex age edu marital income ls wkabint

sex 0 0 0 0 0 0 0

age 1 0 0 0 0 0 0

edu 1 1 0 0 0 0 0

marital 1 1 1 0 0 0 0

income 1 1 1 1 0 0 0

ls 1 1 1 1 1 0 0

wkabint 1 1 1 1 1 1 0
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The remaining (undisplayed) list elements include other syn() function parameters used in
the synthesis. Their names can be listed via the names() function. For a complete description
see the syn() function help page (?syn).

R> names(sds.default)

[1] "call" "m" "syn"

[4] "method" "visit.sequence" "predictor.matrix"

[7] "smoothing" "event" "denom"

[10] "proper" "n" "k"

[13] "rules" "rvalues" "cont.na"

[16] "semicont" "drop.not.used" "drop.pred.only"

[19] "models" "seed" "var.lab"

[22] "val.lab" "obs.vars" "numtocat"

[25] "catgroups"

By default, all variables except for the first one in the visit sequence (visit.sequence) are
synthesised using the "cart" method. The first variable to be synthesised cannot have pre-
dictors that are to be synthesised later on and therefore a random sample (with replacement)
is drawn from its observed values. The default visit sequence reflects the order of variables
in the original data set - columns are synthesised from left to right.

The default predictor selection matrix (predictor.matrix) is defined by the visit sequence.
All variables that are earlier in the visit sequence are used as predictors. A value of 1 in a
predictor selection matrix means that the column variable is used as a predictor for the target
variable in the row. Since the order of variables is exactly the same as in the original data, for
the default visit sequence the default predictor selection matrix has values of 1 in the lower
triangle.

Synthesising data with default parametric methods is run with the methods listed below.
Values of the other syn() arguments remain the same as for the default synthesis.

R> sds.parametric <- syn(ods, method = "parametric", seed = my.seed)

R> sds.parametric$method

sex age edu marital income ls wkabint

"sample" "normrank" "polyreg" "polyreg" "normrank" "polyreg" "polyreg"

4.3. Extended example

To extend the simple example presented in Section 4.2 we change the order of synthesis,
synthesise only selected variables, customise selection of predictors, handle missing values in
a continuous variable and apply some rules that a variable has to follow.

Sequence and scope of synthesis

The default algorithm of synthesising variables in columns from left to right can be changed
via the visit.sequence argument. The vector visit.sequence should include indices of
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columns in an order desired by a user. Alternatively, names of variables can be used. If
we do not want to synthesise some variables we can exclude them from visit sequence. By
default those variables are not used to predict other variables but they are saved in the
synthesised data. In order to remove their original values from the resulting synthetic data
sets an argument drop.not.used has to be set to TRUE. To synthesize variables sex, age, ls,
marital and edu in this order we run the syn() function with the following specification

R> sds.selection <- syn(ods, visit.sequence = c(1, 2, 6, 4, 3),

+ seed = my.seed, drop.not.used = TRUE)

An appropriate prediction matrix is created automatically. To avoid having to alter other pa-
rameters when the visit sequence is changed and to ensure the synthetic data have the same
structure as the original ones, the variables in sds.selection$predictor.matrix are ar-
ranged in the same order as in the original data. The same applies to sds.selection$method

and synthesised data set sds.selection$syn. As noted above, if the parameter drop.not.used

is set to TRUE and there are variables that are not used in synthesis, they are not included
in the output. In this case the column indices in visit sequence, which align to the synthetic
data columns, may not be the same as in the original data.

R> sds.selection

Call:

($call) syn(data = ods, visit.sequence = c(1, 2, 6, 4, 3), drop.not.used = TRUE,

seed = my.seed)

Number of synthesised data sets:

($m) 1

First rows of synthesised data set:

($syn)

sex age edu marital ls

1 MALE 72 VOCATIONAL/GRAMMAR MARRIED PLEASED

2 MALE 82 SECONDARY MARRIED PLEASED

3 MALE 25 POST-SECONDARY OR HIGHER SINGLE PLEASED

4 MALE 69 PRIMARY/NO EDUCATION MARRIED MOSTLY SATISFIED

5 FEMALE 34 POST-SECONDARY OR HIGHER WIDOWED MOSTLY SATISFIED

6 FEMALE 79 PRIMARY/NO EDUCATION WIDOWED MIXED

...

Synthesising methods:

($method)

sex age edu marital ls

"sample" "cart" "cart" "cart" "cart"

Order of synthesis:

($visit.sequence)

sex age ls marital edu
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1 2 5 4 3

Matrix of predictors:

($predictor.matrix)

sex age edu marital ls

sex 0 0 0 0 0

age 1 0 0 0 0

edu 1 1 0 1 1

marital 1 1 0 0 1

ls 1 1 0 0 0

Note that a user-defined method vector (setting method for each variable separately) and a
specified predictor.matrix both have to include information for all variables present in the
original observed data set regardless of whether they are in visit.sequence or not. This
allows changes in visit.sequence without adjustments to other arguments. For variables
not to be synthesised but still to be used as predictors, which needs to be reflected in a
predictor.matrix, an empty method ("") should be set. By default the original observed
values of those variables are included in the synthesised data sets but it can be changed using
an argument drop.pred.only.

Selection of predictors

The most important rule when selecting predictors is that independent variables in a predic-
tion model have to be already synthesised. The only exception is when a variable is used only
as a predictor and is not going to be synthesised at all. Assume we want to synthesise all
variables except wkabint and:

• exclude life satisfaction (ls) from the predictors of marital status (marital);

• use monthly income (income) as a predictor of life satisfaction (ls), education (edu)
and marital status (marital) but do not synthesise income variable itself;

• use polytomous logistic regression (polyreg) to generate marital status (marital) in-
stead of a default ctree method.

In order to build an adequate predictor selection matrix, instead of doing it from scratch we
can define an initial visit.sequence and corresponding method vector and run syn() func-
tion with parameter drop.not.used set to FALSE (otherwise method and predictor.matrix

will miss information on wkabint), parameter m indicating number of synthesis set to zero
and other arguments left as defaults. Then we can adjust the predictor selection matrix used
in this synthesis and rerun the function with new parameters. The R code for this is given
below.

R> visit.sequence.ini <- c(1, 2, 5, 6, 4, 3)

R> method.ini <- c("sample", "ctree", "ctree", "polyreg", "", "ctree", "")

R> sds.ini <- syn(data = ods, visit.sequence = visit.sequence.ini,

+ method = method.ini, m = 0, drop.not.used = FALSE)

R> sds.ini$predictor.matrix
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sex age edu marital income ls wkabint

sex 0 0 0 0 0 0 0

age 1 0 0 0 0 0 0

edu 1 1 0 1 1 1 0

marital 1 1 0 0 1 1 0

income 0 0 0 0 0 0 0

ls 1 1 0 0 1 0 0

wkabint 0 0 0 0 0 0 0

R> predictor.matrix.corrected <- sds.ini$predictor.matrix

R> predictor.matrix.corrected["marital", "ls"] <- 0

R> predictor.matrix.corrected

sex age edu marital income ls wkabint

sex 0 0 0 0 0 0 0

age 1 0 0 0 0 0 0

edu 1 1 0 1 1 1 0

marital 1 1 0 0 1 0 0

income 0 0 0 0 0 0 0

ls 1 1 0 0 1 0 0

wkabint 0 0 0 0 0 0 0

R> sds.corrected <- syn(data = ods, visit.sequence = visit.sequence.ini,

+ method = method.ini, predictor.matrix = predictor.matrix.corrected,

+ seed = my.seed)

Handling missing values in continuous variables

Data can be missing for a number of reasons (e.g. refusal, inapplicability, lack of knowledge)
and multiple missing data codes are used to represent this variety. By default, numeric
missing data codes for a continuous variable are treated as non-missing values. This may
lead to erroneous synthetic values, especially when standard parametric models are used or
when synthetic values are smoothed to decrease disclosure risk. The problem refers not only
to the variable in question, but also to variables predicted from it. The parameter cont.na

of the syn() function allows to define missing-data codes for continuous variables in order
to model them separately (see Section 3.2). In our simple example a continuous variable
income has two types of missing values (NA and -8) and they should be provided in a list
element named "income". The following code shows the recommended settings for synthesis
of income variable, which includes smoothing and separate synthesis of missing values

R> sds.income <- syn(ods, cont.na = list(income = c(NA, -8)),

+ smoothing = list(income = "density"), seed = NA)

Rules for restricted values

To illustrate application of rules for restricted values consider marital status. According to
Polish law males have to be at least 18 to get married. Thus, in our synthesised data set
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all male individuals younger than 18 should have marital status SINGLE which is the case in
the observed data set. Running without rules gives incorrect results with some of the males
under 18 classified as MARRIED (see summary output table below).

R> M18.ods <- table(subset(ods,

+ age < 18 & sex == "MALE", marital))

R> M18.default <- table(subset(sds.default$syn,

+ age < 18 & sex == "MALE", marital))

R> M18.parametric <- table(subset(sds.parametric$syn,

+ age < 18 & sex == "MALE", marital))

R> cbind("Observed data" = M18.ods, CART = M18.default,

+ Parametric = M18.parametric)

Observed data CART Parametric

SINGLE 57 62 54

MARRIED 0 1 13

WIDOWED 0 0 0

DIVORCED 0 0 0

LEGALLY SEPARATED 0 0 0

DE FACTO SEPARATED 0 0 0

Application of a rule, as specified below using named lists, leads to the correct results

R> rules.marital <- list(marital = "age < 18 & sex == 'MALE'")

R> rvalues.marital <- list(marital = "SINGLE")

R> sds.rmarital <- syn(ods, rules = rules.marital,

+ rvalues = rvalues.marital, seed = my.seed)

R> sds.rmarital.param <- syn(ods, rules = rules.marital,

+ rvalues = rvalues.marital, method = "parametric", seed = my.seed)

A summary table can be produced using the following code

R> rM18.default <- table(subset(sds.rmarital$syn,

+ age < 18 & sex == "MALE", marital))

R> rM18.parametric <- table(subset(sds.rmarital.param$syn,

+ age < 18 & sex == "MALE", marital))

R> cbind("Observed data" = M18.ods, CART = rM18.default,

+ Parametric = rM18.parametric)

Observed data CART Parametric

SINGLE 57 64 68

MARRIED 0 0 0

WIDOWED 0 0 0

DIVORCED 0 0 0

LEGALLY SEPARATED 0 0 0

DE FACTO SEPARATED 0 0 0
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4.4. Synthetic data analysis

Ideally, if the models used for synthesis truly represents the process that generated the original
observed data, an analysis based on the synthesised data should lead to the same statistical
inferences as an analysis based on the actual data. For illustration we estimate here a simple
logistic regression model where our dependent variable is a probability of intention to work
abroad. We use the wkabint variable which specifies the intentions of work migration but we
adjust it to disregard the destination country group. Besides we recode the current missing
data code of variable income (-8) into the R missing data code NA.

R> ods$wkabint <- as.character(ods$wkabint)

R> ods$wkabint[ods$wkabint == "YES, TO EU COUNTRY" |

+ ods$wkabint == "YES, TO NON-EU COUNTRY"] <- "YES"

R> ods$wkabint <- factor(ods$wkabint)

R> ods$income[ods$income == -8] <- NA

We generate five synthetic data sets.

R> sds <- syn(ods, method = "ctree", m = 5, seed = my.seed)

Before running the models let us compare some descriptive statistics of the observed and
synthetic data sets. A very useful function in R for this purpose is summary(). When a
data frame is provided as an argument, here our original data set ods, it produces summary
statistics of each variable.

R> summary(ods)

sex age edu

MALE :2182 Min. :16.0 PRIMARY/NO EDUCATION : 962

FEMALE:2818 1st Qu.:32.0 VOCATIONAL/GRAMMAR :1613

Median :49.0 SECONDARY :1482

Mean :47.7 POST-SECONDARY OR HIGHER: 936

3rd Qu.:61.0 NA's : 7

Max. :97.0

marital income ls

SINGLE :1253 Min. : 100 PLEASED :1947

MARRIED :2979 1st Qu.: 970 MOSTLY SATISFIED :1692

WIDOWED : 531 Median : 1350 MIXED : 827

DIVORCED : 199 Mean : 1641 MOSTLY DISSATISFIED: 274

LEGALLY SEPARATED : 7 3rd Qu.: 2000 DELIGHTED : 191

DE FACTO SEPARATED: 22 Max. :16000 (Other) : 61

NA's : 9 NA's :1286 NA's : 8

wkabint

NO :4646

YES : 318

NA's: 36
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The summary() function with the synds object as an argument gives summary statistics
of the variables in the synthesised data set. If more than one synthetic data set has been
generated, as default summaries are calculated by averaging summary values for all synthetic
data copies.

R> summary(sds)

Synthetic object with 5 syntheses using methods:

sex age edu marital income ls wkabint

"sample" "ctree" "ctree" "ctree" "ctree" "ctree" "ctree"

Summary (average) for all synthetic data sets:

sex age edu

MALE :2168 Min. :16.0 PRIMARY/NO EDUCATION : 965

FEMALE:2832 1st Qu.:31.8 VOCATIONAL/GRAMMAR :1620

Median :48.6 SECONDARY :1491

Mean :47.6 POST-SECONDARY OR HIGHER: 919

3rd Qu.:61.6 NA's : 6

Max. :96.4

marital income ls

SINGLE :1275.2 Min. : 100 PLEASED :1935.8

MARRIED :2957.2 1st Qu.: 952 MOSTLY SATISFIED :1703.2

WIDOWED : 531.6 Median : 1334 MIXED : 829.6

DIVORCED : 201.2 Mean : 1632 MOSTLY DISSATISFIED: 273.6

LEGALLY SEPARATED : 7.0 3rd Qu.: 1980 DELIGHTED : 186.4

DE FACTO SEPARATED: 22.0 Max. :15800 (Other) : 64.0

NA's : 5.8 NA's : 1285 NA's : 7.4

wkabint

NO :4656.6

YES : 309.8

NA's: 33.6

Summary of individual data sets can be displayed by supplying the msel parameter, which
can be a single number or a vector with selected synthesis numbers. An example code is
presented below but the corresponding output is suppressed for space reasons.

R> summary(sds, msel = 2)

R> summary(sds, msel = 1:5)

To compare the synthesised variables with the original ones more easily, the synthesiser can use
a compare() function. It is a generic function for comparison of various aspects of synthesised
and observed data. The function invokes particular methods depending on the class of the
first argument. If a synthetic data object and a data frame with original data are provided it
compares relative frequency distributions of each variable in tabular and graphic form. The
number of plots per page can be specified via nrow and ncol arguments. Alternatively, the
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Figure 1: Relative frequency distribution of non-missing values and missing data categories
for income variable for observed and synthetic data.

function can be used for a subset of variables specified by a vars argument. Output for income

is presented below and in Figure 1. For quantitative variables, such as income, missing data
categories are plotted on the same plot as non-missing values and they are indicated by miss.

suffix. If a synthetic data object contains multiple data sets by default pooled synthetic data
are used for comparison.

R> compare(sds, ods, vars = "income")

Comparing percentages observed with synthetic

Selected utility measures:

pMSE S_pMSE df

income 8.8e-05 1.416 5

An argument msel can be used to compare the observed data with a single or multiple
individual synthetic data sets, which is illustrated below and in Figure 2 for a life satisfaction
factor variable (ls).

R> compare(sds, ods, vars = "ls", msel = 1:3)

Comparing percentages observed with synthetic

Selected utility measures:
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pMSE S_pMSE df

ls 7.5e-05 0.8612 7
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Figure 2: Relative frequency distribution of life satisfaction (ls) for observed and synthetic
data.

Returning to the logistic regression model for wkabint, we estimate the original data model us-
ing generalised linear models implemented in R glm() function. A synthpop package function
glm.synds() is an equivalent function for estimating models for each of the m synthesised data
sets. A similar function called lm.synds() is available for a standard linear regression model.
An outcome of glm.synds() and lm.synds() function is an object of class ‘fit.synds’. If
m > 1, printing a ‘fit.synds’ object gives the combined (average) coefficient estimates. Re-
sults for coefficient estimates based on individual synthetic data sets can be displayed using
an msel argument of a print method.

R> model.ods <- glm(wkabint ~ sex + age + edu + log(income),

+ family = "binomial", data = ods)

R> model.ods

Call: glm(formula = wkabint ~ sex + age + edu + log(income), family = "binomial",

data = ods)

Coefficients:

(Intercept) sexFEMALE
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-0.2105 -0.4739

age eduVOCATIONAL/GRAMMAR

-0.0538 0.6275

eduSECONDARY eduPOST-SECONDARY OR HIGHER

0.3684 -0.1870

log(income)

-0.0461

Degrees of Freedom: 3690 Total (i.e. Null); 3684 Residual

(1309 observations deleted due to missingness)

Null Deviance: 1540

Residual Deviance: 1370 AIC: 1390

R> model.sds <- glm.synds(wkabint ~ sex + age + edu + log(income),

+ family = "binomial", data = sds)

R> model.sds

Note: To get more details of the fit see vignette on inference.

Call:

glm.synds(formula = wkabint ~ sex + age + edu + log(income),

family = "binomial", data = sds)

Average coefficient estimates from 5 syntheses:

(Intercept) sexFEMALE

-1.06343 -0.66178

age eduVOCATIONAL/GRAMMAR

-0.05138 0.17467

eduSECONDARY eduPOST-SECONDARY OR HIGHER

0.13112 -0.01006

log(income)

0.09112

The summary() function of a fit.synds object can be used by the analyst to combine
estimates based on all the synthesised data sets. By default inference is made to orig-
inal data quantities. In order to make inference to population quantities the parameter
population.inference has to be set to TRUE. The function’s result provides point estimates
of coefficients (B.syn), their standard errors (se(B.syn)) and Z scores (Z.syn) for population
and observed data quantities respectively. For inference to original data quantities it contains
in addition estimates of the actual standard errors based on synthetic data (se(Beta).syn)
and standard errors of Z scores (se(Z.syn)). Note that not all these quantities are printed
automatically.

The mean of the estimates from each of the m synthetic data sets yields unbiased estimates
of the coefficients if the data conform to the model used for synthesis. The variance is
estimated differently depending whether inference is made to the original data quantities or
the population parameters and whether synthetic data were produced using simple or proper
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synthesis (for details see Raab et al. 2016; expressions used to calculate variance for different
cases are presented in Table 1). By default a simple synthesis is conducted and inference is
made to original data quantities.

R> summary(model.sds)

Fit to synthetic data set with 5 syntheses. Inference to coefficients

and standard errors that would be obtained from the original data.

Call:

glm.synds(formula = wkabint ~ sex + age + edu + log(income),

family = "binomial", data = sds)

Combined estimates:

xpct(Beta) xpct(se.Beta) xpct(z) Pr(>|xpct(z)|)

(Intercept) -1.06343 0.98644 -1.08 0.28

sexFEMALE -0.66178 0.16326 -4.05 5e-05

age -0.05138 0.00547 -9.40 <2e-16

eduVOCATIONAL/GRAMMAR 0.17467 0.29220 0.60 0.55

eduSECONDARY 0.13112 0.30020 0.44 0.66

eduPOST-SECONDARY OR HIGHER -0.01006 0.33359 -0.03 0.98

log(income) 0.09112 0.13231 0.69 0.49

(Intercept)

sexFEMALE ***

age ***

eduVOCATIONAL/GRAMMAR

eduSECONDARY

eduPOST-SECONDARY OR HIGHER

log(income)

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Function compare() allows the synthesiser to compare the estimates based on the synthesised
data sets with those based on the original data and presents the results in both tabular and
graphical form (see Figure 3).

R> compare(model.sds, ods)

Call used to fit models to the data:

glm.synds(formula = wkabint ~ sex + age + edu + log(income),

family = "binomial", data = sds)

Differences between results based on synthetic and observed data:

Synthetic Observed Diff Std. coef diff

(Intercept) -1.06343 -0.21052 -0.852916 -0.9570
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Figure 3: Estimates and 95% confidence intervals for Z statistics from a logistic regression of
intention to go abroad to work for observed and synthetic data.

sexFEMALE -0.66178 -0.47387 -0.187908 -1.1612

age -0.05138 -0.05384 0.002455 0.4416

eduVOCATIONAL/GRAMMAR 0.17467 0.62753 -0.452859 -1.4723

eduSECONDARY 0.13112 0.36839 -0.237265 -0.7386

eduPOST-SECONDARY OR HIGHER -0.01006 -0.18697 0.176902 0.4821

log(income) 0.09112 -0.04610 0.137224 1.1226

CI overlap

(Intercept) 0.7559

sexFEMALE 0.7038

age 0.8873

eduVOCATIONAL/GRAMMAR 0.6244

eduSECONDARY 0.8116

eduPOST-SECONDARY OR HIGHER 0.8770

log(income) 0.7136

Measures for 5 syntheses and 7 coefficients

Mean confidence interval overlap: 0.7677

Mean absolute std. coef diff: 0.9108

Mahalanobis distance ratio for lack-of-fit (target 1.0): 10.21

Lack-of-fit test: 71.5; p-value 0 for test that synthesis model is compatible

with a chi-squared test with 7 degrees of freedom.

From both original and synthetic data we conclude that men are more likely to declare
intention to work abroad as are those who are young. The fact that the results from synthetic
data can have a similar pattern to the results from the real data is encouraging for further
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developments of synthetic data tools.

5. Concluding remarks

In this paper we presented the basic functionality of the R package synthpop for generating
synthetic versions of microdata containing confidential information so that they are safe to
be released to users for exploratory analysis. Interested readers can consult the package
documentation for additional features currently implemented which can be used to influence
the disclosure risk and the utility of the synthesised data. Note that synthpop is under
continual development and future versions will include, among others, appropriate procedures
for synthesising multiple event data, conducting stratified synthesis and replacing only selected
cases from selected variables. The ultimate aim of synthpop is to provide a comprehensive,
flexible and easy to use tool for generating bespoke synthetic data that can be safely released
to interested data users. Since there are many different options to synthesise data, developing
general guidelines for best practice remains an open issue to be addressed in our future
research.
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