Implementations of classical and machine learning models for survival analysis, including deep neural networks via 'keras' and 'tensorflow'. Each model includes a separated fit and predict interface with consistent prediction types for predicting risk or survival probabilities. Models are either implemented from 'Python' via 'reticulate' <https://CRAN.R-project.org/package=reticulate>, from code in GitHub packages, or novel implementations using 'Rcpp' <https://CRAN.R-project.org/package=Rcpp>. Neural networks are implemented from the 'Python' package 'pycox' <https://github.com/havakv/pycox>.
| Version: | 0.1.191 | 
| Imports: | Rcpp (≥ 1.0.5) | 
| LinkingTo: | Rcpp | 
| Suggests: | keras (≥ 2.11.0), pseudo, reticulate, survival | 
| Published: | 2024-03-19 | 
| DOI: | 10.32614/CRAN.package.survivalmodels | 
| Author: | Raphael Sonabend | 
| Maintainer: | Yohann Foucher <yohann.foucher at univ-poitiers.fr> | 
| BugReports: | https://github.com/foucher-y/survivalmodels/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/RaphaelS1/survivalmodels/ | 
| NeedsCompilation: | yes | 
| Materials: | README | 
| CRAN checks: | survivalmodels results | 
| Reference manual: | survivalmodels.html , survivalmodels.pdf | 
| Package source: | survivalmodels_0.1.191.tar.gz | 
| Windows binaries: | r-devel: survivalmodels_0.1.191.zip, r-release: survivalmodels_0.1.191.zip, r-oldrel: survivalmodels_0.1.191.zip | 
| macOS binaries: | r-release (arm64): survivalmodels_0.1.191.tgz, r-oldrel (arm64): survivalmodels_0.1.191.tgz, r-release (x86_64): survivalmodels_0.1.191.tgz, r-oldrel (x86_64): survivalmodels_0.1.191.tgz | 
| Old sources: | survivalmodels archive | 
Please use the canonical form https://CRAN.R-project.org/package=survivalmodels to link to this page.