Package ‘stepR’

November 13, 2023

Title Multiscale Change-Point Inference
Version 2.1-9
Depends R (>=3.3.0)

Imports Rcpp (>=0.12.3), lowpassFilter (>= 1.0.0), R.cache (>=
0.10.0), digest (>= 0.6.10), stats, graphics, methods

LinkingTo Rcpp
Suggests testthat (>= 1.0.0), knitr
VignetteBuilder knitr

Description Allows fitting of step-functions to univariate serial data where neither the num-
ber of jumps nor their positions is known by implementing the multiscale regression estima-
tors SMUCE, simulataneous multiscale changepoint estimator, (K. Frick, A. Munk and H. Siel-
ing, 2014) <doi:10.1111/rssb.12047> and HSMUCE, heterogeneous SMUCE, (F. Pein, H. Siel-
ing and A. Munk, 2017) <doi:10.1111/rssb.12202>. In addition, confidence inter-
vals for the change-point locations and bands for the unknown signal can be obtained.

License GPL-3

Classification/MSC 62G08, 92C40, 92D20
LazyData yes

NeedsCompilation yes

Author Pein Florian [aut, cre],
Thomas Hotz [aut],
Hannes Sieling [aut],
Timo Aspelmeier [ctb]

Maintainer Pein Florian <f.pein@lancaster.ac.uk>
Repository CRAN
Date/Publication 2023-11-13 21:00:02 UTC

R topics documented:

stepR-package
BesselPolynomial L
bounds

https://doi.org/10.1111/rssb.12047
https://doi.org/10.1111/rssb.12202

2 stepR-package

compareBlocks L 10
computeBounds 12
computeStat e e e 15
contMC e e 17
critVal L 19
dfilter L 26
family e e 28
intervalSystem e 29
jsmurf ..o e 30
JUMPINt . . . oL e e e 32
monteCarloSimulation L 34
MRC . . e 36
MRC.1000 e 39
MRC.asymptotic 40
MRC.asymptotic.dyadic 40
neighbours. L 41
parametricFamily L 41
penalty e e e 44
sdrobnorm e e e 46
smuceR 47
stepblock L 49
stepbound L L L e e e e e 51
stepcand L L e e e e e e e e e 53
StepFit e e 54
Stepfit e 58
steppath L 60
stepsel 62
testSmallScales L 64
transit e e e e 65
Index 68
stepR-package Multiscale Change-Point Inference
Description

Allows fitting of step-functions to univariate serial data where neither the number of jumps nor
their positions is known by implementing the multiscale regression estimators SMUCE (Frick et
al., 2014) and HSMUCE (Pein et al., 2017). In addition, confidence intervals for the change-point
locations and bands for the unknown signal can be obtained. This is implemented in the function
stepFit. Moreover, technical quantities like the statistics itself, bounds or critical values can be
computed by other functions of the package. More details can be found in the vignette.

stepR-package

Details

New in version 2.0-0:

stepFit Piecewise constant multiscale inference
critval Critical values
computeBounds Computation of the bounds
computeStat Computation of the multiscale statistic
monteCarloSimulation Monte Carlo simulation
parametricFamily Parametric families
intervalSystem Interval systems
penalty Penalties

From version 1.0-0:

compareBlocks Compare fit blockwise with ground truth

neighbours Neighbouring integers

sdrobnorm Robust standard deviation estimate
stepblock Step function

stepcand Forward selection of candidate jumps
stepfit Fitted step function

steppath Solution path of step-functions

stepsel Automatic selection of number of jumps

Mainly used for patchclamp recordings and may be transferred to a specialised package:

BesselPolynomial
contMC
dfilter
jsmurf
transit

Bessel Polynomials

Continuous time Markov chain

Digital filters

Reconstruct filtered piecewise constant functions with noise
TRANSIT algorithm for detecting jumps

Deprecated (please read the documentation of them theirself for more details):

MRC

MRC. 1000
MRC.asymptotic
MRC.asymptotic.dyadic
bounds

family

smuceR

Compute Multiresolution Criterion

Values of the MRC statistic for 1,000 observations (all intervals)
"Asymptotic" values of the MRC statistic (all intervals)
"Asymptotic" values of the MRC statistic(dyadic intervals)
Bounds based on MRC

Family of distributions

Piecewise constant regression with SMUCE

4 stepR-package

Storing of Monte-Carlo simulations

If g==NULL in critVal, stepFit or computeBounds a Monte-Carlo simulation is required for
computing critical values. Since a Monte-Carlo simulation lasts potentially much longer (up to
several hours or days if the number of observations is in the millions) than the main calcula-
tions, this package offers multiple possibilities for saving and loading the simulations. Simula-
tions can either be saved in the workspace in the variable critValStepRTab or persistently on
the file system for which the package R.cache is used. Moreover, storing in and loading from
variables and RDS files is supported. Finally, a pre-simulated collection of simulations can be
accessed by installing the package stepRdata available from http://www.stochastik.math.
uni-goettingen.de/stepRdata_1.0-0.tar.gz. By default simulations will be saved in the
workspace and on the file system. For more details and for how simulation can be removed see
Section Simulating, saving and loading of Monte-Carlo simulations in critVal.

References
Frick, K., Munk, A., Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495-580.

Pein, F,, Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207-1227.

Pein, F., Tecuapetla-Gémez, 1., Schiitte, O., Steinem, C., Munk, A. (2017) Fully-automatic multires-
olution idealization for filtered ion channel recordings: flickering event detection. arXiv:1706.03671.

Hotz, T., Schiitte, O., Sieling, H., Polupanow, T., Diederichsen, U., Steinem, C., and Munk, A.
(2013) Idealizing ion channel recordings by a jump segmentation multiresolution filter. IEEE Trans-
actions on NanoBioscience 12(4), 376-386.

VanDongen, A. M. J. (1996) A new algorithm for idealizing single ion channel data containing
multiple unknown conductance levels. Biophysical Journal 70(3), 1303—-1315.

Futschik, A., Hotz, T., Munk, A., Sieling, H. (2014) Multiresolution DNA partitioning: statistical
evidence for segments. Bioinformatics, 30(16), 2255-2262.

Boysen, L., Kempe, A., Liebscher, V., Munk, A., Wittich, O. (2009) Consistencies and rates of
convergence of jump-penalized least squares estimators. The Annals of Statistics 37(1), 157-183.

Davies, P. L., Kovac, A. (2001) Local extremes, runs, strings and multiresolution. The Annals of
Statistics 29, 1-65.

Friedrich, F., Kempe, A., Liebscher, V., Winkler, G. (2008) Complexity penalized M-estimation:
fast computation. Journal of Computational and Graphical Statistics 17(1), 201-224.

See Also

stepFit, critVal, computeStat, computeBounds, jsmurf, transit, sdrobnorm, compareBlocks,
parametricFamily, intervalSystem, penalty

Examples

generate random observations
set.seed(1)

http://www.stochastik.math.uni-goettingen.de/stepRdata_1.0-0.tar.gz
http://www.stochastik.math.uni-goettingen.de/stepRdata_1.0-0.tar.gz

stepR-package

n <- 100L
x <-seq(1 / n, 1,1/ n)
mu <- stepfit(cost = @, family = "gauss”, value = c(0, 3, @, -2, @), param = NULL,
leftEnd = x[c(1, 21, 26, 71, 81)1,
rightend = x[c(20, 25, 70, 80, 100)], x0 = 0,
leftIndex = c(1, 21, 26, 71, 81),
rightIndex = c(20, 25, 70, 80, 100))
sigmad <- 0.5
epsilon <- rnorm(n, @, sigma®)
y <- fitted(mu) + epsilon
plot(x, y, pch = 16, col = "grey30", ylim = c(-3, 4))
lines(mu, 1lwd = 3)

computation of SMUCE and its confidence statements
fit <- stepFit(y, x = x, alpha = 0.5, jumpint = TRUE, confband = TRUE)
lines(fit, 1lwd = 3, col = "red"”, lty = "22")

confidence intervals for the change-point locations
points(jumpint(fit), col = "red", lwd = 3)

confidence band

lines(confband(fit), 1ty = "22", col = "darkred”, 1lwd = 2)

higher significance level for larger detection power, but less confidence
suggested for screening purposes
stepFit(y, x = x, alpha = 0.9, jumpint = TRUE, confband = TRUE)

smaller significance level for the small risk that the number of
change-points is overestimated with probability not more than 5%,
but smaller detection power

stepFit(y, x = x, alpha = .05, jumpint = TRUE, confband = TRUE)

different interval system, lengths, penalty and given parameter sd
stepFit(y, x = x, alpha = 0.5, intervalSystem = "dyalLen”,

lengths = c(1L, 2L, 4L, 8L), penalty = "weights",

weights = c(0.4, 0.3, 0.2, 0.1), sd = sigma@,

jumpint = TRUE, confband = TRUE)

the above calls saved and (attempted to) load Monte-Carlo simulations and

simulated them for nq = 128 observations

in the following call no saving, no loading and simulation for n = 100

observations is required, progress of the simulation will be reported

stepFit(y, x = x, alpha = 0.5, jumpint = TRUE, confband = TRUE, messages = 1000L,
options = list(simulation = "vector"”, load = list(), save = list()))

critVal was called in stepFit, can be called explicitly,

for instance outside of a for loop to save computation time

gVector <- critVal(1eeL, alpha = 0.5)

identical(stepFit(y, x = x, q = qVector, jumpint = TRUE, confband = TRUE), fit)

gValue <- critVal(1eeL, alpha = 0.5, output = "value")
identical(stepFit(y, x = x, g = qValue, jumpint = TRUE, confband = TRUE), fit)

computeBounds gives the multiscale contraint

stepR-package

computeBounds(y, alpha = 0.5)

monteCarloSimulation will be called in critVal if required
can be called explicitly
stat <- monteCarloSimulation(n = 100L)
identical(critVal(n = 100L, alpha = 0.5, stat = stat),
critval(n = 100L, alpha = 0.5,
options = list(load = list(), simulation = "vector")))
identical(critVal(n = 100L, alpha = 0.5, stat = stat, output = "value"),
critval(n = 100L, alpha = 0.5, output = "value”,
options = list(load = list(), simulation = "vector")))

stat <- monteCarloSimulation(n = 100L, output = "maximum")
identical(critVal(n = 100L, alpha = 0.5, stat = stat),
critVal(n = 100L, alpha = 0.5,
options = list(load = list(), simulation = "vector")))
identical(critVal(n = 100L, alpha = 0.5, stat = stat, output = "value"),
critVal(n = 100L, alpha = 0.5, output = "value",
options = list(load = list(), simulation = "vector")))

fit satisfies the multiscale contraint, i.e.

the computed penalized multiscale statistic is not larger than the global quantile
computeStat(y, signal = fit, output = "maximum”) <= gValue

multiscale vector of statistics is componentwise not larger than

the vector of critical values

all(computeStat(y, signal = fit, output = "vector”) <= gVector)

family "hsmuce”

set.seed(1)

y <= c(rnorm(50, @, 1), rnorm(50@, 1, 0.2))

plot(x, y, pch = 16, col = "grey30", ylim = c(-2.5, 2))

computation of HSMUCE and its confidence statements
fit <- stepFit(y, x = x, alpha = 0.5, family = "hsmuce”,

jumpint = TRUE, confband = TRUE)
lines(fit, 1lwd = 3, col = "red"”, lty = "22")

confidence intervals for the change-point locations
points(jumpint(fit), col = "red”, lwd = 3)

confidence band

lines(confband(fit), 1ty = "22", col = "darkred”, 1lwd = 2)

for comparison SMUCE, not recommend to use here
lines(stepFit(y, x = x, alpha = 0.5,
jumpint = TRUE, confband = TRUE),
lwd = 3, col = "blue”, 1ty = "22")

family "mDependentPS”

generate observations from a moving average process
set.seed(1)

y <- c(rep(@, 50), rep(2, 50)) +

stepR-package

as.numeric(arima.sim(n = 100, list(ar = c(), ma = c(0.8, 0.5, 0.3)), sd = sigma0))
correlations <- as.numeric(ARMAacf(ar = c(), ma = c(0.8, 0.5, 0.3), lag.max = 3))
covariances <- sigma@”2 * correlations
plot(x, y, pch = 16, col = "grey30"”, ylim = c(-2, 4))

computation of SMUCE for dependent observations with given covariances
fit <- stepFit(y, x = x, alpha = 0.5, family = "mDependentPS",

covariances = covariances, jumpint = TRUE, confband = TRUE)
lines(fit, lwd = 3, col = "red”, 1ty = "22")

confidence intervals for the change-point locations
points(jumpint(fit), col = "red”, lwd = 3)

confidence band

lines(confband(fit), 1ty = "22", col = "darkred”, 1lwd = 2)

for comparison SMUCE for independent observations, not recommend to use here
lines(stepFit(y, x = x, alpha = 0.5,
jumpint = TRUE, confband = TRUE),
lwd = 3, col = "blue”, 1ty = "22")

with given correlations, standard deviation will be estimated by sdrobnorm
stepFit(y, x = x, alpha = 0.5, family = "mDependentPS",
correlations = correlations, jumpint = TRUE, confband = TRUE)

examples from version 1.0-0

estimating step-functions with Gaussian white noise added

simulate a Gaussian hidden Markov model of length 1000 with 2 states
with identical transition rates 0.01, and signal-to-noise ratio 2
sim <- contMC(1e3, 0:1, matrix(c(0, 0.01, .01, @), 2), param=1/2)
plot(sim$data, cex = 0.1)

lines(sim$cont, col="red")

maximum-likelihood estimation under multiresolution constraints
fit.MRC <- smuceR(sim$datas$y, sim$data$x)

lines(fit.MRC, col="blue")

choose number of jumps using BIC

path <- steppath(sim$data$y, sim$data$x, max.blocks=1e2)

fit.BIC <- path[[stepsel.BIC(path)]]

lines(fit.BIC, col="green3", 1ty = 2)

estimate after filtering

simulate filtered ion channel recording with two states
set.seed(9)

sampling rate 10 kHz

sampling <- le4

tenfold oversampling

over <- 10

1 kHz 4-pole Bessel-filter, adjusted for oversampling

cutoff <- 1e3

df.over <- dfilter("bessel”, list(pole=4, cutoff=cutoff / sampling / over))
two states, leaving state 1 at 10 Hz, state 2 at 20 Hz

rates <- rbind(c(@, 10), c(20, 0))

simulate 0.5 s, level @ corresponds to state 1, level 1 to state 2

8 BesselPolynomial

noise level is 0.3 after filtering

Sim <- contMC(@.5 * sampling, @:1, rates, sampling=sampling, family="gaussKern"”,
param = list(df=df.over, over=over, sd=0.3))

plot(Sim$data, pch = ".")

lines(Sim$discr, col = "red")

fit under multiresolution constraints using filter corresponding to sample rate

df <- dfilter("bessel”, list(pole=4, cutoff=cutoff / sampling))

Fit.MRC <- jsmurf(Sim$datas$y, Sim$data$x, param=df, r=1e2)

lines(Fit.MRC, col = "blue")

fit using TRANSIT

Fit.trans <- transit(Sim$data$y, Sim$data$x)

lines(Fit.trans, col = "green3", lty=2)

BesselPolynomial Bessel Polynomials

Description

Recursively compute coefficients of Bessel Polynomials.

Deprecation warning: This function is a help function for the Bessel filters in dfilter and may
be removed when dfilter will be removed.

Usage

BesselPolynomial(n, reverse = FALSE)

Arguments

n order

reverse whether to return the coefficients of a reverse Bessel Polynomial
Value

Returns the polynom’s coefficients ordered increasing with the exponent, i.e. starting with the
intercept, as for polyroot.

See Also

dfilter, bessel, polyroot

Examples

15 x*"3 + 15 x*"2 + 6 x + 1
BesselPolynomial(3)

bounds 9

bounds Bounds based on MRC

Description

Computes two-sided bounds for a set of intervals based on a multiresolution criterion (MRC).

Deprecation warning: This function is deprecated, but still working, however, may be defunct in
a future version. Please use instead the function computeBounds. An example how to reproduce
results (currently only family "gauss"” is supported) is given below.

Usage

bounds(y, type = "MRC", ...)
bounds.MRC(y, q, alpha = 0.05, r = ceiling(5@ / min(alpha, 1 - alpha)),
lengths = if(family == "gaussKern")
2*(floor(log2(length(y))):ceiling(log2(length(param$kern)))) else
2*(floor(log2(length(y))):0), penalty = c("none”, "len", "var"”, "sqrt"),
name = if (family == "gaussKern”) ".MRC.ktable"” else ".MRC.table", pos = .MCstepR,
family = c("gauss”, "gaussvar”, "poisson”, "binomial”,"gaussKern"), param = NULL,
subset, max.iter = 1e2, eps = le-3)
S3 method for class 'bounds'

x[subset]
Arguments
y a numeric vector containing the serial data
type so far only bounds of type "MRC" are implemented
further arguments to be passed on to bounds.MRC
q quantile of the MRC; if specified, alpha and r will be ignored
alpha level of significance
r number of simulations to use to obtain quantile of MRC for specified alpha
lengths vector of interval lengths to use, dyadic intervals by default
penalty penalty term in the multiresolution statistic: "none” for no penalty, "len"” for

penalizing the length of an interval, "var” for penalizing the variance over an
interval, and "sqrt" for penalizing the square root of the MRC

family, param specifies distribution of data, see family

subset a subset of indices of y for which bounds should be aggregated

name, pos under which name and where precomputed results are stored, or retrieved, see
assign

max.iter maximal iterations in Newton’s method to compute non-Gaussian MRC bounds

eps tolerance in Newton’s method

X an object of class bounds

10 compareBlocks

Value

Returns an object of class bounds, i.e. a list whose entry bounds contains two-sided bounds (Lower
and upper) of the considered intervals (with left index 1i and right index ri) in a data.frame,
along with a vector start specifying in which row of entry bounds intervals with corresponding
1i start (if any; specified as a C-style index), and a logical feasible telling whether a feasible
solution exists for these bounds (always TRUE for MRC bounds which are not restricted to a subset).

See Also

computeBounds, stepbound, family

Examples

y <= rnorm(100, c(rep(@, 50), rep(1, 50)), 0.5)

b <- computeBounds(y, q = 4, intervalSystem = "dyalLen"”, penalty = "none")
b <- b[order(bli, bri), 1

attr(b, "row.names") <- seq(along = b$li)

entries in bounds are recovered by computeBounds
all.equal(bounds(y, g = 4)$bounds, b) # TRUE

simulate signal of 100 data points

Y <- rpois(100, 1:100 / 10)

compute bounds for intervals of dyadic lengths

b <- bounds(Y, penalty="len", family="poisson”, g=4)

compute bounds for all intervals

b <- bounds(Y, penalty="len", family="poisson”, g=4, lengths=1:100)

compareBlocks Compare fit blockwise with ground truth

Description

Blockwise comparison of a fitted step function with a known ground truth using different criteria.

Usage

compareBlocks(truth, estimate, dist = 5e3)

Arguments
truth an object of class stepblock giving the ground truth, or a list of such objects
estimate corresponding estimated object(s) of class stepblock
dist a single numeric specifying the distance for at which jumps will be considered

as having matched in the qualitative criterion

compareBlocks 11

Value

A data. frame, containing just one row if two single stepblock were given, with columns

true.num, est.num
the true / estimated number of blocks

true.pos, false.pos, false.neg, sens.rate, prec.rate
the number of true / false positive, false negatives, as well as the corresponding
sensitivity and precision rates, where an estimated block is considered a true
positive if it there is a corresponding block in the ground truth with both end-
points within dist of each other

fpsle false positive sensitive localization error: for each estimated block’s midpoint
find into which true block it falls, and sum distances of the respective borders
fnsle false negative sensitive localization error: for each true block’s mid-point find
into which estimated block it falls, and sum distances of the respective borders
total.le total localization error: sum of fpsle and fnsle
Note

No differences between true and fitted parameter values are taking into account, only the precision
of the detected blocks is considered; also, differing from the criteria in Elhaik et al.~(2010), no
blocks are merged in the ground truth if its parameter values are close, as this may punish sensitive
estimators.

Beware that these criteria compare blockwise, i.e. they do not compare the precision of single jumps
but for each block both endpoints have to match well at the same time.

References

Elhaik, E., Graur, D., Josi¢, K. (2010) Comparative testing of DNA segmentation algorithms using
benchmark simulations. Molecular Biology and Evolution 27(5), 1015-24.

Futschik, A., Hotz, T., Munk, A. Sieling, H. (2014) Multiresolution DNA partitioning: statistical
evidence for segments. Bioinformatics, 30(16), 2255-2262.

See Also

stepblock, stepfit, contMC

Examples

simulate two Gaussian hidden Markov models of length 1000 with 2 states each
with identical transition rates being 0.01 and 0.05, resp, signal-to-noise ratio is 5
sim <- lapply(c(@.01, 0.05), function(rate)
contMC(1e3, @:1, matrix(c(@, rate, rate, 0), 2), param=1/5))
plot(sim[[1]]$data)
lines(sim[[1]]$cont, col="red")
use smuceR to estimate fit
fit <- lapply(sim, function(s) smuceR(s$datas$y, s$data$x))
lines(fit[[1]], col="blue")
compare fit with (discretised) ground truth
compareBlocks(lapply(sim, function(s) s$discr), fit)

12 computeBounds

computeBounds Computation of the bounds

Description

Computes the multiscale contraint given by the multiscale test, (3.12) in the vignette. In more detail,
returns the bounds of the interval of parameters for which the test statistic is smaller than or equal
to the critical value for the corresponding length, i.e. the two solutions resulting from equating the
test statistic to the critical value.

If g == NULL a Monte-Carlo simulation is required for computing critical values. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of ob-
servations is in the millions) than the main calculations, this package saves them by default in the
workspace and on the file system such that a second call requiring the same Monte-Carlo simulation
will be much faster. For more details, in particular to which arguments the Monte-Carlo simulations
are specific, see Section Storing of Monte-Carlo simulations below. Progress of a Monte-Carlo sim-
ulation can be reported by the argument messages and the saving can be controlled by the argument

option, both can be specified in ... and are explained in monteCarloSimulation and critVal,
respectively.
Usage
computeBounds(y, g = NULL, alpha = NULL, family = NULL,
intervalSystem = NULL, lengths = NULL, ...)
Arguments

y a numeric vector containing the observations

q either NULL, then the vector of critical values at level alpha will be computed
from a Monte-Carlo simulation, or a numeric giving the global quantile or a
numeric vector giving the vector of critical values. Either g or alpha must be
given. Otherwise, alpha == 0.5 is chosen with a warning. This argument will
be passed to critVal to obtain the needed critical values. Additional parame-
ters for the computation of g can be specified in ..., for more details see the
documentation of critVal. Please note that by default the Monte-Carlo simu-
lation will be saved in the workspace and on the file system, for more details see
Section Storing of Monte-Carlo simulations below

alpha a probability, i.e. a single numeric between 0 and 1, giving the significance
level. Its choice is a trade-off between data fit and parsimony of the estimator.
In other words, this argument balances the risks of missing change-points and
detecting additional artefacts. For more details on this choice see (Frick et al.,
2014, section 4) and (Pein et al., 2017, section 3.4). Either q or alpha must be
given. Otherwise, alpha == 0.5 is chosen with a warning

family a string specifying the assumed parametric family, for more details see paramet-

ricFamily, currently "gauss”, "hsmuce"” and "mDependentPS" are supported.
By default (NULL) "gauss” is assumed

computeBounds 13

intervalSystem a string giving the used interval system, either "all” for all intervals, "dyalLen”
for all intervals of dyadic length or "dyaPar"” for the dyadic partition, for more
details see intervalSystem. By default (NULL) the default interval system of the
specified parametric family will be used, which one this will be is described in
parametricFamily

lengths an integer vector giving the set of lengths, i.e. only intervals of these lengths
will be considered. Note that not all lengths are possible for all interval sys-
tems and for all parametric families, see intervalSystem and parametricFamily,
respectively, to see which ones are allowed. By default (NULL) all lengths that
are possible for the specified intervalSystem and for the specified parametric
family will be used

there are two groups of further arguments:

1. further parameters of the parametric family. Depending on argument family
some might be required, but others might be optional, please see paramet-
ricFamily for more details,

2. further parameters that will be passed to critVal. critVal will be called
automatically with the number of observations n = length(y), the argu-
ments family, intervalSystem, lengths, q and output set. For these
arguments no user interaction is required and possible, all other arguments
of critVal can be passed additionally

Value

A data. frame containing two integer vectors 1i and ri and two numeric vectors lower and upper.
For each interval in the set of intervals specified by intervalSystem and lengths 1i and ri give
the left and right index of the interval and lower and upper give the lower and upper bounds for
the parameter on the given interval.

Storing of Monte-Carlo simulations

If g == NULL a Monte-Carlo simulation is required for computing critical values. Since a Monte-
Carlo simulation lasts potentially much longer (up to several hours or days if the number of observa-
tions is in the millions) than the main calculations, this package offers multiple possibilities for sav-
ing and loading the simulations. Progress of a simulation can be reported by the argument messages
which can be specified in . .. and is explained in the documentation of monteCarloSimulation.
Each Monte-Carlo simulation is specific to the number of observations, the parametric family (in-
cluding certain parameters, see parametricFamily) and the interval system, and for simulations of
class "MCSimulationMaximum”, additionally, to the set of lengths and the used penalty. Monte-
Carlo simulations can also be performed for a (slightly) larger number of observations n, given in
the argument nq in . .. and explained in the documentation of critVal, which avoids extensive
resimulations for only a little bit varying number of observations. Simulations can either be saved
in the workspace in the variable critValStepRTab or persistently on the file system for which the
package R.cache is used. Moreover, storing in and loading from variables and RDS files is sup-
ported. Finally, a pre-simulated collection of simulations can be accessed by installing the package
stepRdata available from http://www.stochastik.math.uni-goettingen.de/stepRdata_1.
0-0.tar.gz. The simulation, saving and loading can be controlled by the argument option which
can be specified in ... and is explained in the documentation of critVal. By default simulations

http://www.stochastik.math.uni-goettingen.de/stepRdata_1.0-0.tar.gz
http://www.stochastik.math.uni-goettingen.de/stepRdata_1.0-0.tar.gz

14 computeBounds

will be saved in the workspace and on the file system. For more details and for how simulation can
be removed see Section Simulating, saving and loading of Monte-Carlo simulations in critVal.

Note

Depending on intervalSystem and lengths the intervals might be ordered differently to allow
fast computation. For most applications the order should not matter. Otherwise, the entries can be
reordered with order, an example is given below.

References

Frick, K., Munk, A., Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495-580.

Pein, F,, Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207-1227.

See Also

critVal, penalty, parametricFamily, intervalSystem, stepFit, computeStat, monteCarloSimulation

Examples

y <= c(rnorm(50), rnorm(50, 1))

the multiscale contraint
bounds <- computeBounds(y, alpha = 0.5)

the order of the bounds depends on intervalSystem and lengths

to allow fast computation

if a specific order is required it can be reordered by order

b is ordered with increasing left indices and increasing right indices
b <- bounds[order(bounds$li, bounds$ri), 1]

attr(b, "row.names”) <- seq(along = b$li)

higher significance level for larger detection power, but less confidence
computeBounds(y, alpha = 0.99)

smaller significance level for stronger confidence statements, but at
the risk of missing change-points
computeBounds(y, alpha = 0.05)

different interval system, lengths, penalty and given parameter sd
computeBounds(y, alpha = 0.5, intervalSystem = "dyalLen”,
lengths = c(1L, 2L, 4L, 8L), penalty = "weights”,
weights = c(0.4, 0.3, 0.2, 0.1), sd = 0.5)

with given g

identical (computeBounds(y, q

identical (computeBounds(y, g
bounds)

critval(1eeL, alpha = ©0.5)), bounds)
critVal(1eoL, alpha = 0.5, output = "value")),

computeStat 15

the above calls saved and (attempted to) load Monte-Carlo simulations and
simulated them for nq = 128 observations
in the following call no saving, no loading and simulation for n = 100
observations is required, progress of the simulation will be reported
computeBounds(y, alpha = 0.5, messages = 1000L,
options = list(simulation = "vector”,
load = list(), save = list()))

with given stat to compute g
stat <- monteCarloSimulation(n = 128L)
identical (computeBounds(y, alpha = 0.5, stat = stat),
computeBounds(y, alpha = 0.5, options = list(load = list())))

computeStat Computation of the multiscale statistic

Description

Computes the multiscale vector of penalised statistics, (3.7) in the vignette, or the penalised multi-
scale statistic, (3.6) in the vignette, for given signal.

Usage

computeStat(y, signal = @, family = NULL, intervalSystem = NULL, lengths = NULL,
penalty = NULL, ng = length(y),

output = c("list"”, "vector”, "maximum"), ...)
Arguments

y a numeric vector containing the observations

signal the given signal, either a single numeric for a constant function equal to the
given value or an object of class stepfit. More precisely, a 1ist containing an
integer vector leftIndex, an integer vector rightIndex and a numeric vector
value, all of the same length, e.g. a data.frame, specifying a step function is
enough

family a string specifying the assumed parametric family, for more details see paramet-

ricFamily, currently "gauss”, "hsmuce” and "mDependentPS" are supported.
By default (NULL) "gauss” is assumed

intervalSystem a string giving the used interval system, either "all” for all intervals, "dyalLen”
for all intervals of dyadic length or "dyaPar"” for the dyadic partition, for more
details see intervalSystem. By default (NULL) the default interval system of the
specified parametric family will be used, which one this will be is described in
parametricFamily

16

lengths

penalty

nq

output

Value

computeStat

an integer vector giving the set of lengths, i.e. only intervals of these lengths
will be considered. Note that not all lengths are possible for all interval sys-
tems and for all parametric families, see intervalSystem and parametricFamily,
respectively, to see which ones are allowed. By default (NULL) all lengths that
are possible for the specified intervalSystem and for the specified parametric
family will be used

a string specifying how the statistics will be penalised, either "sqrt”, "log" or
"none”, see penalty and section 3.2 in the vignette for more details. By default
(NULL) the default penalty of the specified parametric family will be used, which
one this will be is described in parametricFamily

a single integer larger than or equal to length(y) giving the number of obser-
vations used in the penalty term, see penalty for more details. The possibility to
use a number larger than length(y) is given for comparisons, since a (slightly)
larger number can be chosen in critVal and monteCarloSimulation to avoid
extensive recomputations for (slightly) varying number of observations. For
more details see also the Section Simulating, saving and loading of Monte-Carlo
simulations in critVal

a string specifying the output, see Value

further parameters of the parametric family. Depending on argument family
some might be required, but others might be optional, please see parametric-
Family for more details

If output == 1ist a list containing in maximum the penalised multiscale statistic, i.e. the maximum
over all test statistics, in stat the multiscale vector of penalised statistics, i.e. a vector of length
lengths giving the maximum over all tests of that length, and in lengths the vector of lengths. If
output == vector a numeric vector giving the multiscale vector of penalised statistics. If output
== maximum a single numeric giving the penalised multiscale statistic. -Inf is returned for lengths
for which on all intervals of that length contained in the set of intervals the signal is not constant
and, hence, no test statistic can be computed. This behaves similar to max (numeric(@)).

References

Frick, K., Munk, A., Sieling, H. (2014) Multiscale change-point inference. With discussion and
rejoinder by the authors. Journal of the Royal Statistical Society, Series B 76(3), 495-580.

Pein, F,, Sieling, H., Munk, A. (2017) Heterogeneous change point inference. Journal of the Royal
Statistical Society, Series B, 79(4), 1207-1227.

See Also

parametricFamily, intervalSystem, penalty, monteCarloSimulation, stepFit, computeBounds

Examples

y <= rnorm(100)

contMC 17

for the default signal = @ a signal constant @ is assumed
identical (computeStat(y), computeStat(y,
signal = list(leftIndex = 1L, rightIndex = 100L, value = 0)))

different constant value

ret <- computeStat(y, signal = 1)

penalised multiscale statistic

identical(ret$maximum, computeStat(y, signal = 1, output = "maximum"))
multiscale vector of penalised statistics

identical(ret$stat, computeStat(y, signal = 1, output = "vector”))

y <= c(rnorm(50), rnorm(50, 1))

true signal

computeStat(y, signal = list(leftIndex = c(1L, 51L), rightIndex = c(50L, 100L),
value = c(0, 1)))

fit satisfies the multiscale contraint, i.e.
the penalised multiscale statistic is not larger than the used global quantile 1
computeStat(y, signal = stepFit(y, g = 1), output = "maximum”) <= 1

different interval system, lengths, penalty, given parameter sd
and computed for an increased number of observations nq
computeStat(y, signal = list(leftIndex = c(1L, 51L), rightIndex = c(50L, 100L),
value = ¢c(0, 1)), nqg = 128, sd = 0.5,
intervalSystem = "dyalLen"”, lengths = c(1L, 2L, 4L, 8L), penalty = "none")

family "hsmuce”
computeStat(y, signal = mean(y), family = "hsmuce")

family "mDependentPS"
signal <- list(leftIndex = c(1L, 13L), rightIndex = c(12L, 17L), value = c(0, -1))
y <- c(rep(@, 13), rep(-1, 4)) +

as.numeric(arima.sim(n = 17, list(ar = c(), ma = c(0.8, 0.5, 0.3)), sd = 1))
covariances <- as.numeric(ARMAacf(ar = c(), ma = c(0.8, 0.5, 0.3), lag.max = 3))

computeStat(y, signal = signal, family = "mDependentPS"”, covariances = covariances)
contMC Continuous time Markov chain
Description

Simulate a continuous time Markov chain.

Deprecation warning: This function is mainly used for patchlamp recordings and may be trans-
ferred to a specialised package.
Usage

contMC(n, values, rates, start =1, sampling =1, family = c("gauss”, "gaussKern"),
param = NULL)

18

Arguments

n
values

rates

start
sampling

family

param

Value

contMC

number of data points to simulate
a numeric vector specifying signal amplitudes for different states

a square matrix matching the dimension of values each with rates[i, j]
specifying the transition rate from state i to state j; the diagonal entries are
ignored

the state in which the Markov chain is started
the sampling rate

whether Gaussian white ("gauss”) or coloured ("gaussKern"), i.e. filtered,
noise should be added; cf. family

for family="gauss", a single non-negative numeric specifying the standard
deviation of the noise; for family="gaussKern", param must be a list with entry
df giving the dfilter object used for filtering, an integer entry over which
specifies the oversampling factor of the filter, i.e. param$df has to be created
for a sampling rate of sampling times over, and an additional non-negative
numeric entry sd specifying the noise’s standard deviation after filtering; cf.
family

A list with components

cont

discr

data

Note

an object of class stepblock containing the simulated true values in continuous
time, with an additional column state specifying the corresponding state

an object of class stepblock containing the simulated true values reduced to
discrete time, i.e. containing only the observable blocks

a data.frame with columns x and y containing the times and values of the
simulated observations, respectively

This follows the description for simulating ion channels given by VanDongen (1996).

References

VanDongen, A. M. J. (1996) A new algorithm for idealizing single ion channel data containing
multiple unknown conductance levels. Biophysical Journal 70(3), 1303-1315.

See Also

stepblock, jsmurf, stepbound, steppath, family, dfilter

critVal 19

Examples

Simulate filtered ion channel recording with two states

set.seed(9)

sampling rate 10 kHz

sampling <- 1e4

tenfold oversampling

over <- 10

1 kHz 4-pole Bessel-filter, adjusted for oversampling

cutoff <- 1e3

df <- dfilter("bessel”, list(pole=4, cutoff=cutoff / sampling / over))

two states, leaving state 1 at 1 Hz, state 2 at 10 Hz

rates <- rbind(c(@, 1e0), c(lel, @))

simulate 5 s, level @ corresponds to state 1, level 1 to state 2

noise level is 0.1 after filtering

sim <- contMC(5 * sampling, 0:1, rates, sampling=sampling, family="gaussKern”,
param = list(df=df, over=over, sd=0.1))

sim$cont
plot(sim$data, pch = ".")
lines(sim$discr, col = "red")

noise level after filtering, estimated from first block
sd(sim$data$y[1:sim$discr$rightIndex[1]1])

show autocovariance in first block

acf(ts(sim$datasy[1:sim$discr$rightIndex[1]1], freqg=sampling), type = "cov")

power spectrum in first block

s <- spec.pgram(ts(sim$data$y[1:sim$discr$rightIndex[1]1], freg=sampling), spans=c(200,90))
cutoff frequency is where power spectrum is halved

abline(v=cutoff, h=s$spec[1] / 2, 1ty = 2)

critVal Critical values

Description

Computes the vector of critical values or the global quantile. This function offers two ways of com-
putation, either at significance level alpha from a Monte-Carlo simulation, see also section 3.2 in
the vignette for more details, or from the global quantile / critical values given in the argument q.
For more details on these two options see Section Computation of critical values / global quantile.
Since a Monte-Carlo simulation lasts potentially much longer (up to several hours or days if the
number of observations is in the millions) than the main calculations, this package saves them
by default in the workspace and on the file system such that a second call requiring the same
Monte-Carlo simulation will be much faster. For more details, in particular to which arguments
the Monte-Carlo simulations are specific, see Section Storing of Monte-Carlo simulations below.
Progress of a Monte-Carlo simulation can be reported by the argument messages in . . ., explained
in monteCarloSimulation, and the saving can be controlled by the argument option.

Usage

critvVal(n, q = NULL, alpha = NULL, ng = 2L*(as.integer(log2(n) + 1e-12) + 1L) - 1L,
family = NULL, intervalSystem = NULL, lengths = NULL, penalty = NULL,

20 critVal

weights = NULL, stat = NULL, r = 1e4, output = c("vector”, "value"),
options = NULL, ...)

Arguments

n a positive integer giving the number of observations

q either NULL, then the vector of critical values at level alpha will be computed
from a Monte-Carlo simulation, or a numeric giving the global quantile or a nu-
meric vector giving the vector of critical values. For more detailed information,
in particular of which length the numeric vector should be, see Section Com-
putation of critical values / global quantile. Either q or alpha must be given.
Otherwise, alpha == 0.5 is chosen with a warning. Please note that by default
the Monte-Carlo simulation will be saved in the workspace and on the file sys-
tem, for more details see Section Simulating, saving and loading of Monte-Carlo
simulations below

alpha a probability, i.e. a single numeric between 0 and 1, giving the significance
level. Its choice is a trade-off between data fit and parsimony of the estimator.
In other words, this argument balances the risks of missing change-points and
detecting additional artefacts. For more details on this choice see (Frick et al.,
2014, section 4) and (Pein et al., 2017, section 3.4). Either q or alpha must be
given. Otherwise, alpha == 0.5 is chosen with a warning

ng a positive integer larger than or equal to n giving the (increased) number of
observations for the Monte-Carlo simulation. See Section Simulating, saving
and loading of Monte-Carlo simulations for more details

family a string specifying the assumed parametric family, for more details see paramet-
ricFamily, currently "gauss”, "hsmuce” and "mDependentPS" are supported.
By default (NULL) "gauss” is assumed

intervalSystem a string giving the used interval system, either "all” for all intervals, "dyalLen”
for all intervals of dyadic length or "dyaPar” for the dyadic partition, for more
details see intervalSystem. By default (NULL) the default interval system of the
specified parametric family will be used, which one this will be is described in
parametricFamily

lengths an integer vector giving the set of lengths, i.e. only intervals of these lengths
will be considered. Note that not all lengths are possible for all interval sys-
tems and for all parametric families, see intervalSystem and parametricFamily,
respectively, to see which ones are allowed. By default (NULL) all lengths that
are possible for the specified intervalSystem and for the specified parametric
family will be used

non

penalty a string specifying how different scales will be balanced, either "sqrt”, "weights”,
"log" or "none”, see penalty and section 3.2 in the vignette for more details.
By default (NULL) the default penalty of the specified parametric family will be
used, which one this will be is described in parametricFamily

weights a numeric vector of length length(lengths) with only positive entries giving
the weights that will be used for penalty "weights”, see penalty and section
3.2.2 in the vignette for more details. By default (NULL) equal weights will be
used, i.e.

critVal

stat

output

options

Value

21

weights == rep(1 / length(lengths), length(lengths))

an object of class "MCSimulationVector” or "MCSimulationMaximum” giving
a Monte-Carlo simulations, usually computed by monteCarloSimulation. If
penalty == "weights"” only "MCSimulationVector” is allowed. Has to be
simulated for at least the given number of observations n and for the given
family, intervalSystemand if "MCSimulationMaximum” for the given lengths
and penalty. By default (NULL) the required simulation will be made available
automatically accordingly to the given options. For more details see Section
Simulating, saving and loading of Monte-Carlo simulations and section 3.4 in
the vignette

a positive integer giving the required number of Monte-Carlo simulations if they
will be simulated or loaded from the workspace or the file system

a string specifying the return value, if output == "vector” the vector of critical
values will be computed and if output == "value” the global quantile will be
computed. For penalty == "weights"” the output must be "vector”, since no
global quantile can be determined for this penalty

a list specifying how Monte-Carlo simulations will be simulated, saved and
loaded. For more details see Section Simulating, saving and loading of Monte-
Carlo simulations and section 3.4 in the vignette

there are two groups of further arguments:

o further parameters of the parametric family. Depending on the argument
family some might be required, but others might be optional, please see
parametricFamily for more details

* further arguments (seed, rand.gen and messages) that will be passed to
monteCarloSimulation. monteCarloSimulation will be called automat-
ically and most of the arguments will be set accordingly to the arguments of
critVal, no user interaction is required and possible for these parameters.
In addition, seed, rand. gen and messages can be passed by the user

If output == "vector” a numeric vector giving the vector of critical values, i.e. a vector of length
length(lengths), giving for each length the corresponding critical value. If output == "value”
a single numeric giving the global quantile. In both cases, additionally, an attribute "n" gives the
number of observations for which the Monte-Carlo simulation was performed.

Computation of critical values / global quantile

This function offers two ways to compute the resulting value:

* If g ==NULL it will be computed at significance level alpha from a Monte-Carlo simulation.
For penalties "sqrt”, "log" and "none” the global quantile will be the (1-alpha)-quantile of
the penalised multiscale statistic, see section 3.2.1 in the vignette. And if required the vector of
critical values will be derived from it. For penalty "weights" the vector of critical values will
be calculated accordingly to the given weights. The Monte-Carlo simulation can either be
given in stat or will be attempted to load or will be simulated. How Monte-Carlo simulations
are simulated, saved and loaded can be controlled by the argument option, for more details
see the Section Simulating, saving and loading of Monte-Carlo simulations.

22 critVal

e If g is given it will be derived from it. For the argument q either a single finite numeric
giving the global quantile or a vector of finite numerics giving the vector of critical values (not
allowed for output == "value") is possible:

— A single numeric giving the global quantile. If output == "vector” the vector of critical
values will be computed from it for the given lengths and penalty (penalty "weights”
is not allowed). Note that the global quantile is specific to the arguments family, intervalSystem,
lengths and penalty.
— A vector of length length(lengths), giving for each length the corresponding critical
value. This vector is identical to the vector of critical values.

— A vector of length n giving for each length 1:n the corresponding critical value.

— A vector of length equal to the number of all possible lengths for the given interval system
and the given parametric family giving for each possible length the corresponding critical
value.

Additionally, an attribute "n" giving the number of observations for which q was computed
is allowed. This attribute must be a single integer and equal to or larger than the argument
n which means that q must have been computed for at least n observations. This allows
additionally:

— A vector of length attr(q, "n") giving for each length 1:attr(qg, "n") the correspond-
ing critical value.

— A vector of length equal to the number of all possible lengths for the given interval system
and the given parametric family if the number of observations is attr(q, "n") giving for
each possible length the corresponding critical value.

The attribute "n" will be kept or set to n if missing.

Simulating, saving and loading of Monte-Carlo simulations

Since a Monte-Carlo simulation lasts potentially much longer (up to several hours or days if the
number of observations is in the millions) than the main calculations, this function offers multiple
possibilities for saving and loading the simulations. The simulation, saving and loading can be con-
trolled by the argument option. This argument has to be a 1ist or NULL and the following named
entries are allowed: "simulation”, "save”, "load”, "envir"” and "dirs”. All missing entries
will be set to their default option.

Objects of class "MCSimulationVector”, containing simulations of the multiscale vector of statis-
tics, and objects of class "MCSimulationMaximum”, containing simulations of the penalised multi-
scale statistic (for penalties "sqrt”, "log"” and "none"”), can be simulated, saved and loaded. Each
Monte-Carlo simulation is specific to the number of observations, the parametric family and the in-
terval system, for "MCSimulationMaximum” additionally to the set of lengths and the used penalty.
Both types will lead to the same result, however, an object of class "MCSimulationVector" is m