Package ‘quickcode’

April 6, 2024
Type Package
Title Quick and Essential 'R’ Tricks for Better Scripts
Version 0.8
Maintainer Obinna Obianom <idonshayo@gmail.com>

Description The NOT functions, 'R' tricks and a compilation of some simple quick plus of-
ten used 'R’ codes to improve your scripts. Improve the quality and reproducibilty of 'R’ scripts.

License MIT + file LICENSE
URL https://quickcode.obi.obianom.com

BugReports https://github.com/oobianom/quickcode
Depends R (> 3.6)

Imports utils, grDevices, stats, rstudioapi, tools, Polychrome,
fitdistrplus

Suggests rmarkdown, knitr, gpdf, testthat
Encoding UTF-8

VignetteBuilder knitr

Language en-US

LazyData false

RoxygenNote 7.2.3
Config/testthat/edition 3
NeedsCompilation no

Author Obinna Obianom [aut, cre],
Brice Richard [aut]

Repository CRAN
Date/Publication 2024-04-06 10:30:07 UTC

https://quickcode.obi.obianom.com
https://github.com/oobianom/quickcode

2 R topics documented:

R topics documented:

add.header L. e e 3
add.sect.comment L. L L L e e e e e e e 4
add.snippet.clear 4
add_key 5
ai.duplicate L e e e e e 6
archivedPkg e 7
as.boolean L e e e 8
bioniC tXt e e e e e e 10
clean L e e e e 11
compHist 13
data_pop e e e 15
data_pop_filter L e 16
data_push 16
data_rep e e 17
data_shuffle e 18
date3tol e 19
duplicate e e e 22
fAddDate e e 23
genRandImg 24
BEO.CV o v v v e i e e e e e e e e e e e 26
getGitRepoStart 27
has.error 28
headerrmd 29
INTANZE . . . v v v e e e e e e e e e e e e e e e e e e e 30
INC . . o e 31
NIt . . e e e e e e e e e e e 33
insertInTeXt e e e 34
ISAMAZE . . . o o o e e 34
isdognormal 36
libraryAll o e e e 40
list_push o e 41
list shuffle e 42
MINUS . . v vt o e 43
MIX.COIOT o o 44
MIX.COIS.DIW L e 45
multiply e e 46
NewSuperVar e e e e e e 47
not.data L e e e e e e e 50
not.duplicated L 51
NOLEMPLY .« . . o v ot e e e e e e e e e e e e e e e e e 52
NOLENVIIONMENT o vttt e e ettt e e e e e e e 52
NOLEXISLS o o e e e 53
NOLAMAZE .« . . o v vt v it e e e e e e e e e e e e e e e e e e 53
not.nherits e e e e e e e e e e e 55
NOLANEEZEr o o i e e 56

notdogical 56

add.header 3

1077 4 57
notnull . .o 58
NOLNUMETIC .« . . . v v v e ettt e e e e e e e e e e e e e e 58
NOLVECTOT .« v v v v v e et e e e e e e e e e e e 59
NUMDET oo e e e 59
pairDist . . . Lo 60
PlUS . . 61
randString L e 63
ICOIOTCONSE o o e e e e e e e e 63
rDecomPkg e 64
read.CSV.PIINE Lo e e e 65
read.table.print L. 67
refresh L e e e 71
sample_by_column L 72
SEtONCE e e e 73
strsplitbool L e 75
strsplitnumo L 76
SUMMATIZE.ENVOD] o . o o ot e e e e e e e e e 77
SWItCh_COIS e e 78
SWItCh_TOWS o o e e 79
VECIOT_POP v v v v e 80
vector_push 81
vector_shuffle 83
yesNoBool e 84
GoninToo e e e e e 85
Index 87
add.header Addin snippet function to add header comment to a current opened file
Description

Shorthand to add header comment

Usage

add.header ()

Value

Inserts header content for file

Examples

if(interactive())
add. header()

add.snippet.clear

add.sect.comment Addin snippet function to custom section comment

Description

Shorthand to add section comment to current file

Usage

add.sect.comment ()

Value

Inserts section comment content for file

Examples

if(interactive())
add.sect.comment()

add.snippet.clear Snippet R function to clear console and set directory

Description

Shorthand to add clear console code to current file

Usage

add.snippet.clear()

Value

Inserts code to clear console

Examples

if(interactive())
add. snippet.clear()

add_key 5

add_key Add index keys to a vector or data frame or list or matrix

Description

Index a vector or lists and convert to a list of objects

Usage

add_key(vector)

Arguments

vector vector or data frame to transform

Details

This function takes a vector and turns it into a list containing "key’ and ’value’ for each vector. This
allows the output to be used in loops such as for loops or lapply or other functions to track the index
of the list content e.g. 1,2,3...

This function also contains a validator to ensure that a vector had not been previously "keyed’,
which prevents the user from inadvertently calling the function twice on a vector. Helps especially
because the function keys the vector, and sets the new list to the variable name of the original vector.

Value

a transformed list containing keys along with vector values

Use case

Efficient for loops and for tracking various steps through a vector contents

Examples

#ex1 simple conversion of a vector

rti2 <- c("rpkg","obinna”, "obianom")
add_key(rti2)
rti2

#ex2 add keys to a vector content for use in downstream processes
verl <- c("Test 1","Test 2","Test 3")
add_key(ver1)

#ex3 use keyed ver1l in for loop
for(i in ver1){
message(sprintf("%s is the key for this %s”, ikey, ivalue))

6 ai.duplicate

}

#ex4 use keyed verl in lapply loop
x11 <- lapply(verl,function(i){

message(sprintf("lapply - %s is the key for this %s"”, ikey, ivalue))
»

ai.duplicate Prompt guided duplication if files

Description

Al like duplication and editing of files

Usage

ai.duplicate(file = NULL, new.name = NULL, open = TRUE)

Arguments
file file to duplicate
new.name OPTIONAL.name of new file
open open file after duplication
Value

duplicated files with edited texts

Examples

if(interactive()){

filels <- paste@(tempfile(),”.R")

writeLines("message(

'Sample items: farm, shinyappstore, rpkg'
", filels)

ai.duplicate(filels, 'file2.R")

3

archivedPkg 7

archivedPkg Listing of all CRAN archived R packages

Description

Retrieve a list of all currently archived R packages and their archive date

Usage
archivedPkg(
startsWith = c("all"”, letters),
after = NULL,
inc.date = TRUE,
as = c("data.frame”, "list")
)
Arguments
startsWith one letter that the package name starts with eg. a, e, f
after packages archived after a specific date eg. 2011-05-10
inc.date should archive date be included in the result
as return result as data frame or as list
Value

a data frame or list containing listing of all archived R packages

Use case

This function allows the retrieval of various R packages archived by CRAN along with the respec-
tive latest archive date. The packages retrieved include both active and inactive R projects submitted
to CRAN. When a new version of an active R package is published, the older versions of the pack-
age gets archived. In the same way, when a package is decommissioned from CRAN active projects
for one reason or another, it gets archived.

Note

* The "startsWith" argument should be one letter and should be in lowercase
* If no argument is provided for "startsWith", all the packages will be retrieved
* The format of the "after" argument must be YYYY-MM-DD e.g. 2022-04-11

8 as.boolean

Examples

Task 1: get archived R packages with names beginning with C or All
head(archivedPkg(startsWith = "all"”), n= 10) #retrieves all packages
head(archivedPkg(startsWith = "c"), n= 10) #retrieves only packages beginning with a

Task 2: return the packages from Task 1 without including latest archive date
res.dt2 <- archivedPkg(startsWith = "b", inc.date = FALSE)
res.dt2[1:10,]

Task 3: return the results from Task 2 as a list
res.dt3 <- archivedPkg(startsWith = "c", inc.date = FALSE, as = "list")
res.dt3$name[1:10]

res.dt3 <- archivedPkg(startsWith = "e", as = "list")
res.dt3$name[1:10]

Task 4: return the archived packages beginning with Y archived after 2022-08-12
Note that startsWith should be lowercase

#without archive date

YRPkg <- archivedPkg(startsWith = "y", after= NULL)
nrow(yRPkg) #number of rows returned

head(yRPkg, n = 15) #show first 15 rows

#with archive date

YRPkg2 <- archivedPkg(startsWith = "y", after= "2022-08-12")

nrow(yRPkg2) #number of rows returned

head(yRPkg2, n = 15) #show first 15 rows, notice no archive date before 2022-08-12

as.boolean Convert boolean values between formats

Description

Convert Yes/No to 1/0 or to TRUE/FALSE or vice versa

Usage

as.boolean(ds, type = 3)

Arguments

ds item to convert

type format to convert to, choices 1, 2 or 3

as.boolean 9

Details

Output various format of booleans into a specified format. Below are the options for the type
argument.

type: options are as follows -

1 - Yes/No
2 - TRUE/FALSE
3-1/0

Value

output adhering to the format of the type provided
Examples

Task: convert "yes" or "no" to format of TRUE or FALSE
as.boolean("yes",2)
as.boolean("no"”,2)
as.boolean("YES",2)
as.boolean("N0",2)

Task: convert "yes" or "no" to format of 1 or @
as.boolean("yes",3)
as.boolean("no"”, 3)
as.boolean("YES", 3)
as.boolean("N0",3)

Task: convert 1 to format of Yes or No
as.boolean(1,1)

Task: convert "T" to format of Yes or No
as.boolean("T",1)

Task: convert "f" to format of TRUE or FALSE
as.boolean("f",2)

Task: convert 1 to format of TRUE or FALSE
as.boolean(1,2)

non

Task: convert "Y" or "y" to format of Yes or No
as.boolean("Y",1) #uppercase Y
as.boolean("y"”,1) #lowercase y

Task: convert TRUE/FALSE to format of 1 or @

10 bionic_txt

as.boolean(TRUE, 3)
as.boolean(FALSE, 3)

Task: convert TRUE/FALSE to format of Yes or No
as.boolean(TRUE, 1)
as.boolean(FALSE, 1)

In case of error in argument
as.boolean("tr",3) #NA
as.boolean("ye",3) #NA

vector of mixed boolean to TRUE/FALSE or 1/0

multv <- c(TRUE,"y","n","YES","yes" FALSE,"f" 6 "F","T", "t")
as.boolean(multv,1) # return vector as Yes/No
as.boolean(multv,2) # return vector as TRUE/FALSE
as.boolean(multv,3) # return vector as 1/0

bionic_txt Generate a bionic text

Description

This function serves as a mechanism enabling the conversion of provided text into a bionic form.
Users input the text, and the function, in turn, delivers the text transformed into a bionic format.

Usage

bionic_txt(text)

Arguments

text input text

Details

A bionic text refers to a transformed version of a given text achieved through a specialized function
designed to incorporate elements of advanced technology, enhancing both the form and content of
the original input. This function operates by infusing the text with a fusion of various elements,
resulting in a synthesis that transcends traditional linguistic boundaries. The function augments
the text with dynamic visual representations that adapt to the reader’s preferences. The goal is to
create a text that not only conveys information but also engages the audience in a more immersive
and interactive manner, harnessing the capabilities of modern technology to redefine the traditional
concept of textual communication. An example of a bionic text could be a news article that dynam-
ically updates with real-time data, incorporates multimedia elements, and adjusts its presentation
style based on the reader’s preferences, thereby offering a more enriched and personalized reading
experience.

clean 11

Value

bionic text

References

This idea stems from a blog article published at https://www.r-bloggers.com/2023/10/little-useless-
useful-r-functions-function-for-faster-reading-with-bionic-reading/ and the original source for bionic
texts may be found at https://bionic-reading.com/

Examples

simple example to show a text
transformation to bionic text

text to transform

textl <- "A tool for nonparametric
estimation and inference

of a non-decreasing

monotone hazard\nratio

from a right censored survival dataset.”

transform text
genbt <- bionic_txt(textl)

print bionic text as message or cat
message(genbt)
cat(genbt)

clean Clear environment, clear console, set work directory and load files

Description

Shorthand to quickly clear console, clear environment, set working directory, load files

Usage

clean(setwd = NULL, source = c(), load = c(), clearPkgs = FALSE)

Arguments
setwd OPTIONAL. set working directory
source OPTIONAL. source in file(s)
load OPTIONAL. load in Rdata file(s)

clearPkgs Clear previous loaded packages, TRUE or FALSE

12 clean

Details

The purpose of this function is provide a one-line code to clear the console, clear the environment,
set working directory to a specified path, source in various files into the current file, and load
RData files into the current environment. The first process in the sequence of events is to clear the
environment. Then the working directory is set, prior to inclusion of various files and RData. With
the directory being set first, the path to the sourced in or RData files will not need to be appended
to the file name. See examples.

Value

cleared environment and set directory

Examples

if(interactive()){
#simply clear environment, clear console and devices
quickcode: :clean()

#clear combined with additional arguments
quickcode: :clean(
clearPkgs = FALSE
) #also clear all previously loaded packages if set to true

quickcode: :clean(
setwd = "/home/"
) #clear env and also set working directory

quickcode: :clean(
source = c("/home/filel1.R","file2")
) #clear environment and source two files into current document

quickcode: :clean(
setwd = "/home/",
source = c("filel”,"file2")
) #clear environment, set working directory and source 2 files into environment

quickcode: :clean(
setwd = "/home/",
source="filel.R",
load="obi.RData"
) #clear environment, set working directory, source files and load RData

}

compHist 13

compHist Compare histograms of two distributions

Description

For comparing histograms of two data distributions. Simply input the two distributions, and it
generates a clear and informative histogram that illustrates the differences between the data.

Usage

compHist(
x1,
X2,
title,
coll = "red",
col2 = "yellow”,
xlab = "",
ylab = "Frequency”,
separate = FALSE

)
Arguments
x1 NUMERIC. the first distribution
X2 NUMERIC. the second distribution
title CHARACTER. title of the histogram plot
coll CHARACTER. color fill for first distribution
col2 CHARACTER. color fill for second distribution
xlab CHARACTER. label of the x-axis
ylab CHARACTER. label of the y-axis
separate LOGICAL. whether to separate the plots
Details

Users have the option to view individual histograms for each distribution before initiating the com-
parison, allowing for a detailed examination of each dataset’s characteristics. This feature ensures
a comprehensive understanding of the data and enhances the user’s ability to interpret the results of
the distribution comparison provided by this function.

Value

return histogram comparison using basic histogram plot

14 compHist

Some recommended color pairs

coll =’dodgerblue4’ (and) col2 = ’darksalmon’
coll =’brown’ (and) col2 = beige’

coll =’pink’ (and) col2 = 'royalblue4’

coll =’red’ (and) col2 ="yellow’

coll =’limegreen’ (and) col2 = ’blue’

coll =’darkred’ (and) col2 = aquamarine4’
coll =’purple’ (and) col2 = "yellow’

Note

- Hexadecimal values can also be passed

in for coll and col2, see the example section - For best visual results,
coll should be a dark color and col2 should be passed as a light color.
For example, coll = "black", col2 = "yellow"

Examples

compare two normal distributions with means that differ a lot
in this case, the overlap will not be observed
set.seed(123)
compHist(
x1 = rnorm(1000, mean 3),
X2 = rnorm(1000, mean = 10),
title = "Histogram of Distributions With Means 3 & 10",
coll = "yellow”, col2 = "violet”

compare two normal distributions with means that are close
in this case, the overlap between the histograms will be observed
set.seed(123)
compHist(
x1 = rnorm(1000, mean = 0),
X2 = rnorm(1000, mean = 2),
title = "Histogram of rnorm Distributions With Means @ & 2",
coll = "lightslateblue”, col2 = "salmon”

set.seed(123)

separate the plots for preview

compHist(
x1 = rnorm(1000, mean = @),
X2 = rnorm(1000, mean = 2),
title = c("Plot Means 0", "Plot Means 2"),
coll = "#F96167", col2 = "#CCF381",
separate = TRUE

data_pop 15
data_pop Remove last n rows or column or specified elements from a data frame
like array_pop in PHP
Description

Shorthand to remove elements from a data frame and save as the same name

Usage

data_pop(., n =1, which = c("rows"”, "cols"), ret = FALSE)

Arguments

which

ret

Value

parent data
number of elements to remove
whether to remove from row or from column

TRUE or FALSE. whether to return value instead of setting it to the parent data

data with elements removed

Examples

data.@1 <- mtcars[1:7,]

#task: remove

data.o1 #data.
data_pop(data.
data.o1 #data.

#task: remove
data.o1 #data.
data_pop(data.
data.01 #data.

#task: remove
data.01 #data.
data_pop(data.
data.o1 #data.

1 element from the end of the data and set it to the data name
01 data before pop

Q1) #does not return anything

01 data updated after pop

3 columns from the end of the data and set it to the data name

@1 data before pop

01, n = 3, which = "cols") #does not return anything, but updates data
01 data updated after pop

5 elements from the end, but do not set it to the data name
01 data before pop

01,5, ret = TRUE) #return modified data

01 data remains the same after pop

16 data_push

data_pop_filter Remove elements from a data matching filter

Description

Shorthand to remove elements from a data frame based on filter and save as the same name

Usage

data_pop_filter(., remove)

Arguments
data object
remove expression for filter
Value

data filtered out based on the expression

Examples

this function removes rows matching the filter expression
data.@1 <- mtcars
data.@2 <- airquality

#task: remove all mpg > 20

data.01 #data.@1 data before pop

data_pop_filter(data.@1,mpg > 15) #computes and resaves to variable
#note: this is different from subset(data.@1,data.@1$mpg > 15)
data.01 #modified data after pop based on filter

#task: remove all multiple. remove all elements where Month == 5 or Solar.R > 50
data.02 #data.02 data before pop
data_pop_filter(data.@2,Month == 5 | Solar.R > 50) #computes and resaves to variable

data.02 #modified data after pop based on filter

data_push Add data to another data like array_push in PHP

Description

Shorthand to add data to a dataset and save as the same name

data_rep

Usage

data_push(., add, which = c("rows”, "cols"))

Arguments
first data set
add data set to add
which where to append the new data e.g. rows or cols
Value

the combined dataset store to a variable with the name of the first

Examples

initialize p1 and p2
init(p1,p2)

ol

p2

declare pl1 and p2 as data frame
pl <- data.frame(PK=1:10,ID2=1:10)
p2 <- data.frame(PK=11:20,ID2=21:30)

p1
P2

#add p1 to p2 by row, and resave as p1
data_push(p1,p2, "rows")

p2 # p2 remains the same

p1 #p1 has been updated

declare a new data frame called p3
p3 <- data.frame(Hindex=number (20),Rindex=number (20, seed=20))

add p3 to pl as column, and resave as pl
data_push(p1,p3,"cols")
p1 # pl1 has been updated

17

data_rep Duplicate a data rows or columns X times

Description

Add a data to itself X times by rows or columns

Usage

data_rep(., n, which = c("rows”, "cols"))

18

Arguments
data frame variable
n multiples of duplicate
which where to append the duplicated data e.g. rows or cols
Value

the duplicated dataset store to a variable with the name of the first

Examples

initialize p1 and p2
init(p1,p2)

p1

p2

declare pl1 and p2 as data frame
pl <- data.frame(PK=1:10,ID2=1:10)
p2 <- data.frame(PK=11:20,1ID2=21:30)

pl
p2

#add p1 twice by row, and resave as pl
data_rep(p1,n=2,"rows")
p1 #p1 has been updated

#add p2 3 times by col, and resave as p2
data_rep(p2,n=3,"cols")
p2 #p2 has been updated

data_shuffle

data_shuffle Shuffle a data frame just like shuffle in PHP

Description

Shorthand to shuffle a data frame and save

Usage

data_shuffle(., which = c("rows”, "cols"), seed = NULL)

Arguments

data to shuffle as data frame
which what to shuffle, rows or columns

seed apply seed if indicated for reproducibility

date3tol

Value

shuffled data frame of items store to the data frame name

Examples

df1<-data.frame(ID=46:55,PK=c(rep("Treatment”,5),rep(”"Placebo”,5)))

#illustrate basic functionality
data_shuffle(df1)
df1 #shuffle and resaved to variable

data.f2<-df1
data_shuffle(data.f2)
data.f2 #first output

data.f2<-df1
data_shuffle(data.f2)
data.f2 # different output from first output top

data.f2<-df1
data_shuffle(data.f2,seed
data.f2 #second output

344L)

data.f2<-df1
data_shuffle(data.f2,seed = 344L)
data.f2 #the same output as second output top

date3tol Combine vector to create Date, or split Date into vector

Description

Combine or split Date into a specified format

Usage

date3tol(data, out.format = "%Y-%m-%d", col.YMD = 1:3, as.vector = FALSE)

datelto3(
data,
in.format = "%Y-%m-%d",
date.col =1,
out.cols = c("%Y", "%m", "%d")
)

20 date3tol

Arguments
data data frame object
out.format date output format
col.YMD columns to combine for Year, Month and Day
as.vector return output as vector, or leave as data frame
in.format date input format
date.col numeric value of column within the dataset that contains the dates
out.cols cols to of date items to split. Make sure to conform to date formats. See "NOTE"
section for date formats
Details
NOTE for date3tol

The three input columns corresponding to "Year Month Day" must be numeric values.
For example, Do not provide the month variable as non-numeric such as "Mar", "Jul", or "Jan".

If the values of the columns are non-numeric, the results will return an "NA" in the output.date
column.

Value

date derived from combining values from three columns of a data frame

Note
DATE FORMATS IN R

Date Specification Description Example
Yoa Abbreviated weekday Sun, Thu
YA Full weekday Sunday
%b Abbreviated month May, Jul
%B Full month March, July
%d Day of the month 27,07
%j Day of the year 148, 188
Jom Month 05, 07
%U Week, with Sunday as first day 22,27
Jow Weekday, Sunday is 0 0,4
%W Week, with Monday as first day 21,27

Yox Date, locale-specific
Yoy Year without century 84, 05
%Y Year with century 1984, 2005
%C Century 19, 20
%D Date formatted %m/%d/%y 07/17/23

Jou Weekday, Monday is 1 7,4

date3tol 21

References

Adapted from Ecfun R package

Examples

EXAMPLES FOR date3tol

data@ <- data.frame(y=c(NA, -1, 2001:2009),
m=c(1:2, -1, NA, 13, 2, 12, 6:9),

d=c(0, 0:6, NA, -1, 32))

head(data®)

combine and convert to date
return as data frame
date3tol(data@)

combine and convert to date
return as vector
date3tol(data®@, as.vector = TRUE) #eg. 2004-02-04

combine and convert to date in the format DD_MM_YYYY
date3tol(data@, out.format = "%d_%m_%Y") #eg. 04_02_1974

combine and convert to date in the format MM_DD_YY
date3tol(data@, out.format = "%m_%d_%y") #eg. 02_04_74

combine and convert to date in the various date formats

date3tol(data@, out.format = "%B %d, %y") #eg. February 04, 74

date3tol(data®@, out.format = "%a, %b %d, %Y") #eg. Mon, Feb 04, 1974

date3tol(data®@, out.format "%A, %B %d, %Y") #eg. Monday, February 04, 1974
date3tol(data@, out.format = "Day %j in Year %Y") #eg. Day 035 in Year 1974
date3tol(data®@, out.format = "Week %U in %Y") #eg. Week 05 in 1974

date3tol(data@, out.format = "Numeric month %m in Year %Y") #eg. Numeric month @2 in Year 1974

EXAMPLES FOR datelto3

datal <- data.frame(Full.Dates =
c("2023-02-14" ,NA,NA,
"2002-12-04","1974-08-04",
"2008-11-10"))
head(datal)

split date with default settings

return as data frame with columns
for day(d), month(m) and year(Y)

datelto3(datal)

22 duplicate

split date in the format and only return year in YYYY
datelto3(datal, out.cols = "%Y") #eg. 2002, 2023

split date in the format and only return month in m
datelto3(datal, out.cols = "%m") #eg. 02, 12, 08

split date in the format and return multiple date formats colums
datelto3(datal, out.cols = c("%B","%d"))
datelto3(datal, out.cols = c("%a","%b","%y"))

datelto3(datal, out.cols = c("%A","%B","%Y","%y"))
datelto3(datal, out.cols = c("%3","%Y","%y","%m"))
datelto3(datal, out.cols = c("%U","%Y","%y","%x"))
datelto3(datal, out.cols = c("%m","%Y","%y","%C"))

duplicate Duplicate a file with global text replacement

Description

Shorthand to return a re-sample number of rows in a data frame by unique column

Usage

duplicate(file, new.name, pattern = NULL, replacement = NULL, open = TRUE)

Arguments
file data frame to re-sample
new.name column to uniquely re-sample
pattern number of rows to return
replacement unique numeric value for reproducibility
open description
Value

data frame containing re-sampled rows from an original data frame

Examples

if(interactive()){
example to duplicate a file, and replace textl within it
NOTE that, by default, this function will also open the file within RStudio

fAddDate

#create sample file

filels <- paste@(tempfile(),”.R")

writeLines("message(

'Sample items: eggs, coke, fanta, book'
", filels)

file2s <- paste@(tempfile(),”.R")
file3s <- paste@(tempfile(),”.R")

duplicate(
file = filels,
new.name = file2s,
pattern = 'textl1',
replacement = 'replacementl’

)

duplicate the file, with multiple replacements
replace 'book' with 'egg' and 'coke' with 'fanta'
duplicate(

filels, file2s,

pattern = c('book', 'coke'),

replacement = c('egg', 'fanta')

)

duplicate the file with no replacement
duplicate(filels,file3s) # this simply performs file.copy, and opens the new file

duplicate the file but do not open for editing
duplicate(filels,file3s, open = FALSE) # this does not open file after duplication
3

fAddDate Append date to filename

Description

Add today’s date to the filename

Usage

fAddDate(..., format = "%d-%b-%Y")

Arguments

file name or path to concat

format time format e.g. %d-%b-%Y , refer to date3tol for date formats

24 genRandImg

Details

The present function enables users to add the current date to the file name, facilitating the straight-
forward saving of files with their respective dates. It accepts different file paths and names as
arguments, as demonstrated in the example section. This functionality simplifies the process of
associating a file’s creation date with its name, aiding users in recalling when a file was saved.
Moreover, it serves as a preventive measure against unintentional overwriting of files created on
different dates.

Value

file name with the current date added as suffix
Examples

Task 1
fAddDate("path1/","path2/filepre”,"filemid”,"fileend.png")

Task 2
fAddDate(c("path1/","path2/"),"filepre”,"filemid"”, "fileend.png")

Task 3
fAddDate("one_file_name_fileend.pdf")

Task 4
fAddDate(c("path1/","path2/"),"filepre”,"filemid",c("fileend.png”,".pdf"))

genRandImg Download random images from the web

Description

Generate n number of high-definition images by category from the web

Usage
genRandImg(
fp,
cat = imageCategories,
n=1,
w.px = 500,
h.px = 500,
eXt = “jpg“ ’

paths = FALSE

genRandImg 25

Arguments
fp CHARACTER. storage directory
cat CHARACTER. category of image to download
n NUMERIC. number of images to download, maximum n is 99
W. pX NUMERIC. width in pixels
h.px NUMERIC. height in pixels
ext CHARACTER. file extension eg jpg, png
paths logical. whether to return paths
Value

downloaded image from a select image category

Sources & References

The random images are downloaded from www.unsplash.com

Category Choices

Categories for ’cat’ argument include "3D", "animals", "architecture", "backgrounds", "beauty",
" n n "

"experimental", "fashion", "film", "food", "interior", "nature",
"travel", "unsplash", "wallpapers".

non non

people"”, "renders", "school", "sports",

Image categories can be captured in a separate vector as a cross-reference made available to the
cat argument.
For example:
imgcat= c("3D", "animals", "architecture", "backgrounds", "beauty", "experimental"”, "fashion",
"film", "food", "interior", "nature", "people”, "renders", "school", "sports", "travel", "unsplash",
"wallpapers")

genRandImg(fp, cat = imgcat[9], n = 5)

Use case

This functionality is great for developers trying to obtain one or more images for use in dis-
plays/analysis or simply to build robust web applications.

Examples

download 2 image from the nature category
genRandImg(fp = tempdir(),cat = "nature”, n = 2)

download 4 random images with width = 6@0px and hight 100px

genRandImg(
fp = tempdir(),
cat = "fashion"”,

w.px = 600,

26 geo.cv

h.px = 100)

download 10 random images with extension png
genRandImg(fp = tempdir(),cat = "food", n = 10, ext = "png")

download 200 random images from category of school
Note that maximum download is 99, so the function will only download 99
genRandImg(fp = tempdir(),cat = "school”, n = 200)

download 5 random images with extension jif and return paths
genRandImg(fp = tempdir(),cat = "beauty”, n = 5, ext = "jif", paths = TRUE)

geo.cv Calculate geometric coefficient of variation, mean, or SD and round

Description

Calculate the coefficient of variation
Calculate the geometric mean

Calculate the geometric standard deviation

Usage
geo.cv(num, round = 2, na.rm = TRUE, neg.rm = TRUE, pct = TRUE)
geo.mean(num, round = 2, na.rm = TRUE, neg.rm = TRUE)

geo.sd(num, round = 2, na.rm = TRUE, neg.rm = TRUE)

Arguments

num vector of numbers

round round result to decimal place

na.rm remove NAs from the vector

neg.rm remove negative values from the vector

pct TRUE or FALSE. should result be in percent
Value

the geometric cv of a set of numbers
the geometric mean of a set of numbers

the geometric standard deviation of a set of numbers

getGitRepoStart 27

Examples

#simulate numbers using a fixed seed
numl <- number(n = 1115,max.digits = 4, seed = 10)

#get geometric CV, represent as percent and round to 2 decimal places
geo.cv(numl,round = 2) # result: 60.61%

#or round to 3 decimal places
geo.cv(numl,round = 3) # result: 60.609%

#by default, the above examples return a CV%
#if you do not want the result as percentage, specify "pct”
geo.cv(numl,pct = FALSE) # result: 0.61

numl <- sample(300:3000,10)

#get the geometric mean, excluding all negatives and round to 2
geo.mean(numl)

#or

geo.mean(numl)

#get geometric mean, but round the final value to 5 decimal places
geo.mean(numl, round = 5)

numl <- sample(330:400,20)

#get geometric SD remove negative values and round to 2 decimal places
geo.sd(numl)

#get geometric SD, DON'T remove negative values and round to 2 decimal places
geo.sd(numl,na.rm=FALSE)

#get geometric SD, remove negative values and round to 3 decimal places
geo.sd(numl,round = 3)

getGitRepoStart Fetch GitHub Repository Creation & Last Updated Date

Description

The GitHub REST API is a powerful tool that allows developers to interact with GitHub program-
matically. It provides a set of endpoints that allows a user to create integration, retrieve data, and
automate workflows related to GitHub repositories. It is a means by which users can interact with
GitHub without directly using a web interface.

28 has.error

Usage

getGitRepoStart(repo_name, out.format = "%Y-%m-%d")

getGitRepoChange(repo_name, out.format = "%Y-%m-%d")

Arguments
repo_name name of the repository
out.format date output format
Details

The two functions utilize the GitHub REST API to extract important temporal information about a
GitHub repository.

- the getGitRepoStart function is used to retrieve the date a GitHub repository was first created.

- the getGitRepoChange function retrieves the date a GitHub repository was last updated.

Value

date of creation of repository as a character

date of the last update of repository as a character

Examples

Use default date format
getGitRepoStart(repo_name = "oobianom/quickcode")

Specify date format
getGitRepoStart(repo_name = "oobianom/quickcode”, out.format = "%j|%Y")
getGitRepoStart(repo_name = "oobianom/quickcode”, out.format = "%D|%j")

getGitRepoChange(repo_name = "oobianom/shinyStorePlus”, out.format = "%d-%b-%Y")

getGitRepoChange(repo_name = "oobianom/r2social”, out.format = "%Y/%m/%d")
has.error Check if a call or expression produces errors
Description

Whether a function or series of calls results in error

Usage

has.error(...)

header.rmd 29

Arguments

the expression or function calls

Value

boolean value to indicate if the expression produces errors

Note

More information, check: https://rpkg.net/package/quickcode

Examples

this should not produce error
so the function result should be FALSE
has.error({

x =8

y = number(10)

res = x +y

b

this should produce the following error

Error in x + y : non-numeric argument to binary operator
so the function result should be TRUE

has.error({

x =8

y = "random”

res = x +y
b

this should result in error because

the dataset does not contain a "rpkg.net” column
the result should be TRUE

df1 = mtcars

has.error(df1[, "rpkg.net"])

header.rmd Snippet function to add header to a current Rmd opened file

Description

Shorthand to add Rmd header

Usage
header.rmd()

30

Value

in.range

Inserts header content for Rmd file

Examples

if(interactive())

header.rmd()

in.range

If number falls within a range of values and get closest values

Description

With a defined range of values, the function systematically examines each provided number to
determine if it falls within the specified range. It may also provide the values with the range that
are closest to a desired number.

Usage

in.range(
value,
range.min,
range.max,

range.vec = NULL,
closest = FALSE,

rm.na = FALSE

Arguments

value
range.min
range.max
range.vec
closest

rm.na

Details

NUMERIC. the vector of numbers to check

NUMERIC. OPTIONAL. the minimum value of the range
NUMERIC. OPTIONAL. the maximum value of the range
NUMERIC. OPTIONAL. a vector of numbers to use for the range
BOOLEAN. OPTIONAL. return closest value

BOOLEAN. OPTIONAL. remove NA values from input

The described function serves the purpose of checking whether a given number or set of numbers
falls within a specified range. It operates by taking a range of values as input and then systematically
evaluates each provided number to determine if it lies within the defined range. This function proves
particularly useful for scenarios where there is a need to assess numeric values against predefined
boundaries, ensuring they meet specific criteria or constraints. In the same manner, this function
allows the user to also retrieve values within the range that are closest to each provided number.

inc 31

Value

boolean to indicate if the value or set of values are within the range

Note

The argument range.vec is utilized when users opt not to employ the range.min or range.max argu-
ments. If range.vec is specified, range.min and range.max are disregarded. It’s important to note
that the use of range.vec is optional.

Examples

Task 1: Check if a number is within specified range
in.range(5, range.min = 3, range.max = 10) # TRUE
in.range(25, range.min = 12, range.max = 20) # FALSE

Task 2: Check if a set of values are within a specified range
in.range(1:5, range.min = 2, range.max = 7) #
in.range(50:60, range.min = 16, range.max = 27) #

Task 3: Check if a number is within the range of a set of numbers
in.range(5, range.vec = 1:10) # TRUE

in.range(345, range.vec = c(1001,1002,1003,1004,1005,
1006,1007,1008,1009,1010,1011,1012,1013,1014)) # FALSE

Task 4: Check if a set of values are within the range of a set of numbers
in.range(1:5, range.vec = 4:19) #
in.range(50:60, range.vec = c(55,33,22,56,75,213,120)) #

Task 5: remove NAs prior to processing

in.range(c(1,3,NA,3,4,NA,8), range.min = 4, range.max = 6, rm.na = FALSE) # do not remove NA
in.range(c(1,3,NA,3,4,NA,8), range.min = 4, range.max = 6, rm.na = TRUE) # remove NA
#in.range(c(NA), range.min = 4, range.max = 6, rm.na = TRUE) #This will return error

Task 6: return the closest number to the value

in.range(5:23, range.vec = 7:19, closest = TRUE)

in.range(-5:10, range.vec = -2:19, closest = TRUE)
in.range(c(1:5,NA,6:9), range.vec = 4:19, closest = TRUE)
in.range(c(1:5,NA,6:9), range.vec = 4:19, closest = TRUE, rm.na = TRUE)

inc Increment vector by value

Description

Increment the content of a vector and re-save as the vector

32 inc

Usage
inc(., add = 1L)

Arguments
vector of number(s)
add number to add
Details

This function is very useful when writing complex codes involving loops. Apart from the for loop,
this can be useful to quickly increment a variable located outside the loop by simply incrementing
the variable by 1 or other numbers. Check in the example section for a specific use. Nonetheless,
one may also choose to use this function in any other instance, as it’s simple purpose is to increase
the value of a variable by a number and then re-save the new value to that variable.

Value

a vector incremented by a number

Examples

numl <- sample(330:400,10)
numl#before increment

increment numl by 1
inc(num1)
numl #after increment

increment numl by 5
numl #before increment
inc(numl, add= 10)

numl #after increment

#when used in loops

#add and compare directly

rnum = 10

inc(rnum) == 11 #returns TRUE

rnum #the variable was also updated

use in a for loop

ynum = 1

for(i in c("scientist"”,"dancer”,"handyman”,"pharmacist")){
message("This is the item number ")

message (ynum)

message(”. For this item, I am a ")

message (i)

#decrement easily at each turn
plus(ynum)

init 33
3
#fuse in a repeat loop
xnum = 1
repeat{ #repeat until xnum is 15
message (xnum)
if(inc(xnum) == 15) break
3
init Initialize new variables and objects
Description
Shorthand to initialize one or more objects
Usage
init(..., value = NULL)
Arguments
variable names to initialize
value value to initialize them to
Value
initialized objects set to the value specified
Examples

init(t,u,v)
message(t) # t = NULL
message(u) # u = NULL
message(v) # v = NULL
init(j,k,m,value = 7)
message(j) # j =
message(k) # k
message(m) # m

1l
~N N

34

is.image

insertInText Shiny app function to insert string to current file in RStudio

Description

Shorthand to insert content to opened file

Usage

insertInText(string)
Arguments

string what to insert
Value

Inserts into current position on opened file

Examples

if(interactive()){
insertInText('hello rpkg.net')
insertInText('hello world"')

}

is.image Is file name extension(s) an image

Description

Check if one or multiple file name entry is an image

Usage

is.image(x)

Arguments

X vector entry

is.image 35

Details

This current function tests if the extension of the file name provided belongs to any of the image
extensions listed below

Al - Adobe Illustrator

BMP - Bitmap Image

CDR - Corel Draw Picture

CGM - Computer Graphics Metafile

CR2 - Canon Raw Version 2

CRW - Canon Raw

CUR - Cursor Image

DNG - Digital Negative

EPS - Encapsulated PostScript

FPX - FlashPix

GIF - Graphics Interchange Format

HEIC - High-Efficiency Image File Format
HEIF - High-Efficiency Image File Format
ICO - Icon Image

IMG - GEM Raster Graphics

JFIF - JPEG File Interchange Format
JPEG - Joint Photographic Experts Group
JPG - Joint Photographic Experts Group
MAC - MacPaint Image

NEEF - Nikon Electronic Format

OREF - Olympus Raw Format

PCD - Photo CD

PCX - Paintbrush Bitmap Image

PNG - Portable Network Graphics

PSD - Adobe Photoshop Document

SR2 - Sony Raw Version 2

SVG - Scalable Vector Graphics

TIF - Tagged Image File

TIFF - Tagged Image File Format

WebP - Web Picture Format

WMF - Windows Metafile

WPG - WordPerfect Graphics

Value

a boolean value to indicate if entry is an image

Examples

img.1 <- "fjk.jpg"
is.image(img.1)

img.0 <- "fjk.bbVG"
is.image(img.0Q)

img.2 <- "fjk.bmp”

36

is.lognormal

is.image(img.2)

img.3 <- "fjk.SVG"
is.image(img.3)

a vector of file names

v <- c("logo.png"”, "business process.pdf"”,
"front_cover. jpg", "intro.docx",
"financial_future.doc”, "2022 buybacks.xlsx")

is.image(v)

when the file name has no extension

the function returns NA

v2 <- c("img2.jpg", "northbound.x1lsx","landimg" ,NA)
is.image(v2)

is.lognormal Check if a data fits the distribution

Description

Check whether a vector of data contains values that fit a distribution

Usage

is.lognormal (values, alpha = 0.05, method = 1)

is.normal(values, alpha = 0.05, method = 1)

is.uniform(values, alpha = 0.05)

0.05)

is.poisson(values, alpha
is.gamma(values, alpha = 0.05)
is.logistic(values, alpha = 0.05)
is.weibull(values, alpha = 0.05)
is.cauchy(values, alpha = 0.05)
setDisAlpha(alpha = 0.05)

unsetDisAlpha()

is.lognormal 37

Arguments
values vector of values
alpha significance level to test p-value against
method method for calculation, where 1 = Shapiro-Wilk test and 2 = Kolmogorov-
Smirnov test
Details

This function takes a numeric vector as its input. This vector contains the dataset that will be ana-
lyzed.

For Normal and LogNormal:

- Method 1: we perform the Shapiro-Wilk test on the (log-transformed) data to test for normal-
ity. The null hypothesis of the Shapiro-Wilk test is that the data are normally distributed. If the
p-value is greater than the chosen significance level (typically 0.05), we fail to reject the null hy-
pothesis, indicating that the data may follow a log-normal distribution.

- Method 2: we perform the Kolmogorov-Smirnov test on the log-transformed data, comparing
it to a normal distribution with the same mean and standard deviation. Again, if the p-value is
greater than the chosen significance level, it suggests that the data may follow a log-normal dis-
tribution. These tests provide a statistical assessment of whether your data follows a log-normal
distribution.

Value

boolean value if lognormal distributed

boolean value if normal distributed

boolean value if uniform distributed

boolean value if poisson distributed

boolean value if gamma distributed

boolean value if logistic distributed

boolean value if logistic distributed

boolean value if cauchy distributed

setDisAlpha sets global significance level for testing of distribution

unsetDisAlpha removes global significance level for testing of distribution

Examples

Set global alpha for testing significance
setDisAlpha(alpha = 0.05)

Prepare all data to test

Set the seed for reproducibility

set.seed(13200323)

lognormal_data <- stats::rlnorm(n = 4000, meanlog = 1, sdlog = 1) #lognormal data

38

is.lognormal

normal_data <- stats::rnorm(n = 4000, mean = 10, sd = 3) #normal data
uniform_data <- stats::runif(4000,min=0,max=10) #uniform data

poisson_data <- stats::rpois(4000, lambda = 5) #poisson data

gamma_data <- stats::rgamma(4000,shape = 5, rate = 2) #gamma data
logis_data <- stats::rlogis(4000, location = 4, scale = 2)#logistic values
weibull_data <- stats::rweibull(4000, shape = 4, scale = 2) #weibull data
cauchy_data <- stats::rcauchy(4000, location = 8, scale = 5) #cauchy data

EXAMPLE FOR is.lognormal

Test if the data is lognormal
is.lognormal (lognormal_data)
is.lognormal(normal_data)
is.lognormal (uniform_data)
is.lognormal (poisson_data)
is.lognormal (gamma_data)
is.lognormal (logis_data)
is.lognormal (weibull_data)
is.lognormal (cauchy_data)
is.lognormal (1:4000)

EXAMPLE FOR is.normal

Test if the data fits a normal distribution
is.normal(lognormal_data)
is.normal(normal_data)
is.normal(uniform_data)
is.normal(poisson_data)

is.normal (gamma_data)

is.normal(logis_data)

is.normal(weibull_data)
is.normal(cauchy_data)

is.normal(1:4000)

Not run:
EXAMPLES for is.uniform

Test if the data fits a uniform distribution
is.uniform(lognormal_data)
is.uniform(normal_data)
is.uniform(uniform_data)
is.uniform(poisson_data)
is.uniform(gamma_data)

is.uniform(logis_data)
is.uniform(weibull_data)
is.uniform(cauchy_data)

is.uniform(1:4000)

End(Not run)
Not run:
EXAMPLE for is.poisson

Test if the data fits a poisson distribution

is.lognormal

is.poisson(lognormal_data)
is.poisson(normal_data)
is.poisson(uniform_data)
is.poisson(poisson_data)
is.poisson(gamma_data)
is.poisson(logis_data)
is.poisson(weibull_data)
is.poisson(cauchy_data)
is.poisson(1:4000)

End(Not run)
Not run:
EXAMPLE for is.gamma

Test if the data fits a gamma distribution
is.gamma(lognormal_data)
is.gamma(normal_data)

is.gamma(uniform_data)
is.gamma(poisson_data)

is.gamma(gamma_data)

is.gamma(logis_data)

is.gamma(weibull_data)

is.gamma(cauchy_data)

is.gamma(1:4000)

End(Not run)
Not run:
EXAMPLE for is.logistic

Test if the data fits a logistic distribution
is.logistic(lognormal_data)
is.logistic(normal_data)
is.logistic(uniform_data)
is.logistic(poisson_data)
is.logistic(gamma_data)

is.logistic(logis_data)
is.logistic(weibull_data)
is.logistic(cauchy_data)

is.logistic(1:4000)

End(Not run)

Not run:

Test if the data fits a weibull distribution
is.weibull(lognormal_data)
is.weibull(normal_data)
is.weibull(uniform_data)
is.weibull(poisson_data)
is.weibull(gamma_data)
is.weibull(logis_data)
is.weibull(weibull_data)
is.weibull(cauchy_data)
is.weibull(1:4000)

40 libraryAll

End(Not run)
Not run:
EXAMPLES for is.cauchy

Test if the data fits a cauchy distribution
is.cauchy(lognormal_data)
is.cauchy(normal_data)
is.cauchy(uniform_data)
is.cauchy(poisson_data)

is.cauchy(gamma_data)

is.cauchy(logis_data)

is.cauchy(weibull_data)
is.cauchy(cauchy_data)

is.cauchy(1:4000)

End(Not run)
Not run:
set global distribution alpha

default setting
setDisAlpha()

set to 0.001
setDisAlpha(alpha = 0.01)

End(Not run)
Not run:
unset global distribution alpha

unsetDisAlpha()

End(Not run)

libraryAll Load specific R libraries and clear environment

Description

Load specific packages, print a list of the loaded packages along with versions. Only include li-
braries, don’t install if library doesn’t exist

Usage

libraryAll(..., lib.loc = NULL, quietly = FALSE, clear = TRUE)
Arguments

e multiple library names

lib.loc OPTIONAL. library store location

quietly OPTIONAL. attach library quietly

clear OPTIONAL. clear environment after attach

list_push

Value

loaded libraries and clear environment

Examples

libraryAll(base) #one package

libraryAll(
base,
tools,
stats
) #multiple packages

libraryAll("grDevices") #with quotes

libraryAll(
stats,
utils,
quietly = TRUE
) #load quietly

libraryAll(
base,
clear = FALSE) #do not clear console after load

list_push Add elements to a list like array_push in PHP

Description

Shorthand to add elements to a vector and save as the same name

Usage
list_push(., add)

Arguments
first list
add list to add
Value

vector combining fist and second vector, but have name set to the first

42 list_shuffle
Examples
numl <- list(sample(330:400,10))
num2 <-list("rpkg.net")
list_push(numl, add= num2)
list_shuffle Shuffle a list object just like shuffle in PHP
Description

Shorthand to shuffle a list and save

Usage
list_shuffle(., seed = NULL)

Arguments
list to shuffle
seed apply seed if indicated for reproducibility
Value

shuffled list of items store to the list name

Examples

list@o1 <- list("a” = 1:5,

"b" = letters[1:5],

c = LETTERS[1:1@],

"2" = number(5,5),

"e" = randString(5,5))
1list001 #show initial list

#illustrate basic functionality
list_shuffle(1ist@01)
1list@@1 #shuffle and resaved to variable

list.f2<-1ist001
list_shuffle(list.f2)
list.f2 #first output

list.f2<-1ist@01
list_shuffle(list.f2)
list.f2 # different output from first output top

list.f2<-1iste01
list_shuffle(list.f2,seed = 344L)
list.f2 #second output

minus 43

list.f2<-1ist@01
list_shuffle(list.f2,seed = 344L)
list.f2 #the same output as second output top

minus Decrease vector by value

Description

decrease the content of a vector and re-save as the vector

Usage
minus(., minus = 1L)
Arguments
vector of number(s)
minus number to minus
Details

Similar to the inc and plus functions, the minus function is very useful when writing complex codes
involving loops. Apart from the for loop, minus can be useful to quickly decrease the value of a
variable located outside the loop by simply decreement the variable by 1 or other numbers. Check
in the example section for a specific use. Given the scope, one may also choose to use this function
in any other instances, as it’s simple purpose is to decrease the value of a variable by a number and
then re-save the new value to that variable.

Value

a vector decreased by a number

Examples

numl <- sample(5:150,10)
num1

decrease numl by 1

numl #before decrease
minus(numl)

numl #after decrease

decrease numl by 5
numl #before decrease
minus(numl, minus = 5)
numl #after decrease

44 mix.color

#when used in loops

#add and compare directly

rnum = 23

minus(rnum) == 220 #returns FALSE
rnum #the variable was also updated

use in a for loop

ynum = 100

for(i in c("teacher”,”student"”,"lawyer”, "pharmacist”)){
message("This is the item number ")

message (ynum)

message(”. For this item, I am a ")

message (i)

#decrement easily at each turn
minus(ynum,3)

}

#use in a repeat loop

xnum = 100

repeat{ #repeat until xnum is 85
message (xnum)

if(minus(xnum) == 85) break

3

mix.color Mix or Blend two or more colors

Description

Combine colors to generate a new color

Usage

mix.color(color, type = 2, alpha = 1)

Arguments
color CHARACTER. color vector e.g see example
type NUMERIC. return type of the output

alpha NUMERIC. alpha or opacity of the resulting color

mix.cols.btw

Value

hex for the combined color

Examples

color vector
colvec <- c("red”, "blue”, "violet”, "green", "#ff0066")

just one color
mix.color(colvec[1], type = 1, alpha = 1)

add two colors
mix.color(colvec[1:2], type = 1, alpha = 1)

add three colors
mix.color(colvec[1:3], type = 1, alpha = 1)
return type = 2

just one color
mix.color(colvec[1], type = 2, alpha = 1)

add two colors
mix.color(colvec[1:2], type = 2, alpha = 1)

add three colors
mix.color(colvec[1:3], type = 2, alpha = 1)
opacity or alpha 0.5

just one color
mix.color(colvec[1], type = 1, alpha = 0.5)

add two colors
mix.color(colvec[1:2], type = 1, alpha = 0.5)

add three colors
mix.color(colvec[1:3], type = 1, alpha = 0.5)

add all colors
mix.color(colvec, type = 1, alpha = 0.5)

mix.cols.btw Mix or Blend colors between two or more colors

Description

Mix or blend multiple colors between two colors

46 multiply

Usage

mix.cols.btw(colors, max = 20, alpha = 1, preview = FALSE)

Arguments
colors the vector of two colors
max maximum number of colors to blend between
alpha alpha for the new color blends
preview LOGICAL. preview all color generated
Value

color hex for all generated colors

Examples

simply mix/blend two colors
mix.cols.btw(c("red”, "brown™))

simply mix/blend two colors, maximum number of colors at the end
mix.cols.btw(c("red”,"brown”), max = 8)

simply mix/blend two colors with alpha=0.2 (opacity=0.2)
mix.cols.btw(c("yellow”,"green"),alpha = 0.2)

also preview after mixing the two colors
mix.cols.btw(c("red”,"green"), preview = TRUE)

non

mix.cols.btw(c("blue”,"violet"),alpha = 0.2, preview = TRUE)

non non

mix.cols.btw(c("red”,"purple”,"yellow”,"gray"), preview = TRUE)

non non

mix.cols.btw(c("red”,"purple”,"yellow”,"gray"),alpha = 0.2, preview = TRUE)

multiply Multiple a vector of numeric values

Description

Multiple all the content of a vector

Usage
multiply(...)

Arguments

the numeric values to multiply

newSuperVar

Value

multiple of all content

Examples

multiply 1 number
returns error
multiply(@)

vector of numbers
numvec <- number(10, max.digits = 3)
numvec

multiply 2 numbers
multiply(numvec[1:2])
multiply(numvec[4], numvec[5])
multiply(a = 4, b = 5)

multiply 5 numbers

multiply(numvec[1:5])

multiply(11, 15, 12, 14, 13)

multiply(a = 4, b =22, ¢ =44, d =9, u=10)

47

newSuperVar Create and use a super variable with unique capabilities

Description

Create a variable that supersedes other variables and has various functionalities

Usage
newSuperVar(variable, value = OL, lock = FALSE, editn = NULL)

Arguments
variable variable name for super variable
value value of the variable
lock lock variable to change
editn number of times the super variable may be set to a new value using .set().
- Set to NULL to allow unlimited value change
- Set to O to prevent editing the super variable
Value

no visible return, but variable is created and stored with various functionalities

48 newSuperVar

Note

What you should know about the functionality:

This function ensures that a variable is created and may not easily be altered. It helps preserve
the original variable by providing only limited access to the variable.

Creation of this super variable automatically attached some key functions to it, such that the user is
able to call the function like .set(), .rm().

Super variable value may be set from any scope using the .set() function, which means that it
is granted global variable features without being present within the global environment of the cur-
rent section.

The variable name of the super variable may be overwritten in the local environment, but this would
not alter the super variable. It means that once the local variable is removed, the super variable
remains available for use.

Use cases:

- Preserve originality of variable within an R session. Avoid inadvertent deletion.

- Widely accessible from any scope e.g functions, lapply, loops, local environment etc
- Restricted mutability of variable using set function e.g varname . set ()

- Variable with easy function calls by attaching °.’

- Variable with un-mutable class when changing its value

- Variable with restricted number of times it can be changed

Examples

Task: create a super variable to

store dataset that should not be altered

newSuperVar(mtdf, value = austres) # create a super variable

head(mtdf) # view it

mtdf.class # view the store class of the variable, it cannot be changed

it means that when the super variable is edited, the new value MUST have the same class "ts"

create and lock super variable by default

extra security to prevent changing
newSuperVar(mtdf3, value = beaverl, lock = TRUE)
head(mtdf3) # view

mtdf3.round(1) # round to 1 decimal places
head(mtdf3) # view

newSuper Var 49

mtdf3.signif(2) # round to 2 significant digits
head(mtdf3) # view

Task: create a new super variable to store numbers
edit the numbers from various scopes

newSuperVar (edtvec, value = number(5))

edtvec # view content of the vector

edtvec.set(letters) #ERROR: Cannot set to value with different class than initial value

edtvec.set(number(20)) # set to new numbers
edtvec # view output

for (pu in 1:8) {
print(edtvec) # view output within loop
edtvec.set(number(pu)) # set to new numbers within for loop

}

lc <~ lapply(1:8, function(pu) {
print(edtvec) # view output within loop
edtvec.set(number(pu)) # set to new numbers within lapply loop

b

see that the above changed the super variable easily.
local variable will not be altered by the loop

example
bim <- 198
lc <~ lapply(1:8, function(j) {
print(bim)
bim <- j # will not alter the value of bim in next round
»

Task: create and search data.frame

create a new super variable with value as mtcars

search if it contains the numeric value 21

newSuperVar(lon2, value = mtcars) # declares lon2

lon2 # view content of lon2

lon2.contains("21.0") # WRONG - since df.col is not specific,

only the first column is search for the character "21.0"
lon2.contains(”21.0", df.col = "mpg") # WRONG - searches mpg column
for the character "21.0"

lon2.contains(21.0, df.col = "mpg"”) # CORRECT - search mpg column for the
numeric value 21.0

remove lon2 as a super variable
exists("lon2") # before removal
lon2.rm()

exists("”lon2") # after removal

Task: create and search vector
create a new super variable with value as 10 random numbers
search if it contains the numeric value 72

50 not.data

newSuperVar(lon3, value = number(10, seed = 12)) # declares lon3

lon3 # view content of lon3

lon3.contains(72) # should give TRUE or false if the vector contains the value 45
lon3.contains(72, fixed = TRUE) # should give TRUE or false if the vector contains the value 45

remove lon3 as a super variable
lon3.rm()

#Task: create a super variable that can only be edited 3 times
newSuperVar(man1, value = number(5), editn = 3)
man1 # view value

man1.set(number(10)) # change value first time
manl # view value

man1.set(number(2)) # change value second time
man1 # view value

man1.set(number(1)) # change value third time
manl # view value

man1.set(number(5)) # change value forth time,
should not change because max change times exceeded
man1 # view value

not.data Not a data

Description

Opposite of is.data.frame(). Check if entry is not a data object

Usage

not.data(x)

Arguments

X vector entry

Value

a boolean value to indicate if entry is a data table

not.duplicated 51

Examples

test.dt <- data.frame(ID=1:200,Type="RPKG.net")
test.notenv <- list(t=1)

is.data.frame(test.dt) # TRUE
not.data(test.dt) # FALSE

not.data(test.notenv) # TRUE
if(not.data(test.dt)) message("yes"”) # NULL

not.duplicated Not duplicated elements

Description

Opoosite of duplicated(). Checks which elements of a vector or data frame are NOT duplicates of
elements with smaller subscripts

Usage

not.duplicated(x, incomparables = FALSE, ...)
Arguments

X a vector or a data frame or an array or NULL.

incomparables a vector of values that cannot be compared. FALSE is a special value, meaning
that all values can be compared, and may be the only value accepted for methods
other than the default. It will be coerced internally to the same type as x

arguments for particular methods.

Value

elements of a vector or data frame that are NOT duplicates

Examples

set.seed(08082023)

dtf <- sample(1:10,15, replace = TRUE)

dtf #3 910 3 8 9 610 5 1 2 2 2 9 8
dtf[dtf > 4 & duplicated(dtf) 1 # 9 10 9 8

dtf[dtf > 4 & not.duplicated(dtf) J] # 910 8 6 5

52

not.environment

not.empty Not empty

Description

Check if entry is not empty

Usage

not.empty(x)

Arguments

X vector entry

Value

a boolean value to indicate if entry is empty

Examples

not.empty("empty”) # TRUE

not.empty('"') # FALSE
not.empty(y<-NULL) # FALSE
if(not.empty('')) message("yes"”) # NULL

not.environment Not an environment

Description

Check if entry is not an environment object

Usage

not.environment(x)

Arguments

X vector entry

Value

a boolean value to indicate if entry is an environment

not.exists

Examples

test.env <- new.env()

test.notenv <- list(t=1)

not.environment(test.env) # FALSE
not.environment(test.notenv) # TRUE
if(not.environment(test.notenv)) message("yes") # yes

53

not.exists Not exists

Description

Check if object does not exists

Usage

not.exists(x)

Arguments

X object

Value

a boolean value to indicate if entry does not exists

Examples

go =7

not.exists("exis") # TRUE

not.exists("go") # FALSE
if(not.exists('hallo')) message("yes") # NULL

not.image File name extension(s) is Not an image

Description

Check if one or multiple file name entry is not an image

Usage

not.image(x)

54 not.image

Arguments

X vector entry

Details

This current function tests if the extension of the file name provided does NOT belongs to any of
the image extensions listed below

Al - Adobe Illustrator

BMP - Bitmap Image

CDR - Corel Draw Picture

CGM - Computer Graphics Metafile

CR2 - Canon Raw Version 2

CRW - Canon Raw

CUR - Cursor Image

DNG - Digital Negative

EPS - Encapsulated PostScript

FPX - FlashPix

GIF - Graphics Interchange Format
HEIC - High-Efficiency Image File Format
HEIF - High-Efficiency Image File Format
ICO - Icon Image

IMG - GEM Raster Graphics

JFIF - JPEG File Interchange Format
JPEG - Joint Photographic Experts Group
JPG - Joint Photographic Experts Group
MAC - MacPaint Image

NEF - Nikon Electronic Format

OREF - Olympus Raw Format

PCD - Photo CD

PCX - Paintbrush Bitmap Image

PNG - Portable Network Graphics

PSD - Adobe Photoshop Document

SR2 - Sony Raw Version 2

SVG - Scalable Vector Graphics

TIF - Tagged Image File

TIFF - Tagged Image File Format

WebP - Web Picture Format

WMF - Windows Metafile

WPG - WordPerfect Graphics

Value

a boolean value to indicate if entry is not an image

Examples

img.1 <- "fjk.jpg"
not.image(img.1)

not.inherits 55

img.2 <- "fjk.bmp"
not.image(img.2)

img.3 <- "fjk.SVG"
not.image(img.3)

a vector of file names

v <- c("logo.png"”, "business process.pdf”,
"front_cover.jpg", "intro.docx",
"financial_future.doc”, "2022 buybacks.xlsx")
not.image(v)

when the file name has no extension

the function returns NA

v2 <- c("img2.jpg",NA, "northbound.x1sx"”,"landimg")
not.image(v2)

not.inherits Not inherit from any of the classes specified

Description

Opposite of base::inherits(). Indicates whether its first argument inherits from any of the classes
specified in the what argument. If which is TRUE then an integer vector of the same length as what
is returned. Each element indicates the position in the class(x) matched by the element of what;
zero indicates no match. If which is FALSE then TRUE is returned by inherits if any of the names
in what match with any class.

Usage
not.inherits(x, what, which = FALSE)

Arguments

X a R object

what a character vector naming classes.

which logical affecting return value: see ‘Details’.
Value

a boolean value to indicate if !inherits

Examples

keep.cols = "a character”
class(keep.cols) # class is character
not.inherits(keep.cols, "character™)

num.var = 1L

56

class(num.var) # class is integer
not.inherits(num.var, "double")

not.logical

not.integer Not an integer

Description

Opposite of is.integer(). Check if entry is not an integer

Usage

not.integer(x)

Arguments

X vector entry

Value

a boolean value to indicate if entry is an integer

Examples

is.integer(78L) #TRUE
not.integer(78L) #FALSE

not.integer(23.43) # TRUE
not.integer(45L) # FALSE
if(not.integer(4L)) message("yes") # NULL

not.logical Not logical

Description

Opposite of is.logical(). Check if entry is a logical object

Usage

not.logical (x)

Arguments

X vector entry

not.na 57

Value

a boolean value to indicate if entry is logical

Examples

test.env <- TRUE

test.notenv <- 0@

not.logical(test.env) # FALSE
not.logical(test.notenv) # TRUE
if(not.logical(test.notenv)) message("yes") # yes

not.na Not NA

Description

Opposite of is.na(). Check if entry is not NA

Usage

not.na(x)

Arguments

X vector entry

Value

a boolean value to indicate if entry is NA

Examples

not.na(NA) # FALSE
not.na(NULL) # logical(®@)
if(not.na(45)) message("something”) # TRUE

58

not.numeric

not.null Not NULL

Description

Opposite of is.null(). Check if entry is not NULL

Usage

not.null(x)

Arguments

X vector entry

Value

a boolean value to indicate if entry is NULL

Examples

is.null("") # FALSE

not.null("") # TRUE

not.null(NULL) # FALSE

if(not.null(45)) message("something”) # yes

not.numeric Not numeric

Description

Check if entry is not numeric

Usage

not.numeric(x)

Arguments

X vector entry

Value

a boolean value to indicate if entry is numeric

not.vector

Examples

not.numeric("45") # TRUE
not.numeric(45) # FALSE
if(not.numeric(45)) message("yes") # yes

59

not.vector Not a vector

Description

Opposite of is.vector(). Check if entry is not vector

Usage

not.vector(x)

Arguments

X vector entry

Value

a boolean value to indicate if entry is vector

Examples

vectl = list(r=1,t=3:10)

vect2 = LETTERS

is.vector(vectl) # TRUE

not.vector(vectl) # FALSE

not.vector(vect2) # FALSE
if(not.vector(vect1)) message("yes") # NULL

number Generate a random number (integer)

Description

Fetch n random integers between 1 and 1,000,000,000

Usage

number(n, max.digits = 10, seed = NULL)

60 pairDist

Arguments
n how many numbers to generate
max.digits maximum number of digits in each number
seed set seed for sampling to maintain reproducibility
Value

random numbers between 1 and 1 billion

Examples

number (1)
number (10)
paste@(number(2),LETTERS)

#set maximum number of digits
number(1,max.digits = 5)
number (10, max.digits = 4)

#set seed for reproducibility

#without seed

number (6) #result 1

number(6) #result 2, different from result 1
#with seed

number (6, seed=1)#result 3
number(6,seed=1)#result 4, same as result 3

pairDist Calculate the distance of points from the center of a cluster

Description
This function operates on multivariate data and calculates the distance of points from the centroid
of one or more clusters.

Usage

pairDist(data, round)

Arguments
data data frame object or a matrix/array object
round round result to decimal place

Value

a named vector consisting of a row number and a pair-distance value

plus 61

Function utility

Used to generate the computations needed to model pair-distance measures in three dimensions

More information about this function

The pairDist function is used to quantify how far each data point (row) is from the overall mean
across all columns. It’s commonly used in multivariate statistics, machine learning, and data analy-
sis to assess the variability or similarity of data points relative to their mean. More specifically, the
function is used in outlier detection and cluster analysis to evaluate the dispersion of data. Used in
conjunction with other calculations, pairDist output can also be used to model data in three dimen-
sions.

References

the current function was adapted from one of the examples in the svgViewR package,
https://cran.r-project.org/web/packages/svgViewR/svgViewR.pdf

Examples

data = attenu[,1:2]

#basic example using data.frame
pairDist(data)

#basic example using as.matrix

pairDist(as.matrix(data))

round results to 2 decimal points
pairDist(data, 2)

plus Increment vector by value

Description

Increment the content of a vector and re-save as the vector

Usage
plus(., add = 1L)

Arguments

vector of number(s)

add number to add

62 plus

Details

This function is very useful when writing complex codes involving loops. Apart from the for loop,
this can be useful to quickly increment a variable located outside the loop by simply incrementing
the variable by 1 or other numbers. Check in the example section for a specific use. Nonetheless,
one may also choose to use this function in any other instance, as it’s simple purpose is to increase
the value of a variable by a number and then re-save the new value to that variable.

Value

a vector incremented by a number

Examples

numl <- sample(330:400,10)
numl#before increment

increment numl by 1
inc(num1)
numl #after increment

increment numl by 5
numl #before increment
inc(numl, add= 10)

numl #after increment

#when used in loops

#add and compare directly

rnum = 10

inc(rnum) == 11 #returns TRUE

rnum #the variable was also updated

use in a for loop

ynum = 1

for(i in c("scientist"”,"dancer”,"handyman”, "pharmacist")){
message("This is the item number ")

message (ynum)

message(”. For this item, I am a ")

message (i)

#decrement easily at each turn
plus(ynum)
3

#use in a repeat loop

xnum = 1

repeat{ #repeat until xnum is 15
message (xnum)

if(inc(xnum) == 15) break

3

randString

63

randString Generate a random string

Description

Create a random string of specified length

Usage

randString(n, length)

Arguments
n number of strings to create
length length of string to create
Value

one more random string of specific length

Examples

Task 1: create 1 random string string of length 5
randString(n = 1, length = 5)

Task 2: create 5 random string string of length 10
randString(n = 5, length = 10)

Task 3: create 4 random string string of length 16
randString(n = 4, length = 16)

rcolorconst R Color Constant

Description

This function provides information that describes the color constants that exist in R

Usage

rcolorconst(title = "R Color Constants”)

Arguments

title title of the output

64 rDecomPkg

Details

In addition to the color palette in R that can be represented as either color literals or hexadecimal
values, numeric values can also be used to add colorization to a plot. Numeric values ranging from
1 to 8 provide 8 basic colors that can be deployed. The rcolorconst function returns both a Named
Vector and a color palette plot that connects these numeric values with their corresponding color.

Value

returns color constant

Examples

Without title
ex1 <- rcolorconst()

With title
ex2 <- rcolorconst(”"My new color constant")

More detailed example
set.seed(200)
x = data.frame(
meas = rnorm(100),
grp = sample(1:8, size = 100,
replace = TRUE))
plot(x, pch = 16, col = x$grp)
colnums = rcolorconst()

rDecomPkg Check whether an R package has been decommissioned in CRAN

Description

Designed to assist users in checking the decommission status of an R package on CRAN. In the
context of R language, CRAN stands for the Comprehensive R Archive Network.

Usage

rDecomPkg(package)

Arguments

package package name to query

read.csv.print 65

Details

CRAN is a network of servers around the world that store R packages and their documentation,
providing a centralized repository for the R community. With the current function, users can quickly
and easily determine whether a specific R package has been decommissioned on CRAN, ensuring
they stay informed about the availability and support status of the packages they rely on for their
R programming projects. This tool simplifies the process of package management, helping users
maintain up-to-date and reliable dependencies in their R code.

Value

the decommissioned status of a particular package based on the available packages using the utils
package

Examples

Not run:

check if cattonum package is decommissioned

the current package is expected to be decommissioned
rDecomPkg ("cattonum™)

check if dplyr is decommissioned
the current package is expected NOT to be decommissioned
rDecomPkg ("dplyr™)

when a package never existed in CRAN

the result of the function call should be NA
rDecomPkg("printy")

rDecomPkg ("package0002312122312")

End(Not run)

read.csv.print Read a CSV and preview first X rows and columns

Description

The purpose of this function is combine the functionality of read.csv and print, which are often
used together.

The purpose of this function is to read data from a file into a variable and simultaneously display a
preview of the data, showing either the first few rows or columns based on the user’s specification.
It is important to emphasize that the function expects the user to assign the result of the read op-
eration to a variable in order to achieve its intended purpose. eg. Use varl = read.csv.print(filel)
instead of read.csv.print(filel)

66

Usage

read.csv.print(
file,
header = TRUE
sep = II’H’
quote = "\"",
dec = ".",
fill = TRUE,

comment.char

’

dim = c(1oL,

Arguments

file

header

sep

quote

dec

fill

comment.char

dim

read.csv.print

’

— nn
- ’

5L)

the name of the file which the data are to be read from. Each row of the table
appears as one line of the file. If it does not contain an absolute path, the file
name is relative to the current working directory, getwd(). Tilde-expansion is
performed where supported. This can be a compressed file (see file).

Alternatively, file can be a readable text-mode connection (which will be opened
for reading if necessary, and if so closed (and hence destroyed) at the end of the
function call). (If stdin() is used, the prompts for lines may be somewhat con-
fusing. Terminate input with a blank line or an EOF signal, Ctr1-D on Unix and
Ctrl-Z on Windows. Any pushback on stdin() will be cleared before return.)

file can also be a complete URL. (For the supported URL schemes, see the
‘URLSs’ section of the help for url.)

a logical value indicating whether the file contains the names of the variables as
its first line. If missing, the value is determined from the file format: header is
set to TRUE if and only if the first row contains one fewer field than the number
of columns.

the field separator character. Values on each line of the file are separated by
this character. If sep = "" (the default for read. table) the separator is ‘white
space’, that is one or more spaces, tabs, newlines or carriage returns.

the set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behaviour on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

the character used in the file for decimal points.

logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added. See ‘Details’.

character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

Further arguments to be passed to read. table.

dimension of CSV content to show

read.table.print 67

Details

Read a dataset of type csv and show x rows and y columns with one function call

Value

read csv content and a print out of the data head

Examples

Not run:

Example: read a csv file and print the first 10 lines
declare file

new.file <- "test.csv”

read file and preview default
dth3 <- read.csv.print(file = new.file)

read file and preview 10 rows and all columns
dth1 <- read.csv.print(file = new.file, dim = 10)

read file and preview 10 rows and 5 columns
dth2 <- read.csv.print(file = new.file, dim = c(10,5))

End(Not run)

read.table.print Read in a table and show first X rows and columns

Description

The purpose of this function is combine the functionality of read.table and print, which are often
used together.

The purpose of this function is to read table from a file into a variable and simultaneously display a
preview of the data, showing either the first few rows or columns based on the user’s specification.
It is important to emphasize that the function expects the user to assign the result of the read oper-
ation to a variable in order to achieve its intended purpose. eg. Use varl = read.table.print(file1)
instead of read.table.print(filel)

Usage
read. table.print(
file,
header = FALSE,
sep = "",
quote = "\"'",
dec = ".",

numerals = c("allow.loss”, "warn.loss”, "no.loss"),

68

row.names,
col.names,
as.is = TRUE,
na.strings =
colClasses =
nrows = -1,
skip = 0,

check.names =

fill = NULL,

strip.white =

read.table.print

IINAH ,
NA,

TRUE,

FALSE,

blank.lines.skip = TRUE,
comment.char = "#",

allowEscapes

= FALSE,

flush = FALSE,
stringsAsFactors = FALSE,

nn

fileEncoding = ,
encoding = "unknown",
skipNul = FALSE,

dim = c(1oL, 5L),

Arguments

file

header

sep

quote

dec

the name of the file which the data are to be read from. Each row of the table
appears as one line of the file. If it does not contain an absolute path, the file
name is relative to the current working directory, getwd(). Tilde-expansion is
performed where supported. This can be a compressed file (see file).

Alternatively, file can be a readable text-mode connection (which will be opened
for reading if necessary, and if so closed (and hence destroyed) at the end of the
function call). (If stdin() is used, the prompts for lines may be somewhat con-
fusing. Terminate input with a blank line or an EOF signal, Ctr1-D on Unix and
Ctrl-Z on Windows. Any pushback on stdin() will be cleared before return.)

file can also be a complete URL. (For the supported URL schemes, see the
‘URLSs’ section of the help for url.)

a logical value indicating whether the file contains the names of the variables as
its first line. If missing, the value is determined from the file format: header is
set to TRUE if and only if the first row contains one fewer field than the number
of columns.

the field separator character. Values on each line of the file are separated by
this character. If sep = "" (the default for read. table) the separator is ‘white
space’, that is one or more spaces, tabs, newlines or carriage returns.

the set of quoting characters. To disable quoting altogether, use quote = "". See
scan for the behaviour on quotes embedded in quotes. Quoting is only consid-
ered for columns read as character, which is all of them unless colClasses is
specified.

the character used in the file for decimal points.

read.table.print 69

numerals string indicating how to convert numbers whose conversion to double precision
would lose accuracy, see type.convert. Can be abbreviated. (Applies also to
complex-number inputs.)

row.names a vector of row names. This can be a vector giving the actual row names, or a
single number giving the column of the table which contains the row names, or
character string giving the name of the table column containing the row names.

If there is a header and the first row contains one fewer field than the number of
columns, the first column in the input is used for the row names. Otherwise if
row.names is missing, the rows are numbered.

Using row.names = NULL forces row numbering. Missing or NULL row.names
generate row names that are considered to be ‘automatic’ (and not preserved by
as.matrix).

col.names a vector of optional names for the variables. The default is to use "V" followed
by the column number.

as.is controls conversion of character variables (insofar as they are not converted to
logical, numeric or complex) to factors, if not otherwise specified by colClasses.
Its value is either a vector of logicals (values are recycled if necessary), or a vec-
tor of numeric or character indices which specify which columns should not be
converted to factors.

Note: to suppress all conversions including those of numeric columns, set colClasses
= "character".

Note that as. is is specified per column (not per variable) and so includes the
column of row names (if any) and any columns to be skipped.

na.strings a character vector of strings which are to be interpreted as NA values. Blank
fields are also considered to be missing values in logical, integer, numeric and
complex fields. Note that the test happens after white space is stripped from
the input, so na.strings values may need their own white space stripped in
advance.

colClasses character. A vector of classes to be assumed for the columns. If unnamed,
recycled as necessary. If named, names are matched with unspecified values
being taken to be NA.

Possible values are NA (the default, when type.convert isused), "NULL" (when
the column is skipped), one of the atomic vector classes (logical, integer, nu-
meric, complex, character, raw), or "factor”, "Date” or "POSIXct". Other-
wise there needs to be an as method (from package methods) for conversion
from "character” to the specified formal class.

Note that colClasses is specified per column (not per variable) and so includes
the column of row names (if any).

nrows integer: the maximum number of rows to read in. Negative and other invalid
values are ignored.

skip integer: the number of lines of the data file to skip before beginning to read data.

check.names logical. If TRUE then the names of the variables in the data frame are checked

to ensure that they are syntactically valid variable names. If necessary they are
adjusted (by make.names) so that they are, and also to ensure that there are no
duplicates.

70

read.table.print

fill logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added. See ‘Details’.

strip.white logical. Used only when sep has been specified, and allows the stripping of lead-

ing and trailing white space from unquoted character fields (numeric fields are

always stripped). See scan for further details (including the exact meaning of

‘white space’), remembering that the columns may include the row names.
blank.lines.skip

logical: if TRUE blank lines in the input are ignored.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

allowEscapes logical. Should C-style escapes such as ‘\n’ be processed or read verbatim (the
default)? Note that if not within quotes these could be interpreted as a delimiter
(but not as a comment character). For more details see scan.

flush logical: if TRUE, scan will flush to the end of the line after reading the last of the
fields requested. This allows putting comments after the last field.

stringsAsFactors
logical: should character vectors be converted to factors? Note that this is over-
ridden by as.is and colClasses, both of which allow finer control.

fileEncoding character string: if non-empty declares the encoding used on a file (not a con-
nection) so the character data can be re-encoded. See the ‘Encoding’ section of
the help for file, the ‘R Data Import/Export Manual’ and ‘Note’.

encoding encoding to be assumed for input strings. It is used to mark character strings as
known to be in Latin-1 or UTF-8 (see Encoding): it is not used to re-encode the
input, but allows R to handle encoded strings in their native encoding (if one of
those two). See ‘Value’ and ‘Note’.

skipNul logical: should nuls be skipped?

dim dimension of table content to show

Further arguments to be passed to read. table.

Details

Read a dataset of type table and show x rows and y columns

Value

read table content and a print out of the data head

Examples

Not run:

Example: read a table file and print the first 10 lines
declare file

new.file <- "test.csv”

read file and preview default
dth3 <- read.table.print(file = new.file, sep=",",quote = "\"",dec = ".",
fill = TRUE, comment.char = "", header = TRUE)

refresh

read file and preview 10 rows
dth1 <- read.table.print(file =
fill = TRUE, comment.char = "",

read file and preview 10 rows

and all columns

new.file, sep=",",quote = "\"" ,dec = ".",
header = TRUE, dim = 10)

and 5 columns

non non

sep=",",quote = "\"" dec = ".",
header = TRUE, dim = c(10,5))

dth2 <- read.table.print(file = new.file,
fill = TRUE, comment.char = "",

End(Not run)

71

refresh Clear environment, clear console, set work directory and load files

Description

Shorthand to quickly clear console, clear environment, set working directory, load files

Usage

refresh(setwd = NULL, source = c(), load = c(), clearPkgs = FALSE)

Arguments
setwd OPTIONAL. set working directory
source OPTIONAL. source in file(s)
load OPTIONAL. load in Rdata file(s)
clearPkgs clear previously loaded packages
Details

The purpose of this function is provide a one-line code to clear the console, clear the environment,
set working directory to a specified path, source in various files into the current file, and load
RData files into the current environment. The first process in the sequence of events is to clear the
environment. Then the working directory is set, prior to inclusion of various files and RData. With
the directory being set first, the path to the sourced in or RData files will not need to be appended
to the file name. See examples.

Value

cleared environment and set directory

72 sample_by_column

Examples

if(interactive()){

#exactly like the clean function

#simply clear environment, clear console and devices
quickcode: :refresh()

#clear combined with additional arguments
quickcode: :refresh(
clearPkgs = FALSE
) #also clear all previously loaded packages if set to TRUE

quickcode: :refresh(
setwd = "/home/"
) #clear env and also set working directory

quickcode: :refresh(
source = c("/home/filel.R","file2")
) #clear environment and source two files into current document

quickcode: :refresh(
setwd = "/home/",
source = c("file1”,"file2")
) #clear environment, set working directory and source 2 files into environment

quickcode: :refresh(
setwd = "/home/",
source="filel.R",
load="obi.RData"
) #clear environment, set working directory, source files and load RData

sample_by_column Re-sample a dataset by column and return number of entry needed

Description

Shorthand to return a re-sample number of rows in a data frame by unique column

Usage

sample_by_column(.dt, col, n, seed = NULL, replace = FALSE)

setOnce 73

Arguments
.dt data frame to re-sample
col column to uniquely re-sample
n number of rows to return
seed unique numeric value for reproducibility
replace should sampling be with replacement
Value

data frame containing re-sampled rows from an original data frame

Examples

datal <- data.frame(ID=1:10,M0T=11:20)
sample_by_column(datal,MOT, 3)
sample_by_column(datal,ID,7)

setOnce Set a variable only once

Description

Facilitates the one-time setting of a variable in R, ensuring its immutability thereafter.

Usage

setOnce(., val = 1L, envir = NULL)

Arguments
variable to set
val the value to set for the variable
envir environment where variables resides
Details

With this function, users can establish the change to the initial value of a variable, and it guarantees
that any subsequent attempts to modify the variable are ignored. This feature ensures that the
variable remains constant and immutable once it has been set, preventing unintentional changes and
promoting code stability. This function simplifies the process of managing immutable variables
in R, providing a reliable mechanism for enforcing consistency in data throughout the course of a
program or script.

Value

the variable set to the new variable, along with a class of once added to the output

74 setOnce

Examples

set the value of vector_x1, vector_yl, vector_zl
init(vector_x1, vector_y1, vector_z1, value = 85)

view the initial values of the variables
vector_x1
vector_y1
vector_z1

task 1: change the value vector_x1 and prevent further changes
vector_x1 # check value of unchanged
vector_x1 * .56 # check value when x 0.56

setOnce(vector_x1, val = 4500) # set vector_x1
vector_x1 # check value
vector_x1 * 0.56 # check value when x 0.56

setOnce(vector_x1, val = 13) # set vector_x1 AGAIN, should not change
vector_x1 # check value
vector_x1 * 0.56 # check value when x 0.56

task 2: In for loop, change vector_y1l and use later
vector_y1 # check value of unchanged

for(i in 1:20){

setOnce(vector_y1,as.numeric(Sys.time()))

now let's see the difference between vector_y1

and the current time as it changes

message("current vector_yl: ", vector_y1,"; subtraction res: ",as.numeric(Sys.time()) - vector_y1)

}

task 3: In for lapply, change vector_z1 and use later
vector_z1 # check value of unchanged

invisible(

lapply(1:20, function(i){

setOnce(vector_z1,as.numeric(Sys.time()))

now let's see the difference between vector_z1

and the current time as it changes

message("current vector_z1: ",vector_z1,"; subtraction res: ",as.numeric(Sys.time()) - vector_z1)
»

)

result of all the tasks
vector_x1
vector_y1
vector_z1

strsplit.bool 75

strsplit.bool Split a string of values and return as boolean vector

Description

The purpose of this function is combine the functionality of strsplit, unlist and as.logical, which
are often used together.

Usage
strsplit.bool(
X ’
split,
fixed = FALSE,
perl = FALSE,
useBytes = FALSE,
type = 2
)
Arguments
X character vector, each element of which is to be split. Other inputs, including a
factor, will give an error.
split character vector
fixed logical. If TRUE match split exactly, otherwise use regular expressions. Has
priority over perl.
perl logical. Should Perl-compatible regexps be used?
useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character, and inputs with marked encodings are not converted.
type type of return, see the as.boolean function for more info
Details

Given a sting, split by a separator into boolean

Value

boolean values based on split string

76

Examples

string of numbers

num.@1 = "0 1 @@ 1@ 1TF TRUE FALSE t f"

split a string of numbers
strsplit.bool(num.@1, split

split a string of numbers
strsplit.bool(num.@1, split

split a string of numbers
strsplit.bool(num.@1, split

string of numbers

num.@2 = "Qabclabc@abc@abclabc@abclabcTabcFabcTRUEabcFALSEabef”

split a string of numbers
strsplit.bool(num.@2, split

split a string of numbers
strsplit.bool(num.@2, split

split a string of numbers
strsplit.bool(num.@2, split

return as

n

, type =

return as

n

, type =

return as

n

, type =

and return as

n

abc

n
)

type

and return as
, type

n

abc

n

and return as
, type

n

abc

n

boolean 1/0
3)

boolean TRUE/FALSE
2)

boolean Yes/No

D

boolean 1/0
:3)

boolean TRUE/FALSE
:2)

boolean Yes/No

:‘])

strsplit.num

strsplit.num

Split a string of numbers and return as numeric vector

Description

The purpose of this function is combine the functionality of strsplit, unlist and as.numeric, which

are often used together.

Usage
strsplit.num(x, split, fixed = FALSE, perl = FALSE, useBytes = FALSE)
Arguments
X character vector, each element of which is to be split. Other inputs, including a
factor, will give an error.
split character vector
fixed logical. If TRUE match split exactly, otherwise use regular expressions. Has

priority over perl.

summarize.envobj 77

perl logical. Should Perl-compatible regexps be used?

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character, and inputs with marked encodings are not converted.
Details

Given a sting, split by a separator into numbers

Value

numeric values based on split string

Examples

Example 1
string of numbers with separator
num.@1 = "5 3 2 3 52 33 23 5 32 432 42 23 554"

non

split a string of numbers and return as numeric
strsplit.num(num.0@1, split =" ")

Example 2
string of numbers with separator "|]|]|"
num.02 = "O| [1| [4[[143[[I6]118][le@|l| 1[Il @ 1[I T [[IFIIITRUE []]f"

split a string of numbers and return as numeric
strsplit.num(num.02, split = "[|||]1")

summarize.envobj Get all the environment objects and their sizes

Description

Retrieve the size contribution of all the available objects in the environment

Usage

summarize.envobj(envir = parent.frame())

Arguments

envir the environment to retrieve objects from

Value

a dataframe of all the variables within the environment

78 switch_cols

Examples

Get a data frame of all environment objects and their size
summarize.envobj()

switch_cols Switch the index of two columns in a data set

Description

Allows the user to choose precisely which two columns they want to swap places, while optionally

preventing some rows within the columns from being altered in the process. Excluded rows within

the columns act as anchors that are immune from the switching operation on the selected columns.
Usage

switch_cols(data, coll, col2, keep.rows = NULL)

Arguments
data dataset object
coll numeric or character the first column name or number
col?2 numeric or character the second column name or number
keep.rows numeric. row number to keep

Examples

Example using mtcars
datal101 <- mtcars[1:7,]

head(datal1@1) # preview overall data

task 1: basic result of switching columns 5 and 6
head(switch_cols(datal101, 5, 6))

task 1: basic result of switching columns number 5 and name "gear"”
head(switch_cols(datale1l, 5, "gear"))

task 1: basic result of switching columns "gsec” and "carb”
head(switch_cols(datal@1, "gsec”, "carb"))

task 2: switch columns, but retain some rows with the switched columns

lets exchange some columns, but keep content of row 4, 5 intact
datal@1[1:6,4:7] # preview the portion that is to be changed
resl <- switch_cols(datal@1, coll = 5, col2 = 6, keep.rows = 4:5) # use column numbers

switch_rows 79

res1[1:6,4:7] # check result, pay attention to rows 4, 5 of columns 5, 6 as well

datal@1[1:6,6:11] # preview the portion that is to be changed
res2 <- switch_cols(datalel,

coll = "gsec”,

col2 = "carb”,

keep.rows = ¢c(1,2,3)) # keep 1, 2, 3

res2[1:6,6:11] # check result

switch_rows Switch the index of two rows in a data set

Description

Allows the user to choose precisely which two rows they want to swap places, while optionally
preventing some columns from being altered in the process. Excluded columns within the rows act
as anchors that are immune from the switching operation on the selected rows.

Usage

switch_rows(data, rowl, row2, keep.cols = NULL)

Arguments

data dataset object

rowl numeric. the first row number

row2 numeric. the second row number

keep.cols numeric or character. column number or name to keep
Examples

Example using mtcars
datal00 <- mtcars[1:7,]

head(datal100) # preview overall data

task 1: basic result of switching rows 5 and 6
head(switch_rows(data100, 5, 6))

task 2: switch rows, but retain some columns
datal100[5:6,2:10] # preview the portion that is to be changed

lets switch 2 rows, but keep content of columns 7, 8, 9 10 within the changed rows
resl <- switch_rows(datal@@, rowl = 5, row2 = 6, keep.cols = 7:10) # use column numbers
res1[5:6,] # check result, pay attention to columns 9 and 10 as well

res2 <- switch_rows(data100,

80 vector_pop

rowl = 5,

row2 = 6,

keep.cols = c("disp”,"cyl")) # use column names

res2[5:6,] # check result, pay attention to columns "disp”,"cyl” as well

vector_pop Remove last n elements or specified elements from a vector like ar-
ray_pop in PHP

Description

Shorthand to remove elements from a vector and save as the same name
Usage

vector_pop(., n =1, el = NULL, ret = FALSE)
Arguments

parent vector

n number of elements to remove

el vector to remove

ret TRUE or FALSE. whether to return value instead of setting it to the parent vector
Value

vector with elements removed

Examples

numl <- sample(330:400,10)
namel <- "ObinnaObianomObiObianom"

#task: remove 1 element from the end of the vector and set it to the vector name
numl #numl vector before pop

vector_pop(num1) #does not return anything

numl #numl vector updated after pop

#ttask: remove 5 elements from the end, but do not set it to the vector name
numl #numl vector before pop

vector_pop(num1,5, ret = TRUE) #return modified vector

numl #numl vector remains the same after pop

#task: remove 6 elements from a word, set it back to vector name
namel #namel before pop
vector_pop(namel,6) #does not return anything

vector_push 81

namel #name updated after pop

#task: remove 3 elements from a word, Do not set it back to vector name
namel #namel before pop

vector_pop(name1,3, ret = TRUE) #returns modified namel

namel #namel not updated after pop

#task: remove 4 elements from the end of a vector and return both the removed content and remaining
v_f_num <- paste@(number(20),c("TI")) #simulate 20 numbers and add TI suffix

v_f_num #show simulated numbers

vector_pop(v_f_num, n = 4, ret = TRUE) #get the modified vector

vector_pop(v_f_num, n = 4, ret = "removed”) #get the content removed

#task: remove specific items from vector

#note that this aspect of the functionality ignores the 'n' argument

v_f_num_2 <- paste@(number (6, seed = 33),c("AB")) #simulate 6 numbers using seed and add AB suffix
v_f_num_2 #show numbers

vector_pop(v_f_num_2, el = c("403211378AB")) #remove 1 specific entries

v_f_num_2 #show results
vector_pop(v_f_num_2, el
v_f_num_2 #show results

c("803690460AB" ,"66592309AB")) #remove 2 specific entries

vector_push Add elements to a vector like array_push in PHP

Description

Shorthand to add elements to a vector and save as the same name

Usage

vector_push(., add, unique = FALSE, rm.na = FALSE, rm.empty = FALSE)

Arguments
first vector
add vector to add
unique remove duplicated entries
rm.na remove NA values
rm.empty remove empty values
Details

Note that two vectors are required in order to use this function. Also, note that the final result
replaces the content of the first vector. This means that the original content of the ’first vector’ will
no longer exist after this function executes.

82 vector_push

Value

vector combining fist and second vector, but have name set to the first

Use case

This function allows the combination of two vectors in one short line of code. It allows specification
of further downstream filtering of the resulting vector such as selecting only unique items, removing
NA or empty values. It simplifies a code chunk with many lines of code to concatenate and filter
various vectors.

Examples

numl <- number (10, seed = 45)
num2 <-"rpkg.net"”

num1
num2

#Task: add num2 to numl and re-save as numl
vector_push(numil,num2)

numl #updated with num2

num2 #not updated

#Task: concatenate two vectors and remove duplicates
vector1 = number(4,seed = 5)
vector2 = number(8,seed = 5)
vector3 = number(12,seed = 5)

vectorl #length is 4
vector2 #length is 8
vector3 #length is 12

with duplicated

vector_push(vectorl,vector2, unique = FALSE)

vectorl #return modified vector

length(vector1) #length is 12 because nothing was removed
#duplicates in vectorl is 886905927 100040083 293768998 54080431

without duplicated
vector_push(vector2,vector3, unique = TRUE)
vector2 #return modified vector
length(vector2) #length is 12 instead of 20
#Total of 8 duplicated numbers were removed

#Task: concatenate two vector and remove NA values
vector1 = number(5)

vector2 = c(4,NA,5,NA)

vector3 = number(5)

with NA

vector_shuffle

vector_push(vector1,vector2, rm.na = FALSE)
vectorl #return modified vector

without NA
vector_push(vector3,vector2, rm.na
vector3 #return modified vector

TRUE)

#Task: concatenate two vector and remove empty values
vector1 = number(5)

vector2 = c(4,'"',5,"",NULL," ")

vector3 = number(5)

with empty
vector_push(vectorl,vector2, rm.empty = FALSE)
vectorl #return modified vector

without empty
vector_push(vector3,vector2, rm.empty = TRUE)
vector3 #return modified vector

83

vector_shuffle Shuffle a vector just like shuffle in PHP

Description

Shorthand to shuffle a vector and save

Usage

vector_shuffle(., replace = FALSE, prob = NULL, seed = NULL)

Arguments
vector to shuffle
replace replace selected value
prob probability of occurrence
seed apply seed if indicated for reproducibility
Value

shuffled vector of items store to the vector name

84 yesNoBool

Examples

v1<-c(3,45,23,3,2,4,1)

#demonstrate vector_shuffle
vector_shuffle(v1)
vl # show outputs

#demonstrate reproducibility in shuffle with seed
vo<-v1

vector_shuffle(vo)

vo #first output

vo<-v1
vector_shuffle(vo)
v0 # different output from first output top

vo<-v1
vector_shuffle(vo,seed = 232L)
v@ #second output

vo<-v1
vector_shuffle(vo,seed = 232L)
vQ #the same output as second output top

yesNoBool Convert Yes/No to Binary or Logical

Description

Seamlessly convert a yes or no to either a binary or logical output

Usage
yesNoBool (
table,
fldname,
out = c(”"change"”, "append”, "vector"),
type = c¢("bin”, "log")
)
Arguments
table data frame
fldname field name in the data frame
out output form, choices - change, append, vector

type output type, choices - bin, log

%nin% 85

Details

type - "bin" for binary, and "log" for logical

Value

converted Yes/No entries into 1/0 or TRUE/FALSE

Examples

Declare data for example
usedata <- data.frame(ID = 1:32)
usedata #view the dataset

usedata$yess = rep(c("yes”,"n","no","YES","No","NO","yES","Y"),4) #create a new column
usedata #view the modified dataset

Set all yess field as standardize boolean

Task: convert the "yess” column content to 1/0 or TRUE/FALSE

Notice that you have add the column name with or without quotes
yesNoBool (usedata,yess, type="bin") #set all as binary 1/0

yesNoBool (usedata, "yess"”, type="log") #set all as logical TRUE/FALSE

Task: By default, the 'out' argument is set to "change"
means that the original data field will be
replaced with the results as above

In this example, set the out variable to
append data frame with a new column name containing the result

yesNoBool (usedata, yess, "append”)

non

#or yesNoBool (usedata, "yess”, "append”)

In this example, return as vector
yesNoBool (usedata, yess, "vector”)

non

#or yesNoBool (usedata, "yess"”, "vector")

Task: Return result as logical
yesNoBool (usedata, "yess”, type = "log")

%nin% Not in vector or array

Description

Check if entry is in vector

86

Usage

X %nin% table

Arguments

X vector entry

table table of items to check
Value

a boolean value to indicate if entry is present

Examples

5 %nin% c(1:10) #FALSE
5 %nin% c(11:20) #TRUE
x = "a"

if(x %nin% letters) x

let's say we are trying to exclude numbers from a vector

vector_numl <- number(9, max.digits = 5, seed = 1) #simulate 9 numbers
vector_numl #values

vector_numl[vector_numl %nin% c(83615,85229) J#return values not 83615 or 85229

%nin%

Index

%nin%k, 85

add. header, 3
add.sect.comment, 4
add.snippet.clear, 4
add_key, 5
ai.duplicate, 6
archivedPkg, 7
as.boolean, 8
as.matrix, 69

bionic_txt, 10

clean, 11
close, 66, 68
compHist, 13
connection, 66, 68

data_pop, 15
data_pop_filter, 16
data_push, 16
data_rep, 17
data_shuffle, 18
datelto3 (date3tol), 19
date3tol, 19, 23
duplicate, 22

Encoding, 70

fAddDate, 23
file, 66, 68, 70

genRandImg, 24
geo.cv, 26

geo.mean (geo.cv), 26
geo.sd (geo.cv), 26

getGitRepoChange (getGitRepoStart), 27

getGitRepoStart, 27
getwd, 66, 68

has.error, 28

header.rmd, 29

in.range, 30

inc, 31

init, 33

insertInText, 34

is.cauchy (is.lognormal), 36
is.gamma (is.lognormal), 36
is.image, 34

is.logistic (is.lognormal), 36
is.lognormal, 36

is.normal (is.lognormal), 36
is.poisson (is.lognormal), 36
is.uniform(is.lognormal), 36
is.weibull (is.lognormal), 36

libraryAll, 40
list_push, 41
list_shuffle, 42

make.names, 69
minus, 43
mix.color, 44
mix.cols.btw, 45
multiply, 46

NA, 69
newSuperVar, 47
not.data, 50
not.duplicated, 51
not.empty, 52
not.environment, 52
not.exists, 53
not.image, 53
not.inherits, 55
not.integer, 56
not.logical, 56
not.na, 57
not.null, 58
not.numeric, 58

88

not.vector, 59
number, 59

pairDist, 60
plus, 61

randString, 63
rcolorconst, 63
rDecomPkg, 64
read.csv.print, 65
read. table.print, 67
refresh, 71

sample_by_column, 72
scan, 66, 68, 70

setDisAlpha (is.lognormal), 36
setOnce, 73

stdin, 66, 68
strsplit.bool, 75
strsplit.num, 76
summarize.envobj, 77
switch_cols, 78
switch_rows, 79

type.convert, 69

unsetDisAlpha (is.lognormal), 36
url, 66, 68

vector_pop, 80
vector_push, 81
vector_shuffle, 83

yesNoBool, 84

INDEX

	add.header
	add.sect.comment
	add.snippet.clear
	add_key
	ai.duplicate
	archivedPkg
	as.boolean
	bionic_txt
	clean
	compHist
	data_pop
	data_pop_filter
	data_push
	data_rep
	data_shuffle
	date3to1
	duplicate
	fAddDate
	genRandImg
	geo.cv
	getGitRepoStart
	has.error
	header.rmd
	in.range
	inc
	init
	insertInText
	is.image
	is.lognormal
	libraryAll
	list_push
	list_shuffle
	minus
	mix.color
	mix.cols.btw
	multiply
	newSuperVar
	not.data
	not.duplicated
	not.empty
	not.environment
	not.exists
	not.image
	not.inherits
	not.integer
	not.logical
	not.na
	not.null
	not.numeric
	not.vector
	number
	pairDist
	plus
	randString
	rcolorconst
	rDecomPkg
	read.csv.print
	read.table.print
	refresh
	sample_by_column
	setOnce
	strsplit.bool
	strsplit.num
	summarize.envobj
	switch_cols
	switch_rows
	vector_pop
	vector_push
	vector_shuffle
	yesNoBool
	%nin%
	Index

