Package 'psy'

October 14, 2022
Title Various Procedures Used in Psychometrics
Version 1.2
Description Kappa, ICC, reliability coefficient, parallel analysis,multi-traits multi-methods, spherical representation of a correlation matrix.
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.1.2
NeedsCompilation no
Author Bruno Falissard [aut, cre]
Maintainer Bruno Falissard falissard_b@wanadoo.fr
Repository CRAN
Date/Publication 2022-04-21 22:00:02 UTC
R topics documented:
ckappa 2
cronbach 3
ehd 4
expsy 5
fpca 6
icc 8
lkappa 9
mdspca 11
mtmm 12
psy 13
scree.plot 14
sleep 15
sphpca 16
wkappa 18
Index 20

Description

Computes Cohen's Kappa for agreement in the case of 2 raters. The diagnosis (the object of the rating) may have k possible values.

Usage

ckappa(r)

Arguments

r
$\mathrm{n} * 2$ matrix or dataframe, n subjects and 2 raters

Details

The function deals with the case where the two raters have not exactly the same scope of rating (some software associate an error with this situation). Missing value are omitted.

Value

A list with :
\$table the $2 * \mathrm{k}$ table of raw data (first rater in rows, second rater in columns)
\$kappa Cohen's Kappa

Author(s)

Bruno Falissard

References

Cohen, J. (1960), A coefficient of agreement for nominal scales, Educational and Psychological measurements, 20, 37-46.

Examples

```
data(expsy)
## Cohen's kappa for binary diagnosis
ckappa(expsy[,c(12,14)])
##to obtain a 95%confidence interval:
#library(boot)
#ckappa.boot <- function(data,x) {ckappa(data[x,])[[2]]}
#res <- boot(expsy[,c(12,14)],ckappa.boot,1000)
## two-sided bootstrapped confidence interval of kappa
#quantile(res$t,c(0.025,0.975))
```

```
## adjusted bootstrap percentile (BCa) confidence interval (better)
#boot.ci(res,type="bca")
##Cohen's kappa for non binary diagnosis
#ckappa(expsy[,c(11,13)])
```

cronbach Cronbach's coefficient alpha

Description

Computes the Cronbach's reliability coefficient alpha. This coefficient may be applied to a series of items destinated to be aggregated in a single score. It estimates reliability in the framework of the domain sampling model.

Usage

cronbach (v1)

Arguments

v1
n * p matrix or dataframe, n subjects and p items

Details

Missing value are omitted in a "listwise" way (all items are removed even if only one of them is missing).

Value

A list with :
\$sample.size Number of subjects under study
\$number.of.items
Number of items of the scale or questionnaire
\$alpha alpha

Author(s)

Bruno Falissard

References

Nunnaly, J.C., Bernstein, I.H. (1994), Psychometric Theory, 3rd edition, McGraw-Hill Series in Psychology.

Examples

```
data(expsy)
cronbach(expsy[,1:10]) ## not good because item 2 is reversed (1 is high and 4 is low)
cronbach(cbind(expsy[,c(1,3:10)],-1*expsy[,2])) ## better
#to obtain a 95%confidence interval:
#datafile <- cbind(expsy[,c(1,3:10)],-1*expsy[,2])
#library(boot)
#cronbach.boot <- function(data,x) {cronbach(data[x,])[[3]]}
#res <- boot(datafile,cronbach.boot,1000)
#quantile(res$t,c(0.025,0.975)) ## two-sided bootstrapped confidence interval of Cronbach's alpha
#boot.ci(res,type="bca") ## adjusted bootstrap percentile (BCa) confidence interval (better)
```

ehd
Depressive Mood Scale

Description

A data frame with 269 observations on the following 20 variables. Jouvent, R et al 1988 La clinique polydimensionnelle de humeur depressive. Nouvelle version echelle EHD : Polydimensional rating scale of depressive mood. Psychiatrie et Psychobiologie.

Usage

data(ehd)

Format

This data frame contains the following columns:
e1 Observed painfull sadness
e2 Emotional hyperexpressiveness
e3 Emotional instability
e4 Observed monotony
e5 Lack spontaneous expressivity
e6 Lack affective reactivity
e7 Emotional incontinence
e8 Affective hyperesthesia
e9 Observed explosive mood
e10 Worried gesture
e11 Observed anhedonia
e12 Felt sadness
e13 Situational anhedonia
e14 Felt affective indifference
e15 Hypersensibility unpleasent events
e16 Sensory anhedonia
e17 Felt affective monotony
e18 Felt hyperemotionalism
e19 Felt irritability
e20 Felt explosive mood

Source

Jouvent, R et al 1988 La clinique polydimensionnelle de humeur depressive. Nouvelle version echelle EHD : Polydimensional rating scale of depressive mood. Psychiatrie et Psychobiologie.

Examples

```
data(ehd)
```

str (ehd)
expsy Data set related to psychometry

Description

The expsy data frame has 30 rows and 16 columns with missing data. it1-it10 correspond to the rating of 30 patients with a 10 items scale. r1, r2, r3 to the rating of item 1 by 3 different clinicians of the same 30 patients. rb1, rb2, rb3 to the binary transformation of r1, r2, r3 (1 or $2->0$; and 3 or 4 -> 1).

Usage

data(expsy)

Format

This data frame contains the following columns:
it1 a numeric vector corresponding to item 1 (rated from 1:low to 4:high)
it2 a numeric vector corresponding to item 2 (rated from 1:high to 4:low)
it3 a numeric vector corresponding to item 3 (rated from 1:low to 4:high)
it4 a numeric vector corresponding to item 4 (rated from 1:low to 4:high)
it5 a numeric vector corresponding to item 5 (rated from 1:low to 4:high)
it6 a numeric vector corresponding to item 6 (rated from 1:low to 4:high)
it7 a numeric vector corresponding to item 7 (rated from 1:low to 4:high)
it8 a numeric vector corresponding to item 8 (rated from 1:low to 4:high)
it9 a numeric vector corresponding to item 9 (rated from 1:low to 4:high)
it10 a numeric vector corresponding to item 10 (rated from 1:low to 4:high)
r1 a numeric vector corresponding to item 1 rated by rater 1
rb1 binary transformation of r 1
r2 a numeric vector corresponding to item 1 rated by rater 2
rb2 binary transformation of r 2
r3 a numeric vector corresponding to item 1 rated by rater 3
rb3 binary transformation of r3

Source

artificial data

Examples

```
data(expsy)
expsy[1:4,]
```

fpca Focused Principal Components Analysis

Description

Graphical representation similar to a principal components analysis but adapted to data structured with dependent/independent variables

Usage

fpca(formula=NULL, y=NULL, $x=N U L L, ~ d a t a, ~ c x=0.75$, pvalues="No", partial="Yes", input="data", contraction="No", sample.size=1)

Arguments

formula	"model" formula, of the form $y \sim x$
y	column number of the dependent variable
x	column numbers of the independent (explanatory) variables
data	name of datafile
cx	size of the lettering (0.75 by default, 1 for bigger letters, 0.5 for smaller)
pvalues	vector of prespecified pvalues (pvalues="No" by default) (see below)
partial	partial="Yes" by default, corresponds to the original method (see below) input="Cor" for a correlation matrix (input="data" by default) input change the aspect of the diagram, contraction="Yes" is convenient for large data
sample.size	set (contraction="No" by default) to be specified if input="Cor"

Details

This representation is close to a Principal Components Analysis (PCA). Contrary to PCA, correlations between the dependent variable and the other variables are represented faithfully. The relationships between non dependent variables are interpreted like in a PCA: correlated variables are close or diametrically opposite (for negative correlations), independent variables make a right angle with the origin. The focus on the dependent variable leads formally to a partialisation of the correlations between the non dependent variables by the dependent variable (see reference). To avoid this partialisation, the option partial="No" can be used. It may be interesting to represent graphically the strength of association between the dependent variable and the other variables using p values coming from a model. A vector of pvalue may be specified in this case.

Value

A plot (q plots in fact).

Author(s)

Bruno Falissard, Bill Morphey, Adeline Abbe

References

Falissard B, Focused Principal Components Analysis: looking at a correlation matrix with a particular interest in a given variable. Journal of Computational and Graphical Statistics (1999), 8(4): 906-912.

Examples

```
data(sleep)
fpca(Paradoxical.sleep~Body.weight+Brain.weight+Slow.wave.sleep+Maximum.life.span+
    Gestation.time+Predation+Sleep.exposure+Danger,data=sleep)
fpca(y="Paradoxical.sleep",x=c("Body.weight","Brain.weight","Slow.wave.sleep",
    "Maximum.life.span", "Gestation.time", "Predation","Sleep.exposure","Danger"), data=sleep)
## focused PCA of the duration of paradoxical sleep (dreams, 5th column)
## against constitutional variables in mammals (columns 2, 3, 4, 7, 8, 9, 10, 11).
## Variables inside the red cercle are significantly correlated
## to the dependent variable with p<0.05.
## Green variables are positively correlated to the dependent variable,
## yellow variables are negatively correlated.
## There are three clear clusters of independent variables.
corsleep <- as.data.frame(cor(sleep[,2:11],use="pairwise.complete.obs"))
fpca(Paradoxical.sleep~Body.weight+Brain.weight+Slow.wave.sleep+Maximum.life.span+
    Gestation.time+Predation+Sleep.exposure+Danger,
data=corsleep,input="Cor",sample.size=60)
## when missing data are numerous, the representation of a pairwise correlation
## matrix may be preferred (even if mathematical properties are not so good...)
numer <- c(2:4,7:11)
```

```
l <- length(numer)
resu <- vector(length=l)
for(i in 1:l)
{
int <- sleep[,numer[i]]
mod <- lm(sleep$Paradoxical.sleep~int)
resu[i] <- summary(mod)[[4]][2,4]*sign(summary(mod)[[4]][2,1])
}
fpca(Paradoxical.sleep~Body.weight+Brain.weight+Slow.wave.sleep+Maximum.life.span+
    Gestation.time+Predation+Sleep.exposure+Danger,
data=sleep,pvalues=resu)
## A representation with p values
## When input="Cor" or pvalues="Yes" partial is turned to "No"
mod <- lm(sleep$Paradoxical.sleep~sleep$Body.weight+sleep$Brain.weight+
sleep$Slow.wave.sleep+sleep$Maximum.life.span+sleep$Gestation.time+
sleep$Predation+sleep$Sleep.exposure+sleep$Danger)
resu <- summary(mod)[[4]][2:9,4]*sign(summary(mod)[[4]][2:9,1])
fpca(Paradoxical.sleep~Body.weight+Brain.weight+Slow.wave.sleep+Maximum.life.span+
    Gestation.time+Predation+Sleep.exposure+Danger,
data=sleep,pvalues=resu)
## A representation with p values which come from a multiple linear model
## (here results are difficult to interpret)
```


icc

Intraclass correlation coefficient (ICC)

Description

Computes the ICC of several series of measurements, for example in an interrater agreement study. Two types of ICC are proposed: consistency and agreement.

Usage
 icc(data)

Arguments

data $\quad n * p$ matrix or dataframe, n subjects p raters

Details

Missing data are omitted in a listwise way. The "agreement" ICC is the ratio of the subject variance by the sum of the subject variance, the rater variance and the residual; it is generally prefered. The "consistency" version is the ratio of the subject variance by the sum of the subject variance and the residual; it may be of interest when estimating the reliability of pre/post variations in measurements.

Value

A list with :

```
    $nb.subjects number of subjects under study
    $nb.raters number of raters
    $subject.variance
        subject variance
    $rater.variance
        rater variance
    $residual residual variance
    $icc.consistency
        Intra class correlation coefficient, "consistency" version
    $icc.agreement Intra class correlation coefficient, "agreement" version
```


Author(s)

Bruno Falissard

References

Shrout, P.E., Fleiss, J.L. (1979), Intraclass correlation: uses in assessing rater reliability, Psychological Bulletin, 86, 420-428.

Examples

```
data(expsy)
icc(expsy[,c(12,14,16)])
#to obtain a 95%confidence interval:
#library(boot)
#icc.boot <- function(data,x) {icc(data[x,])[[7]]}
#res <- boot(expsy[,c(12,14,16)],icc.boot,1000)
#quantile(res$t,c(0.025,0.975)) # two-sided bootstrapped confidence interval of icc (agreement)
#boot.ci(res,type="bca") # adjusted bootstrap percentile (BCa) confidence interval (better)
```

lkappa Light's kappa for n raters

Description

Computes Light's Kappa for agreement in the case of n raters. The diagnosis (the object of the rating) may have k possible values (ordered or not).

Usage

lkappa(r, type="Cohen", weights="squared")

Arguments

r
$\mathrm{m} * \mathrm{n}$ matrix, m subjects and n raters
type type="Cohen" for a categorical diagnosis. If not, the diagnosis is supposed to be ordered
weights weights="squared" for a weighted kappa with squared weights. If not, weigths are computed with absolute values.

Details

Light's Kappa is equal to the mean of the $n(n-1) / 2$ kappas obtained from each pair of raters. Missing values are omitted locally when considering each pair of raters. If type="Cohen" the diagnosis is considered as a categorical variable. If not, the diagnosis is considered as an ordered variable and weigthed kappa's are computed. In this last situation, the type of weights that is used (squared or absolute values) is given by the variable weigths.

Value

kappa (mean of the $n(n-1) / 2$ kappas obtained from each pair of raters)

Author(s)

Bruno Falissard

References

Conger, A.J. (1980), Integration and generalisation of Kappas for multiple raters, Psychological Bulletin, 88, 322-328.

Examples

```
data(expsy)
lkappa(expsy[,c(11,13,15)]) # Light's kappa for non binary diagnosis
lkappa(expsy[,c(12,14,16)]) # Light's kappa for binary diagnosis
lkappa(expsy[,c(11,13,15)], type="weighted") # Light's kappa for non binary ordered diagnosis
#to obtain a 95%confidence interval:
#library(boot)
#lkappa.boot <- function(data,x) {lkappa(data[x,], type="weighted")}
#res <- boot(expsy[,c(11,13,15)],lkappa.boot,1000)
#quantile(res$t,c(0.025,0.975)) # Bootstrapped confidence interval of Light's kappa
#boot.ci(res,type="bca") # adjusted bootstrap percentile (BCa) confidence interval
```

```
mdspca
```

Graphical representation of a correlation matrix using a Principal Component Analysis

Description

Similar to many routines, the interest is in the possible representation of both variables and subjects (and by the way categorical variables) with active and supplementary points. Missing data are omitted.

Usage

mdspca(datafile, supvar="no", supsubj="no", namesupvar=colnames(supvar, do.NULL=FALSE), namesupsubj=colnames(supsubj, do.NULL=FALSE), dimx=1, dimy=2, cx=0.75)

Arguments

datafile supvar	name of datafile matrix corresponding to supplementary variables (if any), supvar="no" by de- fault
supsubj	matrix corresponding to supplementary subjects (if any), supsubj="no" by de- fault
namesupvar	names of the points corresponding to the supplementary variables
namesupsubj	names of the points corresponding to the supplementary subjects
dimx	rank of the component displayed on the x axis (1 by default)
dimy	rank of the component displayed on the y axis (2 by default $)$
cx	size of the lettering $(0.75$ by default, 1 for bigger letters, 0.5 for smaller)

Value

A diagram (two diagrams if supplementary subjects are used)

Author(s)

Bruno Falissard

Examples

```
data(sleep)
mdspca(sleep[,c(2:5,7:11)])
## three consistent groups of variables, paradoxical sleep (in other words: dream)
## is negatively correlated with danger
mdspca(sleep[,c(2:5,7:11)],supvar=sleep[,6],namesupvar="Total.sleep",supsubj=sleep[,1],
    namesupsubj=" ",cx=0.5)
```

```
## Total.sleep is here a supplementary variable since it is deduced
## from Paradoxical.sleep and Slow.wave.sleep
## The variable Species is displayed in the subject plane,
## Rabbit and Cow have a high level of danger
```

mtmm
Multitrait Multimethod approach of scale validation

Description

This function is destinated to assess the convergent and discriminant validity of subscales of a given scale. Items belonging to the same subscale should correlate highly amongst themselves. Items belonging to different subscales should not correlate highly. This approach is simpler and more robust than confirmatory factor analysis (CFA). It can be interesting to verify (at least approximately) the proposed structure of an existing instrument in a new population. Most psychometricians will however prefer CFA.

Usage

mtmm(datafile, x, color=FALSE,itemTot=FALSE,graphItem=FALSE, stripChart=FALSE, namesDim=NULL)

Arguments

datafile	name of datafile
x	a list of variable names (as many elements as there are subscales) boxplot are in colour: FALSE = colourless just in grey and white (by default), color TRUE = with colours
itemTot	if TRUE, for subscale $\mathrm{i}(\mathrm{i}=1, \ldots, \mathrm{n})$, boxplot of Pearson's correlations between total score of subscale i and the items of subscale $\mathrm{j}(\mathrm{j}=1, \ldots \mathrm{n})$. If $\mathrm{j}=\mathrm{i}$, the item is omited in the computation of the total score. If FALSE, for subscale $\mathrm{i}(\mathrm{i}=1, \ldots, \mathrm{n})$, boxplot of Pearson's correlations between the items of subscale i and the items of subscale $\mathrm{j}(\mathrm{j}=1, \ldots \mathrm{n})$
graphItem	if TRUE represents graphically each correlation
stripChart	if TRUE, dot charts are preferred to boxplots. Used with small number of items
namesDim	Labels foreach boxplots

Value

For subscale $\mathrm{i}(\mathrm{i}=1, \ldots, \mathrm{n})$, displays the n boxplots of the distributions of the Pearson's correlations between items of subscale i and items of subscale $j(j=1, \ldots, n)$. If $j=i$, the correlation of a given item with itself is ommited. Boxplot for $\mathrm{i}=\mathrm{j}$ (grey by default) should be above boxplots for $\mathrm{i}!=\mathrm{j}$. Likewise, the correlation of an item with the global score of its subscale should be above its correlations with the global score of the other subscales.

Author(s)

Adeline Abbe

Examples

```
    data(ehd)
    par(mfrow=c(1,5))
    mtmm(ehd,list(c("e15", "e18", "e19", "e20"), c("e4", "e5", "e6", "e14", "e17") , c("e11", "e13", "e16")
    ,c("e1","e10","e12"),c("e2","e3","e7","e8","e9")))
    # Boxplots of the distributions of the Pearson's correlations between total score of
    # subscale i and the items of subscale j
    par(mfrow=c (1,5))
    mtmm(ehd,list(c("e15", "e18", "e19", "e20"), c("e4", "e5", "e6", "e14", "e17"), c("e11", "e13", "e16")
    ,c("e1","e10","e12"),c("e2","e3","e7","e8","e9")))
    # Pearson's correlations between total score of subscale i and all items
    par(mfrow=c(3,2))
    mtmm(ehd,list(c("e15","e18", "e19","e20"),c("e4","e5","e6", "e14", "e17"), c("e11", "e13", "e16")
    ,c("e1","e10","e12"), c("e2","e3", "e7","e8", "e9")),graphItem=TRUE)
```

 psy
 Various procedures used in psychometry

Description

Kappa, Intra class correlation coefficient, Cronbach alpha, Scree plot, Multitraits multimethods, Spherical representation of a correlation matrix

Details

Package:	psy
Type:	Package
Version:	1.0
Date:	$2009-12-23$
License:	free
LazyLoad:	yes

Author(s)

Bruno Falissard falissard_b@wanadoo.fr

References

Falissard B, A spherical representation of a correlation matrix, Journal of Classification (1996), 13:2, 267-280.
Horn, JL (1965) A Rationale and Test for the Number of Factors in Factor Analysis, Psychometrika, 30, 179-185.
Mammals: Ecological and Constitutional Correlates, by Allison, T. and Cicchetti, D. (1976) Science, November 12, vol. 194, pp.732-734
Jouvent, R et al 1988 La clinique polydimensionnelle de humeur depressive. Nouvelle version echelle EHD : Polydimensional rating scale of depressive mood. Psychiatrie et Psychobiologie.

Examples

```
data(sleep)
sphpca(sleep[,c(2:5,7:11)])
data(expsy)
scree.plot(expsy[,1:10], simu=20,use="P")
data(ehd)
par(mfrow=c(1,5))
mtmm(ehd, list(c("e15", "e18", "e19", "e20"), c("e4", "e5", "e6", "e14", "e17"), c("e11", "e13", "e16")
,c("e1", "e10","e12"), c("e2", "e3","e7", "e8","e9")))
```

scree.plot Screeplot of eigenvalues, simulated data are available

Description

Graphical representation of the eigenvalues of a correlation/covariance matrix. Usefull to determine the dimensional structure of a set of variables. Simulation are proposed to help the interpretation.

Usage

scree.plot(namefile, title = "Scree Plot", type = "R", use = "complete.obs", simu = "F")

Arguments

namefile dataset
title Title
type type="R" to obtain the eigenvalues of the correlation matrix of dataset, type="V" for the covariance matrix, type=" M " if the input data is directly the matrix, type="E" if the input data are directly the eigenvalues
use omit missing values by default, use="P" to analyse the pairwise correlation/covariance matrix
simu $\quad \operatorname{simu}=\mathrm{p}$ to add p screeplots of simulated random normal data (same number of patients and variables as in the original data set, same pattern of missing data if use="P")

Details

Simulations lead sometimes to underestimate the actual number of dimensions (as opposed to Kayser rule: eigen values superior to 1). Basically, simu=20 is enough.

Value

a plot

Author(s)

Bruno Falissard

References

Horn, JL (1965) A Rationale and Test for the Number of Factors in Factor Analysis, Psychometrika, 30, 179-185. Cattell, RB (1966) The scree test for the number of factors. Multivariate Behavioral Research, 1, 245-276.

Examples

```
data(expsy)
scree.plot(expsy[,1:10],simu=20,use="P") #no obvious structure with such a small sample
```

sleep Ecological and Constitutional Data in Mammals

Description

Data from which conclusions were drawn in the article Mammals: Ecological and Constitutional Correlates, by Allison, T. and Cicchetti, D. (1976) Science, November 12, vol. 194, pp.732-734

Usage

data(sleep)

Format

This data frame contains the following columns:
Species a factor with levels
Body.weight a numeric vector, body weight in kg
Brain.weight a numeric vector, Brain weight in g
Slow.wave.sleep a numeric vector, nondreaming sleep (hrs/day)
Paradoxical.sleep a numeric vector, dreaming sleep (hrs/day)
Total.sleep a numeric vector, nondreaming + "dreaming" (hrs/day)
Maximum.life.span a numeric vector (in years)

Gestation.time a numeric vector (in days)
Predation a numeric vector, Predation index ($1 \mathrm{~min}-5 \mathrm{max}$)
Sleep.exposure a numeric vector, Sleep exposure index ($1 \mathrm{~min}-5 \mathrm{max}$)
Danger a numeric vector, Overall danger index (1 min - 5 max)

Source

http://lib.stat.cmu.edu/datasets/sleep

References

Mammals: Ecological and Constitutional Correlates, by Allison, T. and Cicchetti, D. (1976) Science, November 12, vol. 194, pp.732-734

Examples

```
data(sleep)
str(sleep)
```

sphpca Spherical Representation of a Correlation Matrix

Description

Graphical representation of a correlation matrix, similar to principal component analysis (PCA) but the mapping is on a sphere. The information is close to a 3d PCA, the picture is however easier to interpret since the variables are in fact on a 2 d map.

Usage

sphpca(datafile, $h=0, \mathrm{v}=0, \mathrm{f}=0$, $\mathrm{cx}=0.75$, nbsphere=2, back=FALSE, input="data", method="approx", maxiter=500, output=FALSE)

Arguments

datafile name of datafile
$h \quad$ rotation of the sphere on a horizontal plane (in degres)
$v \quad$ rotation of the sphere on a vertical plane (in degres)
$\mathrm{f} \quad$ rotation of the sphere on a frontal plane (in degres)
$\mathrm{cx} \quad$ size of the lettering (0.75 by default, 1 for bigger letters, 0.5 for smaller)
nbsphere two by default: front and back
back "FALSE" by default: the back sphere is not seen through
input "data" by default: raw data are analysed, if not "data": correlation matrix is expected
> method "approx" by default: the estimation is based on a principal component analysis approximation. If "exact" the "approx" estimation is optimized (may be computationaly consumming). if "rscal" a multidimensional scaling approach is used: distances between points on the sphere are optimized so that they represent at best the original correlations. The scaling that is used leads to angles on the sphere proportional to correlation between variables
> maxiter maximum number of iterations in the optim process
> output FALSE by default: if TRUE and method="rscal" numerical results are proposed

Details

There is an isophormism between a correlation matrix and points on the unit hypersphere of Rn. It can be shown that a 3 d spherical representation of a correlation matrix is statistically and cognitively interesting (see reference). The default option method="approx" is based on a principal components approximation (see reference). It is fast and gives rather good results. If method="exact" the representation is sligthly improved in terms of fit (the sphere minimizes the sum of squared distances between the original variables on the hypersphere and their projections on the sphere). The option method="rscal" optimizes the representation of correlations between variables with distances between points (in a least squares sense). For convenience, the scaling of points on the sphere is chosen so that angles between points are linearly related to correlations between variables (this is not the case on the hypersphere were $\left.\mathrm{d}=[2 *(1-\mathrm{r})]^{\wedge} 0.5\right)$. For method="exact" or method="rscal" computations may be rather lengthy (and not sensible for more than $20-40$ variables). The sphere may be rotated to help in visualising most of variables on a same side (front for example). By default, the back of the sphere (right plot) is not seen showing through.

Value

A plot. If method="rscal" and output=TRUE, a list with :

```
$stress.before.optim
Stress before optimization. The stress is equal to the sum of squares of differences between distances on the 3d sphere and distances on the hypersphere.
\$stress.after.optim
Stress after optimization.
\$convergence If 0, convergence is OK. If not, maxiter may be increased.
\$correlations Correlation matrix of variables (Pearson).
\$residuals Differences between observed correlations (hypersphere) and correlations estimated from points on the 3 d sphere.
\$mean.abs.resid
Mean of absolute values of residuals.
```


Author(s)

Bruno Falissard

References

Falissard B, A spherical representation of a correlation matrix, Journal of Classification (1996), 13:2, 267-280.

Examples

```
data(sleep)
sphpca(sleep[,c(2:5,7:11)])
## spherical representation of ecological and constitutional correlates in mammals
sphpca(sleep[,c(2:5,7:11)],method="rscal",output=TRUE)
## idem, but optimizes the representation of correlations between variables with distances
## between points
corsleep <- as.data.frame(cor(sleep[,c(2:5,7:11)],use="pairwise.complete.obs"))
sphpca(corsleep,input="Cor")
sphpca(corsleep,method="rscal",input="Cor")
## when missing data are numerous, the representation of a pairwise correlation
## matrix may be preferred (even if mathematical properties are not so good...)
sphpca(corsleep,method="rscal",input="Cor", h=180,f=180, nbsphere=1, back=TRUE)
## other option of presentation
##
# library(polycor)
# sleep$Predation <- as.ordered(sleep$Predation)
# sleep$Sleep.exposure <- as.ordered(sleep$Sleep.exposure)
# sleep$Danger <- as.ordered(sleep$Danger)
# corsleeph <- as.data.frame(hetcor(sleep[,c(2:5,7:11)])$correlations)
# sphpca(corsleeph,input="Cor",f=180)
# sphpca(corsleeph,method="rscal",input="Cor",f=180)
## --> Correlations between discrete variables may appear shoking to some statisticians (?)
## --> Representation of polychoric/polyserial correlations could be prefered in this situation
```

wkappa weighted Kappa for 2 raters

Description

Computes a weighted Kappa for agreement in the case of 2 raters. The diagnosis (the object of the rating) may have k possible ordered values.

Usage

wkappa(r,weights="squared")

Arguments

$$
\begin{array}{ll}
\mathrm{r} & \mathrm{n} * 2 \text { matrix or dataframe, } \mathrm{n} \text { subjects and } 2 \text { raters } \\
\text { weights } & \begin{array}{l}
\text { weights="squared" to obtain squared weights. If not, absolute weights are com- } \\
\text { puted (see details) }
\end{array}
\end{array}
$$

Details

Diagnoses have to be coded by numbers (ordered naturally). For weigths="squared", weights are related to squared differences between rows and columns indices (in this situation wkappa is close to an icc). For weights!="squared", weights are related to absolute values of differences between rows and columns indices. The function is supposed to deal with the case where the two raters have not exactly the same scope of rating. Missing value are omitted.

Value

A list with :

\$table	the $2 * \mathrm{k}$ table of raw data (first rater in rows, second rater in columns)
\$weights	"squared" or "absolute"
\$kappa	Weighted Kappa

Author(s)

Bruno Falissard

References

Cohen, J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or partial credit. Psychological Bulletin 70 (1968): 213-220.

Examples

```
data(expsy)
wkappa(expsy[,c(11,13)]) # weighted kappa (squared weights)
#to obtain a 95%confidence interval:
#library(boot)
#wkappa.boot <- function(data,x) {wkappa(data[x,])[[3]]}
#res <- boot(expsy[,c(11,13)],wkappa.boot,1000)
#quantile(res$t,c(0.025,0.975)) # two-sided bootstrapped confidence interval of weighted kappa
#boot.ci(res,type="bca") # adjusted bootstrap percentile (BCa) confidence interval (better)
```


Index

```
* datasets
    ehd,4
    expsy,5
    sleep,15
* multivariate
    fpca, }
    mdspca, 11
    scree.plot,14
    sphpca,16
* package
    psy, }1
* univar
    ckappa,2
    cronbach, }
    icc, }
    lkappa,9
    wkappa,18
ckappa,2
cronbach, 3
ehd,4
expsy,5
fpca, }
icc,8
lkappa, }
mdspca, 11
mtmm, 12
psy,13
scree.plot,14
sleep, }1
sphpca,16
wkappa,18
```

