## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) library(penetrance) library(ggplot2) library(scales) ## ----------------------------------------------------------------------------- # Create generating_penetrance data frame age <- 1:94 # Calculate Weibull distribution for Females alpha <- 2 beta <- 50 gamma <- 0.6 delta <- 15 penetrance.mod.f <- dweibull(age - delta, alpha, beta) * gamma # Calculate Weibull distribution for Males alpha <- 2 beta <- 50 gamma <- 0.6 delta <- 30 penetrance.mod.m <- dweibull(age - delta, alpha, beta) * gamma generating_penetrance <- data.frame( Age = age, Female = penetrance.mod.f, Male = penetrance.mod.m ) ## ----------------------------------------------------------------------------- dat <- simulated_families ## ----eval=FALSE--------------------------------------------------------------- # # # Set the random seed # set.seed(2024) # # # Set the prior # prior_params <- list( # asymptote = list(g1 = 1, g2 = 1), # threshold = list(min = 5, max = 40), # median = list(m1 = 2, m2 = 2), # first_quartile = list(q1 = 6, q2 = 3) # ) # # # Set the prevalence # prevMLH1 <- 0.001 # # # We use the default baseline (non-carrier) penetrance # print(baseline_data_default) # # # We run the estimation procedure with one chain and 20k iterations # out_sim <- penetrance( # pedigree = dat, twins = NULL, n_chains = 1, n_iter_per_chain = 20000, # ncores = 2, baseline_data = baseline_data_default , prev = prevMLH1, # prior_params = prior_params, burn_in = 0.1, median_max = TRUE, # ageImputation = FALSE, removeProband = FALSE # ) # ## ----------------------------------------------------------------------------- # Function to calculate Weibull cumulative density weibull_cumulative <- function(x, alpha, beta, threshold, asymptote) { pweibull(x - threshold, shape = alpha, scale = beta) * asymptote } # Function to plot the penetrance and compare with simulated data plot_penetrance_comparison <- function(data, generating_penetrance, prob, max_age, sex) { if (prob <= 0 || prob >= 1) { stop("prob must be between 0 and 1") } # Calculate Weibull parameters for the given sex params <- if (sex == "Male") { calculate_weibull_parameters( data$median_male_results, data$first_quartile_male_results, data$threshold_male_results ) } else if (sex == "Female") { calculate_weibull_parameters( data$median_female_results, data$first_quartile_female_results, data$threshold_female_results ) } else { stop("Invalid sex. Please choose 'Male' or 'Female'.") } alphas <- params$alpha betas <- params$beta thresholds <- if (sex == "Male") data$threshold_male_results else data$threshold_female_results asymptotes <- if (sex == "Male") data$asymptote_male_results else data$asymptote_female_results x_values <- seq(1, max_age) # Calculate cumulative densities for the specified sex cumulative_density <- mapply(function(alpha, beta, threshold, asymptote) { pweibull(x_values - threshold, shape = alpha, scale = beta) * asymptote }, alphas, betas, thresholds, asymptotes, SIMPLIFY = FALSE) distributions_matrix <- matrix(unlist(cumulative_density), nrow = length(x_values), byrow = FALSE) mean_density <- rowMeans(distributions_matrix, na.rm = TRUE) # Calculate credible intervals lower_prob <- (1 - prob) / 2 upper_prob <- 1 - lower_prob lower_ci <- apply(distributions_matrix, 1, quantile, probs = lower_prob) upper_ci <- apply(distributions_matrix, 1, quantile, probs = upper_prob) # Recover the data-generating penetrance cumulative_generating_penetrance <- cumsum(generating_penetrance[[sex]]) # Create data frame for plotting age_values <- seq_along(cumulative_generating_penetrance) min_length <- min(length(cumulative_generating_penetrance), length(mean_density)) plot_df <- data.frame( age = age_values[1:min_length], cumulative_generating_penetrance = cumulative_generating_penetrance[1:min_length], mean_density = mean_density[1:min_length], lower_ci = lower_ci[1:min_length], upper_ci = upper_ci[1:min_length] ) # Plot the cumulative densities with credible intervals p <- ggplot(plot_df, aes(x = age)) + geom_line(aes(y = cumulative_generating_penetrance, color = "Data-generating penetrance"), linewidth = 1, linetype = "solid", na.rm = TRUE) + geom_line(aes(y = mean_density, color = "Estimated penetrance"), linewidth = 1, linetype = "dotted", na.rm = TRUE) + geom_ribbon(aes(ymin = lower_ci, ymax = upper_ci), alpha = 0.2, fill = "red", na.rm = TRUE) + labs(title = paste("Cumulative Density Comparison for", sex), x = "Age", y = "Cumulative Density") + theme_minimal() + scale_color_manual(values = c("Data-generating penetrance" = "blue", "Estimated penetrance" = "red")) + scale_y_continuous(labels = scales::percent) + theme(legend.title = element_blank()) print(p) # Calculate Mean Squared Error (MSE) mse <- mean((plot_df$cumulative_generating_penetrance - plot_df$mean_density)^2, na.rm = TRUE) cat("Mean Squared Error (MSE):", mse, "\n") # Calculate Confidence Interval Coverage coverage <- mean((plot_df$cumulative_generating_penetrance >= plot_df$lower_ci) & (plot_df$cumulative_generating_penetrance <= plot_df$upper_ci), na.rm = TRUE) cat("Confidence Interval Coverage:", coverage, "\n") } # Plot for Female plot_penetrance_comparison( data = out_sim$combined_chains, generating_penetrance = generating_penetrance, prob = 0.95, max_age = 94, sex = "Female" ) # Plot for Male plot_penetrance_comparison( data = out_sim$combined_chains, generating_penetrance = generating_penetrance, prob = 0.95, max_age = 94, sex = "Male" )