
‘pcSteiner’ vignette

Aleksei Krasikov

2022-05-23

This vignette document sets the following goals: expound the Prize-
Collecting Steiner tree problem, give some background on Belief
propagation algorithm, explain in details how BP is used for solving
the Prize-Collecting Steiner tree problem, discuss several additional
features for graph analysis and illustrate a typical workflow with the
package.

Contents

1 Steiner tree problem 2

2 Belief propagation 3
2.1 Preliminaries: graphical models and statistical inference . 3

2.1.1 Bayesian networks . 3
2.1.2 Markov random fields . 3
2.1.3 Factor graphs . 3
2.1.3 Statistical inference . 4

2.2 Belief propagation . 4
2.2.1 Sum-product . 4
2.2.2 Max-product . 5
2.2.3 Max-sum . 5
2.2.4 Complexity and correctness . 6

2.3 Loopy belief propagation . 6
2.3.1 Complexity and correctness . 6

3 BP for PCST 8
3.1 Graphical model . 8
3.2 Message-passing equations for loop-free graphs . 8
3.3 Message-passing equations for graphs with cycles . 10

3.3.1 Implementation details . 10
3.3.2 Complete algorithm . 11

4 Workflow with the package 13

1

1 Steiner tree problem

The Steiner problem is a classical combinatorial optimisation problem. The interest in it arises from a
wide range of practical applications in the areas such as chemistry, biology, telecommunication and many
more. For example, the goal of the Steiner tree problem in systems biology is to detect biological relationship
between a set of distinguished proteins, metabolites or genes.

Let G = (V,E) be an undirected graph where V is a vertex set and E is an edge set. Suppose that graph
is weighted, i.e. graph with a cost function c : E → R+. Given a required node subset T ¦ V the Steiner
tree problem for T in G is to find connected, minimum cost subgraph G1 = (V1, E1) with T ¦ V1 ¦ V and
E1 ¦ E. Note, that resulting subgraph is necessary a tree. The elements of T are called terminals and
elements of V1 \ T are Steiner nodes.

Problem 1.1 (Steiner tree problem).
Input: an undirected graph G, a set T ¦ V and weights c : E → R+

Output: a minimum weight tree connecting all vertices of T in G

Theorem 1.1. The Steiner tree problem is NP -hard, even for unit weights (Karp 1972).

There are two special cases of the Steiner tree problem. If |T | = 2, then the problem is reduced to the
Shortest Path problem between a pair of vertices in a graph, which is in the class P . The second special case
to be considered is when |T | = |V | and the problem is reduced to finding Minimum Spanning tree, which is
again solvable in polynomial time.

In many cases nodes have an additional numerical value, which represents their significance. That is where
the Prize-Collecting Steiner Tree problem arises. Roughly speaking, the goal is to find a subgraph G1 in G
connecting all the terminals T with the most expensive nodes and least expensive edges. Note, that the result
will be a tree as in the Steiner problem.

Problem 1.2 (Prize-Collecting Steiner Tree problem).
Input: an undirected graph G, a set T ¦ V , costs c : E → R+ and prizes p : V → R+

Output: find a tree G1 by minimizing the following function f(G1) =
�

e∈E1
ce + λ

�

i/∈V1
pi

Since a constant value does not change a maximum, we can subtract a total node prizes from objective
function C =

�

i∈V pi.

Problem 1.2 (revisited).
Input: an undirected graph G, a set T ¦ V , costs c : E → R+ and prizes p : V → R+

Output: find a tree G1 by minimizing the following function f(G1) =
�

e∈E1
ce − λ

�

i∈V1
pi

The Prize-Collecting Steiner Tree problem reduces to the Steiner problem when all prizes are equal to one,
so it is at least NP -hard. Thus, we do not expect to have an efficient algorithm for solving PCST problem
exactly.

References

1. B. Korte and J. Vygen, “Combinatorial Optimization. Theory and Algorithms”. Springer, 2008.

2

2 Belief propagation

The approximation algorithm for PCST problem internally utilizes loopy belief propagation equations.
In this section we remind several basic definitions in probability theory and statistics which are crucial for
understanding the material presented in the later sections of this vignette document.

For more details in implementation of belief propagation and loopy belief propagation we refer to this
GitHub repository.

2.1 Preliminaries: graphical models and statistical inference

Graphical model is a compact representation of a collection of probability distributions. It consists of a
graph G = (V,E), directed or undirected, where each vertex v ∈ V is associated with a random variable.
Edges of the graph represent statistical relationship between nodes. There are several main types of graphical
models:

• Bayesian networks
• Markov random fields
• Factor graphs

2.1.1 Bayesian networks

Bayesian network is a directed graph. Each node represents random variable xi which has an associated
conditional probability distribution or local probabilistic model. A direct edge from xi to xj represents a
conditional probability of a random variable given its parents P (xi|xj). Bayesian network defines a joint
probability distribution in the following way:

P (x1, . . . , xn) =

n
�

i=1

P (xi | Par(xi)) (2.1)

2.1.2 Markov random fields

Markov random field is based on undirected graphical models. As in a Bayesian network, nodes in a graph
represent variables. An associated probability distribution factorizes into functions, each function associated
with a clique of the graph:

P (x1, ..., xn) = Z−1
�

C∈C

ψC(xC) (2.2)

where Z is a constant chosen to ensure that the distribution is normalized. The set C is often taken to be the
set of all maximal cliques of the graph. For a general undirected graph the compatibility functions ψC need
not have any obvious or direct relation to probabilities or conditional distributions defined over the graph
cliques.

A special case of Markov random field is a pairwise Markov random field where the probability distribution
factorizes into functions of two variables.

2.1.3 Factor graphs

The most general parameterization is a factor graph. Factor graphs explicitly draw out the factors in a
factorization of the joint probability. Note, that it is possible to convert arbitrary MRF or Bayesian network
into equivalent factor graph.

Definition 2.1. Factor graph is a pair F = (G, {f1, . . . , fn}), where

• G = (V,E) is an undirected bipartite graph such that V = X ∪ F , where X ∪ F = ∅. The nodes X are
variable nodes, while the nodes F are factor nodes.

3

https://github.com/krashkov/Belief-Propagation

• Further, f1, . . . , fn are positive functions and the number of functions equals the number of nodes in
F = {F1, . . . , Fn}. Each node Fi is associated with the corresponding function fi and each fi is a
function of the neighboring variables of Fi, i.e. fi = fi(Nb(Fi)).

Joint probability distribution of a factor graph of N variables with M functions factorizes as follows:

P ({x}) = Z−1
M
�

a=1

ψ({x}a) (2.3)

where Z is a normalization constant.

2.1.3 Statistical inference

Both directed and undirected graphical models represent a full joint probability distribution. It is important
to solve the following computational inference problems:

• computing the marginal distribution P ({x}A) over a particular subset A ∈ V of nodes, i.e. sum over
all the possible states of all the other nodes in the system

• computing the conditional distribution P ({x}A | {x}B), where A ∩B = ∅ and A,B ∈ V

• computing the maximum a posteriori (MAP), i.e. finding the most likely joint assignment to a particular
set of variables: argmax{x}A

P ({x}A | {x}B)

Defenition 2.2. Marginal probabilities that are computed approximately are called beliefs. The belief at
node i is denoted by b(xi).

Theorem 2.1. Every type of inference in graphical models is NP -hard. Even simplest problem of computing
the distribution over a single binary variable is NP -hard.

2.2 Belief propagation

In this section we will consider only singly-connected probabilistic graphical models. In later
subsection, we will extend the algorithm to graphs with loops.

Belief propagation is a message-passing algorithm for solving inference tasks, at least approximately. The
BP equations for Bayesian networks, MRFs and factor graphs slightly differs from each other, but, in fact,
they are all mathematically equivalent. To keep things simple, we will stick with pairwise MRFs, since the
version for them has only one kind of message, while the BP equations, for example, for factor graphs are
described using two kinds of messages: from factor to variable and vice versa. According to our assumption,
distribution factorizes as follows:

P ({x}) = Z−1
�

(ij)

ψ(ij)(xi, xj) (2.4)

2.2.1 Sum-product

Here we will introduce an algorithm for performing marginalization in loop-free graphical models. Let’s
consider the following simple pairwise MRF: P ({x}) = Z−1ψ1(x1, x2)ψ2(x2, x4)ψ3(x2, x3). Our goal is to
compute marginal distribution of x1:

4

P (x1) = Z−1
�

x2,x3,x4

ψ1(x1, x2)ψ2(x2, x4)ψ3(x2, x3) =

= Z−1
�

x2

ψ1(x1, x2)

�

�

x4

ψ2(x2, x4)

� �

�

x3

ψ3(x2, x3)

�

=

= Z−1
�

x2

ψ1(x1, x2)µ4→2(x2)µ3→2(x2) =

= Z−1µ2→1(x1)

(2.5)

The generalization of the procedure above is exactly belief propagation or sum-product algorithm.

Algorithm 2.1: Sum-product algorithm for trees

Input: PGM, variable node n ∈ V ;
Output: marginal distribution P (xn);
recursively compute messages;

µi→j(xj) =
�

xi
ψ(ij)(xi, xj)

�

k∈Nb(xi)\{xj} µk→i(xi);

return marginal distribution P (xn) = Z−1
�

i∈Nb(xn) µi→n(xn)

Defenition 2.3. µi→j(xj) is a so-called message from variable xi to variable xj .

2.2.2 Max-product

The Max-product algorithm computes the max-marginal at each node of a graph p̄xi
(xi) =

maxxj :j ̸=i p{x}({x}).

Proposition 2.1. If there are no ties at each node, then (x∗
1, ..., x

∗
n), where x∗

i = argmaxxi
p̄xi

(xi) is a unique
global MAP assignment.

The idea behind Max-product is nearly the same as for Sum-product: instead of summing over the states
of other nodes, we should find the max over those states. The max operator passes through variables just as
the summation sign did.

Algorithm 2.2: Max-product algorithm for trees

Input: PGM;
Output: MAP assignment;
recursively compute messages;

µi→j(xj) = maxxi
ψ(ij)(xi, xj)

�

k∈Nb(xi)\{xj} µk→i(xi);

calculate max-marginals p̄xi
(xi) =

�

j∈Nb(xj) µj→i(xi) ∀i ∈ V ;
retrieve MAP assignment

2.2.3 Max-sum

In sum-product and max-product algorithms we perform a lot of factor and message multiplications and
it potentially can lead to numerical overflow or underflow. One way to avoid it is just to normalize each
message, while the other one is more sophisticated and requires to perform all computations in a log space.
We will consider the latter. Taking log from both parts of Max-product equations, we get the following:

m̃i→j(xj) = max
xi

lnψij(xi, xj) +
�

k∈Nb(xi)\{xj}

m̃k→i(xi)

p̄xi
(xi) = exp

�

j∈Nb(xi)

m̃k→i(xi)

(2.6)

5

All multiplications are now replaced by additions, and equations take the so-called MS form.

2.2.4 Complexity and correctness

Theorem 2.2. The BP algorithm is exact if the topology of the PGM is that of a tree or a chain.

Recall, that every type of inference in graphical models is NP -hard. Suppose, that each variable has k
number of statets. If we know nothing about the structure of the joint probability, evaluation of desired
marginal probability distribution would require O(k|V |) computations, where |V | - number of nodes in the
graph. Fortunately, factorization of the sum as we did in Eq. (2.5) reduces the total complexity to O(|V | k2).

So, BP algorithm is exact and efficient algorithm for performing inference in loop-free probabilistic
graphical models.

2.3 Loopy belief propagation

Since BP equations are local we can apply them to PGMs with cycles. The corresponding modification
is called loopy belief propagation. There is still the question of what update rules we use to recompute the
messages. We illustrate a parallel schedule by the example of Max-sum equations.

Algorithm 2.3: Loopy belief propagation (max-sum)

Input: PGM, tmax

Output: MAP assignment

initialize all messages µ
(0)
i→j = 1 ∀(i, j) ∈ E

for t = 1, . . . , tmax do

m̃t+1
i→j(xj) = maxxi

�

lnψij(xi, xj) +
�

k∈Nb(xi)\{xj} m̃
t
k→i(xi)

�

end

compute max-marginals p̄xi
(xi) = exp

�

�

j∈Nb(xi) m̃
tmax+1
k→i (xi)

�

retrieve MAP assignment

Other schedules for message-passing are possible [8,9].

2.3.1 Complexity and correctness

Unfortunately, Loopy belief propagation may not converge on graphs with cycles, however, in many
cases it provides quite good approximation, because BP fixed-points correspond to local stationary points of
the Bethe free energy.

References

1. D. Koller and N. Friedman, “Probabilistic Graphical Models: Principles and Techniques”. The MIT
Press, 2009.

2. J. Yedidia, W. Freeman and Y. Weiss, “Understanding belief propagation and its generalizations”. 2001.
3. F. Pernkopf, R. Peharz and S. Tschiatschek, “Introduction to Probabilistic Graphical Models”. 2014.
4. M. Wainwright and M. Jordan “Graphical Models, Exponential Families, and Variational Inference”.

2008.
5. C. Sutton and A. McCallum, “An Introduction to Conditional Random Fields”. 2012.
6. J. Yedidia, W. Freeman, “Constructing Free-Energy Approximations and Generalized Belief Propagation

Algorithms”. 2005.
7. F. Kschischang, B. Frey and H. Loeliger, “Factor Graphs and The Sum-Product Algorithm”. IEEE

Transactions on Information Theory, 2001.
8. C. Sutton and A. McCallum, “Improved dynamic schedules for belief propagation”. 2007.
9. G. Elidan, I. McGraw and D. Koller, “Residual belief propagation: Informed scheduling for asynchronous

message passing”. 2006.
10. Y. Weiss, “Correctness of Local Probability Propagation in Graphical Models with Loops”. 2000.

6

11. F. Jensen, “An introduction to Bayesian networks. UCL Press Limited”. 1996.

7

3 BP for PCST

This section is dedicated to the algorithm for solving the Prize-Collecting Steiner tree problem via belief
propagation introduced by the working group of Bayati, Braunstein et al. [1-3]. The D-bounded rooted PCST
is being considered which means that the goal is to solve PCST problem with given root r and maximum
depth D. This section provides only an overview of the algorithm and does not cover material in great details.

Problem 3.1 (D-bounded rooted PCST).
Input: an undirected graph G, a set T ¦ V , costs c : E → R+, prizes b : V → R+, root r ∈ V , depth D
Output: r-rooted tree G1 = (V1, E1) with depth D which minimizes the following function f(G1) =
�

e∈E1
ce + λ

�

i/∈V1
bi

3.1 Graphical model

The problem is modelled using pairwise Markov Random Field. Each node i ∈ V is assigned to a couple
of variables (pi, di), which has the following meaning:

• di ∈ {1, ..., D} denotes the distance to the given root r

• pi ∈ Nb(i) ∪ {∗}, where Nb(i) = {j : (ij) ∈ E} and pi = {∗} ô i /∈ V1. It represents a parent of a
node i.

Variables (pi, di) can not take arbitrary values, that is, they have to satisfy the following constraints ∀(ij) ∈ E:

if pi = j ⇒

!

di = dj + 1

pj ̸= {∗}
(3.1)

Should we introduce the auxiliary function fij = 1pi=j⇒di=dj+1'pj ̸={∗} = 1 − δpi,j

�

1 − δdi,dj+1

�

1 − δpj ,∗

��

,
the constraints will take the following form:

gij = fijfji = 1 (3.2)

If ci∗ = λbi, then the Problem 3.1 can be rewritten as follows:

min{H(p) =
�

i∈V

cipi
: (d,p) ∈ T } (3.3)

where d = {di}i∈V , p = {pi}i∈V , T = {(d,p) : gij = 1 ∀(ij) ∈ E}.

The corresponding MRF probability distribution can be written in the following way:

P (d,p) = Z−1
�

(ij)∈E

gij

�

i∈V

e−cipi (3.4)

The key idea of the method is to apply message passing equations (2.6) to maximize probability distribution
(3.4) or equivalently to find a solution to (3.3).

3.2 Message-passing equations for loop-free graphs

In this section we are going to introduce message update rules for loop-free graphs. Taking into consideration
max-sum equations (2.6):

mi→j(dj , pj) = max
di,pi:gij=1

−cipi
+

�

k∈Nb(i)\j

mk→i(di, pi)

(3.5)

8

Messages will be computed separately for each of the following groups of pj :

mi→j(dj , pj) =

maxdi,pi: gij=1 {.} , pj = i

maxdi,pi: gij=1 {.} , pj = ∗

maxdi,pi: gij=1 {.} , pj ̸= {i, ∗}

=

maxdi,pi: gij=1ô(di=dj−1'pi ̸={j,∗}) {.} , pj = i

maxdi,pi: gij=1ôpi ̸=j {.} , pj = ∗

maxdi,pi: gij=1ô(di=dj+1'pi=j)(pi ̸={j,∗}(pi=∗ {.} , pj ̸= {i, ∗}

=

maxdi=dj−1'pi ̸={j,∗} {.} pj = i

max[maxdi,pi ̸={j,∗} {.} ; maxdi,pi=∗ {.}] pj = ∗

max
�

maxdi=dj+1'pi=j {.} ; max[maxdi,pi ̸={j,∗} {.} ; maxdi,pi=∗ {.}]
�

pj ̸= {i, ∗}

=

maxdi=dj−1'pi ̸={j,∗} {.} pj = i

maxdi
max[maxpi ̸={j,∗} {.} ; maxpi=∗ {.}] pj = ∗

max
�

maxdi=dj+1'pi=j {.} ; maxdi
max[maxpi ̸={j,∗} {.} ; maxpi=∗ {.}]

�

pj ̸= {i, ∗}

Introducing new variables Ad
i→j = maxpi ̸={j,∗} {.} |di=d, Bd

i→j = maxpi=∗ {.} |di=d, Cd
i→j = maxpi=j {.} |di=d

allows us to rewrite messages in more convenient way:

mi→j(dj , pj) =

A
dj−1
i→j pj = i

maxdi
max[Adi

i→j ;Bdi

i→j] pj = ∗

max
�

C
dj+1
i→j ; maxdi

max[Adi

i→j ;Bdi

i→j]
�

pj ̸= {i, ∗}

=

A
dj−1
i→j pj = i

Di→j pj = ∗

max
�

C
dj+1
i→j ;Di→j

�

pj ̸= {i, ∗}

=

A
dj−1
i→j pj = i

Di→j pj = ∗

E
dj

i→j pj ̸= {i, ∗}

(3.7)

A bit of analysis reveals update rules for A,B,C:

Ad
i→j = max

pi ̸={j,∗}
{.} |di=d = max

pi ̸={j,∗}

−cipi
+

�

l∈Nb(i)\j

ml→i(d, pi)

= max
k∈Nb(i)\j

−cik +
�

l∈Nb(i)\j

ml→i(d, k)

=
�

k∈Nb(i)\j

Ed
k→j + max

k∈Nb(i)\j

�

−cik − Ed
k→j +Ad−1

k→j

�

(3.8)

Bd
i→j = max

pi=∗
{.} |di=d = −ci∗ +

�

k∈Nb(i)\j

mk→i(d, ∗)

= −ci∗ +
�

k∈Nb(i)\j

Dk→j

(3.9)

9

Cd
i→j = max

pi=j
{.} |di=d = −cij +

�

k∈Nb(i)\j

mk→i(d, j)

= −cij +
�

k∈Nb(i)\j

Ed
k→j

(3.10)

By analogy with (2.6) one can derive equation for computing marginal distribution of node xj :

b(dj , pj) = −cjpj
+

�

k∈Nb(i)

mk→j(dj , pj) (3.11)

Consideration of different cases for pj simplify the overall analysis:

b(dj , pj) =

!

−cji +
�

k∈Nb(j) mk→j(dj , i), pj = i ∈ Nb(j)

−cj∗ +
�

k∈Nb(j) mk→j(dj , ∗), pj = {∗}

=

!

�

k∈Nb(j) E
d
k→j +

�

−cji − Ed
i→j +Ad−1

i→j

�

, pj = i ∈ Nb(j)

−cj∗ +
�

k∈Nb(j) Dk→j , pj = {∗}

=

!

Fj→i, pj = i ∈ Nb(j)

Gj , pj = {∗}

(3.12)

3.3 Message-passing equations for graphs with cycles

3.3.1 Implementation details

Noise

Taking into account Proposition 2.1 we need somehow to resolve a ties, thus according to [3] a random
noise ξ ∈ Uniform[0, 1] is added to messages at the initialization step. Consequently, we can assume that a
solution will be unique. Note, that variables still have to satisfy the equations (3.7).

Stopping criteria

The following stopping criteria are utilized:

• max_iter parameter is required, so the program will abort the computation as soon as number of
iteration exceed the given value.

• eps parameter is required. If maximum of the message difference between two consecutive iterations
will be less, than given value, then the program will stop.

Returning value

Like in many other optimization problems error may increase during computation, that is why the program
will return a tree with the least expensive cost among all which was obtained until the last iteration.

10

3.3.2 Complete algorithm

Algorithm 3.1: BP algorithm for PCST problem for graph with cycles

Input: Graph, terminals, λ, root, depth, eps, max_iter
Output: Steiner Tree

/* initialize messages so that they satisfy (3.7)

create arrays Ad
i→j , E

d
i→j , F

d
i→j , Bi→j , Di→j , G

d
j ∀ij ∈ E(G), ∀j ∈ V (G), d ∈ {1, ...,depth}

for ij ∈ E(G):
Ai→j(0) = [−U(0, 1), ...,−U(0, 1)]
Bi→j(0) = −U(0, 1)

Di→j(0) = max(Bi→j(0),maxd A
d
i→j(0))

for d ∈ {1, ...,depth − 1}:
C = −U(0, 1)

Ed
i→j(0) = max(C,Di→j(0))

end

Edepth
i→j (0) = Di→j(0)

end

/* main loop
iter = 0
while TRUE:

/* iteratively update messages using message update rules
for i ∈ permute_vertices(V (G)):

if i is root:
/* update root
for j ∈ Nb(i):

Ai→j(iter + 1) = [0,−∞, ...,−∞]
Ei→j(iter + 1) = [0, ..., 0]
Bi→j(iter + 1) = −∞
Di→j(iter + 1) = 0

end

else:
/* update non-root vertex
for j ∈ Nb(i):

Ad
i→j(iter+ 1) =

�

k∈Nb(i)\j E
d
k→j(iter) + maxk∈Nb(i)\j

�

−cik − Ed
k→j(iter) +Ad−1

k→j(iter)
�

Bi→j(iter + 1) = −λbi +
�

k∈Nb(i)\j Dk→j(iter)

Di→j(iter + 1) = max{Bi→j(iter + 1); maxd A
d
i→j(iter + 1)}

C = −∞
for d ∈ {depth, ..., 2}:

Ed
i→j(iter + 1) = max(Di→j(iter + 1), C)

C = −cij +
�

k∈Nb(i)\j E
d
k→j(iter)

F d
i→j(iter + 1) = C +Ad−1

i→j(iter)

end
E1

i→j(iter + 1) = Di→j(iter + 1)

F 1
i→j(iter + 1) = −∞

end

Gi(iter + 1) = −λbi +
�

k∈Nb(i) Dk→i(iter)

end

end

11

Algorithm 3.1 (cont.): BP algorithm for PCST problem for graph with cycles

/* retrieve tree from messages and compute its cost
for i ∈ V (G):

if i is not root:
if maxk Fi→k > Gi:

add edge (i argmaxkFi→k) to tree
end

end

end

return least expansive tree

References

1. M. Bayati, C. Borgs, A. Braunstein, J. Chayes, A. Ramezanpour, and R. Zecchina, “Statistical Mechanics
of Steiner Trees”. PRL, 2008.

2. M. Bayati, A. Braunstein, and R. Zecchina, “A rigorous analysis of the cavity equations for the minimum
spanning tree”. Journal of Mathematical Physics, 2008.

3. I. Biazzo, A. Braunstein and R. Zecchina, “Performance of a cavity-method-based algorithm for the
prize-collecting Steiner tree problem on graphs”. PRL, 2012.

4. A. Braunstein, R. Zecchina, “Learning by Message Passing in Networks of Discrete Synapses”. PRL,
2006.

5. A. Braunstein, A. Muntoni, “Practical optimization of Steiner Trees via the cavity method”. ArXiv,
2016.

12

4 Workflow with the package

suppressMessages(library(pcSteiner))

g <- graph('Bull')

Prize for 1-st node is 10

E(g)$costs <- c(3, 3, 3, 3, 3)

V(g)$prizes <- c(10, 2, 2, 2, 2)

terminals <- c(4, 5)

Run the analysis

treeData <- pcs.tree(

graph=g,

terminals=c(4,5),

lambda=1,

root=3,

depth=5,

eps=-1,

max_iter=10

)

Plot graph

V(g)$color <- "gray"

V(g)$color[terminals] <- "red"

E(g)$color <- "gray"

E(g)$color[treeData$edges] <- "red"

plot(g)

1

2

3

4

5

13

