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buildAuxiliaryFilter Create an auxiliary particle filter algorithm to estimate log-likelihood.

Description

Create an auxiliary particle filter algorithm for a given NIMBLE state space model.

Usage

buildAuxiliaryFilter(model, nodes, control = list())

Arguments

model A NIMBLE model object, typically representing a state space model or a hidden
Markov model.

nodes A character vector specifying the stochastic latent model nodes over which the
particle filter will stochastically integrate to estimate the log-likelihood function.
All provided nodes must be stochastic. Can be one of three forms: a variable
name, in which case all elements in the variable are taken to be latent (e.g.,
’x’); an indexed variable, in which case all indexed elements are taken to be
latent (e.g., ’x[1:100]’ or ’x[1:100, 1:2]’); or a vector of multiple nodes, one per
time point, in increasing time order (e.g., c("x[1:2, 1]", "x[1:2, 2]", "x[1:2, 3]",
"x[1:2, 4]")).

control A list specifying different control options for the particle filter. Options are
described in the details section below.

Details

Each of the control() list options are described in detail here:

lookahead The lookahead function used to calculate auxiliary weights. Can choose between 'mean'
and 'simulate'. Defaults to 'simulate'.

resamplingMethod The type of resampling algorithm to be used within the particle filter. Can
choose between 'default' (which uses NIMBLE’s rankSample() function), 'systematic',
'stratified', 'residual', and 'multinomial'. Defaults to 'default'. Resampling
methods other than 'default' are currently experimental.
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saveAll Indicates whether to save state samples for all time points (TRUE), or only for the most
recent time point (FALSE)

smoothing Decides whether to save smoothed estimates of latent states, i.e., samples from f(x[1:t]|y[1:t])
if smoothing = TRUE, or instead to save filtered samples from f(x[t]|y[1:t]) if smoothing =
FALSE. smoothing = TRUE only works if saveAll = TRUE.

timeIndex An integer used to manually specify which dimension of the latent state variable indexes
time. This need only be set if the number of time points is less than or equal to the size of the
latent state at each time point.

initModel A logical value indicating whether to initialize the model before running the filtering
algorithm. Defaults to TRUE.

The auxiliary particle filter modifies the bootstrap filter (buildBootstrapFilter) by adding a
lookahead step to the algorithm: before propagating particles from one time point to the next via
the transition equation, the auxiliary filter calculates a weight for each pre-propogated particle by
predicting how well the particle will agree with the next data point. These pre-weights are used to
conduct an initial resampling step before propagation.

The resulting specialized particle filter algorthm will accept a single integer argument (m, default
10,000), which specifies the number of random \’particles\’ to use for estimating the log-likelihood.
The algorithm returns the estimated log-likelihood value, and saves unequally weighted samples
from the posterior distribution of the latent states in the mvWSamples modelValues object, with
corresponding logged weights in mvWSamples['wts',]. An equally weighted sample from the
posterior can be found in the mvEWsamp modelValues object.

The auxiliary particle filter uses a lookahead function to select promising particles before prop-
agation. This function can eithre be the expected value of the latent state at the next time point
(lookahead = 'mean') or a simulation from the distribution of the latent state at the next time point
(lookahead = 'simulate'), conditioned on the current particle.

@section returnESS() Method: Calling the returnESS() method of an auxiliary particle filter
after that filter has been run() for a given model will return a vector of ESS (effective sample size)
values, one value for each time point.

Author(s)

Nicholas Michaud

References

Pitt, M.K., and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of
the American Statistical Association 94(446): 590-599.

See Also

Other particle filtering methods: buildBootstrapFilter, buildEnsembleKF, buildIteratedFilter2(),
buildLiuWestFilter

Examples

## For illustration only.
exampleCode <- nimbleCode({
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x0 ~ dnorm(0, var = 1)
x[1] ~ dnorm(.8 * x0, var = 1)
y[1] ~ dnorm(x[1], var = .5)
for(t in 2:10){

x[t] ~ dnorm(.8 * x[t-1], var = 1)
y[t] ~ dnorm(x[t], var = .5)

}
})

model <- nimbleModel(code = exampleCode, data = list(y = rnorm(10)),
inits = list(x0 = 0, x = rnorm(10)))

my_AuxF <- buildAuxiliaryFilter(model, 'x',
control = list(saveAll = TRUE, lookahead = 'mean'))

## Now compile and run, e.g.,
## Cmodel <- compileNimble(model)
## Cmy_AuxF <- compileNimble(my_AuxF, project = model)
## logLik <- Cmy_AuxF$run(m = 1000)
## ESS <- Cmy_AuxF$returnESS()
## aux_X <- as.matrix(Cmy_AuxF$mvEWSamples, 'x')

buildBootstrapFilter Create a bootstrap particle filter algorithm to estimate log-likelihood.

Description

Create a bootstrap particle filter algorithm for a given NIMBLE state space model.

Usage

buildBootstrapFilter(model, nodes, control = list())

Arguments

model A nimble model object, typically representing a state space model or a hidden
Markov model.

nodes A character vector specifying the stochastic latent model nodes over which the
particle filter will stochastically integrate to estimate the log-likelihood function.
All provided nodes must be stochastic. Can be one of three forms: a variable
name, in which case all elements in the variable are taken to be latent (e.g.,
’x’); an indexed variable, in which case all indexed elements are taken to be
latent (e.g., ’x[1:100]’ or ’x[1:100, 1:2]’); or a vector of multiple nodes, one per
time point, in increasing time order (e.g., c("x[1:2, 1]", "x[1:2, 2]", "x[1:2, 3]",
"x[1:2, 4]")).

control A list specifying different control options for the particle filter. Options are
described in the details section below.
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Details

Each of the control() list options are described in detail here:

thresh A number between 0 and 1 specifying when to resample: the resampling step will occur
when the effective sample size is less than thresh times the number of particles. Defaults
to 0.8. Note that at the last time step, resampling will always occur so that the mvEWsamples
modelValues contains equally-weighted samples.

resamplingMethod The type of resampling algorithm to be used within the particle filter. Can
choose between 'default' (which uses NIMBLE’s rankSample() function), 'systematic',
'stratified', 'residual', and 'multinomial'. Defaults to 'default'. Resampling
methods other than 'default' are currently experimental.

saveAll Indicates whether to save state samples for all time points (TRUE), or only for the most
recent time point (FALSE)

smoothing Decides whether to save smoothed estimates of latent states, i.e., samples from f(x[1:t]|y[1:t])
if smoothing = TRUE, or instead to save filtered samples from f(x[t]|y[1:t]) if smoothing =
FALSE. smoothing = TRUE only works if saveAll = TRUE.

timeIndex An integer used to manually specify which dimension of the latent state variable indexes
time. Only needs to be set if the number of time points is less than or equal to the size of the
latent state at each time point.

initModel A logical value indicating whether to initialize the model before running the filtering
algorithm. Defaults to TRUE.

The bootstrap filter starts by generating a sample of estimates from the prior distribution of the
latent states of a state space model. At each time point, these particles are propagated forward by
the model’s transition equation. Each particle is then given a weight proportional to the value of the
observation equation given that particle. The weights are used to draw an equally-weighted sample
of the particles at this time point. The algorithm then proceeds to the next time point. Neither the
transition nor the observation equations are required to be normal for the bootstrap filter to work.

The resulting specialized particle filter algorthm will accept a single integer argument (m, default
10,000), which specifies the number of random \’particles\’ to use for estimating the log-likelihood.
The algorithm returns the estimated log-likelihood value, and saves unequally weighted samples
from the posterior distribution of the latent states in the mvWSamples modelValues object, with
corresponding logged weights in mvWSamples['wts',]. An equally weighted sample from the
posterior can be found in the mvEWSamples modelValues object.

Note that if the thresh argument is set to a value less than 1, resampling may not take place at
every time point. At time points for which resampling did not take place, mvEWSamples will not
contain equally weighted samples. To ensure equally weighted samples in the case that thresh < 1,
we recommend resampling from mvWSamples at each time point after the filter has been run, rather
than using mvEWSamples.

returnESS() Method

Calling the returnESS() method of a bootstrap filter after that filter has been run() for a given
model will return a vector of ESS (effective sample size) values, one value for each time point.

Author(s)

Daniel Turek and Nicholas Michaud
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References

Gordon, N.J., D.J. Salmond, and A.F.M. Smith. (1993). Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEEE Proceedings F (Radar and Signal Processing). Vol. 140. No. 2.
IET Digital Library, 1993.

See Also

Other particle filtering methods: buildAuxiliaryFilter, buildEnsembleKF, buildIteratedFilter2(),
buildLiuWestFilter

Examples

## For illustration only.
exampleCode <- nimbleCode({

x0 ~ dnorm(0, var = 1)
x[1] ~ dnorm(.8 * x0, var = 1)
y[1] ~ dnorm(x[1], var = .5)
for(t in 2:10){
x[t] ~ dnorm(.8 * x[t-1], var = 1)
y[t] ~ dnorm(x[t], var = .5)

}
})

model <- nimbleModel(code = exampleCode, data = list(y = rnorm(10)),
inits = list(x0 = 0, x = rnorm(10)))

my_BootF <- buildBootstrapFilter(model, 'x',
control = list(saveAll = TRUE, thresh = 1))

## Now compile and run, e.g.,
## Cmodel <- compileNimble(model)
## Cmy_BootF <- compileNimble(my_BootF, project = model)
## logLik <- Cmy_BootF$run(m = 1000)
## ESS <- Cmy_BootF$returnESS()
## boot_X <- as.matrix(Cmy_BootF$mvEWSamples, 'x')

buildEnsembleKF Create an Ensemble Kalman filter algorithm to sample from latent
states.

Description

Create an Ensemble Kalman filter algorithm for a given NIMBLE state space model.

Usage

buildEnsembleKF(model, nodes, control = list())
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Arguments

model A NIMBLE model object, typically representing a state space model or a hidden
Markov model

nodes A character vector specifying the stochastic latent model nodes the Ensemble
Kalman Filter will estimate. All provided nodes must be stochastic. Can be
one of three forms: a variable name, in which case all elements in the variable
are taken to be latent (e.g., ’x’); an indexed variable, in which case all indexed
elements are taken to be latent (e.g., ’x[1:100]’ or ’x[1:100, 1:2]’); or a vector
of multiple nodes, one per time point, in increasing time order (e.g., c("x[1:2,
1]", "x[1:2, 2]", "x[1:2, 3]", "x[1:2, 4]")).

control A list specifying different control options for the particle filter. Options are
described in the details section below.

Details

The control() list option is described in detail below:

saveAll Indicates whether to save state samples for all time points (TRUE), or only for the most
recent time point (FALSE)

timeIndex An integer used to manually specify which dimension of the latent state variable indexes
time. Only needs to be set if the number of time points is less than or equal to the size of the
latent state at each time point.

initModel A logical value indicating whether to initialize the model before running the filtering
algorithm. Defaults to TRUE.

Runs an Ensemble Kalman filter to estimate a latent state given observations at each time point.
The ensemble Kalman filter is a Monte Carlo approximation to a Kalman filter that can be used
when the model’s transition euqations do not follow a normal distribution. Latent states (x[t]) and
observations (y[t]) can be scalars or vectors at each time point, and sizes of observations can vary
from time point to time point. In the BUGS model, the observations (y[t]) must be equal to some
(possibly nonlinear) deterministic function of the latent state (x[t]) plus an additive error term.
Currently only normal and multivariate normal error terms are supported. The transition from x[t]
to x[t+1] does not have to be normal or linear. Output from the posterior distribution of the latent
states is stored in mvSamples.

Author(s)

Nicholas Michaud

References

Houtekamer, P.L., and H.L. Mitchell. (1998). Data assimilation using an ensemble Kalman filter
technique. Monthly Weather Review, 126(3), 796-811.

See Also

Other particle filtering methods: buildAuxiliaryFilter, buildBootstrapFilter, buildIteratedFilter2(),
buildLiuWestFilter
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Examples

## For illustration only.
exampleCode <- nimbleCode({

x0 ~ dnorm(0, var = 1)
x[1] ~ dnorm(.8 * x0, var = 1)
y[1] ~ dnorm(x[1], var = .5)
for(t in 2:10){
x[t] ~ dnorm(.8 * x[t-1], var = 1)
y[t] ~ dnorm(x[t], var = .5)

}
})

model <- nimbleModel(code = exampleCode, data = list(y = rnorm(10)),
inits = list(x0 = 0, x = rnorm(10)))

my_enKF <- buildEnsembleKF(model, 'x',
control = list(saveAll = TRUE, thresh = 1))

## Now compile and run, e.g.,
## Cmodel <- compileNimble(model)
## Cmy_enKF <- compileNimble(my_enKF, project = model)
## Cmy_enKF$run(m = 1000)
## enKF_X <- as.matrix(Cmy_enKF$mvSamples, 'x')

buildIteratedFilter2 Create an IF2 algorithm.

Description

Create an IF2 algorithm for a given NIMBLE state space model.

Usage

buildIteratedFilter2(
model,
nodes,
params = NULL,
baselineNode = NULL,
control = list()

)

Arguments

model A NIMBLE model object, typically representing a state space model or a hidden
Markov model.

nodes A character vector specifying the stochastic latent model nodes over which the
particle filter will stochastically integrate to estimate the log-likelihood function.
All provided nodes must be stochastic. Can be one of three forms: a variable
name, in which case all elements in the variable are taken to be latent (e.g.,
’x’); an indexed variable, in which case all indexed elements are taken to be
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latent (e.g., ’x[1:100]’ or ’x[1:100, 1:2]’); or a vector of multiple nodes, one per
time point, in increasing time order (e.g., c("x[1:2, 1]", "x[1:2, 2]", "x[1:2, 3]",
"x[1:2, 4]")).

params A character vector specifying the top-level parameters to obtain maximum likeli-
hood estimates of. If unspecified, parameter nodes are specified as all stochastic
top level nodes which are not in the set of latent nodes specified in nodes.

baselineNode A character vector specifying the node that is the latent node at the "0th" time
step. The first node in nodes should depend on this baseline, but baselineNode
should have no data depending on it. If NULL (the default), any initial state is
taken to be fixed at the values present in the model at the time the algorithm is
run.

control A list specifying different control options for the IF2 algorithm. Options are
described in the ‘details’ section below.

Details

Each of the control() list options are described in detail below:

sigma A vector specifying a non-negative perturbation magnitude for each element of the params
argument. Defaults to a vector of 1’s.

initParamSigma An optional vector specifying a vector of standard deviations to use when sim-
ulating an initial particle swarm centered on the initial value of the parameters. Defaults to
sigma.

inits A vector specifying an initial value for each element of the params argument. Defaults to the
parameter values in the model at the time the model is built.

timeIndex An integer used to manually specify which dimension of the latent state variable indexes
time. Only needs to be set if the number of time points is less than or equal to the size of the
latent state at each time point.

initModel A logical value indicating whether to initialize the model before running the filtering
algorithm. Defaults to TRUE.

The IF2 agorithm uses iterated filtering to estimate maximum likelihood values for top-level param-
eters for a state space model.

The resulting specialized IF2 algorithm will accept the following arguments:

m A single integer specifying the number of particles to use for each run of the filter.

n A single integer specifying the number of overall filter iterations to run.

alpha A double specifying the cooling factor to use for the IF2 algorithm.

The run fuction will return a vector with the estimated MLE. Additionally, once the specialized
algorithm has been run, it can be continued for additional iterations by calling the continueRun
method.
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Reparameterization

The IF2 algorithm perturbs the parameters using a normal distribution, which may not be optimal
for parameters whose support is not the whole real line, such as variance parameters, which are
restricted to be positive. We recommend that users reparameterize the model in advance, e.g.,
writing variances and standard deviations on the log scale and probabilities on the logit scale. This
requires specifying priors directly on the transformed parameters.

Parameter prior distributions

While NIMBLE’s IF2 algorithm requires prior distributions on the parameters, the IF2 algorithm
produces maximum likelihood estimates and does not directly use those prior distributions. We
require the prior distributions to be stated only so that we can automatically determine which model
nodes are the parameters. The IF2 algorithm also makes use of any bounds on the parameters.

Diagnostics and information stored in the algorithm object

The IF2 algorithm stores the estimated MLEs, one from each iteration, in estimates. It also stores
standard deviation of the particles from each iteration, one per parameter, in estSD. Finally it stores
the estimated log-likelihood at the estimated MLE from each iteration in logLik.

Author(s)

Nicholas Michaud, Dao Nguyen, and Christopher Paciorek

References

Ionides, E.L., D. Nguyen, Y. Atchadé, S. Stoev, and A.A. King (2015). Inference for dynamic and
latent variable models via iterated, perturbed Bayes maps. Proceedings of the National Academy of
Sciences, 112(3), 719-724.

See Also

Other particle filtering methods: buildAuxiliaryFilter, buildBootstrapFilter, buildEnsembleKF,
buildLiuWestFilter

Examples

## For illustration only.
exampleCode <- nimbleCode({

x0 ~ dnorm(0, var = 1)
x[1] ~ dnorm(.8 * x0, var = 1)
y[1] ~ dnorm(x[1], var = .5)
for(t in 2:10){
x[t] ~ dnorm(.8 * x[t-1], sd = sigma_x)
y[t] ~ dnorm(x[t], var = .5)

}
sigma_x ~ dunif(0, 10)

})

model <- nimbleModel(code = exampleCode, data = list(y = rnorm(10)),
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inits = list(x0 = 0, x = rnorm(10), sigma_x = 1))
my_IF2 <- buildIteratedFilter2(model, 'x', params = 'sigma_x')
## Now compile and run, e.g.,
## Cmodel <- compileNimble(model)
## Cmy_IF2 <- compileNimble(my_IF2, project = model)
## MLE estimate of a top level parameter named sigma_x:
## sigma_x_MLE <- Cmy_IF2$run(m = 10000, n = 50, alpha = 0.2)
## visualize progression of the estimated log-likelihood
## ts.plot(Cmy_IF2$logLik)
## Continue running algorithm for more precise estimate:
## sigma_x_MLE <- Cmy_IF2$continueRun(n = 50, alpha = 0.2)

buildLiuWestFilter Create a Liu and West particle filter algorithm.

Description

Create a Liu and West particle filter algorithm for a given NIMBLE state space model.

Usage

buildLiuWestFilter(model, nodes, params = NULL, control = list())

Arguments

model A NIMBLE model object, typically representing a state space model or a hidden
Markov model

nodes A character vector specifying the stochastic latent model nodes over which the
particle filter will stochastically integrate to estimate the log-likelihood function.
All provided nodes must be stochastic. Can be one of three forms: a variable
name, in which case all elements in the variable are taken to be latent (e.g.,
’x’); an indexed variable, in which case all indexed elements are taken to be
latent (e.g., ’x[1:100]’ or ’x[1:100, 1:2]’); or a vector of multiple nodes, one per
time point, in increasing time order (e.g., c("x[1:2, 1]", "x[1:2, 2]", "x[1:2, 3]",
"x[1:2, 4]")).

params A character vector specifying the top-level parameters to estimate the posterior
distribution of. If unspecified, parameter nodes are specified as all stochastic top
level nodes which are not in the set of latent nodes specified in nodes.

control A list specifying different control options for the particle filter. Options are
described in the details section below.

Details

Each of the control() list options are described in detail below:

d A discount factor for the Liu-West filter. Should be close to, but not above, 1.

saveAll Indicates whether to save state samples for all time points (TRUE), or only for the most
recent time point (FALSE)
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timeIndex An integer used to manually specify which dimension of the latent state variable indexes
time. Only needs to be set if the number of time points is less than or equal to the size of the
latent state at each time point.

initModel A logical value indicating whether to initialize the model before running the filtering
algorithm. Defaults to TRUE.

The Liu and West filter samples from the posterior distribution of both the latent states and top-
level parameters for a state space model. Each particle in the Liu and West filter contains values
not only for latent states, but also for top level parameters. Latent states are propogated via an
auxiliary step, as in the auxiliary particle filter (buildAuxiliaryFilter). Top-level parameters are
propagated from one time point to the next through a smoothed kernel density based on previous
particle values.

The resulting specialized particle filter algorthm will accept a single integer argument (m, default
10,000), which specifies the number of random \’particles\’ to use for sampling from the pos-
terior distributions. The algorithm saves unequally weighted samples from the posterior distri-
bution of the latent states and top-level parameters in mvWSamples, with corresponding logged
weights in mvWSamples['wts',]. An equally weighted sample from the posterior can be found
in mvEWSamples.

Note that if saveAll=TRUE, the top-level parameter samples given in the mvWSamples output will
correspond to the weights from the final time point.

Author(s)

Nicholas Michaud

References

Liu, J., and M. West. (2001). Combined parameter and state estimation in simulation-based filter-
ing. Sequential Monte Carlo methods in practice. Springer New York, pages 197-223.

See Also

Other particle filtering methods: buildAuxiliaryFilter, buildBootstrapFilter, buildEnsembleKF,
buildIteratedFilter2()

Examples

## For illustration only.
exampleCode <- nimbleCode({

x0 ~ dnorm(0, var = 1)
x[1] ~ dnorm(.8 * x0, var = 1)
y[1] ~ dnorm(x[1], var = .5)
for(t in 2:10){
x[t] ~ dnorm(.8 * x[t-1], sd = sigma_x)
y[t] ~ dnorm(x[t], var = .5)

}
sigma_x ~ dunif(0, 10)

})

model <- nimbleModel(code = exampleCode, data = list(y = rnorm(10)),
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inits = list(x0 = 0, x = rnorm(10), sigma_x = 1))
my_LWF <- buildLiuWestFilter(model, 'x', params = 'sigma_x')
## Now compile and run, e.g.,
## Cmodel <- compileNimble(model)
## Cmy_LWF <- compileNimble(my_LWF, project = model)
## Cmy_LWF$run(m = 1000)
## lw_X <- as.matrix(Cmy_LWF$mvEWSamples, 'x')
## samples from posterior of top level parameter
## lw_sigma_x <- as.matrix(Cmy_LWF$mvEWSamples, 'sigma_x')

SMCsamplers Particle Filtering MCMC Sampling Algorithms

Description

Details of the particle filtering MCMC sampling algorithms provided in nimbleSMC.

Usage

sampler_RW_PF(model, mvSaved, target, control)

sampler_RW_PF_block(model, mvSaved, target, control)

Arguments

model (uncompiled) model on which the MCMC is to be run

mvSaved modelValues object to be used to store MCMC samples

target node(s) on which the sampler will be used

control named list that controls the precise behavior of the sampler, with elements spe-
cific to samplertype. The default values for control list are specified in the setup
code of each sampling algorithm. Descriptions of each sampling algorithm, and
the possible customizations for each sampler (using the control argument) ap-
pear below.

RW_PF sampler

The particle filter sampler allows the user to perform particle MCMC (PMCMC) (Andrieu et al.,
2010), primarily for state-space or hidden Markov models of time-series data. This method uses
Metropolis-Hastings samplers for top-level parameters but uses the likelihood approximation of
a particle filter (sequential Monte Carlo) to integrate over latent nodes in the time-series. The
RW_PF sampler uses an adaptive Metropolis-Hastings algorithm with a univariate normal proposal
distribution for a scalar parameter. Note that samples of the latent states can be retained as well,
but the top-level parameter being sampled must be a scalar. A bootstrap, auxiliary, or user defined
particle filter can be used to integrate over latent states.

For more information about user-defined samplers within a PMCMC sampler, see the NIMBLE
User Manual.

The RW_PF sampler accepts the following control list elements:
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• adaptive. A logical argument, specifying whether the sampler should adapt the scale (proposal
standard deviation) throughout the course of MCMC execution to achieve a theoretically de-
sirable acceptance rate. (default = TRUE)

• adaptInterval. The interval on which to perform adaptation. Every adaptInterval MCMC
iterations (prior to thinning), the RW sampler will perform its adaptation procedure. This
updates the scale variable, based upon the sampler’s achieved acceptance rate over the past
adaptInterval iterations. (default = 200)

• scale. The initial value of the normal proposal standard deviation. If adaptive = FALSE, scale
will never change. (default = 1)

• pfNparticles. The number of particles to use in the approximation to the log likelihood of the
data (default = 1000).

• latents. Character vector specifying the nodes that are latent states over which the particle
filter will operate to approximate the log-likelihood function.

• pfType. Character argument specifying the type of particle filter that should be used for likeli-
hood approximation. Choose from "bootstrap" and "auxiliary". Defaults to "bootstrap".

• pfControl. A control list that is passed to the particle filter function. For details on control lists
for bootstrap or auxiliary particle filters, see buildBootstrapFilter or buildAuxiliaryFilter
respectively. Additionally, this can be used to pass custom arguments into a user-defined par-
ticle filter.

• pfOptimizeNparticles. A logical argument, specifying whether to use an experimental pro-
cedure to automatically determine the optimal number of particles to use, based on Pitt and
Shephard (2011). This will override any value of pfNparticles specified above.

• pf. A user-defined particle filter object, if a bootstrap or auxiliary particle filter is not adequate.

RW_PF_block sampler

The particle filter block sampler allows the user to perform particle MCMC (PMCMC) (Andrieu
et al., 2010) for multiple parameters jointly, primarily for state-space or hidden Markov models of
time-series data. This method uses Metropolis-Hastings block samplers for top-level parameters but
uses the likelihood approximation of a particle filter (sequential Monte Carlo) to integrate over latent
nodes in the time-series. The RW_PF sampler uses an adaptive Metropolis-Hastings algorithm with
a multivariate normal proposal distribution. Note that samples of the latent states can be retained
as well, but the top-level parameter being sampled must be a scalar. A bootstrap, auxiliary, or user
defined particle filter can be used to integrate over latent states.

For more information about user-defined samplers within a PMCMC sampler, see the NIMBLE
User Manual.

The RW_PF_block sampler accepts the following control list elements:

• adaptive. A logical argument, specifying whether the sampler should adapt the proposal co-
variance throughout the course of MCMC execution. (default = TRUE)

• adaptScaleOnly. A logical argument, specifying whether adaptation should be done only for
scale (TRUE) or also for provCov (FALSE). This argument is only relevant when adaptive
= TRUE. When adaptScaleOnly = FALSE, both scale and propCov undergo adaptation; the
sampler tunes the scaling to achieve a theoretically good acceptance rate, and the proposal
covariance to mimic that of the empirical samples. When adaptScaleOnly = TRUE, only the
proposal scale is adapted. (default = FALSE)
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• adaptInterval. The interval on which to perform adaptation. (default = 200)

• scale. The initial value of the scalar multiplier for propCov. If adaptive = FALSE, scale will
never change. (default = 1)

• adaptFactorExponent. Exponent controling the rate of decay of the scale adaptation factor.
See Shaby and Wells, 2011, for details. (default = 0.8)

• propCov. The initial covariance matrix for the multivariate normal proposal distribution. This
element may be equal to the 'identity', in which case the identity matrix of the appropriate
dimension will be used for the initial proposal covariance matrix. (default is 'identity')

• pfNparticles. The number of particles to use in the approximation to the log likelihood of the
data (default = 1000).

• latents. Character vector specifying the nodes that are latent states over which the particle
filter will operate to approximate the log-likelihood function.

• pfType. Character argument specifying the type of particle filter that should be used for likeli-
hood approximation. Choose from "bootstrap" and "auxiliary". Defaults to "bootstrap".

• pfControl. A control list that is passed to the particle filter function. For details on control lists
for bootstrap or auxiliary particle filters, see buildBootstrapFilter or buildAuxiliaryFilter
respectively. Additionally, this can be used to pass custom arguments into a user defined par-
ticle filter.

• pfOptimizeNparticles. A logical argument, specifying whether to automatically determine the
optimal number of particles to use, based on Pitt and Shephard (2011). This will override any
value of pfNparticles specified above.

• pf. A user-defined particle filter object, if a bootstrap or auxiliary particle filter is not adequate.
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