--- title: "NeutroSurvey" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{VMDML} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` **Introduction to neutrosophic interval analysis including metric calculations and MSE estimation for survey data** ## Authors Neha Purwar Kaustav Aditya(https://orcid.org/0000-0003-2457-9494) Pankaj Das (https://orcid.org/0000-0003-1672-2502) Bharti ## Introduction The R package is designed for neutrosophic regression type estimator to estimate the Finite Population Parameters. This package provides three different function i.e. compute_all_metrics, inputs and calculate_all_mse_neutrosophic. It provide neutrosophic descriptive statistics. Users can input values for population size as well as sample size for neutrosophic population at run time . In this package we can obtain the mse value for neutrosophic ratio-type estimators, neutrosophic exponential ratio-type estimator and neutrosophic regression type estimator. ## Functions in the R package This package provides specialized tools for analyzing interval-valued data within a neutrosophic statistical framework. Here's a detailed explanation of each function's utility: **1. compute_all_metrics()** Utility: This is the foundational function that calculates all essential statistics for neutrosophic interval data. Key Features: a. Calculates mean intervals for both auxiliary and study variables b. Computes standard deviations for interval bounds c. Determines coefficients of variation (CV) for both variables d. Calculates kurtosis values to understand distribution shapes e. Estimates correlations between interval variables **Use Cases:** Initial exploratory analysis of interval data Preparing inputs for more advanced calculations Understanding data variability and relationships between interval variables **2. calculate_all_mse_neutrosophic()** Utility: Computes five different types of Mean Squared Error (MSE) estimates specifically designed for neutrosophic interval data. a. MSE Types Calculated: b. Standard MSE: Basic interval MSE estimation c. Ratio-adjusted MSE: Incorporates ratio estimation techniques Kurtosis-adjusted MSE: Accounts for distribution shape through kurtosis d. Exponential MSE: Uses exponential weighting factors e. Regression MSE: Leverages correlation between variables **Use Cases:** i. Comparing different estimation methods for interval data ii. Robust error estimation in neutrosophic statistics iii. Model selection and evaluation **3. get_user_inputs()** Utility: Provides an interactive way to collect population and sample size parameters. **Key Features:** a. Guides users through parameter input process b. Automatically calculates theta values (1/n - 1/N) c. Validates input values to ensure n < N **Use Cases:** i. Interactive data analysis workflows ii. Educational demonstrations iii. Quick parameter estimation **4. format_mse_results()** Utility: Transforms raw MSE results into human-readable formatted output. **Key Features:** a. Clearly labels each MSE type b. Formats numbers for consistent display c. Returns ready-to-print output **Use Cases:** i. Reporting results in publications ii. Creating readable output for presentations iv. Quick visual comparison of MSE types v. Data Management **5.calculate_pre()** The `calculate_pre()` function computes the Percentage Relative Efficiency of different estimators compared to the regression estimator: **Interpretation:** a. Values > 100 indicate better efficiency than regression b. Values < 100 indicate worse efficiency than regression c. The regression estimator (PRE_r) is always 100 by definition **6. japan_neutro Dataset** Utility: Example dataset demonstrating proper input format and typical values. **Key Features:** a. Real-world interval data structure b. Properly formatted columns c. Demonstrates expected value ranges **Use Cases:** i. Package testing and validation ii. Learning proper data formatting iv. Benchmarking analyses ## Technical Implementation Benefits **Consistent Interface:** All functions follow R conventions for parameter naming and return structures **Error Handling:** Comprehensive input validation prevents common mistakes **Reproducibility:** Deterministic calculations ensure consistent results **Performance:** Optimized for medium-sized datasets (hundreds to thousands of observations) **Integration:** Works seamlessly with standard R data structures and pipelines ## Practical Applications of the package This package is particularly valuable for: a. Researchers working with imprecise measurements or range-based data b. Statisticians developing new neutrosophic methods c. Data Scientists analyzing interval-censored data d. Quality Control applications with tolerance intervals e. Environmental Studies with measurement ranges f. Economic Forecasting dealing with prediction intervals The combination of these functions provides a complete workflow from data input through comprehensive analysis to formatted result reporting, all within the specialized domain of neutrosophic interval statistics. ```{r setup} ##Example how the package works library(neutroSurvey) #data importation data(japan_neutro) #computation of metrics metrics <- compute_all_metrics(japan_neutro) mse <- calculate_all_mse_neutrosophic( 0.01, 0.02, metrics$mean_interval_Y[1], metrics$mean_interval_Y[2], metrics$mean_interval_X[1], metrics$mean_interval_X[2], metrics$cv_interval_X[1], metrics$cv_interval_X[2], metrics$cv_interval_Y[1], metrics$cv_interval_Y[2], metrics$correlation_results[1], metrics$correlation_results[2], metrics$kurtosis_interval_X[1], metrics$kurtosis_interval_X[2] ) cat(format_mse_results(mse))