Package 'minsample2'

October 31, 2022

Type Package

Title The Minimum Sample Size
Version 0.1.0
Description Using this package, one can determine the minimum sample size required so that the mean square error of the sample mean and the population mean of a distribution becomes less than some pre-determined epsilon, i.e. it helps the user to determine the minimum sample size required to attain the pre-fixed precision level by minimizing the difference between the sample mean and population mean.

License GPL-3
Encoding UTF-8
RoxygenNote 7.2.1
Suggests knitr, rmarkdown, testhat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Anik Paul [aut, cre]
Maintainer Anik Paul paulanik2019@gmail.com
Repository CRAN
Date/Publication 2022-10-31 14:07:40 UTC

R topics documented:

$$
\text { 1_exp . } 2
$$

1_norm 3
Index 4

Description

This package helps determining the minimum sample size required to attain some pre-fixed precision level.

Usage

$l_{-} \exp (\mathrm{n}, \mathrm{eps}$, theta $=1)$

Arguments

n	a vector of proposed sample size
eps	a vector of the precision level
theta	the parameter for the underlying distribution, here Exponential Distribution

Details

in any distribution for a large sample the mean-squared error gradually tends to zero, the minimum number depends on the precision level i.e. the pre-fixed eplison.

Value

report: the data frame containing the minimum value of the sample size corresponding to the prefixed epsilon

References

Methods for this process is described in A.M.Gun,M.K.Gupta,B.Dasgupta(2019,ISBN:81-87567-81-3).

Examples

l_exp(1:5, $0.5,1)$
l_norm \quad Prints the minimum size of the sample required to get epsilon neighborhood for given value of epsilon for Normal Distribution

Description

This package helps determining the minimum sample size required to attain some pre-fixed precision level

Usage

l_norm(n, eps, mu = 0, sigma = 1)

Arguments

$\mathrm{n} \quad$ a vector of proposed sample size
eps a vector of the precision level
mu the location parameter for the underlying distribution, here normal distribution(mean)
sigma the scale parameter for the underlying distribution, here normal distribution(standard deviation)

Details

in any distribution for a large sample the mean-squared error gradually tends to zero, the minimum number depends on the precision level i.e. the pre-fixed eplison

Value

report: the data frame containing the minimum value of the sample size corresponding to the prefixed epsilon

References

Methods for this process is described in A.M.Gun,M.K.Gupta,B.Dasgupta(2019,ISBN:81-87567-81-3).

Examples

l_norm(1:5, 0.5, 3, 1)

Index

l_exp, 2
l_norm, 3

