--- title: "Competing risk analysis" author: "Jinseob Kim" date: "`r Sys.Date()`" output: rmarkdown::html_vignette css: vignette-styles.css vignette: > %\VignetteIndexEntry{Competing risk analysis} %\VignetteEncoding{UTF-8} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", echo = TRUE, message = F, warning = F ) library(jstable) library(survival) library(dplyr) ``` ## Display results of comepting risk analysis using jstable(Fine-Gray Method) ## TableSubgroupMultiCox ### When using the TableSubgroupMultiCox function, preprocessing the data with the finegray function from the survival package is required. The finegray function generates a new dataset containing fgstart, fgstop, fgstatus, and fgwt. The TableSubgroupMultiCox function then displays results based on the corresponding formula and weights. ```{r} data <- mgus2 data$etime <- with(data, ifelse(pstat == 0, futime, ptime)) data$event <- with(data, ifelse(pstat == 0, 2 * death, 1)) data$event <- factor(data$event, 0:2, labels = c("censor", "pcm", "death")) data$age65 <- with(data, ifelse(age > 65, 1, 0)) data$age65 <- factor(data$age65) pdata <- survival::finegray(survival::Surv(etime, event) ~ ., data = data) TableSubgroupMultiCox(formula = Surv(fgstart, fgstop, fgstatus) ~ sex, data = pdata, var_cov = "age", weights = "fgwt", var_subgroups = c("age65")) ``` ## cox2.display ### As written above, preprocessing the data with finegray function is also required. By using corresponding formula and weights, cox2.display function will display table results. ```{r} fgfit <- coxph(Surv(fgstart, fgstop, fgstatus) ~ age + sex, weight = fgwt, data = pdata, model = T ) cox2.display(fgfit) ```