--- title: "New-Models" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{New-Models} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( comment = "#>" ) ``` ```{r, echo = FALSE, message = FALSE} library(gofreg) ``` The package offers several models (mostly GLMs) that can be used for parametric regression and a subsequent goodness-of-fit test. However, there might be other models that the user wishes to use in their analysis. In the following, we will describe how custom models can be defined and used along with the package. ## The abstract base class `ParamRegrModel` Whenever the user wants to define a new model, they have to create an R6 class inheriting from the abstract base class `ParamRegrModel`. In particular, the following methods have to be implemented: * `f_yx()` evaluating the conditional density function * `F_yx()` evaluating the conditional distribution function * `F1_yx()` evaluating the conditional quantile function * `mean_yx()` evaluating the regression function $(\mathbb{E}[Y|X=x])$ * `sample_yx()` generating a sample of response variables according to the conditional distribution * `fit()` handling the shape of the `params` argument and applying the `fit()`-method of the abstract base class It is recommended to check the correct shape of the `params` argument in all five methods above. Usually, it is a `list()` with tags corresponding to the model parameters. **Important note:** When evaluating the likelihood function, `f_yx` (and `F_yx` as well in case of censored data) will be called with the argument `params` being a plain numeric vector instead of a list. This case should be minded in the checks at the beginning of these methods. ## Example In the following example, we will define a new model of the form $(Y|X) \sim \mathcal{N}(\mu(X), \sigma(X))$ with $\mu(X) = a + e^{b^T x}$ and $\sigma(X) = c^T x^2$ (where the squaring is performed element-wise). ``` {r} CustomModel <- R6::R6Class( classname = "CustomModel", inherit = ParamRegrModel, public = list( f_yx = function(t, x, params = private$params) { if (checkmate::test_atomic_vector(params)) { # reshape plain numeric vector into list with appropriate tags xcol <- ncol(as.matrix(x)) checkmate::assert_atomic_vector(params, len = 1 + 2 * xcol) params <- list(a = params[1], b = params[2:(1+xcol)], c = params[(2+xcol):(1+2*xcol)]) } else { private$check_params(params, x) } dnorm(t, mean = self$mean_yx(x, params), sd = as.matrix(x)^2 %*% params$c) }, F_yx = function(t, x, params = private$params) { if (checkmate::test_atomic_vector(params)) { # reshape plain numeric vector into list with appropriate tags xcol <- ncol(as.matrix(x)) checkmate::assert_atomic_vector(params, len = 1 + 2 * xcol) params <- list(a = params[1], b = params[2:(1+xcol)], c = params[(2+xcol):(1+2*xcol)]) } else { private$check_params(params, x) } pnorm(t, mean = self$mean_yx(x, params), sd = as.matrix(x)^2 %*% params$c) }, F1_yx = function(t, x, params = private$params) { private$check_params(params, x) qnorm(t, mean = self$mean_yx(x, params), sd = as.matrix(x)^2 %*% params$c) }, sample_yx = function(x, params = private$params) { private$check_params(params, x) rnorm(nrow(as.matrix(x)), mean = self$mean_yx(x, params), sd = as.matrix(x)^2 %*% params$c) }, mean_yx = function(x, params = private$params) { private$check_params(params, x) params$a + exp(as.matrix(x) %*% params$b) }, fit = function(data, params_init = private$params, loglik = loglik_xy, inplace = FALSE) { checkmate::assert_names(names(data), must.include = c("x")) private$check_params(params_init, data$x) params_opt <- super$fit(data, params_init = unlist(params_init, use.names = FALSE), loglik = loglik) xcol <- ncol(as.matrix(x)) params_opt <-list(a = params_opt[1], b = params_opt[2:(1+xcol)], c = params_opt[(2+xcol):(1+2*xcol)]) if (inplace) { private$params <- params_opt invisible(self) } else { params_opt } } ), private = list( check_params = function(params, x) { checkmate::assert_list(params, len = 3) checkmate::assert_names(names(params), identical.to = c("a", "b", "c")) checkmate::assert_vector(params$b, len = ncol(as.matrix(x))) checkmate::assert_vector(params$c, len = ncol(as.matrix(x))) } ) ) ``` Now, let us generate some data following this new model. ``` {r} set.seed(123) n <- 100 x <- cbind(rnorm(n), runif(n)) model <- CustomModel$new() params_true <- list(a = 0.8, b = c(0.5, 0.7), c = c(0.1, 0.2)) y <- model$sample_yx(x, params_true) data <- dplyr::tibble(x = x, y = y) head(data) ``` Fitting the model to the generated data should yield good estimates of the model parameters. ``` {r} model$fit(data, params_init = list(a = 1, b = c(1,1), c = c(1,1)), inplace = TRUE) model$get_params() ``` Further, a goodness-of-fit test should not reject the (correct) model, i.e. yield a rather high p-value. ``` {r} gt <- GOFTest$new(data = data, model_fitted = model, test_stat = CondKolmY$new(), nboot = 100) gt$get_pvalue() ```