## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(ggplot2) library(ggprism) library(patchwork) library(magrittr) ## ----------------------------------------------------------------------------- str(sleep) ## ----fig.width=4, fig.height=3.5---------------------------------------------- # create a jitter plot of the sleep data set # and indicate the means p <- ggplot(sleep, aes(x = group, y = extra)) + geom_jitter(aes(shape = group), width = 0.1) + stat_summary(geom = "crossbar", fun = mean, colour = "red", width = 0.2) + theme_prism() + theme(legend.position = "none") p ## ----------------------------------------------------------------------------- # perform a t-test and obtain the p-value result <- t.test(extra ~ group, data = sleep)$p.value result <- signif(result, digits = 3) result ## ----------------------------------------------------------------------------- df_p_val <- data.frame( group1 = "1", group2 = "2", label = result, y.position = 6 ) ## ----fig.height=3.5----------------------------------------------------------- # add p-value brackets p1 <- p + add_pvalue(df_p_val, xmin = "group1", xmax = "group2", label = "label", y.position = "y.position") # change column names to something silly colnames(df_p_val) <- c("apple", "banana", "some_label", "some_y_position") # add p-value brackets again p2 <- p + add_pvalue(df_p_val, xmin = "apple", xmax = "banana", label = "some_label", y.position = "some_y_position") p1 + p2 ## ----------------------------------------------------------------------------- # return column names back to default colnames(df_p_val) <- c("group1", "group2", "label", "y.position") ## ----fig.width=7, fig.height=7------------------------------------------------ # change bracket and label aesthetics p1 <- p + add_pvalue(df_p_val, colour = "red", # label label.size = 8, # label fontface = "bold", # label fontfamily = "serif", # label angle = 45, # label hjust = 1, # label vjust = 2, # label bracket.colour = "blue", # bracket bracket.size = 1, # bracket linetype = "dashed", # bracket lineend = "round") # bracket # use glue expression for label p2 <- p + add_pvalue(df_p_val, label = "p = {label}") # make bracket tips longer and use coord_flip p3 <- p + add_pvalue(df_p_val, tip.length = 0.15, coord.flip = TRUE) + coord_flip() # change bracket tips independently # (make one side disappear and the other longer) p4 <- p + add_pvalue(df_p_val, tip.length = c(0.2, 0)) (p1 + p2) / (p3 + p4) ## ----fig.height=3.5----------------------------------------------------------- # position label above "group1" p1 <- p + add_pvalue(df_p_val, label = "p = {label}", remove.bracket = TRUE, x = 1) # position label between x = 1 and x = 2 p2 <- p + add_pvalue(df_p_val, label = "p = {label}", remove.bracket = TRUE, x = 1.5) p1 + p2 ## ----------------------------------------------------------------------------- str(ToothGrowth) ## ----fig.width=4, fig.height=3.5---------------------------------------------- # create a box plot of the ToothGrowth data set p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + geom_boxplot(aes(fill = dose), colour = "black") + theme_prism() + theme(legend.position = "none") p ## ----------------------------------------------------------------------------- # compare means again reference result1 <- t.test(len ~ dose, data = subset(ToothGrowth, dose %in% c(0.5, 1.0)))$p.value result2 <- t.test(len ~ dose, data = subset(ToothGrowth, dose %in% c(0.5, 2.0)))$p.value # Benjamini-Hochberg correction for multiple testing result <- p.adjust(c(result1, result2), method = "BH") ## ----------------------------------------------------------------------------- # don't need group2 column (i.e. xmax) # instead just specify x position in the same way as y.position df_p_val <- data.frame( group1 = c(0.5, 0.5), group2 = c(1, 2), x = c(2, 3), label = signif(result, digits = 3), y.position = c(35, 35) ) ## ----fig.height=3.5----------------------------------------------------------- p1 <- p + add_pvalue(df_p_val, xmin = "group1", x = "x", label = "label", y.position = "y.position") p2 <- p + add_pvalue(df_p_val, xmin = "group1", x = "x", label = "p = {label}", y.position = "y.position", label.size = 3.2, fontface = "bold") p1 + p2 ## ----fig.height=3.5----------------------------------------------------------- # plotmath expression to have superscript exponent df_p_val$p.exprs <- paste0("P==1*x*10^", round(log10(df_p_val$label), 0)) # as above but with italics df_p_val$p.exprs.ital <- lapply( paste(round(log10(df_p_val$label), 0)), function(x) bquote(italic("P = 1x10"^.(x))) ) p1 <- p + add_pvalue(df_p_val, xmin = "group1", x = "x", label = "p.exprs", y.position = "y.position", parse = TRUE) p2 <- p + add_pvalue(df_p_val, xmin = "group1", x = "x", label = "p.exprs.ital", y.position = "y.position", parse = TRUE) p1 + p2 ## ----fig.width=4, fig.height=3.5---------------------------------------------- df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose, ref.group = "0.5") %>% rstatix::add_xy_position() p + add_pvalue(df_p_val, label = "p = {p.adj}", remove.bracket = TRUE) ## ----fig.width=4, fig.height=3.5---------------------------------------------- df_p_val <- rstatix::t_test(ToothGrowth, len ~ supp) %>% rstatix::add_x_position() p <- ggplot(ToothGrowth, aes(x = factor(supp), y = len)) + stat_summary(geom = "col", fun = mean) + stat_summary(geom = "errorbar", fun = mean, fun.min = function(x) mean(x) - sd(x), fun.max = function(x) mean(x) + sd(x), width = 0.3) + theme_prism() + coord_cartesian(ylim = c(0, 35)) + scale_y_continuous(breaks = seq(0, 35, 5), expand = c(0, 0)) # normal plot p + add_pvalue(df_p_val, y.position = 30) ## ----fig.height=3.5----------------------------------------------------------- df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose, ref.group = "0.5") %>% rstatix::add_xy_position() p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + stat_summary(geom = "col", fun = mean) + stat_summary(geom = "errorbar", fun = mean, fun.min = function(x) mean(x) - sd(x), fun.max = function(x) mean(x) + sd(x), width = 0.3) + theme_prism() + coord_cartesian(ylim = c(0, 40)) + scale_y_continuous(breaks = seq(0, 40, 5), expand = c(0, 0)) # with brackets p1 <- p + add_pvalue(df_p_val, label = "p.adj.signif") # without brackets p2 <- p + add_pvalue(df_p_val, label = "p.adj.signif", remove.bracket = TRUE) p1 + p2 ## ----fig.width=4, fig.height=3.5---------------------------------------------- df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose, ref.group = "all") p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + stat_summary(geom = "col", fun = mean) + stat_summary(geom = "errorbar", fun = mean, fun.min = function(x) mean(x) - sd(x), fun.max = function(x) mean(x) + sd(x), width = 0.3) + theme_prism() + coord_cartesian(ylim = c(0, 40)) + scale_y_continuous(breaks = seq(0, 40, 5), expand = c(0, 0)) p + add_pvalue(df_p_val, label = "p.adj.signif", y.position = 35) ## ----fig.width=4, fig.height=3.5---------------------------------------------- df_p_val <- ToothGrowth %>% rstatix::group_by(factor(dose)) %>% rstatix::t_test(len ~ 1, mu = 26) %>% rstatix::adjust_pvalue(p.col = "p", method = "holm") %>% rstatix::add_significance(p.col = "p.adj") p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + stat_summary(geom = "col", fun = mean) + stat_summary(geom = "errorbar", fun = mean, fun.min = function(x) mean(x) - sd(x), fun.max = function(x) mean(x) + sd(x), width = 0.3) + theme_prism() + coord_cartesian(ylim = c(0, 40)) + scale_y_continuous(breaks = seq(0, 40, 5), expand = c(0, 0)) # remember xmin and x are referring to the column dames in df_p_val p + add_pvalue(df_p_val, xmin = "group1", x = "factor(dose)", y = 37, label = "p.adj.signif") ## ----fig.width=4, fig.height=3.5---------------------------------------------- df_p_val <- rstatix::t_test(ToothGrowth, len ~ dose) p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + geom_violin(trim = FALSE) + geom_boxplot(width = 0.2) + theme_prism() + coord_cartesian(ylim = c(0, 45)) + scale_y_continuous(breaks = seq(0, 45, 5), expand = c(0, 0)) p + add_pvalue(df_p_val, y.position = c(44, 41, 44), bracket.shorten = c(0.025, 0, 0.025)) ## ----fig.width=5, fig.height=3.5---------------------------------------------- df_p_val <- ToothGrowth %>% rstatix::group_by(supp) %>% rstatix::t_test(len ~ dose) %>% rstatix::add_xy_position() p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + geom_boxplot(aes(fill = supp)) + theme_prism() # remember colour and step.group.by are referring to a column name in df_p_val p + add_pvalue(df_p_val, label = "p = {p.adj}", colour = "supp", fontface = "bold", step.group.by = "supp", step.increase = 0.1, tip.length = 0, bracket.colour = "black", show.legend = FALSE) ## ----fig.width=5, fig.height=3.5---------------------------------------------- df_p_val <- ToothGrowth %>% rstatix::group_by(dose) %>% rstatix::t_test(len ~ supp) %>% rstatix::adjust_pvalue(p.col = "p", method = "bonferroni") %>% rstatix::add_significance(p.col = "p.adj") %>% rstatix::add_xy_position(x = "dose", dodge = 0.8) # important for positioning! p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + geom_boxplot(aes(fill = supp)) + theme_prism() + coord_cartesian(ylim = c(0, 40)) p + add_pvalue(df_p_val, xmin = "xmin", xmax = "xmax", label = "p = {p.adj}", tip.length = 0) ## ----fig.width=5, fig.height=4------------------------------------------------ df_p_val1 <- ToothGrowth %>% rstatix::group_by(dose) %>% rstatix::t_test(len ~ supp) %>% rstatix::adjust_pvalue(p.col = "p", method = "bonferroni") %>% rstatix::add_significance(p.col = "p.adj") %>% rstatix::add_xy_position(x = "dose", dodge = 0.8) # important for positioning! df_p_val2 <- rstatix::t_test(ToothGrowth, len ~ dose, p.adjust.method = "bonferroni") %>% rstatix::add_xy_position() p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + geom_boxplot(aes(fill = supp)) + theme_prism() + coord_cartesian(ylim = c(0, 45)) p + add_pvalue(df_p_val1, xmin = "xmin", xmax = "xmax", label = "p = {p.adj}", tip.length = 0) + add_pvalue(df_p_val2, label = "p = {p.adj}", tip.length = 0.01, bracket.nudge.y = 2, step.increase = 0.015) ## ----fig.height=3.5----------------------------------------------------------- df_p_val <- ToothGrowth %>% rstatix::group_by(dose) %>% rstatix::t_test(len ~ supp) %>% rstatix::add_xy_position() p <- ggplot(ToothGrowth, aes(x = factor(supp), y = len)) + geom_boxplot(width = 0.2) + facet_wrap( ~ dose, scales = "free", labeller = labeller(dose = function(x) paste("dose =", x)) ) + theme_prism() p + add_pvalue(df_p_val) ## ----fig.height=3.5----------------------------------------------------------- df_p_val <- ToothGrowth %>% rstatix::group_by(supp) %>% rstatix::t_test(len ~ dose) %>% rstatix::add_xy_position() p <- ggplot(ToothGrowth, aes(x = factor(dose), y = len)) + geom_boxplot(width = 0.4) + facet_wrap(~ supp, scales = "free") + theme_prism() p + add_pvalue(df_p_val) ## ----fig.height=7------------------------------------------------------------- # add a grouping variable to ToothGrowth tg <- ToothGrowth tg$dose <- factor(tg$dose) tg$grp <- factor(rep(c("grp1", "grp2"), 30)) # construct the p-value table by hand df_p_val <- data.frame( group1 = c("OJ", "OJ"), group2 = c("VC", "VC"), p.adj = c(0.0449, 0.00265), y.position = c(22, 27), grp = c("grp1", "grp2"), dose = c("0.5", "1") ) p <- ggplot(tg, aes(x = factor(supp), y = len)) + geom_boxplot(width = 0.4) + facet_wrap(grp ~ dose, scales = "free") + theme_prism() p + add_pvalue(df_p_val, bracket.nudge.y = 3)