
Package ‘ggdist’
April 23, 2025

Title Visualizations of Distributions and Uncertainty

Version 3.3.3

Date 2025-04-20

Maintainer Matthew Kay <mjskay@northwestern.edu>

Description
Provides primitives for visualizing distributions using 'ggplot2' that are particularly tuned for
visualizing uncertainty in either a frequentist or Bayesian mode. Both analytical distribu-
tions (such as
frequentist confidence distributions or Bayesian priors) and distributions represented as sam-
ples (such as
bootstrap distributions or Bayesian posterior samples) are easily visualized. Visualization primi-
tives include
but are not limited to: points with multiple uncertainty intervals,
eye plots (Spiegelhalter D., 1999) <https:
//ideas.repec.org/a/bla/jorssa/v162y1999i1p45-58.html>,
density plots, gradient plots, dot plots (Wilkin-
son L., 1999) <doi:10.1080/00031305.1999.10474474>,
quantile dot plots (Kay M., Kola T., Hullman J., Mun-
son S., 2016) <doi:10.1145/2858036.2858558>,
complementary cumulative distribution function
barplots (Fernandes M., Walls L., Munson S., Hull-
man J., Kay M., 2018) <doi:10.1145/3173574.3173718>,
and fit curves with multiple uncertainty ribbons.

Depends R (>= 4.0.0)

Imports grid, ggplot2 (>= 3.5.0), scales, rlang (>= 0.3.0), cli,
tibble, vctrs, withr, glue, gtable, distributional (>= 0.3.2),
numDeriv, quadprog, Rcpp

Suggests tidyselect, dplyr (>= 1.0.0), fda, posterior (>= 1.4.0),
beeswarm (>= 0.4.0), rmarkdown, knitr, testthat (>= 3.0.0),
vdiffr (>= 1.0.0), svglite (>= 2.1.0), fontquiver, sysfonts,
showtext, mvtnorm, covr, broom (>= 0.5.6), patchwork, tidyr (>=
1.0.0), ragg (>= 1.3.0), pkgdown

License GPL (>= 3)

Language en-US

1

https://ideas.repec.org/a/bla/jorssa/v162y1999i1p45-58.html
https://ideas.repec.org/a/bla/jorssa/v162y1999i1p45-58.html
https://doi.org/10.1080/00031305.1999.10474474
https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

2 Contents

BugReports https://github.com/mjskay/ggdist/issues

URL https://mjskay.github.io/ggdist/,

https://github.com/mjskay/ggdist/

VignetteBuilder knitr

RoxygenNote 7.3.2

LazyData true

Encoding UTF-8

Collate ``ggdist-package.R'' ``util.R'' ``compat.R'' ``rd.R'' ``RcppExports.R''
``abstract_geom.R'' ``abstract_stat.R''
``abstract_stat_slabinterval.R'' ``auto_partial.R''
``binning_methods.R'' ``bounder.R'' ``curve_interval.R''
``cut_cdf_qi.R'' ``data.R'' ``density.R'' ``distributions.R''
``draw_key_slabinterval.R'' ``geom.R'' ``geom_slabinterval.R''
``geom_dotsinterval.R'' ``geom_blur_dots.R'' ``geom_interval.R''
``geom_lineribbon.R'' ``geom_pointinterval.R'' ``geom_slab.R''
``geom_spike.R'' ``geom_swarm.R'' ``guide_rampbar.R''
``interval_widths.R'' ``lkjcorr_marginal.R'' ``parse_dist.R''
``partial_colour_ramp.R'' ``point_interval.R''
``position_dodgejust.R'' ``pr.R'' ``rd_density.R''
``rd_dotsinterval.R'' ``rd_slabinterval.R'' ``rd_spike.R''
``rd_lineribbon.R'' ``scale_colour_ramp.R'' ``scale_thickness.R''
``scale_side_mirrored.R'' ``scale_.R'' ``smooth.R'' ``stat.R''
``stat_slabinterval.R'' ``stat_dotsinterval.R'' ``stat_mcse_dots.R''
``stat_pointinterval.R'' ``stat_interval.R'' ``stat_lineribbon.R''
``stat_spike.R'' ``student_t.R'' ``subguide.R'' ``subscale.R''
``testthat.R'' ``theme_ggdist.R'' ``thickness.R''
``tidy_format_translators.R'' ``weighted_ecdf.R'' ``weighted_hist.R''
``weighted_quantile.R'' ``deprecated.R''

Config/testthat/edition 3

LinkingTo Rcpp

NeedsCompilation yes

Author Matthew Kay [aut, cre],
Brenton M. Wiernik [ctb]

Repository CRAN

Date/Publication 2025-04-23 00:20:02 UTC

Contents
ggdist-package . 4
align . 5
auto_partial . 7
bandwidth . 9
bin_dots . 10

https://github.com/mjskay/ggdist/issues
https://mjskay.github.io/ggdist/
https://github.com/mjskay/ggdist/

Contents 3

blur . 12
bounder_cdf . 13
bounder_cooke . 15
bounder_range . 16
breaks . 16
curve_interval . 19
cut_cdf_qi . 23
density_bounded . 24
density_histogram . 28
density_unbounded . 30
find_dotplot_binwidth . 33
geom_blur_dots . 34
geom_dots . 43
geom_dotsinterval . 51
geom_interval . 61
geom_lineribbon . 66
geom_pointinterval . 70
geom_slab . 75
geom_slabinterval . 81
geom_spike . 89
geom_swarm . 93
geom_weave . 102
ggdist-deprecated . 111
guide_rampbar . 112
interval_widths . 114
lkjcorr_marginal . 116
marginalize_lkjcorr . 118
parse_dist . 120
partial_colour_ramp . 123
point_interval . 124
position_dodgejust . 130
Pr_ . 132
ramp_colours . 134
scale_colour_ramp . 135
scale_side_mirrored . 137
scale_thickness . 140
smooth_density . 144
smooth_discrete . 146
smooth_none . 148
stat_ccdfinterval . 149
stat_cdfinterval . 159
stat_dots . 170
stat_dotsinterval . 180
stat_eye . 190
stat_gradientinterval . 201
stat_halfeye . 211
stat_histinterval . 222
stat_interval . 232

4 ggdist-package

stat_lineribbon . 238
stat_mcse_dots . 244
stat_pointinterval . 253
stat_ribbon . 259
stat_slab . 264
stat_slabinterval . 273
stat_spike . 285
student_t . 293
sub-geometry-scales . 295
subguide_axis . 300
subguide_none . 303
subscale_identity . 303
subscale_thickness . 304
theme_ggdist . 305
thickness . 307
tidy-format-translators . 308
waiver . 309
weighted_ecdf . 310
weighted_quantile . 311

Index 314

ggdist-package Visualizations of Distributions and Uncertainty

Description

ggdist is an R package that aims to make it easy to integrate popular Bayesian modeling methods
into a tidy data + ggplot workflow.

Details

ggdist is an R package that provides a flexible set of ggplot2 geoms and stats designed espe-
cially for visualizing distributions and uncertainty. It is designed for both frequentist and Bayesian
uncertainty visualization, taking the view that uncertainty visualization can be unified through the
perspective of distribution visualization: for frequentist models, one visualizes confidence distribu-
tions or bootstrap distributions (see vignette("freq-uncertainty-vis")); for Bayesian models,
one visualizes probability distributions (see vignette("tidybayes", package = "tidybayes")).

The geom_slabinterval() / stat_slabinterval() family (see vignette("slabinterval"))
makes it easy to visualize point summaries and intervals, eye plots, half-eye plots, ridge plots,
CCDF bar plots, gradient plots, histograms, and more.

The geom_dotsinterval() / stat_dotsinterval() family (see vignette("dotsinterval"))
makes it easy to visualize dot+interval plots, Wilkinson dotplots, beeswarm plots, and quantile
dotplots.

The geom_lineribbon() / stat_lineribbon() family (see vignette("lineribbon")) makes it
easy to visualize fit lines with an arbitrary number of uncertainty bands.

align 5

Author(s)

Maintainer: Matthew Kay <mjskay@northwestern.edu>

Other contributors:

• Brenton M. Wiernik <brenton@wiernik.org> [contributor]

See Also

Useful links:

• https://mjskay.github.io/ggdist/

• https://github.com/mjskay/ggdist/

• Report bugs at https://github.com/mjskay/ggdist/issues

align Break (bin) alignment methods

Description

Methods for aligning breaks (bins) in histograms, as used in the align argument to density_histogram().

Supports automatic partial function application with waived arguments.

Usage

align_none(breaks)

align_boundary(breaks, at = 0)

align_center(breaks, at = 0)

Arguments

breaks <numeric> A sorted vector of breaks (bin edges).

at <scalar numeric> The alignment point.

• For align_boundary(): align breaks so that a bin edge lines up with at.
• For align_center(): align breaks so that the center of a bin lines up with
at.

Details

These functions take a sorted vector of equally-spaced breaks giving bin edges and return a numeric
offset which, if subtracted from breaks, will align them as desired:

• align_none() performs no alignment (it always returns 0).

• align_boundary() ensures that a bin edge lines up with at.

https://mjskay.github.io/ggdist/
https://github.com/mjskay/ggdist/
https://github.com/mjskay/ggdist/issues

6 align

• align_center() ensures that a bin center lines up with at.

For align_boundary() (respectively align_center()), if no bin edge (or center) in the range of
breaks would line up with at, it ensures that at is an integer multiple of the bin width away from
a bin edge (or center).

Value

A scalar numeric returning an offset to be subtracted from breaks.

See Also

density_histogram(), breaks

Examples

library(ggplot2)

set.seed(1234)
x = rnorm(200, 1, 2)

If we manually specify a bin width using breaks_fixed(), the default
alignment (align_none()) will not align bin edges to any "pretty" numbers.
Here is a comparison of the three alignment methods on such a histogram:
ggplot(data.frame(x), aes(x)) +

stat_slab(
aes(y = "align_none()\nor 'none'"),
density = "histogram",
breaks = breaks_fixed(width = 1),
outline_bars = TRUE,
no need to specify align; align_none() is the default
color = "black",

) +
stat_slab(

aes(y = "align_center(at = 0)\nor 'center'"),
density = "histogram",
breaks = breaks_fixed(width = 1),
align = align_center(at = 0), # or align = "center"
outline_bars = TRUE,
color = "black",

) +
stat_slab(

aes(y = "align_boundary(at = 0)\nor 'boundary'"),
density = "histogram",
breaks = breaks_fixed(width = 1),
align = align_boundary(at = 0), # or align = "boundary"
outline_bars = TRUE,
color = "black",

) +
geom_point(aes(y = 0.7), alpha = 0.5) +
labs(

subtitle = "ggdist::stat_slab(density = 'histogram', ...)",
y = "align =",

auto_partial 7

x = NULL
) +
geom_vline(xintercept = 0, linetype = "22", color = "red")

auto_partial Automatic partial function application in ggdist

Description

Several ggdist functions support automatic partial application: when called, if all of their required
arguments have not been provided, the function returns a modified version of itself that uses the
arguments passed to it so far as defaults. Technically speaking, these functions are essentially
"Curried" with respect to their required arguments, but I think "automatic partial application" gets
the idea across more clearly.

Functions supporting automatic partial application include:

• The point_interval() family, such as median_qi(), mean_qi(), mode_hdi(), etc.

• The smooth_ family, such as smooth_bounded(), smooth_unbounded(), smooth_discrete(),
and smooth_bar().

• The density_ family, such as density_bounded(), density_unbounded() and density_histogram().

• The align family.

• The breaks family.

• The bandwidth family.

• The blur family.

Partial application makes it easier to supply custom parameters to these functions when using them
inside other functions, such as geoms and stats. For example, smoothers for geom_dots() can be
supplied in one of three ways:

• as a suffix: geom_dots(smooth = "bounded")

• as a function: geom_dots(smooth = smooth_bounded)

• as a partially-applied function with options: geom_dots(smooth = smooth_bounded(kernel
= "cosine"))

Many other common arguments for ggdist functions work similarly; e.g. density, align, breaks,
bandwidth, and point_interval arguments.

These function families (except point_interval()) also support passing waivers to their optional
arguments: if waiver() is passed to any of these arguments, their default value (or the most
recently-partially-applied non-waiver value) is used instead.

Use the auto_partial() function to create new functions that support automatic partial applica-
tion.

Usage

auto_partial(f, name = NULL, waivable = TRUE)

8 auto_partial

Arguments

f <function> Function to automatically partially-apply.

name <string> Name of the function, to be used when printing.

waivable <scalar logical> If TRUE, optional arguments that get passed a waiver() will
keep their default value (or whatever non-waiver value has been most recently
partially applied for that argument).

Value

A modified version of f that will automatically be partially applied if all of its required arguments
are not given.

Examples

set.seed(1234)
x = rnorm(100)

the first required argument, `x`, of the density_ family is the vector
to calculate a kernel density estimate from. If it is not provided, the
function is partially applied and returned as-is
density_unbounded()

we could create a new function that uses half the default bandwidth
density_half_bw = density_unbounded(adjust = 0.5)
density_half_bw

we can overwrite partially-applied arguments
density_quarter_bw_trimmed = density_half_bw(adjust = 0.25, trim = TRUE)
density_quarter_bw_trimmed

when we eventually call the function and provide the required argument
`x`, it is applied using the arguments we have "saved up" so far
density_quarter_bw_trimmed(x)

create a custom automatically partially applied function
f = auto_partial(function(x, y, z = 3) (x + y) * z)
f()
f(1)
g = f(y = 2)(z = 4)
g
g(1)

pass waiver() to optional arguments to use existing values
f(z = waiver())(1, 2) # uses default z = 3
f(z = 4)(z = waiver())(1, 2) # uses z = 4

bandwidth 9

bandwidth Bandwidth estimators

Description

Bandwidth estimators for densities, used in the bandwidth argument to density functions (e.g.
density_bounded(), density_unbounded()).

Supports automatic partial function application with waived arguments.

Usage

bandwidth_nrd0(x, ...)

bandwidth_nrd(x, ...)

bandwidth_ucv(x, ...)

bandwidth_bcv(x, ...)

bandwidth_SJ(x, ...)

bandwidth_dpi(x, ...)

Arguments

x <numeric> Vector containing a sample.

... Arguments passed on to stats::bw.SJ

nb number of bins to use.
lower,upper range over which to minimize. The default is almost always sat-

isfactory. hmax is calculated internally from a normal reference bandwidth.
method either "ste" ("solve-the-equation") or "dpi" ("direct plug-in"). Can be

abbreviated.
tol for method "ste", the convergence tolerance for uniroot. The default

leads to bandwidth estimates with only slightly more than one digit accu-
racy, which is sufficient for practical density estimation, but possibly not
for theoretical simulation studies.

Details

These are loose wrappers around the corresponding bw.-prefixed functions in stats. See, for exam-
ple, bw.SJ().

bandwidth_dpi(), which is the default bandwidth estimator in ggdist, is the Sheather-Jones direct
plug-in estimator, i.e. bw.SJ(..., method = "dpi").

With the exception of bandwidth_nrd0(), these estimators may fail in some cases, often when a
sample contains many duplicates. If they do they will automatically fall back to bandwidth_nrd0()

10 bin_dots

with a warning. However, these failures are typically symptomatic of situations where you should
not want to use a kernel density estimator in the first place (e.g. data with duplicates and/or discrete
data). In these cases consider using a dotplot (geom_dots()) or histogram (density_histogram())
instead.

Value

A single number giving the bandwidth

See Also

density_bounded(), density_unbounded().

bin_dots Bin data values using a dotplot algorithm

Description

Bins the provided data values using one of several dotplot algorithms.

Usage

bin_dots(
x,
y,
binwidth,
heightratio = 1,
stackratio = 1,
layout = c("bin", "weave", "hex", "swarm", "bar"),
side = c("topright", "top", "right", "bottomleft", "bottom", "left", "topleft",

"bottomright", "both"),
orientation = c("horizontal", "vertical", "y", "x"),
overlaps = "nudge"

)

Arguments

x <numeric> x values.

y <numeric> y values (same length as x).

binwidth <scalar numeric> Bin width.

heightratio <scalar numeric> Ratio of bin width to dot height

stackratio <scalar numeric> Ratio of dot height to vertical distance between dot centers

layout <string> The layout method used for the dots. One of:

bin_dots 11

• "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

side Which side to place the slab on. "topright", "top", and "right" are syn-
onyms which cause the slab to be drawn on the top or the right depending on
if orientation is "horizontal" or "vertical". "bottomleft", "bottom",
and "left" are synonyms which cause the slab to be drawn on the bottom or the
left depending on if orientation is "horizontal" or "vertical". "topleft"
causes the slab to be drawn on the top or the left, and "bottomright" causes
the slab to be drawn on the bottom or the right. "both" draws the slab mirrored
on both sides (as in a violin plot).

orientation <string> Whether the dots are laid out horizontally or vertically. Follows the
naming scheme of geom_slabinterval():

• "horizontal" assumes the data values for the dotplot are in the x variable
and that dots will be stacked up in the y direction.

• "vertical" assumes the data values for the dotplot are in the y variable
and that dots will be stacked up in the x direction.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal".

overlaps <string> How to handle overlapping dots or bins in the "bin", "weave", and
"hex" layouts (dots never overlap in the "swarm" or "bar" layouts). For the
purposes of this argument, dots are only considered to be overlapping if they
would be overlapping when dotsize = 1 and stackratio = 1; i.e. if you set
those arguments to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually only
slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance of

12 blur

dots to their desired positions, subject to the constraint that adjacent dots
do not overlap.

Value

A data.frame with three columns:

• x: the x position of each dot

• y: the y position of each dot

• bin: a unique number associated with each bin (supplied but not used when layout = "swarm")

See Also

find_dotplot_binwidth() for an algorithm that finds good bin widths to use with this function;
geom_dotsinterval() for geometries that use these algorithms to create dotplots.

Examples

library(dplyr)
library(ggplot2)

x = qnorm(ppoints(20))
bin_df = bin_dots(x = x, y = 0, binwidth = 0.5, heightratio = 1)
bin_df

we can manually plot the binning above, though this is only recommended
if you are using find_dotplot_binwidth() and bin_dots() to build your own
grob. For practical use it is much easier to use geom_dots(), which will
automatically select good bin widths for you (and which uses
find_dotplot_binwidth() and bin_dots() internally)
bin_df %>%

ggplot(aes(x = x, y = y)) +
geom_point(size = 4) +
coord_fixed()

blur Blur functions for blurry dot plots

Description

Methods for constructing blurs, as used in the blur argument to geom_blur_dots() or stat_mcse_dots().

Supports automatic partial function application with waived arguments.

Usage

blur_gaussian(x, r, sd)

blur_interval(x, r, sd, .width = 0.95)

bounder_cdf 13

Arguments

x <numeric> Vector of positive distances from the center of the dot (assumed to
be 0) to evaluate blur function at.

r <scalar numeric> Radius of the dot that is being blurred.

sd <scalar numeric> Standard deviation of the dot that is being blurred.

.width <scalar numeric> For blur_interval(), a probability giving the width of the
interval.

Details

These functions are passed x, r, and sd when geom_blur_dots() draws in order to create a radial
gradient representing each dot in the dotplot. They return values between 0 and 1 giving the opacity
of the dot at each value of x.

blur_gaussian() creates a dot with radius r that has a Gaussian blur with standard deviation sd
applied to it. It does this by calculating α(x; r, σ), the opacity at distance x from the center of a dot
with radius r that has had a Gaussian blur with standard deviation σ = sd applied to it:

α(x; r, σ) = Φ

(
x+ r

σ

)
− Φ

(
x− r

σ

)
blur_interval() creates an interval-type representation around the dot at 50% opacity, where the
interval is a Gaussian quantile interval with mass equal to .width and standard deviation sd.

Value

A vector with the same length as x giving the opacity of the radial gradient representing the dot at
each x value.

See Also

geom_blur_dots() and stat_mcse_dots() for geometries making use of blur functions.

Examples

see examples in geom_blur_dots()

bounder_cdf Estimate bounds of a distribution using the CDF of its order statistics

Description

Estimate the bounds of the distribution a sample came from using the CDF of the order statistics of
the sample. Use with the bounder argument to density_bounded().

Supports automatic partial function application with waived arguments.

14 bounder_cdf

Usage

bounder_cdf(x, p = 0.01)

Arguments

x <numeric> Sample to estimate the bounds of.

p <scalar numeric> in [0, 1]: Percentile of the order statistic distribution to use
as the estimate. p = 1 will return range(x); p = 0.5 will give the median esti-
mate, p = 0 will give a very wide estimate (effectively treating the distribution
as unbounded when used with density_bounded()).

Details

bounder_cdf() uses the distribution of the order statistics of X to estimate where the first and
last order statistics (i.e. the min and max) of this distribution would be, assuming the sample x is
the distribution. Then, it adjusts the boundary outwards from min(x) (or max(x)) by the distance
between min(x) (or max(x)) and the nearest estimated order statistic.

Taking X = x, the distributions of the first and last order statistics are:

FX(1)
(x) = 1− [1− FX(x)]

n

FX(n)
(x) = FX(x)n

Re-arranging, we can get the inverse CDFs (quantile functions) of each order statistic in terms of
the quantile function of X (which we can estimate from the data), giving us an estimate for the
minimum and maximum order statistic:

x̂1 = F−1
X(1)

(p) = F−1
X

[
1− (1− p)1/n

]
x̂n = F−1

X(n)
(p) = F−1

X

[
p1/n

]
Then the estimated bounds are:

[2min(x)− x̂1, 2max(x)− x̂n]

These bounds depend on p, the percentile of the distribution of the order statistic used to form
the estimate. While p = 0.5 (the median) might be a reasonable choice (and gives results similar
to bounder_cooke()), this tends to be a bit too aggressive in "detecting" bounded distributions,
especially in small sample sizes. Thus, we use a default of p = 0.01, which tends to be very
conservative in small samples (in that it usually gives results roughly equivalent to an unbounded
distribution), but which still performs well on bounded distributions when sample sizes are larger
(in the thousands).

Value

A length-2 numeric vector giving an estimate of the minimum and maximum bounds of the distri-
bution that x came from.

bounder_cooke 15

See Also

The bounder argument to density_bounded().

Other bounds estimators: bounder_cooke(), bounder_range()

bounder_cooke Estimate bounds of a distribution using Cooke’s method

Description

Estimate the bounds of the distribution a sample came from using Cooke’s method. Use with the
bounder argument to density_bounded().

Supports automatic partial function application with waived arguments.

Usage

bounder_cooke(x)

Arguments

x <numeric> Sample to estimate the bounds of.

Details

Estimate the bounds of a distribution using the method from Cooke (1979); i.e. method 2.3 from
Loh (1984). These bounds are:[

2X(1) −
∑n

i=1

[(
1− i−1

n

)n −
(
1− i

n

)n]
X(i)

2X(n) −
∑n

i=1

[(
1− n−i

n

)n −
(
1− n+1−i

n

)n]
X(i)

]
Where X(i) is the ith order statistic of x (i.e. its ith-smallest value).

Value

A length-2 numeric vector giving an estimate of the minimum and maximum bounds of the distri-
bution that x came from.

References

Cooke, P. (1979). Statistical inference for bounds of random variables. Biometrika 66(2), 367–374.
doi:10.1093/biomet/66.2.367.

Loh, W. Y. (1984). Estimating an endpoint of a distribution with resampling methods. The Annals
of Statistics 12(4), 1543–1550. doi:10.1214/aos/1176346811

See Also

The bounder argument to density_bounded().

Other bounds estimators: bounder_cdf(), bounder_range()

https://doi.org/10.1093/biomet/66.2.367
https://doi.org/10.1214/aos/1176346811

16 breaks

bounder_range Estimate bounds of a distribution using the range of the sample

Description

Estimate the bounds of the distribution a sample came from using the range of the sample. Use with
the bounder argument to density_bounded().

Supports automatic partial function application with waived arguments.

Usage

bounder_range(x)

Arguments

x <numeric> Sample to estimate the bounds of.

Details

Estimate the bounds of a distribution using range(x).

Value

A length-2 numeric vector giving an estimate of the minimum and maximum bounds of the distri-
bution that x came from.

See Also

The bounder argument to density_bounded().

Other bounds estimators: bounder_cdf(), bounder_cooke()

breaks Break (bin) selection algorithms for histograms

Description

Methods for determining breaks (bins) in histograms, as used in the breaks argument to density_histogram().

Supports automatic partial function application with waived arguments.

breaks 17

Usage

breaks_fixed(x, weights = NULL, width = 1)

breaks_Sturges(x, weights = NULL)

breaks_Scott(x, weights = NULL)

breaks_FD(x, weights = NULL, digits = 5)

breaks_quantiles(x, weights = NULL, max_n = "Scott", min_width = 0.5)

Arguments

x <numeric> Sample values.

weights <numeric | NULL> Optional weights to apply to x, which will be normalized to
sum to 1.

width <scalar numeric> For breaks_fixed(), the desired bin width.

digits <scalar numeric> For breaks_FD(), the number of significant digits to keep
when rounding in the Freedman-Diaconis algorithm. For an explanation of this
parameter, see the documentation of the corresponding parameter in grDevices::nclass.FD().

max_n <scalar numeric | function | string> For breaks_quantiles(), either a scalar
numeric giving the maximum number of bins, or another breaks function (or
string giving the suffix of the name of a function prefixed with "breaks_") that
will return the maximum number of bins. breaks_quantiles() will construct
at most max_n bins.

min_width <scalar numeric> For breaks_quantiles(), a numeric between 0 and 1 giving
the minimum bin width as a proportion of diff(range(x)) / max_n.

Details

These functions take a sample and its weights and return a value suitable for the breaks argument
to density_histogram() that will determine the histogram breaks.

• breaks_fixed() allows you to manually specify a fixed bin width.

• breaks_Sturges(), breaks_Scott(), and breaks_FD() implement weighted versions of
their corresponding base functions. They return a scalar numeric giving the number of bins.
See nclass.Sturges(), nclass.scott(), and nclass.FD().

• breaks_quantiles() constructs irregularly-sized bins using max_n + 1 (possibly weighted)
quantiles of x. The final number of bins is at most max_n, as small bins (ones whose bin width
is less than half the range of the data divided by max_n times min_width) will be merged into
adjacent bins.

Value

Either a single number (giving the number of bins) or a vector giving the edges between bins.

18 breaks

See Also

density_histogram(), align

Examples

library(ggplot2)

set.seed(1234)
x = rnorm(2000, 1, 2)

Let's compare the different break-selection algorithms on this data:
ggplot(data.frame(x), aes(x)) +

stat_slab(
aes(y = "breaks_fixed(width = 0.5)"),
density = "histogram",
breaks = breaks_fixed(width = 0.5),
outline_bars = TRUE,
color = "black",

) +
stat_slab(

aes(y = "breaks_Sturges()\nor 'Sturges'"),
density = "histogram",
breaks = "Sturges",
outline_bars = TRUE,
color = "black",

) +
stat_slab(

aes(y = "breaks_Scott()\nor 'Scott'"),
density = "histogram",
breaks = "Scott",
outline_bars = TRUE,
color = "black",

) +
stat_slab(

aes(y = "breaks_FD()\nor 'FD'"),
density = "histogram",
breaks = "FD",
outline_bars = TRUE,
color = "black",

) +
stat_slab(

aes(y = "breaks_quantiles()\nor 'quantiles'"),
density = "histogram",
breaks = "quantiles",
outline_bars = TRUE,
color = "black",

) +
geom_point(aes(y = 0.7), alpha = 0.5) +
labs(

subtitle = "ggdist::stat_slab(density = 'histogram', ...)",
y = "breaks =",
x = NULL

curve_interval 19

)

curve_interval Curvewise point and interval summaries for tidy data frames of draws
from distributions

Description

Translates draws from distributions in a grouped data frame into a set of point and interval sum-
maries using a curve boxplot-inspired approach.

Usage

curve_interval(
.data,
...,
.along = NULL,
.width = 0.5,
na.rm = FALSE,
.interval = c("mhd", "mbd", "bd", "bd-mbd")

)

S3 method for class 'matrix'
curve_interval(
.data,
...,
.along = NULL,
.width = 0.5,
na.rm = FALSE,
.interval = c("mhd", "mbd", "bd", "bd-mbd")

)

S3 method for class 'rvar'
curve_interval(
.data,
...,
.along = NULL,
.width = 0.5,
na.rm = FALSE,
.interval = c("mhd", "mbd", "bd", "bd-mbd")

)

S3 method for class 'data.frame'
curve_interval(
.data,
...,
.along = NULL,

20 curve_interval

.width = 0.5,
na.rm = FALSE,
.interval = c("mhd", "mbd", "bd", "bd-mbd"),
.simple_names = TRUE,
.exclude = c(".chain", ".iteration", ".draw", ".row")

)

Arguments

.data <data.frame | rvar | matrix> One of:

• A data frame (or grouped data frame as returned by dplyr::group_by())
that contains draws to summarize.

• A posterior::rvar vector.
• A matrix; in which case the first dimension should be draws and the second

dimension values of the curve.

... <bare language> Bare column names or expressions that, when evaluated in the
context of .data, represent draws to summarize. If this is empty, then by de-
fault all columns that are not group columns and which are not in .exclude
(by default ".chain", ".iteration", ".draw", and ".row") will be summa-
rized. This can be numeric columns, list columns containing numeric vectors,
or posterior::rvar()s.

.along <tidyselect> Which columns are the input values to the function describing the
curve (e.g., the "x" values). Intervals are calculated jointly with respect to these
variables, conditional on all other grouping variables in the data frame. The
default (NULL) causes curve_interval() to use all grouping variables in the
input data frame as the value for .along, which will generate the most conser-
vative intervals. However, if you want to calculate intervals for some function
y = f(x) conditional on some other variable(s) (say, conditional on a factor g),
you would group by g, then use .along = x to calculate intervals jointly over x
conditional on g. To avoid selecting any variables as input values to the function
describing the curve, use character(); this will produce conditional intervals
only (the result in this case should be very similar to median_qi()). Currently
only supported when .data is a data frame.

.width <numeric> Vector of probabilities to use that determine the widths of the re-
sulting intervals. If multiple probabilities are provided, multiple rows per group
are generated, each with a different probability interval (and value of the corre-
sponding .width column).

na.rm <scalar logical> Should NA values be stripped before the computation proceeds?
If FALSE (the default), the presence of NA values in the columns to be summa-
rized will generally result in an error. If TRUE, NA values will be removed in the
calculation of intervals so long as .interval is "mhd"; other methods do not
currently support na.rm. Be cautious in applying this parameter: in general, it
is unclear what a joint interval should be when any of the values are missing!

.interval <string> The method used to calculate the intervals. Currently, all methods rank
the curves using some measure of data depth, then create envelopes containing
the .width% "deepest" curves. Available methods are:

curve_interval 21

• "mhd": mean halfspace depth (Fraiman and Muniz 2001).
• "mbd": modified band depth (Sun and Genton 2011): calls fda::fbplot()

with method = "MBD".
• "bd": band depth (Sun and Genton 2011): calls fda::fbplot() with method
= "BD2".

• "bd-mbd": band depth, breaking ties with modified band depth (Sun and
Genton 2011): calls fda::fbplot() with method = "Both".

.simple_names <scalar logical> When TRUE and only a single column / vector is to be summa-
rized, use the name .lower for the lower end of the interval and .upper for the
upper end. When FALSE and .data is a data frame, names the lower and upper
intervals for each column x x.lower and x.upper.

.exclude <character> Vector of names of columns to be excluded from summarization
if no column names are specified to be summarized. Default ignores several
meta-data column names used in ggdist and tidybayes.

Details

Intervals are calculated by ranking the curves using some measure of data depth, then using binary
search to find a cutoff k such that an envelope containing the k% "deepest" curves also contains
.width% of the curves, for each value of .width (note that k and .width are not necessarily the
same). This is in contrast to most functional boxplot or curve boxplot approaches, which tend to
simply take the .width% deepest curves, and are generally quite conservative (i.e. they may contain
more than .width% of the curves).

See Mirzargar et al. (2014) or Juul et al. (2020) for an accessible introduction to data depth and
curve boxplots / functional boxplots.

Value

A data frame containing point summaries and intervals, with at least one column corresponding
to the point summary, one to the lower end of the interval, one to the upper end of the interval,
the width of the interval (.width), the type of point summary (.point), and the type of interval
(.interval).

Author(s)

Matthew Kay

References

Fraiman, Ricardo and Graciela Muniz. (2001). "Trimmed means for functional data". Test 10:
419–440. doi:10.1007/BF02595706.

Sun, Ying and Marc G. Genton. (2011). "Functional Boxplots". Journal of Computational and
Graphical Statistics, 20(2): 316-334. doi:10.1198/jcgs.2011.09224

Mirzargar, Mahsa, Ross T Whitaker, and Robert M Kirby. (2014). "Curve Boxplot: Generalization
of Boxplot for Ensembles of Curves". IEEE Transactions on Visualization and Computer Graphics.
20(12): 2654-2663. doi:10.1109/TVCG.2014.2346455

https://doi.org/10.1007/BF02595706
https://doi.org/10.1198/jcgs.2011.09224
https://doi.org/10.1109/TVCG.2014.2346455

22 curve_interval

Juul Jonas, Kaare Græsbøll, Lasse Engbo Christiansen, and Sune Lehmann. (2020). "Fixed-
time descriptive statistics underestimate extremes of epidemic curve ensembles". arXiv e-print.
arXiv:2007.05035

See Also

point_interval() for pointwise intervals. See vignette("lineribbon") for more examples and
discussion of the differences between pointwise and curvewise intervals.

Examples

library(dplyr)
library(ggplot2)

generate a set of curves
k = 11 # number of curves
n = 201
df = tibble(

.draw = rep(1:k, n),
mean = rep(seq(-5,5, length.out = k), n),
x = rep(seq(-15,15,length.out = n), each = k),
y = dnorm(x, mean, 3)

)

see pointwise intervals...
df %>%

group_by(x) %>%
median_qi(y, .width = c(.5)) %>%
ggplot(aes(x = x, y = y)) +
geom_lineribbon(aes(ymin = .lower, ymax = .upper)) +
geom_line(aes(group = .draw), alpha=0.15, data = df) +
scale_fill_brewer() +
ggtitle("50% pointwise intervals with point_interval()") +
theme_ggdist()

... compare them to curvewise intervals
df %>%

group_by(x) %>%
curve_interval(y, .width = c(.5)) %>%
ggplot(aes(x = x, y = y)) +
geom_lineribbon(aes(ymin = .lower, ymax = .upper)) +
geom_line(aes(group = .draw), alpha=0.15, data = df) +
scale_fill_brewer() +
ggtitle("50% curvewise intervals with curve_interval()") +
theme_ggdist()

https://arxiv.org/abs/2007.05035

cut_cdf_qi 23

cut_cdf_qi Categorize values from a CDF into quantile intervals

Description

Given a vector of probabilities from a cumulative distribution function (CDF) and a list of desired
quantile intervals, return a vector categorizing each element of the input vector according to which
quantile interval it falls into. NOTE: While this function can be used for (and was originally
designed for) drawing slabs with intervals overlaid on the density, this is can now be done more
easily by mapping the .width or level computed variable to slab fill or color. See Examples.

Usage

cut_cdf_qi(p, .width = c(0.66, 0.95, 1), labels = NULL)

Arguments

p <numeric> Vector of values from a cumulative distribution function, such as val-
ues returned by p-prefixed distribution functions in base R (e.g. pnorm()), the
cdf() function, or values of the cdf computed aesthetic from the stat_slabinterval()
family of stats.

.width <numeric> Vector of probabilities to use that determine the widths of the result-
ing intervals.

labels <character | function | NULL> One of:

• A character vector giving labels (must be same length as .width)
• A function that takes numeric probabilities as input and returns labels as

output (a good candidate might be scales::percent_format()).
• NULL to use the default labels (.width converted to a character vector).

Value

An ordered factor of the same length as p giving the quantile interval to which each value of p
belongs.

See Also

See stat_slabinterval() and its shortcut stats, which generate cdf aesthetics that can be used
with cut_cdf_qi() to draw slabs colored by their intervals.

Examples

library(ggplot2)
library(dplyr)
library(scales)
library(distributional)

theme_set(theme_ggdist())

24 density_bounded

NOTE: cut_cdf_qi() used to be the recommended way to do intervals overlaid
on densities, like this...
tibble(x = dist_normal(0, 1)) %>%

ggplot(aes(xdist = x)) +
stat_slab(
aes(fill = after_stat(cut_cdf_qi(cdf)))

) +
scale_fill_brewer(direction = -1)

... however this is now more easily and flexibly accomplished by directly
mapping .width or level onto fill:
tibble(x = dist_normal(0, 1)) %>%

ggplot(aes(xdist = x)) +
stat_slab(

aes(fill = after_stat(level)),
.width = c(.66, .95, 1)

) +
scale_fill_brewer()

See vignette("slabinterval") for more examples. The remaining examples
below using cut_cdf_qi() are kept for posterity.

With a halfeye (or other geom with slab and interval), NA values will
show up in the fill scale from the CDF function applied to the internal
interval geometry data and can be ignored, hence na.translate = FALSE
tibble(x = dist_normal(0, 1)) %>%

ggplot(aes(xdist = x)) +
stat_halfeye(aes(

fill = after_stat(cut_cdf_qi(cdf, .width = c(.5, .8, .95, 1)))
)) +
scale_fill_brewer(direction = -1, na.translate = FALSE)

we could also use the labels parameter to apply nicer formatting
and provide a better name for the legend, and omit the 100% interval
if desired
tibble(x = dist_normal(0, 1)) %>%

ggplot(aes(xdist = x)) +
stat_halfeye(aes(

fill = after_stat(cut_cdf_qi(
cdf,
.width = c(.5, .8, .95),
labels = percent_format(accuracy = 1)

))
)) +
labs(fill = "Interval") +
scale_fill_brewer(direction = -1, na.translate = FALSE)

density_bounded Bounded density estimator using the reflection method

density_bounded 25

Description

Bounded density estimator using the reflection method.

Supports automatic partial function application with waived arguments.

Usage

density_bounded(
x,
weights = NULL,
n = 501,
bandwidth = "dpi",
adjust = 1,
kernel = "gaussian",
trim = TRUE,
bounds = c(NA, NA),
bounder = "cdf",
adapt = 1,
na.rm = FALSE,
...,
range_only = FALSE

)

Arguments

x <numeric> Sample to compute a density estimate for.
weights <numeric | NULL> Optional weights to apply to x.
n <scalar numeric> The number of grid points to evaluate the density estimator at.
bandwidth <scalar numeric | function | string> Bandwidth of the density estimator. One of:

• a numeric: the bandwidth, as the standard deviation of the kernel
• a function: a function taking x (the sample) and returning the bandwidth
• a string: the suffix of the name of a function starting with "bandwidth_"

that will be used to determine the bandwidth. See bandwidth for a list.
adjust <scalar numeric> Value to multiply the bandwidth of the density estimator by.

Default 1.
kernel <string> The smoothing kernel to be used. This must partially match one of

"gaussian", "rectangular", "triangular", "epanechnikov", "biweight",
"cosine", or "optcosine". See stats::density().

trim <scalar logical> Should the density estimate be trimmed to the range of the data?
Default TRUE.

bounds <length-2 numeric> Min and max bounds. If a bound is NA, then that bound is
estimated from the data using the method specified by bounder.

bounder <function | string> Method to use to find missing (NA) bounds. A function that
takes a numeric vector of values and returns a length-2 vector of the estimated
lower and upper bound of the distribution. Can also be a string giving the suf-
fix of the name of such a function that starts with "bounder_". Useful values
include:

26 density_bounded

• "cdf": Use the CDF of the the minimum and maximum order statistics of
the sample to estimate the bounds. See bounder_cdf().

• "cooke": Use the method from Cooke (1979); i.e. method 2.3 from Loh
(1984). See bounder_cooke().

• "range": Use the range of x (i.e the min or max). See bounder_range().

adapt <positive integer> (very experimental) The name and interpretation of this ar-
gument are subject to change without notice. If adapt > 1, uses an adaptive ap-
proach to calculate the density. First, uses the adaptive bandwidth algorithm of
Abramson (1982) to determine local (pointwise) bandwidths, then groups these
bandwidths into adapt groups, then calculates and sums the densities from each
group. You can set this to a very large number (e.g. Inf) for a fully adaptive ap-
proach, but this will be very slow; typically something around 100 yields nearly
identical results.

na.rm <scalar logical> Should missing (NA) values in x be removed?

... Additional arguments (ignored).

range_only <scalar logical> If TRUE, the range of the output of this density estimator is
computed and is returned in the $x element of the result, and c(NA, NA) is re-
turned in $y. This gives a faster way to determine the range of the output than
density_XXX(n = 2).

Value

An object of class "density", mimicking the output format of stats::density(), with the fol-
lowing components:

• x: The grid of points at which the density was estimated.

• y: The estimated density values.

• bw: The bandwidth.

• n: The sample size of the x input argument.

• call: The call used to produce the result, as a quoted expression.

• data.name: The deparsed name of the x input argument.

• has.na: Always FALSE (for compatibility).

• cdf: Values of the (possibly weighted) empirical cumulative distribution function at x. See
weighted_ecdf().

This allows existing methods for density objects, like print() and plot(), to work if desired.
This output format (and in particular, the x and y components) is also the format expected by the
density argument of the stat_slabinterval() and the smooth_ family of functions.

References

Cooke, P. (1979). Statistical inference for bounds of random variables. Biometrika 66(2), 367–374.
doi:10.1093/biomet/66.2.367.

Loh, W. Y. (1984). Estimating an endpoint of a distribution with resampling methods. The Annals
of Statistics 12(4), 1543–1550. doi:10.1214/aos/1176346811

https://doi.org/10.1093/biomet/66.2.367
https://doi.org/10.1214/aos/1176346811

density_bounded 27

See Also

Other density estimators: density_histogram(), density_unbounded()

Examples

library(distributional)
library(dplyr)
library(ggplot2)

For compatibility with existing code, the return type of density_bounded()
is the same as stats::density(), ...
set.seed(123)
x = rbeta(5000, 1, 3)
d = density_bounded(x)
d

... thus, while designed for use with the `density` argument of
stat_slabinterval(), output from density_bounded() can also be used with
base::plot():
plot(d)

here we'll use the same data as above, but pick either density_bounded()
or density_unbounded() (which is equivalent to stats::density()). Notice
how the bounded density (green) is biased near the boundary of the support,
while the unbounded density is not.
data.frame(x) %>%

ggplot() +
stat_slab(
aes(xdist = dist), data = data.frame(dist = dist_beta(1, 3)),
alpha = 0.25

) +
stat_slab(aes(x), density = "bounded", fill = NA, color = "#d95f02", alpha = 0.5) +
stat_slab(aes(x), density = "unbounded", fill = NA, color = "#1b9e77", alpha = 0.5) +
scale_thickness_shared() +
theme_ggdist()

We can also supply arguments to the density estimators by using their
full function names instead of the string suffix; e.g. we can supply
the exact bounds of c(0,1) rather than using the bounds of the data.
data.frame(x) %>%

ggplot() +
stat_slab(

aes(xdist = dist), data = data.frame(dist = dist_beta(1, 3)),
alpha = 0.25

) +
stat_slab(

aes(x), fill = NA, color = "#d95f02", alpha = 0.5,
density = density_bounded(bounds = c(0,1))

) +
scale_thickness_shared() +
theme_ggdist()

28 density_histogram

density_histogram Histogram density estimator

Description

Histogram density estimator.

Supports automatic partial function application with waived arguments.

Usage

density_histogram(
x,
weights = NULL,
breaks = "Scott",
align = "none",
outline_bars = FALSE,
right_closed = TRUE,
outermost_closed = TRUE,
na.rm = FALSE,
...,
range_only = FALSE

)

Arguments

x <numeric> Sample to compute a density estimate for.

weights <numeric | NULL> Optional weights to apply to x.

breaks <numeric | function | string> Determines the breakpoints defining bins. De-
fault "Scott". Similar to (but not exactly the same as) the breaks argument to
graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align <scalar numeric | function | string> Determines how to align the breakpoints
defining bins. Default "none" (performs no alignment). One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

density_histogram 29

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars <scalar logical> Should outlines in between the bars (i.e. density values of 0) be
included?

right_closed <scalar logical> Should the right edge of each bin be closed? For a bin with
endpoints L and U :

• if TRUE, use (L,U]: the interval containing all x such that L < x ≤ U .
• if FALSE, use [L,U): the interval containing all x such that L ≤ x < U .

Equivalent to the right argument of hist() or the left.open argument of
findInterval().

outermost_closed

<scalar logical> Should values on the edges of the outermost (first or last) bins
always be included in those bins? If TRUE, the first edge (when right_closed
= TRUE) or the last edge (when right_closed = FALSE) is treated as closed.
Equivalent to the include.lowest argument of hist() or the rightmost.closed
argument of findInterval().

na.rm <scalar logical> Should missing (NA) values in x be removed?
... Additional arguments (ignored).
range_only <scalar logical> If TRUE, the range of the output of this density estimator is

computed and is returned in the $x element of the result, and c(NA, NA) is re-
turned in $y. This gives a faster way to determine the range of the output than
density_XXX(n = 2).

Value

An object of class "density", mimicking the output format of stats::density(), with the fol-
lowing components:

• x: The grid of points at which the density was estimated.
• y: The estimated density values.
• bw: The bandwidth.
• n: The sample size of the x input argument.
• call: The call used to produce the result, as a quoted expression.
• data.name: The deparsed name of the x input argument.
• has.na: Always FALSE (for compatibility).
• cdf: Values of the (possibly weighted) empirical cumulative distribution function at x. See
weighted_ecdf().

This allows existing methods for density objects, like print() and plot(), to work if desired.
This output format (and in particular, the x and y components) is also the format expected by the
density argument of the stat_slabinterval() and the smooth_ family of functions.

30 density_unbounded

See Also

Other density estimators: density_bounded(), density_unbounded()

Examples

library(distributional)
library(dplyr)
library(ggplot2)

For compatibility with existing code, the return type of density_unbounded()
is the same as stats::density(), ...
set.seed(123)
x = rbeta(5000, 1, 3)
d = density_histogram(x)
d

... thus, while designed for use with the `density` argument of
stat_slabinterval(), output from density_histogram() can also be used with
base::plot():
plot(d)

here we'll use the same data as above with stat_slab():
data.frame(x) %>%

ggplot() +
stat_slab(
aes(xdist = dist), data = data.frame(dist = dist_beta(1, 3)),
alpha = 0.25

) +
stat_slab(aes(x), density = "histogram", fill = NA, color = "#d95f02", alpha = 0.5) +
scale_thickness_shared() +
theme_ggdist()

density_unbounded Unbounded density estimator

Description

Unbounded density estimator using stats::density().

Supports automatic partial function application with waived arguments.

Usage

density_unbounded(
x,
weights = NULL,
n = 501,
bandwidth = "dpi",
adjust = 1,

density_unbounded 31

kernel = "gaussian",
trim = TRUE,
adapt = 1,
na.rm = FALSE,
...,
range_only = FALSE

)

Arguments

x <numeric> Sample to compute a density estimate for.

weights <numeric | NULL> Optional weights to apply to x.

n <scalar numeric> The number of grid points to evaluate the density estimator at.

bandwidth <scalar numeric | function | string> Bandwidth of the density estimator. One of:

• a numeric: the bandwidth, as the standard deviation of the kernel
• a function: a function taking x (the sample) and returning the bandwidth
• a string: the suffix of the name of a function starting with "bandwidth_"

that will be used to determine the bandwidth. See bandwidth for a list.

adjust <scalar numeric> Value to multiply the bandwidth of the density estimator by.
Default 1.

kernel <string> The smoothing kernel to be used. This must partially match one of
"gaussian", "rectangular", "triangular", "epanechnikov", "biweight",
"cosine", or "optcosine". See stats::density().

trim <scalar logical> Should the density estimate be trimmed to the range of the data?
Default TRUE.

adapt <positive integer> (very experimental) The name and interpretation of this ar-
gument are subject to change without notice. If adapt > 1, uses an adaptive ap-
proach to calculate the density. First, uses the adaptive bandwidth algorithm of
Abramson (1982) to determine local (pointwise) bandwidths, then groups these
bandwidths into adapt groups, then calculates and sums the densities from each
group. You can set this to a very large number (e.g. Inf) for a fully adaptive ap-
proach, but this will be very slow; typically something around 100 yields nearly
identical results.

na.rm <scalar logical> Should missing (NA) values in x be removed?

... Additional arguments (ignored).

range_only <scalar logical> If TRUE, the range of the output of this density estimator is
computed and is returned in the $x element of the result, and c(NA, NA) is re-
turned in $y. This gives a faster way to determine the range of the output than
density_XXX(n = 2).

Value

An object of class "density", mimicking the output format of stats::density(), with the fol-
lowing components:

• x: The grid of points at which the density was estimated.

32 density_unbounded

• y: The estimated density values.

• bw: The bandwidth.

• n: The sample size of the x input argument.

• call: The call used to produce the result, as a quoted expression.

• data.name: The deparsed name of the x input argument.

• has.na: Always FALSE (for compatibility).

• cdf: Values of the (possibly weighted) empirical cumulative distribution function at x. See
weighted_ecdf().

This allows existing methods for density objects, like print() and plot(), to work if desired.
This output format (and in particular, the x and y components) is also the format expected by the
density argument of the stat_slabinterval() and the smooth_ family of functions.

See Also

Other density estimators: density_bounded(), density_histogram()

Examples

library(distributional)
library(dplyr)
library(ggplot2)

For compatibility with existing code, the return type of density_unbounded()
is the same as stats::density(), ...
set.seed(123)
x = rbeta(5000, 1, 3)
d = density_unbounded(x)
d

... thus, while designed for use with the `density` argument of
stat_slabinterval(), output from density_unbounded() can also be used with
base::plot():
plot(d)

here we'll use the same data as above, but pick either density_bounded()
or density_unbounded() (which is equivalent to stats::density()). Notice
how the bounded density (green) is biased near the boundary of the support,
while the unbounded density is not.
data.frame(x) %>%

ggplot() +
stat_slab(
aes(xdist = dist), data = data.frame(dist = dist_beta(1, 3)),
alpha = 0.25

) +
stat_slab(aes(x), density = "bounded", fill = NA, color = "#d95f02", alpha = 0.5) +
stat_slab(aes(x), density = "unbounded", fill = NA, color = "#1b9e77", alpha = 0.5) +
scale_thickness_shared() +
theme_ggdist()

find_dotplot_binwidth 33

find_dotplot_binwidth Dynamically select a good bin width for a dotplot

Description

Searches for a nice-looking bin width to use to draw a dotplot such that the height of the dotplot fits
within a given space (maxheight).

Usage

find_dotplot_binwidth(
x,
maxheight,
heightratio = 1,
stackratio = 1,
layout = c("bin", "weave", "hex", "swarm", "bar")

)

Arguments

x <numeric> Data values.
maxheight <scalar numeric> Maximum height of the dotplot.
heightratio <scalar numeric> Ratio of bin width to dot height.
stackratio <scalar numeric> Ratio of dot height to vertical distance between dot centers
layout <string> The layout method used for the dots. One of:

• "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

34 geom_blur_dots

Details

This dynamic bin selection algorithm uses a binary search over the number of bins to find a bin
width such that if the input data (x) is binned using a Wilkinson-style dotplot algorithm the height
of the tallest bin will be less than maxheight.

This algorithm is used by geom_dotsinterval() (and its variants) to automatically select bin
widths. Unless you are manually implementing you own dotplot grob or geom, you probably do not
need to use this function directly

Value

A suitable bin width such that a dotplot created with this bin width and heightratio should have
its tallest bin be less than or equal to maxheight.

See Also

bin_dots() for an algorithm can bin dots using bin widths selected by this function; geom_dotsinterval()
for geometries that use these algorithms to create dotplots.

Examples

library(dplyr)
library(ggplot2)

x = qnorm(ppoints(20))
binwidth = find_dotplot_binwidth(x, maxheight = 4, heightratio = 1)
binwidth

bin_df = bin_dots(x = x, y = 0, binwidth = binwidth, heightratio = 1)
bin_df

we can manually plot the binning above, though this is only recommended
if you are using find_dotplot_binwidth() and bin_dots() to build your own
grob. For practical use it is much easier to use geom_dots(), which will
automatically select good bin widths for you (and which uses
find_dotplot_binwidth() and bin_dots() internally)
bin_df %>%

ggplot(aes(x = x, y = y)) +
geom_point(size = 4) +
coord_fixed()

geom_blur_dots Blurry dot plot (geom)

Description

Variant of geom_dots() for creating blurry dotplots. Accepts an sd aesthetic that gives the standard
deviation of the blur applied to the dots. Requires a graphics engine supporting radial gradients.
Unlike geom_dots(), this geom only supports circular and square shapes.

geom_blur_dots 35

Usage

geom_blur_dots(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
blur = "gaussian",
binwidth = NA,
dotsize = 1.07,
stackratio = 1,
layout = "bin",
overlaps = "nudge",
smooth = "none",
overflow = "warn",
verbose = FALSE,
orientation = NA,
subguide = "slab",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

36 geom_blur_dots

• For more information and other ways to specify the stat, see the layer stat
documentation.

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

blur <function | string> Blur function to apply to dots. One of:

• A function that takes a numeric vector of distances from the dot center, the
dot radius, and the standard deviation of the blur and returns a vector of
opacities in [0, 1], such as blur_gaussian() or blur_interval().

• A string indicating what blur function to use, as the suffix to a function
name starting with blur_; e.g. "gaussian" (the default) applies blur_gaussian().

binwidth <numeric | unit> The bin width to use for laying out the dots. One of:

• NA (the default): Dynamically select the bin width based on the size of the
plot when drawn. This will pick a binwidth such that the tallest stack of
dots is at most scale in height (ideally exactly scale in height, though this
is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and maxi-

mum desired bin width. The bin width will be dynamically selected within
these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension the
dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at most
10% of the viewport size (while still ensuring the tallest stack is less than or
equal to scale).

dotsize <scalar numeric> The width of the dots relative to the binwidth. The default,
1.07, makes dots be just a bit wider than the bin width, which is a manually-
tuned parameter that tends to work well with the default circular shape, pre-
venting gaps between bins from appearing to be too large visually (as might
arise from dots being precisely the binwidth). If it is desired to have dots be
precisely the binwidth, set dotsize = 1.

stackratio <scalar numeric> The distance between the center of the dots in the same stack
relative to the dot height. The default, 1, makes dots in the same stack just touch
each other.

layout <string> The layout method used for the dots. One of:

• "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic

geom_blur_dots 37

Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

overlaps <string> How to handle overlapping dots or bins in the "bin", "weave", and
"hex" layouts (dots never overlap in the "swarm" or "bar" layouts). For the
purposes of this argument, dots are only considered to be overlapping if they
would be overlapping when dotsize = 1 and stackratio = 1; i.e. if you set
those arguments to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually only
slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance of
dots to their desired positions, subject to the constraint that adjacent dots
do not overlap.

smooth <function | string> Smoother to apply to dot positions. One of:

• A function that takes a numeric vector of dot positions and returns a smoothed
version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function name
starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support of the
distribution; e.g. using smooth_bounded(bounds = ...).

overflow <string> How to handle overflow of dots beyond the extent of the geom when a
minimum binwidth (or an exact binwidth) is supplied. One of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solutions,

such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and

38 geom_blur_dots

dotsize so that the apparent dot size is the user-specified minimum binwidth
times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay with
dots overlapping, consider setting overflow = "compress" and supplying an
exact or minimum dot size using binwidth.

verbose <scalar logical> If TRUE, print out the bin width of the dotplot. Can be useful
if you want to start from an automatically-selected bin width and then adjust it
manually. Bin width is printed both as data units and as normalized parent coor-
dinates or "npc"s (see unit()). Note that if you just want to scale the selected
bin width to fit within a desired area, it is probably easier to use scale than to
copy and scale binwidth manually, and if you just want to provide constraints
on the bin width, you can pass a length-2 vector to binwidth.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

subguide <function | string> Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use the
default subguide for their geom families (no subguide), which can be mod-
ified by setting subguide_slab, subguide_dots, or subguide_spike; see
the documentation for those functions.

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom_blur_dots 39

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

The dots family of stats and geoms are similar to ggplot2::geom_dotplot() but with a number
of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

Value

A ggplot2::Geom representing a blurry dot geometry which can be added to a ggplot() object.

40 geom_blur_dots

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.
Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Dots-specific (aka Slab-specific) aesthetics

• sd: The standard deviation (in data units) of the blur associated with each dot.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

https://mjskay.github.io/ggdist/articles/thickness.html

geom_blur_dots 41

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

42 geom_blur_dots

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See geom_dotsinterval() for the geometry this shortcut is based on.

See vignette("dotsinterval") for a variety of examples of use.

Other dotsinterval geoms: geom_dots(), geom_dotsinterval(), geom_swarm(), geom_weave()

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

set.seed(1234)
x = rnorm(1000)

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

geom_dots 43

manually calculate quantiles and their MCSE
this could also be done more succinctly with stat_mcse_dots()
p = ppoints(100)
df = data.frame(

q = quantile(x, p),
se = posterior::mcse_quantile(x, p)

)

df %>%
ggplot(aes(x = q, sd = se)) +
geom_blur_dots()

df %>%
ggplot(aes(x = q, sd = se)) +
or blur = blur_interval(.width = .95) to set the interval width
geom_blur_dots(blur = "interval")

geom_dots Dot plot (shortcut geom)

Description

Shortcut version of geom_dotsinterval() for creating dot plots. Geoms based on geom_dotsinterval()
create dotplots that automatically ensure the plot fits within the available space.

Roughly equivalent to:

geom_dotsinterval(
show_point = FALSE,
show_interval = FALSE

)

Usage

geom_dots(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
binwidth = NA,
dotsize = 1.07,
stackratio = 1,
layout = "bin",
overlaps = "nudge",
smooth = "none",
overflow = "warn",

44 geom_dots

verbose = FALSE,
orientation = NA,
subguide = "slab",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

binwidth <numeric | unit> The bin width to use for laying out the dots. One of:

• NA (the default): Dynamically select the bin width based on the size of the
plot when drawn. This will pick a binwidth such that the tallest stack of
dots is at most scale in height (ideally exactly scale in height, though this
is not guaranteed).

geom_dots 45

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and maxi-

mum desired bin width. The bin width will be dynamically selected within
these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension the
dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at most
10% of the viewport size (while still ensuring the tallest stack is less than or
equal to scale).

dotsize <scalar numeric> The width of the dots relative to the binwidth. The default,
1.07, makes dots be just a bit wider than the bin width, which is a manually-
tuned parameter that tends to work well with the default circular shape, pre-
venting gaps between bins from appearing to be too large visually (as might
arise from dots being precisely the binwidth). If it is desired to have dots be
precisely the binwidth, set dotsize = 1.

stackratio <scalar numeric> The distance between the center of the dots in the same stack
relative to the dot height. The default, 1, makes dots in the same stack just touch
each other.

layout <string> The layout method used for the dots. One of:

• "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

overlaps <string> How to handle overlapping dots or bins in the "bin", "weave", and
"hex" layouts (dots never overlap in the "swarm" or "bar" layouts). For the
purposes of this argument, dots are only considered to be overlapping if they

46 geom_dots

would be overlapping when dotsize = 1 and stackratio = 1; i.e. if you set
those arguments to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually only
slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance of
dots to their desired positions, subject to the constraint that adjacent dots
do not overlap.

smooth <function | string> Smoother to apply to dot positions. One of:

• A function that takes a numeric vector of dot positions and returns a smoothed
version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function name
starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support of the
distribution; e.g. using smooth_bounded(bounds = ...).

overflow <string> How to handle overflow of dots beyond the extent of the geom when a
minimum binwidth (or an exact binwidth) is supplied. One of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solutions,

such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum binwidth
times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay with
dots overlapping, consider setting overflow = "compress" and supplying an
exact or minimum dot size using binwidth.

verbose <scalar logical> If TRUE, print out the bin width of the dotplot. Can be useful
if you want to start from an automatically-selected bin width and then adjust it
manually. Bin width is printed both as data units and as normalized parent coor-
dinates or "npc"s (see unit()). Note that if you just want to scale the selected
bin width to fit within a desired area, it is probably easier to use scale than to
copy and scale binwidth manually, and if you just want to provide constraints
on the bin width, you can pass a length-2 vector to binwidth.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

geom_dots 47

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

subguide <function | string> Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use the
default subguide for their geom families (no subguide), which can be mod-
ified by setting subguide_slab, subguide_dots, or subguide_spike; see
the documentation for those functions.

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

The dots family of stats and geoms are similar to ggplot2::geom_dotplot() but with a number
of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

48 geom_dots

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

Value

A ggplot2::Geom representing a dot geometry which can be added to a ggplot() object.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.

Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Dots-specific (aka Slab-specific) aesthetics

• family: The font family used to draw the dots.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

geom_dots 49

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

https://mjskay.github.io/ggdist/articles/thickness.html

50 geom_dots

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.
• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the

outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.
• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.
• slab_alpha: Override for alpha: the opacity of the slab.
• slab_linewidth: Override for linwidth: the width of the outline of the slab.
• slab_linetype: Override for linetype: the line type of the outline of the slab.
• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.
• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.
• point_colour: (or point_color) Override for colour/color: the outline color of the point.
• point_alpha: Override for alpha: the opacity of the point.
• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.
• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

geom_dotsinterval 51

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See stat_dots() for the stat version, intended for use on sample data or analytical distributions.

See geom_dotsinterval() for the geometry this shortcut is based on.

See vignette("dotsinterval") for a variety of examples of use.

Other dotsinterval geoms: geom_blur_dots(), geom_dotsinterval(), geom_swarm(), geom_weave()

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

set.seed(12345)
df = tibble(

g = rep(c("a", "b"), 200),
value = rnorm(400, c(0, 3), c(0.75, 1))

)

orientation is detected automatically based on
which axis is discrete

df %>%
ggplot(aes(x = value, y = g)) +
geom_dots()

df %>%
ggplot(aes(y = value, x = g)) +
geom_dots()

geom_dotsinterval Automatic dotplot + point + interval meta-geom

Description

This meta-geom supports drawing combinations of dotplots, points, and intervals. Geoms and stats
based on geom_dotsinterval() create dotplots that automatically determine a bin width that en-
sures the plot fits within the available space. They also ensure dots do not overlap, and allow the gen-
eration of quantile dotplots using the quantiles argument to stat_dotsinterval()/stat_dots().

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

52 geom_dotsinterval

Generally follows the naming scheme and arguments of the geom_slabinterval() and stat_slabinterval()
family of geoms and stats.

Usage

geom_dotsinterval(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
binwidth = NA,
dotsize = 1.07,
stackratio = 1,
layout = "bin",
overlaps = "nudge",
smooth = "none",
overflow = "warn",
verbose = FALSE,
orientation = NA,
interval_size_domain = c(1, 6),
interval_size_range = c(0.6, 1.4),
fatten_point = 1.8,
arrow = NULL,
show_slab = TRUE,
show_point = TRUE,
show_interval = TRUE,
subguide = "slab",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom_dotsinterval 53

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

binwidth <numeric | unit> The bin width to use for laying out the dots. One of:

• NA (the default): Dynamically select the bin width based on the size of the
plot when drawn. This will pick a binwidth such that the tallest stack of
dots is at most scale in height (ideally exactly scale in height, though this
is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and maxi-

mum desired bin width. The bin width will be dynamically selected within
these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension the
dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at most
10% of the viewport size (while still ensuring the tallest stack is less than or
equal to scale).

dotsize <scalar numeric> The width of the dots relative to the binwidth. The default,
1.07, makes dots be just a bit wider than the bin width, which is a manually-
tuned parameter that tends to work well with the default circular shape, pre-
venting gaps between bins from appearing to be too large visually (as might
arise from dots being precisely the binwidth). If it is desired to have dots be
precisely the binwidth, set dotsize = 1.

stackratio <scalar numeric> The distance between the center of the dots in the same stack
relative to the dot height. The default, 1, makes dots in the same stack just touch
each other.

layout <string> The layout method used for the dots. One of:

54 geom_dotsinterval

• "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

overlaps <string> How to handle overlapping dots or bins in the "bin", "weave", and
"hex" layouts (dots never overlap in the "swarm" or "bar" layouts). For the
purposes of this argument, dots are only considered to be overlapping if they
would be overlapping when dotsize = 1 and stackratio = 1; i.e. if you set
those arguments to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually only
slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance of
dots to their desired positions, subject to the constraint that adjacent dots
do not overlap.

smooth <function | string> Smoother to apply to dot positions. One of:

• A function that takes a numeric vector of dot positions and returns a smoothed
version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function name
starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support of the
distribution; e.g. using smooth_bounded(bounds = ...).

overflow <string> How to handle overflow of dots beyond the extent of the geom when a
minimum binwidth (or an exact binwidth) is supplied. One of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solutions,

such as setting binwidth = NA or overflow = "compress".

geom_dotsinterval 55

• "compress": Compress the layout. Reduces the binwidth to the size
necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum binwidth
times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay with
dots overlapping, consider setting overflow = "compress" and supplying an
exact or minimum dot size using binwidth.

verbose <scalar logical> If TRUE, print out the bin width of the dotplot. Can be useful
if you want to start from an automatically-selected bin width and then adjust it
manually. Bin width is printed both as data units and as normalized parent coor-
dinates or "npc"s (see unit()). Note that if you just want to scale the selected
bin width to fit within a desired area, it is probably easier to use scale than to
copy and scale binwidth manually, and if you just want to provide constraints
on the bin width, you can pass a length-2 vector to binwidth.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

interval_size_domain

<length-2 numeric> Minimum and maximum of the values of the size and
linewidth aesthetics that will be translated into actual sizes for intervals drawn
according to interval_size_range (see the documentation for that argument.)

interval_size_range

<length-2 numeric> This geom scales the raw size aesthetic values when draw-
ing interval and point sizes, as they tend to be too thick when using the de-
fault settings of scale_size_continuous(), which give sizes with a range of
c(1, 6). The interval_size_domain value indicates the input domain of raw
size values (typically this should be equal to the value of the range argument
of the scale_size_continuous() function), and interval_size_range indi-
cates the desired output range of the size values (the min and max of the actual
sizes used to draw intervals). Most of the time it is not recommended to change
the value of this argument, as it may result in strange scaling of legends; this
argument is a holdover from earlier versions that did not have size aesthetics
targeting the point and interval separately. If you want to adjust the size of the
interval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

56 geom_dotsinterval

fatten_point <scalar numeric> A multiplicative factor used to adjust the size of the point rel-
ative to the size of the thickest interval line. If you wish to specify point sizes di-
rectly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will not
be adjusted using fatten_point.

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for no
arrows.

show_slab <scalar logical> Should the slab portion of the geom be drawn?

show_point <scalar logical> Should the point portion of the geom be drawn?

show_interval <scalar logical> Should the interval portion of the geom be drawn?

subguide <function | string> Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use the
default subguide for their geom families (no subguide), which can be mod-
ified by setting subguide_slab, subguide_dots, or subguide_spike; see
the documentation for those functions.

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

The dots family of stats and geoms are similar to ggplot2::geom_dotplot() but with a number
of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

geom_dotsinterval 57

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

https://pkg.mitchelloharawild.com/distributional/

58 geom_dotsinterval

Value

A ggplot2::Geom or ggplot2::Stat representing a dotplot or combined dotplot+interval geometry
which can be added to a ggplot() object.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.
Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Dots-specific (aka Slab-specific) aesthetics

• family: The font family used to draw the dots.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

https://mjskay.github.io/ggdist/articles/thickness.html

geom_dotsinterval 59

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

60 geom_dotsinterval

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

Author(s)

Matthew Kay

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See the stat_slabinterval() family for other stats built on top of geom_slabinterval(). See
vignette("dotsinterval") for a variety of examples of use.

Other dotsinterval geoms: geom_blur_dots(), geom_dots(), geom_swarm(), geom_weave()

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

geom_interval 61

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

set.seed(12345)
df = tibble(

g = rep(c("a", "b"), 200),
value = rnorm(400, c(0, 3), c(0.75, 1))

)

orientation is detected automatically based on
which axis is discrete

df %>%
ggplot(aes(x = value, y = g)) +
geom_dotsinterval()

df %>%
ggplot(aes(y = value, x = g)) +
geom_dotsinterval()

stat_dots can summarize quantiles, creating quantile dotplots

data(RankCorr_u_tau, package = "ggdist")

RankCorr_u_tau %>%
ggplot(aes(x = u_tau, y = factor(i))) +
stat_dots(quantiles = 100)

color and fill aesthetics can be mapped within the geom
dotsinterval adds an interval

RankCorr_u_tau %>%
ggplot(aes(x = u_tau, y = factor(i), fill = after_stat(x > 6))) +
stat_dotsinterval(quantiles = 100)

geom_interval Multiple-interval plot (shortcut geom)

Description

Shortcut version of geom_slabinterval() for creating multiple-interval plots.

Roughly equivalent to:

62 geom_interval

geom_slabinterval(
aes(
datatype = "interval",
side = "both"

),
interval_size_range = c(1, 6),
show_slab = FALSE,
show_point = FALSE

)

Usage

geom_interval(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
orientation = NA,
interval_size_range = c(1, 6),
interval_size_domain = c(1, 6),
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.

geom_interval 63

• A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

interval_size_range

<length-2 numeric> This geom scales the raw size aesthetic values when draw-
ing interval and point sizes, as they tend to be too thick when using the de-
fault settings of scale_size_continuous(), which give sizes with a range of
c(1, 6). The interval_size_domain value indicates the input domain of raw
size values (typically this should be equal to the value of the range argument
of the scale_size_continuous() function), and interval_size_range indi-
cates the desired output range of the size values (the min and max of the actual
sizes used to draw intervals). Most of the time it is not recommended to change
the value of this argument, as it may result in strange scaling of legends; this
argument is a holdover from earlier versions that did not have size aesthetics
targeting the point and interval separately. If you want to adjust the size of the
interval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

interval_size_domain

<length-2 numeric> Minimum and maximum of the values of the size and
linewidth aesthetics that will be translated into actual sizes for intervals drawn
according to interval_size_range (see the documentation for that argument.)

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for no
arrows.

64 geom_interval

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

This geom wraps geom_slabinterval() with defaults designed to produce multiple-interval plots.
Default aesthetic mappings are applied if the .width column is present in the input data (e.g., as
generated by the point_interval() family of functions), making this geom often more conve-
nient than vanilla ggplot2 geometries when used with functions like median_qi(), mean_qi(),
mode_hdi(), etc.

Specifically, if .width is present in the input, geom_interval() acts as if its default aesthetics are
aes(colour = forcats::fct_rev(ordered(.width)))

Value

A ggplot2::Geom representing a multiple-interval geometry which can be added to a ggplot()
object.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

geom_interval 65

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Deprecated aesthetics

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

66 geom_lineribbon

See Also

See stat_interval() for the stat version, intended for use on sample data or analytical distribu-
tions. See geom_slabinterval() for the geometry this shortcut is based on.

Other slabinterval geoms: geom_pointinterval(), geom_slab(), geom_spike()

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

data(RankCorr_u_tau, package = "ggdist")

orientation is detected automatically based on
use of xmin/xmax or ymin/ymax

RankCorr_u_tau %>%
group_by(i) %>%
median_qi(.width = c(.5, .8, .95, .99)) %>%
ggplot(aes(y = i, x = u_tau, xmin = .lower, xmax = .upper)) +
geom_interval() +
scale_color_brewer()

RankCorr_u_tau %>%
group_by(i) %>%
median_qi(.width = c(.5, .8, .95, .99)) %>%
ggplot(aes(x = i, y = u_tau, ymin = .lower, ymax = .upper)) +
geom_interval() +
scale_color_brewer()

geom_lineribbon Line + multiple-ribbon plots (ggplot geom)

Description

A combination of geom_line() and geom_ribbon() with default aesthetics designed for use with
output from point_interval().

Usage

geom_lineribbon(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,

geom_lineribbon 67

step = FALSE,
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

• The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

• A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

• For more information and other ways to specify the position, see the layer
position documentation.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

68 geom_lineribbon

step <scalar logical | string> Should the line/ribbon be drawn as a step function? One
of:

• FALSE (default): do not draw as a step function.
• "mid" (or TRUE): draw steps midway between adjacent x values.
• "hv": draw horizontal-then-vertical steps.
• "vh": draw as vertical-then-horizontal steps.

TRUE is an alias for "mid", because for a step function with ribbons "mid" is
reasonable default (for the other two step approaches the ribbons at either the
very first or very last x value will not be visible).

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

geom_lineribbon() is a combination of a geom_line() and geom_ribbon() designed for use with
output from point_interval(). This geom sets some default aesthetics equal to the .width col-
umn generated by the point_interval() family of functions, making them often more convenient
than a vanilla geom_ribbon() + geom_line().

Specifically, geom_lineribbon() acts as if its default aesthetics are aes(fill = forcats::fct_rev(ordered(.width))).

Value

A ggplot2::Geom representing a combined line + multiple-ribbon geometry which can be added to
a ggplot() object.

geom_lineribbon 69

Aesthetics

The line+ribbon stats and geoms have a wide variety of aesthetics that control the appearance of
their two sub-geometries: the line and the ribbon.

Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Ribbon-specific aesthetics

• xmin: Left edge of the ribbon sub-geometry (if orientation = "horizontal").

• xmax: Right edge of the ribbon sub-geometry (if orientation = "horizontal").

• ymin: Lower edge of the ribbon sub-geometry (if orientation = "vertical").

• ymax: Upper edge of the ribbon sub-geometry (if orientation = "vertical").

• order: The order in which ribbons are drawn. Ribbons with the smallest mean value of
order are drawn first (i.e., will be drawn below ribbons with larger mean values of order).
If order is not supplied to geom_lineribbon(), -abs(xmax - xmin) or -abs(ymax - ymax)
(depending on orientation) is used, having the effect of drawing the widest (on average)
ribbons on the bottom. stat_lineribbon() uses order = after_stat(level) by default,
causing the ribbons generated from the largest .width to be drawn on the bottom.

Color aesthetics

• colour: (or color) The color of the line sub-geometry.

• fill: The fill color of the ribbon sub-geometry.

• alpha: The opacity of the line and ribbon sub-geometries.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of line. In ggplot2 < 3.4, was called size.

• linetype: Type of line (e.g., "solid", "dashed", etc)

Other aesthetics (these work as in standard geoms)

• group

See examples of some of these aesthetics in action in vignette("lineribbon"). Learn more about
the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn more
about basic ggplot aesthetics in vignette("ggplot2-specs").

Author(s)

Matthew Kay

70 geom_pointinterval

See Also

See stat_lineribbon() for a version that does summarizing of samples into points and intervals
within ggplot. See geom_pointinterval() for a similar geom intended for point summaries and
intervals. See geom_line() and geom_ribbon() and for the geoms this is based on.

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

set.seed(12345)
tibble(

x = rep(1:10, 100),
y = rnorm(1000, x)

) %>%
group_by(x) %>%
median_qi(.width = c(.5, .8, .95)) %>%
ggplot(aes(x = x, y = y, ymin = .lower, ymax = .upper)) +
automatically uses aes(fill = forcats::fct_rev(ordered(.width)))
geom_lineribbon() +
scale_fill_brewer()

geom_pointinterval Point + multiple-interval plot (shortcut geom)

Description

Shortcut version of geom_slabinterval() for creating point + multiple-interval plots.

Roughly equivalent to:

geom_slabinterval(
aes(
datatype = "interval",
side = "both"

),
show_slab = FALSE,
show.legend = c(size = FALSE)

)

Usage

geom_pointinterval(
mapping = NULL,
data = NULL,
stat = "identity",

geom_pointinterval 71

position = "identity",
...,
orientation = NA,
interval_size_domain = c(1, 6),
interval_size_range = c(0.6, 1.4),
fatten_point = 1.8,
arrow = NULL,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

72 geom_pointinterval

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

interval_size_domain

<length-2 numeric> Minimum and maximum of the values of the size and
linewidth aesthetics that will be translated into actual sizes for intervals drawn
according to interval_size_range (see the documentation for that argument.)

interval_size_range

<length-2 numeric> This geom scales the raw size aesthetic values when draw-
ing interval and point sizes, as they tend to be too thick when using the de-
fault settings of scale_size_continuous(), which give sizes with a range of
c(1, 6). The interval_size_domain value indicates the input domain of raw
size values (typically this should be equal to the value of the range argument
of the scale_size_continuous() function), and interval_size_range indi-
cates the desired output range of the size values (the min and max of the actual
sizes used to draw intervals). Most of the time it is not recommended to change
the value of this argument, as it may result in strange scaling of legends; this
argument is a holdover from earlier versions that did not have size aesthetics
targeting the point and interval separately. If you want to adjust the size of the
interval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point <scalar numeric> A multiplicative factor used to adjust the size of the point rel-
ative to the size of the thickest interval line. If you wish to specify point sizes di-
rectly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will not
be adjusted using fatten_point.

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for no
arrows.

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend <logical> Should this layer be included in the legends? Default is c(size =
FALSE), unlike most geoms, to match its common use cases. FALSE hides all
legends, TRUE shows all legends, and NA shows only those that are mapped (the
default for most geoms). It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom_pointinterval 73

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

This geom wraps geom_slabinterval() with defaults designed to produce point + multiple-interval
plots. Default aesthetic mappings are applied if the .width column is present in the input data (e.g.,
as generated by the point_interval() family of functions), making this geom often more con-
venient than vanilla ggplot2 geometries when used with functions like median_qi(), mean_qi(),
mode_hdi(), etc.

Specifically, if .width is present in the input, geom_pointinterval() acts as if its default aesthet-
ics are aes(size = -.width)

Value

A ggplot2::Geom representing a point + multiple-interval geometry which can be added to a ggplot()
object.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

74 geom_pointinterval

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.
• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the

outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.
• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.
• point_colour: (or point_color) Override for colour/color: the outline color of the point.
• point_alpha: Override for alpha: the opacity of the point.
• point_size: Override for size: the size of the point.

Deprecated aesthetics

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

geom_slab 75

See Also

See stat_pointinterval() for the stat version, intended for use on sample data or analytical
distributions. See geom_slabinterval() for the geometry this shortcut is based on.

Other slabinterval geoms: geom_interval(), geom_slab(), geom_spike()

Examples

library(dplyr)
library(ggplot2)

data(RankCorr_u_tau, package = "ggdist")

orientation is detected automatically based on
use of xmin/xmax or ymin/ymax

RankCorr_u_tau %>%
group_by(i) %>%
median_qi(.width = c(.8, .95)) %>%
ggplot(aes(y = i, x = u_tau, xmin = .lower, xmax = .upper)) +
geom_pointinterval()

RankCorr_u_tau %>%
group_by(i) %>%
median_qi(.width = c(.8, .95)) %>%
ggplot(aes(x = i, y = u_tau, ymin = .lower, ymax = .upper)) +
geom_pointinterval()

geom_slab Slab (ridge) plot (shortcut geom)

Description

Shortcut version of geom_slabinterval() for creating slab (ridge) plots.

Roughly equivalent to:

geom_slabinterval(
show_point = FALSE,
show_interval = FALSE

)

Usage

geom_slab(
mapping = NULL,
data = NULL,
stat = "identity",

76 geom_slab

position = "identity",
...,
orientation = NA,
subscale = "thickness",
normalize = "all",
fill_type = "segments",
subguide = "slab",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

geom_slab 77

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

subscale <function | string> Sub-scale used to scale values of the thickness aesthetic
within the groups determined by normalize. One of:

• A function that takes an x argument giving a numeric vector of values to
be scaled and then returns a thickness vector representing the scaled values,
such as subscale_thickness() or subscale_identity().

• A string giving the name of such a function when prefixed with "subscale_";
e.g. "thickness" or "identity". The value "thickness" using the de-
fault subscale, which can be modified by setting subscale_thickness; see
the documentation for that function.

For a comprehensive discussion and examples of slab scaling and normalization,
see the thickness scale article.

normalize <string> Groups within which to scale values of the thickness aesthetic. One
of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this geom

so that the maximum height at each value of the opposite axis is 1.
• "groups": normalize within values of the opposite axis and within each

group so that the maximum height in each group is 1.
• "none": values are taken as is with no normalization (this should probably

only be used with functions whose values are in [0,1], such as CDFs).

For a comprehensive discussion and examples of slab scaling and normalization,
see the thickness scale article.

fill_type <string> What type of fill to use when the fill color or alpha varies within a slab.
One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported by all
graphics devices and works well for sharp cutoff values, but can give ugly
results if a large number of unique fill colors are being used (as in gradients,
like in stat_gradientinterval()).

https://mjskay.github.io/ggdist/articles/thickness.html
https://mjskay.github.io/ggdist/articles/thickness.html

78 geom_slab

• "gradient": a grid::linearGradient() is used to create a smooth gra-
dient fill. This works well for large numbers of unique fill colors, but re-
quires R >= 4.1 and is not yet supported on all graphics devices. As of
this writing, the png() graphics device with type = "cairo", the svg()
device, the pdf() device, and the ragg::agg_png() devices are known to
support this option. On R < 4.1, this option will fall back to fill_type =
"segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can be
auto-detected. On R >= 4.2, support for gradients can be auto-detected
on some graphics devices; if support is not detected, this option will fall
back to fill_type = "segments" (in case of a false negative, fill_type =
"gradient" can be set explicitly). On R < 4.2, support for gradients cannot
be auto-detected, so this will always fall back to fill_type = "segments",
in which case you can set fill_type = "gradient" explicitly if you are
using a graphics device that support gradients.

subguide <function | string> Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use the
default subguide for their geom families (no subguide), which can be mod-
ified by setting subguide_slab, subguide_dots, or subguide_spike; see
the documentation for those functions.

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Value

A ggplot2::Geom representing a slab (ridge) geometry which can be added to a ggplot() object.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
Positional aesthetics

geom_slab 79

• x: x position of the geometry

• y: y position of the geometry

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed

https://mjskay.github.io/ggdist/articles/thickness.html

80 geom_slab

according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See stat_slab() for the stat version, intended for use on sample data or analytical distributions.
See geom_slabinterval() for the geometry this shortcut is based on.

Other slabinterval geoms: geom_interval(), geom_pointinterval(), geom_spike()

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

we will manually demonstrate plotting a density with geom_slab(),
though generally speaking this is easier to do using stat_slab(), which
will determine sensible limits automatically and correctly adjust
densities when using scale transformations

geom_slabinterval 81

df = expand.grid(
mean = 1:3,
input = seq(-2, 6, length.out = 100)

) %>%
mutate(

group = letters[4 - mean],
density = dnorm(input, mean, 1)

)

orientation is detected automatically based on
use of x or y
df %>%

ggplot(aes(y = group, x = input, thickness = density)) +
geom_slab()

df %>%
ggplot(aes(x = group, y = input, thickness = density)) +
geom_slab()

RIDGE PLOTS
"ridge" plots can be created by increasing the slab height and
setting the slab color
df %>%

ggplot(aes(y = group, x = input, thickness = density)) +
geom_slab(height = 2, color = "black")

geom_slabinterval Slab + point + interval meta-geom

Description

This meta-geom supports drawing combinations of functions (as slabs, aka ridge plots or joy plots),
points, and intervals. It acts as a meta-geom for many other ggdist geoms that are wrappers around
this geom, including eye plots, half-eye plots, CCDF barplots, and point+multiple interval plots,
and supports both horizontal and vertical orientations, dodging (via the position argument), and
relative justification of slabs with their corresponding intervals.

Usage

geom_slabinterval(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
orientation = NA,
subscale = "thickness",
normalize = "all",

82 geom_slabinterval

fill_type = "segments",
interval_size_domain = c(1, 6),
interval_size_range = c(0.6, 1.4),
fatten_point = 1.8,
arrow = NULL,
show_slab = TRUE,
show_point = TRUE,
show_interval = TRUE,
subguide = "slab",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

geom_slabinterval 83

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

subscale <function | string> Sub-scale used to scale values of the thickness aesthetic
within the groups determined by normalize. One of:

• A function that takes an x argument giving a numeric vector of values to
be scaled and then returns a thickness vector representing the scaled values,
such as subscale_thickness() or subscale_identity().

• A string giving the name of such a function when prefixed with "subscale_";
e.g. "thickness" or "identity". The value "thickness" using the de-
fault subscale, which can be modified by setting subscale_thickness; see
the documentation for that function.

For a comprehensive discussion and examples of slab scaling and normalization,
see the thickness scale article.

normalize <string> Groups within which to scale values of the thickness aesthetic. One
of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this geom

so that the maximum height at each value of the opposite axis is 1.
• "groups": normalize within values of the opposite axis and within each

group so that the maximum height in each group is 1.
• "none": values are taken as is with no normalization (this should probably

only be used with functions whose values are in [0,1], such as CDFs).

For a comprehensive discussion and examples of slab scaling and normalization,
see the thickness scale article.

fill_type <string> What type of fill to use when the fill color or alpha varies within a slab.
One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported by all
graphics devices and works well for sharp cutoff values, but can give ugly
results if a large number of unique fill colors are being used (as in gradients,
like in stat_gradientinterval()).

https://mjskay.github.io/ggdist/articles/thickness.html
https://mjskay.github.io/ggdist/articles/thickness.html

84 geom_slabinterval

• "gradient": a grid::linearGradient() is used to create a smooth gra-
dient fill. This works well for large numbers of unique fill colors, but re-
quires R >= 4.1 and is not yet supported on all graphics devices. As of
this writing, the png() graphics device with type = "cairo", the svg()
device, the pdf() device, and the ragg::agg_png() devices are known to
support this option. On R < 4.1, this option will fall back to fill_type =
"segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can be
auto-detected. On R >= 4.2, support for gradients can be auto-detected
on some graphics devices; if support is not detected, this option will fall
back to fill_type = "segments" (in case of a false negative, fill_type =
"gradient" can be set explicitly). On R < 4.2, support for gradients cannot
be auto-detected, so this will always fall back to fill_type = "segments",
in which case you can set fill_type = "gradient" explicitly if you are
using a graphics device that support gradients.

interval_size_domain

<length-2 numeric> Minimum and maximum of the values of the size and
linewidth aesthetics that will be translated into actual sizes for intervals drawn
according to interval_size_range (see the documentation for that argument.)

interval_size_range

<length-2 numeric> This geom scales the raw size aesthetic values when draw-
ing interval and point sizes, as they tend to be too thick when using the de-
fault settings of scale_size_continuous(), which give sizes with a range of
c(1, 6). The interval_size_domain value indicates the input domain of raw
size values (typically this should be equal to the value of the range argument
of the scale_size_continuous() function), and interval_size_range indi-
cates the desired output range of the size values (the min and max of the actual
sizes used to draw intervals). Most of the time it is not recommended to change
the value of this argument, as it may result in strange scaling of legends; this
argument is a holdover from earlier versions that did not have size aesthetics
targeting the point and interval separately. If you want to adjust the size of the
interval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point <scalar numeric> A multiplicative factor used to adjust the size of the point rel-
ative to the size of the thickest interval line. If you wish to specify point sizes di-
rectly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will not
be adjusted using fatten_point.

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for no
arrows.

show_slab <scalar logical> Should the slab portion of the geom be drawn?

show_point <scalar logical> Should the point portion of the geom be drawn?

show_interval <scalar logical> Should the interval portion of the geom be drawn?

subguide <function | string> Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then

geom_slabinterval 85

returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use the
default subguide for their geom families (no subguide), which can be mod-
ified by setting subguide_slab, subguide_dots, or subguide_spike; see
the documentation for those functions.

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

geom_slabinterval() is a flexible meta-geom that you can use directly or through a variety of
"shortcut" geoms that represent useful combinations of the various parameters of this geom. In
many cases you will want to use the shortcut geoms instead as they create more useful mnemonic
primitives, such as eye plots, half-eye plots, point+interval plots, or CCDF barplots.

The slab portion of the geom is much like a ridge or "joy" plot: it represents the value of a function
scaled to fit between values on the x or y axis (depending on the value of orientation). Values of
the functions are specified using the thickness aesthetic and are scaled to fit into scale times the
distance between points on the relevant axis. E.g., if orientation is "horizontal", scale is 0.9,
and y is a discrete variable, then the thickness aesthetic specifies the value of some function of x
that is drawn for every y value and scaled to fit into 0.9 times the distance between points on the y
axis.

For the interval portion of the geom, x and y aesthetics specify the location of the point, and
ymin/ymax or xmin/xmax (depending on the value of orientation) specify the endpoints of the in-
terval. A scaling factor for interval line width and point size is applied through the interval_size_domain,
interval_size_range, and fatten_point parameters. These scaling factors are designed to give
multiple uncertainty intervals reasonable scaling at the default settings for scale_size_continuous().

As a combination geom, this geom expects a datatype aesthetic specifying which part of the geom
a given row in the input data corresponds to: "slab" or "interval". However, specifying this
aesthetic manually is typically only necessary if you use this geom directly; the numerous wrapper
geoms will usually set this aesthetic for you as needed, and their use is recommended unless you
have a very custom use case.

Wrapper geoms include:

• geom_pointinterval()

86 geom_slabinterval

• geom_interval()

• geom_slab()

In addition, the stat_slabinterval() family of stats uses geoms from the geom_slabinterval()
family, and is often easier to use than using these geoms directly. Typically, the geom_* versions
are meant for use with already-summarized data (such as intervals) and the stat_* versions are
summarize the data themselves (usually draws from a distribution) to produce the geom.

Value

A ggplot2::Geom representing a slab or combined slab+interval geometry which can be added to a
ggplot() object.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

https://mjskay.github.io/ggdist/articles/thickness.html

geom_slabinterval 87

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

88 geom_slabinterval

• slab_linewidth: Override for linwidth: the width of the outline of the slab.
• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.
• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.
• point_colour: (or point_color) Override for colour/color: the outline color of the point.
• point_alpha: Override for alpha: the opacity of the point.
• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.
• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

Author(s)

Matthew Kay

See Also

See geom_lineribbon() for a combination geom designed for fit curves plus probability bands.
See geom_dotsinterval() for a combination geom designed for plotting dotplots with intervals.
See stat_slabinterval() for families of stats built on top of this geom for common use cases
(like stat_halfeye()). See vignette("slabinterval") for a variety of examples of use.

Examples

geom_slabinterval() is typically not that useful on its own.
See vignette("slabinterval") for a variety of examples of the use of its
shortcut geoms and stats, which are more useful than using
geom_slabinterval() directly.

geom_spike 89

geom_spike Spike plot (ggplot2 geom)

Description

Geometry for drawing "spikes" (optionally with points on them) on top of geom_slabinterval()
geometries: this geometry understands the scaling and positioning of the thickness aesthetic from
geom_slabinterval(), which allows you to position spikes and points along a slab.

Usage

geom_spike(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
subguide = "spike",
orientation = NA,
subscale = "thickness",
normalize = "all",
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

90 geom_spike

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

subguide <function | string> Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object and

an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use the
default subguide for their geom families (no subguide), which can be mod-
ified by setting subguide_slab, subguide_dots, or subguide_spike; see
the documentation for those functions.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:
• NA (default): automatically detect the orientation based on how the aesthet-

ics are assigned. Automatic detection works most of the time.
• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify

different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

subscale <function | string> Sub-scale used to scale values of the thickness aesthetic
within the groups determined by normalize. One of:

• A function that takes an x argument giving a numeric vector of values to
be scaled and then returns a thickness vector representing the scaled values,
such as subscale_thickness() or subscale_identity().

• A string giving the name of such a function when prefixed with "subscale_";
e.g. "thickness" or "identity". The value "thickness" using the de-
fault subscale, which can be modified by setting subscale_thickness; see
the documentation for that function.

geom_spike 91

For a comprehensive discussion and examples of slab scaling and normalization,
see the thickness scale article.

normalize <string> Groups within which to scale values of the thickness aesthetic. One
of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this geom

so that the maximum height at each value of the opposite axis is 1.
• "groups": normalize within values of the opposite axis and within each

group so that the maximum height in each group is 1.
• "none": values are taken as is with no normalization (this should probably

only be used with functions whose values are in [0,1], such as CDFs).

For a comprehensive discussion and examples of slab scaling and normalization,
see the thickness scale article.

arrow <arrow | NULL> Type of arrow heads to use on the spike, or NULL for no arrows.

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

This geometry consists of a "spike" (vertical/horizontal line segment) and a "point" (at the end of
the line segment). It uses the thickness aesthetic to determine where the endpoint of the line is,
which allows it to be used with geom_slabinterval() geometries for labeling specific values of
the thickness function.

Value

A ggplot2::Geom representing a spike geometry which can be added to a ggplot() object. rd_slabinterval_aesthetics(geom_name),

Aesthetics

The spike geom has a wide variety of aesthetics that control the appearance of its two sub-geometries:
the spike and the point.
Positional aesthetics

• x: x position of the geometry

https://mjskay.github.io/ggdist/articles/thickness.html
https://mjskay.github.io/ggdist/articles/thickness.html

92 geom_spike

• y: y position of the geometry

Spike-specific (aka Slab-specific) aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

Color aesthetics

• colour: (or color) The color of the spike and point sub-geometries.

• fill: The fill color of the point sub-geometry.

• alpha: The opacity of the spike and point sub-geometries.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the spike sub-geometry.

• size: Size of the point sub-geometry.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the spike.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

https://mjskay.github.io/ggdist/articles/thickness.html

geom_swarm 93

See Also

See stat_spike() for the stat version, intended for use on sample data or analytical distributions.

Other slabinterval geoms: geom_interval(), geom_pointinterval(), geom_slab()

Examples

library(ggplot2)
library(distributional)
library(dplyr)

geom_spike is easiest to use with distributional or
posterior::rvar objects
df = tibble(

d = dist_normal(1:2, 1:2), g = c("a", "b")
)

annotate the density at the mean of a distribution
df %>% mutate(

mean = mean(d),
density(d, list(density_at_mean = mean))

) %>%
ggplot(aes(y = g)) +
stat_slab(aes(xdist = d)) +
geom_spike(aes(x = mean, thickness = density_at_mean)) +
need shared thickness scale so that stat_slab and geom_spike line up
scale_thickness_shared()

annotate the endpoints of intervals of a distribution
here we'll use an arrow instead of a point by setting size = 0
arrow_spec = arrow(angle = 45, type = "closed", length = unit(4, "pt"))
df %>% mutate(

median_qi(d, .width = 0.9),
density(d, list(density_lower = .lower, density_upper = .upper))

) %>%
ggplot(aes(y = g)) +
stat_halfeye(aes(xdist = d), .width = 0.9, color = "gray35") +
geom_spike(
aes(x = .lower, thickness = density_lower),
size = 0, arrow = arrow_spec, color = "blue", linewidth = 0.75

) +
geom_spike(

aes(x = .upper, thickness = density_upper),
size = 0, arrow = arrow_spec, color = "red", linewidth = 0.75

) +
scale_thickness_shared()

geom_swarm Beeswarm plot (shortcut geom)

94 geom_swarm

Description

Shortcut version of geom_dotsinterval() for creating beeswarm plots. Geoms based on geom_dotsinterval()
create dotplots that automatically ensure the plot fits within the available space.

Roughly equivalent to:

geom_dots(
aes(side = "both"),
overflow = "compress",
binwidth = unit(1.5, "mm"),
layout = "swarm"

)

Usage

geom_swarm(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
overflow = "compress",
binwidth = unit(1.5, "mm"),
layout = "swarm",
dotsize = 1.07,
stackratio = 1,
overlaps = "nudge",
smooth = "none",
verbose = FALSE,
orientation = NA,
subguide = "slab",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

geom_swarm 95

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

overflow <string> How to handle overflow of dots beyond the extent of the geom when a
minimum binwidth (or an exact binwidth) is supplied. One of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solutions,

such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum binwidth
times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay with
dots overlapping, consider setting overflow = "compress" and supplying an
exact or minimum dot size using binwidth.

binwidth <numeric | unit> The bin width to use for laying out the dots. One of:

• NA (the default): Dynamically select the bin width based on the size of the
plot when drawn. This will pick a binwidth such that the tallest stack of
dots is at most scale in height (ideally exactly scale in height, though this
is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and maxi-

mum desired bin width. The bin width will be dynamically selected within
these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make

96 geom_swarm

dots that are exactly 10% of the viewport size along whichever dimension the
dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at most
10% of the viewport size (while still ensuring the tallest stack is less than or
equal to scale).

layout <string> The layout method used for the dots. One of:

• "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

dotsize <scalar numeric> The width of the dots relative to the binwidth. The default,
1.07, makes dots be just a bit wider than the bin width, which is a manually-
tuned parameter that tends to work well with the default circular shape, pre-
venting gaps between bins from appearing to be too large visually (as might
arise from dots being precisely the binwidth). If it is desired to have dots be
precisely the binwidth, set dotsize = 1.

stackratio <scalar numeric> The distance between the center of the dots in the same stack
relative to the dot height. The default, 1, makes dots in the same stack just touch
each other.

overlaps <string> How to handle overlapping dots or bins in the "bin", "weave", and
"hex" layouts (dots never overlap in the "swarm" or "bar" layouts). For the
purposes of this argument, dots are only considered to be overlapping if they
would be overlapping when dotsize = 1 and stackratio = 1; i.e. if you set
those arguments to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually only
slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance of
dots to their desired positions, subject to the constraint that adjacent dots
do not overlap.

geom_swarm 97

smooth <function | string> Smoother to apply to dot positions. One of:

• A function that takes a numeric vector of dot positions and returns a smoothed
version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function name
starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support of the
distribution; e.g. using smooth_bounded(bounds = ...).

verbose <scalar logical> If TRUE, print out the bin width of the dotplot. Can be useful
if you want to start from an automatically-selected bin width and then adjust it
manually. Bin width is printed both as data units and as normalized parent coor-
dinates or "npc"s (see unit()). Note that if you just want to scale the selected
bin width to fit within a desired area, it is probably easier to use scale than to
copy and scale binwidth manually, and if you just want to provide constraints
on the bin width, you can pass a length-2 vector to binwidth.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

subguide <function | string> Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use the
default subguide for their geom families (no subguide), which can be mod-
ified by setting subguide_slab, subguide_dots, or subguide_spike; see
the documentation for those functions.

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

98 geom_swarm

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

The dots family of stats and geoms are similar to ggplot2::geom_dotplot() but with a number
of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

geom_swarm 99

Value

A ggplot2::Geom representing a beeswarm geometry which can be added to a ggplot() object.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.
Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Dots-specific (aka Slab-specific) aesthetics

• family: The font family used to draw the dots.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

https://mjskay.github.io/ggdist/articles/thickness.html

100 geom_swarm

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

geom_swarm 101

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See geom_dotsinterval() for the geometry this shortcut is based on.

See vignette("dotsinterval") for a variety of examples of use.

Other dotsinterval geoms: geom_blur_dots(), geom_dots(), geom_dotsinterval(), geom_weave()

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

102 geom_weave

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

set.seed(12345)
df = tibble(

g = rep(c("a", "b"), 200),
value = rnorm(400, c(0, 3), c(0.75, 1))

)

orientation is detected automatically based on
which axis is discrete

df %>%
ggplot(aes(x = value, y = g)) +
geom_swarm()

df %>%
ggplot(aes(y = value, x = g)) +
geom_swarm()

geom_weave Dot-weave plot (shortcut geom)

Description

Shortcut version of geom_dotsinterval() for creating dot-weave plots. Geoms based on geom_dotsinterval()
create dotplots that automatically ensure the plot fits within the available space.

Roughly equivalent to:

geom_dots(
aes(side = "both"),
layout = "weave",
overflow = "compress",
binwidth = unit(1.5, "mm")

)

Usage

geom_weave(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
layout = "weave",

geom_weave 103

overflow = "compress",
binwidth = unit(1.5, "mm"),
dotsize = 1.07,
stackratio = 1,
overlaps = "nudge",
smooth = "none",
verbose = FALSE,
orientation = NA,
subguide = "slab",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer. When using a
geom_*() function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

• A Stat ggproto subclass, for example StatCount.
• A string naming the stat. To give the stat as a string, strip the function name

of the stat_ prefix. For example, to use stat_count(), give the stat as
"count".

• For more information and other ways to specify the stat, see the layer stat
documentation.

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

104 geom_weave

layout <string> The layout method used for the dots. One of:

• "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

overflow <string> How to handle overflow of dots beyond the extent of the geom when a
minimum binwidth (or an exact binwidth) is supplied. One of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solutions,

such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum binwidth
times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay with
dots overlapping, consider setting overflow = "compress" and supplying an
exact or minimum dot size using binwidth.

binwidth <numeric | unit> The bin width to use for laying out the dots. One of:

• NA (the default): Dynamically select the bin width based on the size of the
plot when drawn. This will pick a binwidth such that the tallest stack of
dots is at most scale in height (ideally exactly scale in height, though this
is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and maxi-

mum desired bin width. The bin width will be dynamically selected within
these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it

geom_weave 105

is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension the
dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at most
10% of the viewport size (while still ensuring the tallest stack is less than or
equal to scale).

dotsize <scalar numeric> The width of the dots relative to the binwidth. The default,
1.07, makes dots be just a bit wider than the bin width, which is a manually-
tuned parameter that tends to work well with the default circular shape, pre-
venting gaps between bins from appearing to be too large visually (as might
arise from dots being precisely the binwidth). If it is desired to have dots be
precisely the binwidth, set dotsize = 1.

stackratio <scalar numeric> The distance between the center of the dots in the same stack
relative to the dot height. The default, 1, makes dots in the same stack just touch
each other.

overlaps <string> How to handle overlapping dots or bins in the "bin", "weave", and
"hex" layouts (dots never overlap in the "swarm" or "bar" layouts). For the
purposes of this argument, dots are only considered to be overlapping if they
would be overlapping when dotsize = 1 and stackratio = 1; i.e. if you set
those arguments to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually only
slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance of
dots to their desired positions, subject to the constraint that adjacent dots
do not overlap.

smooth <function | string> Smoother to apply to dot positions. One of:

• A function that takes a numeric vector of dot positions and returns a smoothed
version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function name
starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support of the
distribution; e.g. using smooth_bounded(bounds = ...).

verbose <scalar logical> If TRUE, print out the bin width of the dotplot. Can be useful
if you want to start from an automatically-selected bin width and then adjust it
manually. Bin width is printed both as data units and as normalized parent coor-
dinates or "npc"s (see unit()). Note that if you just want to scale the selected
bin width to fit within a desired area, it is probably easier to use scale than to
copy and scale binwidth manually, and if you just want to provide constraints
on the bin width, you can pass a length-2 vector to binwidth.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

106 geom_weave

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

subguide <function | string> Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use the
default subguide for their geom families (no subguide), which can be mod-
ified by setting subguide_slab, subguide_dots, or subguide_spike; see
the documentation for those functions.

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

The dots family of stats and geoms are similar to ggplot2::geom_dotplot() but with a number
of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

geom_weave 107

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

Value

A ggplot2::Geom representing a dot-weave geometry which can be added to a ggplot() object.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.
Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Dots-specific (aka Slab-specific) aesthetics

• family: The font family used to draw the dots.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

108 geom_weave

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

https://mjskay.github.io/ggdist/articles/thickness.html

geom_weave 109

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

110 geom_weave

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See geom_dotsinterval() for the geometry this shortcut is based on.

See vignette("dotsinterval") for a variety of examples of use.

Other dotsinterval geoms: geom_blur_dots(), geom_dots(), geom_dotsinterval(), geom_swarm()

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

set.seed(12345)
df = tibble(

g = rep(c("a", "b"), 200),
value = rnorm(400, c(0, 3), c(0.75, 1))

)

orientation is detected automatically based on
which axis is discrete

df %>%
ggplot(aes(x = value, y = g)) +
geom_weave()

df %>%
ggplot(aes(y = value, x = g)) +
geom_weave()

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

ggdist-deprecated 111

ggdist-deprecated Deprecated functions and arguments in ggdist

Description

Deprecated functions and arguments and their alternatives are listed below.

Deprecated stats and geoms

The stat_sample_... and stat_dist_... families of stats were merged in ggdist 3.1. This
means:

• stat_dist_... is deprecated. For any code using stat_dist_XXX(), you should now be
able to use stat_XXX() instead without additional modifications in almost all cases.

• stat_sample_slabinterval() is deprecated. You should be able to use stat_slabinterval()
instead without additional modifications in almost all cases.

The old stat_dist_... names are currently kept as aliases, but may be removed in the future.

Deprecated arguments

Deprecated parameters for stat_slabinterval() and family:

• The .prob argument, which is a long-deprecated alias for .width, was removed in ggdist 3.1.

• The limits_function argument: this was a parameter for determining the function to com-
pute limits of the slab in stat_slabinterval() and its derived stats. This function is really
an internal function only needed by subclasses of the base class, yet added a lot of noise to the
documentation, so it was replaced with AbstractStatSlabInterval$compute_limits().

• The limits_args argument: extra stat parameters are now passed through to the ... argu-
ments to AbstractStatSlabInterval$compute_limits(); use these instead.

• The slab_function argument: this was a parameter for determining the function to compute
slabs in stat_slabinterval() and its derived stats. This function is really an internal func-
tion only needed by subclasses of the base class, yet added a lot of noise to the documentation,
so it was replaced with AbstractStatSlabInterval$compute_slab().

• The slab_args argument: extra stat parameters are now passed through to the ... arguments
to AbstractStatSlabInterval$compute_slab(); use these instead.

• The slab_type argument: instead of setting the slab type, either adjust the density argument
(e.g. use density = "histogram" to replace slab_type = "histogram") or use the pdf or
cdf computed variables mapped onto an appropriate aesthetic (e.g. use aes(thickness =
after_stat(cdf)) to create a CDF).

• The interval_function and fun.data arguments: these were parameters for determining
the function to compute intervals in stat_slabinterval() and its derived stats. This func-
tion is really an internal function only needed by subclasses of the base class, yet added a lot of
noise to the documentation, so it was replaced with AbstractStatSlabInterval$compute_interval().

• The interval_args and fun.args arguments: to pass extra arguments to a point_interval
replace the value of the point_interval argument with a simple wrapper; e.g. stat_halfeye(point_interval = \(...) point_interval(..., extra_arg = XXX))

112 guide_rampbar

Deprecated parameters for geom_slabinterval() and family:

• The size_domain and size_range arguments, which are long-deprecated aliases for interval_size_domain
and interval_size_range, were removed in ggdist 3.1.

Author(s)

Matthew Kay

guide_rampbar Continuous guide for colour ramp scales (ggplot2 guide)

Description

A colour ramp bar guide that shows continuous colour ramp scales mapped onto values as a smooth
gradient. Designed for use with scale_fill_ramp_continuous() and scale_colour_ramp_continuous().
Based on guide_colourbar().

Usage

guide_rampbar(
...,
to = "gray65",
available_aes = c("fill_ramp", "colour_ramp")

)

Arguments

... Arguments passed on to ggplot2::guide_colourbar

title A character string or expression indicating a title of guide. If NULL, the
title is not shown. By default (waiver()), the name of the scale object or
the name specified in labs() is used for the title.

theme A theme object to style the guide individually or differently from the
plot’s theme settings. The theme argument in the guide overrides, and is
combined with, the plot’s theme.

nbin A numeric specifying the number of bins for drawing the colourbar. A
smoother colourbar results from a larger value.

display A string indicating a method to display the colourbar. Can be one of
the following:

• "raster" to display as a bitmap image.
• "rectangles" to display as a series of rectangles.
• "gradient" to display as a linear gradient.

Note that not all devices are able to render rasters and gradients.
raster [Deprecated] A logical. If TRUE then the colourbar is rendered as a

raster object. If FALSE then the colourbar is rendered as a set of rectangles.
Note that not all graphics devices are capable of rendering raster image.

guide_rampbar 113

alpha A numeric between 0 and 1 setting the colour transparency of the bar.
Use NA to preserve the alpha encoded in the colour itself (default).

draw.ulim A logical specifying if the upper limit tick marks should be visible.
draw.llim A logical specifying if the lower limit tick marks should be visible.
position A character string indicating where the legend should be placed rel-

ative to the plot panels.
direction A character string indicating the direction of the guide. One of

"horizontal" or "vertical."
reverse logical. If TRUE the colourbar is reversed. By default, the highest value

is on the top and the lowest value is on the bottom
order positive integer less than 99 that specifies the order of this guide among

multiple guides. This controls the order in which multiple guides are dis-
played, not the contents of the guide itself. If 0 (default), the order is deter-
mined by a secret algorithm.

to <string> The color to ramp to in the guide. Corresponds to 1 on the scale.

available_aes <character> Vector listing the aesthetics for which a guide_rampbar() can be
drawn.

Details

This guide creates smooth gradient color bars for use with scale_fill_ramp_continuous() and
scale_colour_ramp_continuous(). The color to ramp from is determined by the from argu-
ment of the scale_* function, and the color to ramp to is determined by the to argument to
guide_rampbar().

Guides can be specified in each scale_* function or in guides(). guide = "rampbar" in scale_*
is syntactic sugar for guide = guide_rampbar(); e.g. scale_colour_ramp_continuous(guide =
"rampbar"). For how to specify the guide for each scale in more detail, see guides().

Value

A guide object.

Author(s)

Matthew Kay

See Also

Other colour ramp functions: partial_colour_ramp(), ramp_colours(), scale_colour_ramp

Examples

library(dplyr)
library(ggplot2)
library(distributional)

The default guide for ramp scales is guide_legend(), which creates a
discrete style scale:

114 interval_widths

tibble(d = dist_uniform(0, 1)) %>%
ggplot(aes(y = 0, xdist = d)) +
stat_slab(aes(fill_ramp = after_stat(x)), fill = "blue") +
scale_fill_ramp_continuous(from = "red")

We can use guide_rampbar() to instead create a continuous guide, but
it does not know what color to ramp to (defaults to "gray65"):
tibble(d = dist_uniform(0, 1)) %>%

ggplot(aes(y = 0, xdist = d)) +
stat_slab(aes(fill_ramp = after_stat(x)), fill = "blue") +
scale_fill_ramp_continuous(from = "red", guide = guide_rampbar())

We can tell the guide what color to ramp to using the `to` argument:
tibble(d = dist_uniform(0, 1)) %>%

ggplot(aes(y = 0, xdist = d)) +
stat_slab(aes(fill_ramp = after_stat(x)), fill = "blue") +
scale_fill_ramp_continuous(from = "red", guide = guide_rampbar(to = "blue"))

interval_widths Nicely-spaced sets of interval widths

Description

Create nicely-spaced sets of nested interval widths for use with (e.g.) the .width parameter of
point_interval(), stat_slabinterval(), or stat_lineribbon():

• interval_widths(n) creates a sequence of n interval widths p1 . . . pn, where 0 < pi ≤
max < 1, corresponding to the masses of nested intervals that are evenly-spaced on a ref-
erence distribution (by default a Normal distribution). This generalizes the idea behind the
default ~66% and 95% intervals in stat_slabinterval() and 50%, 80%, and 95% intervals
in stat_lineribbon(): when applied to a Normal distribution, those intervals are roughly
evenly-spaced and allow one to see deviations from the reference distribution (such as excess
kurtosis) when the resulting intervals are not evenly spaced.

• pretty_widths(n) is a variant of interval_widths() with defaults for max and precision
that make the resulting intervals more human-readable, for labeling purposes.

Intervals should be evenly-spaced on any symmetric reference distribution when applied to data
from distributions with the same shape. If dist is not symmetric, intervals may only be approxi-
mately evenly-spaced above the median.

Usage

interval_widths(n, dist = dist_normal(), max = 1 - 0.1/n, precision = NULL)

pretty_widths(
n,
dist = dist_normal(),
max = if (n <= 4) 0.95 else 1 - 0.1/n,

interval_widths 115

precision = if (n <= 4) 0.05 else 0.01
)

Arguments

n <numeric> in [0,∞): Number of intervals to generate.

dist <distribution>: Reference distribution.

max <numeric> in (0, 1): Maximum interval width.

precision <numeric | NULL>: If not NULL, a value in (0, 1) giving the precision to round
resulting widths to. In order to guarantee n unique intervals are returned, widths
will only be rounded if the result does not create duplicate values.

Details

Given the cumulative distribution function Fdist(q) and the quantile function F−1
dist (p) of dist, the

following is a sequence of n+ 1 evenly-spaced quantiles of dist that could represent upper limits
of nested intervals, where qi = q0 + i qn−q0

n :

q0, . . . , qn = F−1
dist (0.5), . . . , F

−1
dist (0.5 +

max
2)

interval_widths(n) returns the n interval widths corresponding to the upper interval limits q1, . . . , qn:

2 · [Fdist(q1)− 0.5] , . . . , 2 · [Fdist(qn)− 0.5]

Value

A length-n numeric vector of interval widths (masses) between 0 and 1 (exclusive) in increasing
order.

See Also

The .width argument to point_interval(), stat_slabinterval(), stat_lineribbon(), etc.

Examples

library(ggplot2)
library(distributional)

interval_widths(1) # 0.9
this is roughly +/- 1 SD and +/- 2 SD
interval_widths(2) # 0.672..., 0.95
interval_widths(3) # 0.521..., 0.844..., 0.966...

"pretty" widths may be useful for legends with a small number of widths
pretty_widths(1) # 0.95
pretty_widths(2) # 0.65, 0.95
pretty_widths(3) # 0.50, 0.80, 0.95

larger numbers of intervals can be useful for plots

116 lkjcorr_marginal

ggplot(data.frame(x = 1:20/20)) +
aes(x, ydist = dist_normal((x * 5)^2, 1 + x * 5)) +
stat_lineribbon(.width = pretty_widths(10))

large numbers of intervals can be used to create gradients -- particularly
useful if you shade ribbons according to density (not interval width)
(this is currently experimental)
withr::with_options(list(ggdist.experimental.slab_data_in_intervals = TRUE), print(

ggplot(data.frame(x = 1:20/20)) +
aes(x, ydist = dist_normal((x * 5)^2, 1 + x * 5)) +
stat_lineribbon(

aes(fill_ramp = after_stat(ave(pdf_min, level))),
.width = interval_widths(40),
fill = "gray50"

) +
theme_ggdist()

))

lkjcorr_marginal Marginal distribution of a single correlation from an LKJ distribution

Description

Marginal distribution for the correlation in a single cell from a correlation matrix distributed ac-
cording to an LKJ distribution.

Usage

dlkjcorr_marginal(x, K, eta, log = FALSE)

plkjcorr_marginal(q, K, eta, lower.tail = TRUE, log.p = FALSE)

qlkjcorr_marginal(p, K, eta, lower.tail = TRUE, log.p = FALSE)

rlkjcorr_marginal(n, K, eta)

Arguments

x, q vector of quantiles.

K <numeric> Dimension of the correlation matrix. Must be greater than or equal
to 2.

eta <numeric> Parameter controlling the shape of the distribution

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x] otherwise, P [X > x].

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

lkjcorr_marginal 117

Details

The LKJ distribution is a distribution over correlation matrices with a single parameter, η. For a
given η and a K ×K correlation matrix R:

R ∼ LKJ(η)

Each off-diagonal entry of R, rij : i ̸= j, has the following marginal distribution (Lewandowski,
Kurowicka, and Joe 2009):

rij + 1

2
∼ Beta

(
η − 1 +

K

2
, η − 1 +

K

2

)
In other words, rij is marginally distributed according to the above Beta distribution scaled into
(−1, 1).

Value

• dlkjcorr_marginal gives the density

• plkjcorr_marginal gives the cumulative distribution function (CDF)

• qlkjcorr_marginal gives the quantile function (inverse CDF)

• rlkjcorr_marginal generates random draws.

The length of the result is determined by n for rlkjcorr_marginal, and is the maximum of the
lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements
of the logical arguments are used.

References

Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation matrices
based on vines and extended onion method. Journal of Multivariate Analysis, 100(9), 1989–2001.
doi:10.1016/j.jmva.2009.04.008.

See Also

parse_dist() and marginalize_lkjcorr() for parsing specs that use the LKJ correlation distri-
bution and the stat_slabinterval() family of stats for visualizing them.

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

expand.grid(
eta = 1:6,
K = 2:6

) %>%

https://doi.org/10.1016/j.jmva.2009.04.008

118 marginalize_lkjcorr

ggplot(aes(y = ordered(eta), dist = "lkjcorr_marginal", arg1 = K, arg2 = eta)) +
stat_slab() +
facet_grid(~ paste0(K, "x", K)) +
scale_y_discrete(limits = rev) +
labs(

title = paste0(
"Marginal correlation for LKJ(eta) prior on different matrix sizes:\n",
"dlkjcorr_marginal(K, eta)"

),
subtitle = "Correlation matrix size (KxK)",
y = "eta",
x = "Marginal correlation"

) +
theme(axis.title = element_text(hjust = 0))

marginalize_lkjcorr Turn spec for LKJ distribution into spec for marginal LKJ distribution

Description

Turns specs for an LKJ correlation matrix distribution as returned by parse_dist() into specs for
the marginal distribution of a single cell in an LKJ-distributed correlation matrix (i.e., lkjcorr_marginal()).
Useful for visualizing prior correlations from LKJ distributions.

Usage

marginalize_lkjcorr(
data,
K,
predicate = NULL,
dist = ".dist",
args = ".args",
dist_obj = ".dist_obj"

)

Arguments

data <data.frame> A data frame containing a column with distribution names (".dist"
by default) and a list column of distribution arguments (".args" by default),
such as output by parse_dist().

K <numeric> Dimension of the correlation matrix. Must be greater than or equal
to 2.

predicate <bare language | NULL> Expression for selecting the rows of data to modify.
This is useful if data contains more than one row with an LKJ prior in it and
you only want to modify some of the distributions; if this is the case, give row a
predicate expression that evaluates to TRUE on the rows you want to modify.
If NULL (the default), all lkjcorr distributions in data are modified.

marginalize_lkjcorr 119

dist <string> The name of the column containing distribution names. See parse_dist().

args <string> The name of the column containing distribution arguments. See parse_dist().

dist_obj <string> The name of the output column to contain a distributional object rep-
resenting the distribution. See parse_dist().

Details

The LKJ(eta) prior on a correlation matrix induces a marginal prior on each correlation in the matrix
that depends on both the value of eta and K, the dimension of the K ×K correlation matrix. Thus
to visualize the marginal prior on the correlations, it is necessary to specify the value of K, which
depends on what your model specification looks like.

Given a data frame representing parsed distribution specifications (such as returned by parse_dist()),
this function updates any rows with .dist == "lkjcorr" so that the first argument to the distribu-
tion (stored in .args) is equal to the specified dimension of the correlation matrix (K), changes
the distribution name in .dist to "lkjcorr_marginal", and assigns a distributional object repre-
senting this distribution to .dist_obj. This allows the distribution to be easily visualized using the
stat_slabinterval() family of ggplot2 stats.

Value

A data frame of the same size and column names as the input, with the dist, and args, and
dist_obj columns modified on rows where dist == "lkjcorr" such that they represent a marginal
LKJ correlation distribution with name lkjcorr_marginal and args having K equal to the input
value of K.

See Also

parse_dist(), lkjcorr_marginal()

Examples

library(dplyr)
library(ggplot2)

Say we have an LKJ(3) prior on a 2x2 correlation matrix. We can visualize
its marginal distribution as follows...
data.frame(prior = "lkjcorr(3)") %>%

parse_dist(prior) %>%
marginalize_lkjcorr(K = 2) %>%
ggplot(aes(y = prior, xdist = .dist_obj)) +
stat_halfeye() +
xlim(-1, 1) +
xlab("Marginal correlation for LKJ(3) prior on 2x2 correlation matrix")

Say our prior list has multiple LKJ priors on correlation matrices
of different sizes, we can supply a predicate expression to select
only those rows we want to modify
data.frame(coef = c("a", "b"), prior = "lkjcorr(3)") %>%

parse_dist(prior) %>%
marginalize_lkjcorr(K = 2, coef == "a") %>%

120 parse_dist

marginalize_lkjcorr(K = 4, coef == "b")

parse_dist Parse distribution specifications into columns of a data frame

Description

Parses simple string distribution specifications, like "normal(0, 1)", into two columns of a data
frame, suitable for use with the dist and args aesthetics of stat_slabinterval() and its shortcut
stats (like stat_halfeye()). This format is output by brms::get_prior, making it particularly
useful for visualizing priors from brms models.

Usage

parse_dist(
object,
...,
dist = ".dist",
args = ".args",
dist_obj = ".dist_obj",
package = NULL,
to_r_names = TRUE

)

Default S3 method:
parse_dist(object, ...)

S3 method for class 'data.frame'
parse_dist(
object,
dist_col,
...,
dist = ".dist",
args = ".args",
dist_obj = ".dist_obj",
package = NULL,
lb = "lb",
ub = "ub",
to_r_names = TRUE

)

S3 method for class 'character'
parse_dist(
object,
...,
dist = ".dist",

parse_dist 121

args = ".args",
dist_obj = ".dist_obj",
package = NULL,
to_r_names = TRUE

)

S3 method for class 'factor'
parse_dist(
object,
...,
dist = ".dist",
args = ".args",
dist_obj = ".dist_obj",
package = NULL,
to_r_names = TRUE

)

S3 method for class 'brmsprior'
parse_dist(
object,
dist_col = prior,
...,
dist = ".dist",
args = ".args",
dist_obj = ".dist_obj",
package = NULL,
to_r_names = TRUE

)

r_dist_name(dist_name)

Arguments

object <character | data.frame> One of:

• A character vector containing distribution specifications, like c("normal(0,1)",
"exp(1)")

• A data frame with a column containing distribution specifications.

... Arguments passed to other implementations of parse_dist().

dist <string> The name of the output column to contain the distribution name.

args <string> The name of the output column to contain the arguments to the distri-
bution.

dist_obj <string> The name of the output column to contain a distributional object rep-
resenting the distribution.

package <string | environment | NULL> The package or environment to search for dis-
tribution functions in. Passed to distributional::dist_wrap(). One of:

• a string: use the environment for the package with the given name

122 parse_dist

• an environment: use the given environment
• NULL (default): use the calling environment

to_r_names <scalar logical> If TRUE (the default), certain common aliases for distribution
names are automatically translated into names that R can recognize (i.e., names
which have functions starting with r, p, q, and d representing random number
generators, distribution functions, etc. for that distribution), using the r_dist_name
function. For example, "normal" is translated into "norm" and "lognormal" is
translated into "lnorm".

dist_col <bare language> Column or column expression of object that resolves to a
character vector of distribution specifications (when object is a data.frame()).

lb <string> The name of an input column (for data.frame and brms::prior ob-
jects) that contains the lower bound of the distribution, which if present will pro-
duce a truncated distribution using dist_truncated(). Ignored if object[[lb]]
is NULL or if it is NA for the corresponding input row.

ub <string> The name of an input column (for data.frame and brms::prior ob-
jects) that contains the upper bound of the distribution, which if present will pro-
duce a truncated distribution using dist_truncated(). Ignored if object[[ub]]
is NULL or if it is NA for the corresponding input row.

dist_name <character> For r_dist_name(), a character vector of distribution names to be
translated into distribution names R recognizes. Unrecognized names are left
as-is.

Details

parse_dist() can be applied to character vectors or to a data frame + bare column name of the col-
umn to parse, and returns a data frame with ".dist" and ".args" columns added. parse_dist()
uses r_dist_name() to translate distribution names into names recognized by R.

r_dist_name() takes a character vector of names and translates common names into R distribution
names. Names are first made into valid R names using make.names(), then translated (ignoring
character case, ".", and "_"). Thus, "lognormal", "LogNormal", "log_normal", "log-Normal",
and any number of other variants all get translated into "lnorm".

Value

• parse_dist returns a data frame containing at least two columns named after the dist and
args parameters. If the input is a data frame, the output is a data frame of the same length
with those two columns added. If the input is a character vector or factor, the output is a
two-column data frame with the same number of rows as the length of the input.

• r_dist_name returns a character vector the same length as the input containing translations
of the input names into distribution names R can recognize.

See Also

See stat_slabinterval() and its shortcut stats, which can easily make use of the output of this
function using the dist and args aesthetics.

partial_colour_ramp 123

Examples

library(dplyr)

parse dist can operate on strings directly...
parse_dist(c("normal(0,1)", "student_t(3,0,1)"))

... or on columns of a data frame, where it adds the
parsed specs back on as columns
data.frame(prior = c("normal(0,1)", "student_t(3,0,1)")) %>%

parse_dist(prior)

parse_dist is particularly useful with the output of brms::prior(),
which follows the same format as above

partial_colour_ramp Partial colour ramp (datatype)

Description

A representation of a partial ramp between two colours: the origin colour (from) and the distance
from the origin colour to the target colour (amount, a value between 0 and 1). The target colour of
the ramp can be filled in later using ramp_colours(), producing a colour.

Usage

partial_colour_ramp(amount = double(), from = "white")

Arguments

amount <numeric> Vector of values between 0 and 1 giving amounts to ramp the colour.
0 corresponds to the colour from.

from <character> Vector giving colours to ramp from.

Details

This datatype is used by scale_colour_ramp to create ramped colours in ggdist geoms. It is a
vctrs::rcrd datatype with two fields: "amount", the amount to ramp, and "from", the colour to ramp
from.

Colour ramps can be applied (i.e. translated into colours) using ramp_colours(), which can
be used with partial_colour_ramp() to implement geoms that make use of colour_ramp or
fill_ramp scales.

Value

A vctrs::rcrd of class "ggdist_partial_colour_ramp" with fields "amount" and "from".

124 point_interval

Author(s)

Matthew Kay

See Also

Other colour ramp functions: guide_rampbar(), ramp_colours(), scale_colour_ramp

Examples

pcr = partial_colour_ramp(c(0, 0.25, 0.75, 1), "red")
pcr

ramp_colours("blue", pcr)

point_interval Point and interval summaries for tidy data frames of draws from dis-
tributions

Description

Translates draws from distributions in a (possibly grouped) data frame into point and interval sum-
maries (or set of point and interval summaries, if there are multiple groups in a grouped data frame).

Supports automatic partial function application.

Usage

point_interval(
.data,
...,
.width = 0.95,
.point = median,
.interval = qi,
.simple_names = TRUE,
na.rm = FALSE,
.exclude = c(".chain", ".iteration", ".draw", ".row"),
.prob

)

Default S3 method:
point_interval(
.data,
...,
.width = 0.95,
.point = median,
.interval = qi,
.simple_names = TRUE,
na.rm = FALSE,

point_interval 125

.exclude = c(".chain", ".iteration", ".draw", ".row"),

.prob
)

S3 method for class 'tbl_df'
point_interval(.data, ...)

S3 method for class 'numeric'
point_interval(
.data,
...,
.width = 0.95,
.point = median,
.interval = qi,
.simple_names = FALSE,
na.rm = FALSE,
.exclude = c(".chain", ".iteration", ".draw", ".row"),
.prob

)

S3 method for class 'rvar'
point_interval(
.data,
...,
.width = 0.95,
.point = median,
.interval = qi,
.simple_names = TRUE,
na.rm = FALSE

)

S3 method for class 'distribution'
point_interval(
.data,
...,
.width = 0.95,
.point = median,
.interval = qi,
.simple_names = TRUE,
na.rm = FALSE

)

qi(x, .width = 0.95, .prob, na.rm = FALSE)

ll(x, .width = 0.95, na.rm = FALSE)

ul(x, .width = 0.95, na.rm = FALSE)

126 point_interval

hdi(
x,
.width = 0.95,
na.rm = FALSE,
...,
density = density_bounded(trim = TRUE),
n = 4096,
.prob

)

Mode(x, na.rm = FALSE, ...)

Default S3 method:
Mode(
x,
na.rm = FALSE,
...,
density = density_bounded(trim = TRUE),
n = 2001,
weights = NULL

)

S3 method for class 'rvar'
Mode(x, na.rm = FALSE, ...)

S3 method for class 'distribution'
Mode(x, na.rm = FALSE, ...)

hdci(x, .width = 0.95, na.rm = FALSE)

mean_qi(.data, ..., .width = 0.95)

median_qi(.data, ..., .width = 0.95)

mode_qi(.data, ..., .width = 0.95)

mean_ll(.data, ..., .width = 0.95)

median_ll(.data, ..., .width = 0.95)

mode_ll(.data, ..., .width = 0.95)

mean_ul(.data, ..., .width = 0.95)

median_ul(.data, ..., .width = 0.95)

mode_ul(.data, ..., .width = 0.95)

point_interval 127

mean_hdi(.data, ..., .width = 0.95)

median_hdi(.data, ..., .width = 0.95)

mode_hdi(.data, ..., .width = 0.95)

mean_hdci(.data, ..., .width = 0.95)

median_hdci(.data, ..., .width = 0.95)

mode_hdci(.data, ..., .width = 0.95)

Arguments

.data <data.frame | grouped_df> Data frame (or grouped data frame as returned by
dplyr::group_by()) that contains draws to summarize.

... <bare language> Column names or expressions that, when evaluated in the con-
text of .data, represent draws to summarize. If this is empty, then by default
all columns that are not group columns and which are not in .exclude (by
default ".chain", ".iteration", ".draw", and ".row") will be summarized.
These columns can be numeric, distributional objects, posterior::rvars, or
list columns of numeric values to summarise.

.width <numeric> vector of probabilities to use that determine the widths of the result-
ing intervals. If multiple probabilities are provided, multiple rows per group
are generated, each with a different probability interval (and value of the corre-
sponding .width column).

.point <function> Point summary function, which takes a vector and returns a single
value, e.g. mean, median, or Mode.

.interval <function> Interval function, which takes a vector and a probability (.width)
and returns a two-element vector representing the lower and upper bound of an
interval; e.g. qi, hdi

.simple_names <scalar logical> When TRUE and only a single column / vector is to be summa-
rized, use the name .lower for the lower end of the interval and .upper for the
upper end. If .data is a vector and this is TRUE, this will also set the column
name of the point summary to .value. When FALSE and .data is a data frame,
names the lower and upper intervals for each column x x.lower and x.upper.
When FALSE and .data is a vector, uses the naming scheme y, ymin and ymax
(for use with ggplot).

na.rm <scalar logical> Should NA values be stripped before the computation proceeds?
If FALSE (the default), any vectors to be summarized that contain NA will result
in point and interval summaries equal to NA.

.exclude <character> Vector of names of columns to be excluded from summarization if
no column names are specified to be summarized in Default ignores several
meta-data column names used in ggdist and tidybayes.

.prob Deprecated. Use .width instead.

x <numeric> Vector to summarize (for interval functions: qi(), hdi(), etc)

128 point_interval

density <function | string> For hdi() and Mode(), the kernel density estimator to use,
either as a function (e.g. density_bounded, density_unbounded) or as a string
giving the suffix to a function that starts with density_ (e.g. "bounded" or
"unbounded"). The default, "bounded", uses the bounded density estimator of
density_bounded(), which itself estimates the bounds of the distribution, and
tends to work well on both bounded and unbounded data.

n <scalar numeric> For hdi() and Mode(), the number of points to use to estimate
highest-density intervals or modes.

weights <numeric | NULL> For Mode(), an optional vector, which (if not NULL) is of the
same length as x and provides weights for each element of x.

Details

If .data is a data frame, then ... is a list of bare names of columns (or expressions derived from
columns) of .data, on which the point and interval summaries are derived. Column expressions
are processed using the tidy evaluation framework (see rlang::eval_tidy()).

For a column named x, the resulting data frame will have a column named x containing its point
summary. If there is a single column to be summarized and .simple_names is TRUE, the output will
also contain columns .lower (the lower end of the interval), .upper (the upper end of the interval).
Otherwise, for every summarized column x, the output will contain x.lower (the lower end of the
interval) and x.upper (the upper end of the interval). Finally, the output will have a .width column
containing the’ probability for the interval on each output row.

If .data includes groups (see e.g. dplyr::group_by()), the points and intervals are calculated
within the groups.

If .data is a vector, ... is ignored and the result is a data frame with one row per value of .width
and three columns: y (the point summary), ymin (the lower end of the interval), ymax (the upper
end of the interval), and .width, the probability corresponding to the interval. This behavior al-
lows point_interval and its derived functions (like median_qi, mean_qi, mode_hdi, etc) to be
easily used to plot intervals in ggplot stats using methods like stat_eye(), stat_halfeye(), or
stat_summary().

median_qi, mode_hdi, etc are short forms for point_interval(..., .point = median, .interval
= qi), etc.

qi yields the quantile interval (also known as the percentile interval or equi-tailed interval) as a 1x2
matrix.

hdi yields the highest-density interval(s) (also known as the highest posterior density interval).
Note: If the distribution is multimodal, hdi may return multiple intervals for each probability level
(these will be spread over rows). You may wish to use hdci (below) instead if you want a single
highest-density interval, with the caveat that when the distribution is multimodal hdci is not a
highest-density interval.

hdci yields the highest-density continuous interval, also known as the shortest probability interval.
Note: If the distribution is multimodal, this may not actually be the highest-density interval (there
may be a higher-density discontinuous interval, which can be found using hdi).

ll and ul yield lower limits and upper limits, respectively (where the opposite limit is set to either
Inf or -Inf).

point_interval 129

Value

A data frame containing point summaries and intervals, with at least one column corresponding
to the point summary, one to the lower end of the interval, one to the upper end of the interval,
the width of the interval (.width), the type of point summary (.point), and the type of interval
(.interval).

Author(s)

Matthew Kay

Examples

library(dplyr)
library(ggplot2)

set.seed(123)

rnorm(1000) %>%
median_qi()

data.frame(x = rnorm(1000)) %>%
median_qi(x, .width = c(.50, .80, .95))

data.frame(
x = rnorm(1000),
y = rnorm(1000, mean = 2, sd = 2)

) %>%
median_qi(x, y)

data.frame(
x = rnorm(1000),
group = "a"

) %>%
rbind(data.frame(

x = rnorm(1000, mean = 2, sd = 2),
group = "b")

) %>%
group_by(group) %>%
median_qi(.width = c(.50, .80, .95))

multimodal_draws = data.frame(
x = c(rnorm(5000, 0, 1), rnorm(2500, 4, 1))

)

multimodal_draws %>%
mode_hdi(.width = c(.66, .95))

multimodal_draws %>%
ggplot(aes(x = x, y = 0)) +
stat_halfeye(point_interval = mode_hdi, .width = c(.66, .95))

130 position_dodgejust

position_dodgejust Dodge overlapping objects side-to-side, preserving justification

Description

A justification-preserving variant of ggplot2::position_dodge() which preserves the vertical
position of a geom while adjusting the horizontal position (or vice versa when in a horizontal orien-
tation). Unlike ggplot2::position_dodge(), position_dodgejust() attempts to preserve the
"justification" of x positions relative to the bounds containing them (xmin/xmax) (or y positions rel-
ative to ymin/ymax when in a horizontal orientation). This makes it useful for dodging annotations
to geoms and stats from the geom_slabinterval() family, which also preserve the justification of
their intervals relative to their slabs when dodging.

Usage

position_dodgejust(
width = NULL,
preserve = c("total", "single"),
justification = NULL

)

Arguments

width Dodging width, when different to the width of the individual elements. This
is useful when you want to align narrow geoms with wider geoms. See the
examples.

preserve Should dodging preserve the "total" width of all elements at a position, or the
width of a "single" element?

justification <scalar numeric> Justification of the point position (x/y) relative to its bounds
(xmin/xmax or ymin/ymax), where 0 indicates bottom/left justification and 1 in-
dicates top/right justification (depending on orientation). This is only used
if xmin/xmax/ymin/ymax are not supplied; in that case, justification will be
used along with width to determine the bounds of the object prior to dodging.

Examples

library(dplyr)
library(ggplot2)
library(distributional)

dist_df = tribble(
~group, ~subgroup, ~mean, ~sd,
1, "h", 5, 1,
2, "h", 7, 1.5,
3, "h", 8, 1,
3, "i", 9, 1,
3, "j", 7, 1

)

position_dodgejust 131

An example with normal "dodge" positioning
Notice how dodge points are placed in the center of their bounding boxes,
which can cause slabs to be positioned outside their bounds.
dist_df %>%

ggplot(aes(
x = factor(group), ydist = dist_normal(mean, sd),
fill = subgroup

)) +
stat_halfeye(

position = "dodge"
) +
geom_rect(

aes(xmin = group, xmax = group + 1, ymin = 2, ymax = 13, color = subgroup),
position = "dodge",
data = . %>% filter(group == 3),
alpha = 0.1

) +
geom_point(

aes(x = group, y = 7.5, color = subgroup),
position = position_dodge(width = 1),
data = . %>% filter(group == 3),
shape = 1,
size = 4,
stroke = 1.5

) +
scale_fill_brewer(palette = "Set2") +
scale_color_brewer(palette = "Dark2")

This same example with "dodgejust" positioning. For the points we
supply a justification parameter to position_dodgejust which mimics the
justification parameter of stat_halfeye, ensuring that they are
placed appropriately. On slabinterval family geoms, position_dodgejust()
will automatically detect the appropriate justification.
dist_df %>%

ggplot(aes(
x = factor(group), ydist = dist_normal(mean, sd),
fill = subgroup

)) +
stat_halfeye(

position = "dodgejust"
) +
geom_rect(

aes(xmin = group, xmax = group + 1, ymin = 2, ymax = 13, color = subgroup),
position = "dodgejust",
data = . %>% filter(group == 3),
alpha = 0.1

) +
geom_point(

aes(x = group, y = 7.5, color = subgroup),
position = position_dodgejust(width = 1, justification = 0),
data = . %>% filter(group == 3),
shape = 1,

132 Pr_

size = 4,
stroke = 1.5

) +
scale_fill_brewer(palette = "Set2") +
scale_color_brewer(palette = "Dark2")

Pr_ Probability expressions in ggdist aesthetics

Description

Experimental probability-like expressions that can be used in place of some after_stat() ex-
pressions in aesthetic assignments in ggdist stats.

Usage

Pr_(x)

p_(x)

Arguments

x <bare language> Expressions. See Probability expressions, below.

Details

Pr_() and p_() are an experimental mini-language for specifying aesthetic values based on proba-
bilities and probability densities derived from distributions supplied to ggdist stats (e.g., in stat_slabinterval(),
stat_dotsinterval(), etc.). They generate expressions that use after_stat() and the com-
puted variables of the stat (such as cdf and pdf; see e.g. the Computed Variables section of
stat_slabinterval()) to compute the desired probabilities or densities.

For example, one way to map the density of a distribution onto the alpha aesthetic of a slab is to
use after_stat(pdf):

ggplot() +
stat_slab(aes(xdist = distributional::dist_normal(), alpha = after_stat(pdf)))

ggdist probability expressions offer an alternative, equivalent syntax:

ggplot() +
stat_slab(aes(xdist = distributional::dist_normal(), alpha = !!p_(x)))

Where p_(x) is the probability density function. The use of !! is necessary to splice the generated
expression into the aes() call; for more information, see quasiquotation.

Pr_ 133

Probability expressions

Probability expressions consist of a call to Pr_() or p_() containing a small number of valid com-
binations of operators and variable names.

Valid variables in probability expressions include:

• x, y, or value: values along the x or y axis. value is the orientation-neutral form.

• xdist, ydist, or dist: distributions mapped along the x or y axis. dist is the orientation-
neutral form. X and Y can also be used as synonyms for xdist and ydist.

• interval: the smallest interval containing the current x/y value.

Pr_() generates expressions for probabilities, e.g. cumulative distribution functions (CDFs). Valid
operators inside Pr_() are:

• <, <=, >, >=: generates values of the cumulative distribution function (CDF) or complementary
CDF by comparing one of {x, y, value} to one of {xdist, ydist, dist, X, Y}. For example,
Pr_(xdist <= x) gives the CDF and Pr_(xdist > x) gives the CCDF.

• %in%: currently can only be used with interval on the right-hand side: gives the probability
of {x, y, value} (left-hand side) being in the smallest interval the stat generated that contains
the value; e.g. Pr_(x %in% interval).

p_() generates expressions for probability density functions or probability mass functions (depend-
ing on if the underlying distribution is continuous or discrete). It currently does not allow any
operators in the expression, and must be passed one of x, y, or value.

See Also

The Computed Variables section of stat_slabinterval() (especially cdf and pdf) and the after_stat()
function.

Examples

library(ggplot2)
library(distributional)

df = data.frame(
d = c(dist_normal(2.7, 1), dist_lognormal(1, 1/3)),
name = c("normal", "lognormal")

)

map density onto alpha of the fill
ggplot(df, aes(y = name, xdist = d)) +

stat_slabinterval(aes(alpha = !!p_(x)))

map CCDF onto thickness (like stat_ccdfinterval())
ggplot(df, aes(y = name, xdist = d)) +

stat_slabinterval(aes(thickness = !!Pr_(xdist > x)))

map containing interval onto fill
ggplot(df, aes(y = name, xdist = d)) +

stat_slabinterval(aes(fill = !!Pr_(x %in% interval)))

134 ramp_colours

the color scale in the previous example is not great, so turn the
probability into an ordered factor and adjust the fill scale.
Though, see also the `level` computed variable in `stat_slabinterval()`,
which is probably easier to use to create this style of chart.
ggplot(df, aes(y = name, xdist = d)) +

stat_slabinterval(aes(fill = ordered(!!Pr_(x %in% interval)))) +
scale_fill_brewer(direction = -1)

ramp_colours Apply partial colour ramps

Description

Given vectors of colours and partial_colour_ramps, ramps the colours according to the param-
eters of the partial colour ramps, returning a vector of the same length as the inputs giving the
transformed (ramped) colours.

Usage

ramp_colours(colour, ramp)

Arguments

colour <character> Vector of colours to ramp to.

ramp <partial_colour_ramp> Vector of colour ramps (same length as colour) giving
the colour to ramp from and the amount to ramp.

Details

Takes vectors of colours and partial_colour_ramps and produces colours by interpolating be-
tween each from colour and the target colour the specified amount (where amount and from are
the corresponding fields of the ramp).

For example, to add support for the fill_ramp aesthetic to a geometry, this line could be used
inside the draw_group() or draw_panel() method of a geom:

data$fill = ramp_colours(data$fill, data$fill_ramp)

Value

A character vector of colours.

Author(s)

Matthew Kay

scale_colour_ramp 135

See Also

Other colour ramp functions: guide_rampbar(), partial_colour_ramp(), scale_colour_ramp

Examples

pcr = partial_colour_ramp(c(0, 0.25, 0.75, 1), "red")
pcr

ramp_colours("blue", pcr)

scale_colour_ramp Secondary color scale that ramps from another color (ggplot2 scale)

Description

This scale creates a secondary scale that modifies the fill or color scale of geoms that support
it (geom_lineribbon() and geom_slabinterval()) to "ramp" from a secondary color (by default
white) to the primary fill color (determined by the standard color or fill aesthetics). It uses the
partial_colour_ramp() data type.

Usage

scale_colour_ramp_continuous(
from = "white",
...,
limits = function(l) c(min(0, l[[1]]), l[[2]]),
range = c(0, 1),
guide = "legend",
aesthetics = "colour_ramp"

)

scale_color_ramp_continuous(
from = "white",
...,
limits = function(l) c(min(0, l[[1]]), l[[2]]),
range = c(0, 1),
guide = "legend",
aesthetics = "colour_ramp"

)

scale_colour_ramp_discrete(
from = "white",
...,
range = c(0.2, 1),
aesthetics = "colour_ramp"

)

136 scale_colour_ramp

scale_color_ramp_discrete(
from = "white",
...,
range = c(0.2, 1),
aesthetics = "colour_ramp"

)

scale_fill_ramp_continuous(..., aesthetics = "fill_ramp")

scale_fill_ramp_discrete(..., aesthetics = "fill_ramp")

Arguments

from <string> The color to ramp from. Corresponds to 0 on the scale.

... Arguments passed to underlying scale or guide functions. E.g. scale_colour_ramp_discrete()
passes arguments to discrete_scale(), scale_colour_ramp_continuous()
passes arguments to continuous_scale(). See those functions for more de-
tails.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

range <length-2 numeric> Minimum and maximum values after the scale transfor-
mation. These values should be between 0 (the from color) and 1 (the color
determined by the fill aesthetic).

guide <Guide | string> A function used to create a guide or its name. For scale_colour_ramp_continuous()
and scale_fill_ramp_continuous(), guide_rampbar() can be used to cre-
ate gradient color bars. See guides() for information on other guides.

aesthetics <character> Names of aesthetics to set scales for.

Details

These scales transform data into partial_colour_ramps. Each partial_colour_ramp is a pair of
two values: a from colour and a numeric amount between 0 and 1 representing a distance between
from and the target color (where 0 indicates the from color and 1 the target color).

The target color is determined by the corresponding aesthetic: for example, the colour_ramp aes-
thetic creates ramps between from and whatever the value of the colour aesthetic is; the fill_ramp
aesthetic creates ramps between from and whatever the value of the fill aesthetic is. When the
colour_ramp aesthetic is set, ggdist geometries will modify their colour by applying the colour
ramp between from and colour (and similarly for fill_ramp and fill).

scale_side_mirrored 137

Colour ramps can be applied (i.e. translated into colours) using ramp_colours(), which can
be used with partial_colour_ramp() to implement geoms that make use of colour_ramp or
fill_ramp scales.

Value

A ggplot2::Scale representing a scale for the colour_ramp and/or fill_ramp aesthetics for ggdist
geoms. Can be added to a ggplot() object.

Author(s)

Matthew Kay

See Also

Other ggdist scales: scale_side_mirrored(), scale_thickness, sub-geometry-scales

Other colour ramp functions: guide_rampbar(), partial_colour_ramp(), ramp_colours()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

tibble(d = dist_uniform(0, 1)) %>%
ggplot(aes(y = 0, xdist = d)) +
stat_slab(aes(fill_ramp = after_stat(x)))

tibble(d = dist_uniform(0, 1)) %>%
ggplot(aes(y = 0, xdist = d)) +
stat_slab(aes(fill_ramp = after_stat(x)), fill = "blue") +
scale_fill_ramp_continuous(from = "red")

you can invert the order of `range` to change the order of the blend
tibble(d = dist_normal(0, 1)) %>%

ggplot(aes(y = 0, xdist = d)) +
stat_slab(aes(fill_ramp = after_stat(cut_cdf_qi(cdf))), fill = "blue") +
scale_fill_ramp_discrete(from = "red", range = c(1, 0))

scale_side_mirrored Side scale for mirrored slabs (ggplot2 scale)

Description

This scale creates mirrored slabs for the side aesthetic of the geom_slabinterval() and geom_dotsinterval()
family of geoms and stats. It works on discrete variables of two or three levels.

138 scale_side_mirrored

Usage

scale_side_mirrored(start = "topright", ..., aesthetics = "side")

Arguments

start <string> The side to start from. Can be any valid value of the side aesthetic
except "both".

... Arguments passed on to ggplot2::discrete_scale

scale_name [Deprecated] The name of the scale that should be used for error
messages associated with this scale.

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::pal_hue()).

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

scale_side_mirrored 139

na.value If na.translate = TRUE, what aesthetic value should the missing
values be displayed as? Does not apply to position scales where NA is al-
ways placed at the far right.

drop Should unused factor levels be omitted from the scale? The default, TRUE,
uses the levels that appear in the data; FALSE includes the levels in the
factor. Please note that to display every level in a legend, the layer should
use show.legend = TRUE.

guide A function used to create a guide or its name. See guides() for more
information.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

call The call used to construct the scale for reporting messages.

super The super class to use for the constructed scale

aesthetics <character> Names of aesthetics to set scales for.

Value

A ggplot2::Scale representing a scale for the side aesthetic for ggdist geoms. Can be added to a
ggplot() object.

Author(s)

Matthew Kay

See Also

Other ggdist scales: scale_colour_ramp, scale_thickness, sub-geometry-scales

Examples

library(dplyr)
library(ggplot2)

set.seed(1234)
data.frame(

x = rnorm(400, c(1,4)),
g = c("a","b")

) %>%
ggplot(aes(x, fill = g, side = g)) +
geom_weave(linewidth = 0, scale = 0.5) +
scale_side_mirrored()

140 scale_thickness

scale_thickness Slab thickness scale (ggplot2 scale)

Description

This ggplot2 scale linearly scales all thickness values of geoms that support the thickness aes-
thetic (such as geom_slabinterval()). It can be used to align the thickness scales across multi-
ple geoms (by default, thickness is normalized on a per-geom level instead of as a global scale).
For a comprehensive discussion and examples of slab scaling and normalization, see the thickness
scale article.

Usage

scale_thickness_shared(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = function(l) c(min(0, l[[1]]), l[[2]]),
renormalize = FALSE,
oob = scales::oob_keep,
guide = "none",
expand = c(0, 0),
...

)

scale_thickness_identity(..., guide = "none")

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)

https://mjskay.github.io/ggdist/articles/thickness.html
https://mjskay.github.io/ggdist/articles/thickness.html

scale_thickness 141

• An expression vector (must be the same length as breaks). See ?plotmath
for details.

• A function that takes the breaks as input and returns labels as output. Also
accepts rlang lambda function notation.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

renormalize <scalar logical> When mapping values to the thickness scale, should those val-
ues be allowed to be renormalized by geoms (e.g. via the normalize parameter
to geom_slabinterval())? The default is FALSE: if scale_thickness_shared()
is in use, the geom-specific normalize parameter is ignored (this is achieved by
flagging values as already normalized by wrapping them in thickness()). Set
this to TRUE to allow geoms to also apply their own normalization. Note that if
you set renormalize to TRUE, subguides created via the subguide parameter to
geom_slabinterval() will display the scaled values output by this scale, not
the original data values.

oob One of:

• Function that handles limits outside of the scale limits (out of bounds). Also
accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with NA.
• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

expand <numeric> Vector of limit expansion constants of length 2 or 4, following the
same format used by the expand argument of continuous_scale(). The de-
fault is not to expand the limits. You can use the convenience function expansion()
to generate the expansion values; expanding the lower limit is usually not rec-
ommended (because with most thickness scales the lower limit is the base-
line and represents 0), so a typical usage might be something like expand =
expansion(c(0, 0.05)) to expand the top end of the scale by 5%.

... Arguments passed on to ggplot2::continuous_scale

aesthetics The names of the aesthetics that this scale works with.
scale_name [Deprecated] The name of the scale that should be used for error

messages associated with this scale.
palette A palette function that when called with a numeric vector with values

between 0 and 1 returns the corresponding output values (e.g., scales::pal_area()).
minor_breaks One of:

142 scale_thickness

• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major breaks.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

rescaler A function used to scale the input values to the range [0, 1]. This is
always scales::rescale(), except for diverging and n colour gradients
(i.e., scale_colour_gradient2(), scale_colour_gradientn()). The
rescaler is ignored by position scales, which always use scales::rescale().
Also accepts rlang lambda function notation.

na.value Missing values will be replaced with this value.
transform For continuous scales, the name of a transformation object or the

object itself. Built-in transformations include "asn", "atanh", "boxcox",
"date", "exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit",
"modulus", "probability", "probit", "pseudo_log", "reciprocal", "reverse",
"sqrt" and "time".
A transformation object bundles together a transform, its inverse, and meth-
ods for generating breaks and labels. Transformation objects are defined
in the scales package, and are called transform_<name>. If transforma-
tions require arguments, you can call them from the scales package, e.g.
scales::transform_boxcox(p = 2). You can create your own transfor-
mation with scales::new_transform().

trans [Deprecated] Deprecated in favour of transform.
position For position scales, The position of the axis. left or right for y

axes, top or bottom for x axes.
call The call used to construct the scale for reporting messages.
super The super class to use for the constructed scale

Details

By default, normalization/scaling of slab thicknesses is controlled by geometries, not by a ggplot2
scale function. This allows various functionality not otherwise possible, such as (1) allowing differ-
ent geometries to have different thickness scales and (2) allowing the user to control at what level
of aggregation (panels, groups, the entire plot, etc) thickness scaling is done via the normalize
parameter to geom_slabinterval().

However, this default approach has one drawback: two different geoms will always have their
own scaling of thickness. scale_thickness_shared() offers an alternative approach: when
added to a chart, all geoms will use the same thickness scale, and geom-level normalization
(via their normalize parameters) is ignored. This is achieved by "marking" thickness values as
already normalized by wrapping them in the thickness() data type (this can be disabled by setting
renormalize = TRUE).

scale_thickness 143

Note: while a slightly more typical name for scale_thickness_shared() might be scale_thickness_continuous(),
the latter name would cause this scale to be applied to all thickness aesthetics by default ac-
cording to the rules ggplot2 uses to find default scales. Thus, to retain the usual behavior of
stat_slabinterval() (per-geom normalization of thickness), this scale is called scale_thickness_shared().

Value

A ggplot2::Scale representing a scale for the thickness aesthetic for ggdist geoms. Can be added
to a ggplot() object.

Author(s)

Matthew Kay

See Also

The thickness datatype.

The thickness aesthetic of geom_slabinterval().

subscale_thickness(), for setting a thickness sub-scale within a single geom_slabinterval().

Other ggdist scales: scale_colour_ramp, scale_side_mirrored(), sub-geometry-scales

Examples

library(distributional)
library(ggplot2)
library(dplyr)

prior_post = data.frame(
prior = dist_normal(0, 1),
posterior = dist_normal(0.1, 0.5)

)

By default, separate geoms have their own thickness scales, which means
distributions plotted using two separate geoms will not have their slab
functions drawn on the same scale (thus here, the two distributions have
different areas under their density curves):
prior_post %>%

ggplot() +
stat_halfeye(aes(xdist = posterior)) +
stat_slab(aes(xdist = prior), fill = NA, color = "red")

For this kind of prior/posterior chart, it makes more sense to have the
densities on the same scale; thus, the areas under both would be the same.
We can do that using scale_thickness_shared():
prior_post %>%

ggplot() +
stat_halfeye(aes(xdist = posterior)) +
stat_slab(aes(xdist = prior), fill = NA, color = "#e41a1c") +
scale_thickness_shared()

144 smooth_density

smooth_density Smooth dot positions in a dotplot using a kernel density estimator
("density dotplots")

Description

Smooths x values using a density estimator, returning new x of the same length. Can be used with
a dotplot (e.g. geom_dots(smooth = ...)) to create "density dotplots".

Supports automatic partial function application with waived arguments.

Usage

smooth_bounded(
x,
density = "bounded",
bounds = c(NA, NA),
bounder = "cooke",
trim = FALSE,
...

)

smooth_unbounded(x, density = "unbounded", trim = FALSE, ...)

Arguments

x <numeric> Values to smooth.

density <function | string> Density estimator to use for smoothing. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()].

bounds <length-2 numeric> Min and max bounds. If a bound is NA, then that bound is
estimated from the data using the method specified by bounder.

bounder <function | string> Method to use to find missing (NA) bounds. A function that
takes a numeric vector of values and returns a length-2 vector of the estimated
lower and upper bound of the distribution. Can also be a string giving the suf-
fix of the name of such a function that starts with "bounder_". Useful values
include:

• "cdf": Use the CDF of the the minimum and maximum order statistics of
the sample to estimate the bounds. See bounder_cdf().

• "cooke": Use the method from Cooke (1979); i.e. method 2.3 from Loh
(1984). See bounder_cooke().

• "range": Use the range of x (i.e the min or max). See bounder_range().

smooth_density 145

trim <scalar logical> Passed to density: Should the density estimate be trimmed to
the range of the data? Default FALSE.

... Arguments passed to the density estimator specified by density.

Details

Applies a kernel density estimator (KDE) to x, then uses weighted quantiles of the KDE to generate
a new set of x values with smoothed values. Plotted using a dotplot (e.g. geom_dots(smooth =
"bounded") or geom_dots(smooth = smooth_bounded(...)), these values create a variation on
a "density dotplot" (Zvinca 2018).

Such plots are recommended only in very large sample sizes where precise positions of individual
values are not particularly meaningful. In small samples, normal dotplots should generally be used.

Two variants are supplied by default:

• smooth_bounded(), which uses density_bounded(). Passes the bounds arguments to the
estimator.

• smooth_unbounded(), which uses density_unbounded().

It is generally recommended to pick the smooth based on the known bounds of your data, e.g. by us-
ing smooth_bounded() with the bounds parameter if there are finite bounds, or smooth_unbounded()
if both bounds are infinite.

Value

A numeric vector of length(x), where each entry is a smoothed version of the corresponding entry
in x.

If x is missing, returns a partial application of itself. See automatic-partial-functions.

References

Zvinca, Daniel. "In the pursuit of diversity in data visualization. Jittering data to access details."
https://www.linkedin.com/pulse/pursuit-diversity-data-visualization-jittering-access-daniel-zvinca/.

See Also

Other dotplot smooths: smooth_discrete(), smooth_none()

Examples

library(ggplot2)

set.seed(1234)
x = rnorm(1000)

basic dotplot is noisy
ggplot(data.frame(x), aes(x)) +

geom_dots()

density dotplot is smoother, but does move points (most noticeable
in areas of low density)

https://www.linkedin.com/pulse/pursuit-diversity-data-visualization-jittering-access-daniel-zvinca/

146 smooth_discrete

ggplot(data.frame(x), aes(x)) +
geom_dots(smooth = "unbounded")

you can adjust the kernel and bandwidth...
ggplot(data.frame(x), aes(x)) +

geom_dots(smooth = smooth_unbounded(kernel = "triangular", adjust = 0.5))

for bounded data, you should use the bounded smoother
x_beta = rbeta(1000, 0.5, 0.5)

ggplot(data.frame(x_beta), aes(x_beta)) +
geom_dots(smooth = smooth_bounded(bounds = c(0, 1)))

smooth_discrete Smooth dot positions in a dotplot of discrete values ("bar dotplots")

Description

Note: Better-looking bar dotplots are typically easier to achieve using layout = "bar" with the
geom_dotsinterval() family instead of smooth = "bar" or smooth = "discrete".

Smooths x values where x is presumed to be discrete, returning a new x of the same length. Both
smooth_discrete() and smooth_bar() use the resolution() of the data to apply smoothing
around unique values in the dataset; smooth_discrete() uses a kernel density estimator and
smooth_bar() places values in an evenly-spaced grid. Can be used with a dotplot (e.g. geom_dots(smooth
= ...)) to create "bar dotplots".

Supports automatic partial function application with waived arguments.

Usage

smooth_discrete(
x,
kernel = c("rectangular", "gaussian", "epanechnikov", "triangular", "biweight",

"cosine", "optcosine"),
width = 0.7,
...

)

smooth_bar(x, width = 0.7, ...)

Arguments

x <numeric> Values to smooth.

kernel <string> The smoothing kernel to be used. This must partially match one of
"gaussian", "rectangular", "triangular", "epanechnikov", "biweight",
"cosine", or "optcosine". See stats::density().

width <scalar numeric> approximate width of the bars as a fraction of data resolution().

smooth_discrete 147

... additional parameters; smooth_discrete() passes these to smooth_unbounded()
and thereby to density_unbounded(); smooth_bar() ignores them.

Details

smooth_discrete() applies a kernel density estimator (default: rectangular) to x. It automatically
sets the bandwidth to be such that the kernel’s width (for each kernel type) is approximately width
times the resolution() of the data. This means it essentially creates smoothed bins around each
unique value. It calls down to smooth_unbounded().

smooth_bar() generates an evenly-spaced grid of values spanning +/- width/2 around each
unique value in x.

Value

A numeric vector of length(x), where each entry is a smoothed version of the corresponding entry
in x.

If x is missing, returns a partial application of itself. See automatic-partial-functions.

See Also

Other dotplot smooths: smooth_density, smooth_none()

Examples

library(ggplot2)

set.seed(1234)
x = rpois(1000, 2)

automatic binwidth in basic dotplot on large counts in discrete
distributions is very small
ggplot(data.frame(x), aes(x)) +

geom_dots()

NOTE: It is now recommended to use layout = "bar" instead of
smooth = "discrete" or smooth = "bar"; the latter are retained because
they can sometimes be useful in combination with other layouts for
more specialized (but finicky) applications.
ggplot(data.frame(x), aes(x)) +

geom_dots(layout = "bar")

smooth_discrete() constructs wider bins of dots
ggplot(data.frame(x), aes(x)) +

geom_dots(smooth = "discrete")

smooth_bar() is an alternative approach to rectangular layouts
ggplot(data.frame(x), aes(x)) +

geom_dots(smooth = "bar")

adjust the shape by changing the kernel or the width. epanechnikov
works well with side = "both"

148 smooth_none

ggplot(data.frame(x), aes(x)) +
geom_dots(smooth = smooth_discrete(kernel = "epanechnikov", width = 0.8), side = "both")

smooth_none Apply no smooth to a dotplot

Description

Default smooth for dotplots: no smooth. Simply returns the input values.

Supports automatic partial function application with waived arguments.

Usage

smooth_none(x, ...)

Arguments

x <numeric> Values to smooth.

... ignored

Details

This is the default value for the smooth argument of geom_dotsinterval().

Value

x

If x is missing, returns a partial application of itself. See automatic-partial-functions.

See Also

Other dotplot smooths: smooth_density, smooth_discrete()

stat_ccdfinterval 149

stat_ccdfinterval CCDF bar plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_slabinterval() for creating CCDF bar
plots.

Roughly equivalent to:

stat_slabinterval(
aes(
thickness = after_stat(thickness(1 - cdf, 0, 1)),
justification = after_stat(0.5),
side = after_stat("topleft")

),
normalize = "none",
expand = TRUE

)

Usage

stat_ccdfinterval(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
normalize = "none",
expand = TRUE,
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = waiver(),
breaks = waiver(),
align = waiver(),
outline_bars = waiver(),
point_interval = "median_qi",
limits = NULL,
n = waiver(),
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

150 stat_ccdfinterval

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_ccdfinterval()
and geom_slabinterval()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

subscale <function | string> Sub-scale used to scale values of the thickness
aesthetic within the groups determined by normalize. One of:

• A function that takes an x argument giving a numeric vector of values
to be scaled and then returns a thickness vector representing the scaled
values, such as subscale_thickness() or subscale_identity().

• A string giving the name of such a function when prefixed with "subscale_";
e.g. "thickness" or "identity". The value "thickness" using the
default subscale, which can be modified by setting subscale_thickness;
see the documentation for that function.

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

fill_type <string> What type of fill to use when the fill color or alpha varies
within a slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the

https://mjskay.github.io/ggdist/articles/thickness.html

stat_ccdfinterval 151

svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-
detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-
tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back
to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

interval_size_domain <length-2 numeric> Minimum and maximum of the
values of the size and linewidth aesthetics that will be translated into
actual sizes for intervals drawn according to interval_size_range (see
the documentation for that argument.)

interval_size_range <length-2 numeric> This geom scales the raw size aes-
thetic values when drawing interval and point sizes, as they tend to be
too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point <scalar numeric> A multiplicative factor used to adjust the size
of the point relative to the size of the thickest interval line. If you wish to
specify point sizes directly, you can also use the point_size aesthetic and
scale_point_size_continuous() or scale_point_size_discrete();
sizes specified with that aesthetic will not be adjusted using fatten_point.

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for
no arrows.

subguide <function | string> Sub-guide used to annotate the thickness scale.
One of:

• A function that takes a scale argument giving a ggplot2::Scale object
and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use
the default subguide for their geom families (no subguide), which can

152 stat_ccdfinterval

be modified by setting subguide_slab, subguide_dots, or subguide_spike;
see the documentation for those functions.

normalize <string> Groups within which to scale values of the thickness aesthetic. One
of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this geom

so that the maximum height at each value of the opposite axis is 1.
• "groups": normalize within values of the opposite axis and within each

group so that the maximum height in each group is 1.
• "none": values are taken as is with no normalization (this should probably

only be used with functions whose values are in [0,1], such as CDFs).
For a comprehensive discussion and examples of slab scaling and normalization,
see the thickness scale article.

expand <logical> For sample data, should the slab be expanded to the limits of the scale?
Default FALSE. Can be a length-two logical vector to control expansion to the
lower and upper limit respectively.

p_limits <length-2 numeric> Probability limits. Used to determine the lower and upper
limits of analytical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample and the value of
the trim parameter). E.g., if this is c(.001, .999), then a slab is drawn for the
distribution from the quantile at p = .001 to the quantile at p = .999. If the lower
(respectively upper) limit is NA, then the lower (upper) limit will be the minimum
(maximum) of the distribution’s support if it is finite, and 0.001 (0.999) if it is
not finite. E.g., if p_limits is c(NA, NA), on a gamma distribution the effec-
tive value of p_limits would be c(0, .999) since the gamma distribution is
defined on (0, Inf); whereas on a normal distribution it would be equivalent
to c(.001, .999) since the normal distribution is defined on (-Inf, Inf).

density <function | string> Density estimator for sample data. One of:
• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust <scalar numeric | waiver> Passed to density (e.g. density_bounded()): Value
to multiply the bandwidth of the density estimator by. Default waiver() defers
to the default of the density estimator, which is usually 1.

trim <scalar logical | waiver> Passed to density (e.g. density_bounded()): Should
the density estimate be trimmed to the range of the data? Default waiver()
defers to the default of the density estimator, which is usually TRUE.

https://mjskay.github.io/ggdist/articles/thickness.html

stat_ccdfinterval 153

breaks <numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines the breakpoints defining bins. Default waiver() defers to the de-
fault of the density estimator, which is usually "Scott". Similar to (but not
exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align <scalar numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines how to align the breakpoints defining bins. Default waiver() de-
fers to the default of the density estimator, which is usually "none" (performs
no alignment). One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars <scalar logical | waiver> Passed to density (e.g. density_histogram()) and
also used for discrete analytical distributions (whose slabs are drawn as his-
tograms). Determines if outlines in between the bars are drawn. If waiver()
or FALSE (the default), the outline is drawn only along the tops of the bars. If
TRUE, outlines in between bars are also drawn (though you may have to set the
slab_color or color aesthetic to see the outlines).

point_interval <function | string> A function from the point_interval() family (e.g., median_qi,
mean_qi, mode_hdi, etc), or a string giving the name of a function from that
family (e.g., "median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s
environment is searched for the function, followed by the ggdist environment).
This function determines the point summary (typically mean, median, or mode)
and interval type (quantile interval, qi; highest-density interval, hdi; or highest-
density continuous interval, hdci). Output will be converted to the appropri-
ate x- or y-based aesthetics depending on the value of orientation. See the
point_interval() family of functions for more information.

limits <length-2 numeric> Manually-specified limits for the slab, as a vector of length
two. These limits are combined with those computed based on p_limits as well

154 stat_ccdfinterval

as the limits defined by the scales of the plot to determine the limits used to draw
the slab functions: these limits specify the maximal limits; i.e., if specified, the
limits will not be wider than these (but may be narrower). Use NA to leave a
limit alone; e.g. limits = c(0, NA) will ensure that the lower limit does not go
below 0, but let the upper limit be determined by either p_limits or the scale
settings.

n <scalar numeric> Number of points at which to evaluate the function that defines
the slab. Also passed to density (e.g. density_bounded()). Default waiver()
uses the value 501 for analytical distributions and defers to the default of the
density estimator for sample-based distributions, which is also usually 501.

.width <numeric> The .width argument passed to point_interval: a vector of prob-
abilities to use that determine the widths of the resulting intervals. If multi-
ple probabilities are provided, multiple intervals per group are generated, each
with a different probability interval (and value of the corresponding .width and
level generated variables).

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend <logical> Should this layer be included in the legends? Default is c(size =
FALSE), unlike most geoms, to match its common use cases. FALSE hides all
legends, TRUE shows all legends, and NA shows only those that are mapped (the
default for most geoms). It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

stat_ccdfinterval 155

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a CCDF bar geometry which can be added to a ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

https://pkg.mitchelloharawild.com/distributional/

156 stat_ccdfinterval

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

https://mjskay.github.io/ggdist/articles/thickness.html

stat_ccdfinterval 157

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

158 stat_ccdfinterval

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slabinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.

Other slabinterval stats: stat_cdfinterval(), stat_eye(), stat_gradientinterval(), stat_halfeye(),
stat_histinterval(), stat_interval(), stat_pointinterval(), stat_slab(), stat_spike()

stat_cdfinterval 159

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_ccdfinterval() +
expand_limits(x = 0)

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_ccdfinterval() +
expand_limits(x = 0)

stat_cdfinterval CDF bar plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_slabinterval() for creating CDF bar plots.

Roughly equivalent to:

stat_slabinterval(
aes(
thickness = after_stat(thickness(cdf, 0, 1)),
justification = after_stat(0.5),
side = after_stat("topleft")

),
normalize = "none",
expand = TRUE

)

160 stat_cdfinterval

Usage

stat_cdfinterval(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
normalize = "none",
expand = TRUE,
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = waiver(),
breaks = waiver(),
align = waiver(),
outline_bars = waiver(),
point_interval = "median_qi",
limits = NULL,
n = waiver(),
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_cdfinterval()
and geom_slabinterval()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())

stat_cdfinterval 161

or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

subscale <function | string> Sub-scale used to scale values of the thickness
aesthetic within the groups determined by normalize. One of:

• A function that takes an x argument giving a numeric vector of values
to be scaled and then returns a thickness vector representing the scaled
values, such as subscale_thickness() or subscale_identity().

• A string giving the name of such a function when prefixed with "subscale_";
e.g. "thickness" or "identity". The value "thickness" using the
default subscale, which can be modified by setting subscale_thickness;
see the documentation for that function.

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

fill_type <string> What type of fill to use when the fill color or alpha varies
within a slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the
svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-
detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-
tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back
to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

interval_size_domain <length-2 numeric> Minimum and maximum of the
values of the size and linewidth aesthetics that will be translated into
actual sizes for intervals drawn according to interval_size_range (see
the documentation for that argument.)

interval_size_range <length-2 numeric> This geom scales the raw size aes-
thetic values when drawing interval and point sizes, as they tend to be
too thick when using the default settings of scale_size_continuous(),

https://mjskay.github.io/ggdist/articles/thickness.html

162 stat_cdfinterval

which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point <scalar numeric> A multiplicative factor used to adjust the size
of the point relative to the size of the thickest interval line. If you wish to
specify point sizes directly, you can also use the point_size aesthetic and
scale_point_size_continuous() or scale_point_size_discrete();
sizes specified with that aesthetic will not be adjusted using fatten_point.

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for
no arrows.

subguide <function | string> Sub-guide used to annotate the thickness scale.
One of:

• A function that takes a scale argument giving a ggplot2::Scale object
and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use
the default subguide for their geom families (no subguide), which can
be modified by setting subguide_slab, subguide_dots, or subguide_spike;
see the documentation for those functions.

normalize <string> Groups within which to scale values of the thickness aesthetic. One
of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this geom

so that the maximum height at each value of the opposite axis is 1.
• "groups": normalize within values of the opposite axis and within each

group so that the maximum height in each group is 1.
• "none": values are taken as is with no normalization (this should probably

only be used with functions whose values are in [0,1], such as CDFs).
For a comprehensive discussion and examples of slab scaling and normalization,
see the thickness scale article.

expand <logical> For sample data, should the slab be expanded to the limits of the scale?
Default FALSE. Can be a length-two logical vector to control expansion to the
lower and upper limit respectively.

https://mjskay.github.io/ggdist/articles/thickness.html

stat_cdfinterval 163

p_limits <length-2 numeric> Probability limits. Used to determine the lower and upper
limits of analytical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample and the value of
the trim parameter). E.g., if this is c(.001, .999), then a slab is drawn for the
distribution from the quantile at p = .001 to the quantile at p = .999. If the lower
(respectively upper) limit is NA, then the lower (upper) limit will be the minimum
(maximum) of the distribution’s support if it is finite, and 0.001 (0.999) if it is
not finite. E.g., if p_limits is c(NA, NA), on a gamma distribution the effec-
tive value of p_limits would be c(0, .999) since the gamma distribution is
defined on (0, Inf); whereas on a normal distribution it would be equivalent
to c(.001, .999) since the normal distribution is defined on (-Inf, Inf).

density <function | string> Density estimator for sample data. One of:
• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust <scalar numeric | waiver> Passed to density (e.g. density_bounded()): Value
to multiply the bandwidth of the density estimator by. Default waiver() defers
to the default of the density estimator, which is usually 1.

trim <scalar logical | waiver> Passed to density (e.g. density_bounded()): Should
the density estimate be trimmed to the range of the data? Default waiver()
defers to the default of the density estimator, which is usually TRUE.

breaks <numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines the breakpoints defining bins. Default waiver() defers to the de-
fault of the density estimator, which is usually "Scott". Similar to (but not
exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align <scalar numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines how to align the breakpoints defining bins. Default waiver() de-
fers to the default of the density estimator, which is usually "none" (performs
no alignment). One of:

164 stat_cdfinterval

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars <scalar logical | waiver> Passed to density (e.g. density_histogram()) and
also used for discrete analytical distributions (whose slabs are drawn as his-
tograms). Determines if outlines in between the bars are drawn. If waiver()
or FALSE (the default), the outline is drawn only along the tops of the bars. If
TRUE, outlines in between bars are also drawn (though you may have to set the
slab_color or color aesthetic to see the outlines).

point_interval <function | string> A function from the point_interval() family (e.g., median_qi,
mean_qi, mode_hdi, etc), or a string giving the name of a function from that
family (e.g., "median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s
environment is searched for the function, followed by the ggdist environment).
This function determines the point summary (typically mean, median, or mode)
and interval type (quantile interval, qi; highest-density interval, hdi; or highest-
density continuous interval, hdci). Output will be converted to the appropri-
ate x- or y-based aesthetics depending on the value of orientation. See the
point_interval() family of functions for more information.

limits <length-2 numeric> Manually-specified limits for the slab, as a vector of length
two. These limits are combined with those computed based on p_limits as well
as the limits defined by the scales of the plot to determine the limits used to draw
the slab functions: these limits specify the maximal limits; i.e., if specified, the
limits will not be wider than these (but may be narrower). Use NA to leave a
limit alone; e.g. limits = c(0, NA) will ensure that the lower limit does not go
below 0, but let the upper limit be determined by either p_limits or the scale
settings.

n <scalar numeric> Number of points at which to evaluate the function that defines
the slab. Also passed to density (e.g. density_bounded()). Default waiver()
uses the value 501 for analytical distributions and defers to the default of the
density estimator for sample-based distributions, which is also usually 501.

.width <numeric> The .width argument passed to point_interval: a vector of prob-
abilities to use that determine the widths of the resulting intervals. If multi-
ple probabilities are provided, multiple intervals per group are generated, each
with a different probability interval (and value of the corresponding .width and
level generated variables).

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

stat_cdfinterval 165

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend <logical> Should this layer be included in the legends? Default is c(size =
FALSE), unlike most geoms, to match its common use cases. FALSE hides all
legends, TRUE shows all legends, and NA shows only those that are mapped (the
default for most geoms). It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

https://pkg.mitchelloharawild.com/distributional/

166 stat_cdfinterval

Value

A ggplot2::Stat representing a CDF bar geometry which can be added to a ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

stat_cdfinterval 167

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

https://mjskay.github.io/ggdist/articles/thickness.html

168 stat_cdfinterval

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

stat_cdfinterval 169

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slabinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_eye(), stat_gradientinterval(), stat_halfeye(),
stat_histinterval(), stat_interval(), stat_pointinterval(), stat_slab(), stat_spike()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_cdfinterval()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)

170 stat_dots

Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_cdfinterval()

stat_dots Dot plot (shortcut stat)

Description

A combination of stat_slabinterval() and geom_dotsinterval() with sensible defaults for
making dot plots. While geom_dotsinterval() is intended for use on data frames that have al-
ready been summarized using a point_interval() function, stat_dots() is intended for use
directly on data frames of draws or of analytical distributions, and will perform the summarization
using a point_interval() function. Geoms based on geom_dotsinterval() create dotplots that
automatically determine a bin width that ensures the plot fits within the available space. They can
also ensure dots do not overlap.

Roughly equivalent to:

stat_dotsinterval(
aes(size = NULL),
geom = "dots",
show_point = FALSE,
show_interval = FALSE,
show.legend = NA

)

Usage

stat_dots(
mapping = NULL,
data = NULL,
geom = "dots",
position = "identity",
...,
quantiles = NA,
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

stat_dots 171

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_dots()
and geom_dots()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_dots(), these include:

binwidth <numeric | unit> The bin width to use for laying out the dots. One
of:

• NA (the default): Dynamically select the bin width based on the size of
the plot when drawn. This will pick a binwidth such that the tallest
stack of dots is at most scale in height (ideally exactly scale in height,
though this is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and

maximum desired bin width. The bin width will be dynamically se-
lected within these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension
the dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at
most 10% of the viewport size (while still ensuring the tallest stack is less
than or equal to scale).

dotsize <scalar numeric> The width of the dots relative to the binwidth. The
default, 1.07, makes dots be just a bit wider than the bin width, which is a
manually-tuned parameter that tends to work well with the default circular
shape, preventing gaps between bins from appearing to be too large visually

172 stat_dots

(as might arise from dots being precisely the binwidth). If it is desired to
have dots be precisely the binwidth, set dotsize = 1.

stackratio <scalar numeric> The distance between the center of the dots in
the same stack relative to the dot height. The default, 1, makes dots in the
same stack just touch each other.

layout <string> The layout method used for the dots. One of:
• "bin" (default): places dots on the off-axis at the midpoint of their

bins as in the classic Wilkinson dotplot. This maintains the alignment
of rows and columns in the dotplot. This layout is slightly different
from the classic Wilkinson algorithm in that: (1) it nudges bins slightly
to avoid overlapping bins and (2) if the input data are symmetrical it
will return a symmetrical layout.

• "weave": uses the same basic binning approach of "bin", but places
dots in the off-axis at their actual positions (unless overlaps = "nudge",
in which case overlaps may be nudged out of the way). This maintains
the alignment of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates
placing dots + binwidth/4 or - binwidth/4 in the off-axis from the
bin center. This allows hexagonal packing by setting a stackratio
less than 1 (something like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more com-
pact and neat looking, especially for sample data (as opposed to quan-
tile dotplots of theoretical distributions, which may look better with
"bin", "weave", or "hex").

• "bar": for discrete distributions, lays out duplicate values in rectangu-
lar bars.

overlaps <string> How to handle overlapping dots or bins in the "bin", "weave",
and "hex" layouts (dots never overlap in the "swarm" or "bar" layouts).
For the purposes of this argument, dots are only considered to be overlap-
ping if they would be overlapping when dotsize = 1 and stackratio = 1;
i.e. if you set those arguments to other values, overlaps may still occur. One
of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually
only slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance
of dots to their desired positions, subject to the constraint that adjacent
dots do not overlap.

smooth <function | string> Smoother to apply to dot positions. One of:
• A function that takes a numeric vector of dot positions and returns a

smoothed version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function
name starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

stat_dots 173

Smoothing is most effective when the smoother is matched to the support
of the distribution; e.g. using smooth_bounded(bounds = ...).

overflow <string> How to handle overflow of dots beyond the extent of the
geom when a minimum binwidth (or an exact binwidth) is supplied. One
of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.

• "warn": Keep the overflow, but produce a warning suggesting solu-
tions, such as setting binwidth = NA or overflow = "compress".

• "compress": Compress the layout. Reduces the binwidth to the size
necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum
binwidth times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay
with dots overlapping, consider setting overflow = "compress" and sup-
plying an exact or minimum dot size using binwidth.

verbose <scalar logical> If TRUE, print out the bin width of the dotplot. Can be
useful if you want to start from an automatically-selected bin width and then
adjust it manually. Bin width is printed both as data units and as normalized
parent coordinates or "npc"s (see unit()). Note that if you just want to
scale the selected bin width to fit within a desired area, it is probably easier
to use scale than to copy and scale binwidth manually, and if you just
want to provide constraints on the bin width, you can pass a length-2 vector
to binwidth.

subguide <function | string> Sub-guide used to annotate the thickness scale.
One of:

• A function that takes a scale argument giving a ggplot2::Scale object
and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use
the default subguide for their geom families (no subguide), which can
be modified by setting subguide_slab, subguide_dots, or subguide_spike;
see the documentation for those functions.

quantiles <scalar logical> Number of quantiles to plot in the dotplot. Use NA (the default)
to plot all data points. Setting this to a value other than NA will produce a quan-
tile dotplot: that is, a dotplot of quantiles from the sample or distribution (for
analytical distributions, the default of NA is taken to mean 100 quantiles). See
Kay et al. (2016) and Fernandes et al. (2018) for more information on quantile
dotplots.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

174 stat_dots

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

The dots family of stats and geoms are similar to ggplot2::geom_dotplot() but with a number
of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

stat_dots 175

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a dot geometry which can be added to a ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

https://pkg.mitchelloharawild.com/distributional/

176 stat_dots

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_dots()) the following aesthetics are
supported by the underlying geom:

Dots-specific (aka Slab-specific) aesthetics

• family: The font family used to draw the dots.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

stat_dots 177

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

https://mjskay.github.io/ggdist/articles/thickness.html

178 stat_dots

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

stat_dots 179

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See geom_dots() for the geom underlying this stat. See vignette("dotsinterval") for a variety
of examples of use.

Other dotsinterval stats: stat_dotsinterval(), stat_mcse_dots()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(12345)
tibble(

x = rep(1:10, 100),
y = rnorm(1000, x)

) %>%
ggplot(aes(x = x, y = y)) +
stat_dots()

ON ANALYTICAL DISTRIBUTIONS
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
tibble(

x = 1:10,
sd = seq(1, 3, length.out = 10)

) %>%
ggplot(aes(x = x, ydist = dist_normal(x, sd))) +
stat_dots(quantiles = 50)

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

180 stat_dotsinterval

stat_dotsinterval Dots + point + interval plot (shortcut stat)

Description

A combination of stat_slabinterval() and geom_dotsinterval() with sensible defaults for
making dots + point + interval plots. While geom_dotsinterval() is intended for use on data
frames that have already been summarized using a point_interval() function, stat_dotsinterval()
is intended for use directly on data frames of draws or of analytical distributions, and will perform
the summarization using a point_interval() function. Geoms based on geom_dotsinterval()
create dotplots that automatically determine a bin width that ensures the plot fits within the available
space. They can also ensure dots do not overlap.

Usage

stat_dotsinterval(
mapping = NULL,
data = NULL,
geom = "dotsinterval",
position = "identity",
...,
quantiles = NA,
point_interval = "median_qi",
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat_dotsinterval 181

geom <Geom | string> Use to override the default connection between stat_dotsinterval()
and geom_dotsinterval()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_dotsinterval(), these include:

binwidth <numeric | unit> The bin width to use for laying out the dots. One
of:

• NA (the default): Dynamically select the bin width based on the size of
the plot when drawn. This will pick a binwidth such that the tallest
stack of dots is at most scale in height (ideally exactly scale in height,
though this is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and

maximum desired bin width. The bin width will be dynamically se-
lected within these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension
the dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at
most 10% of the viewport size (while still ensuring the tallest stack is less
than or equal to scale).

dotsize <scalar numeric> The width of the dots relative to the binwidth. The
default, 1.07, makes dots be just a bit wider than the bin width, which is a
manually-tuned parameter that tends to work well with the default circular
shape, preventing gaps between bins from appearing to be too large visually
(as might arise from dots being precisely the binwidth). If it is desired to
have dots be precisely the binwidth, set dotsize = 1.

stackratio <scalar numeric> The distance between the center of the dots in
the same stack relative to the dot height. The default, 1, makes dots in the
same stack just touch each other.

layout <string> The layout method used for the dots. One of:
• "bin" (default): places dots on the off-axis at the midpoint of their

bins as in the classic Wilkinson dotplot. This maintains the alignment
of rows and columns in the dotplot. This layout is slightly different
from the classic Wilkinson algorithm in that: (1) it nudges bins slightly
to avoid overlapping bins and (2) if the input data are symmetrical it
will return a symmetrical layout.

• "weave": uses the same basic binning approach of "bin", but places
dots in the off-axis at their actual positions (unless overlaps = "nudge",

182 stat_dotsinterval

in which case overlaps may be nudged out of the way). This maintains
the alignment of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates
placing dots + binwidth/4 or - binwidth/4 in the off-axis from the
bin center. This allows hexagonal packing by setting a stackratio
less than 1 (something like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more com-
pact and neat looking, especially for sample data (as opposed to quan-
tile dotplots of theoretical distributions, which may look better with
"bin", "weave", or "hex").

• "bar": for discrete distributions, lays out duplicate values in rectangu-
lar bars.

overlaps <string> How to handle overlapping dots or bins in the "bin", "weave",
and "hex" layouts (dots never overlap in the "swarm" or "bar" layouts).
For the purposes of this argument, dots are only considered to be overlap-
ping if they would be overlapping when dotsize = 1 and stackratio = 1;
i.e. if you set those arguments to other values, overlaps may still occur. One
of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually
only slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance
of dots to their desired positions, subject to the constraint that adjacent
dots do not overlap.

smooth <function | string> Smoother to apply to dot positions. One of:
• A function that takes a numeric vector of dot positions and returns a

smoothed version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function
name starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support
of the distribution; e.g. using smooth_bounded(bounds = ...).

overflow <string> How to handle overflow of dots beyond the extent of the
geom when a minimum binwidth (or an exact binwidth) is supplied. One
of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solu-

tions, such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum
binwidth times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay
with dots overlapping, consider setting overflow = "compress" and sup-
plying an exact or minimum dot size using binwidth.

stat_dotsinterval 183

verbose <scalar logical> If TRUE, print out the bin width of the dotplot. Can be
useful if you want to start from an automatically-selected bin width and then
adjust it manually. Bin width is printed both as data units and as normalized
parent coordinates or "npc"s (see unit()). Note that if you just want to
scale the selected bin width to fit within a desired area, it is probably easier
to use scale than to copy and scale binwidth manually, and if you just
want to provide constraints on the bin width, you can pass a length-2 vector
to binwidth.

interval_size_domain <length-2 numeric> Minimum and maximum of the
values of the size and linewidth aesthetics that will be translated into
actual sizes for intervals drawn according to interval_size_range (see
the documentation for that argument.)

interval_size_range <length-2 numeric> This geom scales the raw size aes-
thetic values when drawing interval and point sizes, as they tend to be
too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point <scalar numeric> A multiplicative factor used to adjust the size
of the point relative to the size of the thickest interval line. If you wish to
specify point sizes directly, you can also use the point_size aesthetic and
scale_point_size_continuous() or scale_point_size_discrete();
sizes specified with that aesthetic will not be adjusted using fatten_point.

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for
no arrows.

subguide <function | string> Sub-guide used to annotate the thickness scale.
One of:

• A function that takes a scale argument giving a ggplot2::Scale object
and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use
the default subguide for their geom families (no subguide), which can
be modified by setting subguide_slab, subguide_dots, or subguide_spike;
see the documentation for those functions.

quantiles <scalar logical> Number of quantiles to plot in the dotplot. Use NA (the default)

184 stat_dotsinterval

to plot all data points. Setting this to a value other than NA will produce a quan-
tile dotplot: that is, a dotplot of quantiles from the sample or distribution (for
analytical distributions, the default of NA is taken to mean 100 quantiles). See
Kay et al. (2016) and Fernandes et al. (2018) for more information on quantile
dotplots.

point_interval <function | string> A function from the point_interval() family (e.g., median_qi,
mean_qi, mode_hdi, etc), or a string giving the name of a function from that
family (e.g., "median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s
environment is searched for the function, followed by the ggdist environment).
This function determines the point summary (typically mean, median, or mode)
and interval type (quantile interval, qi; highest-density interval, hdi; or highest-
density continuous interval, hdci). Output will be converted to the appropri-
ate x- or y-based aesthetics depending on the value of orientation. See the
point_interval() family of functions for more information.

.width <numeric> The .width argument passed to point_interval: a vector of prob-
abilities to use that determine the widths of the resulting intervals. If multi-
ple probabilities are provided, multiple intervals per group are generated, each
with a different probability interval (and value of the corresponding .width and
level generated variables).

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

stat_dotsinterval 185

Details

The dots family of stats and geoms are similar to ggplot2::geom_dotplot() but with a number
of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

https://pkg.mitchelloharawild.com/distributional/

186 stat_dotsinterval

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a dots + point + interval geometry which can be added to a ggplot()
object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.

These stats support the following aesthetics:

stat_dotsinterval 187

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_dotsinterval()) the following aes-
thetics are supported by the underlying geom:

Dots-specific (aka Slab-specific) aesthetics

• family: The font family used to draw the dots.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

https://mjskay.github.io/ggdist/articles/thickness.html

188 stat_dotsinterval

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

stat_dotsinterval 189

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See geom_dotsinterval() for the geom underlying this stat. See vignette("dotsinterval")
for a variety of examples of use.

Other dotsinterval stats: stat_dots(), stat_mcse_dots()

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

190 stat_eye

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(12345)
tibble(

x = rep(1:10, 100),
y = rnorm(1000, x)

) %>%
ggplot(aes(x = x, y = y)) +
stat_dotsinterval()

ON ANALYTICAL DISTRIBUTIONS
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
tibble(

x = 1:10,
sd = seq(1, 3, length.out = 10)

) %>%
ggplot(aes(x = x, ydist = dist_normal(x, sd))) +
stat_dotsinterval(quantiles = 50)

stat_eye Eye (violin + interval) plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_slabinterval() for creating eye (violin +
interval) plots.

Roughly equivalent to:

stat_slabinterval(
aes(side = after_stat("both"))

)

Usage

stat_eye(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
p_limits = c(NA, NA),

stat_eye 191

density = "bounded",
adjust = waiver(),
trim = waiver(),
breaks = waiver(),
align = waiver(),
outline_bars = waiver(),
expand = FALSE,
point_interval = "median_qi",
limits = NULL,
n = waiver(),
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_eye()
and geom_slabinterval()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

subscale <function | string> Sub-scale used to scale values of the thickness
aesthetic within the groups determined by normalize. One of:

192 stat_eye

• A function that takes an x argument giving a numeric vector of values
to be scaled and then returns a thickness vector representing the scaled
values, such as subscale_thickness() or subscale_identity().

• A string giving the name of such a function when prefixed with "subscale_";
e.g. "thickness" or "identity". The value "thickness" using the
default subscale, which can be modified by setting subscale_thickness;
see the documentation for that function.

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

normalize <string> Groups within which to scale values of the thickness
aesthetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this

geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

fill_type <string> What type of fill to use when the fill color or alpha varies
within a slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the
svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-
detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-
tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back
to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

https://mjskay.github.io/ggdist/articles/thickness.html
https://mjskay.github.io/ggdist/articles/thickness.html

stat_eye 193

interval_size_domain <length-2 numeric> Minimum and maximum of the
values of the size and linewidth aesthetics that will be translated into
actual sizes for intervals drawn according to interval_size_range (see
the documentation for that argument.)

interval_size_range <length-2 numeric> This geom scales the raw size aes-
thetic values when drawing interval and point sizes, as they tend to be
too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point <scalar numeric> A multiplicative factor used to adjust the size
of the point relative to the size of the thickest interval line. If you wish to
specify point sizes directly, you can also use the point_size aesthetic and
scale_point_size_continuous() or scale_point_size_discrete();
sizes specified with that aesthetic will not be adjusted using fatten_point.

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for
no arrows.

subguide <function | string> Sub-guide used to annotate the thickness scale.
One of:

• A function that takes a scale argument giving a ggplot2::Scale object
and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use
the default subguide for their geom families (no subguide), which can
be modified by setting subguide_slab, subguide_dots, or subguide_spike;
see the documentation for those functions.

p_limits <length-2 numeric> Probability limits. Used to determine the lower and upper
limits of analytical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample and the value of
the trim parameter). E.g., if this is c(.001, .999), then a slab is drawn for the
distribution from the quantile at p = .001 to the quantile at p = .999. If the lower
(respectively upper) limit is NA, then the lower (upper) limit will be the minimum
(maximum) of the distribution’s support if it is finite, and 0.001 (0.999) if it is
not finite. E.g., if p_limits is c(NA, NA), on a gamma distribution the effec-
tive value of p_limits would be c(0, .999) since the gamma distribution is

194 stat_eye

defined on (0, Inf); whereas on a normal distribution it would be equivalent
to c(.001, .999) since the normal distribution is defined on (-Inf, Inf).

density <function | string> Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust <scalar numeric | waiver> Passed to density (e.g. density_bounded()): Value
to multiply the bandwidth of the density estimator by. Default waiver() defers
to the default of the density estimator, which is usually 1.

trim <scalar logical | waiver> Passed to density (e.g. density_bounded()): Should
the density estimate be trimmed to the range of the data? Default waiver()
defers to the default of the density estimator, which is usually TRUE.

breaks <numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines the breakpoints defining bins. Default waiver() defers to the de-
fault of the density estimator, which is usually "Scott". Similar to (but not
exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align <scalar numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines how to align the breakpoints defining bins. Default waiver() de-
fers to the default of the density estimator, which is usually "none" (performs
no alignment). One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

stat_eye 195

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars <scalar logical | waiver> Passed to density (e.g. density_histogram()) and
also used for discrete analytical distributions (whose slabs are drawn as his-
tograms). Determines if outlines in between the bars are drawn. If waiver()
or FALSE (the default), the outline is drawn only along the tops of the bars. If
TRUE, outlines in between bars are also drawn (though you may have to set the
slab_color or color aesthetic to see the outlines).

expand <logical> For sample data, should the slab be expanded to the limits of the scale?
Default FALSE. Can be a length-two logical vector to control expansion to the
lower and upper limit respectively.

point_interval <function | string> A function from the point_interval() family (e.g., median_qi,
mean_qi, mode_hdi, etc), or a string giving the name of a function from that
family (e.g., "median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s
environment is searched for the function, followed by the ggdist environment).
This function determines the point summary (typically mean, median, or mode)
and interval type (quantile interval, qi; highest-density interval, hdi; or highest-
density continuous interval, hdci). Output will be converted to the appropri-
ate x- or y-based aesthetics depending on the value of orientation. See the
point_interval() family of functions for more information.

limits <length-2 numeric> Manually-specified limits for the slab, as a vector of length
two. These limits are combined with those computed based on p_limits as well
as the limits defined by the scales of the plot to determine the limits used to draw
the slab functions: these limits specify the maximal limits; i.e., if specified, the
limits will not be wider than these (but may be narrower). Use NA to leave a
limit alone; e.g. limits = c(0, NA) will ensure that the lower limit does not go
below 0, but let the upper limit be determined by either p_limits or the scale
settings.

n <scalar numeric> Number of points at which to evaluate the function that defines
the slab. Also passed to density (e.g. density_bounded()). Default waiver()
uses the value 501 for analytical distributions and defers to the default of the
density estimator for sample-based distributions, which is also usually 501.

.width <numeric> The .width argument passed to point_interval: a vector of prob-
abilities to use that determine the widths of the resulting intervals. If multi-
ple probabilities are provided, multiple intervals per group are generated, each
with a different probability interval (and value of the corresponding .width and
level generated variables).

orientation <string> Whether this geom is drawn horizontally or vertically. One of:
• NA (default): automatically detect the orientation based on how the aesthet-

ics are assigned. Automatic detection works most of the time.
• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify

different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

196 stat_eye

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend <logical> Should this layer be included in the legends? Default is c(size =
FALSE), unlike most geoms, to match its common use cases. FALSE hides all
legends, TRUE shows all legends, and NA shows only those that are mapped (the
default for most geoms). It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.

See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a eye (violin + interval) geometry which can be added to a ggplot()
object.

https://pkg.mitchelloharawild.com/distributional/

stat_eye 197

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

198 stat_eye

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

https://mjskay.github.io/ggdist/articles/thickness.html

stat_eye 199

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

200 stat_eye

Deprecated aesthetics

• slab_size: Use slab_linewidth.
• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slabinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.
Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_gradientinterval(),
stat_halfeye(), stat_histinterval(), stat_interval(), stat_pointinterval(), stat_slab(),
stat_spike()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_eye()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_eye()

stat_gradientinterval 201

stat_gradientinterval Gradient + interval plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_slabinterval() for creating gradient +
interval plots.

Roughly equivalent to:

stat_slabinterval(
aes(
justification = after_stat(0.5),
thickness = after_stat(thickness(1)),
slab_alpha = after_stat(f)

),
fill_type = "auto",
show.legend = c(size = FALSE, slab_alpha = FALSE)

)

If your graphics device supports it, it is recommended to use this stat with fill_type = "gradient"
(see the description of that parameter). On R >= 4.2, support for fill_type = "gradient" should
be auto-detected based on the graphics device you are using.

Usage

stat_gradientinterval(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
fill_type = "auto",
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = waiver(),
breaks = waiver(),
align = waiver(),
outline_bars = waiver(),
expand = FALSE,
point_interval = "median_qi",
limits = NULL,
n = waiver(),
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,

202 stat_gradientinterval

show.legend = c(size = FALSE, slab_alpha = FALSE),
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_gradientinterval()
and geom_slabinterval()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

subscale <function | string> Sub-scale used to scale values of the thickness
aesthetic within the groups determined by normalize. One of:

• A function that takes an x argument giving a numeric vector of values
to be scaled and then returns a thickness vector representing the scaled
values, such as subscale_thickness() or subscale_identity().

• A string giving the name of such a function when prefixed with "subscale_";
e.g. "thickness" or "identity". The value "thickness" using the
default subscale, which can be modified by setting subscale_thickness;
see the documentation for that function.

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

normalize <string> Groups within which to scale values of the thickness
aesthetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.

https://mjskay.github.io/ggdist/articles/thickness.html

stat_gradientinterval 203

• "xy": normalize within the x/y axis opposite the orientation of this
geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

interval_size_domain <length-2 numeric> Minimum and maximum of the
values of the size and linewidth aesthetics that will be translated into
actual sizes for intervals drawn according to interval_size_range (see
the documentation for that argument.)

interval_size_range <length-2 numeric> This geom scales the raw size aes-
thetic values when drawing interval and point sizes, as they tend to be
too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point <scalar numeric> A multiplicative factor used to adjust the size
of the point relative to the size of the thickest interval line. If you wish to
specify point sizes directly, you can also use the point_size aesthetic and
scale_point_size_continuous() or scale_point_size_discrete();
sizes specified with that aesthetic will not be adjusted using fatten_point.

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for
no arrows.

subguide <function | string> Sub-guide used to annotate the thickness scale.
One of:

• A function that takes a scale argument giving a ggplot2::Scale object
and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use
the default subguide for their geom families (no subguide), which can
be modified by setting subguide_slab, subguide_dots, or subguide_spike;
see the documentation for those functions.

https://mjskay.github.io/ggdist/articles/thickness.html

204 stat_gradientinterval

fill_type <string> What type of fill to use when the fill color or alpha varies within a slab.
One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported by all
graphics devices and works well for sharp cutoff values, but can give ugly
results if a large number of unique fill colors are being used (as in gradients,
like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth gra-
dient fill. This works well for large numbers of unique fill colors, but re-
quires R >= 4.1 and is not yet supported on all graphics devices. As of
this writing, the png() graphics device with type = "cairo", the svg()
device, the pdf() device, and the ragg::agg_png() devices are known to
support this option. On R < 4.1, this option will fall back to fill_type =
"segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can be
auto-detected. On R >= 4.2, support for gradients can be auto-detected
on some graphics devices; if support is not detected, this option will fall
back to fill_type = "segments" (in case of a false negative, fill_type =
"gradient" can be set explicitly). On R < 4.2, support for gradients cannot
be auto-detected, so this will always fall back to fill_type = "segments",
in which case you can set fill_type = "gradient" explicitly if you are
using a graphics device that support gradients.

p_limits <length-2 numeric> Probability limits. Used to determine the lower and upper
limits of analytical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample and the value of
the trim parameter). E.g., if this is c(.001, .999), then a slab is drawn for the
distribution from the quantile at p = .001 to the quantile at p = .999. If the lower
(respectively upper) limit is NA, then the lower (upper) limit will be the minimum
(maximum) of the distribution’s support if it is finite, and 0.001 (0.999) if it is
not finite. E.g., if p_limits is c(NA, NA), on a gamma distribution the effec-
tive value of p_limits would be c(0, .999) since the gamma distribution is
defined on (0, Inf); whereas on a normal distribution it would be equivalent
to c(.001, .999) since the normal distribution is defined on (-Inf, Inf).

density <function | string> Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust <scalar numeric | waiver> Passed to density (e.g. density_bounded()): Value
to multiply the bandwidth of the density estimator by. Default waiver() defers
to the default of the density estimator, which is usually 1.

stat_gradientinterval 205

trim <scalar logical | waiver> Passed to density (e.g. density_bounded()): Should
the density estimate be trimmed to the range of the data? Default waiver()
defers to the default of the density estimator, which is usually TRUE.

breaks <numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines the breakpoints defining bins. Default waiver() defers to the de-
fault of the density estimator, which is usually "Scott". Similar to (but not
exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align <scalar numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines how to align the breakpoints defining bins. Default waiver() de-
fers to the default of the density estimator, which is usually "none" (performs
no alignment). One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars <scalar logical | waiver> Passed to density (e.g. density_histogram()) and
also used for discrete analytical distributions (whose slabs are drawn as his-
tograms). Determines if outlines in between the bars are drawn. If waiver()
or FALSE (the default), the outline is drawn only along the tops of the bars. If
TRUE, outlines in between bars are also drawn (though you may have to set the
slab_color or color aesthetic to see the outlines).

expand <logical> For sample data, should the slab be expanded to the limits of the scale?
Default FALSE. Can be a length-two logical vector to control expansion to the
lower and upper limit respectively.

point_interval <function | string> A function from the point_interval() family (e.g., median_qi,
mean_qi, mode_hdi, etc), or a string giving the name of a function from that
family (e.g., "median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s
environment is searched for the function, followed by the ggdist environment).

206 stat_gradientinterval

This function determines the point summary (typically mean, median, or mode)
and interval type (quantile interval, qi; highest-density interval, hdi; or highest-
density continuous interval, hdci). Output will be converted to the appropri-
ate x- or y-based aesthetics depending on the value of orientation. See the
point_interval() family of functions for more information.

limits <length-2 numeric> Manually-specified limits for the slab, as a vector of length
two. These limits are combined with those computed based on p_limits as well
as the limits defined by the scales of the plot to determine the limits used to draw
the slab functions: these limits specify the maximal limits; i.e., if specified, the
limits will not be wider than these (but may be narrower). Use NA to leave a
limit alone; e.g. limits = c(0, NA) will ensure that the lower limit does not go
below 0, but let the upper limit be determined by either p_limits or the scale
settings.

n <scalar numeric> Number of points at which to evaluate the function that defines
the slab. Also passed to density (e.g. density_bounded()). Default waiver()
uses the value 501 for analytical distributions and defers to the default of the
density estimator for sample-based distributions, which is also usually 501.

.width <numeric> The .width argument passed to point_interval: a vector of prob-
abilities to use that determine the widths of the resulting intervals. If multi-
ple probabilities are provided, multiple intervals per group are generated, each
with a different probability interval (and value of the corresponding .width and
level generated variables).

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend <logical> Should this layer be included in the legends? Default is c(size =
FALSE), unlike most geoms, to match its common use cases. FALSE hides all
legends, TRUE shows all legends, and NA shows only those that are mapped (the
default for most geoms). It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

stat_gradientinterval 207

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a gradient + interval geometry which can be added to a ggplot()
object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

https://pkg.mitchelloharawild.com/distributional/

208 stat_gradientinterval

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

https://mjskay.github.io/ggdist/articles/thickness.html

stat_gradientinterval 209

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

210 stat_gradientinterval

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slabinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_halfeye(),
stat_histinterval(), stat_interval(), stat_pointinterval(), stat_slab(), stat_spike()

stat_halfeye 211

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_gradientinterval()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_gradientinterval()

stat_halfeye Half-eye (density + interval) plot (shortcut stat)

Description

Equivalent to stat_slabinterval(), whose default settings create half-eye (density + interval)
plots.

Usage

stat_halfeye(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = waiver(),

212 stat_halfeye

breaks = waiver(),
align = waiver(),
outline_bars = waiver(),
expand = FALSE,
point_interval = "median_qi",
limits = NULL,
n = waiver(),
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_halfeye()
and geom_slabinterval()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

subscale <function | string> Sub-scale used to scale values of the thickness
aesthetic within the groups determined by normalize. One of:

• A function that takes an x argument giving a numeric vector of values
to be scaled and then returns a thickness vector representing the scaled
values, such as subscale_thickness() or subscale_identity().

• A string giving the name of such a function when prefixed with "subscale_";
e.g. "thickness" or "identity". The value "thickness" using the

stat_halfeye 213

default subscale, which can be modified by setting subscale_thickness;
see the documentation for that function.

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

normalize <string> Groups within which to scale values of the thickness
aesthetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this

geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

fill_type <string> What type of fill to use when the fill color or alpha varies
within a slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the
svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-
detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-
tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back
to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

interval_size_domain <length-2 numeric> Minimum and maximum of the
values of the size and linewidth aesthetics that will be translated into
actual sizes for intervals drawn according to interval_size_range (see
the documentation for that argument.)

https://mjskay.github.io/ggdist/articles/thickness.html
https://mjskay.github.io/ggdist/articles/thickness.html

214 stat_halfeye

interval_size_range <length-2 numeric> This geom scales the raw size aes-
thetic values when drawing interval and point sizes, as they tend to be
too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point <scalar numeric> A multiplicative factor used to adjust the size
of the point relative to the size of the thickest interval line. If you wish to
specify point sizes directly, you can also use the point_size aesthetic and
scale_point_size_continuous() or scale_point_size_discrete();
sizes specified with that aesthetic will not be adjusted using fatten_point.

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for
no arrows.

subguide <function | string> Sub-guide used to annotate the thickness scale.
One of:

• A function that takes a scale argument giving a ggplot2::Scale object
and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use
the default subguide for their geom families (no subguide), which can
be modified by setting subguide_slab, subguide_dots, or subguide_spike;
see the documentation for those functions.

p_limits <length-2 numeric> Probability limits. Used to determine the lower and upper
limits of analytical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample and the value of
the trim parameter). E.g., if this is c(.001, .999), then a slab is drawn for the
distribution from the quantile at p = .001 to the quantile at p = .999. If the lower
(respectively upper) limit is NA, then the lower (upper) limit will be the minimum
(maximum) of the distribution’s support if it is finite, and 0.001 (0.999) if it is
not finite. E.g., if p_limits is c(NA, NA), on a gamma distribution the effec-
tive value of p_limits would be c(0, .999) since the gamma distribution is
defined on (0, Inf); whereas on a normal distribution it would be equivalent
to c(.001, .999) since the normal distribution is defined on (-Inf, Inf).

density <function | string> Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements

stat_halfeye 215

x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust <scalar numeric | waiver> Passed to density (e.g. density_bounded()): Value
to multiply the bandwidth of the density estimator by. Default waiver() defers
to the default of the density estimator, which is usually 1.

trim <scalar logical | waiver> Passed to density (e.g. density_bounded()): Should
the density estimate be trimmed to the range of the data? Default waiver()
defers to the default of the density estimator, which is usually TRUE.

breaks <numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines the breakpoints defining bins. Default waiver() defers to the de-
fault of the density estimator, which is usually "Scott". Similar to (but not
exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align <scalar numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines how to align the breakpoints defining bins. Default waiver() de-
fers to the default of the density estimator, which is usually "none" (performs
no alignment). One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

216 stat_halfeye

outline_bars <scalar logical | waiver> Passed to density (e.g. density_histogram()) and
also used for discrete analytical distributions (whose slabs are drawn as his-
tograms). Determines if outlines in between the bars are drawn. If waiver()
or FALSE (the default), the outline is drawn only along the tops of the bars. If
TRUE, outlines in between bars are also drawn (though you may have to set the
slab_color or color aesthetic to see the outlines).

expand <logical> For sample data, should the slab be expanded to the limits of the scale?
Default FALSE. Can be a length-two logical vector to control expansion to the
lower and upper limit respectively.

point_interval <function | string> A function from the point_interval() family (e.g., median_qi,
mean_qi, mode_hdi, etc), or a string giving the name of a function from that
family (e.g., "median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s
environment is searched for the function, followed by the ggdist environment).
This function determines the point summary (typically mean, median, or mode)
and interval type (quantile interval, qi; highest-density interval, hdi; or highest-
density continuous interval, hdci). Output will be converted to the appropri-
ate x- or y-based aesthetics depending on the value of orientation. See the
point_interval() family of functions for more information.

limits <length-2 numeric> Manually-specified limits for the slab, as a vector of length
two. These limits are combined with those computed based on p_limits as well
as the limits defined by the scales of the plot to determine the limits used to draw
the slab functions: these limits specify the maximal limits; i.e., if specified, the
limits will not be wider than these (but may be narrower). Use NA to leave a
limit alone; e.g. limits = c(0, NA) will ensure that the lower limit does not go
below 0, but let the upper limit be determined by either p_limits or the scale
settings.

n <scalar numeric> Number of points at which to evaluate the function that defines
the slab. Also passed to density (e.g. density_bounded()). Default waiver()
uses the value 501 for analytical distributions and defers to the default of the
density estimator for sample-based distributions, which is also usually 501.

.width <numeric> The .width argument passed to point_interval: a vector of prob-
abilities to use that determine the widths of the resulting intervals. If multi-
ple probabilities are provided, multiple intervals per group are generated, each
with a different probability interval (and value of the corresponding .width and
level generated variables).

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"

stat_halfeye 217

(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend <logical> Should this layer be included in the legends? Default is c(size =
FALSE), unlike most geoms, to match its common use cases. FALSE hides all
legends, TRUE shows all legends, and NA shows only those that are mapped (the
default for most geoms). It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a half-eye (density + interval) geometry which can be added to a
ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

https://pkg.mitchelloharawild.com/distributional/

218 stat_halfeye

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

stat_halfeye 219

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

https://mjskay.github.io/ggdist/articles/thickness.html

220 stat_halfeye

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

stat_halfeye 221

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slabinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_gradientinterval(),
stat_histinterval(), stat_interval(), stat_pointinterval(), stat_slab(), stat_spike()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_halfeye()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_halfeye()

222 stat_histinterval

stat_histinterval Histogram + interval plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_slabinterval() for creating histogram +
interval plots.

Roughly equivalent to:

stat_slabinterval(
density = "histogram"

)

Usage

stat_histinterval(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
density = "histogram",
p_limits = c(NA, NA),
adjust = waiver(),
trim = waiver(),
breaks = waiver(),
align = waiver(),
outline_bars = waiver(),
expand = FALSE,
point_interval = "median_qi",
limits = NULL,
n = waiver(),
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

stat_histinterval 223

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_histinterval()
and geom_slabinterval()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

subscale <function | string> Sub-scale used to scale values of the thickness
aesthetic within the groups determined by normalize. One of:

• A function that takes an x argument giving a numeric vector of values
to be scaled and then returns a thickness vector representing the scaled
values, such as subscale_thickness() or subscale_identity().

• A string giving the name of such a function when prefixed with "subscale_";
e.g. "thickness" or "identity". The value "thickness" using the
default subscale, which can be modified by setting subscale_thickness;
see the documentation for that function.

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

normalize <string> Groups within which to scale values of the thickness
aesthetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this

geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

https://mjskay.github.io/ggdist/articles/thickness.html
https://mjskay.github.io/ggdist/articles/thickness.html

224 stat_histinterval

fill_type <string> What type of fill to use when the fill color or alpha varies
within a slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the
svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-
detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-
tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back
to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

interval_size_domain <length-2 numeric> Minimum and maximum of the
values of the size and linewidth aesthetics that will be translated into
actual sizes for intervals drawn according to interval_size_range (see
the documentation for that argument.)

interval_size_range <length-2 numeric> This geom scales the raw size aes-
thetic values when drawing interval and point sizes, as they tend to be
too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point <scalar numeric> A multiplicative factor used to adjust the size
of the point relative to the size of the thickest interval line. If you wish to
specify point sizes directly, you can also use the point_size aesthetic and
scale_point_size_continuous() or scale_point_size_discrete();
sizes specified with that aesthetic will not be adjusted using fatten_point.

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for
no arrows.

stat_histinterval 225

subguide <function | string> Sub-guide used to annotate the thickness scale.
One of:

• A function that takes a scale argument giving a ggplot2::Scale object
and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use
the default subguide for their geom families (no subguide), which can
be modified by setting subguide_slab, subguide_dots, or subguide_spike;
see the documentation for those functions.

density <function | string> Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

p_limits <length-2 numeric> Probability limits. Used to determine the lower and upper
limits of analytical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample and the value of
the trim parameter). E.g., if this is c(.001, .999), then a slab is drawn for the
distribution from the quantile at p = .001 to the quantile at p = .999. If the lower
(respectively upper) limit is NA, then the lower (upper) limit will be the minimum
(maximum) of the distribution’s support if it is finite, and 0.001 (0.999) if it is
not finite. E.g., if p_limits is c(NA, NA), on a gamma distribution the effec-
tive value of p_limits would be c(0, .999) since the gamma distribution is
defined on (0, Inf); whereas on a normal distribution it would be equivalent
to c(.001, .999) since the normal distribution is defined on (-Inf, Inf).

adjust <scalar numeric | waiver> Passed to density (e.g. density_bounded()): Value
to multiply the bandwidth of the density estimator by. Default waiver() defers
to the default of the density estimator, which is usually 1.

trim <scalar logical | waiver> Passed to density (e.g. density_bounded()): Should
the density estimate be trimmed to the range of the data? Default waiver()
defers to the default of the density estimator, which is usually TRUE.

breaks <numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines the breakpoints defining bins. Default waiver() defers to the de-
fault of the density estimator, which is usually "Scott". Similar to (but not
exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins

226 stat_histinterval

• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align <scalar numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines how to align the breakpoints defining bins. Default waiver() de-
fers to the default of the density estimator, which is usually "none" (performs
no alignment). One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars <scalar logical | waiver> Passed to density (e.g. density_histogram()) and
also used for discrete analytical distributions (whose slabs are drawn as his-
tograms). Determines if outlines in between the bars are drawn. If waiver()
or FALSE (the default), the outline is drawn only along the tops of the bars. If
TRUE, outlines in between bars are also drawn (though you may have to set the
slab_color or color aesthetic to see the outlines).

expand <logical> For sample data, should the slab be expanded to the limits of the scale?
Default FALSE. Can be a length-two logical vector to control expansion to the
lower and upper limit respectively.

point_interval <function | string> A function from the point_interval() family (e.g., median_qi,
mean_qi, mode_hdi, etc), or a string giving the name of a function from that
family (e.g., "median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s
environment is searched for the function, followed by the ggdist environment).
This function determines the point summary (typically mean, median, or mode)
and interval type (quantile interval, qi; highest-density interval, hdi; or highest-
density continuous interval, hdci). Output will be converted to the appropri-
ate x- or y-based aesthetics depending on the value of orientation. See the
point_interval() family of functions for more information.

limits <length-2 numeric> Manually-specified limits for the slab, as a vector of length
two. These limits are combined with those computed based on p_limits as well
as the limits defined by the scales of the plot to determine the limits used to draw
the slab functions: these limits specify the maximal limits; i.e., if specified, the

stat_histinterval 227

limits will not be wider than these (but may be narrower). Use NA to leave a
limit alone; e.g. limits = c(0, NA) will ensure that the lower limit does not go
below 0, but let the upper limit be determined by either p_limits or the scale
settings.

n <scalar numeric> Number of points at which to evaluate the function that defines
the slab. Also passed to density (e.g. density_bounded()). Default waiver()
uses the value 501 for analytical distributions and defers to the default of the
density estimator for sample-based distributions, which is also usually 501.

.width <numeric> The .width argument passed to point_interval: a vector of prob-
abilities to use that determine the widths of the resulting intervals. If multi-
ple probabilities are provided, multiple intervals per group are generated, each
with a different probability interval (and value of the corresponding .width and
level generated variables).

orientation <string> Whether this geom is drawn horizontally or vertically. One of:
• NA (default): automatically detect the orientation based on how the aesthet-

ics are assigned. Automatic detection works most of the time.
• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify

different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend <logical> Should this layer be included in the legends? Default is c(size =
FALSE), unlike most geoms, to match its common use cases. FALSE hides all
legends, TRUE shows all legends, and NA shows only those that are mapped (the
default for most geoms). It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

228 stat_histinterval

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a histogram + interval geometry which can be added to a ggplot()
object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

https://pkg.mitchelloharawild.com/distributional/

stat_histinterval 229

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

https://mjskay.github.io/ggdist/articles/thickness.html

230 stat_histinterval

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

stat_histinterval 231

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slabinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_gradientinterval(),
stat_halfeye(), stat_interval(), stat_pointinterval(), stat_slab(), stat_spike()

232 stat_interval

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_histinterval()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_histinterval()

stat_interval Multiple-interval plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_interval() for creating multiple-interval
plots.

Roughly equivalent to:

stat_slabinterval(
aes(
colour = after_stat(level),
size = NULL

),
geom = "interval",
show_point = FALSE,
.width = c(0.5, 0.8, 0.95),
show_slab = FALSE,
show.legend = NA

)

stat_interval 233

Usage

stat_interval(
mapping = NULL,
data = NULL,
geom = "interval",
position = "identity",
...,
.width = c(0.5, 0.8, 0.95),
point_interval = "median_qi",
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_interval()
and geom_interval()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_interval(), these include:

interval_size_range <length-2 numeric> This geom scales the raw size aes-
thetic values when drawing interval and point sizes, as they tend to be
too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be

234 stat_interval

equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

interval_size_domain <length-2 numeric> Minimum and maximum of the
values of the size and linewidth aesthetics that will be translated into
actual sizes for intervals drawn according to interval_size_range (see
the documentation for that argument.)

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for
no arrows.

.width <numeric> The .width argument passed to point_interval: a vector of prob-
abilities to use that determine the widths of the resulting intervals. If multi-
ple probabilities are provided, multiple intervals per group are generated, each
with a different probability interval (and value of the corresponding .width and
level generated variables).

point_interval <function | string> A function from the point_interval() family (e.g., median_qi,
mean_qi, mode_hdi, etc), or a string giving the name of a function from that
family (e.g., "median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s
environment is searched for the function, followed by the ggdist environment).
This function determines the point summary (typically mean, median, or mode)
and interval type (quantile interval, qi; highest-density interval, hdi; or highest-
density continuous interval, hdci). Output will be converted to the appropri-
ate x- or y-based aesthetics depending on the value of orientation. See the
point_interval() family of functions for more information.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend <logical> Should this layer be included in the legends? Default is c(size =
FALSE), unlike most geoms, to match its common use cases. FALSE hides all

stat_interval 235

legends, TRUE shows all legends, and NA shows only those that are mapped (the
default for most geoms). It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a multiple-interval geometry which can be added to a ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

https://pkg.mitchelloharawild.com/distributional/

236 stat_interval

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_interval()) the following aesthetics
are supported by the underlying geom:

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

stat_interval 237

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Deprecated aesthetics

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

238 stat_lineribbon

See Also

See geom_interval() for the geom underlying this stat. See stat_slabinterval() for the stat
this shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_gradientinterval(),
stat_halfeye(), stat_histinterval(), stat_pointinterval(), stat_slab(), stat_spike()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_interval() +
scale_color_brewer()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_interval() +
scale_color_brewer()

stat_lineribbon Line + multiple-ribbon plot (shortcut stat)

Description

A combination of stat_slabinterval() and geom_lineribbon() with sensible defaults for mak-
ing line + multiple-ribbon plots. While geom_lineribbon() is intended for use on data frames that
have already been summarized using a point_interval() function, stat_lineribbon() is in-
tended for use directly on data frames of draws or of analytical distributions, and will perform the
summarization using a point_interval() function.

Roughly equivalent to:

stat_lineribbon 239

stat_slabinterval(
aes(
group = after_stat(level),
fill = after_stat(level),
order = after_stat(level),
size = NULL

),
geom = "lineribbon",
.width = c(0.5, 0.8, 0.95),
show_slab = FALSE,
show.legend = NA

)

Usage

stat_lineribbon(
mapping = NULL,
data = NULL,
geom = "lineribbon",
position = "identity",
...,
.width = c(0.5, 0.8, 0.95),
point_interval = "median_qi",
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_lineribbon()
and geom_lineribbon()

240 stat_lineribbon

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_lineribbon(), these include:
step <scalar logical | string> Should the line/ribbon be drawn as a step func-

tion? One of:
• FALSE (default): do not draw as a step function.
• "mid" (or TRUE): draw steps midway between adjacent x values.
• "hv": draw horizontal-then-vertical steps.
• "vh": draw as vertical-then-horizontal steps.

TRUE is an alias for "mid", because for a step function with ribbons "mid"
is reasonable default (for the other two step approaches the ribbons at either
the very first or very last x value will not be visible).

.width <numeric> The .width argument passed to point_interval: a vector of prob-
abilities to use that determine the widths of the resulting intervals. If multi-
ple probabilities are provided, multiple intervals per group are generated, each
with a different probability interval (and value of the corresponding .width and
level generated variables).

point_interval <function | string> A function from the point_interval() family (e.g., median_qi,
mean_qi, mode_hdi, etc), or a string giving the name of a function from that
family (e.g., "median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s
environment is searched for the function, followed by the ggdist environment).
This function determines the point summary (typically mean, median, or mode)
and interval type (quantile interval, qi; highest-density interval, hdi; or highest-
density continuous interval, hdci). Output will be converted to the appropri-
ate x- or y-based aesthetics depending on the value of orientation. See the
point_interval() family of functions for more information.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:
• NA (default): automatically detect the orientation based on how the aesthet-

ics are assigned. Automatic detection works most of the time.
• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify

different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

stat_lineribbon 241

show.legend <logical> Should this layer be included in the legends? NA, the default, includes
if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a line + multiple-ribbon geometry which can be added to a ggplot()
object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

https://pkg.mitchelloharawild.com/distributional/

242 stat_lineribbon

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

Aesthetics

The line+ribbon stats and geoms have a wide variety of aesthetics that control the appearance of
their two sub-geometries: the line and the ribbon.

These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_lineribbon()) the following aesthet-
ics are supported by the underlying geom:

Ribbon-specific aesthetics

• xmin: Left edge of the ribbon sub-geometry (if orientation = "horizontal").

• xmax: Right edge of the ribbon sub-geometry (if orientation = "horizontal").

• ymin: Lower edge of the ribbon sub-geometry (if orientation = "vertical").

• ymax: Upper edge of the ribbon sub-geometry (if orientation = "vertical").

• order: The order in which ribbons are drawn. Ribbons with the smallest mean value of
order are drawn first (i.e., will be drawn below ribbons with larger mean values of order).
If order is not supplied to geom_lineribbon(), -abs(xmax - xmin) or -abs(ymax - ymax)
(depending on orientation) is used, having the effect of drawing the widest (on average)
ribbons on the bottom. stat_lineribbon() uses order = after_stat(level) by default,
causing the ribbons generated from the largest .width to be drawn on the bottom.

Color aesthetics

stat_lineribbon 243

• colour: (or color) The color of the line sub-geometry.
• fill: The fill color of the ribbon sub-geometry.
• alpha: The opacity of the line and ribbon sub-geometries.
• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of line. In ggplot2 < 3.4, was called size.
• linetype: Type of line (e.g., "solid", "dashed", etc)

Other aesthetics (these work as in standard geoms)

• group

See examples of some of these aesthetics in action in vignette("lineribbon"). Learn more about
the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn more
about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_lineribbon() for the geom underlying this stat.

Other lineribbon stats: stat_ribbon()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(12345)
tibble(

x = rep(1:10, 100),
y = rnorm(1000, x)

) %>%
ggplot(aes(x = x, y = y)) +
stat_lineribbon() +
scale_fill_brewer()

ON ANALYTICAL DISTRIBUTIONS
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
tibble(

x = 1:10,
sd = seq(1, 3, length.out = 10)

) %>%
ggplot(aes(x = x, ydist = dist_normal(x, sd))) +
stat_lineribbon() +
scale_fill_brewer()

244 stat_mcse_dots

stat_mcse_dots Blurry MCSE dot plot (stat)

Description

Variant of stat_dots() for creating blurry dotplots of quantiles. Uses posterior::mcse_quantile()
to calculate the Monte Carlo Standard Error of each quantile computed for the dotplot, yielding an
se computed variable that is by default mapped onto the sd aesthetic of geom_blur_dots().

Usage

stat_mcse_dots(
mapping = NULL,
data = NULL,
geom = "blur_dots",
position = "identity",
...,
quantiles = NA,
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_mcse_dots()
and geom_blur_dots()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

stat_mcse_dots 245

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_blur_dots(), these include:

blur <function | string> Blur function to apply to dots. One of:
• A function that takes a numeric vector of distances from the dot center,

the dot radius, and the standard deviation of the blur and returns a vec-
tor of opacities in [0, 1], such as blur_gaussian() or blur_interval().

• A string indicating what blur function to use, as the suffix to a func-
tion name starting with blur_; e.g. "gaussian" (the default) applies
blur_gaussian().

binwidth <numeric | unit> The bin width to use for laying out the dots. One
of:

• NA (the default): Dynamically select the bin width based on the size of
the plot when drawn. This will pick a binwidth such that the tallest
stack of dots is at most scale in height (ideally exactly scale in height,
though this is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and

maximum desired bin width. The bin width will be dynamically se-
lected within these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension
the dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at
most 10% of the viewport size (while still ensuring the tallest stack is less
than or equal to scale).

dotsize <scalar numeric> The width of the dots relative to the binwidth. The
default, 1.07, makes dots be just a bit wider than the bin width, which is a
manually-tuned parameter that tends to work well with the default circular
shape, preventing gaps between bins from appearing to be too large visually
(as might arise from dots being precisely the binwidth). If it is desired to
have dots be precisely the binwidth, set dotsize = 1.

stackratio <scalar numeric> The distance between the center of the dots in
the same stack relative to the dot height. The default, 1, makes dots in the
same stack just touch each other.

layout <string> The layout method used for the dots. One of:
• "bin" (default): places dots on the off-axis at the midpoint of their

bins as in the classic Wilkinson dotplot. This maintains the alignment
of rows and columns in the dotplot. This layout is slightly different
from the classic Wilkinson algorithm in that: (1) it nudges bins slightly
to avoid overlapping bins and (2) if the input data are symmetrical it
will return a symmetrical layout.

• "weave": uses the same basic binning approach of "bin", but places
dots in the off-axis at their actual positions (unless overlaps = "nudge",

246 stat_mcse_dots

in which case overlaps may be nudged out of the way). This maintains
the alignment of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates
placing dots + binwidth/4 or - binwidth/4 in the off-axis from the
bin center. This allows hexagonal packing by setting a stackratio
less than 1 (something like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more com-
pact and neat looking, especially for sample data (as opposed to quan-
tile dotplots of theoretical distributions, which may look better with
"bin", "weave", or "hex").

• "bar": for discrete distributions, lays out duplicate values in rectangu-
lar bars.

overlaps <string> How to handle overlapping dots or bins in the "bin", "weave",
and "hex" layouts (dots never overlap in the "swarm" or "bar" layouts).
For the purposes of this argument, dots are only considered to be overlap-
ping if they would be overlapping when dotsize = 1 and stackratio = 1;
i.e. if you set those arguments to other values, overlaps may still occur. One
of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually
only slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance
of dots to their desired positions, subject to the constraint that adjacent
dots do not overlap.

smooth <function | string> Smoother to apply to dot positions. One of:
• A function that takes a numeric vector of dot positions and returns a

smoothed version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function
name starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support
of the distribution; e.g. using smooth_bounded(bounds = ...).

overflow <string> How to handle overflow of dots beyond the extent of the
geom when a minimum binwidth (or an exact binwidth) is supplied. One
of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solu-

tions, such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum
binwidth times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay
with dots overlapping, consider setting overflow = "compress" and sup-
plying an exact or minimum dot size using binwidth.

stat_mcse_dots 247

verbose <scalar logical> If TRUE, print out the bin width of the dotplot. Can be
useful if you want to start from an automatically-selected bin width and then
adjust it manually. Bin width is printed both as data units and as normalized
parent coordinates or "npc"s (see unit()). Note that if you just want to
scale the selected bin width to fit within a desired area, it is probably easier
to use scale than to copy and scale binwidth manually, and if you just
want to provide constraints on the bin width, you can pass a length-2 vector
to binwidth.

subguide <function | string> Sub-guide used to annotate the thickness scale.
One of:

• A function that takes a scale argument giving a ggplot2::Scale object
and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use
the default subguide for their geom families (no subguide), which can
be modified by setting subguide_slab, subguide_dots, or subguide_spike;
see the documentation for those functions.

quantiles <scalar logical> Number of quantiles to plot in the dotplot. Use NA (the default)
to plot all data points. Setting this to a value other than NA will produce a quan-
tile dotplot: that is, a dotplot of quantiles from the sample or distribution (for
analytical distributions, the default of NA is taken to mean 100 quantiles). See
Kay et al. (2016) and Fernandes et al. (2018) for more information on quantile
dotplots.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

248 stat_mcse_dots

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

The dots family of stats and geoms are similar to ggplot2::geom_dotplot() but with a number
of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

stat_mcse_dots 249

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a blurry MCSE dot geometry which can be added to a ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.
• xmax or ymax: For intervals, the upper end of the interval from the interval function.
• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width

of the smallest interval containing that value of the slab.
• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest

interval containing that value of the slab.
• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")

is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

• se: For dots, the Monte Carlo Standard Error of the quantile corresponding to each dot.

https://pkg.mitchelloharawild.com/distributional/

250 stat_mcse_dots

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.

These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_blur_dots()) the following aesthetics
are supported by the underlying geom:

Dots-specific (aka Slab-specific) aesthetics

• sd: The standard deviation (in data units) of the blur associated with each dot.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

https://mjskay.github.io/ggdist/articles/thickness.html

stat_mcse_dots 251

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

252 stat_mcse_dots

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

stat_pointinterval 253

See Also

See geom_blur_dots() for the geom underlying this stat. See vignette("dotsinterval") for a
variety of examples of use.
Other dotsinterval stats: stat_dots(), stat_dotsinterval()

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

set.seed(1234)
data.frame(x = rnorm(1000)) %>%

ggplot(aes(x = x)) +
stat_mcse_dots(quantiles = 100, layout = "weave")

stat_pointinterval Point + multiple-interval plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_pointinterval() for creating point + multiple-
interval plots.
Roughly equivalent to:

stat_slabinterval(
geom = "pointinterval",
show_slab = FALSE

)

Usage

stat_pointinterval(
mapping = NULL,
data = NULL,
geom = "pointinterval",
position = "identity",
...,
point_interval = "median_qi",
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

254 stat_pointinterval

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_pointinterval()
and geom_pointinterval()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_pointinterval(), these include:

interval_size_domain <length-2 numeric> Minimum and maximum of the
values of the size and linewidth aesthetics that will be translated into
actual sizes for intervals drawn according to interval_size_range (see
the documentation for that argument.)

interval_size_range <length-2 numeric> This geom scales the raw size aes-
thetic values when drawing interval and point sizes, as they tend to be
too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point <scalar numeric> A multiplicative factor used to adjust the size
of the point relative to the size of the thickest interval line. If you wish to
specify point sizes directly, you can also use the point_size aesthetic and
scale_point_size_continuous() or scale_point_size_discrete();
sizes specified with that aesthetic will not be adjusted using fatten_point.

stat_pointinterval 255

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for
no arrows.

point_interval <function | string> A function from the point_interval() family (e.g., median_qi,
mean_qi, mode_hdi, etc), or a string giving the name of a function from that
family (e.g., "median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s
environment is searched for the function, followed by the ggdist environment).
This function determines the point summary (typically mean, median, or mode)
and interval type (quantile interval, qi; highest-density interval, hdi; or highest-
density continuous interval, hdci). Output will be converted to the appropri-
ate x- or y-based aesthetics depending on the value of orientation. See the
point_interval() family of functions for more information.

.width <numeric> The .width argument passed to point_interval: a vector of prob-
abilities to use that determine the widths of the resulting intervals. If multi-
ple probabilities are provided, multiple intervals per group are generated, each
with a different probability interval (and value of the corresponding .width and
level generated variables).

orientation <string> Whether this geom is drawn horizontally or vertically. One of:
• NA (default): automatically detect the orientation based on how the aesthet-

ics are assigned. Automatic detection works most of the time.
• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify

different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend <logical> Should this layer be included in the legends? Default is c(size =
FALSE), unlike most geoms, to match its common use cases. FALSE hides all
legends, TRUE shows all legends, and NA shows only those that are mapped (the
default for most geoms). It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

256 stat_pointinterval

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a point + multiple-interval geometry which can be added to a ggplot()
object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

https://pkg.mitchelloharawild.com/distributional/

stat_pointinterval 257

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_pointinterval()) the following aes-
thetics are supported by the underlying geom:

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

258 stat_pointinterval

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_pointinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_gradientinterval(),
stat_halfeye(), stat_histinterval(), stat_interval(), stat_slab(), stat_spike()

stat_ribbon 259

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_pointinterval()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_pointinterval()

stat_ribbon Multiple-ribbon plot (shortcut stat)

Description

A combination of stat_slabinterval() and geom_lineribbon() with sensible defaults for mak-
ing multiple-ribbon plots. While geom_lineribbon() is intended for use on data frames that have
already been summarized using a point_interval() function, stat_ribbon() is intended for use
directly on data frames of draws or of analytical distributions, and will perform the summarization
using a point_interval() function.

Roughly equivalent to:

stat_lineribbon(
show_point = FALSE

)

260 stat_ribbon

Usage

stat_ribbon(
mapping = NULL,
data = NULL,
geom = "lineribbon",
position = "identity",
...,
.width = c(0.5, 0.8, 0.95),
point_interval = "median_qi",
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_ribbon()
and geom_lineribbon()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_lineribbon(), these include:

step <scalar logical | string> Should the line/ribbon be drawn as a step func-
tion? One of:

• FALSE (default): do not draw as a step function.
• "mid" (or TRUE): draw steps midway between adjacent x values.
• "hv": draw horizontal-then-vertical steps.

stat_ribbon 261

• "vh": draw as vertical-then-horizontal steps.
TRUE is an alias for "mid", because for a step function with ribbons "mid"
is reasonable default (for the other two step approaches the ribbons at either
the very first or very last x value will not be visible).

.width <numeric> The .width argument passed to point_interval: a vector of prob-
abilities to use that determine the widths of the resulting intervals. If multi-
ple probabilities are provided, multiple intervals per group are generated, each
with a different probability interval (and value of the corresponding .width and
level generated variables).

point_interval <function | string> A function from the point_interval() family (e.g., median_qi,
mean_qi, mode_hdi, etc), or a string giving the name of a function from that
family (e.g., "median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s
environment is searched for the function, followed by the ggdist environment).
This function determines the point summary (typically mean, median, or mode)
and interval type (quantile interval, qi; highest-density interval, hdi; or highest-
density continuous interval, hdci). Output will be converted to the appropri-
ate x- or y-based aesthetics depending on the value of orientation. See the
point_interval() family of functions for more information.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:
• NA (default): automatically detect the orientation based on how the aesthet-

ics are assigned. Automatic detection works most of the time.
• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify

different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend <logical> Should this layer be included in the legends? NA, the default, includes
if any aesthetics are mapped. FALSE never includes, and TRUE always includes.
It can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

262 stat_ribbon

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a multiple-ribbon geometry which can be added to a ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

Aesthetics

The line+ribbon stats and geoms have a wide variety of aesthetics that control the appearance of
their two sub-geometries: the line and the ribbon.

These stats support the following aesthetics:

https://pkg.mitchelloharawild.com/distributional/

stat_ribbon 263

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_lineribbon()) the following aesthet-
ics are supported by the underlying geom:

Ribbon-specific aesthetics

• xmin: Left edge of the ribbon sub-geometry (if orientation = "horizontal").

• xmax: Right edge of the ribbon sub-geometry (if orientation = "horizontal").

• ymin: Lower edge of the ribbon sub-geometry (if orientation = "vertical").

• ymax: Upper edge of the ribbon sub-geometry (if orientation = "vertical").

• order: The order in which ribbons are drawn. Ribbons with the smallest mean value of
order are drawn first (i.e., will be drawn below ribbons with larger mean values of order).
If order is not supplied to geom_lineribbon(), -abs(xmax - xmin) or -abs(ymax - ymax)
(depending on orientation) is used, having the effect of drawing the widest (on average)
ribbons on the bottom. stat_lineribbon() uses order = after_stat(level) by default,
causing the ribbons generated from the largest .width to be drawn on the bottom.

Color aesthetics

• colour: (or color) The color of the line sub-geometry.

• fill: The fill color of the ribbon sub-geometry.

• alpha: The opacity of the line and ribbon sub-geometries.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Other aesthetics (these work as in standard geoms)

• group

See examples of some of these aesthetics in action in vignette("lineribbon"). Learn more about
the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn more
about basic ggplot aesthetics in vignette("ggplot2-specs").

264 stat_slab

See Also

See geom_lineribbon() for the geom underlying this stat.

Other lineribbon stats: stat_lineribbon()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(12345)
tibble(

x = rep(1:10, 100),
y = rnorm(1000, x)

) %>%
ggplot(aes(x = x, y = y)) +
stat_ribbon() +
scale_fill_brewer()

ON ANALYTICAL DISTRIBUTIONS
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
tibble(

x = 1:10,
sd = seq(1, 3, length.out = 10)

) %>%
ggplot(aes(x = x, ydist = dist_normal(x, sd))) +
stat_ribbon() +
scale_fill_brewer()

stat_slab Slab (ridge) plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_slab() for creating slab (ridge) plots.

Roughly equivalent to:

stat_slabinterval(
aes(size = NULL),
geom = "slab",
show_point = FALSE,
show_interval = FALSE,
show.legend = NA

)

stat_slab 265

Usage

stat_slab(
mapping = NULL,
data = NULL,
geom = "slab",
position = "identity",
...,
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = waiver(),
breaks = waiver(),
align = waiver(),
outline_bars = waiver(),
expand = FALSE,
limits = NULL,
n = waiver(),
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_slab()
and geom_slab()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-

266 stat_slab

ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slab(), these include:

subscale <function | string> Sub-scale used to scale values of the thickness
aesthetic within the groups determined by normalize. One of:

• A function that takes an x argument giving a numeric vector of values
to be scaled and then returns a thickness vector representing the scaled
values, such as subscale_thickness() or subscale_identity().

• A string giving the name of such a function when prefixed with "subscale_";
e.g. "thickness" or "identity". The value "thickness" using the
default subscale, which can be modified by setting subscale_thickness;
see the documentation for that function.

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

normalize <string> Groups within which to scale values of the thickness
aesthetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this

geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

fill_type <string> What type of fill to use when the fill color or alpha varies
within a slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the
svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-
detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-

https://mjskay.github.io/ggdist/articles/thickness.html
https://mjskay.github.io/ggdist/articles/thickness.html

stat_slab 267

tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back
to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

subguide <function | string> Sub-guide used to annotate the thickness scale.
One of:

• A function that takes a scale argument giving a ggplot2::Scale object
and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use
the default subguide for their geom families (no subguide), which can
be modified by setting subguide_slab, subguide_dots, or subguide_spike;
see the documentation for those functions.

p_limits <length-2 numeric> Probability limits. Used to determine the lower and upper
limits of analytical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample and the value of
the trim parameter). E.g., if this is c(.001, .999), then a slab is drawn for the
distribution from the quantile at p = .001 to the quantile at p = .999. If the lower
(respectively upper) limit is NA, then the lower (upper) limit will be the minimum
(maximum) of the distribution’s support if it is finite, and 0.001 (0.999) if it is
not finite. E.g., if p_limits is c(NA, NA), on a gamma distribution the effec-
tive value of p_limits would be c(0, .999) since the gamma distribution is
defined on (0, Inf); whereas on a normal distribution it would be equivalent
to c(.001, .999) since the normal distribution is defined on (-Inf, Inf).

density <function | string> Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust <scalar numeric | waiver> Passed to density (e.g. density_bounded()): Value
to multiply the bandwidth of the density estimator by. Default waiver() defers
to the default of the density estimator, which is usually 1.

trim <scalar logical | waiver> Passed to density (e.g. density_bounded()): Should
the density estimate be trimmed to the range of the data? Default waiver()
defers to the default of the density estimator, which is usually TRUE.

268 stat_slab

breaks <numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines the breakpoints defining bins. Default waiver() defers to the de-
fault of the density estimator, which is usually "Scott". Similar to (but not
exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align <scalar numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines how to align the breakpoints defining bins. Default waiver() de-
fers to the default of the density estimator, which is usually "none" (performs
no alignment). One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars <scalar logical | waiver> Passed to density (e.g. density_histogram()) and
also used for discrete analytical distributions (whose slabs are drawn as his-
tograms). Determines if outlines in between the bars are drawn. If waiver()
or FALSE (the default), the outline is drawn only along the tops of the bars. If
TRUE, outlines in between bars are also drawn (though you may have to set the
slab_color or color aesthetic to see the outlines).

expand <logical> For sample data, should the slab be expanded to the limits of the scale?
Default FALSE. Can be a length-two logical vector to control expansion to the
lower and upper limit respectively.

limits <length-2 numeric> Manually-specified limits for the slab, as a vector of length
two. These limits are combined with those computed based on p_limits as well
as the limits defined by the scales of the plot to determine the limits used to draw
the slab functions: these limits specify the maximal limits; i.e., if specified, the
limits will not be wider than these (but may be narrower). Use NA to leave a
limit alone; e.g. limits = c(0, NA) will ensure that the lower limit does not go
below 0, but let the upper limit be determined by either p_limits or the scale
settings.

stat_slab 269

n <scalar numeric> Number of points at which to evaluate the function that defines
the slab. Also passed to density (e.g. density_bounded()). Default waiver()
uses the value 501 for analytical distributions and defers to the default of the
density estimator for sample-based distributions, which is also usually 501.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend <logical> Should this layer be included in the legends? Default is c(size =
FALSE), unlike most geoms, to match its common use cases. FALSE hides all
legends, TRUE shows all legends, and NA shows only those that are mapped (the
default for most geoms). It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should

https://pkg.mitchelloharawild.com/distributional/

270 stat_slab

correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a slab (ridge) geometry which can be added to a ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

stat_slab 271

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_slab()) the following aesthetics are
supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

https://mjskay.github.io/ggdist/articles/thickness.html

272 stat_slab

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.
• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the

outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.
• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.
• slab_alpha: Override for alpha: the opacity of the slab.
• slab_linewidth: Override for linwidth: the width of the outline of the slab.
• slab_linetype: Override for linetype: the line type of the outline of the slab.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slab() for the geom underlying this stat. See stat_slabinterval() for the stat this
shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_gradientinterval(),
stat_halfeye(), stat_histinterval(), stat_interval(), stat_pointinterval(), stat_spike()

stat_slabinterval 273

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_slab()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_slab()

RIDGE PLOTS
"ridge" plots can be created by expanding the slabs to the limits of the plot
(expand = TRUE), allowing the density estimator to be nonzero outside the
limits of the data (trim = FALSE), and increasing the height of the slabs.
data.frame(

group = letters[1:3],
value = rnorm(3000, 3:1)

) %>%
ggplot(aes(y = group, x = value)) +
stat_slab(color = "black", expand = TRUE, trim = FALSE, height = 2)

stat_slabinterval Slab + interval plots for sample data and analytical distributions (gg-
plot stat)

Description

"Meta" stat for computing distribution functions (densities or CDFs) + intervals for use with geom_slabinterval().
Useful for creating eye plots, half-eye plots, CCDF bar plots, gradient plots, histograms, and more.
Sample data can be supplied to the x and y aesthetics or analytical distributions (in a variety of
formats) can be supplied to the xdist and ydist aesthetics. See Details.

274 stat_slabinterval

Usage

stat_slabinterval(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = waiver(),
breaks = waiver(),
align = waiver(),
outline_bars = waiver(),
expand = FALSE,
point_interval = "median_qi",
limits = NULL,
n = waiver(),
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_slabinterval()
and geom_slabinterval().

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

stat_slabinterval 275

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

subscale <function | string> Sub-scale used to scale values of the thickness
aesthetic within the groups determined by normalize. One of:

• A function that takes an x argument giving a numeric vector of values
to be scaled and then returns a thickness vector representing the scaled
values, such as subscale_thickness() or subscale_identity().

• A string giving the name of such a function when prefixed with "subscale_";
e.g. "thickness" or "identity". The value "thickness" using the
default subscale, which can be modified by setting subscale_thickness;
see the documentation for that function.

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

normalize <string> Groups within which to scale values of the thickness
aesthetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this

geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

fill_type <string> What type of fill to use when the fill color or alpha varies
within a slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the
svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-

https://mjskay.github.io/ggdist/articles/thickness.html
https://mjskay.github.io/ggdist/articles/thickness.html

276 stat_slabinterval

detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-
tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back
to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

interval_size_domain <length-2 numeric> Minimum and maximum of the
values of the size and linewidth aesthetics that will be translated into
actual sizes for intervals drawn according to interval_size_range (see
the documentation for that argument.)

interval_size_range <length-2 numeric> This geom scales the raw size aes-
thetic values when drawing interval and point sizes, as they tend to be
too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point <scalar numeric> A multiplicative factor used to adjust the size
of the point relative to the size of the thickest interval line. If you wish to
specify point sizes directly, you can also use the point_size aesthetic and
scale_point_size_continuous() or scale_point_size_discrete();
sizes specified with that aesthetic will not be adjusted using fatten_point.

arrow <arrow | NULL> Type of arrow heads to use on the interval, or NULL for
no arrows.

subguide <function | string> Sub-guide used to annotate the thickness scale.
One of:

• A function that takes a scale argument giving a ggplot2::Scale object
and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use
the default subguide for their geom families (no subguide), which can
be modified by setting subguide_slab, subguide_dots, or subguide_spike;
see the documentation for those functions.

p_limits <length-2 numeric> Probability limits. Used to determine the lower and upper
limits of analytical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample and the value of

stat_slabinterval 277

the trim parameter). E.g., if this is c(.001, .999), then a slab is drawn for the
distribution from the quantile at p = .001 to the quantile at p = .999. If the lower
(respectively upper) limit is NA, then the lower (upper) limit will be the minimum
(maximum) of the distribution’s support if it is finite, and 0.001 (0.999) if it is
not finite. E.g., if p_limits is c(NA, NA), on a gamma distribution the effec-
tive value of p_limits would be c(0, .999) since the gamma distribution is
defined on (0, Inf); whereas on a normal distribution it would be equivalent
to c(.001, .999) since the normal distribution is defined on (-Inf, Inf).

density <function | string> Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust <scalar numeric | waiver> Passed to density (e.g. density_bounded()): Value
to multiply the bandwidth of the density estimator by. Default waiver() defers
to the default of the density estimator, which is usually 1.

trim <scalar logical | waiver> Passed to density (e.g. density_bounded()): Should
the density estimate be trimmed to the range of the data? Default waiver()
defers to the default of the density estimator, which is usually TRUE.

breaks <numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines the breakpoints defining bins. Default waiver() defers to the de-
fault of the density estimator, which is usually "Scott". Similar to (but not
exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align <scalar numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines how to align the breakpoints defining bins. Default waiver() de-
fers to the default of the density estimator, which is usually "none" (performs
no alignment). One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

278 stat_slabinterval

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars <scalar logical | waiver> Passed to density (e.g. density_histogram()) and
also used for discrete analytical distributions (whose slabs are drawn as his-
tograms). Determines if outlines in between the bars are drawn. If waiver()
or FALSE (the default), the outline is drawn only along the tops of the bars. If
TRUE, outlines in between bars are also drawn (though you may have to set the
slab_color or color aesthetic to see the outlines).

expand <logical> For sample data, should the slab be expanded to the limits of the scale?
Default FALSE. Can be a length-two logical vector to control expansion to the
lower and upper limit respectively.

point_interval <function | string> A function from the point_interval() family (e.g., median_qi,
mean_qi, mode_hdi, etc), or a string giving the name of a function from that
family (e.g., "median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s
environment is searched for the function, followed by the ggdist environment).
This function determines the point summary (typically mean, median, or mode)
and interval type (quantile interval, qi; highest-density interval, hdi; or highest-
density continuous interval, hdci). Output will be converted to the appropri-
ate x- or y-based aesthetics depending on the value of orientation. See the
point_interval() family of functions for more information.

limits <length-2 numeric> Manually-specified limits for the slab, as a vector of length
two. These limits are combined with those computed based on p_limits as well
as the limits defined by the scales of the plot to determine the limits used to draw
the slab functions: these limits specify the maximal limits; i.e., if specified, the
limits will not be wider than these (but may be narrower). Use NA to leave a
limit alone; e.g. limits = c(0, NA) will ensure that the lower limit does not go
below 0, but let the upper limit be determined by either p_limits or the scale
settings.

n <scalar numeric> Number of points at which to evaluate the function that defines
the slab. Also passed to density (e.g. density_bounded()). Default waiver()
uses the value 501 for analytical distributions and defers to the default of the
density estimator for sample-based distributions, which is also usually 501.

.width <numeric> The .width argument passed to point_interval: a vector of prob-
abilities to use that determine the widths of the resulting intervals. If multi-
ple probabilities are provided, multiple intervals per group are generated, each
with a different probability interval (and value of the corresponding .width and
level generated variables).

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

stat_slabinterval 279

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

show.legend <logical> Should this layer be included in the legends? Default is c(size =
FALSE), unlike most geoms, to match its common use cases. FALSE hides all
legends, TRUE shows all legends, and NA shows only those that are mapped (the
default for most geoms). It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

A highly configurable stat for generating a variety of plots that combine a "slab" that describes a
distribution plus a point summary and any number of intervals. Several "shortcut" stats are provided
which combine multiple options to create useful geoms, particularly eye plots (a violin plot of
density plus interval), half-eye plots (a density plot plus interval), CCDF bar plots (a complementary
CDF plus interval), and gradient plots (a density encoded in color alpha plus interval).

The shortcut stats include:

• stat_eye(): Eye plots (violin + interval)

• stat_halfeye(): Half-eye plots (density + interval)

• stat_ccdfinterval(): CCDF bar plots (CCDF + interval)

• stat_cdfinterval(): CDF bar plots (CDF + interval)

• stat_gradientinterval(): Density gradient + interval plots

• stat_slab(): Density plots

• stat_histinterval(): Histogram + interval plots

• stat_pointinterval(): Point + interval plots

• stat_interval(): Interval plots

280 stat_slabinterval

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a slab or combined slab+interval geometry which can be added to a
ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

https://pkg.mitchelloharawild.com/distributional/

stat_slabinterval 281

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

https://mjskay.github.io/ggdist/articles/thickness.html

282 stat_slabinterval

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

stat_slabinterval 283

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slabinterval() for more information on the geom these stats use by default and some
of the options it has. See vignette("slabinterval") for a variety of examples of use.

284 stat_slabinterval

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

EXAMPLES ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c", "c", "c"),
value = rnorm(2500, mean = c(5, 7, 9, 9, 9), sd = c(1, 1.5, 1, 1, 1))

)

here are vertical eyes:
df %>%

ggplot(aes(x = group, y = value)) +
stat_eye()

note the sample size is not automatically incorporated into the
area of the densities in case one wishes to plot densities against
a reference (e.g. a prior distribution).
But you may wish to account for sample size if using these geoms
for something other than visualizing posteriors; in which case
you can use after_stat(f*n):
df %>%

ggplot(aes(x = group, y = value)) +
stat_eye(aes(thickness = after_stat(pdf*n)))

EXAMPLES ON ANALYTICAL DISTRIBUTIONS

dist_df = tribble(
~group, ~subgroup, ~mean, ~sd,
"a", "h", 5, 1,
"b", "h", 7, 1.5,
"c", "h", 8, 1,
"c", "i", 9, 1,
"c", "j", 7, 1

)

Using functions from the distributional package (like dist_normal()) with the
dist aesthetic can lead to more compact/expressive specifications

dist_df %>%
ggplot(aes(x = group, ydist = dist_normal(mean, sd), fill = subgroup)) +
stat_eye(position = "dodge")

using the old character vector + args approach
dist_df %>%

ggplot(aes(x = group, dist = "norm", arg1 = mean, arg2 = sd, fill = subgroup)) +

stat_spike 285

stat_eye(position = "dodge")

the stat_slabinterval family applies a Jacobian adjustment to densities
when plotting on transformed scales in order to plot them correctly.
It determines the Jacobian using symbolic differentiation if possible,
using stats::D(). If symbolic differentation fails, it falls back
to numericDeriv(), which is less reliable; therefore, it is
advisable to use scale transformation functions that are defined in
terms of basic math functions so that their derivatives can be
determined analytically (most of the transformation functions in the
scales package currently have this property).
For example, here is a log-Normal distribution plotted on the log
scale, where it will appear Normal:
data.frame(dist = "lnorm", logmean = log(10), logsd = 2*log(10)) %>%

ggplot(aes(y = 1, dist = dist, arg1 = logmean, arg2 = logsd)) +
stat_halfeye() +
scale_x_log10(breaks = 10^seq(-5,7, by = 2))

see vignette("slabinterval") for many more examples.

stat_spike Spike plot (ggplot2 stat)

Description

Stat for drawing "spikes" (optionally with points on them) at specific points on a distribution (nu-
merical or determined as a function of the distribution), intended for annotating stat_slabinterval()
geometries.

Usage

stat_spike(
mapping = NULL,
data = NULL,
geom = "spike",
position = "identity",
...,
at = "median",
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = waiver(),
breaks = waiver(),
align = waiver(),
outline_bars = waiver(),
expand = FALSE,
limits = NULL,
n = waiver(),

286 stat_spike

orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
check.aes = TRUE,
check.param = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom <Geom | string> Use to override the default connection between stat_spike()
and geom_spike()

position <Position | string> Position adjustment, either as a string, or the result of a call to
a position adjustment function. Setting this equal to "dodge" (position_dodge())
or "dodgejust" (position_dodgejust()) can be useful if you have overlap-
ping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_spike(), these include:

subguide <function | string> Sub-guide used to annotate the thickness scale.
One of:

• A function that takes a scale argument giving a ggplot2::Scale object
and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide_";
e.g. "axis" or "none". The values "slab", "dots", and "spike" use
the default subguide for their geom families (no subguide), which can
be modified by setting subguide_slab, subguide_dots, or subguide_spike;
see the documentation for those functions.

subscale <function | string> Sub-scale used to scale values of the thickness
aesthetic within the groups determined by normalize. One of:

stat_spike 287

• A function that takes an x argument giving a numeric vector of values
to be scaled and then returns a thickness vector representing the scaled
values, such as subscale_thickness() or subscale_identity().

• A string giving the name of such a function when prefixed with "subscale_";
e.g. "thickness" or "identity". The value "thickness" using the
default subscale, which can be modified by setting subscale_thickness;
see the documentation for that function.

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

normalize <string> Groups within which to scale values of the thickness
aesthetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this

geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

arrow <arrow | NULL> Type of arrow heads to use on the spike, or NULL for no
arrows.

at <numeric | function | character | list> The points at which to evaluate the PDF
and CDF of the distribution. One of:

• numeric vector: points to evaluate the PDF and CDF of the distributions at.
• function or character vector: function (or names of functions) which, when

applied on a distribution-like object (e.g. a distributional object or a posterior::rvar()),
returns a vector of values to evaluate the distribution functions at.

• a list where each element is any of the above (e.g. a numeric, function,
or name of a function): the evaluation points determined by each element
of the list are concatenated together. This means, e.g., c(0, median, qi)
would add a spike at 0, the median, and the endpoints of the qi of the
distribution.

The values of at are also converted into a character vector which is supplied
as a computed variable (also called at) generated by this stat, which can be
mapped onto aesthetics using after_stat(). Non-empty names can be used to
override the values of the computed variable; e.g. at = c(zero = 0, "median",
mode = "Mode") will generate a computed variable with the values c("zero",
"median", "mode") that is evaluated at 0, the median, and the mode of the
distribution.

p_limits <length-2 numeric> Probability limits. Used to determine the lower and upper
limits of analytical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample and the value of

https://mjskay.github.io/ggdist/articles/thickness.html
https://mjskay.github.io/ggdist/articles/thickness.html

288 stat_spike

the trim parameter). E.g., if this is c(.001, .999), then a slab is drawn for the
distribution from the quantile at p = .001 to the quantile at p = .999. If the lower
(respectively upper) limit is NA, then the lower (upper) limit will be the minimum
(maximum) of the distribution’s support if it is finite, and 0.001 (0.999) if it is
not finite. E.g., if p_limits is c(NA, NA), on a gamma distribution the effec-
tive value of p_limits would be c(0, .999) since the gamma distribution is
defined on (0, Inf); whereas on a normal distribution it would be equivalent
to c(.001, .999) since the normal distribution is defined on (-Inf, Inf).

density <function | string> Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust <scalar numeric | waiver> Passed to density (e.g. density_bounded()): Value
to multiply the bandwidth of the density estimator by. Default waiver() defers
to the default of the density estimator, which is usually 1.

trim <scalar logical | waiver> Passed to density (e.g. density_bounded()): Should
the density estimate be trimmed to the range of the data? Default waiver()
defers to the default of the density estimator, which is usually TRUE.

breaks <numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines the breakpoints defining bins. Default waiver() defers to the de-
fault of the density estimator, which is usually "Scott". Similar to (but not
exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align <scalar numeric | function | string | waiver> Passed to density (e.g. density_histogram()):
Determines how to align the breakpoints defining bins. Default waiver() de-
fers to the default of the density estimator, which is usually "none" (performs
no alignment). One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

stat_spike 289

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars <scalar logical | waiver> Passed to density (e.g. density_histogram()) and
also used for discrete analytical distributions (whose slabs are drawn as his-
tograms). Determines if outlines in between the bars are drawn. If waiver()
or FALSE (the default), the outline is drawn only along the tops of the bars. If
TRUE, outlines in between bars are also drawn (though you may have to set the
slab_color or color aesthetic to see the outlines).

expand <logical> For sample data, should the slab be expanded to the limits of the scale?
Default FALSE. Can be a length-two logical vector to control expansion to the
lower and upper limit respectively.

limits <length-2 numeric> Manually-specified limits for the slab, as a vector of length
two. These limits are combined with those computed based on p_limits as well
as the limits defined by the scales of the plot to determine the limits used to draw
the slab functions: these limits specify the maximal limits; i.e., if specified, the
limits will not be wider than these (but may be narrower). Use NA to leave a
limit alone; e.g. limits = c(0, NA) will ensure that the lower limit does not go
below 0, but let the upper limit be determined by either p_limits or the scale
settings.

n <scalar numeric> Number of points at which to evaluate the function that defines
the slab. Also passed to density (e.g. density_bounded()). Default waiver()
uses the value 501 for analytical distributions and defers to the default of the
density estimator for sample-based distributions, which is also usually 501.

orientation <string> Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm <scalar logical> If FALSE, the default, missing values are removed with a warn-
ing. If TRUE, missing values are silently removed.

290 stat_spike

show.legend <logical> Should this layer be included in the legends? Default is c(size =
FALSE), unlike most geoms, to match its common use cases. FALSE hides all
legends, TRUE shows all legends, and NA shows only those that are mapped (the
default for most geoms). It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check.aes, check.param
If TRUE, the default, will check that supplied parameters and aesthetics are un-
derstood by the geom or stat. Use FALSE to suppress the checks.

Details

This stat computes slab values (i.e. PDF and CDF values) at specified locations on a distribution,
as determined by the at parameter.

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a spike geometry which can be added to a ggplot() object.

Aesthetics

The spike geom has a wide variety of aesthetics that control the appearance of its two sub-geometries:
the spike and the point.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

https://pkg.mitchelloharawild.com/distributional/

stat_spike 291

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_spike()) the following aesthetics are
supported by the underlying geom:

Spike-specific (aka Slab-specific) aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

Color aesthetics

• colour: (or color) The color of the spike and point sub-geometries.

• fill: The fill color of the point sub-geometry.

• alpha: The opacity of the spike and point sub-geometries.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the spike sub-geometry.

• size: Size of the point sub-geometry.

• stroke: Width of the outline around the point sub-geometry.

https://mjskay.github.io/ggdist/articles/thickness.html

292 stat_spike

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the spike.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

• at: For spikes, a character vector of names of the functions or expressions used to determine
the points at which the slab functions were evaluated to create spikes. Values of this computed
variable are determined by the at parameter; see its description above.

See Also

See geom_spike() for the geom underlying this stat. See stat_slabinterval() for the stat this
shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_gradientinterval(),
stat_halfeye(), stat_histinterval(), stat_interval(), stat_pointinterval(), stat_slab()

student_t 293

Examples

library(ggplot2)
library(distributional)
library(dplyr)

df = tibble(
d = c(dist_normal(1), dist_gamma(2,2)), g = c("a", "b")

)

annotate the density at the mode of a distribution
df %>%

ggplot(aes(y = g, xdist = d)) +
stat_slab(aes(xdist = d)) +
stat_spike(at = "Mode") +
need shared thickness scale so that stat_slab and geom_spike line up
scale_thickness_shared()

annotate the endpoints of intervals of a distribution
here we'll use an arrow instead of a point by setting size = 0
arrow_spec = arrow(angle = 45, type = "closed", length = unit(4, "pt"))
df %>%

ggplot(aes(y = g, xdist = d)) +
stat_halfeye(point_interval = mode_hdci) +
stat_spike(
at = function(x) hdci(x, .width = .66),
size = 0, arrow = arrow_spec, color = "blue", linewidth = 0.75

) +
scale_thickness_shared()

annotate quantiles of a sample
set.seed(1234)
data.frame(x = rnorm(1000, 1:2), g = c("a","b")) %>%

ggplot(aes(x, g)) +
stat_slab() +
stat_spike(at = function(x) quantile(x, ppoints(10))) +
scale_thickness_shared()

student_t Scaled and shifted Student’s t distribution

Description

Density, distribution function, quantile function and random generation for the scaled and shifted
Student’s t distribution, parameterized by degrees of freedom (df), location (mu), and scale (sigma).

Usage

dstudent_t(x, df, mu = 0, sigma = 1, log = FALSE)

294 student_t

pstudent_t(q, df, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)

qstudent_t(p, df, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)

rstudent_t(n, df, mu = 0, sigma = 1)

Arguments

x, q vector of quantiles.

df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

mu <numeric> Location parameter (median).

sigma <numeric> Scale parameter.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

Value

• dstudent_t gives the density

• pstudent_t gives the cumulative distribution function (CDF)

• qstudent_t gives the quantile function (inverse CDF)

• rstudent_t generates random draws.

The length of the result is determined by n for rstudent_t, and is the maximum of the lengths of
the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements
of the logical arguments are used.

See Also

parse_dist() and parsing distribution specs and the stat_slabinterval() family of stats for
visualizing them.

Examples

library(dplyr)
library(ggplot2)

expand.grid(
df = c(3,5,10,30),
scale = c(1,1.5)

) %>%
ggplot(aes(y = 0, dist = "student_t", arg1 = df, arg2 = 0, arg3 = scale, color = ordered(df))) +
stat_slab(p_limits = c(.01, .99), fill = NA) +

sub-geometry-scales 295

scale_y_continuous(breaks = NULL) +
facet_grid(~ scale) +
labs(

title = "dstudent_t(x, df, 0, sigma)",
subtitle = "Scale (sigma)",
y = NULL,
x = NULL

) +
theme_ggdist() +
theme(axis.title = element_text(hjust = 0))

sub-geometry-scales Sub-geometry scales for geom_slabinterval (ggplot2 scales)

Description

These scales allow more specific aesthetic mappings to be made when using geom_slabinterval()
and stats/geoms based on it (like eye plots).

Usage

scale_point_colour_discrete(..., aesthetics = "point_colour")

scale_point_color_discrete(..., aesthetics = "point_colour")

scale_point_colour_continuous(
...,
aesthetics = "point_colour",
guide = guide_colourbar2()

)

scale_point_color_continuous(
...,
aesthetics = "point_colour",
guide = guide_colourbar2()

)

scale_point_fill_discrete(..., aesthetics = "point_fill")

scale_point_fill_continuous(
...,
aesthetics = "point_fill",
guide = guide_colourbar2()

)

scale_point_alpha_continuous(..., range = c(0.1, 1))

296 sub-geometry-scales

scale_point_alpha_discrete(..., range = c(0.1, 1))

scale_point_size_continuous(..., range = c(1, 6))

scale_point_size_discrete(..., range = c(1, 6), na.translate = FALSE)

scale_interval_colour_discrete(..., aesthetics = "interval_colour")

scale_interval_color_discrete(..., aesthetics = "interval_colour")

scale_interval_colour_continuous(
...,
aesthetics = "interval_colour",
guide = guide_colourbar2()

)

scale_interval_color_continuous(
...,
aesthetics = "interval_colour",
guide = guide_colourbar2()

)

scale_interval_alpha_continuous(..., range = c(0.1, 1))

scale_interval_alpha_discrete(..., range = c(0.1, 1))

scale_interval_size_continuous(..., range = c(1, 6))

scale_interval_size_discrete(..., range = c(1, 6), na.translate = FALSE)

scale_interval_linetype_discrete(..., na.value = "blank")

scale_interval_linetype_continuous(...)

scale_slab_colour_discrete(..., aesthetics = "slab_colour")

scale_slab_color_discrete(..., aesthetics = "slab_colour")

scale_slab_colour_continuous(
...,
aesthetics = "slab_colour",
guide = guide_colourbar2()

)

scale_slab_color_continuous(
...,
aesthetics = "slab_colour",
guide = guide_colourbar2()

sub-geometry-scales 297

)

scale_slab_fill_discrete(..., aesthetics = "slab_fill")

scale_slab_fill_continuous(
...,
aesthetics = "slab_fill",
guide = guide_colourbar2()

)

scale_slab_alpha_continuous(
...,
limits = function(l) c(min(0, l[[1]]), l[[2]]),
range = c(0, 1)

)

scale_slab_alpha_discrete(..., range = c(0.1, 1))

scale_slab_size_continuous(..., range = c(1, 6))

scale_slab_size_discrete(..., range = c(1, 6), na.translate = FALSE)

scale_slab_linewidth_continuous(..., range = c(1, 6))

scale_slab_linewidth_discrete(..., range = c(1, 6), na.translate = FALSE)

scale_slab_linetype_discrete(..., na.value = "blank")

scale_slab_linetype_continuous(...)

scale_slab_shape_discrete(..., solid = TRUE)

scale_slab_shape_continuous(...)

guide_colourbar2(...)

guide_colorbar2(...)

Arguments

... Arguments passed to underlying scale or guide functions. E.g. scale_point_color_discrete
passes arguments to scale_color_discrete(). See those functions for more
details.

aesthetics <character> Names of aesthetics to set scales for.

guide <Guide | string> Guide to use for legends for an aesthetic.

range <length-2 numeric> The minimum and maximum size of the plotting symbol
after transformation.

na.translate <scalar logical> In discrete scales, should we show missing values?

298 sub-geometry-scales

na.value <linetype> When na.translate is TRUE, what value should be shown?
limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

solid Should the shapes be solid, TRUE, or hollow, FALSE?

Details

The following additional scales / aesthetics are defined for use with geom_slabinterval() and
related geoms:

scale_point_color_* Point color
scale_point_fill_* Point fill color
scale_point_alpha_* Point alpha level / opacity
scale_point_size_* Point size
scale_interval_color_* Interval line color
scale_interval_alpha_* Interval alpha level / opacity
scale_interval_linetype_* Interval line type
scale_slab_color_* Slab outline color
scale_slab_fill_* Slab fill color
scale_slab_alpha_* Slab alpha level / opacity. The default settings of scale_slab_alpha_continuous

differ from scale_alpha_continuous() and are designed for gradient plots (e.g. stat_gradientinterval())
by ensuring that densities of 0 get mapped to 0 in the output.

scale_slab_linewidth_* Slab outline line width
scale_slab_linetype_* Slab outline line type
scale_slab_shape_* Slab dot shape (for geom_dotsinterval())

See the corresponding scale documentation in ggplot for more information; e.g. scale_color_discrete(),
scale_color_continuous(), etc.

Other scale functions can be used with the aesthetics/scales defined here by using the aesthetics
argument to that scale function. For example, to use color brewer scales with the point_color
aesthetic:

scale_color_brewer(..., aesthetics = "point_color")

With continuous color scales, you may also need to provide a guide as the default guide does not
work properly; this is what guide_colorbar2 is for:

scale_color_distiller(..., guide = "colorbar2", aesthetics = "point_color")

These scales have been deprecated:

scale_interval_size_* Use scale_linewidth_*

scale_slab_size_* Slab scale_size_linewidth_*

sub-geometry-scales 299

Value

A ggplot2::Scale representing one of the aesthetics used to target the appearance of specific parts of
composite ggdist geoms. Can be added to a ggplot() object.

Author(s)

Matthew Kay

See Also

Other ggplot2 scales: scale_color_discrete(), scale_color_continuous(), etc.

Other ggdist scales: scale_colour_ramp, scale_side_mirrored(), scale_thickness

Examples

library(dplyr)
library(ggplot2)

This plot shows how to set multiple specific aesthetics
NB it is very ugly and is only for demo purposes.
data.frame(distribution = "Normal(1,2)") %>%

parse_dist(distribution) %>%
ggplot(aes(y = distribution, xdist = .dist, args = .args)) +
stat_halfeye(
shape = 21, # this point shape has a fill and outline
point_color = "red",
point_fill = "black",
point_alpha = .1,
point_size = 6,
stroke = 2,
interval_color = "blue",
interval line widths are scaled from [1, 6] onto [0.6, 1.4] by default
see the interval_size_range parameter in help("geom_slabinterval")
linewidth = 8,
interval_linetype = "dashed",
interval_alpha = .25,
fill sets the fill color of the slab (here the density)
slab_color = "green",
slab_fill = "purple",
slab_linewidth = 3,
slab_linetype = "dotted",
slab_alpha = .5

)

300 subguide_axis

subguide_axis Axis sub-guide for thickness scales

Description

This is a sub-guide intended for annotating the thickness and dot-count subscales in ggdist. It can
be used with the subguide parameter of geom_slabinterval() and geom_dotsinterval().

Supports automatic partial function application with waived arguments.

Usage

subguide_axis(
values,
title = NULL,
breaks = waiver(),
labels = waiver(),
position = 0,
just = 0,
label_side = "topright",
orientation = "horizontal",
theme = theme_get()

)

subguide_inside(..., label_side = "inside")

subguide_outside(..., label_side = "outside", just = 1)

subguide_integer(..., breaks = scales::breaks_extended(Q = c(1, 5, 2, 4, 3)))

subguide_count(..., breaks = scales::breaks_width(1))

subguide_slab(values, ...)

subguide_dots(values, ...)

subguide_spike(values, ...)

Arguments

values <numeric> Values used to construct the scale used for this guide. Typically
provided automatically by geom_slabinterval().

title <string> The title of the scale shown on the sub-guide’s axis.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object

subguide_axis 301

• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Note that for po-
sition scales, limits are provided after scale expansion. Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

position <scalar numeric> Value between 0 and 1 giving the position of the guide relative
to the axis: 0 causes the sub-guide to be drawn on the left or bottom depending
on if orientation is "horizontal" or "vertical", and 1 causes the sub-guide
to be drawn on the top or right depending on if orientation is "horizontal"
or "vertical". May also be a string indicating the position: "top", "right",
"bottom", "left", "topright", "topleft", "bottomright", or "bottomleft".

just <scalar numeric> Value between 0 and 1 giving the justification of the guide
relative to its position: 0 means aligned towards the inside of the axis edge, 1
means aligned towards the outside of the axis edge.

label_side <string> Which side of the axis to draw the ticks and labels on. "topright",
"top", and "right" are synonyms which cause the labels to be drawn on the
top or the right depending on if orientation is "horizontal" or "vertical".
"bottomleft", "bottom", and "left" are synonyms which cause the labels to
be drawn on the bottom or the left depending on if orientation is "horizontal"
or "vertical". "topleft" causes the labels to be drawn on the top or the left,
and "bottomright" causes the labels to be drawn on the bottom or the right.
"inside" causes the labels to be drawn on the side closest to the inside of the
chart, depending on position, and "outside" on the side closest to the outside
of the chart.

orientation <string> Orientation of the geometry this sub-guide is for. One of "horizontal"
("y") or "vertical" ("x"). See the orientation parameter to geom_slabinterval().

theme <theme> Theme used to determine the style that the sub-guide elements are
drawn in. The title label is drawn using the "axis.title.x" or "axis.title.y"
theme setting, and the axis line, ticks, and tick labels are drawn using guide_axis(),
so the same theme settings that normally apply to axis guides will be followed.

... Arguments passed to other functions, typically back to subguide_axis() itself.

Details

subguide_inside() is a shortcut for drawing labels inside of the chart region.

subguide_outside() is a shortcut for drawing labels outside of the chart region.

302 subguide_axis

subguide_integer() only draws breaks that are integer values, useful for labeling counts in
geom_dots().

subguide_count() is a shortcut for drawing labels where every whole number is labeled, useful for
labeling counts in geom_dots(). If your max count is large, subguide_integer() may be better.

subguide_slab(), subguide_dots(), and subguide_spike() are aliases for subguide_none()
that allow you to change the default subguide used for the geom_slabinterval(), geom_dotsinterval(),
and geom_spike() families. If you overwrite these in the global environment, you can set the cor-
responding default subguide. For example:

subguide_slab = ggdist::subguide_inside(position = "right")

This will cause geom_slabinterval()s to default to having a guide on the right side of the geom.

See Also

The thickness datatype.

The thickness aesthetic of geom_slabinterval().

scale_thickness_shared(), for setting a thickness scale across all geometries using the thickness
aesthetic.

subscale_thickness(), for setting a thickness sub-scale within a single geom_slabinterval().

Other sub-guides: subguide_none()

Examples

library(ggplot2)
library(distributional)

df = data.frame(d = dist_normal(2:3, 2:3), g = c("a", "b"))

subguides allow you to label thickness axes
ggplot(df, aes(xdist = d, y = g)) +

stat_slabinterval(subguide = "inside")

they respect normalization and use of scale_thickness_shared()
ggplot(df, aes(xdist = d, y = g)) +

stat_slabinterval(subguide = "inside", normalize = "groups")

they can also be positioned outside the plot area, though
this typically requires manually adjusting plot margins
ggplot(df, aes(xdist = d, y = g)) +
stat_slabinterval(subguide = subguide_outside(title = "density", position = "right")) +
theme(plot.margin = margin(5.5, 50, 5.5, 5.5))

any of the subguide types will also work to indicate bin counts in
geom_dots(); subguide_integer() and subguide_count() can be useful for
dotplots as they only label integers / whole numbers:
df = data.frame(d = dist_gamma(2:3, 2:3), g = c("a", "b"))
ggplot(df, aes(xdist = d, y = g)) +

stat_dots(subguide = subguide_count(label_side = "left", title = "count")) +

subguide_none 303

scale_y_discrete(expand = expansion(add = 0.1)) +
scale_x_continuous(expand = expansion(add = 0.5))

subguide_none Empty sub-guide for thickness scales

Description

This is a blank sub-guide that omits annotations for the thickness and dot-count sub-scales in
ggdist. It can be used with the subguide parameter of geom_slabinterval() and geom_dotsinterval().

Supports automatic partial function application with waived arguments.

Usage

subguide_none(values, ...)

Arguments

values <numeric> Values used to construct the scale used for this guide. Typically
provided automatically by geom_slabinterval().

... ignored.

See Also

Other sub-guides: subguide_axis()

subscale_identity Identity sub-scale for thickness aesthetic

Description

This is an identity sub-scale for the thickness aesthetic in ggdist. It returns its input as a thickness
vector without rescaling. It can be used with the subscale parameter of geom_slabinterval().

Usage

subscale_identity(x)

Arguments

x <numeric> Vector to be rescaled. Typically provided automatically by geom_slabinterval().

Value

A thickness vector of the same length as x, with infinite values in x squished into the data range.

304 subscale_thickness

See Also

Other sub-scales: subscale_thickness()

subscale_thickness Sub-scale for thickness aesthetic

Description

This is a sub-scale intended for adjusting the scaling of the thickness aesthetic at a geometry (or
sub-geometry) level in ggdist. It can be used with the subscale parameter of geom_slabinterval().

Supports automatic partial function application with waived arguments.

Usage

subscale_thickness(
x,
limits = function(l) c(min(0, l[1]), l[2]),
expand = c(0, 0)

)

Arguments

x <numeric> Vector to be rescaled. Typically provided automatically by geom_slabinterval().
limits <length-2 numeric | function | NULL> One of:

• A numeric vector of length two providing the limits of the scale. Use NA to
use the default minimum or maximum.

• A function that accepts a length-2 numeric vector of the automatic limits
and returns new limits. Unlike positional scales, these limits will not re-
move data.

• NULL to use the range of the data
expand <numeric> Vector of limit expansion constants of length 2 or 4, following the

same format used by the expand argument of continuous_scale(). The de-
fault is not to expand the limits. You can use the convenience function expansion()
to generate the expansion values; expanding the lower limit is usually not rec-
ommended (because with most thickness scales the lower limit is the base-
line and represents 0), so a typical usage might be something like expand =
expansion(c(0, 0.05)) to expand the top end of the scale by 5%.

Details

You can overwrite subscale_thickness in the global environment to set the default properties of
the thickness subscale. For example:

subscale_thickness = ggdist::subscale_thickness(expand = expansion(c(0, 0.05)))

This will cause geom_slabinterval()s to default to a thickness subscale that expands by 5% at
the top of the scale. Always prefix such a definition with ggdist:: to avoid infinite loops caused
by recursion.

theme_ggdist 305

Value

A thickness vector of the same length as x scaled to be between 0 and 1.

See Also

The thickness datatype.

The thickness aesthetic of geom_slabinterval().

scale_thickness_shared(), for setting a thickness scale across all geometries using the thickness
aesthetic.

Other sub-scales: subscale_identity()

Examples

library(ggplot2)
library(distributional)

df = data.frame(d = dist_normal(2:3, 1), g = c("a", "b"))

breaks on thickness subguides are always limited to the bounds of the
subscale, which may leave labels off near the edge of the subscale
(e.g. here `0.4` is omitted because the max value is approx `0.39`)
ggplot(df, aes(xdist = d, y = g)) +

stat_slabinterval(
subguide = "inside"

)

We can use the subscale to expand the upper limit of the thickness scale
by 5% (similar to the default for positional scales), allowing bounds near
(but just less than) the limit, like `0.4`, to be shown.
ggplot(df, aes(xdist = d, y = g)) +

stat_slabinterval(
subguide = "inside",
subscale = subscale_thickness(expand = expansion(c(0, 0.5)))

)

theme_ggdist Simple, light ggplot2 theme for ggdist and tidybayes

Description

A simple, relatively minimalist ggplot2 theme, and some helper functions to go with it.

Usage

theme_ggdist(
base_size = 11,
base_family = "",
base_line_size = base_size/22,

306 theme_ggdist

base_rect_size = base_size/22
)

theme_tidybayes(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

facet_title_horizontal()

axis_titles_bottom_left()

facet_title_left_horizontal()

facet_title_right_horizontal()

Arguments

base_size base font size, given in pts.

base_family base font family

base_line_size base size for line elements

base_rect_size base size for rect elements

Details

This is a relatively minimalist ggplot2 theme, intended to be used for making publication-ready
plots. It is currently based on ggplot2::theme_light().

A word of warning: this theme may (and very likely will) change in the future as I tweak it to my
taste.

theme_ggdist() and theme_tidybayes() are aliases.

Value

A named list in the format of ggplot2::theme()

Author(s)

Matthew Kay

See Also

ggplot2::theme(), ggplot2::theme_set()

thickness 307

Examples

library(ggplot2)

theme_set(theme_ggdist())

thickness Thickness (datatype)

Description

A representation of the thickness of a slab: a scaled value (x) where 0 is the base of the slab and 1
is its maximum extent, and the lower (lower) and upper (upper) limits of the slab values in their
original data units.

Usage

thickness(x = double(), lower = NA_real_, upper = NA_real_)

Arguments

x <coercible-to-numeric> A numeric vector or an object coercible to a numeric
(via vctrs::vec_cast()) representing scaled values to be converted to a thickness()
object.

lower <numeric> The original lower bounds of thickness values before scaling. May
be NA to indicate that this bound is not known.

upper <numeric> The original upper bounds of thickness values before scaling. May
be NA to indicate that this bound is not known.

Details

This datatype is used by scale_thickness_shared() and subscale_thickness() to represent
numeric()-like objects marked as being in units of slab "thickness".

Unlike regular numeric()s, thickness() values mapped onto the thickness aesthetic are not
rescaled by scale_thickness_shared() or geom_slabinterval(). In most cases thickness()
is not useful directly; though it can be used to mark values that should not be rescaled—see the
definitions of stat_ccdfinterval() and stat_gradientinterval() for some example usages.

thickness objects with unequal lower or upper limits may not be combined. However, thickness
objects with NA limits may be combined with thickness objects with non-NA limits. This allows
(e.g.) specifying locations on the thickness scale that are independent of data limits.

Value

A vctrs::rcrd of class "ggdist_thickness" with fields "x", "lower", and "upper".

308 tidy-format-translators

Author(s)

Matthew Kay

See Also

The thickness aesthetic of geom_slabinterval().

scale_thickness_shared(), for setting a thickness scale across all geometries using the thickness
aesthetic.

subscale_thickness(), for setting a thickness sub-scale within a single geom_slabinterval().

Examples

thickness(0:1)
thickness(0:1, 0, 10)

tidy-format-translators

Translate between different tidy data frame formats for draws from
distributions

Description

These functions translate ggdist/tidybayes-style data frames to/from different data frame formats
(each format using a different naming scheme for its columns).

Usage

to_broom_names(data)

from_broom_names(data)

to_ggmcmc_names(data)

from_ggmcmc_names(data)

Arguments

data <data.frame> A data frame to translate.

Details

Function prefixed with to_ translate from the ggdist/tidybayes format to another format, func-
tions prefixed with from_ translate from that format back to the ggdist/tidybayes format. Formats
include:

to_broom_names() / from_broom_names():

• .variable <-> term

waiver 309

• .value <-> estimate

• .prediction <-> .fitted

• .lower <-> conf.low

• .upper <-> conf.high

to_ggmcmc_names() / from_ggmcmc_names():

• .chain <-> Chain

• .iteration <-> Iteration

• .variable <-> Parameter

• .value <-> value

Value

A data frame with (possibly) new names in some columns, according to the translation scheme
described in Details.

Author(s)

Matthew Kay

Examples

library(dplyr)

data(RankCorr_u_tau, package = "ggdist")

df = RankCorr_u_tau %>%
dplyr::rename(.variable = i, .value = u_tau) %>%
group_by(.variable) %>%
median_qi(.value)

df

df %>%
to_broom_names()

waiver A waived argument

Description

A flag indicating that the default value of an argument should be used.

Usage

waiver()

310 weighted_ecdf

Details

A waiver() is a flag passed to a function argument that indicates the function should use the default
value of that argument. It is used in two cases:

• ggplot2 functions use it to distinguish between "nothing" (NULL) and a default value calculated
elsewhere (waiver()).

• ggdist turns ggplot2’s convention into a standardized method of argument-passing: any named
argument with a default value in an automatically partially-applied function can be passed
waiver() when calling the function. This will cause the default value (or the most recently
partially-applied value) of that argument to be used instead.
Note: due to historical limitations, waiver() cannot currently be used on arguments to the
point_interval() family of functions.

See Also

auto_partial(), ggplot2::waiver()

Examples

f = auto_partial(function(x, y = "b") {
c(x = x, y = y)

})

f("a")

uses the default value of `y` ("b")
f("a", y = waiver())

partially apply `f`
g = f(y = "c")
g

uses the last partially-applied value of `y` ("c")
g("a", y = waiver())

weighted_ecdf Weighted empirical cumulative distribution function

Description

A variation of ecdf() that can be applied to weighted samples.

Usage

weighted_ecdf(x, weights = NULL, na.rm = FALSE)

weighted_quantile 311

Arguments

x <numeric> Sample values.

weights <numeric | NULL> Weights for the sample. One of:

• numeric vector of same length as x: weights for corresponding values in x,
which will be normalized to sum to 1.

• NULL: indicates no weights are provided, so the unweighted empirical cu-
mulative distribution function (equivalent to ecdf()) is returned.

na.rm <scalar logical> If TRUE, corresponding entries in x and weights are removed if
either is NA.

Details

Generates a weighted empirical cumulative distribution function, F (x). Given x, a sorted vector
(derived from x), and wi, the corresponding weight for xi, F (x) is a step function with steps at
each xi with F (xi) equal to the sum of all weights up to and including wi.

Value

weighted_ecdf() returns a function of class "weighted_ecdf", which also inherits from the
stepfun() class. Thus, it also has plot() and print() methods. Like ecdf(), weighted_ecdf()
also provides a quantile() method, which dispatches to weighted_quantile().

See Also

weighted_quantile()

Examples

weighted_ecdf(1:3, weights = 1:3)
plot(weighted_ecdf(1:3, weights = 1:3))
quantile(weighted_ecdf(1:3, weights = 1:3), 0.4)

weighted_quantile Weighted sample quantiles

Description

A variation of quantile() that can be applied to weighted samples.

Usage

weighted_quantile(
x,
probs = seq(0, 1, 0.25),
weights = NULL,
n = NULL,

312 weighted_quantile

na.rm = FALSE,
names = TRUE,
type = 7,
digits = 7

)

weighted_quantile_fun(x, weights = NULL, n = NULL, na.rm = FALSE, type = 7)

Arguments

x <numeric> Sample values.

probs <numeric> Vector of probabilities in [0, 1] defining the quantiles to return.

weights <numeric | NULL> Weights for the sample. One of:

• numeric vector of same length as x: weights for corresponding values in x,
which will be normalized to sum to 1.

• NULL: indicates no weights are provided, so unweighted sample quantiles
(equivalent to quantile()) are returned.

n <scalar numeric> Presumed effective sample size. If this is greater than 1 and
continuous quantiles (type >= 4) are requested, flat regions may be added to
the approximation to the inverse CDF in areas where the normalized weight
exceeds 1/n (i.e., regions of high density). This can be used to ensure that
if a sample of size n with duplicate x values is summarized into a weighted
sample without duplicates, the result of weighted_quantile(..., n = n) on
the weighted sample is equal to the result of quantile() on the original sample.
One of:

• NULL: do not make a sample size adjustment.
• numeric: presumed effective sample size.
• function or name of function (as a string): A function applied to weights

(prior to normalization) to determine the sample size. Some useful values
may be:

– "length": i.e. use the number of elements in weights (equivalently in
x) as the effective sample size.

– "sum": i.e. use the sum of the unnormalized weights as the sample
size. Useful if the provided weights is unnormalized so that its sum
represents the true sample size.

na.rm <scalar logical> If TRUE, corresponding entries in x and weights are removed if
either is NA.

names <scalar logical> If TRUE, add names to the output giving the input probs format-
ted as a percentage.

type <scalar integer> Value between 1 and 9: determines the type of quantile estima-
tor to be used. Types 1 to 3 are for discontinuous quantiles, types 4 to 9 are for
continuous quantiles. See Details.

digits <scalar numeric> The number of digits to use to format percentages when names
is TRUE.

weighted_quantile 313

Details

Calculates weighted quantiles using a variation of the quantile types based on a generalization of
quantile().

Type 1–3 (discontinuous) quantiles are directly a function of the inverse CDF as a step function,
and so can be directly translated to the weighted case using the natural definition of the weighted
ECDF as the cumulative sum of the normalized weights.

Type 4–9 (continuous) quantiles require some translation from the definitions in quantile().
quantile() defines continuous estimators in terms of xk, which is the kth order statistic, and
pk, which is a function of k and n (the sample size). In the weighted case, we instead take xk as
the kth smallest value of x in the weighted sample (not necessarily an order statistic, because of the
weights). Then we can re-write the formulas for pk in terms of F (xk) (the empirical CDF at xk,
i.e. the cumulative sum of normalized weights) and f(xk) (the normalized weight at xk), by using
the fact that, in the unweighted case, k = F (xk) · n and 1/n = f(xk):

Type 4 pk = k
n = F (xk)

Type 5 pk = k−0.5
n = F (xk)− f(xk)

2

Type 6 pk = k
n+1 = F (xk)

1+f(xk)

Type 7 pk = k−1
n−1 = F (xk)−f(xk)

1−f(xk)

Type 8 pk = k−1/3
n+1/3 = F (xk)−f(xk)/3

1+f(xk)/3

Type 9 pk = k−3/8
n+1/4 = F (xk)−f(xk)·3/8

1+f(xk)/4

Then the quantile function (inverse CDF) is the piece-wise linear function defined by the points
(pk, xk).

Value

weighted_quantile() returns a numeric vector of length(probs) with the estimate of the corre-
sponding quantile from probs.

weighted_quantile_fun() returns a function that takes a single argument, a vector of probabili-
ties, which itself returns the corresponding quantile estimates. It may be useful when weighted_quantile()
needs to be called repeatedly for the same sample, re-using some pre-computation.

See Also

weighted_ecdf()

Index

∗ bounds estimators
bounder_cdf, 13
bounder_cooke, 15
bounder_range, 16

∗ colour ramp functions
guide_rampbar, 112
partial_colour_ramp, 123
ramp_colours, 134
scale_colour_ramp, 135

∗ datasets
ggdist-deprecated, 111

∗ density estimators
density_bounded, 24
density_histogram, 28
density_unbounded, 30

∗ dotplot smooths
smooth_density, 144
smooth_discrete, 146
smooth_none, 148

∗ dotsinterval geoms
geom_blur_dots, 34
geom_dots, 43
geom_dotsinterval, 51
geom_swarm, 93
geom_weave, 102

∗ dotsinterval stats
stat_dots, 170
stat_dotsinterval, 180
stat_mcse_dots, 244

∗ ggdist scales
scale_colour_ramp, 135
scale_side_mirrored, 137
scale_thickness, 140
sub-geometry-scales, 295

∗ lineribbon stats
stat_lineribbon, 238
stat_ribbon, 259

∗ manip
tidy-format-translators, 308

∗ slabinterval geoms
geom_interval, 61
geom_pointinterval, 70
geom_slab, 75
geom_spike, 89

∗ slabinterval stats
stat_ccdfinterval, 149
stat_cdfinterval, 159
stat_eye, 190
stat_gradientinterval, 201
stat_halfeye, 211
stat_histinterval, 222
stat_interval, 232
stat_pointinterval, 253
stat_slab, 264
stat_spike, 285

∗ sub-guides
subguide_axis, 300
subguide_none, 303

∗ sub-scales
subscale_identity, 303
subscale_thickness, 304

aes(), 35, 44, 52, 57, 62, 67, 71, 76, 82, 89,
94, 103, 150, 155, 160, 165, 166,
171, 175, 180, 185, 186, 191, 196,
197, 202, 207, 212, 217, 222, 228,
233, 235, 239, 241, 244, 249, 254,
256, 260, 262, 265, 269, 270, 274,
280, 286, 290, 292

after_stat(), 132, 133, 155, 166, 175, 186,
197, 207, 217, 228, 235, 241, 249,
256, 262, 270, 280, 287, 292

align, 5, 7, 18
align_boundary (align), 5
align_boundary(), 5, 6, 29, 153, 164, 194,

205, 215, 226, 268, 278, 289
align_center (align), 5
align_center(), 5, 6, 29, 153, 164, 194, 205,

215, 226, 268, 278, 289

314

INDEX 315

align_none (align), 5
align_none(), 5, 29, 153, 164, 194, 205, 215,

226, 268, 278, 289
arrow, 56, 63, 72, 84, 91, 151, 162, 183, 193,

203, 214, 224, 234, 255, 276, 287
auto_partial, 7
auto_partial(), 7, 310
automatic partial function

application, 5, 9, 12, 13, 15, 16,
25, 28, 30, 124, 144, 146, 148, 300,
303, 304

automatic-partial-functions, 145, 147,
148

automatic-partial-functions
(auto_partial), 7

automatically partially-applied
function, 310

axis_titles_bottom_left (theme_ggdist),
305

bandwidth, 7, 9, 25, 31
bandwidth_bcv (bandwidth), 9
bandwidth_dpi (bandwidth), 9
bandwidth_dpi(), 9
bandwidth_nrd (bandwidth), 9
bandwidth_nrd0 (bandwidth), 9
bandwidth_nrd0(), 9
bandwidth_SJ (bandwidth), 9
bandwidth_ucv (bandwidth), 9
beeswarm::beeswarm(), 11, 33, 37, 45, 54,

96, 104, 172, 182, 246
bin_dots, 10
bin_dots(), 34
blur, 7, 12
blur_gaussian (blur), 12
blur_gaussian(), 36, 245
blur_interval (blur), 12
blur_interval(), 36, 245
borders(), 38, 47, 56, 64, 68, 72, 78, 85, 91,

98, 106, 154, 165, 174, 184, 196,
206, 217, 227, 235, 241, 248, 255,
261, 269, 279, 290

bounder_cdf, 13, 15, 16
bounder_cdf(), 14, 26, 144
bounder_cooke, 15, 15, 16
bounder_cooke(), 14, 26, 144
bounder_range, 15, 16
bounder_range(), 26, 144

breaks, 6, 7, 16, 28, 153, 163, 194, 205, 215,
226, 268, 277, 288

breaks_FD (breaks), 16
breaks_FD(), 17
breaks_fixed (breaks), 16
breaks_fixed(), 17, 28, 153, 163, 194, 205,

215, 226, 268, 277, 288
breaks_quantiles (breaks), 16
breaks_quantiles(), 17
breaks_Scott (breaks), 16
breaks_Scott(), 17
breaks_Sturges (breaks), 16
breaks_Sturges(), 17, 28, 153, 163, 194,

205, 215, 226, 268, 277, 288
bw.SJ(), 9

cdf(), 23
character, 21, 23, 113, 121–123, 127, 134,

136, 139, 287, 297
continuous_scale(), 136, 141, 304
coord_cartesian(), 136, 141, 298
curve_interval, 19
curve_interval(), 20
cut_cdf_qi, 23
cut_cdf_qi(), 23

data.frame, 20, 118, 121, 127, 308
data.frame(), 122
density_bounded, 24, 30, 32, 128
density_bounded(), 7, 9, 10, 13–16, 128,

144, 145, 152, 154, 163, 164, 194,
195, 204–206, 215, 216, 225, 227,
267, 269, 277, 278, 288, 289

density_histogram, 27, 28, 32
density_histogram(), 5–7, 10, 16–18, 152,

153, 163, 164, 194, 195, 204, 205,
215, 216, 225, 226, 267, 268, 277,
278, 288, 289

density_unbounded, 27, 30, 30, 128
density_unbounded(), 7, 9, 10, 144, 145,

147, 152, 163, 194, 204, 215, 225,
267, 277, 288

discrete_scale(), 136
dist_beta(), 57, 155, 165, 175, 185, 196,

207, 217, 228, 235, 241, 249, 256,
262, 269, 280, 290

dist_normal(), 57, 155, 156, 165–167, 175,
176, 185, 187, 196, 197, 207, 208,
217, 218, 228, 229, 235, 236, 241,

316 INDEX

242, 249, 250, 256, 257, 262, 263,
269, 271, 280, 281, 290, 291

dist_truncated(), 122
distribution, 115
distributional::dist_wrap(), 121
dlkjcorr_marginal (lkjcorr_marginal),

116
dnorm(), 57, 155, 165, 175, 186, 196, 207,

217, 228, 235, 241, 249, 256, 262,
270, 280, 290

dplyr::group_by(), 20, 127, 128
dstudent_t (student_t), 293

ecdf(), 310, 311
environment, 121, 122
expansion(), 138, 141, 304

facet_title_horizontal (theme_ggdist),
305

facet_title_left_horizontal
(theme_ggdist), 305

facet_title_right_horizontal
(theme_ggdist), 305

fda::fbplot(), 21
find_dotplot_binwidth, 33
find_dotplot_binwidth(), 12
findInterval(), 29
fortify(), 35, 44, 52, 62, 67, 71, 76, 82, 89,

94, 103, 150, 160, 171, 180, 191,
202, 212, 223, 233, 239, 244, 254,
260, 265, 274, 286

from_broom_names
(tidy-format-translators), 308

from_broom_names(), 308
from_ggmcmc_names

(tidy-format-translators), 308
from_ggmcmc_names(), 309
function, 8, 17, 23, 25, 28, 31, 36–38, 46, 47,

54, 56, 77, 78, 83, 84, 90, 97, 105,
106, 127, 128, 144, 150–153,
161–164, 172, 173, 182–184, 191,
193–195, 202–205, 212, 214–216,
223, 225, 226, 234, 240, 245–247,
255, 261, 266–268, 275–278,
286–288, 304

Geom, 150, 160, 171, 181, 191, 202, 212, 223,
233, 239, 244, 254, 260, 265, 274,
286

geom_blur_dots, 34, 51, 60, 101, 110
geom_blur_dots(), 12, 13, 39, 48, 57, 98,

107, 175, 185, 244, 245, 248, 250,
253

geom_dots, 42, 43, 60, 101, 110, 144, 146
geom_dots(), 7, 10, 34, 39, 47, 57, 98, 107,

171, 174, 176, 179, 185, 248, 302
geom_dotsinterval, 42, 51, 51, 101, 110
geom_dotsinterval(), 4, 12, 34, 39, 42, 43,

48, 51, 57, 88, 94, 98, 101, 102, 107,
110, 137, 146, 170, 175, 180, 181,
185, 187, 189, 248, 298, 300, 302,
303

geom_interval, 61, 75, 80, 93
geom_interval(), 64, 86, 232, 233, 236, 238
geom_line(), 66, 68, 70
geom_lineribbon, 66
geom_lineribbon(), 4, 68, 69, 88, 135,

238–240, 242, 243, 259, 260, 263,
264

geom_point(), 39, 48, 57, 98, 107, 174, 185,
248

geom_pointinterval, 66, 70, 80, 93
geom_pointinterval(), 70, 73, 85, 253, 254,

257, 258
geom_ribbon(), 66, 68, 70
geom_slab, 66, 75, 75, 93
geom_slab(), 41, 49, 59, 65, 74, 79, 86, 87,

100, 109, 157, 168, 178, 188, 199,
209, 220, 230, 237, 251, 257,
264–266, 271, 272, 282

geom_slabinterval, 81
geom_slabinterval(), 4, 11, 39, 40, 47, 49,

52, 56, 58, 60, 61, 64, 66, 70, 73, 75,
80, 85, 86, 89, 91, 98, 99, 106, 108,
112, 130, 135, 137, 140–143, 149,
150, 156, 158–161, 167, 169, 174,
177, 185, 187, 190, 191, 198,
200–202, 208–210, 212, 218, 219,
221–223, 229, 231, 248, 251,
273–275, 281–283, 295, 298,
300–305, 307, 308

geom_spike, 66, 75, 80, 89
geom_spike(), 286, 291, 292, 302
geom_swarm, 42, 51, 60, 93, 110
geom_swarm(), 39, 48, 57, 98, 107, 174, 185,

248
geom_weave, 42, 51, 60, 101, 102

INDEX 317

geom_weave(), 39, 48, 57, 98, 107, 174, 185,
248

ggdist (ggdist-package), 4
ggdist-deprecated, 111
ggdist-package, 4
ggplot(), 35, 39, 44, 48, 52, 58, 62, 64, 67,

68, 71, 73, 76, 78, 82, 86, 89, 91, 94,
99, 103, 107, 137, 139, 143, 150,
155, 160, 166, 171, 175, 180, 186,
191, 196, 202, 207, 212, 217, 223,
228, 233, 235, 239, 241, 244, 249,
254, 256, 260, 262, 265, 270, 274,
280, 286, 290, 299

ggplot2, 64, 73
ggplot2::continuous_scale, 141
ggplot2::discrete_scale, 138
ggplot2::Geom, 39, 48, 58, 64, 68, 73, 78, 86,

91, 99, 107
ggplot2::geom_dotplot(), 39, 47, 56, 98,

106, 174, 185, 248
ggplot2::guide_colourbar, 112
ggplot2::position_dodge(), 130
ggplot2::Scale, 38, 47, 56, 78, 84, 90, 97,

106, 137, 139, 143, 151, 162, 173,
183, 193, 203, 214, 225, 247, 267,
276, 286, 299

ggplot2::Stat, 58, 155, 166, 175, 186, 196,
207, 217, 228, 235, 241, 249, 256,
262, 270, 280, 290

ggplot2::theme(), 306
ggplot2::theme_light(), 306
ggplot2::theme_set(), 306
ggplot2::waiver(), 310
graphics::hist(), 28, 153, 163, 194, 205,

215, 225, 226, 268, 277, 288
grDevices::nclass.FD(), 17
grid::grob, 38, 47, 56, 78, 85, 90, 97, 106,

151, 162, 173, 183, 193, 203, 214,
225, 247, 267, 276, 286

grob, 34
grouped_df, 127
Guide, 136, 297
guide_axis(), 301
guide_colorbar2 (sub-geometry-scales),

295
guide_colourbar(), 112
guide_colourbar2 (sub-geometry-scales),

295

guide_rampbar, 112, 124, 135, 137
guide_rampbar(), 113, 136
guides(), 136, 139, 141

hdci (point_interval), 124
hdi, 127
hdi (point_interval), 124
hdi(), 127, 128
hist(), 29

integer, 26, 31, 312
interval_widths, 114

labs(), 112
lambda, 136, 138, 140–142, 298, 301
language, 20, 118, 122, 127, 132
layer position, 67
layer stat, 36, 44, 53, 63, 67, 71, 76, 82, 90,

95, 103
layer(), 36, 44, 53, 63, 67, 71, 76, 82, 90, 95,

103, 150, 161, 171, 181, 191, 202,
212, 223, 233, 240, 245, 254, 260,
265, 275, 286

linetype, 298
list, 287
lkjcorr_marginal, 116
lkjcorr_marginal(), 118, 119
ll (point_interval), 124
logical, 8, 20, 21, 25, 26, 29, 31, 38, 46, 47,

55, 56, 64, 68, 72, 78, 84, 85, 91, 97,
105, 106, 122, 127, 141, 145,
152–154, 162–165, 173, 174, 183,
184, 194–196, 205, 206, 215–217,
225–227, 234, 240, 241, 247, 255,
260, 261, 267–269, 277–279,
288–290, 297, 311, 312

make.names(), 122
marginalize_lkjcorr, 118
marginalize_lkjcorr(), 117
matrix, 20
mean, 127
mean_hdci (point_interval), 124
mean_hdi (point_interval), 124
mean_ll (point_interval), 124
mean_qi (point_interval), 124
mean_qi(), 7, 64, 73
mean_ul (point_interval), 124
median, 127

318 INDEX

median_hdci (point_interval), 124
median_hdi (point_interval), 124
median_ll (point_interval), 124
median_qi (point_interval), 124
median_qi(), 7, 64, 73
median_ul (point_interval), 124
Mode, 127
Mode (point_interval), 124
Mode(), 128
mode_hdci (point_interval), 124
mode_hdi (point_interval), 124
mode_hdi(), 7, 64, 73
mode_ll (point_interval), 124
mode_qi (point_interval), 124
mode_ul (point_interval), 124

nclass.FD(), 17
nclass.scott(), 17
nclass.Sturges(), 17
NULL, 17, 23, 25, 28, 31, 56, 63, 72, 84, 91,

115, 118, 121, 128, 151, 162, 183,
193, 203, 214, 224, 234, 255, 276,
287, 304, 311, 312

numeric, 5, 9, 10, 13–17, 20, 23, 25, 28, 31,
33, 36, 44, 45, 53, 55, 56, 63, 72, 84,
95, 96, 104, 105, 115, 116, 118, 123,
127, 128, 130, 136, 141, 144, 146,
148, 151–154, 161–164, 171, 172,
181, 183, 184, 193–195, 203–206,
213–216, 224–227, 233, 234, 240,
245, 254, 255, 261, 267–269,
276–278, 287–289, 294, 297, 300,
301, 303, 304, 307, 311, 312

ordered, 23

p_ (Pr_), 132
p_(), 132
parse_dist, 120
parse_dist(), 57, 117–119, 122, 155, 165,

175, 186, 196, 207, 217, 228, 235,
241, 249, 256, 262, 270, 280, 290,
294

partial_colour_ramp, 113, 123, 134–137
partial_colour_ramp(), 123, 135, 137
plkjcorr_marginal (lkjcorr_marginal),

116
plot(), 26, 29, 32

pnorm(), 23, 57, 155, 165, 175, 186, 196, 207,
217, 228, 235, 241, 249, 256, 262,
270, 280, 290

point_interval, 124
point_interval(), 7, 22, 64, 66, 68, 73, 114,

115, 153, 164, 170, 180, 184, 195,
205, 206, 216, 226, 234, 238, 240,
255, 259, 261, 278, 310

Position, 36, 44, 53, 63, 71, 76, 82, 90, 95,
103, 150, 160, 171, 181, 191, 202,
212, 223, 233, 240, 244, 254, 260,
265, 274, 286

position_dodge(), 36, 44, 53, 63, 71, 76, 82,
90, 95, 103, 150, 160, 171, 181, 191,
202, 212, 223, 233, 240, 244, 254,
260, 265, 274, 286

position_dodgejust, 130
position_dodgejust(), 36, 44, 53, 63, 71,

76, 82, 90, 95, 103, 130, 150, 161,
171, 181, 191, 202, 212, 223, 233,
240, 244, 254, 260, 265, 274, 286

posterior::mcse_quantile(), 244
posterior::rvar, 20
posterior::rvar(), 20, 39, 48, 57, 98, 107,

155, 156, 165–167, 175, 176, 185,
187, 196, 197, 207, 208, 217, 218,
228, 229, 235, 236, 241, 242,
248–250, 256, 257, 262, 263, 269,
271, 280, 281, 287, 290, 291

Pr_, 132
Pr_(), 132
pretty_widths (interval_widths), 114
print(), 26, 29, 32
pstudent_t (student_t), 293

qi, 127
qi (point_interval), 124
qi(), 127
qlkjcorr_marginal (lkjcorr_marginal),

116
qnorm(), 57, 155, 165, 175, 186, 196, 207,

217, 228, 235, 241, 249, 256, 262,
270, 280, 290

qstudent_t (student_t), 293
quantile(), 311–313
quasiquotation, 132

r_dist_name (parse_dist), 120
r_dist_name(), 122

INDEX 319

ramp_colours, 113, 124, 134, 137
ramp_colours(), 123, 137
resolution(), 146, 147
rlang::eval_tidy(), 128
rlkjcorr_marginal (lkjcorr_marginal),

116
rstudent_t (student_t), 293
rvar, 20

scale_alpha_continuous(), 298
scale_color_continuous(), 298, 299
scale_color_discrete(), 297–299
scale_color_ramp (scale_colour_ramp),

135
scale_color_ramp_continuous

(scale_colour_ramp), 135
scale_color_ramp_discrete

(scale_colour_ramp), 135
scale_colour_gradient2(), 142
scale_colour_gradientn(), 142
scale_colour_ramp, 113, 123, 124, 135, 135,

139, 143, 299
scale_colour_ramp(), 41, 49, 59, 65, 74, 79,

87, 92, 100, 108, 157, 168, 177, 188,
199, 209, 219, 230, 237, 251, 257,
271, 282, 291

scale_colour_ramp_continuous
(scale_colour_ramp), 135

scale_colour_ramp_continuous(), 112,
113, 136

scale_colour_ramp_discrete
(scale_colour_ramp), 135

scale_colour_ramp_discrete(), 136
scale_fill_ramp (scale_colour_ramp), 135
scale_fill_ramp(), 41, 49, 59, 65, 69, 74,

79, 87, 92, 100, 108, 157, 168, 177,
188, 199, 209, 219, 230, 237, 243,
251, 257, 263, 272, 282, 291

scale_fill_ramp_continuous
(scale_colour_ramp), 135

scale_fill_ramp_continuous(), 112, 113,
136

scale_fill_ramp_discrete
(scale_colour_ramp), 135

scale_interval_alpha_continuous
(sub-geometry-scales), 295

scale_interval_alpha_discrete
(sub-geometry-scales), 295

scale_interval_color_continuous
(sub-geometry-scales), 295

scale_interval_color_discrete
(sub-geometry-scales), 295

scale_interval_colour_continuous
(sub-geometry-scales), 295

scale_interval_colour_discrete
(sub-geometry-scales), 295

scale_interval_linetype_continuous
(sub-geometry-scales), 295

scale_interval_linetype_discrete
(sub-geometry-scales), 295

scale_interval_size_continuous
(sub-geometry-scales), 295

scale_interval_size_discrete
(sub-geometry-scales), 295

scale_point_alpha_continuous
(sub-geometry-scales), 295

scale_point_alpha_discrete
(sub-geometry-scales), 295

scale_point_color_continuous
(sub-geometry-scales), 295

scale_point_color_discrete
(sub-geometry-scales), 295

scale_point_colour_continuous
(sub-geometry-scales), 295

scale_point_colour_discrete
(sub-geometry-scales), 295

scale_point_fill_continuous
(sub-geometry-scales), 295

scale_point_fill_discrete
(sub-geometry-scales), 295

scale_point_size_continuous
(sub-geometry-scales), 295

scale_point_size_continuous(), 56, 72,
84, 151, 162, 183, 193, 203, 214,
224, 254, 276

scale_point_size_discrete
(sub-geometry-scales), 295

scale_point_size_discrete(), 56, 72, 84,
151, 162, 183, 193, 203, 214, 224,
254, 276

scale_side_mirrored, 137, 137, 143, 299
scale_size_continuous(), 55, 63, 72, 84,

85, 151, 161, 162, 183, 193, 203,
214, 224, 233, 234, 254, 276

scale_slab_alpha_continuous
(sub-geometry-scales), 295

320 INDEX

scale_slab_alpha_discrete
(sub-geometry-scales), 295

scale_slab_color_continuous
(sub-geometry-scales), 295

scale_slab_color_discrete
(sub-geometry-scales), 295

scale_slab_colour_continuous
(sub-geometry-scales), 295

scale_slab_colour_discrete
(sub-geometry-scales), 295

scale_slab_fill_continuous
(sub-geometry-scales), 295

scale_slab_fill_discrete
(sub-geometry-scales), 295

scale_slab_linetype_continuous
(sub-geometry-scales), 295

scale_slab_linetype_discrete
(sub-geometry-scales), 295

scale_slab_linewidth_continuous
(sub-geometry-scales), 295

scale_slab_linewidth_discrete
(sub-geometry-scales), 295

scale_slab_shape_continuous
(sub-geometry-scales), 295

scale_slab_shape_discrete
(sub-geometry-scales), 295

scale_slab_size_continuous
(sub-geometry-scales), 295

scale_slab_size_discrete
(sub-geometry-scales), 295

scale_thickness, 137, 139, 140, 299
scale_thickness_identity

(scale_thickness), 140
scale_thickness_shared

(scale_thickness), 140
scale_thickness_shared(), 142, 302, 305,

307, 308
scales, 42, 50, 60, 65, 69, 74, 80, 88, 92, 101,

110, 158, 169, 179, 189, 200, 210,
221, 231, 237, 243, 252, 258, 263,
272, 283, 292

scales (sub-geometry-scales), 295
scales::censor(), 141
scales::extended_breaks(), 140, 301
scales::new_transform(), 142
scales::pal_area(), 141
scales::pal_hue(), 138
scales::percent_format(), 23

scales::rescale(), 142
scales::squish(), 141
scales::squish_infinite(), 141
smooth_, 26, 29, 32
smooth_bar (smooth_discrete), 146
smooth_bar(), 7, 147
smooth_bounded (smooth_density), 144
smooth_bounded(), 7
smooth_density, 144, 147, 148
smooth_discrete, 145, 146, 148
smooth_discrete(), 7, 147
smooth_none, 145, 147, 148
smooth_unbounded (smooth_density), 144
smooth_unbounded(), 7, 147
stage(), 155, 166, 175, 186, 197, 207, 217,

228, 235, 241, 249, 256, 262, 270,
280, 292

stat_ccdfinterval, 149, 169, 200, 210, 221,
231, 238, 258, 272, 292

stat_ccdfinterval(), 150, 279, 307
stat_cdfinterval, 158, 159, 200, 210, 221,

231, 238, 258, 272, 292
stat_cdfinterval(), 160, 279
stat_dist_ccdfinterval

(ggdist-deprecated), 111
stat_dist_cdfinterval

(ggdist-deprecated), 111
stat_dist_dots (ggdist-deprecated), 111
stat_dist_dotsinterval

(ggdist-deprecated), 111
stat_dist_eye (ggdist-deprecated), 111
stat_dist_gradientinterval

(ggdist-deprecated), 111
stat_dist_halfeye (ggdist-deprecated),

111
stat_dist_interval (ggdist-deprecated),

111
stat_dist_lineribbon

(ggdist-deprecated), 111
stat_dist_pointinterval

(ggdist-deprecated), 111
stat_dist_slab (ggdist-deprecated), 111
stat_dist_slabinterval

(ggdist-deprecated), 111
stat_dots, 170, 189, 253
stat_dots(), 39, 48, 51, 57, 98, 107, 170,

171, 175, 185, 244, 248
stat_dotsinterval, 179, 180, 253

INDEX 321

stat_dotsinterval(), 4, 39, 48, 51, 57, 98,
107, 132, 175, 180, 181, 185, 248

stat_eye, 158, 169, 190, 210, 221, 231, 238,
258, 272, 292

stat_eye(), 128, 191, 279
stat_gradientinterval, 158, 169, 200, 201,

221, 231, 238, 258, 272, 292
stat_gradientinterval(), 77, 83, 150, 161,

192, 202, 204, 213, 224, 266, 275,
279, 298, 307

stat_halfeye, 158, 169, 200, 210, 211, 231,
238, 258, 272, 292

stat_halfeye(), 88, 120, 128, 212, 279
stat_histinterval, 158, 169, 200, 210, 221,

222, 238, 258, 272, 292
stat_histinterval(), 223, 279
stat_interval, 158, 169, 200, 210, 221, 231,

232, 258, 272, 292
stat_interval(), 66, 233, 279
stat_lineribbon, 238, 264
stat_lineribbon(), 4, 69, 70, 114, 115, 238,

239, 242, 263
stat_mcse_dots, 179, 189, 244
stat_mcse_dots(), 12, 13, 39, 48, 57, 98,

107, 175, 185, 244, 248
stat_pointinterval, 158, 169, 200, 210,

221, 231, 238, 253, 272, 292
stat_pointinterval(), 75, 254, 279
stat_ribbon, 243, 259
stat_ribbon(), 259, 260
stat_sample_slabinterval

(ggdist-deprecated), 111
stat_slab, 158, 169, 200, 210, 221, 231, 238,

258, 264, 292
stat_slab(), 80, 265, 279
stat_slabinterval, 273
stat_slabinterval(), 4, 23, 26, 29, 32, 52,

60, 86, 88, 111, 114, 115, 117, 119,
120, 122, 132, 133, 143, 149, 158,
159, 169, 170, 180, 190, 200, 201,
210, 211, 221, 222, 231, 232, 238,
253, 258, 259, 264, 272, 274, 285,
292, 294

stat_spike, 158, 169, 200, 210, 221, 231,
238, 258, 272, 285

stat_spike(), 93, 286
stat_summary(), 128
StatDistSlabinterval

(ggdist-deprecated), 111
stats::bw.SJ, 9
stats::density(), 25, 26, 29–31, 146, 152,

163, 194, 204, 215, 225, 267, 277,
288

StatSampleSlabinterval
(ggdist-deprecated), 111

stepfun(), 311
string, 8, 10, 11, 17, 20, 25, 28, 31, 33,

36–38, 44–47, 53–56, 63, 68, 71,
76–78, 82–84, 90, 91, 95–97,
103–106, 113, 119, 121, 122, 128,
136, 138, 144, 146, 150–154,
160–164, 171–173, 181–184,
191–195, 202–206, 212–216,
223–227, 233, 234, 239, 240,
244–247, 254, 255, 260, 261,
265–269, 274–278, 286–289, 297,
300, 301

student_t, 293
sub-geometry-scales, 55, 63, 72, 84, 151,

162, 183, 193, 203, 214, 224, 234,
254, 276, 295

subguide_axis, 300, 303
subguide_axis(), 38, 47, 56, 78, 85, 90, 97,

106, 151, 162, 173, 183, 193, 203,
214, 225, 247, 267, 276, 286

subguide_count (subguide_axis), 300
subguide_count(), 302
subguide_dots, 38, 47, 56, 78, 85, 90, 97,

106, 152, 162, 173, 183, 193, 203,
214, 225, 247, 267, 276, 286

subguide_dots (subguide_axis), 300
subguide_dots(), 302
subguide_inside (subguide_axis), 300
subguide_inside(), 301
subguide_integer (subguide_axis), 300
subguide_integer(), 302
subguide_none, 302, 303
subguide_none(), 38, 47, 56, 78, 85, 90, 97,

106, 151, 162, 173, 183, 193, 203,
214, 225, 247, 267, 276, 286, 302

subguide_outside (subguide_axis), 300
subguide_outside(), 301
subguide_slab, 38, 47, 56, 78, 85, 90, 97,

106, 152, 162, 173, 183, 193, 203,
214, 225, 247, 267, 276, 286

subguide_slab (subguide_axis), 300

322 INDEX

subguide_slab(), 302
subguide_spike, 38, 47, 56, 78, 85, 90, 97,

106, 152, 162, 173, 183, 193, 203,
214, 225, 247, 267, 276, 286

subguide_spike (subguide_axis), 300
subguide_spike(), 302
subscale_identity, 303, 305
subscale_identity(), 77, 83, 90, 150, 161,

192, 202, 212, 223, 266, 275, 287
subscale_thickness, 77, 83, 90, 150, 161,

192, 202, 213, 223, 266, 275, 287,
304, 304

subscale_thickness(), 77, 83, 90, 143, 150,
161, 192, 202, 212, 223, 266, 275,
287, 302, 307, 308

theme, 112, 301
theme_ggdist, 305
theme_ggdist(), 306
theme_tidybayes (theme_ggdist), 305
theme_tidybayes(), 306
thickness, 77, 83, 90, 143, 150, 161, 192,

202, 212, 223, 266, 275, 287, 302,
303, 305, 307, 307

thickness(), 142
tidy-format-translators, 308
tidyselect, 20
to_broom_names

(tidy-format-translators), 308
to_broom_names(), 308
to_ggmcmc_names

(tidy-format-translators), 308
to_ggmcmc_names(), 309
transformation object, 140, 300

ul (point_interval), 124
uniroot, 9
unit, 36, 44, 45, 53, 95, 104, 171, 181, 245
unit(), 36, 38, 45, 46, 53, 55, 95, 97, 104,

105, 171, 173, 181, 183, 245, 247

vctrs::rcrd, 123, 307
vctrs::vec_cast(), 307

waived arguments, 5, 9, 12, 13, 15, 16, 25,
28, 30, 144, 146, 148, 300, 303, 304

waiver, 7, 152, 153, 163, 164, 194, 195, 204,
205, 215, 216, 225, 226, 267, 268,
277, 278, 288, 289, 309

waiver(), 7, 8, 112, 152, 153, 163, 164, 194,
195, 204, 205, 215, 216, 225, 226,
267, 268, 277, 278, 288, 289, 310

weighted_ecdf, 310
weighted_ecdf(), 26, 29, 32, 311, 313
weighted_quantile, 311
weighted_quantile(), 311
weighted_quantile_fun

(weighted_quantile), 311

	ggdist-package
	align
	auto_partial
	bandwidth
	bin_dots
	blur
	bounder_cdf
	bounder_cooke
	bounder_range
	breaks
	curve_interval
	cut_cdf_qi
	density_bounded
	density_histogram
	density_unbounded
	find_dotplot_binwidth
	geom_blur_dots
	geom_dots
	geom_dotsinterval
	geom_interval
	geom_lineribbon
	geom_pointinterval
	geom_slab
	geom_slabinterval
	geom_spike
	geom_swarm
	geom_weave
	ggdist-deprecated
	guide_rampbar
	interval_widths
	lkjcorr_marginal
	marginalize_lkjcorr
	parse_dist
	partial_colour_ramp
	point_interval
	position_dodgejust
	Pr_
	ramp_colours
	scale_colour_ramp
	scale_side_mirrored
	scale_thickness
	smooth_density
	smooth_discrete
	smooth_none
	stat_ccdfinterval
	stat_cdfinterval
	stat_dots
	stat_dotsinterval
	stat_eye
	stat_gradientinterval
	stat_halfeye
	stat_histinterval
	stat_interval
	stat_lineribbon
	stat_mcse_dots
	stat_pointinterval
	stat_ribbon
	stat_slab
	stat_slabinterval
	stat_spike
	student_t
	sub-geometry-scales
	subguide_axis
	subguide_none
	subscale_identity
	subscale_thickness
	theme_ggdist
	thickness
	tidy-format-translators
	waiver
	weighted_ecdf
	weighted_quantile
	Index

