## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, eval = TRUE, echo = TRUE, comment = "#>", dpi = 120, fig.align = "center", out.width = "80%" ) ## ----setup-------------------------------------------------------------------- library(forcis) ## ----'download-db', eval=FALSE------------------------------------------------ # # Create a data/ folder ---- # dir.create("data") # # # Download latest version of the database ---- # download_forcis_db(path = "data", version = NULL) ## ----'load-data', echo=FALSE-------------------------------------------------- file_name <- system.file( file.path("extdata", "FORCIS_net_sample.csv"), package = "forcis" ) net_data <- read.csv(file_name) ## ----'load-data-user', eval=FALSE--------------------------------------------- # # Import net data ---- # net_data <- read_plankton_nets_data(path = "data") ## ----'select-taxo'------------------------------------------------------------ # Select taxonomy ---- net_data_vt <- net_data |> select_taxonomy(taxonomy = "VT") net_data_vt ## ----'select-columns'--------------------------------------------------------- # Remove not required columns (optional) ---- net_data_vt <- net_data_vt |> select_forcis_columns() net_data_vt ## ----'filter-by-month'-------------------------------------------------------- # Filter data by sampling month ---- net_data_vt_july_aug <- net_data_vt |> filter_by_month(months = 7:8) # Number of original records ---- nrow(net_data_vt) # Number of filtered records ---- nrow(net_data_vt_july_aug) ## ----'filter-by-year'--------------------------------------------------------- # Filter data by sampling year ---- net_data_vt_9020 <- net_data_vt |> filter_by_year(years = 1990:2020) # Number of original records ---- nrow(net_data_vt) # Number of filtered records ---- nrow(net_data_vt_9020) ## ----'filter-by-bbox'--------------------------------------------------------- # Filter by spatial bounding box ---- net_data_vt_bbox <- net_data_vt |> filter_by_bbox(bbox = c(45, -61, 82, -24)) # Number of original records ---- nrow(net_data_vt) # Number of filtered records ---- nrow(net_data_vt_bbox) ## ----'check-bbox'------------------------------------------------------------- # Filter by spatial bounding box ---- net_data_vt_sf <- net_data_vt |> data_to_sf() net_data_vt_bbox_sf <- net_data_vt_bbox |> data_to_sf() # Original spatial extent ---- sf::st_bbox(net_data_vt_sf) # Spatial extent of filtered records ---- sf::st_bbox(net_data_vt_bbox_sf) ## ----'filter-by-ocean'-------------------------------------------------------- # Filter by ocean name ---- net_data_vt_indian <- net_data_vt |> filter_by_ocean(ocean = "Indian Ocean") # Number of original records ---- nrow(net_data_vt) # Number of filtered records ---- nrow(net_data_vt_indian) ## ----'get-ocean-names'-------------------------------------------------------- # Get ocean names ---- get_ocean_names() ## ----'filter-by-polygon'------------------------------------------------------ # Import spatial polygon ---- file_name <- system.file( file.path("extdata", "IHO_Indian_ocean_polygon.gpkg"), package = "forcis" ) indian_ocean <- sf::st_read(file_name, quiet = TRUE) # Filter by polygon ---- net_data_vt_poly <- net_data_vt |> filter_by_polygon(polygon = indian_ocean) # Number of original records ---- nrow(net_data_vt) # Number of filtered records ---- nrow(net_data_vt_poly) ## ----'filter-by-species'------------------------------------------------------ # Filter by species ---- net_data_vt_glutinata_nitida <- net_data_vt |> filter_by_species(species = c("g_glutinata_VT", "c_nitida_VT")) # Dimensions of original data ---- dim(net_data_vt) # Dimensions of filtered data ---- dim(net_data_vt_glutinata_nitida) ## ----'filter-counts'---------------------------------------------------------- # Keep samples with positive counts ---- net_data_vt_glutinata_nitida <- net_data_vt_glutinata_nitida |> dplyr::filter(g_glutinata_VT > 0 | c_nitida_VT > 0) # Number of filtered records ---- nrow(net_data_vt_glutinata_nitida) ## ----'reshape-data'----------------------------------------------------------- # Convert to long format ---- net_data_long <- convert_to_long_format(net_data) # Dimensions of original data ---- dim(net_data) # Dimensions of reshaped data ---- dim(net_data_long) ## ----'reshape-data-2'--------------------------------------------------------- # Column names ---- colnames(net_data_long)