## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, eval = TRUE, echo = TRUE, comment = "#>" ) ## ----'installation', eval=FALSE----------------------------------------------- # ## Install < remotes > package (if not already installed) ---- # if (!requireNamespace("remotes", quietly = TRUE)) { # install.packages("remotes") # } # # ## Install dev version of < forcis > from GitHub ---- # remotes::install_github("FRBCesab/forcis") ## ----setup-------------------------------------------------------------------- library(forcis) ## ----'download-db', eval=FALSE------------------------------------------------ # # Create a data/ folder in the current directory ---- # dir.create("data") # # # Download latest version of the database ---- # download_forcis_db( # path = "data", # version = NULL # ) ## ----'load-data', echo=FALSE-------------------------------------------------- file_name <- system.file( file.path("extdata", "FORCIS_net_sample.csv"), package = "forcis" ) net_data <- read.csv(file_name) |> tibble::as_tibble() ## ----'load-data-user', eval=FALSE--------------------------------------------- # # Import plankton nets data ---- # net_data <- read_plankton_nets_data(path = "data") ## ----'print-data'------------------------------------------------------------- # Print data ---- net_data ## ----'select-taxo'------------------------------------------------------------ # Select taxonomy ---- net_data_vt <- net_data |> select_taxonomy(taxonomy = "VT") net_data_vt ## ----'use-case-1-metrics'----------------------------------------------------- # How many subsamples do we have? ---- nrow(net_data_vt) # How many species have been sampled? ---- net_data_vt |> get_species_names() |> length() ## ----'use-case-1-time'-------------------------------------------------------- # What is the temporal extent? ---- plot_record_by_year(net_data_vt) ## ----'use-case-1-space'------------------------------------------------------- # What is the spatial extent? ---- ggmap_data(net_data_vt) ## ----'use-case-2-species'----------------------------------------------------- # Get all species names ---- species_list <- net_data_vt |> get_species_names() # Search for species containing the word 'pachyderma' ---- species_list[grep("pachyderma", species_list)] # Store the species name ---- sp_name <- "n_pachyderma_VT" ## ----'use-case-2-species-filter'---------------------------------------------- # Filter data by species ---- net_data_vt_pachyderma <- net_data_vt |> filter_by_species(species = sp_name) net_data_vt_pachyderma # Remove empty samples for N. pachyderma ---- net_data_vt_pachyderma <- net_data_vt_pachyderma |> dplyr::filter(n_pachyderma_VT > 0) net_data_vt_pachyderma ## ----'use-case-2-temporal-filter'--------------------------------------------- # Filter data by years ---- net_data_vt_pachyderma_7000 <- net_data_vt_pachyderma |> filter_by_year(years = 1970:2000) # Number of records ---- nrow(net_data_vt_pachyderma_7000) ## ----'use-case-2-spatial-filter'---------------------------------------------- # Get the list of ocean names ---- get_ocean_names() # Filter data by ocean ---- net_data_vt_pachyderma_7000_med <- net_data_vt_pachyderma_7000 |> filter_by_ocean(ocean = "Mediterranean Sea") # Number of records ---- nrow(net_data_vt_pachyderma_7000_med) ## ----'use-case-2-map'--------------------------------------------------------- # Plot N. pachyderma records on a World map ---- ggmap_data(net_data_vt_pachyderma_7000_med) ## ----'use-case-2-all', eval=FALSE--------------------------------------------- # # Final use case 2 code ---- # net_data_vt |> # filter_by_species(species = "n_pachyderma_VT") |> # dplyr::filter(n_pachyderma_VT > 0) |> # filter_by_year(years = 1970:2000) |> # filter_by_ocean(ocean = "Mediterranean Sea") |> # ggmap_data()