## ----example1a, eval = FALSE-------------------------------------------------- # library(flexurba) # # # make sure the time out is large enough to download all the data # options(timeout = 500) # # # download the GHSL data on a global scale and save it in # # the directory "data/global" # download_GHSLdata(output_directory = "data/global") # # # crop the global grid to a custom extent (here: Belgium) and save it # # in the directory "data/belgium" # # the coordinates of the extent should be provided in the Mollweide projection # crop_GHSLdata( # extent = terra::ext(192000, 485000, 5821000, 6030000), # global_directory = "data/global", # output_directory = "data/belgium" # ) ## ----example1b, eval = FALSE-------------------------------------------------- # # preprocess the data # data_belgium <- DoU_preprocess_grid("data/belgium") # # # run the algorithm with the standard parameter settings # classification1 <- DoU_classify_grid(data = data_belgium) # # # plot the resulting grid # DoU_plot_grid(classification1) ## ----example1c, eval = FALSE-------------------------------------------------- # # run the algorithm with custom parameter settings # classification2 <- DoU_classify_grid( # data = data_belgium, # parameters = list( # UC_density_threshold = 1250, # UC_size_threshold = 60000, # UC_gap_fill = FALSE, # UC_smooth_edge = FALSE # ) # ) # # # plot the resulting grid # DoU_plot_grid(classification2) ## ----example2b, eval = FALSE-------------------------------------------------- # # preprocess the data # data1 <- DoU_preprocess_units( # units = flexurba::units_belgium, # classification = classification1, # pop = "data/belgium/POP.tif" # ) # # # run the algorithm for the units classification # units_classification <- DoU_classify_units(data1) # # # visualise the results # plot_units(flexurba::units_belgium, classification = units_classification)