This vignette demonstrates how to apply parameter constraints when modeling biological processes using {flexFitR}. Constraints can help ensure that parameter estimates remain within realistic or biologically meaningful ranges, improving both the interpretability and reliability of model outcomes.
In many biological models, certain relationships between parameters are expected. For example:
This vignette demonstrates how to apply these types of constraints in {flexFitR} to guide the optimization process.
For this example, we use the Green Leaf Index (GLI) derived from UAV imagery to model plant emergence, canopy closure, and senescence. The parameters we are interested in include:
Our expectation is that \(0 < t1 < t2 < t3\). We will apply constraints to ensure this relationship hold.
We begin with the explorer
function, which provides
basic statistical summaries and visualizations to help understand the
temporal evolution of each plot.
p1 <- plot(explorer, type = "evolution", return_gg = TRUE, add_avg = TRUE)
p2 <- plot(explorer, type = "x_by_var", return_gg = TRUE)
ggarrange(p1, p2, nrow = 1)
var | x | Min | Mean | Median | Max | SD | CV | n | miss | miss% | neg% |
---|---|---|---|---|---|---|---|---|---|---|---|
GLI | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | NaN | 196 | 0 | 0 | 0.00 |
GLI | 29 | -0.01 | 0.00 | 0.00 | 0.01 | 0.00 | -2.01 | 196 | 0 | 0 | 0.69 |
GLI | 36 | -0.02 | 0.00 | 0.00 | 0.03 | 0.01 | -2.90 | 196 | 0 | 0 | 0.69 |
GLI | 42 | 0.00 | 0.06 | 0.05 | 0.13 | 0.03 | 0.46 | 196 | 0 | 0 | 0.02 |
GLI | 56 | 0.09 | 0.24 | 0.24 | 0.35 | 0.05 | 0.21 | 196 | 0 | 0 | 0.00 |
GLI | 76 | 0.27 | 0.36 | 0.36 | 0.42 | 0.02 | 0.06 | 196 | 0 | 0 | 0.00 |
GLI | 92 | 0.16 | 0.30 | 0.31 | 0.39 | 0.03 | 0.11 | 196 | 0 | 0 | 0.00 |
GLI | 100 | 0.07 | 0.22 | 0.22 | 0.32 | 0.05 | 0.23 | 196 | 0 | 0 | 0.00 |
After exploring the data, we define the regression function. Here we use a linear-plateau-linear function with five parameters: t1, t2, t3, k, and \(\beta\). The function can be expressed mathematically as follows:
fn_lin_pl_lin()
\[\begin{equation} f(t; t_1, t_2, t_3, k, \beta) = \begin{cases} 0 & \text{if } t < t_1 \\ \dfrac{k}{t_2 - t_1} \cdot (t - t_1) & \text{if } t_1 \leq t \leq t_2 \\ k & \text{if } t_2 \leq t \leq t_3 \\ k + \beta \cdot (t - t_3) & \text{if } t > t_3 \end{cases} \end{equation}\]
plot_fn(
fn = "fn_lin_pl_lin",
params = c(t1 = 38.7, t2 = 62, t3 = 90, k = 0.32, beta = -0.01),
interval = c(0, 108),
color = "black",
base_size = 15
)
To impose constraints, we can reformulate the function. For instance, if we want to ensure that \(t3 \geq t2\), we introduce dt as the difference between t3 and t2:
\[\begin{equation} f(t; t_1, t_2, dt, k, \beta) = \begin{cases} 0 & \text{if } t < t_1 \\ \dfrac{k}{t_2 - t_1} \cdot (t - t_1) & \text{if } t_1 \leq t \leq t_2 \\ k & \text{if } t_2 \leq t \leq (t_2 + dt) \\ k + \beta \cdot (t - (t_2 + dt)) & \text{if } t > (t_2 + dt) \end{cases} \end{equation}\]
To enforce \(dt > 0\) and \(\beta < 0\) (i.e., a non-positive slope at the end of the curve), we specify bounds in the modeler function as follows:
We fit the model with these constraints by passing lower and upper
arguments to modeler
. In this vignette, we fit the model
for plots 195 and 40 as a subset
of the total 196
plots.
mod_1 <- dt_potato |>
modeler(
x = DAP,
y = GLI,
grp = Plot,
fn = "fn_lin_pl_lin2",
parameters = initial_vals,
lower = lower_bounds,
upper = upper_bounds,
method = c("nlminb", "L-BFGS-B"),
subset = c(195, 40)
)
Here:
After fitting, we can inspect the model summary and visualize the fit
using the plot
function:
print(mod_1)
#>
#> Call:
#> GLI ~ fn_lin_pl_lin2(DAP, t1, t2, dt, k, beta)
#>
#> Sum of Squares Error:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 1.961e-05 4.939e-05 7.918e-05 7.918e-05 1.090e-04 1.388e-04
#>
#> Optimization Results `head()`:
#> uid t1 t2 dt k beta sse
#> 40 37.3 64.4 19.5 0.369 -0.01454 1.96e-05
#> 195 40.1 63.1 28.3 0.325 -0.00809 1.39e-04
#>
#> Metrics:
#> Groups Timing Convergence Iterations
#> 2 0.6469 secs 100% 311 (id)
uid | t1 | t2 | dt | k | beta | sse |
---|---|---|---|---|---|---|
40 | 37.30529 | 64.38853 | 19.51168 | 0.3691396 | -0.0145414 | 0.0000196 |
195 | 40.07586 | 63.14681 | 28.29370 | 0.3251456 | -0.0080876 | 0.0001388 |
Once the model is fitted, we can extract key statistical information, such as coefficients, standard errors, confidence intervals, and the variance-covariance matrix for each plot. These metrics help evaluate parameter reliability and assess uncertainty.
The functions coef
, confint
, and
vcov
are used as follows:
coef(mod_1, id = 40)
#> # A tibble: 5 × 6
#> uid coefficient solution std.error `t value` `Pr(>|t|)`
#> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 40 t1 37.3 0.258 145. 0.000000727
#> 2 40 t2 64.4 0.371 174. 0.000000422
#> 3 40 dt 19.5 0.626 31.2 0.0000725
#> 4 40 k 0.369 0.00256 144. 0.000000733
#> 5 40 beta -0.0145 0.000452 -32.2 0.0000660
confint(mod_1, id = 40)
#> # A tibble: 5 × 6
#> uid coefficient solution std.error ci_lower ci_upper
#> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 40 t1 37.3 0.258 36.5 38.1
#> 2 40 t2 64.4 0.371 63.2 65.6
#> 3 40 dt 19.5 0.626 17.5 21.5
#> 4 40 k 0.369 0.00256 0.361 0.377
#> 5 40 beta -0.0145 0.000452 -0.0160 -0.0131
vcov(mod_1, id = 40)
#> $`40`
#> t1 t2 dt k beta
#> t1 6.640964e-02 -4.684756e-02 0.0468605417 -7.841952e-08 -8.219226e-09
#> t2 -4.684756e-02 1.377112e-01 -0.1707231494 4.797169e-04 2.416003e-08
#> dt 4.686054e-02 -1.707231e-01 0.3915152910 -9.292910e-04 -1.699689e-04
#> k -7.841952e-08 4.797169e-04 -0.0009292910 6.536323e-06 8.415252e-11
#> beta -8.219226e-09 2.416003e-08 -0.0001699689 8.415252e-11 2.042313e-07
Using type = 2
in the plot
function
generates a coefficients plot. This allows us to view the estimated
coefficients and their associated confidence intervals for each
group.
Another option (type = 4
) shows the fitted curve (black
line), confidence interval (blue-dashed line), and prediction interval
(red-dashed line). Additionally, setting type = 5 displays the first
derivative, indicating the rate of change over time.
This vignette showed how to apply constraints in {flexFitR} models to better capture biological realities and improve parameter estimation. Constraints can be an essential tool for ensuring that models produce interpretable and meaningful results.