Package ‘ellmer’

February 7, 2025
Title Chat with Large Language Models
Version 0.1.1

Description Chat with large language models from a range of providers
including 'Claude’ <https://claude.ai>, 'OpenAl
<https://chatgpt.com>, and more. Supports streaming, asynchronous
calls, tool calling, and structured data extraction.

License MIT + file LICENSE
URL https://ellmer.tidyverse.org, https://github.com/tidyverse/ellmer

BugReports https://github.com/tidyverse/ellmer/issues

Imports cli, coro (>= 1.1.0), glue, httr2 (>= 1.1.0), jsonlite, later
(>= 1.4.0), lifecycle, promises (>= 1.3.1), R6, rlang (>=
1.1.0), S7 >=0.2.0)

Suggests base64enc, bslib, connectcreds, curl (>= 6.0.1), gitcreds,
knitr, magick, openssl, paws.common, rmarkdown, shiny,
shinychat (>= 0.1.1), testthat (>= 3.0.0), withr

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate, rmarkdown
Config/testthat/edition 3

Config/testthat/parallel true

Config/testthat/start-first test-provider-*

Encoding UTF-8

RoxygenNote 7.3.2

Collate 'utils-S7.R' 'types.R' 'content.R' 'provider.R' 'as-json.R'
'utils-coro.R' 'chat.R' 'content-image.R' 'content-pdf.R’
'content-tools.R' 'ellmer-package.R' 'httr2.R’
'import-standalone-obj-type.R' 'import-standalone-purrr.R’
'import-standalone-types-check.R' 'interpolate.R' 'tools-def.R'
'turns.R' 'provider-openai.R' 'provider-azure.R'
‘provider-bedrock.R' 'provider-claude.R' 'provider-cortex.R'
"‘provider-databricks.R' 'provider-deepseek.R'
'provider-gemini.R' 'provider-github.R' 'provider-groq.R’

1

https://claude.ai
https://chatgpt.com
https://ellmer.tidyverse.org
https://github.com/tidyverse/ellmer
https://github.com/tidyverse/ellmer/issues

‘provider-ollama.R' 'provider-openrouter.R'
'‘provider-perplexity.R' '‘provider-snowflake.R'
‘provider-vllm.R' 'shiny.R' 'tokens.R' 'tools-def-auto.R'
'utils-cat.R' 'utils-merge.R' 'utils.R' 'zzz.R'

NeedsCompilation no

Author Hadley Wickham [aut, cre] (<https://orcid.org/0000-0003-4757-117X>),
Joe Cheng [aut],
Aaron Jacobs [aut],
Posit Software, PBC [cph, fnd] (03wc8by49)

Maintainer Hadley Wickham <hadley@posit.co>
Repository CRAN
Date/Publication 2025-02-07 00:40:15 UTC

Contents

Chat e e
chat_azure e e e e
chat_bedrock e
chat_claude e
chat_cortex_analyst
chat_databricks
chat_deepseek L
chat_gemini
chat_github
chat_groq
chat_ ollama
chat openai e
chat_openrouter e e e
chat_perplexity e
chat_snowflake
chat_vliIm e
Content e e e e
CONLENES_LEXE o o vt o e i et e e e e e e e e e e e e e e
content_image_url
content_pdf file
create_tool_def
interpolate
live_console e
Provider e
tOKeN_usage e e
17070)

Type . . . e e

Index

Contents

https://orcid.org/0000-0003-4757-117X

Chat

Chat

A chat

Description

A Chat is an sequence of sequence of user and assistant Turns sent to a specific Provider. A Chat
is a mutable R6 object that takes care of managing the state associated with the chat; i.e. it records
the messages that you send to the server, and the messages that you receive back. If you register a
tool (i.e. an R function that the assistant can call on your behalf), it also takes care of the tool loop.

You should generally not create this object yourself, but instead call chat_openai() or friends

instead.

Value

A Chat object

Methods

Public methods:

Chat$new()
Chat$get_turns()
Chat$set_turns()
Chat$get_system_prompt()
Chat$get_model ()
Chat$set_system_prompt()
Chat$tokens()
Chat$last_turn()
Chat$chat ()
Chat$extract_data()
Chat$extract_data_async()
Chat$chat_async()
Chat$stream()
Chat$stream_async()
Chat$register_tool()
Chat$clone()

Method new():
Usage:

Chat$new(provider, turns, seed = NULL, echo

Arguments:

provider A provider object.

turns Anunnamed list of turns to start the chat with (i.e., continuing a previous conversation).
If NULL or zero-length list, the conversation begins from scratch.

Chat

seed Optional integer seed that ChatGPT uses to try and make output more reproducible.
echo One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the console).

* all: echo all input and output.

Note this only affects the chat () method.

Method get_turns(): Retrieve the turns that have been sent and received so far (optionally
starting with the system prompt, if any).

Usage:
Chat$get_turns(include_system_prompt = FALSE)

Arguments:
include_system_prompt Whether to include the system prompt in the turns (if any exists).

Method set_turns(): Replace existing turns with a new list.

Usage:
Chat$set_turns(value)

Arguments:
value A list of Turns.

Method get_system_prompt(): If set, the system prompt, it not, NULL.
Usage:
Chat$get_system_prompt ()
Method get_model(): Retrieve the model name
Usage:
Chat$get_model ()
Method set_system_prompt(): Update the system prompt

Usage:
Chat$set_system_prompt(value)

Arguments:

value A string giving the new system prompt
Method tokens(): List the number of tokens consumed by each assistant turn. Currently tokens
are recorded for assistant turns only; so user turns will have zeros.

Usage:

Chat$tokens()
Method last_turn(): The last turn returned by the assistant.

Usage:
Chat$last_turn(role = c("assistant”, "user"”, "system"))

Arguments:
role Optionally, specify a role to find the last turn with for the role.

Chat 5

Returns: Either a Turn or NULL, if no turns with the specified role have occurred.

Method chat(): Submit input to the chatbot, and return the response as a simple string (probably
Markdown).

Usage:
Chat$chat(..., echo = NULL)

Arguments:
. The input to send to the chatbot. Can be strings or images (see content_image_file()
and content_image_url().
echo Whether to emit the response to stdout as it is received. If NULL, then the value of echo
set when the chat object was created will be used.

Method extract_data(): Extract structured data

Usage:
Chat$extract_data(..., type, echo = "none”, convert = TRUE)

Arguments:

. The input to send to the chatbot. Will typically include the phrase "extract structured data".
type A type specification for the extracted data. Should be created with a type_() function.
echo Whether to emit the response to stdout as it is received. Set to "text" to stream JSON data

as it’s generated (not supported by all providers).

convert Automatically convert from JSON lists to R data types using the schema. For example,
this will turn arrays of objects into data frames and arrays of strings into a character vector.

Method extract_data_async(): Extract structured data, asynchronously. Returns a promise
that resolves to an object matching the type specification.

Usage:
Chat$extract_data_async(..., type, echo = "none")
Arguments:
. The input to send to the chatbot. Will typically include the phrase "extract structured data".
type A type specification for the extracted data. Should be created with a type_() function.

echo Whether to emit the response to stdout as it is received. Set to "text" to stream JSON data
as it’s generated (not supported by all providers).

Method chat_async(): Submit input to the chatbot, and receive a promise that resolves with
the response all at once. Returns a promise that resolves to a string (probably Markdown).
Usage:
Chat$chat_async(...)

Arguments:
. The input to send to the chatbot. Can be strings or images.

Method stream(): Submit input to the chatbot, returning streaming results. Returns A coro
generator that yields strings. While iterating, the generator will block while waiting for more

content from the chatbot.

Usage:

https://coro.r-lib.org/articles/generator.html#iterating
https://coro.r-lib.org/articles/generator.html#iterating

6 chat_azure

Chat$stream(...)
Arguments:
. The input to send to the chatbot. Can be strings or images.

Method stream_async(): Submit input to the chatbot, returning asynchronously streaming
results. Returns a coro async generator that yields string promises.
Usage:
Chat$stream_async(...)
Arguments:
. The input to send to the chatbot. Can be strings or images.

Method register_tool(): Register a tool (an R function) that the chatbot can use. If the
chatbot decides to use the function, ellmer will automatically call it and submit the results back.
The return value of the function. Generally, this should either be a string, or a JSON-serializable
value. If you must have more direct control of the structure of the JSON that’s returned, you can
return a JSON-serializable value wrapped in base: : I(), which ellmer will leave alone until the
entire request is JSON-serialized.

Usage:

Chat$register_tool(tool_def)

Arguments:

tool_def Tool definition created by tool ().

Method clone(): The objects of this class are cloneable with this method.
Usage:
Chat$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

Examples

chat <- chat_openai(echo = TRUE)
chat$chat(”"Tell me a funny joke")

chat_azure Chat with a model hosted on Azure OpenAl

Description

The Azure OpenAl server hosts a number of open source models as well as proprietary models from
OpenAl

Authentication:
chat_azure() supports API keys and the credentials parameter, but it also makes use of:
* Azure service principals (when the AZURE_TENANT_ID, AZURE_CLIENT_ID, and AZURE_CLIENT_SECRET
environment variables are set).
¢ Interactive Entra ID authentication, like the Azure CLI.
* Viewer-based credentials on Posit Connect. Requires the connectcreds package.

https://coro.r-lib.org/reference/async_generator.html
https://azure.microsoft.com/en-us/products/ai-services/openai-service

chat_azure 7

Usage

chat_azure(
endpoint = azure_endpoint(),
deployment_id,
api_version = NULL,
system_prompt = NULL,
turns = NULL,
api_key = NULL,
token = deprecated(),
credentials = NULL,
api_args = list(),

echo = c("none”, "text"”, "all")
)
Arguments
endpoint Azure OpenAl endpoint url with protocol and hostname, i.e. https://{your-resource-name}.openai.
Defaults to using the value of the AZURE_OPENAI_ENDPOINT envinronment vari-
able.

deployment_id Deployment id for the model you want to use.
api_version The API version to use.
system_prompt A system prompt to set the behavior of the assistant.

turns A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.

api_key An API key to use for authentication. You generally should not supply this
directly, but instead set the AZURE_OPENAI_API_KEY environment variable.

token [Deprecated] A literal Azure token to use for authentication. Deprecated in
favour of ambient Azure credentials or an explicit credentials argument.

credentials A list of authentication headers to pass into httr2: : req_headers(), a function
that returns them, or NULL to use token or api_key to generate these headers in-
stead. This is an escape hatch that allows users to incorporate Azure credentials
generated by other packages into ellmer, or to manage the lifetime of credentials
that need to be refreshed.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call.
echo One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the con-
sole).

* all: echo all input and output.
Note this only affects the chat () method.

Value

A Chat object.

8 chat_bedrock

Examples

Not run:
chat <- chat_azure(deployment_id = "gpt-40-mini")
chat$chat("Tell me three jokes about statisticians”)

End(Not run)

chat_bedrock Chat with an AWS bedrock model

Description

AWS Bedrock provides a number of language models, including those from Anthropic’s Claude,
using the Bedrock Converse APIL.

Authentication:

Authentication is handled through {paws.common}, so if authentication does not work for you au-
tomatically, you’ll need to follow the advice at https://www.paws-r-sdk.com/#credentials.
In particular, if your org uses AWS SSO, you’ll need to run aws sso login at the terminal.

Usage

chat_bedrock(
system_prompt = NULL,
turns = NULL,
model = NULL,
profile = NULL,
api_args = list(),
echo = NULL

Arguments

system_prompt A system prompt to set the behavior of the assistant.

turns A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.

model ellmer provides a default model, but you’ll typically need to you’ll specify a
model that you actually have access to.
If you’re using cross-region inference, you’ll need to use the inference profile
ID, e.g. model="us.anthropic.claude-3-5-sonnet-20240620-v1:0".
profile AWS profile to use.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call. Some useful arguments include:

https://aws.amazon.com/bedrock/
https://aws.amazon.com/bedrock/claude/
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html
https://www.paws-r-sdk.com/#credentials
https://aws.amazon.com/blogs/machine-learning/getting-started-with-cross-region-inference-in-amazon-bedrock/

chat_claude 9

api_args = list(
inferenceConfig = list(
maxTokens = 100,
temperature = 0.7,

topP = 0.9,
topK = 20
)
)
echo One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the con-
sole).
* all: echo all input and output.

Note this only affects the chat () method.

Value

A Chat object.

See Also

Other chatbots: chat_claude(), chat_cortex_analyst(), chat_databricks(), chat_deepseek(),
chat_gemini(), chat_github(), chat_groq(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity()

Examples

Not run:

Basic usage

chat <- chat_bedrock()

chat$chat("Tell me three jokes about statisticians”)

End(Not run)

chat_claude Chat with an Anthropic Claude model

Description

Anthropic provides a number of chat based models under the Claude moniker. Note that a Claude
Pro membership does not give you the ability to call models via the API; instead, you will need to
sign up (and pay for) a developer account

Authentication:
To authenticate, we recommend saving your API key to the ANTHROPIC_API_KEY env var in your
.Renviron (which you can easily edit by calling usethis: :edit_r_environ()).

https://www.anthropic.com
https://www.anthropic.com/claude
https://console.anthropic.com/
https://console.anthropic.com/account/keys

10 chat_claude

Usage

chat_claude(
system_prompt = NULL,

turns = NULL,
max_tokens = 4096,
model = NULL,

api_args = list(),

base_url = "https://api.anthropic.com/v1",
api_key = anthropic_key(),

echo = NULL

Arguments

system_prompt A system prompt to set the behavior of the assistant.

turns A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.

max_tokens Maximum number of tokens to generate before stopping.

model The model to use for the chat. The default, NULL, will pick a reasonable default,
and tell you about. We strongly recommend explicitly choosing a model for all
but the most casual use.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call.

base_url The base URL to the endpoint; the default uses OpenAl.

api_key The API key to use for authentication. You generally should not supply this

directly, but instead set the ANTHROPIC_API_KEY environment variable.
echo One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the con-
sole).

* all: echo all input and output.

Note this only affects the chat () method.

Value

A Chat object.

See Also

Other chatbots: chat_bedrock(), chat_cortex_analyst(), chat_databricks(), chat_deepseek(),
chat_gemini(), chat_github(), chat_groq(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity()

chat_cortex_analyst 11

Examples

chat <- chat_claude()
chat$chat(”"Tell me three jokes about statisticians”)

chat_cortex_analyst Create a chatbot that speaks to the Snowflake Cortex Analyst

Description
Chat with the LLM-powered Snowflake Cortex Analyst.

Authentication:
chat_cortex() picks up the following ambient Snowflake credentials:

¢ A static OAuth token defined via the SNOWFLAKE_TOKEN environment variable.

» Key-pair authentication credentials defined via the SNOWFLAKE _USER and SNOWFLAKE_PRIVATE_KEY
(which can be a PEM-encoded private key or a path to one) environment variables.

¢ Posit Workbench-managed Snowflake credentials for the corresponding account.
* Viewer-based credentials on Posit Connect. Requires the connectcreds package.

Known limitations:

Unlike most comparable model APIs, Cortex does not take a system prompt. Instead, the caller
must provide a "semantic model" describing available tables, their meaning, and verified queries
that can be run against them as a starting point. The semantic model can be passed as a YAML
string or via reference to an existing file in a Snowflake Stage.

Note that Cortex does not support multi-turn, so it will not remember previous messages. Nor
does it support registering tools, and attempting to do so will result in an error.

See chat_snowflake() to chat with more general-purpose models hosted on Snowflake.

Usage

chat_cortex_analyst(
account = snowflake_account(),
credentials = NULL,
model_spec = NULL,
model_file = NULL,
api_args = list(),

echo = c("none”, "text", "all")
)
Arguments
account A Snowflake account identifier, e.g. "testorg-test_account”. Defaults to
the value of the SNOWFLAKE_ACCOUNT environment variable.
credentials A list of authentication headers to pass into httr2: : req_headers(), a function

that returns them when called, or NULL, the default, to use ambient credentials.

https://docs.snowflake.com/en/user-guide/snowflake-cortex/cortex-analyst
https://docs.snowflake.com/en/user-guide/admin-account-identifier

12 chat_databricks

model_spec A semantic model specification, or NULL when using model_f1ile instead.

model_file Path to a semantic model file stored in a Snowflake Stage, or NULL when using
model_spec instead.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call.

echo One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the con-
sole).

* all: echo all input and output.
Note this only affects the chat () method.

Value

A Chat object.

See Also

Other chatbots: chat_bedrock(), chat_claude(), chat_databricks(), chat_deepseek(), chat_gemini(),
chat_github(), chat_groq(), chat_ollama(), chat_openai(), chat_openrouter(), chat_perplexity()

Examples

chat <- chat_cortex_analyst(
model_file = "@my_db.my_schema.my_stage/model.yaml”

)
chat$chat("What questions can I ask?")

chat_databricks Chat with a model hosted on Databricks

Description

Databricks provides out-of-the-box access to a number of foundation models and can also serve as
a gateway for external models hosted by a third party.

Authentication:
chat_databricks() picks up on ambient Databricks credentials for a subset of the Databricks
client unified authentication model. Specifically, it supports:

* Personal access tokens

* Service principals via OAuth (OAuth M2M)

¢ User account via OAuth (OAuth U2M)

* Authentication via the Databricks CLI

* Posit Workbench-managed credentials

https://docs.databricks.com/en/machine-learning/model-serving/score-foundation-models.html
https://docs.databricks.com/en/dev-tools/auth/unified-auth.html
https://docs.databricks.com/en/dev-tools/auth/unified-auth.html

chat_databricks 13

* Viewer-based credentials on Posit Connect. Requires the connectcreds package.

Known limitations:

Databricks models do not support images, but they do support structured outputs. Tool calling
support is also very limited at present and is currently not supported by ellmer.

Usage

chat_databricks(
workspace = databricks_workspace(),
system_prompt = NULL,

turns = NULL,
model = NULL,
token = NULL,
api_args = list(),
echo = c("none”, "text", "all")

)

Arguments
workspace The URL of a Databricks workspace, e.g. "https://example.cloud.databricks.com".

Will use the value of the environment variable DATABRICKS_HOST, if set.

system_prompt A system prompt to set the behavior of the assistant.

turns A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.
model The model to use for the chat. The default, NULL, will pick a reasonable default,

and tell you about. We strongly recommend explicitly choosing a model for all
but the most casual use. Available foundational models include:

e databricks-dbrx-instruct (the default)

e databricks-mixtral-8x7b-instruct

* databricks-meta-1lama-3-1-70b-instruct

* databricks-meta-llama-3-1-405b-instruct

token An authentication token for the Databricks workspace, or NULL to use ambient
credentials.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call.

echo One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the con-
sole).

* all: echo all input and output.
Note this only affects the chat () method.

Value

A Chat object.

14 chat_deepseek

See Also

Other chatbots: chat_bedrock(), chat_claude(), chat_cortex_analyst(), chat_deepseek(),
chat_gemini(), chat_github(), chat_groq(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity()

Examples

Not run:
chat <- chat_databricks()
chat$chat(”"Tell me three jokes about statisticians”)

End(Not run)

chat_deepseek Chat with a model hosted on DeepSeek

Description
Sign up at https://platform.deepseek.com.

Known limitations:

* Structured data extraction is not supported..
* Function calling is currently unstable.
* Images are not supported.

Usage

chat_deepseek(
system_prompt = NULL,
turns = NULL,
base_url = "https://api.deepseek.com”,
api_key = deepseek_key(),

model = NULL,
seed = NULL,
api_args = list(),
echo = NULL
)
Arguments

system_prompt A system prompt to set the behavior of the assistant.

turns A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.

base_url The base URL to the endpoint; the default uses DeepSeek.

api_key The API key to use for authentication. You generally should not supply this

directly, but instead set the OPENAI_API_KEY environment variable.

https://platform.deepseek.com
https://api-docs.deepseek.com/guides/function_calling

chat_gemini 15

model The model to use for the chat. The default, NULL, will pick a reasonable default,
and tell you about. We strongly recommend explicitly choosing a model for all
but the most casual use.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call.

echo One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the con-
sole).

e all: echo all input and output.

Note this only affects the chat () method.

Value

A Chat object.

See Also

Other chatbots: chat_bedrock(), chat_claude(), chat_cortex_analyst(), chat_databricks(),
chat_gemini(), chat_github(), chat_groq(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity()

Examples

Not run:
chat <- chat_deepseek()
chat$chat("Tell me three jokes about statisticians”)

End(Not run)

chat_gemini Chat with a Google Gemini model

Description

Authentication:

To authenticate, we recommend saving your API key to the GOOGLE_API_KEY env var in your
.Renviron (which you can easily edit by calling usethis: :edit_r_environ()).

https://aistudio.google.com/app/apikey

16 chat_gemini

Usage

chat_gemini(
system_prompt = NULL,

turns = NULL,
base_url = "https://generativelanguage.googleapis.com/vibeta/",
api_key = gemini_key(),
model = NULL,
api_args = list(),
echo = NULL
)
Arguments

system_prompt A system prompt to set the behavior of the assistant.

turns A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.

base_url The base URL to the endpoint; the default uses OpenAl.

api_key The API key to use for authentication. You generally should not supply this
directly, but instead set the GOOGLE_API_KEY environment variable.

model The model to use for the chat. The default, NULL, will pick a reasonable default,

and tell you about. We strongly recommend explicitly choosing a model for all
but the most casual use.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call.
echo One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the con-
sole).

* all: echo all input and output.

Note this only affects the chat () method.

Value

A Chat object.

See Also

Other chatbots: chat_bedrock(), chat_claude(), chat_cortex_analyst(), chat_databricks(),
chat_deepseek(), chat_github(), chat_groq(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity()

Examples

Not run:
chat <- chat_gemini()
chat$chat("Tell me three jokes about statisticians”)

End(Not run)

chat_github

17

chat_github

Chat with a model hosted on the GitHub model marketplace

Description

GitHub (via Azure) hosts a number of open source and OpenAl models. To access the GitHub
model marketplace, you will need to apply for and be accepted into the beta access program. See
https://github.com/marketplace/models for details.

This function is a lightweight wrapper around chat_openai() with the defaults tweaked for the
GitHub model marketplace.

Usage
chat_github(

system_prompt = NULL,

turns = NULL,
base_url = "https://models.inference.ai.azure.com/",
api_key = github_key(),
model = NULL,
seed = NULL,
api_args = list(),
echo = NULL
)
Arguments

system_prompt

turns

base_url

api_key

model

seed

api_args

echo

A system prompt to set the behavior of the assistant.

A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.

The base URL to the endpoint; the default uses OpenAl.

The API key to use for authentication. You generally should not supply this
directly, but instead manage your GitHub credentials as described in https:
//usethis.r-lib.org/articles/git-credentials.html. For headless en-
vironments, this will also look in the GITHUB_PAT env var.

The model to use for the chat. The default, NULL, will pick a reasonable default,
and tell you about. We strongly recommend explicitly choosing a model for all
but the most casual use.

Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

Named list of arbitrary extra arguments appended to the body of every chat API
call.

One of the following options:

* none: don’t emit any output (default when running in a function).

https://github.com/marketplace/models
https://usethis.r-lib.org/articles/git-credentials.html
https://usethis.r-lib.org/articles/git-credentials.html

18 chat_groq

* text: echo text output as it streams in (default when running at the con-
sole).

e all: echo all input and output.

Note this only affects the chat () method.

Value

A Chat object.

See Also

Other chatbots: chat_bedrock(), chat_claude(), chat_cortex_analyst(), chat_databricks(),
chat_deepseek(), chat_gemini(), chat_groq(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity()

Examples

Not run:
chat <- chat_github()
chat$chat("Tell me three jokes about statisticians”)

End(Not run)

chat_groq Chat with a model hosted on Grog

Description

Signup at https://groq.com.
This function is a lightweight wrapper around chat_openai() with the defaults tweaked for groq.

Known limitations:

groq does not currently support structured data extraction.

Usage

chat_groq(
system_prompt = NULL,
turns = NULL,
base_url = "https://api.groq.com/openai/v1”,
api_key = groq_key(),

model = NULL,

seed = NULL,
api_args = list(),
echo = NULL

https://groq.com

chat_groq 19

Arguments

system_prompt A system prompt to set the behavior of the assistant.

turns A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.

base_url The base URL to the endpoint; the default uses OpenAl.

api_key The API key to use for authentication. You generally should not supply this
directly, but instead set the OPENAI_API_KEY environment variable.

model The model to use for the chat. The default, NULL, will pick a reasonable default,
and tell you about. We strongly recommend explicitly choosing a model for all
but the most casual use.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call.

echo One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the con-
sole).

* all: echo all input and output.

Note this only affects the chat () method.

Value

A Chat object.

See Also

Other chatbots: chat_bedrock(), chat_claude(), chat_cortex_analyst(), chat_databricks(),
chat_deepseek(), chat_gemini(), chat_github(), chat_ollama(), chat_openai(), chat_openrouter(),
chat_perplexity()

Examples

Not run:
chat <- chat_groq()
chat$chat("Tell me three jokes about statisticians”)

End(Not run)

20 chat_ollama

chat_ollama Chat with a local Ollama model

Description
To use chat_ollama() first download and install Ollama. Then install some models either from the
command line (e.g. with ollama pull 1lama3. 1) or within R using ollamar (e.g. ollamar: :pull(”1lama3.1")).

This function is a lightweight wrapper around chat_openai () with the defaults tweaked for ollama.

Known limitations:
¢ Tool calling is not supported with streaming (i.e. when echo is "text"” or "all")
* Models can only use 2048 input tokens, and there’s no way to get them to use more, except
by creating a custom model with a different default.
* Tool calling generally seems quite weak, at least with the models I have tried it with.

Usage

chat_ollama(
system_prompt = NULL,

turns = NULL,
base_url = "http://localhost:11434",
model,
seed = NULL,
api_args = list(),
echo = NULL
)
Arguments

system_prompt A system prompt to set the behavior of the assistant.

turns A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.

base_url The base URL to the endpoint; the default uses OpenAl.

model The model to use for the chat. The default, NULL, will pick a reasonable default,

and tell you about. We strongly recommend explicitly choosing a model for all
but the most casual use.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call.

echo One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the con-
sole).

e all: echo all input and output.

Note this only affects the chat () method.

https://ollama.com
https://hauselin.github.io/ollama-r/

chat_openai 21

Value

A Chat object.

See Also

Other chatbots: chat_bedrock(), chat_claude(), chat_cortex_analyst(), chat_databricks(),
chat_deepseek(), chat_gemini(), chat_github(), chat_groq(), chat_openai(), chat_openrouter(),
chat_perplexity()

Examples

Not run:
chat <- chat_ollama(model = "llama3.2")
chat$chat("Tell me three jokes about statisticians”)

End(Not run)

chat_openai Chat with an OpenAl model

Description

OpenAl provides a number of chat-based models, mostly under the ChatGPT brand. Note that a
ChatGPT Plus membership does not grant access to the API. You will need to sign up for a developer
account (and pay for it) at the developer platform.

For authentication, we recommend saving your API key to the OPENAI_API_KEY environment vari-
able in your .Renviron file. You can easily edit this file by calling usethis: :edit_r_environ().
Usage

chat_openai(
system_prompt = NULL,

turns = NULL,
base_url = "https://api.openai.com/v1",
api_key = openai_key(),
model = NULL,
seed = NULL,
api_args = list(),
echo = c("none”, "text", "all")
)
Arguments

system_prompt A system prompt to set the behavior of the assistant.

turns A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.

base_url The base URL to the endpoint; the default uses OpenAl.

https://openai.com/
https://chat.openai.com/
https://platform.openai.com
https://platform.openai.com/account/api-keys

22 chat_openrouter

api_key The API key to use for authentication. You generally should not supply this
directly, but instead set the OPENAI_API_KEY environment variable.

model The model to use for the chat. The default, NULL, will pick a reasonable default,
and tell you about. We strongly recommend explicitly choosing a model for all
but the most casual use.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call.

echo One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the con-
sole).

e all: echo all input and output.

Note this only affects the chat () method.

Value

A Chat object.

See Also

Other chatbots: chat_bedrock(), chat_claude(), chat_cortex_analyst(), chat_databricks(),
chat_deepseek(), chat_gemini(), chat_github(), chat_groq(), chat_ollama(), chat_openrouter(),
chat_perplexity()

Examples

chat <- chat_openai()

chat$chat ("
What is the difference between a tibble and a data frame?
Answer with a bulleted list

n)

chat$chat("Tell me three funny jokes about statistcians”)

chat_openrouter Chat with one of the many models hosted on OpenRouter

Description

Signup at https://openrouter.ai.

Support for features depends on the underlying model that you use; see https://openrouter.ai/
models for details.

https://openrouter.ai
https://openrouter.ai/models
https://openrouter.ai/models

chat_openrouter 23

Usage

chat_openrouter(
system_prompt = NULL,

turns = NULL,
api_key = openrouter_key(),
model = NULL,
seed = NULL,
api_args = list(),
echo = c("none”, "text", "all")
)
Arguments

system_prompt A system prompt to set the behavior of the assistant.

turns A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.

api_key The API key to use for authentication. You generally should not supply this
directly, but instead set the OPENAI_API_KEY environment variable.

model The model to use for the chat. The default, NULL, will pick a reasonable default,
and tell you about. We strongly recommend explicitly choosing a model for all
but the most casual use.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call.

echo One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the con-
sole).

* all: echo all input and output.

Note this only affects the chat () method.

Value

A Chat object.

See Also

Other chatbots: chat_bedrock(), chat_claude(), chat_cortex_analyst(), chat_databricks(),
chat_deepseek(), chat_gemini(), chat_github(), chat_groq(), chat_ollama(), chat_openai(),
chat_perplexity()

24 chat_perplexity

Examples

Not run:
chat <- chat_openrouter()
chat$chat("Tell me three jokes about statisticians”)

End(Not run)

chat_perplexity Chat with a model hosted on perplexity.ai

Description

Sign up at https://www.perplexity.ai.

Perplexity Al is a platform for running LLMs that are capable of searching the web in real-time to
help them answer questions with information that may not have been available when the model was
trained.

This function is a lightweight wrapper around chat_openai() with the defaults tweaked for Per-
plexity Al

Usage

chat_perplexity(
system_prompt = NULL,
turns = NULL,
base_url = "https://api.perplexity.ai/”,
api_key = perplexity_key(),

model = NULL,
seed = NULL,
api_args = list(),
echo = NULL
)
Arguments

system_prompt A system prompt to set the behavior of the assistant.

turns A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.

base_url The base URL to the endpoint; the default uses OpenAl.

api_key The API key to use for authentication. You generally should not supply this

directly, but instead set the PERPLEXITY_API_KEY environment variable.

model The model to use for the chat. The default, NULL, will pick a reasonable default,
and tell you about. We strongly recommend explicitly choosing a model for all
but the most casual use.

seed Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

https://www.perplexity.ai

chat_snowflake 25

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call.
echo One of the following options:

* none: don’t emit any output (default when running in a function).
* text: echo text output as it streams in (default when running at the con-
sole).

e all: echo all input and output.
Note this only affects the chat () method.

Value

A Chat object.

See Also

Other chatbots: chat_bedrock(), chat_claude(), chat_cortex_analyst(), chat_databricks(),
chat_deepseek(), chat_gemini(), chat_github(), chat_groq(), chat_ollama(), chat_openai(),
chat_openrouter()

Examples

Not run:
chat <- chat_perplexity()
chat$chat("Tell me three jokes about statisticians”)

End(Not run)

chat_snowflake Chat with a model hosted on Snowflake

Description

The Snowflake provider allows you to interact with LLM models available through the Cortex LLM
REST APIL

Authentication:
chat_snowflake() picks up the following ambient Snowflake credentials:
* A static OAuth token defined via the SNOWFLAKE_TOKEN environment variable.

» Key-pair authentication credentials defined via the SNOWFLAKE _USER and SNOWFLAKE_PRIVATE_KEY
(which can be a PEM-encoded private key or a path to one) environment variables.

* Posit Workbench-managed Snowflake credentials for the corresponding account.
» Viewer-based credentials on Posit Connect. Requires the connectcreds package.

Known limitations:
Note that Snowflake-hosted models do not support images, tool calling, or structured outputs.

See chat_cortex() to chat with the Snowflake Cortex Analyst rather than a general-purpose
model.

https://docs.snowflake.com/en/user-guide/snowflake-cortex/cortex-llm-rest-api
https://docs.snowflake.com/en/user-guide/snowflake-cortex/cortex-llm-rest-api

26 chat_snowflake

Usage

chat_snowflake(
system_prompt = NULL,
turns = NULL,
account = snowflake_account(),
credentials = NULL,

model = NULL,
api_args = list(),
echo = c("none”, "text", "all")
)
Arguments

system_prompt A system prompt to set the behavior of the assistant.

turns A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.

account A Snowflake account identifier, e.g. "testorg-test_account”. Defaults to
the value of the SNOWFLAKE_ACCOUNT environment variable.

credentials A list of authentication headers to pass into httr2: :req_headers(), a function
that returns them when called, or NULL, the default, to use ambient credentials.

model The model to use for the chat. The default, NULL, will pick a reasonable default,
and tell you about. We strongly recommend explicitly choosing a model for all
but the most casual use.

api_args Named list of arbitrary extra arguments appended to the body of every chat API
call.
echo One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the con-
sole).

* all: echo all input and output.

Note this only affects the chat () method.

Value

A Chat object.

Examples

chat <- chat_snowflake()
chat$chat(”"Tell me a joke in the form of a SQL query.")

https://docs.snowflake.com/en/user-guide/admin-account-identifier

chat_vllm

27

chat_vllm

Chat with a model hosted by vLLM

Description

vLLM is an open source library that provides an efficient and convenient LLMs model server. You
can use chat_v11m() to connect to endpoints powered by vLLM.

Usage

chat_v1llm(
base_url,

system_prompt = NULL,

turns = NULL,

model,

seed = NULL,

api_args = list(),
api_key = vllm_key(),

echo = NULL

Arguments

base_url
system_prompt

turns

model

seed

api_args

api_key

echo

The base URL to the endpoint; the default uses OpenAl.
A system prompt to set the behavior of the assistant.

A list of Turns to start the chat with (i.e., continuing a previous conversation). If
not provided, the conversation begins from scratch.

The model to use for the chat. The default, NULL, will pick a reasonable default,
and tell you about. We strongly recommend explicitly choosing a model for all
but the most casual use.

Optional integer seed that ChatGPT uses to try and make output more repro-
ducible.

Named list of arbitrary extra arguments appended to the body of every chat API
call.

The API key to use for authentication. You generally should not supply this
directly, but instead set the VLLM_API_KEY environment variable.

One of the following options:

* none: don’t emit any output (default when running in a function).

* text: echo text output as it streams in (default when running at the con-
sole).

e all: echo all input and output.

Note this only affects the chat () method.

https://docs.vllm.ai/en/latest/

28 Content

Value

A Chat object.

Examples

Not run:
chat <- chat_vlim("http://my-vllm.com")
chat$chat(”"Tell me three jokes about statisticians”)

End(Not run)

Content Content types received from and sent to a chatbot

Description

Use these functions if you’re writing a package that extends ellmer and need to customise methods
for various types of content. For normal use, see content_image_url() and friends.

ellmer abstracts away differences in the way that different Providers represent various types of
content, allowing you to more easily write code that works with any chatbot. This set of classes
represents types of content that can be either sent to and received from a provider:

* ContentText: simple text (often in markdown format). This is the only type of content that
can be streamed live as it’s received.

* ContentImageRemote and ContentImageInline: images, either as a pointer to a remote
URL or included inline in the object. See content_image_file() and friends for convenient
ways to construct these objects.

* ContentToolRequest: arequest to perform a tool call (sent by the assistant).

* ContentToolResult: the result of calling the tool (sent by the user).

Usage
Content()
ContentText(text = stop("Required"))
ContentImage()
ContentImageRemote(url = stop(”"Required”), detail = "")
ContentImageInline(type = stop("Required”), data = NULL)
ContentToolRequest(
id = stop("Required”),

name = stop("Required”),
arguments = list()

contents_text 29

ContentToolResult(id = stop("Required”), value = NULL, error = NULL)

ContentPDF (type = stop("Required”), data = stop("Required”))

Arguments

text A single string.

url URL to a remote image.

detail Not currently used.

type MIME type of the image.

data Base64 encoded image data.

id Tool call id (used to associate a request and a result)

name Function name

arguments Named list of arguments to call the function with.

value, error Either the results of calling the function if it succeeded, otherwise the error

message, as a string. One of value and error will always be NULL.

Value

S7 objects that all inherit from Content

Examples

Content()
ContentText("Tell me a joke")
ContentImageRemote("https://www.r-project.org/Rlogo.png")

ContentToolRequest(id = "abc"”, name = "mean”, arguments = list(x = 1:5))
contents_text Format contents into a textual representation
Description

These generic functions can be use to convert Turn contents or Content objects into textual repre-
sentations.
* contents_text() is the most minimal and only includes ContentText objects in the output.

e contents_markdown() returns the text content (which it assumes to be markdown and does
not convert it) plus markdown representations of images and other content types.

e contents_html () returns the text content, converted from markdown to HTML with commonmark: : markdown_html ().
plus HTML representations of images and other content types.

30 content_image_url

Usage
contents_text(content, ...)
contents_html(content, ...)
contents_markdown(content, ...)
Arguments
content The Turn or Content object to be converted into text. contents_markdown()
also accepts Chat instances to turn the entire conversation history into markdown
text.
Additional arguments passed to methods.
Value

A string of text, markdown or HTML.

Examples

turns <- list(
Turn("user”, contents = list(
ContentText("What's this image?"),
content_image_url("https://placehold.co/200x200")
),
Turn("assistant”, "It's a placeholder image.")

)

lapply(turns, contents_text)

lapply(turns, contents_markdown)

if (rlang::is_installed(”commonmark”)) {
contents_html(turns[[1]])

3

content_image_url Encode images for chat input

Description

These functions are used to prepare image URLs and files for input to the chatbot. The content_image_url()
function is used to provide a URL to an image, while content_image_file() is used to provide
the image data itself.

content_image_url 31
Usage
content_image_url(url, detail = c("auto”, "low", "high"))
content_image_file(path, content_type = "auto”, resize = "low")

content_image_plot(width = 768, height = 768)

Arguments
url The URL of the image to include in the chat input. Can be a data: URL or a
regular URL. Valid image types are PNG, JPEG, WebP, and non-animated GIF.
detail The detail setting for this image. Can be "auto”, "low”, or "high".
path The path to the image file to include in the chat input. Valid file extensions are

.png, .jpeg, . jpg, .webp, and (non-animated) .gif.

content_type The content type of the image (e.g. image/png). If "auto”, the content type is
inferred from the file extension.

resize If "low", resize images to fit within 512x512. If "high", resize to fit within
2000x768 or 768x2000. (See the OpenAl docs for more on why these specific
sizes are used.) If "none”, do not resize.
You can also pass a custom string to resize the image to a specific size, e.g.
"200x200" to resize to 200x200 pixels while preserving aspect ratio. Append >
to resize only if the image is larger than the specified size, and ! to ignore aspect
ratio (e.g. "300x200>!").
All values other than none require the magick package.

width, height Width and height in pixels.

Value

An input object suitable for including in the . . . parameter of the chat (), stream(), chat_async(),
or stream_async() methods.

Examples

chat <- chat_openai(echo = TRUE)

chat$chat(
"What do you see in these images?”,
content_image_url("https://www.r-project.org/Rlogo.png"),
content_image_file(system.file("httr2.png", package = "ellmer"))

)

plot(waiting ~ eruptions, data = faithful)
chat <- chat_openai(echo = TRUE)
chat$chat(

"Describe this plot in one paragraph, as suitable for inclusion in
alt-text. You should briefly describe the plot type, the axes, and
2-5 major visual patterns.”,
content_image_plot()

https://platform.openai.com/docs/guides/vision/low-or-high-fidelity-image-understanding
https://platform.openai.com/docs/guides/vision/low-or-high-fidelity-image-understanding

32 create_tool_def

content_pdf_file Encode PDFs content for chat input

Description

These functions are used to prepare PDFs as input to the chatbot. The content_pdf_url() function
is used to provide a URL to an PDF file, while content_pdf_file() is used to for local PDF files.

Not all providers support PDF input, so check the documentation for the provider you are using.

Usage
content_pdf_file(path)

content_pdf_url(url)

Arguments

path, url Path or URL to a PDF file.

Value

A ContentPDF object

create_tool_def Create metadata for a tool

Description

In order to use a function as a tool in a chat, you need to craft the right call to tool(). This
function helps you do that for documented functions by extracting the function’s R documentation
and creating a tool () call for you, using an LLM. It’s meant to be used interactively while writing
your code, not as part of your final code.

If the function has package documentation, that will be used. Otherwise, if the source code of the
function can be automatically detected, then the comments immediately preceding the function are
used (especially helpful if those are Roxygen comments). If neither are available, then just the
function signature is used.

Note that this function is inherently imperfect. It can’t handle all possible R functions, because not
all parameters are suitable for use in a tool call (for example, because they’re not serializable to
simple JSON objects). The documentation might not specify the expected shape of arguments to
the level of detail that would allow an exact JSON schema to be generated. Please be sure to review
the generated code before using it!

interpolate 33

Usage

create_tool_def(topic, model = "gpt-40", echo = interactive(), verbose = FALSE)

Arguments
topic A symbol or string literal naming the function to create metadata for. Can also
be an expression of the form pkg: : fun.
model The OpenAl model to use for generating the metadata. Defaults to "gpt-40".
echo Emit the registration code to the console. Defaults to TRUE in interactive ses-
sions.
verbose If TRUE, print the input we send to the LLM, which may be useful for debugging
unexpectedly poor results.
Value

A register_tool call that you can copy and paste into your code. Returned invisibly if echo is
TRUE.

Examples

Not run:
These are all equivalent
create_tool_def (rnorm)
create_tool_def(stats::rnorm)
create_tool_def("rnorm”)

End(Not run)

interpolate Helpers for interpolating data into prompts

Description

These functions are lightweight wrappers around glue that make it easier to interpolate dynamic
data into a static prompt. Compared to glue, these functions expect you to wrap dynamic values in
{{ }}. making it easier to include R code and JSON in your prompt.

Usage

interpolate(prompt, ..., .envir = parent.frame())

interpolate_file(path, ..., .envir = parent.frame())

https://glue.tidyverse.org/

34 live_console

Arguments
prompt A prompt string. You should not generally expose this to the end user, since glue
interpolation makes it easy to run arbitrary code.
Define additional temporary variables for substitution.
.envir Environment to evaluate ... expressions in. Used when wrapping in another
function. See vignette("wrappers”, package = "glue") for more details.
path A path to a prompt file (often a . md).
Value

A {glue} string.

Examples

joke <- "You're a cool dude who loves to make jokes. Tell me a joke about {{topic}}.”

You can supply valuese directly:
interpolate(joke, topic = "bananas")

Or allow interpolate to find them in the current environment:
topic <- "applies”
interpolate(joke)

live_console Open a live chat application

Description

» live_console() lets you chat interactively in the console.
e live_browser() lets you chat interactively in a browser.

Note that these functions will mutate the input chat object as you chat because your turns will be
appended to the history.

Usage

live_console(chat, quiet = FALSE)

live_browser(chat, quiet = FALSE)

Arguments

chat A chat object created by chat_openai() or friends.

quiet If TRUE, suppresses the initial message that explains how to use the console.
Value

(Invisibly) The input chat.

Provider 35

Examples

Not run:

chat <- chat_claude()
live_console(chat)
live_browser(chat)

End(Not run)

Provider A chatbot provider

Description

A Provider captures the details of one chatbot service/API. This captures how the API works, not
the details of the underlying large language model. Different providers might offer the same (open
source) model behind a different API.

Usage

Provider(base_url = stop("Required”), extra_args = list())

Arguments

base_url The base URL for the API.

extra_args Arbitrary extra arguments to be included in the request body.
Details

To add support for a new backend, you will need to subclass Provider (adding any additional fields
that your provider needs) and then implement the various generics that control the behavior of each
provider.

Value

An S7 Provider object.

Examples

Provider(base_url = "https://cool-models.com")

36 tool

token_usage Report on token usage in the current session

Description
Call this function to find out the cumulative number of tokens that you have sent and recieved in the
current session.

Usage

token_usage()

Value

A data frame

Examples

token_usage()

tool Define a tool

Description

Define an R function for use by a chatbot. The function will always be run in the current R instance.

Learn more in vignette("tool-calling").

Usage
tool(.fun, .description, ..., .name = NULL)
Arguments
.fun The function to be invoked when the tool is called.

.description A detailed description of what the function does. Generally, the more informa-
tion that you can provide here, the better.

Name-type pairs that define the arguments accepted by the function. Each ele-
ment should be created by a type_*() function.

.name The name of the function.

Value

An S7 ToolDef object.

Turn 37

Examples

First define the metadata that the model uses to figure out when to
call the tool
tool_rnorm <- tool(
rnorm,
"Drawn numbers from a random normal distribution”,
n = type_integer("The number of observations. Must be a positive integer."),
mean = type_number("The mean value of the distribution."”),
sd = type_number ("The standard deviation of the distribution. Must be a non-negative number.")
)
chat <- chat_openai()
Then register it
chat$register_tool(tool_rnorm)

Then ask a question that needs it.
chat$chat ("
Give me five numbers from a random normal distribution.

")

Look at the chat history to see how tool calling works:
Assistant sends a tool request which is evaluated locally and
results are send back in a tool result.

Turn A user or assistant turn

Description

Every conversation with a chatbot consists of pairs of user and assistant turns, corresponding to an
HTTP request and response. These turns are represented by the Turn object, which contains a list
of Contents representing the individual messages within the turn. These might be text, images, tool
requests (assistant only), or tool responses (user only).

Note that a call to $chat() and related functions may result in multiple user-assistant turn cy-
cles. For example, if you have registered tools, ellmer will automatically handle the tool call-
ing loop, which may result in any number of additional cycles. Learn more about tool calling in
vignette("tool-calling”).

Usage

Turn(role, contents = list(), json = list(), tokens = c(0, 0))

Arguments

non

role Either "user", "assistant", or "system".

contents A list of Content objects.

38 Type

json The serialized JSON corresponding to the underlying data of the turns. Cur-
rently only provided for assistant.

This is useful if there’s information returned by the provider that ellmer doesn’t
otherwise expose.

tokens A numeric vector of length 2 representing the number of input and output tokens
(respectively) used in this turn. Currently only recorded for assistant turns.

Value

An S7 Turn object

Examples
Turn(role = "user"”, contents = list(ContentText("Hello, world!")))
Type Type definitions for function calling and structured data extraction.
Description

These S7 classes are provided for use by package devlopers who are extending ellmer. In every day
use, use type_boolean() and friends.

Usage
TypeBasic(description = NULL, required = TRUE, type = stop("Required”))

TypeEnum(description = NULL, required = TRUE, values = character(@))

TypeArray(description = NULL, required = TRUE, items = Type())
TypeObject(

description = NULL,

required = TRUE,

properties = list(),

additional_properties = TRUE
)

Arguments

description The purpose of the component. This is used by the LLM to determine what
values to pass to the tool or what values to extract in the structured data, so the
more detail that you can provide here, the better.

required Is the component required? If FALSE, and the component does not exist in the
data, the LLM may hallucinate a value. Only applies when the element is nested
inside of a type_object().

type Basic type name. Must be one of boolean, integer, number, or string.

type_boolean 39

values Character vector of permitted values.
items The type of the array items. Can be created by any of the type_ function.
properties Named list of properties stored inside the object. Each element should be an S7

Type object.*

additional_properties
Can the object have arbitrary additional properties that are not explicitly listed?
Only supported by Claude.

Value

S7 objects inheriting from Type

Examples

TypeBasic(type = "boolean")
TypeArray(items = TypeBasic(type = "boolean"))

type_boolean Type specifications

Description

These functions specify object types in a way that chatbots understand and are used for tool calling
and structured data extraction. Their names are based on the JSON schema, which is what the APIs
expect behind the scenes. The translation from R concepts to these types is fairly straightforward.

e type_boolean(), type_integer(), type_number(), and type_string() each represent
scalars. These are equivalent to length-1 logical, integer, double, and character vectors (re-
spectively).

* type_enum() is equivalent to a length-1 factor; it is a string that can only take the specified
values.

* type_array() is equivalent to a vector in R. You can use it to represent an atomic vector: e.g.
type_array(items = type_boolean()) is equivalent to a logical vector and type_array(items
= type_string()) is equivalent to a character vector). You can also use it to represent a list
of more complicated types where every element is the same type (R has no base equivalent to
this), e.g. type_array(items = type_array(items = type_string())) represents a list of
character vectors.

* type_object() is equivalent to a named list in R, but where every element must have the spec-
ified type. For example, type_object(a = type_string(), b = type_array(type_integer()))
is equivalent to a list with an element called a that is a string and an element called b that is
an integer vector.

https://json-schema.org

40 type_boolean

Usage

type_boolean(description = NULL, required = TRUE)

type_integer(description = NULL, required = TRUE)

type_number(description = NULL, required = TRUE)

type_string(description = NULL, required = TRUE)

type_enum(description = NULL, values, required = TRUE)

type_array(description = NULL, items, required = TRUE)
type_object(

.description = NULL,

.required = TRUE,

.additional_properties = FALSE
)

Arguments

description, .description
The purpose of the component. This is used by the LLM to determine what
values to pass to the tool or what values to extract in the structured data, so the
more detail that you can provide here, the better.

required, .required
Is the component required? If FALSE, and the component does not exist in the
data, the LLM may hallucinate a value. Only applies when the element is nested
inside of a type_object().

values Character vector of permitted values.
items The type of the array items. Can be created by any of the type_ function.

e Name-type pairs defineing the components that the object must possess.
.additional_properties
Can the object have arbitrary additional properties that are not explicitly listed?
Only supported by Claude.

Examples

An integer vector
type_array(items = type_integer())

The closest equivalent to a data frame is an array of objects
type_array(items = type_object(

x = type_boolean(),

y = type_string(),

z = type_number ()
))

type_boolean

There's no specific type for dates, but you use a string with the

requested format in the description (it's not gauranteed that you'll
get this format back, but you should most of the time)
type_string(”"The creation date, in YYYY-MM-DD format.")
type_string(”"The update date, in dd/mm/yyyy format.”)

41

Index

* chatbots
chat_bedrock, 8
chat_claude, 9
chat_cortex_analyst, 11
chat_databricks, 12
chat_deepseek, 14
chat_gemini, 15
chat_github, 17
chat_groq, 18
chat_ollama, 20
chat_openai, 21
chat_openrouter, 22
chat_perplexity, 24

base::I(),6

Chat,3,7,9 10,12, 13,15, 16,18, 19, 21-23,
25, 26, 28, 30
chat_azure, 6
chat_bedrock, 8, 10, 12, 14-16, 18, 19
21-23,25
chat_claude, 9,9, 12, 14-16, 18, 19, 21-23,
25
chat_cortex(), 25
chat_cortex_analyst, 9, 10, 11, 14-16, 18,
19,21-23,25
chat_databricks, 9, 10, 12,12, 15, 16, 18
19,21-23,25
chat_deepseek, 9, 10, 12, 14, 14, 16, 18, 19
21-23,25
chat_gemini, 9, 10, 12, 14, 15,15, 18, 19,
21-23,25
chat_github, 9, 10, 12, 14-16, 17, 19, 21-23,
25
chat_groq, 9, 10, 12, 14-16, 18, 18,21-23,25
chat_ollama, 9, 10, 12, 14-16, 18, 19, 20, 22,
23,25
chat_openai, 9, 10, 12, 14-16, 18, 19, 21, 21,
23,25
chat_openai(), 3, 17, 18, 20, 24, 34

chat_openrouter, 9, 10, 12, 14-16, 18, 19,
21,22,22,25

chat_perplexity, 9, 10, 12, 14-16, 18, 19,
21-23,24

chat_snowflake, 25

chat_snowflake(), 11

chat_vllm, 27

commonmark: :markdown_html (), 29

Content, 28, 29, 30, 37

content_image_file (content_image_url),
30

content_image_file(), 5, 28

content_image_plot (content_image_url),
30

content_image_url, 30

content_image_url(), 5, 28

content_pdf_file, 32

content_pdf_url (content_pdf_file), 32

ContentImage (Content), 28

ContentImageInline (Content), 28

ContentImageRemote (Content), 28

ContentPDF (Content), 28

contents_html (contents_text), 29

contents_markdown (contents_text), 29

contents_text, 29

ContentText, 29

ContentText (Content), 28

ContentToolRequest (Content), 28

ContentToolResult (Content), 28

create_tool_def, 32

httr2::reqg_headers(), 7, 11,26

interpolate, 33
interpolate_file (interpolate), 33

live_browser (live_console), 34
live_console, 34

Provider, 3, 28, 35

INDEX

token_usage, 36

tool, 36

tool(), 6, 32

Turn, 3,4,7,8,10, 13, 14, 16, 17, 19-21, 23,
24,26, 27, 29, 30, 37

Type, 38

type_Q),5

type_*(), 36

type_array (type_boolean), 39

type_boolean, 39

type_boolean(), 38

type_enum (type_boolean), 39

type_integer (type_boolean), 39

type_number (type_boolean), 39

type_object (type_boolean), 39

type_string (type_boolean), 39

TypeArray (Type), 38

TypeBasic (Type), 38

TypeEnum (Type), 38

TypeObject (Type), 38

43

	Chat
	chat_azure
	chat_bedrock
	chat_claude
	chat_cortex_analyst
	chat_databricks
	chat_deepseek
	chat_gemini
	chat_github
	chat_groq
	chat_ollama
	chat_openai
	chat_openrouter
	chat_perplexity
	chat_snowflake
	chat_vllm
	Content
	contents_text
	content_image_url
	content_pdf_file
	create_tool_def
	interpolate
	live_console
	Provider
	token_usage
	tool
	Turn
	Type
	type_boolean
	Index

