## ----include = FALSE---------------------------------------------------------- knitr::opts_knit$set( self.contained = TRUE) knitr::opts_chunk$set( #collapse = TRUE, dpi = 55, fig.retina = 1, comment = "#>" ) ## ----eval=FALSE, collapse=TRUE------------------------------------------------ # Rscript ./demo/main.R -t 0.0005 -o ~/Documents/doblin/ -n test # -i ~/Documents/input.csv -c 12 ## ----eval=FALSE, collapse=TRUE------------------------------------------------ # Processing the command line... # Step 0: Processing CSV file... # Do you want to plot the dynamics of your dataset?(y/n): y ## ----eval=FALSE, collapse=TRUE------------------------------------------------ # Step 1: Plotting the dynamics... # 1.1 Reshaping input file into long-format dataframe... # 1.2 Retrieving the first 1000 barcodes with the highest maximum frequencies... # 1.3 Assigning colors to lineages having reached the minimum frequency threshold # among the 1000 most dominant barcoded lines... ## ----eval=FALSE, collapse=TRUE------------------------------------------------ # Do you want to plot a log-scale model, a linear-scale model or both? # (logarithmic/linear/both): both # Plotting in progress... # Rendering linear-scale area plot. This may take a few minutes... ## ----eval=FALSE, collapse=TRUE------------------------------------------------ # Do you want to plot the diversity of your dataset?(y/n): y # 2.1 Calculating the diversity... # 2.2 Plotting the diversity... ## ----eval=FALSE, collapse=TRUE------------------------------------------------ # Step 3: Clustering... # Specify a minimum mean frequency below which lineages are not taken into account during # clustering (ex: 0.00005): 0.00005 # 3.1 Filtering the input data... ## ----eval=FALSE, collapse=TRUE------------------------------------------------ # 3.2 Clustering the filtered data... # Enter an agglomeration method (refer to stats::hclust() R documentation): average # Enter the metric to be used to measure similarity between two time-series (pearson/dtw) : # pearson # Enter a method for computing covariances in the presence of missing values. # Please refer to stats::cor() R documentation (ex: pairwise.complete.obs) : # pairwise ## ----eval=FALSE, collapse=TRUE------------------------------------------------ # 3.2 Clustering the filtered data... # Enter an agglomeration method (refer to stats::hclust() R documentation): average # Enter the metric to be used to measure similarity between two time-series (pearson/dtw): # dtw # Enter the norm for the local distance calculation # ('L1' for Manhattan or 'L2' for (squared) Euclidean): L2 ## ----eval=FALSE, collapse=TRUE------------------------------------------------ # 3.2.1 Computing the relative clusters for ALL thresholds between 0.1 and maximum # height of hierarchical clustering... # 3.2.2 Filtering the hierarchical clustering results... # Enter the minimum number of members per cluster for test : 8 # Enter the minimum number of members per cluster for test : 8 # Enter the minimum average frequency to rescue small clusters: 0.001 # Warning message: # By ignoring clusters with fewer than 8 members, you are potentially ignoring # dominant clusters. ## ----eval=FALSE, collapse=TRUE------------------------------------------------ # 3.2.3 Quantifying the hierarchical clustering... # 3.2.4 Enter the chosen threshold for the clustering of test : 0.3 ## ----eval=FALSE, collapse=TRUE------------------------------------------------ # 3.2.5 Plotting the resulting clusters... # DONE