Provides tools for detecting XOR-like patterns in variable pairs. Includes visualizations for pattern exploration.
Traditional feature selection methods often miss complex non-linear
relationships where variables interact to produce class differences. The
detectXOR package specifically targets XOR
patterns - relationships where class discrimination only
emerges through variable interactions, not individual variables
alone.
π XOR pattern detection - Statistical
identification using ΟΒ² and Wilcoxon tests
π Correlation analysis - Class-wise Kendall Ο
coefficients
π Visualization - Spaghetti plots and decision
boundary visualizations
β‘ Parallel processing - Multi-core acceleration for
large datasets
π¬ Robust statistics - Winsorization and scaling
options for outlier handling
Install the development version from GitHub:
# Install devtools if needed
if (!requireNamespace("devtools", quietly = TRUE)) { install.packages("devtools") }
# Install detectXOR
devtools::install_github("JornLotsch/detectXOR")The package requires R β₯ 3.5.0 and depends on: - dplyr,
tibble (data manipulation) - ggplot2,
ggh4x, scales (visualization) -
future, future.apply, pbmcapply,
parallel (parallel processing) - reshape2,
glue (data processing and string manipulation) -
DescTools (statistical tools) - Base R packages:
stats, utils, methods,
grDevices
Optional packages (suggested): - testthat,
knitr, rmarkdown (development and
documentation) - doParallel, foreach
(additional parallel processing options)
library(detectXOR)
# Load example data
data(XOR_data)
# Detect XOR patterns with default settings
results <- detectXOR(XOR_data, class_col = "class")
# View summary
print(results$results_df)# Detection with custom thresholds and parallel processing
results <- detect_xor(
data = XOR_data,
class_col = "class",
p_threshold = 0.01,
tau_threshold = 0.4,
max_cores = 4,
extreme_handling = "winsorize",
scale_data = TRUE
)detectXOR() -
Main detection function| Parameter | Type | Default | Description |
|---|---|---|---|
data |
data.frame | required | Input dataset with variables and class column |
class_col |
character | "class" |
Name of the class/target variable column |
check_tau |
logical | TRUE |
Compute class-wise Kendall Ο correlations |
compute_axes_parallel_significance |
logical | TRUE |
Perform group-wise Wilcoxon tests |
p_threshold |
numeric | 0.05 |
Significance threshold for statistical tests |
tau_threshold |
numeric | 0.3 |
Minimum absolute Ο for βstrongβ correlation |
abs_diff_threshold |
numeric | 20 |
Minimum absolute difference for practical significance |
split_method |
character | "quantile" |
Tile splitting method: "quantile" or
"range" |
max_cores |
integer | NULL |
Maximum cores for parallel processing (auto-detect if NULL) |
extreme_handling |
character | "winsorize" |
Outlier handling: "winsorize", "remove",
or "none" |
winsor_limits |
numeric vector | c(0.05, 0.95) |
Winsorization percentiles |
scale_data |
logical | TRUE |
Standardize variables before analysis |
use_complete |
logical | TRUE |
Use only complete cases (remove NA values) |
The detectXOR() function returns a list with two
components: ### results_df - Summary data frame
| Column | Description |
|---|---|
var1, var2 |
Variable pair names |
xor_shape_detected |
Logical: XOR pattern identified |
chi_sq_p_value |
ΟΒ² test p-value for tile independence |
tau_class_0, tau_class_1 |
Class-wise Kendall Ο coefficients |
tau_difference |
Absolute difference between class Ο values |
wilcox_p_x, wilcox_p_y |
Wilcoxon test p-values for each axis |
significant_wilcox |
Logical: significant group differences detected |
pair_list - Detailed
resultsContains comprehensive analysis for each variable pair including: - Tile pattern analysis results - Statistical test outputs - Processed data subsets - Intermediate calculations
| Function | Description | Key Parameters |
|---|---|---|
generate_spaghetti_plot_from_results() |
Creates connected line plots showing variable trajectories for XOR-detected pairs | results, data, class_col,
scale_data = TRUE |
generate_xy_plot_from_results() |
Generates scatter plots with decision boundary lines for detected XOR patterns | results, data, class_col,
scale_data = TRUE,
quantile_lines = c(1/3, 2/3),
line_method = "quantile" |
Both functions return ggplot objects that can be displayed or saved manually.
# Generate plots
generate_spaghetti_plot_from_results(results, XOR_data)
generate_xy_plot_from_results(results, XOR_data)| Function | Description | Key Parameters |
|---|---|---|
generate_xor_reportConsole() |
Creates console-friendly formatted report with optional plots | results, data, class_col,
scale_data = TRUE, show_plots = TRUE |
generate_xor_reportHTML() |
Generates comprehensive HTML report with interactive elements | results, data, class_col,
output_file, open_browser = TRUE |
# Generate formatted report
generate_xor_reportHTML(results, XOR_data, class_col = "class")The report will be automaticlaly opened in the system standard web browser.
future::multisession for
parallel processingpbmcapply::pbmclapply with fork-based parallelismdetectXOR/
βββ R/ # Package source code
βββ man/ # Package documentation
βββ data/ # Example dataset
βββ issues/ # Problem reporting
βββ analyses/ # Files used to generate or plot publictaion data sets (not in library)Contributions are welcome! Please feel free to submit issues, feature requests, or pull requests on GitHub. ## License GPL-3 ## Citation
For citation details or to request a formal publication reference, please contact the maintainer.