## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ---- include = FALSE, warning = FALSE, message = FALSE----------------------- library(dabestr) ## ---- echo = FALSE, warning = FALSE, message = FALSE-------------------------- df <- data.frame( `s` = c("Drug", "Placebo"), `Wild type` = c("$X_D, W$", "$X_P, W$"), `Mutant` = c("$X_D, M$", "$X_P, M$") ) colnames(df) <- c(" ", "Wild type", "Mutant") knitr::kable(df, escape = FALSE) %>% kableExtra::column_spec(1, bold = TRUE) %>% kableExtra::column_spec(1:2, border_right = TRUE) ## ----setup, eval = FALSE------------------------------------------------------ # library(dabestr) ## ---- warning = FALSE--------------------------------------------------------- set.seed(12345) # Fix the seed so the results are reproducible. # pop_size = 10000 # Size of each population. N <- 20 # The number of samples taken from each population # Create samples placebo <- rnorm(N / 2, mean = 4, sd = 0.4) placebo <- c(placebo, rnorm(N / 2, mean = 2.8, sd = 0.4)) drug <- rnorm(N / 2, mean = 3, sd = 0.4) drug <- c(drug, rnorm(N / 2, mean = 2.5, sd = 0.4)) # Add a `Genotype` column as the second variable genotype <- c(rep("M", N / 2), rep("W", N / 2)) # Add an `id` column for paired data plotting. id <- 1:N # Add a `Rep` column as the first variable for the 2 replicates of experiments done Rep <- rep(c("Rep1", "Rep2"), N / 2) # Combine all columns into a DataFrame. df <- tibble::tibble( Placebo = placebo, Drug = drug, Genotype = genotype, ID = id, Rep = Rep ) df <- df %>% tidyr::gather(key = Treatment, value = Measurement, -ID, -Genotype, -Rep) ## ---- warning = FALSE--------------------------------------------------------- knitr::kable(head(df)) ## ---- warning = FALSE, eval = FALSE------------------------------------------- # unpaired_delta2 <- load(df, # x = Genotype, y = Measurement, # experiment = Treatment, colour = Genotype, # delta2 = TRUE # ) ## ---- warning = FALSE, echo = FALSE------------------------------------------- unpaired_delta2 <- load(df, x = Genotype, y = Measurement, experiment = Treatment, colour = Genotype, delta2 = TRUE, experiment_label = c("Placebo", "Drug"), x1_level = c("W", "M") ) ## ---- warning = FALSE--------------------------------------------------------- print(unpaired_delta2) ## ---- warning = FALSE--------------------------------------------------------- unpaired_delta2.mean_diff <- mean_diff(unpaired_delta2) print(unpaired_delta2.mean_diff) ## ---- warning = FALSE--------------------------------------------------------- dabest_plot(unpaired_delta2.mean_diff) ## ---- warning = FALSE--------------------------------------------------------- unpaired_delta2_specified.mean_diff <- load(df, x = Genotype, y = Measurement, experiment = Treatment, colour = Genotype, delta2 = TRUE, experiment_label = c("Drug", "Placebo"), x1_level = c("M", "W") ) %>% mean_diff() dabest_plot(unpaired_delta2_specified.mean_diff) ## ---- warning = FALSE--------------------------------------------------------- paired_delta2.mean_diff <- load(df, x = Treatment, y = Measurement, experiment = Genotype, colour = Rep, delta2 = TRUE, idx = list( c("Placebo W", "Drug W"), c("Placebo M", "Drug M") ), paired = "baseline", id_col = ID ) %>% mean_diff() dabest_plot(paired_delta2.mean_diff, raw_marker_size = 0.5, raw_marker_alpha = 0.3 ) ## ---- warning = FALSE--------------------------------------------------------- dabest_plot(unpaired_delta2.mean_diff, show_delta2 = FALSE) ## ----------------------------------------------------------------------------- # cohens_d(unpaired_delta2) ## ---- warning = FALSE--------------------------------------------------------- print(unpaired_delta2.mean_diff$boot_result) ## ---- warning = FALSE--------------------------------------------------------- print(unpaired_delta2.mean_diff$permtest_pvals$pval_permtest) ## ---- warning = FALSE, eval = FALSE------------------------------------------- # print(unpaired_delta2.mean_diff$permtest_pvals$permutation_test_results) ## ---- warning = FALSE--------------------------------------------------------- print(unpaired_delta2.mean_diff$permtest_pvals$pval_for_tests) ## ---- warning = FALSE--------------------------------------------------------- print(unpaired_delta2.mean_diff$permtest_pvals$pvalues)