## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, warning = FALSE, message = FALSE---------------------------------- library(dabestr) ## ----------------------------------------------------------------------------- set.seed(12345) # Fix the seed so the results are replicable. # pop_size = 10000 # Size of each population. N <- 20 # Create samples c1 <- rnorm(N, mean = 3, sd = 0.4) c2 <- rnorm(N, mean = 3.5, sd = 0.75) c3 <- rnorm(N, mean = 3.25, sd = 0.4) t1 <- rnorm(N, mean = 3.5, sd = 0.5) t2 <- rnorm(N, mean = 2.5, sd = 0.6) t3 <- rnorm(N, mean = 3, sd = 0.75) t4 <- rnorm(N, mean = 3.5, sd = 0.75) t5 <- rnorm(N, mean = 3.25, sd = 0.4) t6 <- rnorm(N, mean = 3.25, sd = 0.4) # Add a `gender` column for coloring the data. gender <- c(rep("Male", N / 2), rep("Female", N / 2)) # Add an `id` column for paired data plotting. id <- 1:N # Combine samples and gender into a DataFrame. df <- tibble::tibble( `Control 1` = c1, `Control 2` = c2, `Control 3` = c3, `Test 1` = t1, `Test 2` = t2, `Test 3` = t3, `Test 4` = t4, `Test 5` = t5, `Test 6` = t6, Gender = gender, ID = id ) df <- df %>% tidyr::gather(key = Group, value = Measurement, -ID, -Gender) ## ----------------------------------------------------------------------------- knitr::kable(head(df)) ## ----------------------------------------------------------------------------- two_groups_unpaired <- load(df, x = Group, y = Measurement, idx = c("Control 1", "Test 1") ) ## ----------------------------------------------------------------------------- print(two_groups_unpaired) ## ----------------------------------------------------------------------------- two_groups_unpaired_ci90 <- load(df, x = Group, y = Measurement, idx = c("Control 1", "Test 1"), ci = 90 ) ## ----------------------------------------------------------------------------- print(two_groups_unpaired_ci90) ## ----------------------------------------------------------------------------- two_groups_unpaired.mean_diff <- mean_diff(two_groups_unpaired) print(two_groups_unpaired.mean_diff) ## ----------------------------------------------------------------------------- dabest_plot(two_groups_unpaired.mean_diff) ## ---- eval = FALSE------------------------------------------------------------ # dabest_plot(two_groups_unpaired.mean_diff, # float_contrast = FALSE, # contrast_ylim = c(-0.3, 1.3) # ) ## ---- echo = FALSE------------------------------------------------------------ pp_plot <- dabest_plot(two_groups_unpaired.mean_diff, float_contrast = FALSE, contrast_ylim = c(-0.3, 1.3) ) cowplot::plot_grid( plotlist = list(NULL, pp_plot, NULL), nrow = 1, ncol = 3, rel_widths = c(2.5, 5, 2.5) ) ## ---- warning = FALSE--------------------------------------------------------- multi_2group <- load(df, x = Group, y = Measurement, idx = list( c("Control 1", "Test 1"), c("Control 2", "Test 2") ) ) multi_2group %>% mean_diff() %>% dabest_plot() ## ---- warnings = FALSE-------------------------------------------------------- shared_control <- load(df, x = Group, y = Measurement, idx = c( "Control 1", "Test 1", "Test 2", "Test 3", "Test 4", "Test 5", "Test 6" ) ) print(shared_control) ## ---- warnings = FALSE-------------------------------------------------------- shared_control.mean_diff <- mean_diff(shared_control) print(shared_control.mean_diff) ## ----------------------------------------------------------------------------- dabest_plot(shared_control.mean_diff) ## ---- warnings = FALSE-------------------------------------------------------- multi_groups <- load(df, x = Group, y = Measurement, idx = list( c("Control 1", "Test 1"), c("Control 2", "Test 2", "Test 3"), c("Control 3", "Test 4", "Test 5", "Test 6") ) ) print(multi_groups) ## ---- warnings = FALSE-------------------------------------------------------- multi_groups.mean_diff <- mean_diff(multi_groups) print(multi_groups.mean_diff) ## ---- warnings = FALSE-------------------------------------------------------- dabest_plot(multi_groups.mean_diff)