## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", dpi = 80 ) ## ----setup-------------------------------------------------------------------- library(colocboost) ## ----run-colocboost----------------------------------------------------------- # Loading the Dataset data(Ind_5traits) # Run colocboost res <- colocboost(X = Ind_5traits$X, Y = Ind_5traits$Y) cos_summary <- res$cos_summary names(cos_summary) ## ----summary-colocboost------------------------------------------------------- # Get summary table of colocalization cos_interest_outcome <- get_cos_summary(res, interest_outcome = c("Y1", "Y2")) ## ----run-strong-colocalization------------------------------------------------ filter_res <- get_robust_colocalization(res, cos_npc_cutoff = 0.5, npc_outcome_cutoff = 0.2) ## ----load-mixed-data---------------------------------------------------------- # Load example data data(Ind_5traits) data(Sumstat_5traits) # Create a mixed dataset X <- Ind_5traits$X[1:4] Y <- Ind_5traits$Y[1:4] sumstat <- Sumstat_5traits$sumstat[5] LD <- get_cormat(Ind_5traits$X[[1]]) # Run colocboost res <- colocboost(X = X, Y = Y, sumstat = sumstat, LD = LD) ## ----vcp-plot----------------------------------------------------------------- colocboost_plot(res, y = "vcp") ## ----analyzed-data-info------------------------------------------------------- res$data_info$outcome_info ## ----cos-details-------------------------------------------------------------- names(res$cos_details) ## ----cos---------------------------------------------------------------------- res$cos_details$cos ## ----cos-outcome-------------------------------------------------------------- res$cos_details$cos_outcomes ## ----cos-npc------------------------------------------------------------------ res$cos_details$cos_npc res$cos_details$cos_outcomes_npc ## ----cos-purity--------------------------------------------------------------- res$cos_details$cos_purity ## ----cos-top------------------------------------------------------------------ res$cos_details$cos_top_variables ## ----jk_update---------------------------------------------------------------- # Pick arbitrary SEC updates, see entire update in advance res$model_info$jk_star[c(5:10,36:38), ] ## ----profile_loglik----------------------------------------------------------- # Plotting joint profile log-likelihood (blue) and trait-specific profile log-likelihood (red). par(mfrow=c(2,3),mar=c(4,4,2,1)) plot(res$model_info$profile_loglik, type="p", col="#3366CC", lwd=2, xlab="", ylab="Joint Profile") for(i in 1:5){ plot(res$model_info$outcome_profile_loglik[[i]], type="p", col="#CC3333", lwd=2, xlab="", ylab=paste0("Profile (Trait ", i, ")")) } ## ----objective-proximity------------------------------------------------------ # Save to restore default options oldpar <- par(no.readonly = TRUE) # Plotting trait-specific proximity objective par(mfrow=c(2,3), mar=c(4,4,2,1)) for(i in 1:5){ plot(res$model_info$outcome_proximity_obj[[i]], type="p", col="#3366CC", lwd=2, xlab="", ylab="Trait-specific Objective", main = paste0("Trait ", i)) } par(oldpar) ## ----objective-best----------------------------------------------------------- # Save to restore default options oldpar <- par(no.readonly = TRUE) # Plotting trait-specific objective at the best update variant par(mfrow=c(2,3), mar=c(4,4,2,1)) for(i in 1:5){ plot(res$model_info$outcome_coupled_best_update_obj[[i]], type="p", col="#CC3333", lwd=2, xlab="", ylab=paste0("Objective at best update variant"), main = paste0("Trait ", i)) } par(oldpar) ## ----ucos-details------------------------------------------------------------- # Create a mixed dataset data(Ind_5traits) data(Heterogeneous_Effect) X <- Ind_5traits$X[1:3] Y <- Ind_5traits$Y[1:3] X1 <- Heterogeneous_Effect$X Y1 <- Heterogeneous_Effect$Y[,1,drop=F] res <- colocboost(X = c(X, list(X1)), Y = c(Y, list(Y1)), output_level = 2) names(res$ucos_details) ## ----ucos--------------------------------------------------------------------- res$ucos_details$ucos ## ----ucos-outcomes------------------------------------------------------------ res$ucos_details$ucos_outcomes ## ----cos-ucos-purity---------------------------------------------------------- res$ucos_details$cos_ucos_purity ## ----diagnostic-details------------------------------------------------------- # Loading the dataset data(Ind_5traits) X <- Ind_5traits$X Y <- Ind_5traits$Y res <- colocboost(X = X, Y = Y, output_level = 3) ## ----cb-model----------------------------------------------------------------- names(res$diagnostic_details$cb_model) names(res$diagnostic_details$cb_model$ind_outcome_1) ## ----cb-model-para------------------------------------------------------------ names(res$diagnostic_details$cb_model_para)