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Abstract

The latent position cluster model is a popular model for the statistical analysis of net-
work data. This model attaches a latent position to vertices in the network graph, with the
motivation that the distance between two latent positions is connected to the probability
of there being an edge between the corresponding vertices in the graph. Bayesian methods
are used to estimate the likely configurations of the latent positions based on a prior as-
sumption on their layout. This prior assumption can reflect a clustering or grouping in the
latent positions which can be used to say something about community formation between
vertices in the network graph. This package provides convenient computational facilities
to fit latent position cluster models, while exploring probable community patterns in the
network i.e. exploring the likely groupings or clustering present. The methods do not
require specifying a number of groupings or communities in the network at the outset.

Keywords: collapsed latent position cluster model, reversible jump Markov chain Monte Carlo,
Bayesian model choice, social network analysis, finite mixture model.

1. Introduction

A social network consists of nodes or actors in a graph, for example, individuals or orga-
nizations, connected by one or more specific types of interdependency, such as, friendship,
business relationships or trade between countries. The analysis of network data has a rich
interdisciplinary history finding application in a wide range of areas including sociology, neu-
roscience, protein-protien networks, physics, computer science (Wasserman and Galaskiewicz
1994; Faloutsos et al. 1999; Adamic et al. 2001; Michailidis 2012; Sizemore et al. 2018; Pelle-
grini 2019; Cheng and Park 2020), and many more. The aims of network analysis are both
descriptive and inferential. For example, one might be interested in examining global struc-
ture within a network or in analysing network attributes such as the degree distribution as
well as the local structure such as the identification of influential or highly connected actors
in the network. Inferential goals include hypothesis testing, model comparison and making
predictions, for example, how far will a virus spread through a network.

There have been many statistical models proposed for the analysis of network data; the expo-
nential random graph model see (Wasserman and Pattison 1996) and (Robins et al. 2007) and
its extensions to Bayesian (Caimo and Friel 2014), temporal (Lee et al. 2020) and multilayer
settings (Caimo and Gollini 2020), and the stochastic block model (Nowicki and Snijders
2001) and its extensions (Matias et al. 2018; Corneli et al. 2019). For comprehensive perspec-
tives and reviews on the statistical models for and analysis of network data, see Goldenberg
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et al. (2010); Salter-Townshend et al. (2012); Fritz et al. (2020). An alternative and popu-
lar approach to modelling network data are latent space approaches. There has been much
interest in this within the statistical network literature over recent years. For example the
earlier proposal of Hoff et al. (2002) and more recently Orbanz and Roy (2015); Caron and
Fox (2017) in a Bayesian non-parametric settings.

The model this package is concerned with is that proposed initially by Handcock et al. (2007).
In this model, vertices in the network graph are embedded in a latent space, with proximity
in latent space being a predictor of observing edges between vertices. Pairs of vertices with
corresponding positions in latent space that are close together are more likely to share an edge
in the network graph. (Handcock et al. 2007) allows for detection of communities through
clustering or groupings in the latent space by assuming the a prior Gaussian finite mixture
distribution on latent positions. This provides a useful interpretation of the network since
the underlying latent model provides an automatic means of grouping vertices and providing
uncertainty around the probability of a vertex belonging to a particular grouping. The R
package latentnet Krivitsky and Handcock (2008, 2020) can be used to fit an LPCM.

Despite the popularity of LPCMs, a difficulty is the requirement to explicitly state the number
of groupings before running an analysis. There may not be an intuition from a practioners
perpective, or indeed, the number of groupings may be the objective of the investigation.
This obstacle can be somewhat overcome by running separate analyses for each of a range of
numbers of groups, and determining an optimal one using an information criterion. However,
as argued in Ryan et al. (2017), this has its drawbacks; primarily though, running a single
analysis can be a heavy computational task, and thus repeating this many times might be
involved (especially for moderate sized networks). The motivation of the work we present in
this package was to find a way to kill two birds with one stone, integrating the search over
probable groupings and latent positions into a single modelling procedure. What we achieved
is detailed in , and the methods in this package follow on from that paper.

We avoid going too deep into the details discussed at length in Ryan et al. (2017), but we give
an overview of the main ideas of the modelling in Section 2. Section 3 describes the Markov
chain Monte Carlo algorithm implemented in this package to fit the models. Section 4 gives
an overview of key functions in the package and their usage as well as default settings and
how to tweak them. Section 5 concludes by giving a walk through example demonstrating
the use of the package and exploring the functionality available.

2. Bayesian Latent Position Cluster Model

2.1. Networks and network graphs

Let V = {1, . . . , n} denote a set of n vertices. We denote all distinguishable pairs of vertices
(i, j) by D (for dyads). If there is an edge between the vertex pair (i, j), then the pair also
belongs to the edge set, (i, j) ∈ E . The network consists of the vertices and the edges and
is represented by the network graph G = (V, E). We allow the possibility for edges to be
directed, in that (i, j) ∈ E is distinguished from (j, i) ∈ E . An undirected network does not
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distinguish these events. Self-ties are not allowed, in that (i, i) /∈ D for any i ∈ V. The dyad
sets are given by

D = { (i, j) : 1 ≤ i, j ≤ n, i 6= j } ,

while for undirected networks

D = { (i, j) : 1 ≤ i ≤ n, j < i } .

In the case of a directed network we have |D| = n(n − 1) while in the undirected case
|D| = n(n− 1)/2.

An observed network and its graph are encoded through an n× n adjacency matrix, denoted
by Y. The (i, j) entry yij is equal to one if there is an edge from i to j. In the case of
undirected networks this will also determine yji. The network graph G is completely encoded
through Y, so we will use the adjacency matrix for the remainder of this vignette.

2.2. Augmentation with latent positions

A latent position cluster model (LPCM) attaches a latent (unobserved) position x in a latent
space which is Rd in this package. The latent positions are used to state the probability of
an edge between vertices i and j: the linear predictor

ηij = β − ||xi − xj || (1)

gives this probability through a logistic link function

Pr (Yij = 1|xi,xj , β) =
1

1 + e−ηij
.

The appearance of the euclidean norm || · || in (1) measuring the latent distance between
actors i and j has an appealing intuitive interpretation; vertices farther apart in latent space
are less likely to have an edge. The parameter β is often referred to as the abundance; high
values of β imply a high probability of forming ties (hence abundant). As one of the main
motivations for LPCMs is visualisation and interpretation, the most popular choice is d = 2,
similar to projection of multivariate datasets onto lower dimensional subspaces like principal
components analysis with a two-dimensional subspace. This package was designed with this
and practitioners in mind. We thus don’t tackle the question of model selection for d here
(see Durante and Dunson (2014) for an approach to this problem using a shrinkage prior in
a dynamic network setting). The package provides most functionality for d = 2, 1 (in that
order) with much less functionality for d ≥ 3.A local independence assumption is made which
assumes edges arise independently over pairs of actors in the network. The likelihood of
observing the adjacency Y then factors as a product over outcomes for dyads D.

p(Y |X, β) =
∏

(i,j)∈D
Pr (Yij = yij |xi,xj , β) (2)

where X is used to collectively denote the joint positions x1, . . . ,xn.
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To provide a facility for community representation, a mixture prior is assumed for the latent
positions X: a finite mixture of G d-dimensional Gaussians with spherical precision in place
of the is used, giving joint prior on the latent positions of

π(X|θ, G) =
n∏

i=1




G∑

g=1

ωgN (xi ; µg, 1/τgI)


 . (3)

The parameter θ will be taken to denote the mixture weights ωg (which sum to one:
∑G

g=1 ωg =
1), the component centres and precisions µg, τg, g = 1, . . . , G. Clustering in the network can
be captured by clustering in the latent positions; different clusters are represented by the
components of the finite mixture. One introduces labels c = (c1, . . . , cn), denoting the com-
ponent to which each actor belongs. Using the labels, the joint prior density of the latent
positions and labels is

π(X, c|θ, G) =

G∏

g=1

∏

i : ci=g

ωgN (xi;µg, 1/τgI) (4)

2.3. Prior assumptions

Independent priors are assumed for the component weights (Dirichlet), centres (Gaussian)
and precisions (gamma) over the G groups:

(ω1, . . . , ωg) ∼ D(α, . . . , α)

µg|τg ∼ N (0, 1/(κτg)I) g = 1, . . . , G

τg ∼ G(δ/2, γ/2) g = 1, . . . , G

where α, κ, δ and γ are parameters to be chosen. Denote these collectively through ν. Choos-
ing α = 3, δ = 2 and γ = 0.103 corresponds to the prior choices made in (Handcock et al.
2007) (their parameters are denoted ν = 3, α = 2 and σ20 = 0.103, respectively). Our speci-
fication of the prior precision on the component means µg is different. We scale the within
cluster precision τg by a factor κ. We note that values of κ less than 1 imply that the cluster
means are more dispersed than the cluster members. The prior assumed for the intercept
parameter β in the linear predictor (1) is N (0, ψ2) as in (Handcock et al. 2007). All priors
above are conditional on G, the number of components in the finite mixture for the latent
positions. We also assume prior probability mass function π(G|λ) parameterised by hyper-
parameter λ which could inlcude a maximum number of groups Gmax as well as a parameter
for the (truncated) probability mass function.

2.4. Hierarchical model

The Bayesian model can be written in hierarchical form

π(X, c, β,θ, G|Y,ν,λ) ∝ p(Y|X, β)π(β|ψ2)π(X, c|θ, G)π(θ|ν, G)π(G|λ). (5)
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The form of the priors assumed in Section 2.3 imply that the entire θ vector can be marginal-
ized out of the right hand side of the relation in closed form, meaning that

π(X, c, G|Y,ν) =

∫
π(X, c,θ, G|Y,ν) dθ

is available to us up to a normalizing constant. The resulting form is

π(X, c,θ, G|Y,ν) ∝ p(Y|X, β)π(G)
Γ(Gα)

Γ(n+Gα)

G∏

g=1

Γ(ng + α)

Γ(α)
λg(X, c|ν) (6)

λg(X, c|ν) = π−ngd/2 γδ/2

(ng/κ+ 1)d/2
Γ ((ngd+ δ)/2)

Γ (δ/2)


 ∑

i:ci=g

||xi||2 −
||∑i:ci=g

xi||2
ng + κ

+ γ



−(ngd+δ)/2

where ng = |{i : ci = g}|. This is a form of product partition model (Quintana and Iglesias
2003). Ryan et al. (2017) describes sampling from (2.4) using different MCMC strateges. We
summarize these in Section 3.

2.5. Hyperpriors for hyperparameter uncertainty

Exploration of the range of possible values of the hyperparameters ν,λ can be important
for some applications. Of the hyperparameters in the model, in our experience, γ appears
to be the one whose prior specification has the strongest influence on the posterior. This
mirrors closely the findings of (Richardson and Green 1997) (Section 5.1), although their
prior specification is slightly different to the one adopted here. The posterior of the number
of groups and the prior choice of γ are closely connected, since γ effectively controls the
volume in latent space that clusters can occupy. Small values place higher prior mass on
clusters occupying a smaller volume of latent space (hence a higher number of groups), while
large values favour a smaller number of groups. However, universal calibration of γ is not
possible for all problems a priori. Incorporating a hyperprior on γ can mitigate this calibration
issue. In the package a Gamma(s, r) hyperprior is assumed, with default values of s = 16, r =
16/0.103.

3. Estimation using MCMC

Approximate sampling from the posterior (6) can be carried out using MCMC methods. There
are four types of updates in our collapsed sampler

(i) updating the abundance parameter β from the observed data likelihood

(ii) updating the latent positions of actors x1, . . . ,xn

(iii) updating actor labels c1, . . . , cn in the finite mixture prior

(iv) updating the number of components G in the mixture, by absorbing components or
ejecting new ones.
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Update for abundance

The intercept parameter is updated using a random walk Metropolis-Hastings step. A pro-
posal value β∗ is drawn from a N (β, σ2β) distribution, where β is the current value of the
intercept in the chain. The proposed value is accepted with probability

min

[
1,
p(Y|X, β∗)π(β∗)
p(Y|X, β )π(β )

]
.

Note that the calculation of p(Y|X, β) is an O(n2) computation. This is a major draw-
back when considering the potential applicability of the LPCM in larger networks. Some
approaches have been proposed in the literature to circumvent this bottleneck, most notably,
the case-control approximation of (Raftery et al. 2012) (include Riccardo paper here). We
do not consider this problem explicitly in this paper, however, we do note that the log of the
likelihood (2) is

log p(Y|X, β) =
∑

(i,j)∈D
log Pr (Yij = yij |xi,xj , β) . (7)

The calculation of this sum (7) is embarrassingly parallelizable i.e. the sum over pairs (i, j) ∈ D
may be split over P available processors at the time of compute giving in good cases a factor P
reduction in compute times for the β update. This could be a suggested approach to assuage
the quadratic order calculation. Of course, the practicalities of parallelization mean that a
favourable increase in efficiency will be implementation and example dependent.

Update for latent positions

The latent positions are updated once each per sweep of the MCMC algorithm using a random
walk Metropolis-Hastings update. For actor i, i = 1, . . . , n, a new x∗i is proposed from a
N (xi, σ

2
xI) distribution, where xi is the current position of actor i in the latent space. The

updated value is accepted with probability

min

[
1,
pi(Y|X∗, β)λci(X

∗, c)

pi(Y|X , β)λci(X , c)

]

where

pi(Y|X, β) =
∏

j 6=i
Pr(Yij = yij |xi,xj , β)

if the network is undirected and

pi(Y|X, β) =
∏

j 6=i
Pr(Yij = yij |xi,xj , β) Pr(Yji = yji|xi,xj , β)

if directed.

Updates for actor labels

The label of each actor is sampled from its full conditional π(ci|c−i,X, G) in a Gibbs step
in each sweep of the algorithm. There is the possibility of label switching due to the non-
identifiability of the mixture prior. This will be discussed further in Section 3.3. These Gibbs
moves may only move one actor at a time between components. Moves which can move
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many actors at a time between clusters are also used. These follow the general prescriptions
of (Nobile and Fearnside 2007) moves M1, M2 and M3. As demonstrated by (Nobile and
Fearnside 2007) (Section 3.4), such moves can improve the mixing of the chain.

Updating the number of components in the mixture prior

The moves to update the number of components in the mixture comprises two reversible eject
and absorb moves. If the current number of clusters is G, then it is proposed to eject a com-
ponent from one of the existing components with probability ηejG; the probability of proposing

an absorb move is 1 − ηejG. For all G except 1 and some maximum realistic number Gmax

components, we use ηejG = 0.5.

The eject move chooses one of the G existing clusters g at random. It will be attempted to
potentially reallocate members of g to a new component G + 1. A probability p is sampled
from a beta B(a, a) distribution. The elements of component g are each put into component
G+ 1 with probability p. The value of a is chosen from a precomputed lookup table, so that
“empty components are proposed relatively often” (see Nobile and Fearnside (2007), Wyse
and Friel (2012)). The proposal mechanism creates a new label vector c∗ ∈ {1, . . . , G + 1}n
resulting in the acceptance probability min[1, ρ], where

ρ =
λg(X, c

∗)λG+1(X, c
∗)π(G+ 1)

λg(X, c)π(G)

1− ηejG
ηejG

Γ(a)2

Γ(2a)

Γ(2a+ ng)

Γ(a+ n∗g)Γ(a+ n∗G+1)
.

If the move is accepted a random label swap is made between component G + 1 and one of
the other components.

In proposing an absorb move, two components g and k are selected at random from the G+ 1
available. Suppose that the current label vector is c. It is proposed to combine these into one
component, in other words, g absorbs k if g < k and vice-versa. Actors which are labelled
k are relabelled g, giving the proposed label vector c∗. Then the move is accepted with
probability min[1, υ] where

υ =
λg(X, c

∗)π(G)

λg(X, c)λk(X, c)π(G+ 1)

ηejG+1

1− ηejG+1

Γ(2a)

Γ(a)2
Γ(a+ ng)Γ(a+ nk)

Γ(2a+ n∗g)
,

and n∗g = ng + nk. If the move is accepted, all elements of the label vector with a value of k
upwards are decremented by 1.

3.1. Updates of hyperparameters

In an extra sampling step, the component marginal precisions τg can be “uncollapsed” and
sampled at each iteration (still leaving the µg collapsed). Assuming a Gamma(s/2, r/2)
hyperprior for γ, first sample τg from the conditional

τg |G, c,X, γ ∼ G


ngd+ δ

2
,

1

2


 ∑

i:ci=g

||xi||2 −
||∑i:ci=g

xi||2
ng + κ

+ γ
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and then sample

γ |G, τ1:G ∼ G


Gδ + s

2
,

1

2




G∑

g=1

τg + r






in each sweep of the MCMC algorithm described below. Uncertainty in κ could also potentially
be incorporated using this type of approach, whereby one would additionally sample the µg
from their full conditionals in order to sample κ (having assumed a hyperprior for it).

3.2. Adaptive MCMC phase for proposal tuning

We use an adapting phase within an adaptive MCMC (Andrieu and Thoms 2008) at the
beginning of the run in order to tune the proposal standard deviations for the abundance
parameter update (σ2β) and the latent position updates (σ2x). This leads to much improved
performance. The adaptation is terminated after the burn-in period so as to satisfy the re-
quirements of adaptive chains to preserve invariance.

The proposal standard deviations are adapted every few hundred iterations. At one of these
adaptation times, at iteration t of the burn-in, let ∆ = min{t−1/2, 0.01}. If the acceptance
rate of the move in question so far is greater than a target rate of 0.234 (Roberts et al. 1997),
let f = +1 and otherwise let f = −1. Then multiply the proopsal standard deviation by
exp(f∆). This has the effect of increasing the standard deviation if the acceptance rate is
higher than the target rate, and decreasing it otherwise.

3.3. Model invariance and post-processing

The likelihood given by (2) is invariant to rotations, reflections or translations of the latent
positions X. This is because the linear predictor (1) depends only on the distance between
the latent positions. When computing estimates of posterior quantities involving the latent
positions via ergodic averages it is thus necessary to post-process the samples generated by
the MCMC algorithm. A Procrustes transformation Sibson (1979) is used to match each
sample to a reference set of positions Xref . The MCMC sample iterate giving the highest
likelihood (2) is used as a reference configuration.

A different form of invariance is present in the mixture prior (4). Any permutation σ of
{1, . . . , G} applied to the labels c will produce the same value of the prior i.e. π(X, c|θ) =
π(X, cσ|θ) where cσ = (σ(c1), σ(c2), . . . , σ(cn)). Again, to estimate posterior auntities related
to the labels, the samples of labels must be post-processed. To do this we use the label
switching algorithm advocated by Nobile and Fearnside (2007) and detailed in the Appendix
of Wyse and Friel (2012). This algorithm finds the best permutation for each sample by
minimizing an evolving cost function based on component assignment agreement. The MCMC
sampler produces models with different values of G. In order to post-process labels, we
condition on a value of G and correct label switching for all samples having G components.
We employ our own implementation of this algorithm, however there is a dedicated R package
label.switching Papastamoulis (2016) which has a number of easily accessible algorithms to
carry out post processing of label samples and which we have found very useful in other work.
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4. Structure of the package

The key function in the package is the collpcm.fit function. The output of this function
is an object of class collpcm. The collpcm class has associated plot function. In the re-
mainder of this section, we give an overview of the essential parts of these functions and more
important arguments. Many of the arguments relating to model settings and MCMC are
set through a call to collpcm.control. Prior to writing this vignette, the only information
available to users was that contained in the help files. We now link the function syntax with
the notation of Section 2.

4.1. Main fitting function

The main fitting function is collpcm.fit. The argument Y takes an object of class network,
while G gives the number of components (which can be left blank if wished and initialised by
default). Argument Gmax can be used to give an upper bound on the number of components
that can be explored by the MCMC search. The dimension of the latent space is given by
argument d. The package can work well when d = 1 or d = 2. For any higher values of d,
visualisation of the latent positions is not possible. Arguments to control MCMC settings
can be passed through control. One can also pass a reference latent position configuration
to Procrustes match to using Xref. This is included as it could be useful for comparisons
with other latent space approaches, or for orienting plots (with an auxiliary run) in a specific
way. The collpcm object returned from collpcm.fit is a list with a number of named slots.
These are detailed in Table 1

4.2. Adjusting the default settings

The default settings can be changed through the collpcm.control function. A call to this
function can include a list with some tailored settings. Alternatively, a blank call will return
a list of default settings. This function can be used to do any or all of:

• specify priors and hyperpriors

• specify initial values if desired

• give the MCMC specifics such as run lengths, burn-in and thinning rate

• set proposal distributions for the MCMC run

• give further MCMC settings such as details for adaptive MCMC chains

• determine what summaries should be computed and reported.

Table 2 gives an outline of all settings available through collpcm.control and their default
settings for reference.

4.3. Plotting the output

There is an S3 plotting method for the collpcm class. In the case where models with different
G are explored in the MCMC chain, this function makes a plot of the latent positions of
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Slot What it contains

call Arguments passed to the function and initialisations (potentially default)
sample Samples and products of the MCMC run (see below)
Gpost The approximate posterior of G from the MCMC samples
Xpostmean The posterior mean latent positons
XpostMKL The maximumd Kullback-Liebler positions
acceptance.rates Acceptance rates for the MCMC sampler
adapted.sd.prop Final proposal standard deviations after (potential) adaptation
timings Timings in seconds for each part of the processing

Entries of the sample slot

sample$G Samples of the number of components in the mixture for latent positions
sample$beta Samples of the parameter β
sample$llike Value of the log-likelihood at each stored sample
sample$labels Post processed matrix of component labels
sample$Gslot Indexing vector giving the value of G referencing entries in lists
sample$label.probs Posterior mass functions for vertex membership for each visited G
sample$Xref The reference latent positions used for Procrustes matching
sample$X Samples of the latent positions of vertices
sample$gamma If gamma.update is TRUE, samples of γ

Table 1: Description of what is in the list returned from a call to collpcm.fit.
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Setting Description Default

Specifying priors and hyperparameters

G Initial number of components G∼ U{2, 3, 4, 5}
Gmax Maximum number of components bn/2c
Gprior Prior probability mass function P(rate = 1.0)
xi Prior mean of β 0

psi Prior standard deviation of β
√

2
gamma Twice the prior rate of the component precisions 0.103
delta Twice the prior shape of the component precisions 2
alpha Symmetric Dirichlet prior on component weights 3
kappa Scaling of τg to give prior mean on µg 0.1

Initialisation

betainit Initial value of β for MCMC N (0, 0.012)
Xinit Initial value of latent positions independent N (0, I)

MCMC settings

sample Final number of samples requested 5000
burn Number of burn-in iterations 5000
interval Interval between storing each sample (thinning) 10
model.search Do a search over the number of components G TRUE

pilot Number of pilot iterations for only adaptation 0

Proposal densities for random walk Metropolis updating

sd.beta.prop Proposal standard deviation for β update
√

0.5
sd.X.prop Proposal standard deviation (spherical) for xi updates 1

Updates and storage

gamma.update Take a hyperprior on γ and update TRUE

adapt Use adaptive phase to tune proposal standard deviations TRUE

adapt.interval The iteration interval for adaptive tuning 200
store.sparse Do a sparse run and only store summaries FALSE

MKL Use maxiumum Kullback-Liebler positions for plotting TRUE

Progress reports

verbose Print progress report to screen during run FALSE

Table 2: All settings that can be modified through the collpcm.control function.
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network vertices for the most frequently observed value of G in the samples from the MCMC
chain. The latent positons plotted are either the maximum Kullback-Liebler positions or the
posterior mean positions, depending on the settings given to collpcm.control (see Table 2).
By default, a pie chart is shown for each vertex, representing a degree of membership in each
component by coloured slices. This can be disabled (and a modal colour will be displayed for
each vertex) by passing pie = FALSE.

4.4. A summary plot

The function collpcm.summaryplot takes an object of class collpcm and produces a two-by-
two panel summary plot showing MCMC traceplots for visual inspection. This can be used
to diagnose obvious poor mixing and cases where the chain should be run for longer. Most of
the data shown in this plot is in the sample slot of the return from a collpcm.fit call.

5. Example application

In this section we walk through an example application using one of the datasets from the
package. For this we use the well known monks network of (Sampson 1968) which contains
18 vertices. This is available as the Monks dataset in the package. Two other datasets are
available, the well known (Zachary 1977) Karate club network and the (Lusseau et al. 2003)
Dolphins networks. We begin by loading the data.

> # load the Sampson network

> data(Monks)

The Monks data is loaded as a network object, which is the format accepted by collpcm.fit.
We can now pass this to the main fitting function. As always, it is important to run the
MCMC for long enough, and take a good size thinning interval. The MCMC part of the
package is implemented in C, and so should be able to handle networks of a couple of hundred
vertexes/actors with a good processor and some patience. We’ll run this example for 10,000
initial burn-in iterations, and then 500,000 iterations storing every 100th. We use verbose

to print a progress report to screen. We take the dimension of the latent space as d = 2.

> # set seed

> set.seed(1984)

>

> # run the model printing run updates to screen

> fit <- collpcm.fit( Monks, d=2,

+ control=list( verbose=TRUE, sample=5000, interval=10^2, burn=10^4 )

A summary plot of the MCMC run can be obtained using the collpcm.summaryplot function.
This can be useful to diagnose obvious convergence/mixing issues.

> collpcm.summaryplot(fit)

This produces the plot shown in Figure 1. This plot shows traceplots for G, β and the log-
likelihood over the MCMC run, as well as the latent positions for the most visited model. Pie
charts showing degree of component membership are not shown in this network plot.
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Figure 1: Output of collpcm.summaryplot after run on the Monks data.

The S3 plot function for the collpcm class, plots the latent positions for the most visited
model. In this case, it defaults to maximum Kullback-Liebler post processed positions (as it
was in collpcm.summaryplot).

> plot(fit)

The output is shown in Figure 2. In this case pie charts are overlain on each vertex, but the
uncertainty is small for the Monks network in the modal model with G = 3 groups.

The plot function can be used to explore values of G other than the modal one. For example

> plot(fit, G=2)

Warning message:

In plot.collpcm(fit, G = 2) :

The posterior probability for 2 groups is small: this plot is based on less

than 100 visits to this model

where if the number of visits to the model is small, a warning message will be printed. The
plot produced by this code is shown in Figure 3. The orientation of the latent space is similar
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Figure 2: Output of the S3 plot function.
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Figure 3: Result of plotting for the G = 2 samples.

over sampels corresponding to different values of G since the same reference configuration has
been used for Procrustes matching of all latent positions. Additionally, the colouring of the
pie charts by groups has been made to be as comparable as possible over plots for different
values of G for exploration of the groupings.

The S3 summary function for the collpcm class gives an overview of the MCMC run including
acceptance rates and timings:

> summary(fit)

Summary of the collapsed LPCM run:

Posterior for the number of groups:

Number groups Posterior probability

1 0.0036

2 0.0078

3 0.7712

4 0.1830
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5 0.0308

6 0.0032

7 0.0004

MCMC inferences based on :

Samples: 5000

Burn-in: 10000

Interval: 100

-------

Iterations: 510000

Acceptance rates for the various moves (% accepted):

Latent postions: 21.32

Beta (intercept): 23.82

Move 1: 1.91

Move 2: 15.74

Move 3: 86.58

Eject move: 4.05

Absorb move: 4.08

Run times for various parts of analysis in seconds

MCMC for samples : 20.72

Post-processing procedures

Label switching : 0.15

Procrustes matching : 0.92

There is also a print function for the collpcm class which prints the estimated posterior of
G:
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> print(fit)

Summary of the collapsed LPCM MCMC run:

Posterior for the number of groups:

Number groups Posterior probability

1 0.0036

2 0.0078

3 0.7712

4 0.1830

5 0.0308

6 0.0032

7 0.0004
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