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1 Introduction

In this tutorial we provide some practical examples to introduce the usage of

the clusterv R package. For details about the single functions implemented in

the library, please, see the Reference manual.

In the next two section we provide an overview of the package and of its main

functionalities. Then we introduce a first complete example on how to easily use

the package to evaluate the results of a specific clustering algorithm (Getting

started with Clusterv). The remaining sections describe the different specific

functionalities of the package and provide also some applicative examples to the

analysis of the reliability of clusters discovered in DNA microarray data.

2 Overview of the clusterv R package

The clusterv R package implements a set of functions to assess the reliability

of clusters discovered by clustering algorithms. This library is tailored to the

analysis of high dimensional data and in particular it is conceived for the analysis

of the reliability of clusters discovered using DNA microarray data.

Indeed cluster analysis has been used for investigating structure in microar-

ray data, such as the search of new tumor taxonomies [1],[4],[8]. It provides

a way for validating groups of patients according to prior biological knowledge

or to discover new “natural groups” inside the data. Anyway, clustering al-

gorithms always find structure in the data, even when no structure is present

instead. Hence we need methods for assessing the validity of the discovered

clusters to test the existence of biologically meaningful clusters.

To assess the reliability of the discovered classes, clusterv provides a set of

measures that estimate the stability of the clusters obtained by perturbing the

original data set. This perturbation is achieved through random projections

of the original high dimensional data to lower dimensional subspaces, approxi-

mately preserving the distances between examples, in order to avoid too large

distortions of the data. These random projections are repeated many times and

each time a new clustering is performed. The obtained multiple clusterings are

then compared with the clustering for which we need to evaluate its reliability.

Intuitively a cluster will be reliable if it will be maintained across multiple clus-

terings performed in the lower dimensional subspaces. The measures provided

by clusterv are based on the evaluation of the stability of the clusters across

multiple random projections. By these measures we can assess:

1. the reliability of single individual clusters inside a clustering
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2. the reliability of the overall clustering (that is, an estimate of the “optimal”

number of clusters)

3. the confidence by which example may be assigned to each cluster

This tutorial introduces to the usage of the package, providing also some

examples of applications of the stability measures to synthetic and real DNA

microarray data.

3 Main functionalities implemented in clusterv

The clusterv R package provides a set of functionalities to assess the reliability

of clusters discovered in data characterized by high-dimensionality.

Most of the functions are independent of the specific clustering algorithm

used, in the sense that may be used by different distance-based clustering algo-

rithms (e.g. k-means, hierarchical clustering, Self-Organizing-Maps, PAM) to

compute the stability indices for assessing the reliability of the clusters.

Other functions are high-level functions for a specific clustering algorithm:

they directly cluster the data and provide the stability measures to evaluate the

reliability of clusters produced by a specific clustering algorithm.

The functionalities provided by the clusterv package can be summarized in

the following list:

• Functions clustering-algorithm-dependent

– Functions for high dimensional synthetic data generation

– Functions to implement different types of random projections from

high to lower dimensional subspaces

– Functions to evaluate the distortion induced by random projections

– Functions to compute the similarity matrix

– Functions to compute the stability indices:

∗ Individual cluster stability index for the estimate of the reliability

of individual clusters inside a clustering.

∗ Overall cluster stability index for the estimate of the “optimal”

number of clusters.

∗ Assignment-Confidence index for the estimate of the confidence

by which an example may be assigned to a specific cluster.

• Functions clustering-algorithm dependent
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– Functions to perform multiple clusterings on multiple instances of

projected data

– Functions to compute the stability indices for a specific clustering

algorithm

4 Getting started with Clusterv

In this section we analyze the reliability of clusters generated by the application

of a hierarchical clustering algorithm to high dimensional synthetic data.

As a first step, we need to load the clusterv library:

> library(clusterv)

The clusterv library requires two libraries cluster and MASS that are usually

available on all R environments. In the unlikely hypothesis that these libraries

are not installed in your R environment it is straightforward to download them

from the R web site: http://www.r-project.org.

Then we generate a synthetic data set that we will use for our reliability

analysis:

> M <- generate.sample0(n=10, m=1, sigma=1, dim=6000)

The function generate.sample0 generates a 6000-dimensional data set with 3

clusters composed each one of 1O examples. The data are distributed according

to a multivariate spherical gaussian distribution with a covariance matrix equal

to an identity matrix. The three clusters are centered, the first one in the 0

vector (that is a a 6000-dimensional vector with all ‘1’), the second in the 1 and

the third in -1 vectors.

Then we want to perform a reliability analysis of the clustering obtained with

the hierarchical clustering Ward’s method, choosing a cut (number of clusters)

corresponding to 2. To this end we choose an Achlioptas random projection and

a subspace dimension such that the maximum distortion will be less than 1.2

(see the clusterv web site for more details about this topic).

Hence we need to compute first the subspace dimension according to the JL

lemma with 1+epsilon distortion:

> subspace.dim <- ceiling(JL.predict.dim(30, epsilon=0.2));

> subspace.dim

[1] 341

That is we will perform random projection from 6000 to 341-dimensional sub-

spaces. Then we perform the clustering on the original space, and to evaluate its
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reliability we perform 20 Achlioptas random projections into 341-dimensional

subspaces, performing 20 hierarchical clusterings on that subspaces to compute

the stability indices:

> l2 <- Random.hclustering.validity (M, dim=subspace.dim, hmethod="ward.D",

pmethod="Achlioptas", c=2, n=20, scale=TRUE, seed=100, AC=TRUE);

The list l2 is composed by different elements that store the different stability

indices computed and other informations:

> l2$overall.validity

[1] 0.9210526

> l2$validity

[1] 1.0000000 0.8421053

These results show that the reliability (overall validity) of the clustering is high

(0.9210) and the validity of the obtained 2 individual clusters are respectively

1.0000 and 0.8421.

We could repeat the same test, but this time choosing 3 clusters for the

partition (we need only to change the parameter c=3, indicating that we test a

3-clusters clustering:

> l3 <- Random.hclustering.validity (M, dim=subspace.dim, c=3, n=20,

pmethod="Achlioptas", hmethod="ward.D", scale=TRUE, seed=100, AC=TRUE);

> l3$overall.validity

[1] 1

> l3$validity

[1] 1 1 1

In this case we achieve the maximum of the reliability, both for the overall

clustering and for the individual clusters.

We repeat now the same test with c=4, 5, 10 clusters:

4 clusters partition:

> l4 <- Random.hclustering.validity (M, dim=subspace.dim, c=4, n=20,

pmethod="Achlioptas", hmethod="ward.D", scale=TRUE, seed=100, AC=TRUE);

> l4$overall.validity

[1] 0.8245833

> l4$validity

[1] 0.8911111 0.7755556 0.8250000 0.8066667

5 clusters partition:
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> l5 <- Random.hclustering.validity (M, dim=subspace.dim, c=5, n=20,

pmethod="Achlioptas", hmethod="ward.D", scale=TRUE, seed=100, AC=TRUE);

> l5$overall.validity

[1] 0.7097778

> l5$validity

[1] 0.7500000 0.7350000 0.6055556 0.7416667 0.7166667

10 clusters partition:

> l10 <- Random.hclustering.validity (M, dim=subspace.dim, c=10, n=20,

pmethod="Achlioptas", hmethod="ward.D", scale=TRUE, seed=100, AC=TRUE);

> l10$overall.validity

[1] 0.3213333

> l10$validity

[1] 0.3800000 0.1500000 0.3250000 0.2750000 0.4500000 0.2500000

[7] 0.2833333 0.3166667 0.4000000 0.3833333

We know in advance that the correct number of clusters is 3. The stability

indices correctly detect that the most likely clustering is composed by 3 clusters,

and each cluster is highly reliable. Note that with 2, 4, 5 clusters partitions we

obtain lower values for the stability indices, and with 10-clusters partition, the

unnatural fragmentation of the clusters lead to very low values of the stability

indices.

The element l$AC of the list returned by Random.hclustering.validity is

a matrix that returns the “confidence” by which we can assign an example to a

cluster:

> l3$AC

[,1] [,2] [,3]

[1,] 0 1 0

[2,] 0 1 0

[3,] 0 1 0

[4,] 0 1 0

[5,] 0 1 0

[6,] 0 1 0

[7,] 0 1 0

[8,] 0 1 0

[9,] 0 1 0

[10,] 0 1 0

[11,] 1 0 0

[12,] 1 0 0
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[13,] 1 0 0

[14,] 1 0 0

[15,] 1 0 0

[16,] 1 0 0

[17,] 1 0 0

[18,] 1 0 0

[19,] 1 0 0

[20,] 1 0 0

[21,] 0 0 1

[22,] 0 0 1

[23,] 0 0 1

[24,] 0 0 1

[25,] 0 0 1

[26,] 0 0 1

[27,] 0 0 1

[28,] 0 0 1

[29,] 0 0 1

[30,] 0 0 1

The rows refer to the examples, columns to the cluster: in this case we have that

the assignment is highly reliable for the example, but the AC-index may have

values between 0 (no reliable assignment) to 1 (highly reliable assignment).

However, to perform a deeper and systematic analysis is preferable to use R

scripts that automatically launch multiple instances of the function

Random.hclustering.validity and automatically store the corresponding re-

sults for further analysis and visualization. An example of such a script is

downloadable from:

https://valentini.di.unimi.it/SW/clusterv/examples/sample0.RSvalidity.R . This

script performs a reliability analysis on a data set generated with the same

generator we used in our example, but random subspace projections are used

instead.

The results are summarized in the following figure (Fig. 1) that represents the

dendrogram of the clustering and table (Tab. 1) where the corresponding validity

indices are shown. Values with S refer to the overall stability index, while the

other values inside the table represent the stability index of an individual cluster.

In each column are computed the stability measures using random projections

into different subspace dimensions corresponding to different 1 + epsilon (eps)

distortion, according to the JL lemma (see the clusterv web site for more details

about this topic).
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Figure 1: Hierarchical clustering of examples obtained with the Ward method. Gray dotted

lines cut the dendrogram such that exactly k clusters are produced, for k=2,3,5.
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Table 1: Estimate of cluster stability with random subspace projections

Clusters Stability index s

eps=0.5 eps=0.4 eps=0.3 eps=0.2 eps=0.1

2 clusters S = 0.8631 S = 0.8684 S = 0.8684 S = 0.9157 S = 0.9421

1 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.7263 0.7368 0.7368 0.8314 0.8842

3 clusters S = 1.0000 S = 1.0000 S = 1.0000 S = 1.0000 S = 1.0000

1 1.0000 1.0000 1.0000 1.0000 1.0000

2 1.0000 1.0000 1.0000 1.0000 1.0000

3 1.0000 1.0000 1.0000 1.0000 1.0000

5 clusters S = 0.7059 S = 0.6843 S = 0.7044 S = 0.7004 S = 0.7472

1 0.6973 0.7346 0.7293 0.6506 0.7560

2 0.6666 0.7066 0.6866 0.6466 0.7133

3 0.7155 0.7582 0.7448 0.7591 0.8364

4 0.7600 0.5600 0.6800 0.7400 0.7800

5 0.6900 0.6621 0.6814 0.7057 0.6507

10 clusters S = 0.3093 S = 0.3043 S = 0.2651 S = 0.3286 S = 0.3936

1 0.0600 0.1200 0.0600 0.2000 0.2400

2 0.4260 0.3520 0.2900 0.3360 0.4560

3 0.1400 0.1600 0.1600 0.2000 0.1400

4 0.4066 0.3533 0.3200 0.3800 0.4200

5 0.3733 0.3000 0.2866 0.3600 0.4200

6 0.3276 0.3419 0.3285 0.3866 0.3933

7 0.3600 0.2800 0.3000 0.3600 0.3800

8 0.3000 0.3366 0.3066 0.3433 0.3866

9 0.3400 0.4000 0.2600 0.4200 0.5000

10 0.3600 0.4000 0.3400 0.3000 0.6000
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5 Generation of randomly projected data

Different types of random projections are available with clusterv:

• Plus-Minus-One (PMO)

• Achlioptas

• Normal

• Random Subspace (RS)

Before looking at some examples, we’ll see how to generate synthetic data

that we will use in our examples. Different synthetic data generators named

generate.sampleX are available, where X is between 0 and 5. They generate

clusters of data distributed according to multivariate gaussian distributions.

Each generator provides from 2 to 5 clusters, each one characterized by its

mean and covariance matrix. Usually the mean (center of each cluster) and

the covariance matrix are input parameters for the functions (see the Clusterv

reference manual for more details).

For instance:

> M <- generate.sample1(n = 20, m = 6, sigma = 1, dim = 2000)

generates a matrix M of data (examples are in columns, variables on rows) with

3 clusters, each one composed by n=20 examples whose dimension is dim=2000.

All clusters have their last dim-500 variables centered in 0. The first class (first

n examples) has its first 500 features centered in 0. The parameter m select the

center for the second and third cluster: the second class (second n examples) has

its first 500 features centered in 6, the third (last n examples) has its first 500

features centered in -6. All the clusters are distributed according to a “spherical”

gaussian with sigma=1. The relating matrix M is composed by 2000 rows and

60 columns:

> dim(M)

[1] 2000 60

As another a little bit more complex example consider:

> M5 <- generate.sample5(n = 10, m = 2, ratio.noisy = 0.9, dim = 1000)

This generates a 1000 x 40 data matrix M5: 4 clusters with n = 10 examples

1000-dimensional are randomly generated. The parameter ratio.noisy sets the

proportion of “noisy” features, where for “noisy” feature we mean features that
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are equally distributed in all the classes (these variables are centered in 0),

while for “no-noisy” we mean features that are centered in different points (set

by the m parameter) in the different classes. In this case we have 1000*0.9=900

“noisy” variables, and 100 “no-noisy” variables, centered in 0 for the first clus-

ter, 2 for the second, -2 for the third and centered in (2,-2) alternatively for

the fourth. The covariance matrix Sigma is equal for all the cluster: Sigma

= (B, Zero; Zero’, I) where B is a (dim*(1-ratio.noisy))x(dim*(1-ratio.noisy))

matrix (in this case a 100 x 100 matrix) s.t. B[i,i]=1, B[i,i+1]=B[i,i-1]=0.5

and B[i,j]=0.1 if j!=i-1,i,i+1; Zero is a (dim*(1-ratio.noisy))x(dim*ratio.noisy)

zero matrix ( in this case a 100 x 900 matrix) and Zero’ its transpose; I is a

(dim*ratio.noisy)x(dim*ratio.noisy) identity matrix (in this case a 900 x 900

matrix).

Now we will apply different random projections to these two (quite) high

dimensional data matrices. For instance we could apply a Plus-Minus-One

(PMO) random projection:

> M.PMO <- Plus.Minus.One.random.projection(d = 50, M)

> dim(M.PMO)

[1] 50 60

This function performs a PMO random projection of the data matrix M into a

50-dimensional subspace.

The other functions that implements random projections have a similar syn-

tax:

> M.Achlioptas <- Achlioptas.random.projection(d = 50, M)

> M.Normal <- norm.random.projection(d = 50, M)

> M.RS <- random.subspace(d = 50, M)

In all cases the functions return a 50 x 60 matrix using different random pro-

jections. You can get a look to the different projected matrices: they differ one

from another not only because different random projections are performed, but

also because each time a different random matrix is generated by the random-

ized map. For instance if you now perform a second random projection with

Plus-Minus-One (PMO), and compare the result with the previously computed

(PMO) data matrix you’ll get different results:

> M.PMO.2 <- Plus.Minus.One.random.projection(d = 50, M)

> R <- M.PMO == M.PMO.2

Indeed the elements of the resulting boolean R matrix get all the FALSE value,

and this is not the effect of round-off errors or permutations of the columns, as

shown by the plot of the two first principal components of the data (Fig. 2):
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Figure 2: Plot of the two principal components of the data sets represented in matrices

M.PMO (solid circles) and M.PMO.2 (squares)

We would like to use random projections to reduce the dimensionality of

the data, but without introduce too large distortions into the projected data,

in order to use them to perform clustering. How could we do this possibly in a

principled way? This is the subject of the next section of the tutorial.

6 Computation of the distortion induced by ran-

dom projections

Our goal is now to use random projections to reduce the dimensionality of the

data, but without introduce too large distortions into the projected data. In

this way if the distances between the examples were approximately maintained

we could safely apply clustering to lower dimensional data, without destroying
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the metric properties of the data.

To do this in a principled way we need to experimentally evaluate the dis-

tortion introduced into the projected data. The clusterv package implements

several functions to evaluate the distortion. The main functions are:

> max.exps <- Max.Expansion(t(M), t(M.PMO))

> max.exps

[1] 1.277541

Max.Expansion computes the maximum ratio of the distances between corre-

sponding examples in the projected space and in the original space (this is

named also distortion). Note that we used the matrices computed in the previ-

ous section (see Sect. 5).

> min.exps <- Min.Expansion(t(M), t(M.PMO))

> min.exps

[1] 0.7271939

Analogously Min.Expansion computes the minimum ratio of the distances be-

tween corresponding examples in the projected space and in the original space.

The function Average.Expansion computes, of course the average ratio of

the distances between corresponding examples in the projected space and in the

original space:

> avg.exps <- Average.Expansion(t(M), t(M.PMO))

> avg.exps

[1] 1.052216

There exist also function that estimate the distortion (that is the maximum

expansion) theoretically predicted by the Johnson Lindenstrauss lemma (see the

clusterv web site for more details about this topic). In the previous case the 1

+ epsilon distortion predicted for the examples stored in the matrix M.PMO

is:

> JL.predict.distortion(60, dim = 50)

[1] 0.5723177

that is, the predicted distortion is 1..5723177, as the function returns the epsilon

value. As you can see this is quite larger than the observed empirical distortion:

indeed the JL lemma provides an upper bound to the distortion.

Another useful function provides the dimension of the subspace for which

we could expect a given epsilon distortion, given the cardinality of the sample

to be projected:

14



> JL.predict.dim(n=60, epsilon = 0.1)

[1] 1638

That is, according to the JL lemma we should project our sample composed by

60 examples into a 1638-dimensional subspace to expect a maximum expansion

no larger than 1.1.

These functions, together with the functions to perform random projections

described in the previous section, allow us to compare the empirical distortions

induced by the different randomized projections, as well as to compare the

observed empirical distortions with the theoretical distortion predicted through

the JL lemma.

In the rest of this section we present the results of an experimental analysis

of the distortion induced in DNA microarray data by different types of random

projections. An example of the R scripts that we used to implement this em-

pirical analysis is downloadable from:

https://valentini.di.unimi.it/SW/clusterv/examples/Shipp.DLBCL.filtered.norm-

PMO.R

and the DNA microarray data set that we used is downloadable in gzipped for-

mat from:

https://valentini.di.unimi.it/SW/clusterv/examples/Shipp.DLBCL.filtered.norm.nolabels.txt.gz.

This R script refers to an analysis of the distortion induced by PMO random

projections, but it is straightforward to modify it for using the other random

projections implemented in the package.

The data we used have been downloaded from the MIT Whitehead Insti-

tute. The samples are tumor specimens from 8 Diffuse large B-cell lymphoma

(DLBCL) and 19 Follicular lymphoma (FL) patients [9]. For each patient, ex-

pression levels of 7129 genes or EST sequences are provided from Affymetrix

HU6800 oligonucleotide arrays. Raw data have been pre-processed and re-scaled

according to the procedures described in [9], obtaining a final set of 6286 genes.

We performed Achlioptas, Normal, PMO and RS random projections and

then we experimentally evaluated the expectation of the maximum, minimum

and average expansion, averaging their values over 50 repeated random projec-

tions. Then we compared the results with the estimated theoretical distortion

predicted by the JL lemma. We performed random projections into subspace

whose dimensions correspond to predicted distortions 1+epsilon, with epsilon

values ranging from 0.1 to 0.5 (Fig. 3)

In abscissa are represented the dimensions of the projected subspace and in

ordinate the corresponding distortion. Continuous lines represent the bounds of

the maximum and minimum expansion according to the JL lemma; dashed lines
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Figure 3: Comparing theoretical and empirical distortion with DLBCL samples using (a)

Achlioptas (b) Normal (c) PMO and (d) RS projections. Continuous lines represent the

bounds of the maximum and minimum distortion (expansion) according to the JL lemma.

Dashed lines represent the average maximum and minimum expansion empirically computed

and averaged over 50 random projections. The pairs of dotted lines just above and below the

the dashed lines represent the confidence interval at 99 % confidence level. The dash-dotted

line represents the average expansion.

represent the empirical average maximum and minimum expansion computed

and averaged over 50 random projections. The pairs of dotted lines just above

and below the dashed lines represent the confidence interval at 99 % confidence

level. The dash-dotted line represents the average distortion. The dashed and

dot-dashed lines represent the corresponding estimated empirical values (the

lines are simply computed by linear interpolation between points). We recall

that distortion equal to 1 means no distortion.

For the Achlioptas, Normal and PMO random projections, the empirical
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bounds of the maximum and minimum distortions are largely inside the theo-

retical bounds predicted by the JL lemma (Fig. 3 a, b and c). On the contrary,

with RS random projections in both cases the maximum and minimum dis-

tortions are largely outside the theoretical bounds (Fig.]3 (d)). Note also that

these results are significant at 99 % confidence level, as the dashed lines of

the confidence intervals do not intersect the continuous lines of the theoretical

bounds. In any case the average empirical distortion is very close to 1 (that is

we have no distortion on the average), even if with RS projections for large val-

ues of epsilon (that corresponds to very low dimensional subspaces) the average

empirical distortions moves slightly from 1.

These results show that using random subspace (RS) projections with DNA

microarray data we may introduce large distortions in the data, especially when

large values of epsilon are used. We strongly suggest to use one of the other

random projections (Achlioptas, Normal or PMO).

7 Estimate of the reliability of clusters gener-

ated by specific clustering algorithms

Several high-level function implement the computation of the stability indices

for specific clustering algorithms, such as hierarchical [7], k-means [5], fuzzy

c-mean [2] and Prediction Around Medoids [6] clustering algorithms.

There are 4 functions that implement the computation of the stability indices

for the above clustering algorithms:

1. Random.hclustering.validity

2. Random.kmeans.validity

3. Random.fuzzy.kmeans.validity

4. Random.PAM.validity

These functions compute the validity indices for each individual cluster, the

overall validity index of the clustering and the AC indices of each example.

To this end different randomized maps may be chosen (input parameter of the

function) to generate multiple projected data. On each projected data the

clustering algorithm is applied; then the similarity matrix across the multiple

clusterings on the projected data is computed and finally, by using the previously

computed similarity matrix, the validity indices for each individual cluster, the

overall validity index of the clustering and the AC indices of each example are
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computed. These functions assume that the data are represented as matrices (or

data frames) having examples in the columns and variables in rows. Moreover

they assume that the labels of the examples are integer starting from 1 to the

number of columns of the data matrix.

Consider, for instance, instance a 2000-dimensional synthetic data set com-

posed by three clusters, each one with 15 examples:

> M <- generate.sample1(n = 15, m = 4, sigma = 2, dim = 2000)

7.1 Estimate of the reliability of clusters generated by hi-

erarchical clustering algorithms

If we want to estimate the reliability of clusters generated by a hierarchical

clustering:

> l2 <- Random.hclustering.validity(M, dim=JL.predict.dim(45,0.2),

pmethod = "PMO", c = 2, hmethod = "average", n = 20)

We chose a dimension dim of the subspace such that the distortion induced by

the PMO projection (parameter pmethod) will be less than 1.2. Moreover we

chose an “average linkage” hierarchical clustering (parameter hmethod) with

20 replications (parameter n) of the clusterings in the projected subspace. The

stability indices are stored in list l2 and are computed with respect to a partition

with 2 clusters (parameter c). The returned list has 8 elements (comprising the

compute stability indices, the similarity matrix, the list of clusterings and other):

> l2$overall.validity

[1] 0.9353448

> l2$validity

[1] 1.0000000 0.8706897

The overall validity with 2 clusters is equal to 0.9353448, while the stability in-

dices for the two clusters are respectively 1.0000000 and 0.8706897. The element

l2$orig.cluster stores the clustering for which we computed the stability in-

dices:

> l2$orig.cluster

[[1]]

[1] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

[[2]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 31 32 33 34 35 36 37 38 39 40

[26] 41 42 43 44 45
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We see that the first cluster is highly reliable (indeed it corresponds to the exam-

ples of the second “natural” cluster), while the second less reliable corresponds

to the merging of the first and third “natural” cluster.

It is very simple to estimate the reliability of clusters obtained with partitions

of 3-clusters; it is sufficient to change only the c parameter:

> l3 <- Random.hclustering.validity(M, dim=JL.predict.dim(45,0.2),

pmethod = "PMO", c = 3, hmethod = "average", n = 20)

> l3$overall.validity

[1] 1

> l3$validity

[1] 1 1 1

> l3$orig.cluster

[[1]]

[1] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

[[2]]

[1] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

[[3]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In this case the clusters obtained are those that correspond to the “true” cluster

generated by the synthetic data generator generate.sample1. Note that the

stability indices denote as highly reliable both the overall clustering and the

obtained individual clusterings.

Using other number of clusters (e.g. 4,5,6,8) we obtain less reliable cluster-

ings and less reliable individual clusters. For instance with 4 clusters:

> l4 <- Random.hclustering.validity(M, dim=JL.predict.dim(45,0.2),

pmethod = "PMO", c = 4, hmethod = "average", n = 20)

> l4$overall.validity

[1] 0.7840842

> l4$validity

[1] 0.9666667 0.9542857 0.2500000 0.9653846

> l4$orig.cluster

[[1]]

[1] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

[[2]]

[1] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

[[3]]

[1] 14
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[[4]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 15

Note the third cluster is scored as poorly reliable (s=0.25) and indeed it corre-

sponds to an example that should belong to the fourth cluster. Looking at the

AC indices that store how much reliable is the assignment of an example to a

specific cluster, we see that the AC index of the example 14 (the “unnatural”

element of the third singleton cluster) is very low:

> l4$AC[14,]

[1] 0.00 0.00 0.25 0.00

indeed it reveals a membership to the third cluster equal to 0.25, while the AC

indices for, e.g. the first 5 examples (that belong to the fourth cluster) is close

to 1:

> l4$AC[1:5,]

[,1] [,2] [,3] [,4]

[1,] 0 0 0 0.9807692

[2,] 0 0 0 0.8884615

[3,] 0 0 0 0.9807692

[4,] 0 0 0 0.9807692

[5,] 0 0 0 0.9423077

Note that the AC indices are stored as matrices, even if it would be sufficient

to store them simply through a vector, since with the hierarchical clustering we

have, for a given cut of the tree, a strict partition of the data. Anyway we choose

this implementation because in future releases we plan to implement fuzzy AC

indices specific for fuzzy partitions in order to permit for each example a fuzzy

membership to each cluster.

The reader could try to repeat these computations with other random pro-

jections: in this case we should obtain the same results, independently of the

chosen projection.

7.2 Estimate of the reliability of clusters generated by the

k-means clustering algorithm

Similarly we may estimate the reliability of clusters obtained with k-means

clustering. The function Random.kmeans.validity has about the same syntax

as the previous one:

> l3 <- Random.kmeans.validity(M, dim=JL.predict.dim(45,0.2),
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pmethod = "PMO", c = 3, n = 20)

> l3$overall.validity

[1] 0.9504762

> l3$validity

[1] 1.0000000 0.8961905 0.9552381

> l3$orig.cluster

[[1]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[[2]]

[1] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

[[3]]

[1] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

The results are quite similar to the results obtained with hierarchical clustering,

but the validity indices are in this case slightly lower. Let’s try to repeat the

computations:

> l3 <- Random.kmeans.validity(M, dim=JL.predict.dim(45,0.2),

pmethod = "PMO", c = 3, n = 20)

> l3$validity

[1] 0.5089655 0.9500000 0.9433333

> l3 <- Random.kmeans.validity(M, dim=JL.predict.dim(45,0.2),

pmethod = "PMO", c = 3, n = 20)

> l3$validity

[1] 1.0000000 0.8933333 0.9495238

What is happened? The results are quite different. This is due to the fact that

the k-means clustering algorithm strongly depends on the initial conditions and

we may obtain different results in different runs. If you try to repeat these

experiments it is likely that you obtain in turn other results.

7.3 Estimate of the reliability of clusters generated by the

fuzzy k-means clustering algorithm

The following example shows how to apply the stability indices to the analysis

of clusterings generated through a fuzzy-k-means algorithm. Here we consider

only the partition obtained by assigning each example to the cluster with the

higher membership. We used now a synthetic 6000-dimensional data set with 5

clusters:

> M <- generate.sample4(n = 10, sigma = 0.1)
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The obtained 5 clusters (each one with 10 examples) are quite well separated, as

shown by plotting the points projected along the two main principal components

via PCA (Fig. 4). To apply the stability analysis we may use the
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Figure 4: Plot of the two principal components of the 6000-dimensional data set. The

examples that belong to the 5 different clusters are plotted with different symbols.

Random.fuzzy.kmeans.validity function:

> r2 <- Random.fuzzy.kmeans.validity(M, dim=JL.predict.dim(50,0.2),

pmethod = "PMO", c = 2, n = 20);

> r2$overall.validity

[1] 1

> r2$validity

[1] 1 1

Hence two clusters are considered reliable. But we know that we have 5 clusters.

Getting a look to the clusters, we see that the first 4 clusters are grouped
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together against the fifth (the first 10 examples belongs to the first cluster, the

next ten to the second and so on):

> r2$orig.cluster

[[1]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

[21] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

[[2]]

[1] 41 42 43 44 45 46 47 48 49 50

Does the stability indices fail or the results depend on how the clusters are

defined? Indeed the fuzzy-k-means sees 2 clusters in the data, and the fifth

cluster is surely separated from the other data.

Consider now c=3 clusters:

> r3 <- Random.fuzzy.kmeans.validity(M, dim=JL.predict.dim(50,0.2),

pmethod = "PMO", c = 3, n = 20);

> r3$overall.validity

[1] 1

> r3$validity

[1] 1 1 1

> r3$orig.cluster

[[1]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

[21] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

[[2]]

[1] 31 32 33 34 35 36 37 38 39 40

[[3]]

[1] 41 42 43 44 45 46 47 48 49 50

In this case also 3 clusters are considered reliable, because really the first clusters

is composed by the three “true” clusters in the center (see Fig. 4), while the

two other clusters on the left and on the right are more separated.

And with 5 clusters?

> r5 <- Random.fuzzy.kmeans.validity(M, dim=JL.predict.dim(50,0.2),

pmethod = "PMO", c = 5, n = 20);

> r5$overall.validity

[1] 1

> r5$validity

[1] 1 1 1 1 1
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> r5$orig.cluster

[[1]]

[1] 1 2 3 4 5 6 7 8 9 10

[[2]]

[1] 11 12 13 14 15 16 17 18 19 20

[[3]]

[1] 21 22 23 24 25 26 27 28 29 30

[[4]]

[1] 31 32 33 34 35 36 37 38 39 40

[[5]]

[1] 41 42 43 44 45 46 47 48 49 50

Of course, the stability indices considered the five “true” clusters very reliable.

With 4 clusters are considered very reliable only the two “extreme clusters”,

as the first big cluster losses its example n.5 that is assigned to the second

cluster:

> r4 <- Random.fuzzy.kmeans.validity(M, dim=JL.predict.dim(50,0.2),

pmethod = "PMO", c = 4, n = 20);

> r4$overall.validity

[1] 0.8899123

> r4$validity

[1] 0.6596491 0.9000000 1.0000000 1.0000000

> r4$orig.cluster

[[1]]

[1] 1 2 3 4 6 7 8 9 10 21 22 23 24 25 26 27 28 29 30

[[2]]

[1] 5 11 12 13 14 15 16 17 18 19 20

[[3]]

[1] 31 32 33 34 35 36 37 38 39 40

[[4]]

[1] 41 42 43 44 45 46 47 48 49 50

If we use an unnatural number of cluster (e.g. 10) we obtain low values of

the stability indices:

> r10 <- Random.fuzzy.kmeans.validity(M, dim=JL.predict.dim(50,0.2),

pmethod = "PMO", c = 10, n = 20);

> r10$overall.validity

[1] 0.573125

> r10$validity
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[1] 0.5972222 0.0500000 0.7366667 0.7411111 0.5500000 0.6300000

[7] 0.6300000 0.6500000

7.4 Estimate of the reliability of clusters generated by the

PAM (Prediction Around Medoids) clustering algo-

rithm

Finally we perform clustering analysis with the PAM algorithm, using the same

data set we used with the fuzzy-k-means algorithm:

> p2 <- Random.PAM.validity(M, dim=JL.predict.dim(50,0.2),

pmethod = "PMO", c = 2, n = 20);

> p2$overall.validity

[1] 0.8846154

> p2$validity

[1] 0.7692308 1.0000000

> p2$orig.cluster

[[1]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

[21] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

[[2]]

[1] 41 42 43 44 45 46 47 48 49 50

With two clusters in this case the overall validity is lower, as the first big cluster

is considered less reliable. This fact suggest that the PAM clustering algorithm

seems to be better suited for this data set. These results show also that the

validity indices depend on the clustering algorithm used: indeed the compu-

tation of the similarity matrix that is used to compute the stability indices is

performed through multiple clusterings on the randomly projected data, and

hence depends on the applied clustering algorithm.

With partitions composed by clusters, we obtain, as expected, very reliable

clusters:

> p3 <- Random.PAM.validity(M, dim=JL.predict.dim(50,0.2),

pmethod = "PMO", c = 3, n = 20);

> p3$overall.validity

[1] 1

> p3$validity

[1] 1 1 1

> p3$orig.cluster
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[[1]]

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

[20] 20 21 22 23 24 25 26 27 28 29 30

[[2]]

[1] 31 32 33 34 35 36 37 38 39 40

[[3]]

[1] 41 42 43 44 45 46 47 48 49 50

And, of, course also with 5 clusters:

> p5 <- Random.PAM.validity(M, dim=JL.predict.dim(50,0.2),

pmethod = "PMO", c = 5, n = 20);

> p5$overall.validity

[1] 1

> p5$validity

[1] 1 1 1 1 1

With 4 or e.g. 8 clusters the reliability of the obtained clusters is lower, as

the “true” clusters are fragmented:

> p4 <- Random.PAM.validity(M, dim=JL.predict.dim(50,0.2),

pmethod = "PMO", c = 4, n = 20);

> p4$overall.validity

[1] 0.9047581

> p4$validity

[1] 0.7099415 0.9090909 1.0000000 1.0000000

> p8 <- Random.PAM.validity(M, dim=JL.predict.dim(50,0.2),

pmethod = "PMO", c = 8, n = 20);

> p8$overall.validity

[1] 0.6332639

> p8$validity

[1] 0.7450000 0.7900000 0.6633333 0.7000000 0.7166667

[6] 0.6333333 0.0500000 0.7677778

8 Estimate of the reliability of clusters gener-

ated by a generic clustering algorithm

In this section we see how to use the functions provided by clusterv to estimate

the reliability of generic clustering algorithms.
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It is worth noting that even if the proposed stability indices may be applied

to any clustering algorithm, their computation is based on clusterings applied

to subspaces of euclidean spaces, where the condition of low distortion is guar-

anteed if euclidean distances are used.

With this limitation in mind, the logical steps of the procedure you need to

compute the stability indices for a given generic Clust algorithm applied to a

d-dimensional data set D are:

1. Compute the clustering on the d-dimensional data set D using Clust

2. Generate multiple randomly projected data using a suitable random pro-

jection (with a given distortion)

3. Perform multiple clusterings using the projected data

4. Compute the similarity matrix using the previously computed multiple

clusterings

5. Compute the validity indices for the individual clusters obtained at point

1.

6. Compute the overall validity index for the clustering

7. Compute the AC indices for each example

8. Save the results in a suitable way

For each logical step, the clusterv functions to be used are listed below:

1. Use Transform.vector.to.list if Clust returns a vector to represent the

clustering

2. Plus.Minus.One.random.projection, Achlioptas.random.projection,

norm.random.projection, random.subspace

3. Simply iterate the application of Clust on the data generated at step 2.

4. Do.similarity.matrix, Do.similarity.matrix.partition

5. Validity.indices, Cluster.validity, Cluster.validity.from.similarity

6. Simply average the validity indices of the individual clusters or use Cluster.validity,

Cluster.validity.from.similarity

7. AC.index, Cluster.validity, Cluster.validity.from.similarity

8. —
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From an implementative point of view, Clust needs to return the clustering

represented as a vector v or a list l. More precisely the vector v should be

an integer vector, whose indices represent the label of the examples, and the

content the label (an integer) of the cluster to which the example belong (such

as clustering component of the list partition.object of the cluster package).

The elements of list l must be vectors. Each vector represents a different

cluster of the clustering; the elements of the vector are the (integer) labels of

the examples (such as the orig.cluster component of the list returned by, e.g.,

the functions Random.hclustering.validity or Random.PAM.validity of the

clusterv package).

Note that the functions implemented in clusterv need the clusterings imple-

mented as list. Anyway if your clustering algorithm outputs a vector v, you can

use the function Transform.vector.to.list. Consider, for instance, that the

kmeans function of the package stats returns a vector for the computed k-means

clustering. To convert the vector to a list:

> M <- generate.sample0(n=10, m=2, sigma=1, dim=500)

> # transforming a clustering vector obtained with kmeans to a list

> r<-kmeans(t(M), 3, 100);

> clustering.list.kmeans <- Transform.vector.to.list(r$cluster);

As an example about how to write a function to compute the stability

indices for a generic clustering algorithm, consider the code of the function

Random.kmeans.validity that computes the stability indices for the cluster-

ings obtained with the k-means algorithm (note that the Step 1,2, etc refer to

the logical steps listed above):

Random.kmeans.validity <- function(M, dim, pmethod="PMO", c=3,

it.max=1000, n=50, scale=TRUE, seed=-1, AC=TRUE) {

dim.Sim.M <- ncol(M);

if (seed == -1)

seed <- round(runif(1,1,10000));

# Step 1. Computing the clusters in the original space

r<-kmeans(t(M), c, iter.max = it.max);

cl.orig <- Transform.vector.to.list(r$cluster);

# Step 2. and 3. Perform multiple random projections and multiple

# clusterings on the resulting projected data

cl <- Multiple.Random.kmeans (M=M, dim=dim, pmethod=pmethod,

c=c, n=n, it.max=it.max, scale=scale, seed=seed);
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# Step 4. Compute the similarity matrix

Sim.M <- Do.similarity.matrix(cl, dim.Sim.M);

# Computing the list of validity measures

# Step 5. Computing the validity indices vi

c <- length(cl.orig); # it corrects for empty sets

vi <- Validity.indices(cl.orig, c, Sim.M);

# Step 6. Computing the overall validity of the clustering:

ov.vi <- sum(vi)/c;

# Step 7 and 8. Computing the AC indices and store

# the results in a list:

if (AC == TRUE) {

ac <- AC.index(cl.orig, c, Sim.M);

res <- list (validity=vi, overall.validity=ov.vi,

similarity.matrix=Sim.M, dimension=dim,

cluster=cl, orig.cluster=cl.orig, AC=ac);

}

else

res <- list (validity=vi, overall.validity=ov.vi,

similarity.matrix=Sim.M, dimension=dim,

cluster=cl, orig.cluster=cl.orig);

return(res);

}

For the meaning of the input parameters of the above function, please, see the

Reference manual. Finally the code of the function Multiple.Random.kmeans

used for the Steps 2 and 3 inside the function Random.kmeans.validity is the

following (see the reference manual for the meaning of the input parameters):

Multiple.Random.kmeans <- function(M, dim, pmethod="PMO",

c=3, n=50, it.max=1000, scale=TRUE, seed=100) {

set.seed(seed);

cl <- list();

for (i in 1:n) {

# A. selection of the randomized map

P.M <- switch(pmethod,

RS = random.subspace(d=dim, M, scaling=scale),

PMO = Plus.Minus.One.random.projection(d=dim, M, scaling=scale),
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Norm = norm.random.projection(d=dim, M, scaling=scale),

Achlioptas = Achlioptas.random.projection(d=dim, M, scaling=scale),

stop("Multiple.Random.kmeans: not supported random projection.", call.=FALSE));

r<-kmeans(t(P.M), c, iter.max = it.max);

cl[[i]] <- Transform.vector.to.list(r$cluster);

}

return(cl);

}

9 An applicative example to the analysis of DNA

microarray data: analysis of cluster reliability

in lung tumor patients

Here we present the results of an application of clusterv to the analysis of lung

tumor patients, using a DNA microarray data composed by 203 histologically

defined specimens: 186 lung tumors, subdivided in 127 lung adenocarcinoma

(AD), 21 squamous cell lung adenocarcinoma (SQ), 20 pulmonary carcinoids

(COID), 6 small-cell lung adenocarcinoma (SMCL) and 17 normal lung (NL)

specimens [3]. From the 12600 original genes of the U95A Affymetrix oligonu-

cleotide array 3312 passed the filter (genes with standard deviation units less

than 50 have been excluded), according to the procedures described in [3] and

then the gene expression levels have been normalized with respect to the mean

and standard deviation. In this case also we implemented the pre-processing

procedures with R scripts. We evaluated the reliability of the discovered clusters

for both normalized and not normalized (with respect to the mean and standard

deviation) data.

Bhattacharjee et al. discovered distinct subclasses of lung adenocarcinoma [3]

using DNA microarray data. We applied our stability measures using PMO pro-

jections and the Ward’s hierarchical clustering to analyze the reliability of the

discovered subclasses.

The results summarized in Tab. 2 and Fig. 5 partially confirmed that the

clusters defined by established histological classes [3] are quite reliable. At first,

the overall stability indices suggest that pulmonary carcinoid tumors (COID)

constitute a well-defined and separated cluster among the different subclasses

of lung adenocarcinomas. Indeed the highest overall stability index is obtained

with N=2 clusters; the first cluster that collect all the COID patients shows

an individual stability index very close to 1. Moreover with N=3 clusters the
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first COID cluster is highly supported by the s index (Tab. 2). Anyway also

partitions characterized by larger number of clusters show relatively high val-

ues of the overall stability index, supporting the Bhattacharjee et al. thesis

of distinct subclasses of lung adenocarcinoma. For instance, with N=4 clus-

ters, the COID and normal lung (NL) subclasses are classified as reliable by

the s index, the big second cluster characterized by several adenocarcinomas

(AD) with Small-Cell-Lung-adenocarcinoma (SMCL) and some normal exam-

ples is scored as quite reliable (stablity index s=0.8168), while the fourth cluster

that groups together adenocarcinoma and squamous cell lung adenocarcinomas

(SQ) is scored as less reliable (s=0.7157) (Tab. 2 and Fig. 5). With N=8 the

first two subclasses of COID patients are highly reliable, as well as the sixth

cluster (normal lung). Interestingly enough, the cluster 3,4,5 represents three

distinct subclasses inside adenocarcinoma patients, with a relatively high indi-

vidual cluster stability (Tab. 2, N=8). Cluster 7 also represents another cluster

of adenocarcinomas with also SQ and SMCL specimens inside, even if its in-

dividual stability index is quite smaller (s=0.7692). These results partially

confirm the hypothesis of distinct subclasses among lung adenocarcinoma [3].

Anyway the stability indices show also that the subclasses are not so clearly

delineated: these facts show that the results of clustering algorithms should be

considered with caution, especially when complex and noisy data (such as DNA

microarray data usually are) are analyzed. A stability analysis using other clus-

tering algorithms (using for instance the functions Random.kmeans.validity,

Random.fuzzy.kmeans.validity, Random.PAM.validity of the clusterv pack-

age) could get more insights into this problem.
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Figure 5: Hierarchical clustering of Lung tumor examples (Ward method). Gray dotted lines

cut the dendrogram such that exactly k clusters are produced, for k=2,3,4,8. Considering 8

clusters, the first two refers two pulmonary carcinoids patients (COID), the third to a group

of lung adenocarcinoma together with small-cell lung adenocarcinoma patients (SMCL), the

fourth to a first group of lung adenocarcinoma patients (AD I), the fifth to a second group

of adenocarcinoma patients with 3 normal patients (AD II + NL), the sixth to normal (NL)

patients, the seventh to a third group of adenocarcinoma patients (AD III) and the last to

squamous cell lung adenocarcinomas (SQ). See Table 2 for the corresponding stability indices.
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Table 2: Lung Tumor: Estimate of cluster stability

N. Overall stability index S

eps=0.5 eps=0.4 eps=0.3 eps=0.2 eps=0.1

2 0.9017 0.9376 0.9705 0.9708 0.9883

3 0.7550 0.7723 0.7964 0.8057 0.8611

4 0.7381 0.7571 0.7928 0.8074 0.8698

5 0.7198 0.6994 0.7497 0.7815 0.8294

6 0.6706 0.6797 0.7264 0.7602 0.8273

7 0.6777 0.6982 0.7381 0.7750 0.8225

8 0.6330 0.6575 0.7030 0.7460 0.8096

9 0.6123 0.6355 0.6870 0.7282 0.8098

10 0.5970 0.6304 0.6850 0.7336 0.8105

20 0.5769 0.6271 0.6700 0.7346 0.8056

N. Cl. Individual stability index s

eps=0.5 eps=0.4 eps=0.3 eps=0.2 eps=0.1

2 1 0.9185 0.9292 0.9684 0.9724 0.9940

2 0.8849 0.9459 0.9726 0.9692 0.9826

3 1 0.9034 0.9236 0.9624 0.9723 0.9940

2 0.7025 0.7455 0.7600 0.7401 0.8475

3 0.6592 0.6479 0.6667 0.7047 0.7420

4 1 0.8976 0.9236 0.9624 0.9723 0.9940

2 0.6371 0.6857 0.7237 0.7119 0.8448

3 0.7997 0.7861 0.8469 0.9020 0.9247

4 0.6180 0.6331 0.6384 0.6435 0.7157

5 1 0.8875 0.9236 0.9624 0.9723 0.9940

2 0.5690 0.5597 0.6132 0.6664 0.6992

3 0.7630 0.7211 0.7930 0.8588 0.9107

4 0.7637 0.6811 0.7267 0.6971 0.7341

5 0.6157 0.6116 0.6532 0.7132 0.8093

6 1 0.8495 0.9144 0.9624 0.9723 0.9940

2 0.7804 0.7993 0.8321 0.8891 0.8861

3 0.4322 0.4648 0.5111 0.5181 0.6642

4 0.7270 0.7150 0.7767 0.8261 0.9107

5 0.6690 0.6275 0.6675 0.6772 0.7236

6 0.5655 0.5573 0.6086 0.6786 0.7850

8 1 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.7884 0.8430 0.9345 0.9509 0.9900

3 0.5514 0.6352 0.6965 0.7776 0.8360

4 0.4865 0.4828 0.5510 0.6283 0.7813

5 0.3904 0.4505 0.4588 0.5073 0.5258

6 0.7064 0.7144 0.7755 0.8255 0.9107

7 0.5949 0.5957 0.6078 0.6132 0.6484

8 0.5455 0.5385 0.5998 0.6649 0.7847
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