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AC.index Assignment Confidence (AC) index

Description

Assignment confidence index computation. For a given clustering and similarity matrix, the set
of AC indices are computed (for each cluster and each example) It assumes that the label of the
examples are integers.

Usage

AC.index(cluster, c, Sim.M)
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Arguments

cluster list of the clusters whose validity indices will be computed

c number of clusters

Sim.M similarity matrix

Details

The Assignment-Confidence (AC) index estimates the confidence of the assignment of an example i
to a cluster A using a similarity matrix M:

AC(i, A) =
1

|A| − 1

∑
j∈A,j ̸=i

Mij

Using a set of realizations of a given randomized projection, the AC-index represents the frequency
by which i appears with the other elements of the cluster A.

Value

matrix with the Assignment Confidence index for each example. Each row corresponds to an ex-
ample, each column to a cluster.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Validity.indices, Cluster.validity, Cluster.validity.from.similarity,

Do.similarity.matrix.partition, Do.similarity.matrix

Examples

# Computation of the AC indices of a hierarchical clustering algorithm
M <- generate.sample0(n=10, m=2, sigma=2, dim=800)
d <- dist (t(M));
tree <- hclust(d, method = "average");
plot(tree, main="");
cl.orig <- rect.hclust(tree, k = 3);
l.norm <- Multiple.Random.hclustering (M, dim=100, pmethod="Norm",

c=3, hmethod="average", n=20)
Sim <- Do.similarity.matrix.partition(l.norm);
ac <- AC.index(cl.orig, c=3, Sim)
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Achlioptas.hclustering

Multiple Hierarchical clusterings using Achlioptas random projec-
tions

Description

Multiple Hierarchical clusterings using Achlioptas random projections of the data.

Usage

Achlioptas.hclustering(M, dim, c = 3, hmethod = "average", n = 50,
scale = TRUE, seed = 100, distance="euclidean")

Achlioptas.hclustering.tree(M, dim, hmethod = "average", n = 50, scale = TRUE,
seed = 100, distance = "euclidean")

Arguments

M matrix of data: rows are variables and columns are examples
dim subspace dimension
c number of clusters
hmethod the agglomeration method to be used. This should be one of "ward.D", "sin-

gle", "complete", "average", "mcquitty", "median" or "centroid", according to
the hclust method of the package stats.

n number of random projections
scale if TRUE (default) Achlioptas random projections are scaled
seed numerical seed for the random generator
distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson

correlation)

Value

a list with components "cluster" and "tree":

cluster list of the n clusterings obtained. Each element is in turn a list of vectors that cor-
respond to the clusters of the clustering. Each cluster is represented by a vector
of integers whose values corresponds to the indices of the columns (examples)
of the original data.

tree list of the trees generated by the multiple clusterings

Achlioptas.hclustering.tree returns only the list of the trees.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>
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References

D.Achlioptas, Database-friendly random projections., in: Proc. ACM Symp. on the Principles of
Database Systems, Contemporary Mathematics, 2001, pp. 274-281.

See Also

Achlioptas.random.projection, Plus.Minus.One.random.projection,

norm.random.projection,random.subspace

Examples

# 20 hierarchical clusterings on multiple Achlioptas projected data with
# subspace dimension equal to 100
M <- generate.sample0(n=10, m=2, sigma=1, dim=800)
l <- Achlioptas.hclustering(M, dim=100, hmethod = "average", n = 20, scale = TRUE)
# Equal as above, but only the trees are generated
l <- Achlioptas.hclustering.tree(M, dim=100, hmethod = "average", n = 20, scale = TRUE)
# 10 hierarchical clusterings on multiple Achlioptas projected data with
# subspace dimension equal to 200
M <- generate.sample0(n=8, m=1, sigma=2, dim=1000)
l <- Achlioptas.hclustering(M, dim=200, hmethod = "average", n = 10, scale = TRUE)

Achlioptas.random.projection

Achlioptas random projection

Description

Random projections to a lower dimension subspace with the Achlioptas’ projection matrix. The pro-
jection is performed using a projection matrix R s.t. Prob(R[i,j]=sqrt(3))=Prob(R[i,j]=-sqrt(3)=1/6;
Prob(R[i,j]=0)=2/3

Usage

Achlioptas.random.projection(d = 2, m, scaling = TRUE)

Arguments

d subspace dimension
m data matrix (rows are features and columns are examples)
scaling if TRUE (default) scaling is performed

Details

Achlioptas random projections are represented by d′ × d matrices P = 1/
√
d′(rij), where rij

are chosen in {−
√
3, 0,

√
3}, such that Prob(rij = 0) = 2/3, Prob(rij =

√
3) = Prob(rij =

−
√
3) = 1/6. In this case also we have E[rij ] = 0 and V ar[rij ] = 1 and the Johnson-Lindenstrauss

lemma holds.
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Value

data matrix (dimension d x ncol(m)) of the examples projected in a d-dimensional random subspace

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

D.Achlioptas, Database-friendly random projections., in: Proc. ACM Symp. on the Principles of
Database Systems, Contemporary Mathematics, 2001, pp. 274-281.

W.Johnson, J.Lindenstrauss, Extensions of Lipshitz mapping into Hilbert space, in: Conference in
modern analysis and probability, Vol.~26 of Contemporary Mathematics, Amer. Math. Soc., 1984,
pp. 189–206.

See Also

Plus.Minus.One.random.projection, norm.random.projection, random.subspace

Examples

# Achlioptas random projection from a 1000 dimensional space to a 50-dimensional subspace
m <- matrix(runif(10000), nrow=1000)
m.p <- Achlioptas.random.projection(d = 50, m, scaling = TRUE)
# Achlioptas random projection from a 10000 dimensional space to a 1000-dimensional subspace
m <- matrix(rnorm(500000), nrow=5000)
m.p <- Achlioptas.random.projection(d = 1000, m, scaling = TRUE)
# The same as above without scaling
m <- matrix(rnorm(500000), nrow=5000)
m.p <- Achlioptas.random.projection(d = 1000, m, scaling = FALSE)

Cluster.validity Validity indices computation

Description

It computes the stability indices for each individual cluster, the overall validity index of the clus-
tering and (optionally) the Assignment Confidence (AC) index for each example. To compute the
indices a set of clusterings is used. It assumes that the label of the examples are integers.

Usage

Cluster.validity(cluster, M.clusters, AC = FALSE)

Cluster.validity.from.similarity(cluster, Sim.M, AC = TRUE)
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Arguments

cluster list of the clustering whose validity indices will be computed

M.clusters list of the n clusterings (a list of lists) used for validity index computation

Sim.M similarity matrix

AC if it is TRUE the Assignment Confidence index for each example is computed

Details

Using the similarity matrix M, the stability index s for a cluster A is:

s(A) =
1

|A|(|A| − 1)

∑
(i,j)∈A×A,i̸=j

Mij

The index s(A) estimates the stability of a cluster A by measuring how much the projections of the
pairs (i, j) ∈ A × A occur together in the same cluster in the projected subspaces. The stability
index has values between 0 and 1: low values indicate no reliable clusters, high values denote stable
clusters.

The overall validity of the clustering is the average between the validity indices of the individual
clusters.

The Assignment-Confidence (AC) index estimates the confidence of the assignment of an example i
to a cluster A using a similarity matrix M:

AC(i, A) =
1

|A| − 1

∑
j∈A,j ̸=i

Mij

Using a set of realizations of a given randomized projection, the AC-index represents the frequency
by which i appears with the other elements of the cluster A.

Value

a list with four components: "validity", "overall.validity", "similarity.matrix", "AC" (optional):

validity vector with the validity of each of the clusters
overall.validity

validity index of the overall cluster
similarity.matrix

pairwise similarity matrix between examples

AC matrix with the Assignment Confidence index for each example. Each row cor-
responds to an example, each column to a cluster

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Validity.indices AC.index, Do.similarity.matrix
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Examples

# Computation of the validity indices for a hierarchical clustering
M <- generate.sample0(n=10, m=1, sigma=1, dim=1000)
d <- dist (t(M));
tree <- hclust(d, method = "average");
plot(tree, main="");
cl.orig <- rect.hclust(tree, k = 3);
l.PMO <- Multiple.Random.hclustering (M, dim=100, pmethod="PMO",

c=3, hmethod="average", n=20)
list.indices <- Cluster.validity(cl.orig, l.PMO, AC = TRUE)
# Computation of the validity indices for a hierarchical clustering
# with less defined clusters
M.less <- generate.sample0(n=10, m=1, sigma=2, dim=1000)
d <- dist (t(M.less));
tree.less <- hclust(d, method = "average");
plot(tree.less, main="");
cl.orig.less <- rect.hclust(tree.less, k = 3);
l.PMO.less <- Multiple.Random.hclustering (M.less, dim=100, pmethod="PMO",

c=3, hmethod="average", n=20)
list.indices.less <- Cluster.validity(cl.orig.less, l.PMO.less, AC = TRUE)

Do.similarity.matrix Functions to compute a pairwise similarity matrix.

Description

The elements of a similarity matrix represent the frequency by which each pair of examples belongs
to the same cluster across multiple clusterings. These functions may also be used with clusterings
with a variable number of clusters.

Usage

Do.similarity.matrix(l, dim.Sim.M)

Do.similarity.matrix.partition(l)

Arguments

l list of clusterings. Each element is a list of clusters. Each cluster is a vector
whose elements (integers) represent the examples

dim.Sim.M dimension of the similarity matrix (number of examples)

Details

A n× n similarity matrix M to a k-clustering; the elements Mij of M are defined as:

Mij =

k∑
s=1

χAs
[i] · χAs

[j]
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where i, j ∈ {1, 2, . . . , n}, and χAs ∈ {0, 1}n is the characteristic vector of As ⊆ {1, 2, . . . , n}, i.e.
χAs

[i] = 1 if i ∈ As, otherwise χAs
[i] = 0. If the k-clustering identifies a partition, Mij ∈ {0, 1}:

in other words, Mij denotes if elements i and j belong to the same cluster. Consider also a random
projection µ : Rd → Rd′

. Then a similarity matrix M can be computed averaging among multiple
clusterings obtained from multiple random projections. This similarity matrix represents how much
pairs of projected examples belong to the same cluster averaging across the repeated random pro-
jections. Do.similarity.matrix can be used with clusterings that do not strictly define a partition
(that is a specific example may belong to more than 1 cluster). Do.similarity.matrix.partition
may be used only with clusterings that strictly define a partition.

Value

A pairwise similarity matrix whose elements represents how much 2 examples fall in the same
cluster across multiple clusterings. Each element of the matrix is normalized so that its value is
beween 0 and 1.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

# Computing the similarity matrix associated to 20 hierarchical clusterings
# using Normal projections.
M <- generate.sample0(n=10, m=2, sigma=2, dim=800)
l.norm <- Multiple.Random.hclustering (M, dim=100, pmethod="Norm", c=3,

hmethod="average", n=20)
Sim <- Do.similarity.matrix.partition(l.norm);
# The same as above, but with 30 hierarchical clusterings using PMO projections.
l.PMO <- Multiple.Random.hclustering (M, dim=100, pmethod="PMO", c=3,

hmethod="average", n=30)
Sim.PMO <- Do.similarity.matrix.partition(l.norm);

Generate.clusters Multiple clusterings generation from the corresponding trees

Description

Multiple clusterings generation from the corresponding trees for a given cut (number of clusters).

Usage

Generate.clusters(tr, c = 3)

Arguments

tr a list of trees as returned by the hclust algorithm

c number of clusters
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Value

A list of lists. Each list represents a clustering. Each cluster is a list of vectors, whose elements are
the labels of the examples.

See Also

Achlioptas.hclustering.tree, PMO.hclustering.tree,

Norm.hclustering.tree,RS.hclustering.tree

Examples

# list of clusterings generated using Achlioptas random projections,
# using cuts corresponding to 3, 4 and 10 clusters
M <- generate.sample0(n=10, m=2, sigma=1, dim=800)
list.trees <- Achlioptas.hclustering.tree(M, dim=100, hmethod = "average",

n = 20, scale = TRUE)
list.clusters3 <- Generate.clusters(list.trees, c = 3)
list.clusters4 <- Generate.clusters(list.trees, c = 4)
list.clusters10 <- Generate.clusters(list.trees, c = 10)

generate.sample.h1 Two-levels hierarchical cluster generator.

Description

A 2-dimensional two-level hierarchical cluster structure is generated. At a first level 3 distinct
clusters at the vertices of an equilater triangle are generated. At a second level two other clusters at
the left and right of the three "primary" clusters are generated.

Usage

generate.sample.h1(n = 20, l = 5, Delta.h = 1, sd = 0.1, with.I.level.examples = FALSE)

Arguments

n number of examples for each cluster

l half length of the edge of the equilater triangle

Delta.h half of the "abscissa" distance between each pair of clusters inside the three
major clusters

sd standard deviation
with.I.level.examples

if TRUE data centered at the vertices of the triangle are generated, otherwise
only the secondary clusters are generated.

Value

a matrix with dim rows (variables) and n*6 columns (examples)
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Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

generate.sample.h1()
# Generation of a data set with 120 2-dimensional examples
# data have a two-level hierarchical structure with respectively 3 and 6 clusters.
generate.sample.h1(n = 20, l = 5, Delta.h = 1, sd = 0.1, with.I.level.examples = TRUE)

generate.sample.h2 Three-level hierarchical cluster generator.

Description

A 2-dimensional three-level hierarchical cluster structure is generated. At a first level 3 distinct
clusters at the vertices of an equilater triangle are generated. At a second level two other clusters at
the left and right of the three "primary" clusters are generated (6 clusters) At a third level two other
clusters above and below the secondaty clusters are generated (12 clusters)

Usage

generate.sample.h2(n = 20, l = 8, Delta.h = 2, Delta.v = 1, sd = 0.1,
with.I.II.level.examples = FALSE)

Arguments

n number of examples for each cluster

l half length of the edge of the equilater triangle

Delta.h half of the "abscissa" distance between each pair of clusters inside the three
major clusters

Delta.v half of the "ordinate" distance between each pair of clusters inside the three
second order clusters

sd standard deviation
with.I.II.level.examples

if TRUE data at the first and secondary level are generated (for a total of 21
clusters), otherwise only the third level

Value

a matrix with dim rows (variables) and n*6 columns (examples)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>
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Examples

generate.sample.h2()
# Generation of a data set with 240 2-dimensional examples
# data have a three-level hierarchical structure with respectively 3 and 6 and 12 clusters.
generate.sample.h2(n = 20, l = 10, Delta.h = 2, Delta.v = 1, sd = 0.05)

generate.sample.h3 Two-levels hierarchical cluster generator.

Description

A 2-dimensional 2-levels hierarchical cluster structure is generated. At a first level 4 distinct clusters
are generated. At a second level two other clusters at the left and right of 2 of the 4 "primary" clusters
are generated (6 clusters)

Usage

generate.sample.h3(n = 20, DeltaA = 1, DeltaB = 1, seed = 0)

Arguments

n number of examples for each cluster

DeltaA vertical displacement of the the secondary clusters

DeltaB horizontal displacement of the the secondary clusters

seed seed for the random generator

Value

a matrix with dim rows (variables) and n*6 columns (examples)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

generate.sample.h3()
# Generation of a data set with 120 2-dimensional examples
# data have a two-level hierarchical structure with respectively 4 and 6 clusters.
generate.sample.h3(n = 20, DeltaA = 1, DeltaB = 1, seed = 0)
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generate.sample0 Sample0 generator of synthetic data

Description

Multivariate normally distributed data synthetic generator. Data sets with 3 clusters are randomly
generated. n examples for each class are generated. All classes (each one of n examples) has dim
components The first class (first n examples) has its components centered in 0 (of length dim) The
second class (second n examples) has its components centered in m (of length dim) The third class
(last n examples) has its components centered in -m (of length dim) For all classes the covariance
matrix is diagonal with values sigma.

Usage

generate.sample0(n = 5, m = 10, sigma = 1, dim = 2)

Arguments

n number of examples for each class

m mean value for the second class

sigma value of the diagonal elements of the covariance matrix

dim dimension of the examples

Value

a matrix with dim rows (variables) and n*3 columns (examples)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

generate.sample0()
# Generation of a data set with 60 500-dimensional examples, with the examples
# of the first class centered in the 500-dimensional 0 vector, the second class
# is centered in the 1 vector, the third in -1. The covariance matrix is the
# matrix with all 2 values on the diagonal elements
generate.sample0(n = 20, m = 1, sigma = 2, dim = 500)
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generate.sample1 Sample1 generator of synthetic data

Description

Multivariate normally distributed data synthetic generator. Data sets with 3 clusters are randomly
generated. n examples for each class are generated. All classes (each one of n examples) have
their last dim-500 variables centered in 0. The first class (first n examples) has its first 500 features
centered in 0. The second class (second n examples) has its first 500 features centered in m. The
third class (last n examples) has its first 500 features centered in -m. For all classes the covariance
matrix is diagonal with all values on the diagonal equal to sigma.

Usage

generate.sample1(n = 2, m = 6, sigma = 1, dim = 10000)

Arguments

n number of examples for each class

m center of the first 500 variables of the second class

sigma value of the diagonal elements of the covariance matrix

dim number of variables (features)

Value

a matrix with dim rows (variables) and n*3 columns (examples)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

generate.sample1()
# Generation of a data set with 30 1000-dimensional examples, with the examples
# of the first class centered in 0 for the first 500 variables, the second class
# is centered in 1 for the first 500 variables, the third in -1.
# The covariance matrix is the matrix with all values different from 0 (equal to 3)
# on the diagonal elements.
generate.sample1(n = 10, m = 1, sigma = 3, dim = 1000)
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generate.sample2 Sample2 generator of synthetic data

Description

Multivariate normally distributed data synthetic generator. Data sets with 2 clusters are randomly
generated. n examples for each class are generated. n 10000-dimensional examples for each class
are generated. All classes (each one of n examples) has only no-noisy features but there is sub-
stantial overlapping between classes The first class (first n examples) has its features centered in 1
(first 5000 features) and 2 (last 5000 features) The second class (second n examples) has its features
centered in -1 (first 5000 features) and -2 (last 5000 features) The diagonal of the covariance matrix
of the first class has its first 2500 element equal to 0.5, the next 2500 equal to 1, the next 2500 to
0.5 and the last to 1. The diagonal of the covariance matrix of the second class has its first 5000
element equal to 1, the next 5000 equal to 2

Usage

generate.sample2(n = 2)

Arguments

n number of examples for each class

Value

a real data matrix with 10000 rows (variables) and n*2 columns (examples)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

generate.sample2()
generate.sample2(n = 20)

generate.sample3 Sample3 generator of synthetic data
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Description

Multivariate normally distributed data synthetic generator. Data sets with 3 clusters are randomly
generated. n examples for each class are generated. n 1000-dimensional examples for each class are
generated. All classes (each one of n examples) has 300 no-noisy features and 700 noisy features.
There is a certain overlap between classes and a full covariance matrix (equal for all classes is used).
The first class (first n examples) has its no-noisy features centered in 0. The second class (second n
examples) has its no-noisy features centered in m The third class (last n examples) has its no-noisy
features centered in -m Covariance matrix Sigma = (B, Zero; Zero’, I) where B is a 300X300 matrix
s.t. B[i,i]=1, B[i,i+1]=B[i,i-1]=0.5 and B[i,j]=0.1 j!=i-1,i,i+1; Zero is a 300X700 zero matrix and
Zero’ its transpose; I is a 700X700 identity matrix.

Usage

generate.sample3(n = 2, m = 2)

Arguments

n number of examples for each class

m vector center of the second class

Value

a matrix with 1000 rows (variables) and n*3 columns (examples)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

generate.sample3()
# Generation of a data set with 60 1000-dimensional examples,
# with the examples of the first class centered in the 1000-dimensional
# 0 vector, the second class is centered in the 1 vector, the third in -1.
generate.sample3(n = 20, m = 1)

generate.sample4 Sample4 generator of synthetic data

Description

Multivariate normally distributed data synthetic generator. Data sets with 5 clusters are randomly
generated. n 6000-dimensional examples for each class are generated. All classes (each one of n
examples) have 1000 no-noisy and 5000 noisy features but there is substantial overlapping between
distributions underlying classes 1 and 2 and 1 and 3, while class 4 and 5 are separated. The first class
(first n examples) has its no noisy variables centered in 0. The second class (second n examples)
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has its no noisy variables centered in 1. The third class (third n examples) has its no noisy variables
centered in -1. The fourth class (fourth n examples) has its no noisy variables centered in 5. The
fifth class (fifth n examples) has its no noisy variables centered in -5. The diagonal of the covariance
matrix for all classes has its elements equal to sigma (first 1000 variables) and equal to 2*sigma (last
5000 variables).

Usage

generate.sample4(n = 2, sigma = 1)

Arguments

n number of examples for each class

sigma standard deviation of the first 1000 variables. The remaining variables have
2*sigma standard deviation

Value

a real data matrix with 1000 rows (variables) and n*5 columns (examples)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

generate.sample4()
# Generation of a data set with 100 6000-dimensional examples
generate.sample4(n = 20, sigma = 1)

generate.sample5 Sample5 generator of synthetic data

Description

Multivariate normally distributed data synthetic generator. Data sets with 4 clusters are randomly
generated. n examples for each class are generated. All classes (each one with n examples) has (1-
ratio.noisy)*dim of no-noisy features and ratio.noisy*dim of noisy features. For "noisy" feature we
mean features that are equally distributed in all the classes (these variables are centered in 0), while
for "no-noisy" we mean features that are centered in different points in the different classes. Note
that if the number on no-noisy feature is less than 2 the generation is aborted. A full covariance ma-
trix (equal for all classes) is used. The first class (first n examples) has its no-noisy features centered
in 0. The second class (second n examples) has its no-noisy features centered in m The third class
(third n examples) has its no-noisy features centered in -m A fourth cluster (third n examples) has
its no-noisy features centered in (m,-m) alternatively Covariance matrix Sigma = (B, Zero; Zero’, I)
where B is a (dim*(1-ratio.noisy))X(dim*(1-ratio.noisy)) matrix s.t. B[i,i]=1, B[i,i+1]=B[i,i-1]=0.5
and B[i,j]=0.1 if j!=i-1,i,i+1; Zero is a (dim*(1-ratio.noisy))X(dim*ratio.noisy) zero matrix and
Zero’ its transpose; I is a (dim*ratio.noisy)X(dim*ratio.noisy) identity matrix
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Usage

generate.sample5(n = 10, dim = 10, ratio.noisy = 0.8, m = 2)

Arguments

n number of examples for each class

dim dimension of the examples

ratio.noisy ratio of the noisy variables. The number of "noisy" features is ratio.noisy * dim

m center of the II cluster (the third has center -m)

Value

a matrix with dim rows (variables) and n*4 columns (examples)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

generate.sample5()
# Generation of a data set with 80 1000-dimensional examples, with the 200 no-noisy
# features of the examples of the first class centered in 0, the 200 no-noisy features
# of the examples of the second class centered in 2, the 200 no-noisy features of
# the examples of the third class centered in -2, and the 200 no-noisy features of the
# examples of the fourth class centered in alternatively in (2,-2).
generate.sample5(n = 20, m = 2, ratio.noisy = 0.8, dim = 1000)

generate.sample6 Sample6 generator: multivariate normally distributed data synthetic
generator

Description

n examples for each from 6 classes are generated. All classes (each one of n examples) has dim
components The clusters have a hierarchical structure: 2 or 6 clusters may be detected. Anyway
note that the structure of the data depends on the parameters: two main clusters are centered in m
and -m. Around each main cluster three other subclusters are generated using the displacement d.

Usage

generate.sample6(n = 20, m = 10, dim = 2, d = 3, s = 0.2)
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Arguments

n number of examples for each class

m mean basic value

dim amount of the displacement from m

d dimension of the examples

s value of the diagonal elements of the covariance matrix

Value

a matrix with dim rows (variables) and n*6 columns (examples)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

generate.sample6()
# Generation of a data set with 120 200-dimensional examples
# data have a two-level hierarchical structure with respectively 2 and 6 clusters
generate.sample6(n = 20, m = 10, dim = 200, d = 3, s = 1)

generate.sample7 Sample7 generator: multivariate normally distributed data synthetic
generator

Description

n examples for each from 6 classes are generated. All classes (each one of n examples) has dim
components The clusters have a hierarchical structure: 2 or 6 clusters may be detected. Anyway
note that the structure of the data depends on the parameters: two main clusters are centered in m
and -m. Around each main cluster two other subclusters are generated using the displacement d.

Usage

generate.sample7(n = 20, m = 10, dim = 1000, d = 3, s = 1)

Arguments

n number of examples for each class

m mean basic value

dim amount of the displacement from m

d dimension of the examples

s value of the diagonal elements of the covariance matrix
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Value

a matrix with dim rows (variables) and n*6 columns (examples)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

generate.sample7()
# Generation of a data set with 60 100-dimensional examples
# data have a two-level hierarchical structure with respectively 2 and 6 clusters
generate.sample7(n = 10, m = 10, dim = 100, d = 4, s = 0.4)

generate.uniform Uniform bidimensional data generator

Description

Data are generated according to a bidimensional grid with equispatiated data.

Usage

generate.uniform(n = 11, range = c(0, 1))

Arguments

n square root of the number of examples

range vector with 2 values: min and max coordinates of the bidimensional grid

Value

a data matrix with examples in columns

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

generate.uniform()
# Generation of a bidimensional grid with 100 examples
generate.uniform(n = 10, range = c(0, 1))



generate.uniform.random 21

generate.uniform.random

Uniform bidimensional random data generator.

Description

Data are generated according to a uniform bidimensional random distribution.

Usage

generate.uniform.random(n = 100, range = c(0, 1))

Arguments

n number of examples

range vector with 2 values: min and max random uniform values

Value

a data matrix with examples in columns

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

generate.uniform.random()
# Generation of bidimensional data randomly distributed
generate.uniform.random(n = 10, range = c(0, 1))

JL.predict.dim Dimension of the subspace or the distortion predicted according to
the Johnson Lindenstrauss lemma

Description

Functions to compute the dimension of the subspace or the distortion predicted by the Johnson
Lindenstrauss lemma.

Usage

JL.predict.dim(n, epsilon = 0.5)

JL.predict.dim.multiple(n, epsilon = 0.5, t = 10)

JL.predict.distortion(n, dim = 10)
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Arguments

n cardinality of the data

epsilon distortion (0 < epsilon <= 0.5)

t number of multiple projections

dim dimensionality of the projected subspace

Details

JL.predict.dim predicts the dimension of random projection we need to obtain a given distortion
according to JL lemma:

d = 4 ∗ log n

ϵ2

where d is the dimension of the random projection, n the cardinality of the data and 1+ϵ the theoret-
ical distortion (maximum expansion) induced by the randomized projection into the d-dimensional
subspace.

JL.predict.dim.multiple predicts the dimension of random projection we need to obtain a given
distortion according to JL lemma when t multiple projections are performed:

d = 4 ∗ log n+ log t

ϵ2

where d is the dimension of the random projection, n the cardinality of the data and 1+ϵ the theoret-
ical distortion (maximum expansion) induced by the randomized projection into the d-dimensional
subspace.

JL.predict.distortion predicts the distortion of a random projection for a given subspace di-
mension according to JL lemma

ϵ =

√
4 ∗ log n

d

where d is the dimension of the random projection, n the cardinality of the data and 1+ϵ the theoret-
ical distortion (maximum expansion) induced by the randomized projection into the d-dimensional
subspace.

Value

the corresponding dimension of the subspace or the ϵ value of the 1+ ϵ max. expansion (distortion)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

W.Johnson, J.Lindenstrauss, Extensions of Lipshitz mapping into Hilbert space, in: Conference in
modern analysis and probability, Vol. 26 of Contemporary Mathematics, Amer. Math. Soc., 1984,
pp. 189–206.
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See Also

Plus.Minus.One.random.projection, norm.random.projection,

Achlioptas.random.projection, random.subspace

Examples

# dimension of the projected space that we need to obtain a theoretical 1.5 distortion
# (max. expansion), when 20 data examples are available.
d <- JL.predict.dim(n=20, epsilon = 0.5)
# dimension of the projected space that we need to obtain a theoretical 1.2 distortion
#(max. expansion), when 20 data examples are available, and 10 random projections
d <- JL.predict.dim.multiple(n=20, epsilon = 0.5, t = 10)
# distortion 1+epsilon that is obtained with 30 examples and a random projection
# in a 100-dimensional subspace
epsilon <- JL.predict.distortion(n=30, dim = 100)

Max.Expansion Distortion measures: Max., min, and average expansion and contrac-
tion

Description

Measures to evaluate the distortion induced by randomized projection between euclidean spaces.
They evaluate the maximum, minimum and average expansion and contraction of the distances
between pairs of points embedded in euclidean spaces.

Usage

Max.Expansion(m, m.rid)

Min.Expansion(m, m.rid)

Max.Min.Expansion(m, m.rid)

Average.Expansion(m, m.rid)

Max.Contraction(m, m.rid)

Max.Min.Contraction(m, m.rid)

Average.Contraction(m, m.rid)

Arguments

m data matrix in the original space (rows are are examples, columns are compo-
nents)

m.rid data matrix in the reduced space (rows are are examples, columns are compo-
nents)
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Details

If u, v ∈ S ⊂ Rd, f : Rd → Rd is a randomized map with d′ < d, then we have:

max.expansion = maxu,v∈S
||f(u)− f(v)||

||u− v||

min.expansion = minu,v∈S
||f(u)− f(v)||

||u− v||

average.expansion =
1

(|S| ∗ (|S| − 1)
sumu,v∈S

||f(u)− f(v)||
||u− v||

max.contraction = maxu,v∈S
||u− v||

||f(u)− f(v)||

min.contraction = minu,v∈S
||u− v||

||f(u)− f(v)||

average.contraction =
1

(|S| ∗ (|S| − 1)
sumu,v∈S

||u− v||
||f(u)− f(v)||

Value

Max.Expansion, Min.Expansion, Average.Expansion, Max.Contraction, Average.Contraction re-
turn a single real value. Max.Min.Expansion and Max.Min.Contraction a pair (vector) of real val-
ues.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

A. Bertoni and G. Valentini, Random projections for assessing gene expression cluster stability,
Special Session biostatistics and bioinformatics IJCNN 2005, The IEEE-INNS International Joint
Conference on Neural Networks, Montreal, 2005.

Examples

# PMO projection from a 1000 dimensional space to a 50-dimensional subspace
m <- matrix(runif(10000), nrow=1000)
m.rid <- Plus.Minus.One.random.projection(d = 50, m, scaling = TRUE)
# Computation of the distortion induced by the PMO projection
max.exps <- Max.Expansion(m, m.rid)
min.exps <- Min.Expansion(m, m.rid)
# the same as above with max e min expansion stored in the same vector
max.min.exps <- Max.Min.Expansion(m, m.rid)
av.exps <- Average.Expansion(m, m.rid)
max.min.contr <- Max.Min.Contraction(m, m.rid)
av.contr <- Average.Contraction(m, m.rid)
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Multiple.Random.fuzzy.kmeans

Multiple Random fuzzy-k-means clustering

Description

Multiple Random fuzzy-k-means clusterings are computed using random projections of data. The
crisp clustering is obtained by defuzzyfication via the nearest crisp clustering: each example is
assigned to the cluster for which it has the largest membership. The base fuzzy algorithm used is
fanny of the cluster package. It assumes that the label of the examples are integers starting from
1 to ncol(M). Several randomized maps may be used: RS, PMO, Normal and Achlioptas random
projections

Usage

Multiple.Random.fuzzy.kmeans(M, dim, pmethod = "PMO", c = 3, n = 50,
scale = TRUE, seed = -1, distance = "euclidean")

Arguments

M matrix of data: rows are variables and columns are examples

dim subspace dimension

pmethod projection method. It must be one of the following: "RS" (random subspace pro-
jection) "PMO" (Plus Minus One random projection) "Norm" (normal random
projection) "Achlioptas" (Achlioptas random projection)

c number of clusters

n number of RS projections

scale if TRUE randomized projections are scaled (default)

seed numerical seed for the random generator

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

Value

a list of the n clusterings. Each clustering is a list of vectors, and each vector represents a single
cluster. The elements of the vectors are integers that corresponds to the number of the columns
(examples) of the matrix M of the data.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>
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Examples

# Multiple (20) fuzzy-k-means clusterings using Normal projections.
M <- generate.sample0(n=10, m=2, sigma=1, dim=800)
l.norm <- Multiple.Random.fuzzy.kmeans (M, dim=100, pmethod="Norm", c=3, n=20)
# The same as above, using Random Subspace projections.
l.RS <- Multiple.Random.fuzzy.kmeans (M, dim=100, pmethod="RS", c=3, n=20)
# The same as above, using PMO projections, but with the number of clusters set to 5
l.RS.PMO <- Multiple.Random.fuzzy.kmeans (M, dim=100, pmethod="PMO", c=5, n=20)

Multiple.Random.hclustering

Multiple Random hierarchical clustering

Description

Multiple Random hierarchical clusterings are computed using random projections of data. It as-
sumes that the label of the examples are integers starting from 1 to ncol(M). Several randomized
maps may be used: RS, PMO, Normal and Achlioptas random projections.

Usage

Multiple.Random.hclustering(M, dim, pmethod = "RS", c = 3, hmethod = "average",
n = 50, scale = TRUE, seed = 100, distance="euclidean")

Arguments

M matrix of data: rows are variables and columns are examples

dim subspace dimension

pmethod projection method. It must be one of the following: "RS" (random subspace pro-
jection) "PMO" (Plus Minus One random projection) "Norm" (normal random
projection) "Achlioptas" (Achlioptas random projection)

c number of clusters

hmethod the agglomeration method to be used. This should be one of "ward.D", "sin-
gle", "complete", "average", "mcquitty", "median" or "centroid", according to
the hclust method of the package stats.

n number of random projections

scale if TRUE (default) the random projections are scaled

seed numerical seed for the random generator

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

Value

a list of the n clusterings obtained by randomized hierarchical clustering. Each clustering is a list
vector, and each vector represents a single cluster. The elements of the vectors are integers that
corresponds to the number of the columns (examples) of the matrix M of the data.
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Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Achlioptas.random.projection, Plus.Minus.One.random.projection,

norm.random.projection,random.subspace

Examples

# Multiple (20) hierarchical clusterings using Normal projections.
M <- generate.sample0(n=10, m=2, sigma=2, dim=800)
l.norm <- Multiple.Random.hclustering (M, dim=100, pmethod="Norm",

c=3, hmethod="average", n=20)
# The same as above, using Random Subspace projections.
l.RS <- Multiple.Random.hclustering (M, dim=100, pmethod="RS", c=3,

hmethod="average", n=20)
# The same as above, using PMO projections, but with the number of clusters set to 5
l.RS <- Multiple.Random.hclustering (M, dim=100, pmethod="PMO", c=5,

hmethod="average", n=20)
# The same as above, using the single linkage method
l.RS.single <- Multiple.Random.hclustering (M, dim=100, pmethod="PMO",

c=5, hmethod="single", n=20)

Multiple.Random.kmeans

Multiple Random k-means clustering

Description

Multiple Random k-means clusterings are computed using random projections of data. It assumes
that the label of the examples are integers starting from 1 to ncol(M). Several randomized maps may
be used: RS, PMO, Normal and Achlioptas random projections

Usage

Multiple.Random.kmeans(M, dim, pmethod = "PMO", c = 3, n = 50, it.max = 1000,
scale = TRUE, seed = 100)

Arguments

M matrix of data: rows are variables and columns are examples

dim subspace dimension

pmethod projection method. It must be one of the following: "RS" (random subspace pro-
jection) "PMO" (Plus Minus One random projection) "Norm" (normal random
projection) "Achlioptas" (Achlioptas random projection)
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c number of clusters

n number of RS projections

it.max maximum number of iteration of the k-means algorithm (default 1000)

scale if TRUE randomized projections are scaled (default)

seed numerical seed for the random generator

Value

a list of the n clusterings. Each clustering is a list of vectors, and each vector represents a single
cluster. The elements of the vectors are integers that corresponds to the number of the columns
(examples) of the matrix M of the data.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

# Multiple (20) k-means clusterings using Normal projections.
M <- generate.sample0(n=10, m=2, sigma=2, dim=800)
l.norm <- Multiple.Random.kmeans (M, dim=100, pmethod="Norm", c=3, n=20)
# The same as above, using Random Subspace projections.
l.RS <- Multiple.Random.kmeans (M, dim=100, pmethod="RS", c=3, n=20)
# The same as above, using PMO projections, but with the number of clusters set to 5
l.RS.PMO <- Multiple.Random.kmeans (M, dim=100, pmethod="PMO", c=5, n=20)

Multiple.Random.PAM Multiple Random PAM clustering

Description

Multiple Random Partition Around Medoids (PAM) clusterings are computed using random projec-
tions of data. The pam function of the package cluster is used as implementation of the base PAM
algorithm. It assumes that the label of the examples are integers starting from 1 to ncol(M). Several
randomized maps may be used: RS, PMO, Normal and Achlioptas random projections.

Usage

Multiple.Random.PAM(M, dim, pmethod = "PMO", c = 3, n = 50, scale = TRUE,
seed = -1, distance = "euclidean")
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Arguments

M matrix of data: rows are variables and columns are examples
dim subspace dimension
pmethod projection method. It must be one of the following: "RS" (random subspace pro-

jection) "PMO" (Plus Minus One random projection) "Norm" (normal random
projection) "Achlioptas" (Achlioptas random projection)

c number of clusters
n number of RS projections
scale if TRUE randomized projections are scaled (default)
seed numerical seed for the random generator
distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson

correlation)

Value

a list of the n clusterings obtained by the PAM algorithm clustering. Each clustering is a list of
vectors, and each vector represents a single cluster. The elements of the vectors are integers that
corresponds to the number of the columns (examples) of the matrix M of the data.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

# Multiple (20) PAM clusterings using Normal projections.
M <- generate.sample0(n=10, m=2, sigma=2, dim=800)
l.norm <- Multiple.Random.PAM (M, dim=100, pmethod="Norm", c=3, n=20)
# The same as above, using Random Subspace projections.
l.RS <- Multiple.Random.PAM (M, dim=100, pmethod="RS", c=3, n=20)
# The same as above, using PMO projections, but with the number of clusters set to 7
l.RS.PMO <- Multiple.Random.PAM (M, dim=100, pmethod="PMO", c=7, n=20)

Norm.hclustering Multiple Hierarchical clusterings using Normal random projections

Description

Multiple Hierarchical clusterings using Normal random projections of the data.

Usage

Norm.hclustering(M, dim, c = 3, hmethod = "average", n = 50,
scale = TRUE, seed = 100, distance="euclidean")

Norm.hclustering.tree(M, dim, hmethod = "average", n = 50, scale = TRUE,
seed = 100, distance = "euclidean")
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Arguments

M matrix of data: rows are variables and columns are examples

dim subspace dimension

c number of clusters

hmethod the agglomeration method to be used. This should be one of "ward.D", "sin-
gle", "complete", "average", "mcquitty", "median" or "centroid", according to
the hclust method of the package stats.

n number of random projections

scale if TRUE (default) Normal random projections are scaled

seed numerical seed for the random generator

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

Value

a list with components "cluster" and "tree":

cluster list of the n clusterings obtained. Each element is in turn a list of vectors that cor-
respond to the clusters of the clustering. Each cluster is represented by a vector
of integers whose values corresponds to the indices of the columns (examples)
of the original data.

tree list of the trees generated by the multiple clusterings

Norm.hclustering.tree returns only the list of the trees.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

norm.random.projection

Examples

# 20 hierarchical clusterings on multiple Normal projected data
# with subspace dimension equal to 100
M <- generate.sample0(n=10, m=2, sigma=1, dim=800)
l <- Norm.hclustering(M, dim=100, hmethod = "average", n = 20, scale = TRUE)
# Equal as above, but only the trees are generated
l <- Norm.hclustering.tree(M, dim=100, hmethod = "average", n = 20, scale = TRUE)
# 10 hierarchical clusterings on multiple Normal projected data
# with subspace dimension equal to 200
M <- generate.sample0(n=8, m=1, sigma=2, dim=1000)
l <- Norm.hclustering(M, dim=200, hmethod = "average", n = 10, scale = TRUE)
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norm.random.projection

Normal random projections

Description

Random projections to a lower dimension subspace with a normal distributed projection matrix
The projection is performed using a normally distributed projection matrix R: its elements R[i,j] ~
N(0,1).

Usage

norm.random.projection(d = 2, m, scaling = TRUE)

Arguments

d subspace dimension

m data matrix (rows are features and columns are examples)

scaling if TRUE (default) scaling is performed

Details

Normal random projections are randomized map represented by a d′ × d matrix R = 1/
√
d′(rij),

where rij are distributed according to a gaussian with 0 mean and unit variance, and d′ is the
dimension of the projected space and d the dimension of the original space.

Value

data matrix (dimension d x ncol(m)) of the examples projected in a d-dimensional subspace

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

E.Bingham, H.Mannila, Random projection in dimensionality reduction: Applications to image and
text data, in: Proc. of KDD 01, ACM, San Francisco, CA, USA, 2001.

See Also

Plus.Minus.One.random.projection, random.subspace, Achlioptas.random.projection
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Examples

# Normal random projection from a 1000 dimensional space to a
# 50-dimensional subspace
m <- matrix(runif(10000), nrow=1000)
m.p <- norm.random.projection(d = 50, m, scaling = TRUE)
# Normal random subspace projection from a 10000 dimensional space
# to a 1000-dimensional subspace
m <- matrix(rnorm(500000), nrow=5000)
m.p <- norm.random.projection(d = 1000, m, scaling = TRUE)
# The same as above without scaling
m <- matrix(rnorm(500000), nrow=5000)
m.p <- norm.random.projection(d = 1000, m, scaling = FALSE)

Plus.Minus.One.random.projection

Plus-Minus-One (PMO) random projections

Description

Random projections to a lower dimensional subspace with a random +1/-1 projection matrix The
projection is performed using a projection matrix R s.t. Prob(R[i,j]=1)=Prob(R[i,j]=-1)=1/2.

Usage

Plus.Minus.One.random.projection(d = 2, m, scaling = TRUE)

Arguments

d subspace dimension

m data matrix (rows are features and columns are examples)

scaling if TRUE (default) scaling is performed

Details

Plus-Minus-One (PMO) random projections are represented by d′ × d matrices R = 1/
√
d′(rij),

where rij are uniformly chosen in {−1, 1}, such that Prob(rij = 1) = Prob(rij = −1) = 1/2.

Value

data matrix (dimension d X ncol(m)) of the examples projected in a d-dimensional random subspace

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

random.subspace, norm.random.projection, Achlioptas.random.projection
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Examples

# PMO projection from a 1000 dimensional space to a 50-dimensional subspace
m <- matrix(runif(10000), nrow=1000)
m.p <- Plus.Minus.One.random.projection(d = 50, m, scaling = TRUE)
# PMO projection from a 10000 dimensional space to a 1000-dimensional subspace
m <- matrix(rnorm(500000), nrow=5000)
m.p <- Plus.Minus.One.random.projection(d = 1000, m, scaling = TRUE)
# The same as above without scaling
m <- matrix(rnorm(500000), nrow=5000)
m.p <- Plus.Minus.One.random.projection(d = 1000, m, scaling = FALSE)

PMO.hclustering Multiple Hierarchical clusterings using Plus Minus One (PMO) ran-
dom projections

Description

Multiple Hierarchical clusterings using Plus Minus One (PMO) random projections of the data.

Usage

PMO.hclustering(M, dim, c = 3, hmethod = "average", n = 50,
scale = TRUE, seed = 100, distance="euclidean")

PMO.hclustering.tree(M, dim, hmethod = "average", n = 50,
scale = TRUE, seed = 100, distance = "euclidean")

Arguments

M matrix of data: rows are variables and columns are examples

dim subspace dimension

c number of clusters

hmethod the agglomeration method to be used. This should be one of "ward.D", "sin-
gle", "complete", "average", "mcquitty", "median" or "centroid", according to
the hclust method of the package stats.

n number of random projections

scale if TRUE (default) Achlioptas random projections are scaled

seed numerical seed for the random generator

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)
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Value

a list with components "cluster" and "tree":

cluster list of the n clusterings obtained. Each element is in turn a list of vectors that cor-
respond to the clusters of the clustering. Each cluster is represented by a vector
of integers whose values corresponds to the indices of the columns (examples)
of the original data.

tree list of the trees generated by the multiple clusterings

PMO.hclustering.tree returns only the list of the trees.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Plus.Minus.One.random.projection

Examples

# 20 hierarchical clusterings on multiple PMO projected data
# with subspace dimension equal to 100
M <- generate.sample0(n=10, m=2, sigma=1, dim=800)
l <- PMO.hclustering(M, dim=100, hmethod = "average", n = 20, scale = TRUE)
# Equal as above, but only the trees are generated
l <- PMO.hclustering.tree(M, dim=100, hmethod = "average", n = 20, scale = TRUE)
# 10 hierarchical clusterings on multiple PMO projected data
# with subspace dimension equal to 200
M <- generate.sample0(n=8, m=1, sigma=2, dim=1000)
l <- PMO.hclustering(M, dim=200, hmethod = "average", n = 10, scale = TRUE)

rand.norm Random generation of normal distributed data

Description

Random generation of a matrix of n columns with with diagonal covariance matrix (rand.norm.generate)
or with full covariance matrix (rand.norm.generate.full). These functions are used by generate.sampleN
functions 0 ≤ N ≤ 5 to generate the data.

Usage

rand.norm.generate(n = 5, mean = 0, sd = 1)
rand.norm.generate.full(n = 5, mean = c(0, 0),

Sigma = matrix(c(0.1, 0, 0, 0.1), 2, 2))
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Arguments

n number of samples to be generated

mean vector of means

sd vector of standard deviations

Sigma Covariance matrix

Value

a matrix of n columns with length(mean) rows. With rand.norm.generate Row[i] has mean mean[i]
and standard deviation sd[i]. With rand.norm.generate.full Row[i] has mean mean[i]

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

generate.sample0, generate.sample1, generate.sample2

generate.sample3, generate.sample4, generate.sample5

Examples

library(MASS)
rand.norm.generate(n = 10)
rand.norm.generate(n = 10, mean = c(0,1,2), sd = c(1,1,5))
rand.norm.generate.full()
rand.norm.generate.full(n = 10, mean = c(0, 0, 2),

Sigma = matrix(seq(1,1.8, by=0.1), 3, 3))

random.component.selection

Function to randomly select the indices of the variables selected by
the random subspace projection

Description

It is used by the function random.subspace to randomly select the indices of the variables used for
the random subspace projections. It randomly select a subset of the indices, that is a set of positive
integers that correspond to the selected variables

Usage

random.component.selection(d = 2, d.original = 10)
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Arguments

d subspace dimension

d.original dimension of the space from which components are randomly selected

Value

vector of the selected features: it contain the indices of the components randomly selected

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

random.subspace

Examples

# it generates a vector of 2 elements whose components are randomly
# chosen from 1..10
random.component.selection(d = 2, d.original = 10)
# it generates a vector of 10 elements whose components are randomly
# chosen from 1..1000
random.component.selection(d = 10, d.original = 1000)

Random.fuzzy.kmeans.validity

Fuzzy-k-means clustering and validity indices computation using ran-
dom projections of data

Description

This function applies the fuzzy-k-means clustering algorithm to the data and then computes stability
indices for the obtained cluster using multiple random subspace projections. It computes the validity
indices for each cluster found in the original space, the overall validity index for the clustering and
(optionally) the set of the AC indices. Different randomized maps (e.g. PMO, Achlioptas, Normal,
Random Subspace projections) may be applied. It assumes that the label of the examples are integer
starting from 1 to ncol(M). Note that the fuzzy-k-means algorithm strongly depends from the initial
conditions. Hence choosing different random seed we may obtain different results; setting seed=-1
(default) each time a different random seed is chosen.

Usage

Random.fuzzy.kmeans.validity(M, dim, pmethod = "PMO", c = 3, n = 50, scale = TRUE,
seed = -1, AC = TRUE, distance = "euclidean")
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Arguments

M matrix of data: rows are variables and columns are examples

dim subspace dimension

pmethod projection method. It must be one of the following: "RS" (random subspace pro-
jection) "PMO" (Plus Minus One random projection) "Norm" (normal random
projection) "Achlioptas" (Achlioptas random projection)

c number of clusters

n number of random projections

scale if TRUE (default) the random projections are scaled

seed numerical seed for the random generator

AC if TRUE (default) the AC indices are computed.

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

Value

a list with esixight components: "validity", "overall.validity", "similarity.matrix", "dim", "cluster",
"orig.cluster":

validity a vector with the validity of each of the c clusters

overall.validity

validity index of the overall clustering

similarity.matrix

pairwise similarity matrix between examples

dimension random projection dimension

cluster is the list of the n clustering obtained by multiple k-means clustering on the
projected subspace

orig.cluster list of the clusters in the original space

AC matrix with the Assignment Confidence index for each example. Each row cor-
responds to an example, each column to a cluster (optional)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Achlioptas.random.projection, Plus.Minus.One.random.projection,

norm.random.projection,random.subspace,

Cluster.validity, Validity.indices, AC.index
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Examples

# Assessment of the reliability of clusters discovered
# by fuzzy k-means using RS projections.
M <- generate.sample0(n=10, m=2, sigma=1, dim=800)
l<-Random.fuzzy.kmeans.validity(M, dim=30, pmethod = "RS", c = 3, n = 20)
# The same as above, but using PMO projections.
l<-Random.fuzzy.kmeans.validity(M, dim=30, pmethod = "PMO", c = 3, n = 20)
# The same as above, but evaluating clusterings with 5 clusters
l<-Random.fuzzy.kmeans.validity(M, dim=30, pmethod = "PMO", c = 5, n = 20)
# The same as above, but evaluating clusterings with 10 clusters
l<-Random.fuzzy.kmeans.validity(M, dim=30, pmethod = "PMO", c = 10, n = 20)
# Assessment of the reliability of the clusters using projections
# with limited distortion (max.
# expansion lower than 1.3 according to the Johnson Lindenstrauss lemma)
d <- JL.predict.dim(n=30, epsilon=0.3)
l<-Random.fuzzy.kmeans.validity(M, dim=d, pmethod = "PMO", c = 3, n = 20)

Random.hclustering.validity

Random hierarchical clustering and validity index computation using
random projections of data.

Description

This function applies a hierarchical clustering algorithm to the data and then computes stability
indices for the obtained cluster using multiple random subspace projections. The reliability of clus-
ters discovered by a hierarchical clustering algorithm is assessed using randomized projections. The
validity indices for each individual cluster, the overall validity index of the clustering and the AC
indices are computed. Different hierarchical clusterings may be used (e.g. average, complete and
single linkage or the Ward’s method) as well as different randomized maps (e.g. PMO, Achliop-
tas, Normal, Random Subspace projections). It assumes that the label of the examples are integer
starting from 1 to ncol(M).

Usage

Random.hclustering.validity(M, dim, pmethod = "RS", c = 3, hmethod = "average",
n = 50, scale = TRUE, seed = 100, AC=TRUE,
distance="euclidean")

Arguments

M matrix of data: rows are variables and columns are examples

dim subspace dimension

pmethod projection method. It must be one of the following: "RS" (random subspace pro-
jection) "PMO" (Plus Minus One random projection) "Norm" (normal random
projection) "Achlioptas" (Achlioptas random projection)
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c number of clusters

hmethod the agglomeration method to be used. This should be one of "ward.D", "sin-
gle", "complete", "average", "mcquitty", "median" or "centroid", according to
the hclust method of the package stats.

n number of random projections

scale if TRUE (default) the random projections are scaled

seed numerical seed for the random generator

AC if TRUE (default) the AC indices are computed.

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation).

Value

a list with eight components: "validity", "overall.validity", "similarity.matrix", "dim", "cluster",
"tree", "orig.tree", "orig.cluster":

validity a vector with the validity of each of the c clusters

overall.validity

validity index of the overall clustering

similarity.matrix

pairwise similarity matrix between examples

dimension random projection dimension

cluster list of the n clustering obtained by randomized hierarchical clustering

tree list of the n trees obtained by the randomized hierarchical clustering

orig.tree tree built in the original space

orig.cluster list of the clusters in the original space

AC matrix with the Assignment Confidence index for each example. Each row cor-
responds to an example, each column to a cluster (optional)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Achlioptas.random.projection, Plus.Minus.One.random.projection,

norm.random.projection,random.subspace,

Cluster.validity, Validity.indices, AC.index
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Examples

# Assessment of the reliability of clusters discovered
# by hierarchical clustering using RS projections.
M <- generate.sample0(n=10, m=2, sigma=2, dim=800)
l<-Random.hclustering.validity(M, dim=30, pmethod = "RS", c = 3,

hmethod = "average", n = 20)
# The same as above, but using PMO projections.
l<-Random.hclustering.validity(M, dim=30, pmethod = "PMO", c = 3,

hmethod = "average", n = 20)
# The same as above, but evaluating clusterings with 5 clusters
l<-Random.hclustering.validity(M, dim=30, pmethod = "PMO", c = 5,

hmethod = "average", n = 20)
# The same as above, but evaluating clusterings with 10 clusters
l<-Random.hclustering.validity(M, dim=30, pmethod = "PMO", c = 10,

hmethod = "average", n = 20)
# Assessment of the reliability of the clusters using projections
# with limited distortion (max.
# expansion lower than 1.3 according to the Johnson Lindenstrauss lemma)
d <- JL.predict.dim(n=30, epsilon=0.3)
l<-Random.hclustering.validity(M, dim=d, pmethod = "PMO", c = 3,

hmethod = "average", n = 20)

Random.kmeans.validity

k-means clustering and validity indices computation using random
projections of data

Description

This function applies a k-means clustering algorithm to the data and then computes stability indices
for the obtained cluster using multiple random subspace projections. It computes the validity in-
dices for each cluster found in the original space, the overall validity index for the clustering and
(optionally) the set of the AC indices. Different randomized maps (e.g. PMO, Achlioptas, Normal,
Random Subspace projections) may be applied. It assumes that the label of the examples are inte-
ger starting from 1 to ncol(M). Note that the k-means algorithm strongly depends from the initial
conditions. Hence choosing different random seed we may obtain different results; setting seed=-1
(default) each time a different random seed is chosen.

Usage

Random.kmeans.validity(M, dim, pmethod = "PMO", c = 3, it.max = 1000,
n = 50, scale = TRUE, seed = -1, AC = TRUE)

Arguments

M matrix of data: rows are variables and columns are examples

dim subspace dimension
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pmethod projection method. It must be one of the following: "RS" (random subspace pro-
jection) "PMO" (Plus Minus One random projection) "Norm" (normal random
projection) "Achlioptas" (Achlioptas random projection)

c number of clusters

it.max maximum number of iteration of the k-means algorithm (default 1000)

n number of random projections

scale if TRUE (default) the random projections are scaled

seed numerical seed for the random generator

AC if TRUE (default) the AC indices are computed.

Value

a list with esixight components: "validity", "overall.validity", "similarity.matrix", "dim", "cluster",
"orig.cluster":

validity a vector with the validity of each of the c clusters
overall.validity

validity index of the overall clustering
similarity.matrix

pairwise similarity matrix between examples

dimension random projection dimension

cluster is the list of the n clustering obtained by multiple k-means clustering on the
projected subspace

orig.cluster list of the clusters in the original space

AC matrix with the Assignment Confidence index for each example. Each row cor-
responds to an example, each column to a cluster (optional)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Achlioptas.random.projection, Plus.Minus.One.random.projection,

norm.random.projection,random.subspace,

Cluster.validity, Validity.indices, AC.index

Examples

# Assessment of the reliability of clusters discovered
# by k-means using RS projections.
M <- generate.sample0(n=10, m=2, sigma=2, dim=800)
l<-Random.kmeans.validity(M, dim=30, pmethod = "RS", c = 3, n = 20)
# The same as above, but using PMO projections.
l<-Random.kmeans.validity(M, dim=30, pmethod = "PMO", c = 3, n = 20)
# The same as above, but evaluating clusterings with 5 clusters



42 Random.PAM.validity

l<-Random.kmeans.validity(M, dim=30, pmethod = "PMO", c = 5, n = 20)
# The same as above, but evaluating clusterings with 10 clusters
l<-Random.kmeans.validity(M, dim=30, pmethod = "PMO", c = 10, n = 20)
# Assessment of the reliability of the clusters using projections
# with limited distortion (max.
# expansion lower than 1.3 according to the Johnson Lindenstrauss lemma)
d <- JL.predict.dim(n=30, epsilon=0.3)
l<-Random.kmeans.validity(M, dim=d, pmethod = "PMO", c = 3, n = 20)

Random.PAM.validity PAM clustering and validity indices computation using random pro-
jections of data

Description

This function applies the Prediction Around Medoids (PAM) clustering algorithm to the data and
then computes stability indices for the obtained cluster using multiple random subspace projections.
It computes the validity indices for each cluster found in the original space, the overall validity index
for the clustering and (optionally) the set of the AC indices. Different randomized maps (e.g. PMO,
Achlioptas, Normal, Random Subspace projections) may be applied. It assumes that the label of the
examples are integer starting from 1 to ncol(M). The pam function of the package cluster is used
as implementation of the base PAM algorithm.

Usage

Random.PAM.validity(M, dim, pmethod = "PMO", c = 3, n = 50, scale = TRUE,
seed = -1, AC = TRUE, distance = "euclidean")

Arguments

M matrix of data: rows are variables and columns are examples

dim subspace dimension

pmethod projection method. It must be one of the following: "RS" (random subspace pro-
jection) "PMO" (Plus Minus One random projection) "Norm" (normal random
projection) "Achlioptas" (Achlioptas random projection)

c number of clusters

n number of random projections

scale if TRUE (default) the random projections are scaled

seed numerical seed for the random generator

AC if TRUE (default) the AC indices are computed.

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)
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Value

a list with esixight components: "validity", "overall.validity", "similarity.matrix", "dim", "cluster",
"orig.cluster":

validity a vector with the validity of each of the c clusters
overall.validity

validity index of the overall clustering
similarity.matrix

pairwise similarity matrix between examples

dimension random projection dimension

cluster is the list of the n clustering obtained by multiple PAM clustering on the pro-
jected subspace

orig.cluster list of the clusters in the original space

AC matrix with the Assignment Confidence index for each example. Each row cor-
responds to an example, each column to a cluster (optional)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Achlioptas.random.projection, Plus.Minus.One.random.projection,

norm.random.projection,random.subspace,

Cluster.validity, Validity.indices, AC.index

Examples

# Assessment of the reliability of clusters discovered
# by fuzzy k-means using RS projections.
M <- generate.sample0(n=10, m=2, sigma=1, dim=800)
l<-Random.PAM.validity(M, dim=30, pmethod = "RS", c = 3, n = 20)
# The same as above, but using PMO projections.
l<-Random.PAM.validity(M, dim=30, pmethod = "PMO", c = 3, n = 20)
# The same as above, but evaluating clusterings with 5 clusters
l<-Random.PAM.validity(M, dim=30, pmethod = "PMO", c = 5, n = 20)
# The same as above, but evaluating clusterings with 10 clusters
l<-Random.PAM.validity(M, dim=30, pmethod = "PMO", c = 10, n = 20)
# Assessment of the reliability of the clusters
# using projections with limited distortion (max.
# expansion lower than 1.3 according to the Johnson Lindenstrauss lemma)
d <- JL.predict.dim(n=30, epsilon=0.3)
l<-Random.PAM.validity(M, dim=d, pmethod = "PMO", c = 3, n = 20)
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random.subspace Random Subspace (RS) projections

Description

Random projections to a lower dimension subspace (random subspace method) The projection is
performed randomly selecting a subset of variables (components) and then projecting the data onto
the selected components. It is the projection used by Ho for her Random subspace ensemble algo-
rithm.

Usage

random.subspace(d = 2, m, scaling = TRUE)

Arguments

d subspace dimension

m data matrix (rows are features and columns are examples)

scaling if TRUE (default) scaling is performed

Details

Random Subspace (RS) are randomized maps represented by d′ × d matrices R =
√

d/d′(rij),
where rij are uniformly chosen with entries in {0, 1}, and with exactly one 1 per row and at most
one 1 per column (d′ is the dimension of the projected space and d the dimension of the original
space). It is worth noting that, in this case, the "compressed" data set DR = RD can be quickly
computed in time O(nd′), independently from d.

Value

data matrix (dimension d X ncol(m)) of the examples projected in a d-dimensional random subspace

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

T.Ho, The random subspace method for constructing decision forests, IEEE Transactions on Pattern
Analysis and Machine Intelligence 20 (8) (1998) 832-844.

See Also

Plus.Minus.One.random.projection, norm.random.projection,

Achlioptas.random.projection
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Examples

# Random subspace projection from a 1000 dimensional space
# to a 50-dimensional subspace
m <- matrix(runif(10000), nrow=1000)
m.p <- random.subspace(d = 50, m, scaling = TRUE)
# Random subspace projection from a 10000 dimensional space
# to a 1000-dimensional subspace
m <- matrix(rnorm(500000), nrow=5000)
m.p <- random.subspace(d = 1000, m, scaling = TRUE)
# The same as above without scaling
m <- matrix(rnorm(500000), nrow=5000)
m.p <- random.subspace(d = 1000, m, scaling = FALSE)

RS.hclustering Multiple Hierarchical clusterings using RS random projections

Description

Multiple Hierarchical clusterings using RS random projections of the data.

Usage

RS.hclustering(M, dim, c = 3, hmethod = "average", n = 50, scale = TRUE,
seed = 100, distance="euclidean")

RS.hclustering.tree(M, dim, hmethod = "average", n = 50, scale = TRUE,
seed = 100, distance = "euclidean")

Arguments

M matrix of data: rows are variables and columns are examples

dim subspace dimension

c number of clusters

hmethod the agglomeration method to be used. This should be one of "ward.D", "sin-
gle", "complete", "average", "mcquitty", "median" or "centroid", according to
the hclust method of the package stats.

n number of random projections

scale if TRUE (default) RS random projections are scaled

seed numerical seed for the random generator

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)
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Value

a list with components "cluster" and "tree":

cluster list of the n clusterings obtained. Each element is in turn a list of vectors that cor-
respond to the clusters of the clustering. Each cluster is represented by a vector
of integers whose values corresponds to the indices of the columns (examples)
of the original data.

tree list of the trees generated by the multiple clusterings

RS.hclustering.tree returns only the list of the trees.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

random.subspace

Examples

# 20 hierarchical clusterings on multiple RS projected data
# with subspace dimension equal to 100
M <- generate.sample0(n=10, m=2, sigma=1, dim=800)
l <- RS.hclustering(M, dim=100, hmethod = "average", n = 20, scale = TRUE)
# Equal as above, but only the trees are generated
l <- RS.hclustering.tree(M, dim=100, hmethod = "average", n = 20, scale = TRUE)
# 10 hierarchical clusterings on multiple RS projected data
# with subspace dimension equal to 200
M <- generate.sample0(n=8, m=1, sigma=2, dim=1000)
l <- RS.hclustering(M, dim=200, hmethod = "average", n = 10, scale = TRUE)

Transform.vector.to.list

Vector to list transformation of cluster representation

Description

It transforms a clustering from a vector representation to a list representation. It accepts as input a
vector that represents a clustering; the indices of the vectors refer to the examples and their integer
content to the number of the cluster they belong. The function returns a list that represents the same
clustering; each element of the list is a vector representing the cluster. The elements of the vectors
are the indices of the examples (that is they correspond to the indices of the vector representation of
the clustering). This list representation of the cluster may be used to compute the validity indices
of the clustering.

Usage

Transform.vector.to.list(v)
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Arguments

v vector representing the clustering

Value

a list that represents the clustering; each element is a vector representing a single cluster.

Examples

library(cluster);
# transforming a clustering vector obtained with PAM to a clustering list
M <- generate.sample0(n=10, m=2, sigma=1, dim=500)
clustering.vector <- pam (t(M),3,cluster.only=TRUE);
clustering.list <- Transform.vector.to.list(clustering.vector);
# transforming a clustering vector obtained with kmeans to a clustering list
r<-kmeans(t(M), 3, 100);
clustering.list.kmeans <- Transform.vector.to.list(r$cluster);

Validity.indices Function to compute the validity index of each cluster.

Description

It computes the validity index (e.g. the stability index) for each individual cluster. This function is
called by Cluster.validity and Cluster.validity.from.similarity

Usage

Validity.indices(cluster, c, Sim.M)

Arguments

cluster list of clusters representing a clustering in the original space. Each element of
the list is a vector whose elements are the examples belonging to the cluster.

c number of clusters

Sim.M the pairwise similarity matrix

Details

Using the similarity matrix M, the stability index s for a cluster A is:

s(A) =
1

|A|(|A| − 1)

∑
(i,j)∈A×A,i̸=j

Mij

The index s(A) estimates the stability of a cluster A by measuring how much the projections of the
pairs (i, j) ∈ A × A occur together in the same cluster in the projected subspaces. The stability
index has values between 0 and 1: low values indicate no reliable clusters, high values denote stable
clusters.
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Value

vector of the validity indices. Each element corresponds to validity index of each cluster.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Cluster.validity, Cluster.validity.from.similarity, Do.similarity.matrix.partition,
Do.similarity.matrix

Examples

# Computation of the stability indices found out by a hierarchical clustering algorithm
M <- generate.sample0(n=10, m=2, sigma=2, dim=800)
d <- dist (t(M));
tree <- hclust(d, method = "average");
plot(tree, main="");
cl.orig <- rect.hclust(tree, k = 3);
l.norm <- Multiple.Random.hclustering (M, dim=100, pmethod="Norm",

c=3, hmethod="average", n=20)
Sim <- Do.similarity.matrix.partition(l.norm);
val.indices <- Validity.indices(cl.orig, c=3, Sim)
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