## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo=FALSE--------------------------------------------------------------- options(digits=2) ## ----setup,message=FALSE, warning=FALSE--------------------------------------- library(clusterMI) ## ----message=FALSE------------------------------------------------------------ require(stargazer) set.seed(123456) data(wine) stargazer(wine, type = "text") table(wine$cult) ## ----------------------------------------------------------------------------- ref <- wine$cult # "True" partition nb.clust <- 3 # Number of clusters wine.na <- wine wine.na$cult <- NULL # Remove the reference partition wine.na <- prodna(wine.na, pct = 1/3) ## ----------------------------------------------------------------------------- # proportion of missing values colMeans(is.na(wine.na)) # proportion of incomplete individuals mean(apply(is.na(wine.na), 1, any)) ## ----warning=FALSE, results='hide'-------------------------------------------- m <- 20 # Number of imputed data sets res.imp.JM <- imputedata(data.na = wine.na, nb.clust = nb.clust, m = m) ## ----warning=FALSE, eval=FALSE------------------------------------------------ # res.imp <- imputedata(data.na = wine.na, # method = "JM-DP", # nb.clust = nb.clust, # m = m) ## ----echo=TRUE, results='hide'------------------------------------------------ res.imp.JM.conv <- imputedata(data.na = wine.na, method = "JM-GL", nb.clust = nb.clust, m = 800, Lstart = 1, # number of iterations for the burn-in period L = 1 # number of iterations between each draw ) ## ----echo=TRUE, eval=FALSE---------------------------------------------------- # res.conv <- res.imp.JM.conv$res.conv # res.conv.ts <- ts(t(res.conv)) # conversion as time-series object # plot(res.conv.ts[, 1:4]) # diagnostic from the 4 first variables ## ----echo=FALSE, message=FALSE,fig.align='center',results='hide', fig.width=7---- res.conv <- res.imp.JM.conv$res.conv res.conv.ts <- ts(t(res.conv)) # conversion as time-series object plot(res.conv.ts[, 1:4], nc = 4, main="", mar.multi = c(0, 4.1, 0, .1), xlab = "L") # diagnostic from the 4 first variables ## ----eval=FALSE--------------------------------------------------------------- # Lstart <- 400 # # extraction of summaries after Lstart iterations for the 4 first variables # res.conv.ts <- res.conv.ts[Lstart:nrow(res.conv.ts), 1:4] # apply(res.conv.ts, 2, acf) ## ----message=FALSE,results='hide',fig.align='center',echo=FALSE,fig.width=7---- Lstart <- 400 res.conv.ts <- res.conv.ts[Lstart:nrow(res.conv.ts), 1:4] # extraction of summaries after Lstart iterations for the 4 first variables res.acf <- apply(res.conv.ts, 2, acf,plot=FALSE) oldpar <- par(no.readonly = TRUE) on.exit(par(oldpar)) par(mfrow = c(1,4), mar = c(4, 2, 3, 1) + 0.1) mapply(FUN = plot, res.acf, main = names(res.acf), MoreArgs = list(xlab = "L")) ## ----warning=FALSE, results='hide'-------------------------------------------- Lstart <- 400 L <- 20 res.imp.JM <- imputedata(data.na = wine.na, nb.clust = nb.clust, Lstart = Lstart, L = L, m = m) ## ----warning=FALSE, results='hide'-------------------------------------------- maxit <- 20 # Number of iterations for FCS imputation, should be larger in practice res.imp.FCS <- imputedata(data.na = wine.na, method = "FCS-homo", nb.clust = nb.clust, maxit = maxit, m = m) ## ----eval=FALSE--------------------------------------------------------------- # imputedata(data.na = wine.na, # method = "FCS-homo", # nb.clust = nb.clust, # maxit = maxit, # m = m, # method.mice = "norm") ## ----conv, fig.height = 7, fig.width = 7, fig.align = "center", results='hide'---- choosemaxit(res.imp.FCS) ## ----eval = FALSE------------------------------------------------------------- # res.imp <- imputedata(data.na = wine.na, # method = "FCS-homo", # nb.clust = nb.clust, # maxit = 100, # m = m) # choosemaxit(res.imp) ## ----varselecho, eval=FALSE--------------------------------------------------- # nnodes <- 2 # # Number of CPU cores used for parallel computation. # # Use parallel::detectCores() to choose an appropriate number # # # variable selection to impute the "alco" variable # B <- 50 # number of bootstrap subsets, should be increased in practice # res.varsel <- varselbest(res.imputedata = res.imp.FCS, B = B, listvar = "alco", # nnodes = nnodes, graph = FALSE) # # res.varsel$predictormatrix["alco", ] ## ----varsel, eval=TRUE, echo=FALSE-------------------------------------------- nnodes <- 2 # Number of CPU cores used for parallel computation. # Use parallel::detectCores() to choose an appropriate number # variable selection to impute the "alco" variable B <- 50 # number of bootstrap subsets, should be increased in practice # res.chooseB<-chooseB(res.varsel) # sink(file = "C:/Users/vince/OneDrive - LECNAM/Recherche/MI_clustering/Rpackage/vignettes/sink/chooseB.txt");dput(res.chooseB);sink() # # res.varsel.light<-res.varsel # res.varsel.light$res.varsel$alco$res.detail<- rep(NA,length(res.varsel.light$res.varsel$alco$res.detail)) # str(res.varsel.light$res.varsel$alco$res.detail) # res.varsel.light$call$res.imputedata<-NULL # res.varsel.light$res.varsel$alco$res$listvarblock<-NULL # res.varsel.light$res.varsel$alco$call$knockoff.arg<-NULL # res.varsel.light$res.varsel$alco$call$glmnet.arg<-NULL # res.varsel.light$res.varsel$alco$call$stepwise.arg<-NULL # sink(file = "C:/Users/vince/OneDrive - LECNAM/Recherche/MI_clustering/Rpackage/vignettes/sink/resvarsel.txt");dput(res.varsel.light);sink() res.varsel <- list(predictormatrix = structure(c(0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0), dim = c(13L, 13L), dimnames = list( c("alco", "malic", "ash", "alca", "mg", "phe", "fla", "nfla", "pro", "col", "hue", "ratio", "prol"), c("alco", "malic", "ash", "alca", "mg", "phe", "fla", "nfla", "pro", "col", "hue", "ratio", "prol"))), res.varsel = list(alco = list( res = list(garde = c(malic = 23, ash = 22, alca = 20, mg = 21, phe = 20, fla = 21, nfla = 21, pro = 20, col = 19, hue = 21, ratio = 20, prol = 22), effectif = c(malic = 6, ash = 8, alca = 9, mg = 7, phe = 2, fla = 7, nfla = 3, pro = 9, col = 18, hue = 15, ratio = 12, prol = 8), proportion = c(malic = 0.260869565217391, ash = 0.363636363636364, alca = 0.45, mg = 0.333333333333333, phe = 0.1, fla = 0.333333333333333, nfla = 0.142857142857143, pro = 0.45, col = 0.947368421052632, hue = 0.714285714285714, ratio = 0.6, prol = 0.363636363636364), selection = c("ash", "alca", "mg", "fla", "pro", "col", "hue", "ratio", "prol" ), failure = c(malic = 0, ash = 0, alca = 0, mg = 0, phe = 0, fla = 0, nfla = 0, pro = 0, col = 0, hue = 0, ratio = 0, prol = 0)), res.detail = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), call = list( nnodes = 2, X = structure(c(1.71, NA, NA, NA, 1.87, 2.15, 1.35, NA, 1.73, 1.87, NA, 1.92, NA, 3.1, 3.8, NA, 1.6, 1.81, NA, NA, 1.9, 1.5, NA, 1.83, 1.53, 1.65, NA, 1.71, NA, NA, 3.98, NA, 4.04, 1.68, NA, NA, 1.67, 1.7, 1.97, 0.94, NA, 1.36, NA, NA, 1.21, NA, NA, 1.51, 1.67, 1.09, 1.88, NA, 3.87, NA, NA, 1.13, NA, NA, 1.61, NA, NA, 1.51, NA, NA, NA, 1.41, NA, 2.08, NA, NA, NA, 1.29, NA, 2.68, 1.39, NA, NA, 2.4, 4.43, NA, 4.31, 2.16, 2.13, 4.3, 1.35, 2.99, 3.55, 1.24, NA, 5.51, NA, 2.81, 2.56, NA, NA, 3.88, 4.61, 3.24, 2.67, NA, 5.19, 4.12, 3.03, 1.68, 1.67, NA, NA, 3.45, 2.76, NA, 2.58, 4.6, 2.39, NA, 3.91, NA, 2.59, 4.1, 2.43, 2.14, 2.67, NA, 2.45, 2.61, NA, 2.41, 2.39, 2.38, 2.7, 2.72, 2.62, 2.56, 2.65, NA, 2.52, 2.61, NA, NA, NA, NA, 2.36, NA, 2.7, 2.55, 2.51, NA, 2.12, 2.59, 2.29, 2.1, 2.44, 2.12, 2.04, NA, NA, 2.3, 2.68, 1.36, NA, NA, 2.16, 2.53, 2.56, NA, 1.75, 2.67, 2.6, 2.3, NA, NA, 2.4, 2, NA, 2.51, 2.32, 2.58, NA, 2.3, 2.32, NA, 2.26, 2.28, 2.74, 1.98, NA, 1.7, NA, NA, 2.28, 1.94, 2.7, 2.92, 2.5, 2.2, 1.99, 2.42, NA, 2.13, 2.39, 2.17, NA, 2.38, NA, 2.4, 2.36, 2.25, 2.54, 2.64, 2.61, 2.7, 2.35, 2.72, 2.35, 2.2, 2.48, NA, 2.48, 2.28, 2.32, 2.38, NA, NA, 2.64, 2.54, NA, 2.35, 2.3, NA, 2.69, NA, 2.28, NA, 2.48, 2.26, 2.37, 2.74, 15.6, NA, NA, 21, NA, 17.6, 16, 16, 11.4, NA, NA, NA, 20, 15.2, 18.6, NA, 17.8, 20, 16.1, 17, NA, NA, 19.1, NA, NA, NA, 13.2, 16.2, 18.8, NA, NA, 17, NA, NA, 12.4, NA, NA, 16.3, 16.8, 10.6, NA, 16.8, 19, 19, 18.1, NA, 16.8, NA, 30, 21, NA, 18, NA, 19, NA, 24, 22.5, 18, 22.8, NA, NA, 22, NA, 18, 21.5, 16, 18, 17.5, 18.5, 20.5, 22.5, 19, 20, NA, NA, 21.5, 20.8, NA, NA, 21.5, 21, 21, 28.5, 22, NA, 20, 21.5, NA, NA, 25, NA, 21, NA, 23.5, 20, NA, NA, NA, 22, 18.5, 22, 19.5, NA, 25, NA, NA, NA, 18.5, NA, 22.5, 24.5, 25, 19.5, NA, 23, 20, NA, 24.5, 127, 100, 101, NA, 96, 121, NA, 89, 91, 102, 112, 120, NA, 116, 102, NA, 95, NA, 93, NA, 107, 101, 106, 104, NA, NA, NA, 117, NA, 101, NA, 107, 111, 101, 92, 111, NA, 118, 102, 88, 101, 100, 87, 104, 98, NA, 151, 86, 139, 101, NA, 112, NA, 86, NA, 78, 85, NA, 90, 70, 81, NA, NA, NA, 134, 85, NA, 97, 88, 85, 84, 92, 94, 103, 84, 85, 86, 96, 102, 86, NA, 85, 92, 80, 122, NA, 106, NA, 89, NA, 101, NA, 89, 97, NA, 112, NA, 92, NA, 98, NA, 89, 97, 98, 89, NA, 106, 106, 90, 88, 105, 112, 86, 91, 102, NA, 120, NA, 2.8, 2.65, 2.8, 2.8, 2.5, 2.6, 2.98, 2.6, 3.1, NA, 2.85, 2.8, NA, NA, 2.41, 2.61, 2.48, 2.53, NA, 2.4, 2.95, 3, NA, 2.42, 2.95, 2.45, NA, 3.15, 2.45, 3.25, 2.64, 3, 2.85, 3.1, 2.72, 3.88, NA, 3.2, 3, 1.98, 2.05, 2.02, 3.5, 1.89, NA, 2.53, NA, 2.95, NA, NA, NA, NA, 2.83, NA, 2.2, NA, 1.65, NA, NA, 2.2, 1.6, 1.45, 1.38, 3.02, NA, 2.55, NA, NA, NA, 2.2, NA, 2.36, 2.74, 1.75, 2.56, 2.46, NA, 2.9, NA, NA, 2.86, NA, 2.13, 2.1, 1.51, NA, 1.7, NA, 1.38, NA, NA, NA, 1.4, NA, 2, 1.38, 1.7, 1.93, 1.48, NA, NA, 1.8, 1.9, NA, NA, 1.83, NA, 1.39, 1.35, NA, 1.55, NA, 1.39, 1.68, NA, NA, 1.65, 2.05, NA, 2.76, NA, NA, 2.52, 2.51, NA, 2.76, NA, 3.64, 2.91, 3.14, 3.4, NA, 2.41, 2.88, 2.37, 2.61, 2.94, NA, 2.97, 3.25, 3.19, 2.69, NA, 2.43, 3.04, 3.29, 2.68, 3.56, 2.63, 3, 2.65, NA, NA, 3.74, 2.9, NA, 3.23, 0.57, NA, 1.41, NA, 1.75, 2.65, 1.3, NA, 2.86, 2.89, 2.14, 1.57, NA, NA, 2.26, 2.53, 1.58, 1.59, 2.21, 1.69, NA, NA, 1.25, 1.46, NA, 0.99, NA, 2.99, 2.17, 1.36, 1.92, 1.76, NA, 2.92, 2.03, 2.29, 2.17, 1.6, NA, NA, NA, 3.03, 2.65, 2.24, 1.75, NA, NA, 1.2, 0.58, 0.47, NA, 0.6, 0.5, NA, 0.52, 0.8, NA, 0.65, 0.76, 1.36, 0.83, 0.63, NA, 0.58, 1.31, 1.1, NA, 0.6, NA, 0.68, 0.47, 0.84, 0.96, NA, 0.7, NA, 0.69, 0.68, 0.76, 0.28, NA, 0.3, 0.39, NA, 0.31, 0.22, 0.29, 0.43, 0.29, 0.3, NA, NA, 0.17, 0.25, 0.27, 0.26, NA, 0.34, 0.27, NA, 0.29, NA, 0.42, NA, NA, 0.2, 0.34, NA, NA, 0.32, 0.28, 0.3, 0.21, 0.17, 0.32, 0.21, 0.26, NA, 0.28, NA, 0.53, NA, 0.45, 0.37, NA, NA, NA, 0.21, 0.13, 0.34, 0.43, 0.43, 0.3, NA, 0.4, 0.61, 0.22, NA, NA, NA, 0.5, NA, 0.17, NA, NA, NA, NA, 0.29, NA, 0.48, 0.39, 0.29, NA, NA, 0.52, 0.3, 0.32, 0.43, 0.3, NA, NA, NA, NA, NA, NA, 0.17, 0.6, 0.53, 0.63, 0.53, 0.53, NA, NA, NA, NA, 0.47, 0.45, NA, 0.61, NA, NA, 0.63, 0.53, 0.52, 0.5, 0.6, 0.4, 0.41, NA, 0.39, NA, 0.48, NA, 0.43, 0.43, 0.53, NA, 2.29, 1.28, 2.81, 1.82, 1.98, 1.25, 1.85, 1.81, NA, 2.96, 1.46, NA, NA, 1.66, NA, 1.69, 1.46, 1.66, 1.45, 1.35, 1.76, 2.38, 1.95, NA, NA, 1.44, NA, NA, NA, NA, NA, 2.03, NA, 2.14, NA, 1.87, 1.62, NA, 1.66, 0.42, NA, NA, 1.87, 1.03, NA, NA, 2.5, 1.87, NA, NA, 1.15, NA, 1.95, 1.43, NA, NA, 1.62, NA, 1.56, 1.38, 1.64, 1.63, NA, 1.35, 1.56, 1.77, 2.81, 1.4, 1.35, NA, 1.63, 2.08, 2.49, NA, 1.04, NA, NA, 1.83, 1.71, NA, 2.91, 1.35, NA, NA, 0.94, NA, 0.84, 1.25, 0.8, 1.1, NA, 0.75, NA, 0.55, NA, 1.14, 0.86, 1.25, 1.26, NA, 1.55, 1.56, 1.14, 2.7, 2.29, NA, NA, 0.94, NA, 1.15, 1.54, 1.11, 0.64, 1.24, 1.41, 1.35, 1.46, 1.35, 5.64, 4.38, 5.68, NA, NA, 5.05, 7.22, 5.6, NA, 7.5, NA, NA, NA, 5.1, 4.5, NA, 3.93, 3.52, 4.8, 3.95, 4.5, 5.7, NA, NA, 5.4, 4.25, 5.1, 6.13, 4.28, 5.43, 4.36, 5.04, 5.24, 6.1, 7.2, NA, 5.85, NA, NA, NA, 3.27, 5.75, 4.45, 2.95, 4.6, 3.17, 2.85, 3.38, NA, 3.21, 3.8, NA, NA, 2.5, 3.9, NA, 4.8, 3.05, 2.45, 1.74, 2.4, 3.6, 3.05, 3.25, NA, 2.9, NA, NA, NA, 2.94, 3.3, 2.7, NA, NA, 2.9, 1.9, NA, 3.25, NA, NA, 2.8, NA, NA, NA, NA, NA, 5, 5.45, NA, 5, 4.92, NA, NA, 4.35, 4.4, 8.21, NA, 8.42, NA, 10.52, 7.9, NA, 7.5, 13, NA, NA, 5.58, NA, NA, 6.62, NA, 8.5, NA, 9.7, 7.3, NA, 9.3, 9.2, 1.04, 1.05, NA, NA, 1.02, NA, NA, 1.15, 1.25, 1.2, 1.28, NA, 1.13, NA, NA, 1.11, 1.09, 1.12, NA, 1.02, NA, 1.19, 1.09, NA, 1.25, NA, NA, 0.95, 0.91, 0.88, 0.82, NA, 0.87, NA, 1.12, NA, NA, 0.94, 1.07, NA, 1.25, 0.98, 1.22, NA, NA, 1.02, 1.28, 1.36, 1.31, NA, 1.23, 0.96, 1.19, 1.38, NA, 1.31, 0.84, NA, NA, 1.07, 1.08, 1.05, NA, NA, NA, NA, 1.42, 1.27, NA, 1.04, NA, 0.86, NA, NA, 0.93, 1.71, 0.95, 0.8, 0.92, 0.73, NA, 0.86, 0.97, 0.79, NA, 0.74, 0.78, 0.75, 0.75, 0.82, NA, NA, NA, 0.89, NA, 0.65, 0.54, 0.55, 0.48, 0.56, 0.6, 0.57, 0.67, 0.57, NA, 0.96, 0.87, 0.68, 0.7, 0.78, 0.74, 0.67, NA, NA, 0.7, 0.59, 0.6, 0.61, 3.92, 3.4, 3.17, 2.93, 3.58, 3.58, 3.55, 2.9, NA, 3, NA, 2.65, NA, 3.36, 3.52, 4, 3.63, NA, NA, 2.77, NA, 2.71, 2.88, 2.87, 3, NA, NA, 3.38, 3, NA, 3, 3.35, 3.33, 3.33, NA, 3.26, 3.2, NA, 2.84, 1.82, NA, 1.59, 2.87, NA, 2.3, NA, NA, NA, 3.5, 3.13, 2.14, 2.52, NA, NA, 3.14, 2.72, 2.01, NA, NA, 3.21, NA, 2.65, NA, NA, NA, 2.74, 2.83, 2.96, 2.77, 3.57, 2.42, 3.02, 3.26, 2.5, 3.19, 2.87, 3.33, 3.39, 3.12, NA, 3.64, NA, NA, NA, NA, 1.42, 1.29, 1.51, 1.27, 1.69, 2.15, NA, NA, NA, 2.05, 2, NA, 1.62, 1.47, 1.51, 1.48, 1.64, 1.73, 1.96, 1.78, NA, NA, 1.75, 1.68, 1.75, NA, NA, NA, NA, NA, 1.56, 1.62, 1.6, 1065, 1050, NA, 735, 1290, 1295, 1045, 1320, NA, 1547, 1310, 1280, NA, 845, 770, 1035, 1015, 845, 1195, 1285, 915, 1285, NA, NA, 1235, NA, 760, 795, 1035, 1095, 680, 885, 1080, 985, 1150, 1190, 1060, 970, 1270, NA, NA, NA, NA, NA, NA, NA, 718, 410, NA, 886, NA, NA, 463, 278, 714, NA, 515, NA, NA, 625, 480, 450, 495, 345, 625, 428, 406, NA, 562, 672, NA, 312, 680, NA, 385, NA, NA, NA, 365, 380, NA, 378, 466, 580, NA, NA, 600, NA, 720, 515, 590, 600, NA, 520, 550, NA, NA, NA, 480, 675, NA, 480, 880, 660, NA, 680, 570, NA, 615, NA, NA, NA, 470, NA, NA, 835, 840, NA), dim = c(118L, 12L), dimnames = list( NULL, c("V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12"))), Y = c(14.23, 13.2, 13.16, 13.24, 14.39, 14.06, 13.86, 13.75, 14.75, 14.38, 13.63, 14.3, 13.83, 13.64, 12.93, 13.71, 12.85, 13.5, 13.39, 13.3, 13.87, 13.73, 13.58, 13.68, 13.76, 13.05, 14.22, 13.56, 13.41, 13.88, 13.24, 13.05, 14.21, 13.9, 13.05, 13.82, 13.74, 14.22, 13.29, 12.37, 12.33, 12.64, 12.37, 12.17, 12.37, 13.34, 12.21, 13.86, 12.99, 11.96, 11.66, 11.84, 12.7, 12, 12.72, 12.08, 13.05, 11.84, 12.16, 12.08, 12.08, 12, 12.69, 11.62, 11.81, 12.29, 12.29, 12.08, 12.6, 12.51, 12.72, 12.22, 11.61, 11.76, 12.08, 11.03, 11.82, 11.45, 12.42, 13.05, 11.87, 12.07, 11.79, 12.04, 12.86, 12.88, 12.7, 12.51, 12.25, 12.53, 12.84, 12.93, 13.36, 13.52, 13.62, 12.25, 12.87, 13.32, 12.79, 13.23, 13.17, 13.84, 12.45, 14.34, 13.48, 13.69, 12.85, 12.96, 13.78, 13.73, 13.58, 13.4, 12.77, 14.16, 13.4, 13.27, 13.17, 14.13), B = 50, path.outfile = NULL, methods = "knockoff", sizeblock = 5, printflag = FALSE, r = c(alco = 0.3), seed = 1234567, nb.clust = 3, modelNames = NULL))), proportion = structure(c(0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.260869565217391, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.363636363636364, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.45, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.333333333333333, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0.1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0.333333333333333, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0.142857142857143, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0.45, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0.947368421052632, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0.714285714285714, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0.6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0.363636363636364, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0), dim = c(13L, 13L), dimnames = list(c("alco", "malic", "ash", "alca", "mg", "phe", "fla", "nfla", "pro", "col", "hue", "ratio", "prol"), c("alco", "malic", "ash", "alca", "mg", "phe", "fla", "nfla", "pro", "col", "hue", "ratio", "prol"))), call = list(data.na = NULL, listvar = "alco", nb.clust = NULL, nnodes = 2, sizeblock = 5, method.select = "knockoff", B = 50, r = 0.3, graph = FALSE, printflag = TRUE, path.outfile = NULL, mar = c(2.1, 4.1, 2.1, 0.6), cex.names = 0.7, modelNames = NULL)) res.varsel$predictormatrix["alco", ] ## ----eval=FALSE--------------------------------------------------------------- # # multiple imputation with the new model # res.imp.select <- imputedata(data.na = wine.na, # method = "FCS-homo", # nb.clust = nb.clust, # maxit = maxit, # m = m, # predictmat = res.varsel$predictormatrix) ## ----eval=FALSE--------------------------------------------------------------- # varselbest(res.imputedata = res.imp.FCS, B = B, nnodes = nnodes) # (time consuming) ## ----eval=FALSE--------------------------------------------------------------- # res.B <- chooseB(res.varsel) ## ----convb,fig.height = 4, fig.width = 4, fig.align = "center",echo=FALSE----- res.chooseB <- list(alco = structure(c(1, 1, 0.5, 0.5, 0.333333333333333, 0.333333333333333, 0.25, 0.25, 0.25, 0.2, 0.166666666666667, 0.166666666666667, 0.166666666666667, 0.142857142857143, 0.125, 0.125, 0.125, 0.125, 0.125, 0.111111111111111, 0.1, 0.1, 0.1, 0.0909090909090909, 0.0833333333333333, 0.0833333333333333, 0.0833333333333333, 0.0833333333333333, 0.0833333333333333, 0.153846153846154, 0.214285714285714, 0.214285714285714, 0.266666666666667, 0.266666666666667, 0.266666666666667, 0.25, 0.235294117647059, 0.235294117647059, 0.235294117647059, 0.277777777777778, 0.277777777777778, 0.263157894736842, 0.263157894736842, 0.25, 0.25, 0.238095238095238, 0.227272727272727, 0.227272727272727, 0.260869565217391, 0.260869565217391, 0, 0, 0, 0, 0, 0.5, 0.333333333333333, 0.333333333333333, 0.25, 0.25, 0.25, 0.2, 0.2, 0.333333333333333, 0.285714285714286, 0.285714285714286, 0.285714285714286, 0.25, 0.25, 0.25, 0.25, 0.333333333333333, 0.3, 0.3, 0.363636363636364, 0.363636363636364, 0.363636363636364, 0.333333333333333, 0.333333333333333, 0.384615384615385, 0.384615384615385, 0.428571428571429, 0.4, 0.4, 0.375, 0.375, 0.352941176470588, 0.352941176470588, 0.352941176470588, 0.352941176470588, 0.388888888888889, 0.388888888888889, 0.388888888888889, 0.368421052631579, 0.35, 0.35, 0.380952380952381, 0.380952380952381, 0.380952380952381, 0.363636363636364, 1, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.333333333333333, 0.333333333333333, 0.5, 0.4, 0.4, 0.4, 0.5, 0.5, 0.428571428571429, 0.428571428571429, 0.428571428571429, 0.428571428571429, 0.428571428571429, 0.428571428571429, 0.5, 0.444444444444444, 0.444444444444444, 0.444444444444444, 0.444444444444444, 0.444444444444444, 0.4, 0.363636363636364, 0.363636363636364, 0.363636363636364, 0.416666666666667, 0.416666666666667, 0.384615384615385, 0.357142857142857, 0.357142857142857, 0.333333333333333, 0.333333333333333, 0.3125, 0.3125, 0.352941176470588, 0.352941176470588, 0.352941176470588, 0.352941176470588, 0.352941176470588, 0.388888888888889, 0.421052631578947, 0.421052631578947, 0.421052631578947, 0.45, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.25, 0.2, 0.2, 0.166666666666667, 0.166666666666667, 0.166666666666667, 0.285714285714286, 0.375, 0.375, 0.375, 0.333333333333333, 0.4, 0.4, 0.4, 0.363636363636364, 0.363636363636364, 0.333333333333333, 0.333333333333333, 0.333333333333333, 0.333333333333333, 0.384615384615385, 0.384615384615385, 0.357142857142857, 0.357142857142857, 0.357142857142857, 0.357142857142857, 0.333333333333333, 0.3125, 0.3125, 0.294117647058824, 0.294117647058824, 0.333333333333333, 0.333333333333333, 0.315789473684211, 0.315789473684211, 0.3, 0.3, 0.3, 0.333333333333333, 0.333333333333333, 0.333333333333333, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0.2, 0.2, 0.2, 0.166666666666667, 0.166666666666667, 0.166666666666667, 0.166666666666667, 0.166666666666667, 0.142857142857143, 0.125, 0.125, 0.125, 0.111111111111111, 0.111111111111111, 0.1, 0.1, 0.1, 0.1, 0.0909090909090909, 0.0909090909090909, 0.0909090909090909, 0.0833333333333333, 0.0833333333333333, 0.0833333333333333, 0.0769230769230769, 0.0769230769230769, 0.0769230769230769, 0.0769230769230769, 0.0714285714285714, 0.0714285714285714, 0.0666666666666667, 0.125, 0.125, 0.117647058823529, 0.117647058823529, 0.111111111111111, 0.111111111111111, 0.111111111111111, 0.105263157894737, 0.105263157894737, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0.25, 0.25, 0.25, 0.4, 0.333333333333333, 0.333333333333333, 0.428571428571429, 0.428571428571429, 0.428571428571429, 0.375, 0.333333333333333, 0.333333333333333, 0.4, 0.4, 0.363636363636364, 0.363636363636364, 0.363636363636364, 0.333333333333333, 0.307692307692308, 0.307692307692308, 0.285714285714286, 0.285714285714286, 0.285714285714286, 0.285714285714286, 0.333333333333333, 0.333333333333333, 0.333333333333333, 0.3125, 0.3125, 0.294117647058824, 0.294117647058824, 0.294117647058824, 0.294117647058824, 0.294117647058824, 0.277777777777778, 0.277777777777778, 0.315789473684211, 0.315789473684211, 0.35, 0.35, 0.333333333333333, 0.333333333333333, 0, 1, 0.5, 0.5, 0.333333333333333, 0.333333333333333, 0.25, 0.25, 0.25, 0.25, 0.2, 0.2, 0.166666666666667, 0.166666666666667, 0.142857142857143, 0.142857142857143, 0.125, 0.125, 0.125, 0.111111111111111, 0.1, 0.1, 0.1, 0.0909090909090909, 0.0909090909090909, 0.0833333333333333, 0.0769230769230769, 0.0769230769230769, 0.0769230769230769, 0.0769230769230769, 0.0714285714285714, 0.0714285714285714, 0.0714285714285714, 0.0714285714285714, 0.0666666666666667, 0.0666666666666667, 0.0666666666666667, 0.0666666666666667, 0.0666666666666667, 0.0625, 0.0625, 0.0588235294117647, 0.0588235294117647, 0.111111111111111, 0.157894736842105, 0.157894736842105, 0.15, 0.15, 0.15, 0.142857142857143, 0, 1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.666666666666667, 0.666666666666667, 0.75, 0.6, 0.6, 0.6, 0.5, 0.5, 0.428571428571429, 0.375, 0.375, 0.375, 0.375, 0.333333333333333, 0.333333333333333, 0.333333333333333, 0.3, 0.363636363636364, 0.363636363636364, 0.333333333333333, 0.333333333333333, 0.307692307692308, 0.307692307692308, 0.357142857142857, 0.357142857142857, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4375, 0.4375, 0.470588235294118, 0.470588235294118, 0.470588235294118, 0.470588235294118, 0.444444444444444, 0.444444444444444, 0.473684210526316, 0.45, 0.45, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.875, 0.875, 0.888888888888889, 0.888888888888889, 0.888888888888889, 0.888888888888889, 0.9, 0.9, 0.9, 0.909090909090909, 0.916666666666667, 0.916666666666667, 0.916666666666667, 0.923076923076923, 0.923076923076923, 0.928571428571429, 0.928571428571429, 0.928571428571429, 0.928571428571429, 0.933333333333333, 0.9375, 0.9375, 0.9375, 0.9375, 0.941176470588235, 0.941176470588235, 0.941176470588235, 0.944444444444444, 0.944444444444444, 0.944444444444444, 0.947368421052632, 0.947368421052632, 0, 0, 0, 0, 0, 0, 0.333333333333333, 0.333333333333333, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 0.666666666666667, 0.666666666666667, 0.714285714285714, 0.714285714285714, 0.714285714285714, 0.625, 0.625, 0.666666666666667, 0.666666666666667, 0.7, 0.7, 0.727272727272727, 0.75, 0.75, 0.769230769230769, 0.769230769230769, 0.785714285714286, 0.785714285714286, 0.785714285714286, 0.733333333333333, 0.75, 0.75, 0.75, 0.705882352941177, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.684210526315789, 0.684210526315789, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.714285714285714, 1, 1, 1, 0.5, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.5, 0.5, 0.5, 0.428571428571429, 0.428571428571429, 0.428571428571429, 0.5, 0.5, 0.555555555555556, 0.555555555555556, 0.6, 0.6, 0.6, 0.636363636363636, 0.636363636363636, 0.636363636363636, 0.666666666666667, 0.666666666666667, 0.666666666666667, 0.615384615384615, 0.642857142857143, 0.642857142857143, 0.642857142857143, 0.666666666666667, 0.666666666666667, 0.6875, 0.647058823529412, 0.647058823529412, 0.647058823529412, 0.611111111111111, 0.611111111111111, 0.631578947368421, 0.6, 0.6, 1, 1, 1, 0.5, 0.5, 0.333333333333333, 0.333333333333333, 0.25, 0.2, 0.2, 0.2, 0.333333333333333, 0.333333333333333, 0.285714285714286, 0.285714285714286, 0.25, 0.25, 0.222222222222222, 0.2, 0.2, 0.2, 0.272727272727273, 0.272727272727273, 0.272727272727273, 0.25, 0.25, 0.25, 0.230769230769231, 0.230769230769231, 0.285714285714286, 0.285714285714286, 0.333333333333333, 0.333333333333333, 0.3125, 0.3125, 0.294117647058824, 0.294117647058824, 0.277777777777778, 0.263157894736842, 0.263157894736842, 0.3, 0.3, 0.3, 0.333333333333333, 0.333333333333333, 0.333333333333333, 0.333333333333333, 0.363636363636364, 0.363636363636364, 0.363636363636364), dim = c(50L, 12L), dimnames = list( NULL, c("V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12")))) gridB.intern<-seq(1,length(res.varsel$res.varsel$alco$res.detail),ceiling(length(res.varsel$res.varsel$alco$res.detail)/100)) matprop<-res.chooseB$alco colnames(matprop) <- names(res.varsel$res.varsel$alco$res$proportion) matprop.plot <- as.data.frame(matprop) matprop.plot$id <- gridB.intern plot_data <- reshape2::melt(matprop.plot, id.var = "id", value.name = "proportion") linewidth <- 1;linetype <- "dotdash";xlab <- "B";ylab <- "Proportion" res.ggplot <- ggplot2::ggplot(plot_data, ggplot2::aes(x = id, y = proportion, group = variable, colour = variable)) + ggplot2::geom_line(linetype = linetype, linewidth = linewidth) + ggplot2::labs(x = xlab, y = ylab)+ ggplot2::labs(title = NULL) print(res.ggplot) ## ----fig.height = 4, fig.width = 4, fig.align = "center"---------------------- # check the variable importance round(res.varsel$proportion["alco",], 2) barplot(sort(res.varsel$proportion["alco",], decreasing=TRUE), ylab = "proportion", main = "alco", ylim = c(0, 1), las = 2, cex.names = .5) r <- 0.2 # a new threshold value (r = 0.3 by default) abline(h = r, col = 2, lty = 2) ## ----fig.height = 4, fig.width = 4, fig.align = "center"---------------------- predictormatrix <- res.varsel$predictormatrix predictormatrix[res.varsel$proportion>r] <- 1 predictormatrix[res.varsel$proportion<=r] <- 0 predictormatrix["alco", ] ## ----eval=FALSE--------------------------------------------------------------- # chooser(res.varsel = res.varsel) ## ----eval=FALSE--------------------------------------------------------------- # # kmeans clustering # res.pool.kmeans <- clusterMI(res.imp.JM, nnodes = nnodes) ## ----echo=FALSE--------------------------------------------------------------- res.pool.kmeans <- clusterMI(res.imp.JM, nnodes = nnodes, instability = FALSE,verbose = FALSE) res.pool.kmeans$instability<-list(U = c(0.0181100871102134, 0.00951395025880571, 0.0225299835879308, 0.0181744729200858, 0.0254525943693978, 0.0190544123216766, 0.0331624794849135, 0.0271001136220174, 0.0181504860497412, 0.0194470395152127, 0.0241068046963767, 0.0169953288726171, 0.0383171316752935, 0.0180330766317384, 0.0179093548794344, 0.0229781593233178, 0.0348604974119429, 0.031046585027143, 0.0191200605984093, 0.0279977275596516), Ubar = 0.023103017295796, B = 0.0721092390087769, Tot = 0.0952122563045729) ## ----------------------------------------------------------------------------- part <- res.pool.kmeans$part table(part) #compute cluster sizes table(part, ref) #compare the partition with the reference partition res.pool.kmeans$instability # look at instabilitiy measures ## ----eval=FALSE--------------------------------------------------------------- # res.pool.all <- lapply(c("kmeans", "pam", "clara","hclust", "mixture", "cmeans"), # FUN = clusterMI, # nnodes = nnodes, # output = res.imp.JM) ## ----results='hide', message=FALSE, eval=FALSE-------------------------------- # library(clustrd) # res.ana.rkm <- lapply(res.imp.JM$res.imp, # FUN = cluspca, # nclus = nb.clust, # ndim = 2, # method= "RKM") # # # extract the set of partitions (as list) # res.ana.rkm <- lapply(res.ana.rkm, "[[", "cluster") # # # pooling by NMF # res.pool.rkm <- fastnmf(res.ana.rkm, nb.clust = nb.clust) # part.rkm <- res.pool.rkm$best$clust# extract the best solution based on several initialisations ## ----overimpecho, eval=FALSE-------------------------------------------------- # # Multiple imputation is rerun with more imputed data sets (m = 100) # res.imp.over <- imputedata(data.na = wine.na, # nb.clust = nb.clust, # m = 100, # Lstart = Lstart, # L = L, # verbose = FALSE) # # # selection of 20 complete individuals on variable "alco" # plotinds <- sample(which(!is.na(wine.na[, "alco"])), # size = 20) # # res.over <- overimpute(res.imp.over, # nnodes = nnodes, # plotvars = "alco", # plotinds = plotinds) ## ----overimp, fig.height = 4, fig.width = 4, fig.align = "center", warning=FALSE, echo=FALSE, results='hide'---- # Multiple imputation is rerun with more imputed data sets (m = 100) # sink(file = "C:/Users/vince/OneDrive - LECNAM/Recherche/MI_clustering/Rpackage/vignettes/sink/overimpute.txt");dput(res.over);sink() res.over <- list(res.plot = structure(list(var = c("alco", "alco", "alco", "alco", "alco", "alco", "alco", "alco", "alco", "alco", "alco", "alco", "alco", "alco", "alco", "alco", "alco", "alco", "alco", "alco"), trueval = c(12.7, 13.82, 13.27, 12.85, 12.72, 12, 12.04, 14.38, 12.37, 14.16, 13.58, 13.32, 11.76, 11.84, 12.93, 12.99, 12.84, 13.86, 12.6, 13.69), xbar = c(11.7738376865082, 13.2781194335305, 12.7656078455516, 12.3550918675967, 12.1103766286982, 11.3488581416796, 11.689790703598, 13.8292914203422, 11.8838061588389, 13.4927187358782, 12.8831079064593, 12.7635311892978, 11.4102766462339, 11.6100843994868, 12.3771753207685, 12.1498426103087, 12.2019534817579, 12.8181064702831, 12.0241257849814, 12.9630596788976), binf = c(10.9002453672607, 12.5906496890719, 12.1071831918227, 11.7189914123926, 11.4744279355071, 10.5966941487251, 11.047877870576, 13.0803896346415, 11.1022261939148, 12.7714298904175, 12.0665951704424, 12.0436735061878, 10.6786684003405, 10.8910995794392, 11.7081349527227, 11.0226921594602, 11.4204289240371, 11.6007267438947, 11.2195525358362, 12.0458943601711), bsup = c(12.5277787644536, 13.7651267363568, 13.2746684227263, 12.8346923847886, 12.6520903164249, 11.9232169641688, 12.1702859416548, 14.3855364579454, 12.356405814087, 14.0423416960767, 13.4498872617714, 13.1819251692097, 12.253636795827, 12.3733229011399, 12.9137110119783, 12.8684270922574, 12.7028857537259, 13.7063102013102, 12.5359610362416, 13.5852137169506), pct = c(25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25), col = c("blue", "green", "green", "blue", "#FFFF00", "green", "green", "blue", "green", "#FFFF00", "green", "green", "#FFFF00", "#FFFF00", "green", "green", "green", "green", "green", "#FFFF00")), row.names = c("134", "53", "176", "24", "82", "81", "130", "15", "60", "173", "169", "149", "113", "78", "141", "74", "140", "72", "102", "162"), class = "data.frame"), res.values = structure(c(10.9027571590876, 13.3720282195999, 11.940000220621, 12.4588572744253, 11.3847526657941, 11.0424938170906, 10.8182234941578, 13.1903500550807, 11.9867297229711, 12.5651795406012, 11.9050384287735, 12.2377169380197, 10.9071143748198, 10.7402969152648, 11.8916671774033, 10.7483687696833, 11.9543405883846, 11.8711675999938, 11.1721688171028, 12.429957988662, 11.1565466858466, 12.8809103115834, 12.2345463355942, 12.2721010736648, 11.9472111163214, 10.8626662746027, 10.8245445791266, 12.9606544401327, 11.4494033653085, 12.3324693055764, 12.2247508157112, 12.3711588105178, 10.6999039049226, 11.4301330649025, 11.942147296416, 11.1830924000069, 11.5978085388801, 11.1797190594128, 10.3189861198363, 12.3448925493478, 11.6519750870664, 12.9569636903419, 12.3971591055247, 13.3424666171312, 11.1410690108762, 10.9547395412386, 10.752583046527, 13.1753255274174, 12.3526370463664, 12.8556473862018, 12.6389506786001, 12.5081245146474, 11.1326967435066, 11.7404285924661, 11.804289705235, 11.231969840932, 12.0644935613514, 11.3923367545699, 11.951192401443, 12.6474538555674, 11.2813390955753, 13.1568317275199, 12.1617912197155, 12.4175312612467, 11.4968467529353, 11.0735802190616, 11.4846702076383, 13.3450668311499, 11.6760747570171, 12.6259003728966, 12.2087322672767, 12.5099232030013, 10.7993155145507, 10.9446336618757, 11.5947927033276, 11.6562248489049, 11.9820537234751, 11.6136217365817, 11.3422621272226, 12.4483506938512, 11.5154559786991, 12.6617287782271, 12.3976159708104, 12.5139753530999, 10.9801009631126, 10.7272206892092, 11.6393462065375, 13.12419912975, 11.8331393781342, 12.2548919295972, 12.1628556514009, 12.3890623781872, 10.8075925631846, 11.6782327029972, 12.0454774003782, 11.7635608593472, 12.1198013060997, 11.5053532355346, 11.3427853118645, 12.2270863828367, 10.9389791121231, 12.3548805685626, 12.0804920188203, 12.3152732857473, 10.6284746679258, 10.6904719284285, 11.0495346026079, 12.7823014419389, 11.2945948786932, 12.2888226296922, 11.899856970866, 12.1292528234548, 11.0919860440238, 12.2448964036324, 11.592378092185, 10.3379373602849, 11.7483513951764, 11.5491467731465, 10.456342106865, 12.1091824959656, 10.9973071330217, 13.5565274002911, 12.1138559850733, 12.4510605498451, 11.5814711134874, 10.6786860450792, 11.321321943973, 13.6659792367535, 11.7867814410111, 13.1528951904566, 12.6934947356701, 12.6814821096393, 11.2423164537301, 11.5816002558534, 11.8583517913204, 12.3034144241126, 11.7972387880225, 11.9870278557281, 12.4595476322119, 12.6704047330414, 11.0166435151743, 13.2547846115944, 12.2530704584602, 12.295653117703, 11.5105762042341, 10.4285364572689, 11.5544516582806, 13.9761569043803, 10.8818425148185, 12.8743470690507, 12.1076348528391, 12.387423180391, 10.680099635907, 10.7893515369186, 12.1684328277367, 12.5178982030381, 12.0022366135973, 12.0210718763183, 11.243205097626, 12.5418117406201, 11.5382475868043, 13.0066416027229, 12.305845897045, 12.5917728314711, 11.5184073509155, 11.4466924685054, 11.7229535541997, 13.4763636438223, 11.5390539356132, 13.2433830958046, 12.5688021432062, 12.4986315452676, 10.674374693641, 10.9165365900694, 12.4093832932943, 11.61356586638, 12.0575268385451, 12.5348696356165, 11.776736157167, 12.5935269524206, 12.2105515075002, 13.5386501922408, 12.6905914840328, 12.1864757827785, 12.0187226427258, 11.2115725616238, 11.8710983681916, 14.178498874744, 11.9501026587433, 13.5959424857848, 13.3549989111154, 13.1062149915217, 11.350003270902, 11.4528135157338, 12.1272222769899, 12.4407177860254, 12.2405725336217, 13.3074765131803, 11.9110017389237, 13.0671295992395, 11.7102030709377, 13.2662502777398, 12.4742158741831, 13.1605647191523, 12.3669889518452, 11.2376514645056, 11.8126181570617, 14.2256180804511, 11.7595405720386, 13.4794584482731, 12.5640469903369, 12.8442209760747, 11.0549513982734, 11.7830016227482, 12.4367275436253, 12.2142645094865, 12.1223587673968, 12.8240698702957, 11.6549866597216, 13.2509496162664, 11.0033444391701, 12.9795358818914, 11.4362905256433, 12.1560774787869, 11.8087463788187, 11.1629406478309, 10.9110534800363, 13.6156895757381, 11.3845124557189, 12.9801486306881, 12.397977044426, 12.2549320444417, 11.4757538174958, 12.0196612907792, 11.4921618532943, 11.2980943330351, 11.6047941325197, 12.078514464844, 10.9735548389632, 12.5116854968119, 11.6348500432145, 13.2500040458792, 12.5294732441164, 12.0400041544148, 11.6269768512098, 11.5179463423713, 11.3703368849021, 13.8157074371326, 11.6238996221861, 13.3207245192497, 12.6338793906785, 12.6856602111593, 11.2962267944479, 11.4549055814343, 12.1370766943646, 11.4826859437553, 12.6142281219058, 12.461455769393, 11.5025903120235, 12.6140028381399, 11.5899707159458, 12.8087589815895, 13.6301197642354, 12.5252126065991, 11.5264778651642, 11.2917551130727, 11.8993331735439, 13.5971077313598, 11.6803042381458, 13.7878312703689, 12.8102288139545, 13.2090818374908, 11.5917602820632, 12.1193253919106, 11.9841579588378, 11.2749756756072, 11.8404247271721, 11.8176779786652, 11.8272557258861, 12.9570626709244, 11.7290907355413, 13.178446668331, 12.6199349612434, 12.3661842311701, 12.0033535113582, 11.2502761502918, 11.5851511757457, 13.5653942923956, 11.9003642162669, 13.3602312922933, 12.0160950400693, 12.8363782541617, 11.151508553576, 11.6010834134442, 12.2570910542175, 12.0714541849123, 12.1935774936786, 12.8126799630977, 10.9700918623647, 12.5832278506997, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 11.5393372050152, 12.8598755811367, 12.2655549570779, 11.9942309306618, 11.7879214676301, 11.2072814754551, 11.2832074063161, 12.9410445056666, 11.5732373736743, 13.1451743100533, 12.2351140394576, 12.5043327812142, 11.305589856707, 11.1820446405717, 11.7364705150715, 11.4724769671485, 12.023384737459, 12.2111508924653, 11.3737864894833, 12.2376297524099, 11.9434221817735, 12.7972746315102, 12.160229480043, 12.0830370357853, 11.9539766019123, 11.458629107955, 11.4986235378307, 13.6648084438481, 11.9413666581253, 12.8413416597816, 12.7047159195651, 12.8526096368328, 11.3659183919746, 11.4177042900882, 12.2733452511119, 11.4595899139866, 12.4716664424727, 12.3486328422377, 11.2313984655195, 13.2385806197948, 11.7155168167518, 13.4488008042901, 12.6768268944607, 12.1930971202147, 11.8380354697398, 11.7850179880391, 11.7551048425008, 13.8116912021305, 11.9252922922514, 13.5455986538724, 12.7995529384222, 12.4583704002942, 11.2856398576913, 11.5778880891754, 12.0491781362349, 11.7538659191687, 12.2437632042095, 12.257985685942, 11.9968723975725, 13.0763498668474, 11.928890459588, 13.3891871447889, 12.6832140375711, 12.5572164628705, 12.2948332058549, 11.3567333309965, 11.8757598789415, 14.2435914065749, 12.0367940873365, 13.1565149043356, 12.7466329968575, 12.5961641568106, 10.886527157571, 11.6105300885712, 12.2900706287732, 12.3386481464732, 12.4428581791742, 13.497502303532, 12.1738465420928, 13.2689340332475, 12.0142353271438, 13.4361783392807, 12.4916047376682, 12.7179953765663, 12.6294632743964, 11.3785327890413, 11.5399487312372, 13.5868678972884, 11.9642442096689, 13.2122093668972, 13.0436533686635, 12.9948545084114, 11.497327645192, 11.3300445532421, 12.6093737207955, 11.9238503927387, 12.2740188998421, 13.0652787126032, 11.6137624314142, 13.1663285677321, 11.4151313222507, 13.3730722802691, 12.0236173855206, 12.3950302873615, 11.5572082969642, 10.9226861586599, 11.6236658501974, 13.87835100956, 11.8858542298763, 12.9817961767259, 12.7029780014271, 12.8727059795524, 10.6599880489515, 11.5428406582753, 11.9118793467095, 11.9924066548883, 12.4136405871024, 12.1491196150975, 11.3786088492797, 12.7508473989825, 12.1309150970234, 12.9630506336348, 12.2168036383335, 12.5120079990011, 12.592084201283, 11.467061260114, 11.7797591365148, 13.9661922156025, 11.6668055294142, 13.5092594127873, 12.6257498867552, 12.6955170819408, 11.471330604252, 11.1802632853897, 12.4436421349477, 12.5049740175941, 12.0052728752578, 12.7739993151007, 11.4886356802424, 12.9207301098653, 12.1327163080888, 13.182613847294, 12.5831900444033, 12.6231724853152, 11.6979221215998, 11.6046854137197, 11.5314221127054, 13.7454250233543, 12.2220008401973, 13.5287868857394, 12.7957887739507, 12.8520083943061, 10.8006312464122, 11.5709366052856, 12.3531042482877, 12.604325880041, 12.4725862985276, 12.9397034339565, 11.8203005635883, 13.0619338586258, 12.0059504579831, 13.3748476419394, 12.7342793931063, 12.1063936804234, 11.936954463502, 11.0938008291524, 11.8723287746691, 13.8302405992103, 11.6184238315989, 13.834266941411, 12.959064402967, 13.1078417789627, 10.9420164120196, 11.2832680928059, 12.5542489205997, 12.1647309038926, 11.8917935787814, 12.6360810485249, 11.5368692430942, 12.5283546778987, 12.278560181478, 13.4157747179979, 13.036609372142, 12.6553212089659, 12.6570797878646, 11.818569941231, 11.8095749580922, 14.2562459719411, 12.1329654212563, 13.9660053836878, 13.3306063548038, 12.9242937867012, 11.27242881383, 11.4695720134184, 12.9145321209486, 12.6578274103185, 12.2412182876062, 13.3823046045775, 12.1455325244381, 13.488028235304, 12.2604604981762, 13.8322573779456, 12.8464852903872, 12.3851242903891, 12.5294125015219, 11.6523400525619, 11.7725478209598, 13.8968048330413, 11.9164871496124, 13.6553012626764, 13.3719003713921, 13.0993098104734, 11.5414286075817, 11.5578386068544, 12.5840269295835, 12.5005043043175, 12.4622048366594, 13.6609252976536, 12.2021373735729, 13.2810745286227, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 12.2730558037744, 13.4455380456546, 12.8580592427116, 12.4227873006222, 12.3182166527325, 11.6314185990482, 11.7366588517982, 14.4302975709319, 11.6605724196907, 13.5728036544708, 13.3434093886478, 12.8281657034197, 11.3617618378445, 11.7987227621715, 12.5842375691488, 12.3054484724115, 12.5361337178109, 13.2848308106348, 12.2650147658898, 13.3678836208855, 12.5229409289664, 13.642681531154, 12.9638388724753, 11.9679539478201, 12.4423262105083, 11.5560890296052, 11.7653391614463, 13.9039034605951, 11.9788520008251, 13.8203711764835, 13.2025549487427, 13.1051309189183, 11.5629914378106, 11.5638370521503, 12.6878928244435, 12.4830030773073, 12.4680960149703, 13.677441065139, 12.360091692288, 13.2414543064261, 10.352503187347, 12.9469351357265, 12.56784317289, 12.7944114690606, 11.6867688344442, 10.9345342131295, 12.2584473430186, 14.336828333391, 11.1297585338564, 13.0309632820284, 13.0539573124124, 12.678302186866, NA, 11.2247269982608, 12.4925946573358, 12.5413825862576, 12.2815224003922, 12.0223376932663, 12.1950262262004, 12.0615188869851, 11.9973624448043, 13.0401898026504, 12.6864141905704, 12.2538704477746, 11.8110887337087, 10.8287768994097, 11.7211658972285, 13.475954646048, 12.0256317651045, 13.0774406589333, 12.6671585944138, 12.5633273185913, 11.1970430736989, 11.4480809787562, 11.4842655965831, 11.6645491357858, 12.2471507499981, 12.9563215513965, 11.7136749041106, 12.7757229850282, 11.9850180694918, 13.4772713622811, 13.0467007044156, 11.9638558140376, 12.2658516596762, 11.1879093954532, 11.541822430248, 13.6418339900708, 12.063344733493, 13.4880172767453, 13.1956547544198, 12.6023610377398, 11.3860709596121, 11.2633938865502, 12.373221575826, 12.3300636390463, 12.3127051984223, 13.1551183311563, 11.6122546252578, 13.6798566641997, 12.0435741255817, 13.0961548429281, 12.4125487988855, 12.4422209250598, 12.136750981623, 11.4942145931276, 11.6090612705411, 14.0525975138166, 12.0935495956422, 13.4167645205786, 12.9123209024181, 12.9137144075419, 11.2727753694184, 11.1912562864006, 12.5989748105203, 12.2053738434396, 12.4326069218954, 13.3521521531052, 12.1196037569693, 13.0275777558195, 11.5280918171315, 13.4781847966433, 13.3608510975362, 12.0450172812986, 11.7101743778738, 11.0890576135307, 12.7647894869712, 13.7992933959691, 11.7199942783209, 13.725164496452, 13.41371309537, 13.2941290545865, 12.7529671324927, 11.1380505798721, 12.1994755922483, 11.2709862189576, 12.8824736068824, 11.5327380046769, 12.1410503973127, 12.8660797634563, 11.5212651429848, 12.8253692797878, 12.4019449718659, 12.3867358911517, 12.1979194545475, 11.6379727457369, 11.6077019416126, 13.5905997850023, 12.0715804702619, 13.4188494655234, 12.506887795053, 12.7818858724817, 11.1983171287643, 11.8222000230033, 12.6806849863954, 12.3624375014284, 12.52988999623, 13.0332278507231, 11.65699765626, 12.909518373947, 12.0303770140753, 13.277885293731, 12.7599780657718, 12.2938049065559, 12.3264302022841, 11.5960528930636, 11.5001367318458, 14.0248393084405, 12.29973324089, 13.6384019492204, 13.0357337837167, 12.9382331656775, 11.5437509895706, 11.6807472501863, 12.9420323614893, 12.4559762046665, 12.5501632641266, 13.4646547050552, 12.3289598669765, 13.1892612229751, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 11.7763759972509, 13.2296990083637, 12.3683010450742, 12.4849605810544, 12.2315201278412, 11.4543741803095, 11.687390988967, 14.092571208206, 11.8923416902844, 13.4673837778474, 12.9150257347454, 12.7251154174272, 11.3951856475693, 11.655561440774, 12.4871465295287, 12.3005584074156, 12.4431029881206, 13.1248511735857, 11.7457348988733, 12.9307927285351, 12.4332121776699, 13.8231722687901, 12.865132739627, 12.7453204053125, 12.1505714695303, 11.8775353610962, 11.7279528118611, 13.8839663750813, 11.7968040180193, 14.0152581205496, 13.3711343870114, 12.9898290415242, 11.5612285307566, 12.2084767356854, 12.5816001419491, 12.4109190903876, 12.7769744659107, 13.4039666881016, 12.0262871664718, 13.5433770572096, 12.474158795309, 13.650080892289, 13.1757120838082, 12.7643681205312, 12.4183314350571, 11.8973039417662, 11.8432467142943, 14.1574765565384, 12.0698382563766, 14.138284027763, 13.3971075685986, 13.175730839695, 11.2432820294525, 11.7466293111797, 12.6769124285635, 12.714875687724, 12.5233382044858, 13.6633016379722, 12.3843236382816, 13.4394569297175, 10.3904641527393, 12.9763629288308, 12.6938037118141, 12.1416736680642, 11.6321506663374, 10.6303972995042, 11.8395317561396, 13.9279162508224, 10.9540612751819, 13.0263508257069, 12.3688551071206, 11.8773068985806, 10.4774729299872, 10.4070885916904, 12.1234053684524, 11.5186334732531, 11.56852917772, 12.225396916979, 12.1518264649252, 12.2927227976272, 12.375993663366, 13.386098395214, 12.9673154900272, 12.5865443554421, 12.3849730096063, 11.6984736412274, 11.6392962126255, 13.9203909392538, 12.2171863933348, 13.8580139663386, 13.2031546044427, 13.0068180970987, 11.321926281871, 11.6192134131366, 12.7599387504826, 12.741833750858, 12.6440686826969, 13.5059255935867, 12.4018340133467, 13.3901014062342, 12.3735074589841, 13.7477910708867, 13.173768682418, 12.8411291779921, 12.4042052562892, 11.9335858140433, 12.0141719830504, 14.1197505973962, 12.2165518516319, 13.949680778888, 13.3103541606952, 13.1169084524435, 11.6832736010009, 11.6618547529502, 12.625724670541, 12.6962033352154, 12.6676118165849, 13.5260337581492, 12.2597016019142, 13.528290398636, 11.399491204466, 13.3155653984668, 12.95927552562, 12.3471256299659, 12.2148401007754, 11.1163544647587, 11.5598151525434, 14.0339392526704, 11.902431689342, 13.5192752578837, 12.8641934593137, 13.0155651020213, 11.319919968889, 11.2714658180592, 12.3204076711592, 11.7566720819774, 11.9805220054309, 12.233595272881, 12.1744476006393, 13.5641147087419, 11.3660037349744, 13.1138631550319, 12.9728488510597, 12.6616579908974, 12.6149860059304, 11.3622204152128, 11.8864487804353, 13.8159815766436, 12.2887570538584, 12.866632493346, 12.491446481754, 11.8999384294254, 12.2571384401065, 12.0022759417132, 11.7893223529602, 12.0142533084167, 11.2973065294882, 12.016540604046, 11.7144822112326, 12.9991048161478, 10.6446538211167, 13.5303691510813, 11.7251395488737, 11.6799844959407, 11.7475439226942, 11.1993614630968, 11.349821988388, 13.2338132782314, 11.1321872848558, 13.133557916753, 12.291217629472, 12.1719934055026, 10.3910814678633, 11.8226559439813, 11.9289238457939, 11.4105947746351, 11.9404431664303, 12.1490687661543, 11.5464505859303, 12.661233140726, 12.3943815124513, 13.4865032146794, 13.0175498997761, 12.6205548771332, 12.2570076975105, 11.7821963621301, 11.8289534791217, 13.900266760634, 12.0065725745798, 13.8605884272343, 13.1678642470628, 13.221615851154, 11.3866048278284, 11.5779866700041, 12.6376287758126, 12.685277809404, 12.6560267550019, 13.44059050945, 12.1213850486358, 13.3900512421908, 12.5088910224167, 13.6552539110473, 13.1519365557871, 12.5424867028952, 12.6490050199557, 11.8810583860997, 11.8454346703769, 14.2560542465013, 12.6881072939419, 13.9657245749273, 13.3824480195102, 13.1314818715186, 11.5414302363924, 11.6623713591239, 12.7713355562747, 12.8722769187542, 12.5886159495194, 13.7380684766617, 12.4783921328282, 13.5973811499126, 11.3558943492333, 13.6743959467468, 13.1353824536453, 12.4400184683218, 12.3124137639866, 11.9608707866252, 11.9125354112978, 13.6977857421606, 11.6661825599061, 13.6839582479109, 13.2233687392484, 13.1212805642233, 12.3551038888123, 11.944537976147, 12.9135057347358, 12.8148590965566, 12.3243296123081, 13.7181083537689, 11.9718224339689, 13.5364384816054, 12.3871254420644, 13.1919076988403, 12.7686021282143, 12.6389882653731, 12.6583478435844, 11.7219409096222, 11.7498036659852, 13.7449240379206, 12.1878215512353, 13.6344629747159, 12.9986291647334, 13.0217304601369, 11.4396368216168, 11.5637539427516, 12.3555073669926, 12.7708058883613, 12.5389380631649, 13.6556940528247, 12.0230102044507, 13.5388110687559, 12.5026122619153, 13.6901298655501, 13.0968327375709, 12.6607598660041, 12.4789485906501, 11.7961732201514, 11.8271889208983, 14.1550166279867, 12.3149034154595, 13.9969954199959, 13.5046403051572, 13.1592251906692, 11.5810964480693, 11.7887079535448, 12.7479571068557, 13.3334911721736, 12.5487465869157, 13.5813591573868, 12.3189509378157, 13.4591325050796, 12.5471301064026, 13.5892292602605, 13.1210771905801, 12.7435948926412, 12.650842948565, 11.9490391078218, 11.8006517770909, 14.2092919142078, 12.1444980973615, 13.9391815561078, 13.2839046444758, 13.1454813231011, 11.7322153274605, 11.7858927351905, 12.8052506984304, 12.7189716545155, 12.5568818896457, 13.5878442754417, 12.4477777359314, 13.458613276019, 11.5372694048211, 12.6658988462833, 13.1221991544681, 11.8969288496479, 12.0339560348556, 10.7204984942366, 11.0412509424485, 13.2561433626765, 12.012941116033, 13.6370073728711, 13.002197695103, 12.7885604643513, 11.0553402593453, 11.2876745189804, 12.1992697192111, 11.9848017068259, 12.278456605073, 11.9934645499774, 11.6966758795366, 12.8579605687482, 11.8289387546131, 13.4722714473599, 13.0082937484125, 12.2367344596312, 12.5730361652089, 11.469360719863, 11.6550213330642, 14.1835544602637, 11.8150404817403, 13.1355716488868, 13.3268012030075, 12.7921198485997, 11.6157693286044, 11.4375928910554, 12.5919185255578, 12.6441454762334, 11.4786698756664, 12.0568260083227, 12.1817501237446, 13.179493828018, 12.482186916007, 13.8135383861336, 13.0877042307159, 12.8190994365235, 12.5982547210658, 11.9219181317463, 11.8412909080179, 14.2338829348871, 12.2979588611735, 14.058719661098, 13.4658672864207, 13.1614571666697, 11.6319765583958, 11.6707435299107, 12.748592603903, 12.8012422788702, 12.6888894176377, 13.650958646909, 12.4394506230388, 13.5999420316998, 12.3057574313399, 13.5129788330187, 12.9984008361046, 12.3400230854469, 11.9757830629178, 11.5598324417962, 11.662716037746, 14.1650490878365, 12.3459077129506, 13.872050080087, 13.3018628393663, 12.937836364744, 11.5189867524327, 11.4605117598805, 12.4847538730474, 12.7640734106732, 12.6057307682027, 13.44949472608, 12.4208079578057, 13.2582179349943, 12.089352006588, 13.4958146137878, 13.0671543845645, 12.6097699344219, 12.4457515338686, 11.5362860192753, 11.7393968626716, 14.166624338231, 12.0908451208575, 13.4782855624081, 13.2999955547276, 12.963695118899, 11.6117278488078, 11.5599346216334, 12.4371596873267, 12.4043638509573, 12.4600707376002, 13.66024659012, 12.1113548639499, 13.4943391605217, 12.3984179257503, 13.5589900910887, 13.0836905932385, 12.6080900673645, 12.5631134723535, 11.8327692692605, 11.7924907578967, 14.0623227726551, 12.2302315773303, 13.8347226923388, 13.2681637853064, 13.2067024872683, 11.5587464374154, 11.7251832782771, 12.6986107796993, 12.805328088034, 12.6292919914546, 13.6988770593492, 12.3137639788941, 13.4931149751946, 11.6937941724472, 12.5868096224204, 13.5923481827244, 12.9242008651621, 12.3731542459281, 10.5839508552645, 11.7418152623521, 14.1345300412501, 12.2761436452101, 13.544323241565, 12.0910282805243, 12.8164502035373, 12.0971197466652, 11.8478180090154, 12.5966568277367, 11.8405894318279, 12.1185219654355, 12.3808092066813, 12.3090561687631, 13.456426891685, 11.229218840972, 12.7722119776126, 12.6311678027325, 11.8402552956604, 11.8094751120725, 10.7669196406645, 11.6262237030047, 13.6929072773718, 11.5877420465114, 13.5147625115529, 12.2628509658487, 12.8525339063345, 11.3170372628272, 11.7851818086191, 11.8375340275913, 11.4812912124711, 11.5480262693629, 12.2628193350118, 12.1268382715268, 12.362287228864, 12.5154454573614, 13.6890874448819, 13.1133246265706, 12.6508980062191, 13.0944384363352, 11.7444220178475, 11.788202312252, 14.2235087461741, 12.2785817243029, 13.9817058267098, 13.4413325860831, 13.0621179201736, 11.6638543730146, 11.6611111021212, 12.7792414107846, 12.9184301634218, 12.7024261860363, 13.6161052047215, 12.5368295609207, 13.5762474246579, 11.1733625350445, 12.7050756608253, 12.5548026220104, 11.7264513906262, 11.6121534773929, 11.1822515222237, 11.0680875287627, 13.4985122985148, 11.2108596207772, 13.6059979362596, 12.5672223237942, 12.2494580367023, 11.5569358921532, 11.9075395566093, 11.7755496474401, 12.5690917935476, 11.4707953685782, 12.4259070657297, 12.1889983710044, 12.0654485790551, 12.1425705261961, 13.5671392278641, 13.0353680721295, 12.3887601753491, 12.1219214700775, 11.8236817689861, 11.4285440077107, 13.9948814097669, 11.9901321729555, 13.932488091816, 13.2658360247112, 12.970114120802, 11.4392578178997, 11.7379581814753, 12.5762355274621, 12.5302386964867, 12.5277033085028, 13.3956393385222, 12.1684605138683, 13.1633048170379, 12.2722919103773, 13.5355475267526, 13.1116758697668, 12.333135690233, 12.6665440995659, 11.6689826776057, 11.663592050513, 13.8785363643371, 11.9292220396984, 13.9052476321737, 13.0080009369155, 12.9598050088917, 11.531196640227, 11.1902749867982, 12.681403227326, 12.6435488155062, 12.5519359819725, 13.4235261985135, 12.0765630018092, 13.3260076099378, 11.5996752022672, 13.5947317045457, 12.9106799892542, 12.387935276999, 12.7430349684579, 11.9284122938591, 11.9364590453286, 14.3854330557068, 11.6564773012812, 13.5651412423758, 12.7488489295768, 12.4943666633842, 12.0892282242953, 11.7047668962075, 12.2523636664427, 12.8297507190494, 12.6783708795887, 12.6351337039207, 12.5043297110043, 12.7791815381655, 11.4527573696959, 13.4055151396477, 12.9131997093429, 12.097928047849, 11.9823572184875, 11.3984770700353, 11.9274457924076, 13.9500184988352, 12.0022004748849, 13.8114282445895, 12.8369551364249, 12.7323831349638, 12.3396808884948, 12.0149402327226, 12.6635584420436, 12.4235076014228, 11.9549570315173, 13.4409060002897, 12.9170312613068, 12.264244991164, 11.7714193855219, 13.3354739632807, 12.7699848803271, 12.5459066828092, 12.4613098098632, 11.4333995712598, 12.0283032128855, 13.7678811619782, 12.3714808849695, 13.9189683908722, 13.2473786195409, 13.1453100361181, 11.7356142470369, 12.7676277274645, 12.5599723069956, 12.4793949663034, 12.1297974556491, 13.0978111319256, 13.0392443468801, 13.2176435453941, 12.5058641783154, 13.6118705002855, 13.1611585834267, 12.7769496572479, 12.5026804918528, 11.9467350509648, 11.7310971993245, 14.1453366899402, 12.1999838753462, 14.0027231122769, 13.4497928360407, 13.1668975070217, 11.5674756010673, 12.3716812396046, 12.7966600218629, 12.6479853591291, 12.6559911338199, 13.6871629086851, 12.4330300154409, 13.5880275495595, 12.6426803637164, 13.7416795676585, 13.1198857444851, 12.757699623203, 12.6091608582507, 11.8459902573225, 11.9082550718676, 14.2084309493861, 12.2508531713337, 14.0553859191303, 13.4799928833534, 13.1738486221746, 11.5711576276644, 11.7433728261473, 12.9206736745832, 12.8427107486683, 12.7312262862604, 13.7984582994721, 12.4537499264571, 13.4577847182877, 10.9381526563824, 13.5219924975122, 13.2760046639667, 12.7215116221973, 12.4719578790736, 11.6366473375562, 12.0336316213946, 14.1510201223552, 12.2907167804277, 13.9569695575498, 12.8802270461484, 13.0514896047969, 12.1982686654553, 12.390218217141, 12.3744645393049, 12.3670512418843, 12.2707417127123, 12.6827889931887, 12.6471913741617, 12.6708185654412, 11.8045864573924, 13.6103318321474, 12.8703230948884, 12.2524883361477, 12.5030492317648, 11.722158430223, 11.7495372778026, 13.8549572508313, 12.3038544724066, 13.8144598914325, 13.124747477139, 12.9129936477778, 11.3842958695344, 11.4613550598434, 12.6463475191885, 12.7274719065204, 12.4991210248854, 13.3795018817009, 12.0305299230504, 13.3204780449201, 12.339700379427, 13.6975041198189, 13.0449231226979, 12.495732751068, 12.4363261565451, 11.7776285409422, 11.8651059380164, 14.1864649677431, 12.1346164890333, 14.0277671261815, 13.3945472745435, 13.1450276730544, 11.60902217807, 11.6637730546006, 12.7878933762178, 12.6709337330988, 12.702720237891, 13.510591602696, 12.3044538980337, 13.5231541254579, 12.3136659630286, 13.6735626146457, 12.8976723534437, 12.3167857552449, 12.3730479718319, 11.6816215843634, 11.7892041963772, 14.369748140493, 12.118483795542, 13.7860276543208, 13.3546188628164, 12.9971212051494, 11.5685465585661, 11.4459278968422, 12.7528430716378, 12.583111723649, 12.5117894278597, 13.5065292541595, 12.1736161488926, 13.3933325534438, 12.3236321379257, 13.8925692938509, 13.0894912662911, 12.3222523271553, 12.6470677107343, 11.6693430713624, 11.8046058025688, 14.4578265066562, 12.1829264323573, 13.8854545853271, 13.2996712442842, 13.1533232373315, 11.5135475917404, 11.5558571090971, 12.8021602957608, 12.8674646356332, 12.6464109907194, 13.5359318483096, 12.4228993247371, 13.219568029273, 11.9365148739329, 13.1884262825137, 12.563023430668, 12.4024732061851, 12.1622998786858, 11.3837007892285, 11.1356249836087, 13.9292986262757, 11.8047730673392, 13.4326335000924, 13.1338287896392, 12.7183418655579, 11.3984491866873, 11.8708670648823, 12.2656116201197, 12.3821740513382, 12.2700886557593, 13.1744285699375, 11.8912376397451, 13.2754779219298, 11.848494756562, 13.4668115764945, 12.549475151538, 12.1944924829939, 11.9939688459917, 11.7548252994538, 11.6575308558746, 14.1072833283034, 12.1241498485081, 13.357396877626, 13.2275686867276, 12.7716808938313, 11.2217440956449, 11.7611948774575, 12.4249327394496, 12.4567612727625, 12.2329064234344, 13.0322616565486, 11.6655776654181, 13.0359433015693, 11.937047355669, 13.1898629482762, 12.5726422735212, 12.5726798348933, 12.0909543082315, 11.8674681189592, 11.5311979408258, 14.1079025881184, 12.0205646248482, 13.617551938839, 13.2095395505257, 12.9596814808092, 12.2836826322891, 11.2556875619804, 12.4723201958077, 12.3117960624811, 12.3818862803597, 13.1572185353487, 12.2431256151018, 13.4922237368159, 12.1148300133654, 13.4774992830802, 12.9032351231719, 12.5261684484828, 12.1680090746111, 11.6914778611649, 11.8445761386398, 14.0738028673682, 12.3062083526974, 13.7405725325613, 13.2771431432453, 13.0830786367249, 11.2764224615401, 11.4489469916569, 12.469414263259, 12.8290298438756, 12.6246029877788, 13.4429608457847, 12.3287094060473, 13.3070916630968, 12.3156318290213, 13.3759573769028, 13.0166377641429, 12.4343373737567, 12.5458096664222, 11.8686862807039, 11.8214792031079, 14.3859500668995, 12.2846385440803, 13.9523207676255, 13.2366017445919, 12.9750017918592, 11.4315828838983, 11.4442449351301, 12.6705951448781, 12.7629229563986, 12.5700489137345, 13.4811516414523, 12.3882357513808, 13.5845102587984, 11.5101434203814, 12.9568944767887, 12.6449488971803, 11.7432696576964, 12.1606425913456, 10.8451944246058, 11.4711540418912, 13.0811178880424, 11.3466402224124, 12.8078122697977, 12.3824277155332, 11.8245051088118, 11.033878184474, 11.6134203398484, 12.1002598796603, 11.6010638601163, 11.549676087612, 12.4239063633644, 12.5357439050719, 13.4735697824421, 11.3335038359535, 13.2968940101015, 13.1068219936151, 12.1794806726248, 12.3243265581966, 11.5472077060716, 11.3483409830804, 13.0774766210381, 12.4629207831702, 14.0390806403132, 13.1596011172655, 13.0332160174326, 12.2524695810672, 12.3798895472813, 12.6235470861505, 12.1640426630125, 12.2247950254833, 12.1406323294767, 12.5228400422577, 11.8250517714264, 11.1132901093811, 12.5916097057348, 12.7682983905802, 11.8864039121137, 11.800415946291, 10.6435474468033, 11.2961694830103, 13.2417747551292, 10.7287443118104, 13.404170034173, 12.8532798644789, 12.3239886701443, 10.973512218176, 11.5864957632374, 12.2402309354277, 11.3268467596918, 11.5474672736911, 12.2001649874358, 12.1831748852694, 12.5023904604911, 10.9034123616509, 12.3583158938657, 12.3587959337889, 11.7301769092212, 11.9442324465407, 10.8074253551814, 11.4222002342831, 13.1629365953438, 11.4363230784321, 13.3242302503518, 11.825408351783, 12.1196919865023, 11.2242419691237, 10.6983043452125, 12.0272045192824, 10.9922186890926, 11.4512095226744, 12.1385414491155, 11.7384113871431, 12.7372305172782, 10.9888921538183, 12.5188822409916, 12.4538892877753, 11.8367982320162, 11.3220428550523, 10.933896676187, 11.5720667977783, 13.565061350504, 11.3478477707327, 13.1533542126168, 12.0792202030357, 12.3439491548336, 11.2524967139418, 11.9652599132772, 11.9943533083329, 10.9670405274175, 11.232034876836, 12.0911972823639, 12.1339652204331, 12.0782768737071, 12.5514332584427, 13.565894217701, 13.0898225767442, 12.467035020547, 12.5190854862074, 11.8455961776098, 11.9199120363387, 14.1382753148858, 12.3058658550093, 13.9038980051527, 13.3503739271313, 13.1347468818123, 11.533726947342, 11.6471763690989, 12.6478858879989, 12.7649042838832, 12.6249969549332, 13.6145308119529, 12.249855820614, 13.3572000783088, 12.5206297602564, 13.6884401995588, 13.079944735895, 12.6003431342541, 12.5649432085615, 11.8381394475564, 11.8659160273488, 14.1719200458767, 12.2097078289852, 13.9183137876111, 13.4409762702364, 13.0921004117433, 11.5512224211466, 11.6979831890495, 12.6153325411278, 12.7364199530508, 12.672657414801, 13.7341092557813, 12.3840235703149, 13.5502770081792, 11.0050489030876, 12.7023018004907, 12.5637643204045, 11.1270941962539, 11.5450974837904, 10.3314594722364, 11.3360298515111, 13.6007575276288, 11.1306226931802, 13.1897734420897, 12.0915366317113, 12.0223434380893, 11.380923602636, 11.6363527174703, 12.5823228117857, 10.9131612626126, 11.18209276258, 12.2160627054488, 11.9733332212548, 11.8309676079323, 11.8529979259146, 12.7108501720844, 12.9904020236671, 11.4126749262747, 11.6900910928028, 10.8073242283468, 12.1482455913138, 13.679670859292, 11.3647244132332, 12.985127742006, 12.4405431401608, 12.0490060232124, 11.7470607252347, 10.3178402051276, 13.0201486414481, 11.353545086395, 13.1204863728359, 12.5779113001437, 12.832790870056, 12.6479242366474, 12.0025232704845, 13.1412830628808, 12.877747515031, 11.7570340450347, 11.6051455705384, 10.1065889049367, 11.4827453953986, 13.6828461814584, 11.7332368414748, 13.7208935360265, 12.6657752786406, 12.3302022389033, 11.6014534350454, 11.425885999946, 12.5045811831183, 11.0303105270521, 11.5207074843514, 12.7776857888241, 12.0314273548905, 11.9320983536001, 11.9594632629158, 13.5167917160384, 13.2565688989119, 12.2823047562712, 11.9193618469126, 11.2849132145832, 12.5313752886791, 13.716349075719, 11.7088759586268, 14.1023868622655, 13.450264964694, 13.0639504259696, 11.388220698149, 12.5328149274463, 12.9696769533078, 11.6675409186907, 12.3530836246967, 12.7069826256088, 12.1446835229911, 13.1057643113949, 11.3881892507981, 13.030114645765, 13.1178450546645, 12.0349854340768, 12.4530706934587, 11.1318052281864, 12.1424493549755, 13.5733466271712, 10.9920968341487, 13.3673937324289, 12.8448919690779, 12.3744813875397, 11.6462105478976, 11.3803744435425, 12.8673797281983, 11.7521495572491, 11.7607384043362, 12.4308141310469, 12.3010249057781, 12.2347972789795, 12.5964841565426, 13.7027241674588, 13.2089143041522, 12.8048355040074, 12.5774568422762, 11.884061700795, 11.7978335998857, 14.1378067603058, 12.2216507777382, 13.9514631932932, 13.358050878984, 13.109211083692, 11.6056317358215, 11.663793762001, 12.804595533462, 12.9387305834113, 12.7035478170655, 13.7033606631956, 12.4255368588406, 13.6332981876328, 10.966376439193, 12.3910699854738, 12.3847361632089, 11.4782998839912, 11.9369456555451, 10.3773978003292, 11.6827095525118, 13.0227834634118, 12.0149192231809, 13.0290003842661, 11.9806483358603, 11.9778758082236, 11.0345209694614, 11.7174456170697, 11.9931807583945, 11.91013445003, 11.0777179520053, 11.6575502862021, 11.7234253422465, 11.983396252915, 10.9401815777881, 12.8897542175903, 12.7838939031615, 11.6891514994582, 12.1761459083228, 10.7804594766759, 11.7200262669945, 13.250931943692, 11.4306099502856, 12.8627963120138, 12.3091211528353, 12.3387405488775, 10.2956639653444, 11.6109025606084, 11.9330604584893, 11.315884485154, 11.7597563595566, 12.0529326512517, 11.5204323063685, 12.5542407400717, 10.8901981999531, 12.6716565800448, 12.1850327902115, 12.1184654996523, 11.5935856373925, 10.7679568098204, 12.684661604491, 13.5322869899053, 10.8375973140203, 13.1341414383696, 12.4713608228455, 12.3996735569132, 11.2404611536777, 11.1879960215822, 11.8149699366855, 11.5263753425494, 11.550562684474, 11.881954512162, 11.960385266623, 11.9191343945325, 11.9275162461025, 14.4300776220174, 13.2743343624162, 12.5004372882726, 12.3818166726893, 11.3172066364164, 12.4489415414244, 14.5518055941913, 12.3814877434305, 13.6640347229998, 13.004009818708, 12.98641916686, 11.5971294050632, 13.0919638244835, 12.5969370593044, 12.523375648891, 11.8048025943535, 12.6716475075252, 12.2891516762832, 12.8799082897072, 12.5791235755281, 13.7530238239126, 13.2996352538429, 12.8330831864878, 12.6180370732925, 11.9213345604736, 11.9242170074846, 14.407275051282, 12.5172235205991, 14.0614967570622, 13.5507890858319, 13.3076807320896, 11.7858001461438, 11.8584538361961, 12.8273710855852, 12.9510255323964, 12.6674167292068, 13.8345005412558, 12.5315423088742, 13.5261250542701, 11.2378426019217, 13.317780686254, 12.8520367085728, 13.2314690414045, 11.6164657431659, 10.5998799720902, 11.4357432274465, 14.0417669865121, 12.1607754042512, 13.2466054940719, 12.797111452771, 12.4047191492522, 11.7833124729873, 12.097653018214, 11.7951612085733, 12.3041048876447, 11.1508412920931, 12.4501892541409, 12.4610946871315, 12.3261738189918, 10.8552645219384, 12.9975652341808, 12.6677845732241, 11.7652169789635, 11.6827253641907, 11.110919985169, 11.8897433664123, 13.3123005479684, 11.7760781785571, 13.1638079938049, 12.7956196208381, 12.4920841796339, 11.7252484518286, 11.8268745473843, 11.3318932693566, 11.3357737895019, 11.535325758363, 12.5461021275932, 12.3602886322043, 12.8926798402372), dim = c(20L, 100L))) par(mar=c(5, 4, 4, 2) - 1.9) by(res.over$res.plot, INDICES = res.over$res.plot$var, FUN = function(xx) { plot(x = xx[, "trueval"], y = xx[, "xbar"], col = as.character(xx[, "col"]), xlab = "observed values", ylab = "imputed values", main = paste(xx[1, "var"], " (cov =", xx[1, "pct"],"%)"), ylim = c(min(xx[, "binf"], na.rm = T), max(xx[, "bsup"], na.rm = T))) abline(0, 1) segments(x0 = xx[, "trueval"], x1 = xx[, "trueval"], y0 = xx[, "binf"], y1 = xx[, "bsup"], col = as.character(xx[, "col"])) legend("bottomright", legend = c("0-0.2", "0.2-0.4", "0.4-0.6", "0.6-0.8", "0.8-1"), col = c("blue", "green", heat.colors(3)[c(3, 2, 1)]), bty = "n", lty = 1, horiz =TRUE, cex = .8, lwd = 0.4) }) ## ----fig.height = 4, fig.width = 4, fig.align = "center"---------------------- res.m <- choosem(res.pool.kmeans) ## ----eval=FALSE--------------------------------------------------------------- # res.nbclust <- choosenbclust(res.pool.kmeans) ## ----fig.height = 4, fig.width = 4, fig.align = "center", echo=FALSE---------- res.nbclust <- list(nb.clust = 3L, crit = c(`2` = 0.114077699448272, `3` = 0.0973099188526245, `4` = 0.124537091242568, `5` = 0.165533521629721)) plot(as.numeric(names(res.nbclust$crit)),res.nbclust$crit,xlab="nb clust",ylab="Total instability",type="b",xaxt = "n") axis(1, as.numeric(names(res.nbclust$crit)), as.numeric(names(res.nbclust$crit))) ## ----fig.width=7,fig.height=5,fig.align="center",results=FALSE, warning=FALSE, message=FALSE---- require(reshape2) require(ggplot2) dat.m = melt(data.frame(wine.na, part = as.factor(part)), id.var=c("part")) ggplot(dat.m, aes(part, value, col = part)) + facet_wrap(variable~., scales = "free_y") + geom_boxplot(width = 0.7) ## ----fig.width=7,fig.height=5,fig.align="center", message=FALSE--------------- library(VIM) pairsVIM(wine.na, pch = 21, bg = c("red", "green3", "blue")[part], cex = .2, gap = 0) ## ----fig.width=7, fig.height=5, fig.align="center"---------------------------- library(FactoMineR) library(missMDA) # merge the partition variable with the incomplete data set data.pca <- cbind.data.frame(class = factor(part, levels = seq(nb.clust)), wine.na) # perform PCA with missing values by specifying where is the partition variable res.imputepca <- imputePCA(data.pca, quali.sup = 1) res.pca <- PCA(res.imputepca$completeObs, quali.sup = 1, graph = FALSE) plot(res.pca, habillage = 1) ## ----------------------------------------------------------------------------- library(clusterCrit) res.crit <- extCriteria(part, ref, crit = "all") round(unlist(res.crit), 2)