--- title: "Full lists of arguments" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Full lists of arguments} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ## cifcurve() - `formula` A model formula specifying the time-to-event outcome on the left-hand side (typically `Event(time, status)` or `survival::Surv(time, status)`) and, optionally, a stratification variable on the right-hand side. Unlike `cifplot()`, this function does not accept a fitted `survfit` object. - `data` A data frame containing variables in `formula`. - `weights` Optional name of the weight variable in `data`. Weights must be nonnegative. - `subset.condition` Optional character expression to subset `data` before analysis. - `na.action` A function specifying the action to take on missing values (default `na.omit`). - `outcome.type` Character string specifying the type of time-to-event outcome. One of `"survival"` (Kaplan-Meier) or `"competing-risk"` (Aalen-Johansen). If `NULL` (default), the function automatically infers the outcome type from the data: if the event variable has more than two unique levels, `"competing-risk"` is assumed; otherwise, `"survival"` is used. You can also use abbreviations such as `"S"` or `"C"`. Mixed or ambiguous inputs (e.g., `c("S", "C")`) trigger automatic detection based on the event coding. - `code.event1` Integer code of the event of interest (default `1`). - `code.event2` Integer code of the competing event (default `2`). - `code.censoring` Integer code of censoring (default `0`). - `error` Character string specifying the method for SEs and CIs used internally. For `"survival"` without weights, choose one of `"greenwood"` (default), `"tsiatis"`, or `"if"`. For `"competing-risk"` without weights, choose one of `"delta"` (default), `"aalen"`, or `"if"`. SEs and CIs based on influence functions (`"if"`) is recommended for weighted analysis. - `conf.type` Character specifying the method of transformation for CIs used internally (default `"arcsine-square root"`). - `conf.int` Numeric two-sided level of CIs (default `0.95`). - `return_if` Logical. When `TRUE` and `engine = "calculateAJ_Rcpp"`, the influence function is also computed and returned (default `FALSE`). - `report.survfit.std.err` Logical. If `TRUE`, report SE on the log-survival scale (survfit's convention). Otherwise SE is on the probability scale. - `engine` Character. One of `"auto"`, `"calculateKM"`, or `"calculateAJ_Rcpp"` (default `"calculateAJ_Rcpp"`). - `prob.bound` Numeric lower bound used to internally truncate probabilities away from 0 and 1 (default `1e-7`). ## cifplot() - `formula_or_fit` A model formula or a survfit object. Note: When a formula is supplied, the left-hand side must be `Event(time, status)` or `survival::Surv(time, status)`. - `data` A data frame containing variables in `formula`. - `weights` Optional name of the weight variable in `data`. Weights must be nonnegative. - `subset.condition` Optional character expression to subset `data` before analysis. - `na.action` A function specifying the action to take on missing values (default `na.omit`). - `outcome.type` Character string specifying the type of time-to-event outcome. One of `"survival"` (Kaplan-Meier) or `"competing-risk"` (Aalen-Johansen). If `NULL` (default), the function automatically infers the outcome type from the data: if the event variable has more than two unique levels, `"competing-risk"` is assumed; otherwise, `"survival"` is used. You can also use abbreviations such as `"S"` or `"C"`. Mixed or ambiguous inputs (e.g., `c("S", "C")`) trigger automatic detection based on the event coding. - `code.event1` Integer code of the event of interest (default `1`). - `code.event2` Integer code of the competing event (default `2`). - `code.censoring` Integer code of censoring (default `0`). - `error` Character string specifying the method for SEs and CIs used internally. For `"survival"` without weights, choose one of `"greenwood"` (default), `"tsiatis"`, or `"if"`. For `"competing-risk"` without weights, choose one of `"delta"` (default), `"aalen"`, or `"if"`. SEs and CIs based on influence functions (`"if"`) is recommended for weighted analysis. - `conf.type` Character specifying the method of transformation for CIs used internally (default `"arcsine-square root"`). - `conf.int` Numeric two-sided level of CIs (default `0.95`). - `type.y` Character string specifying the y-scale. For survival/CIF curves, `"surv"` implies survival probabilities and `"risk"` implies CIF (1-survival in simple survival settings). Specify `"cumhaz"` to plot cumulative hazard or `"cloglog"` to generate a complementary log-log plot. If `NULL`, a default is chosen from `outcome.type` or the survfit object. - `label.x` Character x-axis labels (default `"Time"`). - `label.y` Character y-axis label (default is chosen automatically from `outcome.type` and `type.y`, e.g. "Survival", "Cumulative incidence" or "Cumulative hazard"). - `label.strata` Character vector of labels for strata. - `order.strata` Optional ordering of strata levels. When `panel.per.variable = TRUE`, supply a named list `list(var = c("L1","L2",...))` for each RHS variable; unmatched levels are dropped. When `panel.per.variable = FALSE`, supply a character vector `c("L1","L2",...)` that specifies the display order (legend/risktable) of the single stratification factor. Levels not listed are dropped. If `label.strata` is a named vector, its names must match the (re-ordered) levels. - `limits.x` Numeric length-2 vectors for axis limits. If `NULL` it is internally set to `c(0,max(out_read_surv$t))`. - `limits.y` Numeric length-2 vectors for axis limits. If `NULL` it is internally set to `c(0,1)`. - `breaks.x` Numeric vectors for axis breaks (default `NULL`). - `breaks.y` Numeric vectors for axis breaks (default `NULL`). - `use.coord.cartesian` Logical; if `TRUE`, uses `ggplot2::coord_cartesian()` for zooming instead of changing the scale limits (default `FALSE`). - `add.conf` Logical add `add_confidence_interval()` to plot. It calls `geom_ribbon()` (default `TRUE`). - `add.risktable` Logical add `add_risktable(risktable_stats="n.risk")` to plot (default `TRUE`). - `add.estimate.table` Logical add `add_risktable(risktable_stats="estimate (conf.low, conf.high)")` to plot (default `FALSE`). - `symbol.risk.table` Character specifying the symbol used in the risk table to denote strata: `"square"`, `"circle"`, or `"triangle"` (default `"square"`). - `font.size.risk.table` Numeric font size for texts in risk / estimate tables (default `3`). - `add.censor.mark` Logical add `add_censor_mark()` to plot. It calls `geom_point()` (default `TRUE`). - `shape.censor.mark` Integer point shape for censor marks (default `3`). - `size.censor.mark` Numeric point size for censor marks (default `2`). - `add.competing.risk.mark` Logical add time marks to describe event2 specified by `Event()`, usually the competing events. It calls `geom_point()` (default `TRUE`). - `competing.risk.time` Named list of numeric vectors (names must be mapped to strata labels). - `shape.competing.risk.mark` Integer point shape for competing-risk marks (default `16`). - `size.competing.risk.mark` Numeric point size for competing-risk marks (default `2`). - `add.intercurrent.event.mark` Logical overlay user-specified time marks per strata calls `geom_point()` (default `TRUE`). - `intercurrent.event.time` Named list of numeric vectors (names must be mapped to strata labels). - `shape.intercurrent.event.mark` Integer point shape for intercurrent-event marks (default `1`). - `size.intercurrent.event.mark` Numeric point size for intercurrent-event marks (default `2`). - `add.quantile` Logical add `add_quantile()` to plot. It calls `geom_segment()` (default `TRUE`). - `level.quantile` Numeric quantile level for `add_quantile()` (default `0.5`). - `panel.per.event` Logical. Explicit panel mode. If `TRUE` and `outcome.type == "competing-risk"`, `cifplot()` internally calls `cifpanel()` to display two event-specific CIFs side-by-side (event 1 and event 2) using reversed `code.events`. Ignored for non-competing-risk outcomes. - `panel.censoring` Logical. Explicit panel mode. If `TRUE` and `outcome.type == "survival"`, `cifplot()` internally calls `cifpanel()` to display KM-type curves for (event, censor) and (censor, event) so that censoring patterns can be inspected. - `panel.per.variable` Logical. Explicit panel mode. If `TRUE` and the right-hand side of the formula has multiple covariates (e.g. `~ a + b + c`), the function produces a panel where each variable in RHS is used once as the stratification factor. - `panel.mode` Character specifying Automatic panel mode. If `"auto"` and none of `panel.per.variable`, `panel.per.event`, `panel.censoring` has been set to `TRUE`, the function chooses a suitable panel mode automatically: (i) if the formula RHS has 2+ variables, it behaves like `panel.per.variable = TRUE`; (ii) otherwise, if `outcome.type == "competing-risk"`, it behaves like `panel.per.event = TRUE`; (iii) otherwise, if `outcome.type == "survival"`, it behaves like `panel.censoring = TRUE`. If a panel mode is explicitly specified, `panel.mode` is ignored. - `rows.columns.panel` Optional integer vector `c(nrow, ncol)` controlling the panel layout. If `NULL`, an automatic layout is used. - `style` Character plot theme controls (default `"classsic"`). - `palette` Optional character vector specify color palette, e.g. `palette=c("blue", "cyan", "navy", "green")` (default `NULL`). - `linewidth` Optional numeric specifying the line width of curve (default `0.8`). - `linetype` Optional logical using different line types of curve (default `\code{`FALSE`). - `font.family` Character plot theme controls (e.g. `"sans"`, `"serif"`, and `"mono"`. default `"sans"`). - `font.size` Integer plot theme controls (default `12`). - `legend.position` Character specify position of legend: `"top"`, `"right"`, `"bottom"`, `"left"`, or `"none"` (default `"top"`). - `filename.ggsave` Character save the `ggsurvfit` plot with the path and name specified. - `width.ggsave` Numeric specify width of the `ggsurvfit` plot. - `height.ggsave` Numeric specify height of the `ggsurvfit` plot. - `dpi.ggsave` Numeric specify dpi of the `ggsurvfit` plot. ## cifpanel() - `plots` Optional list of existing ggplot objects to be arranged into a panel. When plots is supplied, no new models are fitted; the plots are used as-is. - `formula` A model formula specifying the time-to-event outcome on the left-hand side (typically `Event(time, status)` or `survival::Surv(time, status)`) and, optionally, a stratification variable on the right-hand side. Unlike `cifplot()`, this function does not accept a fitted `survfit` object. - `formulas` A list of formulas (one per panel). If provided, overrides `formula`. - `data` A data frame containing variables in `formula`. - `weights` Optional name of the weight variable in `data`. Weights must be nonnegative. - `subset.condition` Optional character expression to subset `data` before analysis. - `na.action` A function specifying the action to take on missing values (default `na.omit`). - `outcome.type` Character string specifying the type of time-to-event outcome. One of `"survival"` (Kaplan-Meier) or `"competing-risk"` (Aalen-Johansen). If `NULL` (default), the function automatically infers the outcome type from the data: if the event variable has more than two unique levels, `"competing-risk"` is assumed; otherwise, `"survival"` is used. You can also use abbreviations such as `"S"` or `"C"`. Mixed or ambiguous inputs (e.g., `c("S", "C")`) trigger automatic detection based on the event coding. - `code.event1` Integer code of the event of interest (default `1`). - `code.event2` Integer code of the competing event (default `2`). - `code.censoring` Integer code of censoring (default `0`). - `code.events` Optional numeric length-3 vector `c(event1, event2, censoring)`. When supplied, it overrides `code.event1`, `code.event2`, and `code.censoring` (primarily used when `cifpanel()` is called or when `panel.per.event = TRUE`). - `error` Character string specifying the method for SEs and CIs used internally. For `"survival"` without weights, choose one of `"greenwood"` (default), `"tsiatis"`, or `"if"`. For `"competing-risk"` without weights, choose one of `"delta"` (default), `"aalen"`, or `"if"`. SEs and CIs based on influence functions (`"if"`) is recommended for weighted analysis. - `conf.type` Character specifying the method of transformation for CIs used internally (default `"arcsine-square root"`). - `conf.int` Numeric two-sided level of CIs (default `0.95`). - `type.y` Character string specifying the y-scale. For survival/CIF curves, `"surv"` implies survival probabilities and `"risk"` implies CIF (1-survival in simple survival settings). Specify `"cumhaz"` to plot cumulative hazard or `"cloglog"` to generate a complementary log-log plot. If `NULL`, a default is chosen from `outcome.type` or the survfit object. - `label.x`, `label.y` Optional vectors/lists of axis labels per panel. - `label.strata` Optional list of character vectors for legend labels per panel (passed to `cifplot()`). - `order.strata` Optional list of character vectors for ordering labels per panel (passed to `cifplot()`). - `limits.x`, `limits.y` Optional vectors/lists of numeric length-2 axis limits per panel. - `breaks.x`, `breaks.y` Optional vectors/lists of axis breaks per panel (forwarded to `breaks.x` / `breaks.y` in `cifplot()`). - `add.conf`, `add.censor.mark`, `add.competing.risk.mark`, `add.intercurrent.event.mark`, `add.quantile` Optional logical vectors/lists per panel to toggle features in `cifplot()`. If `NULL`, sensible defaults are used (CI/Censor on; others off). - `rows.columns.panel` Integer vector `c(nrow, ncol)` specifying the grid size. - `title.panel`, `subtitle.panel`, `caption.panel` Optional strings for panel annotation. - `tag.panel` Passed to `patchwork::plot_annotation(tag_levels = ...)`. - `title.plot` Optional length-2 character vector, titles for base/inset plots when `inset.panel = TRUE`. - `legend.position` Position of legends: `"top"`, `"right"`, `"bottom"`, `"left"`, or `"none"`. - `legend.collect` If `TRUE` (grid mode), collect legends across subplots. - `inset.panel` If `TRUE`, place the second plot as an inset over the first. - `inset.left`, `inset.bottom`, `inset.right`, `inset.top` Numeric positions (0–1) of the inset box. - `inset.align.to` One of `"panel"`, `"plot"`, or `"full"`. - `inset.legend.position` Legend position for the inset plot (e.g., `"none"`). - `filename.ggsave` Character save the composed panel with the path and name specified. - `width.ggsave` Numeric specify width of the composed panel. - `height.ggsave` Numeric specify height of the composed panel. - `dpi.ggsave` Numeric specify dpi of the composed panel. - `print.panel` Logical. If `TRUE`, the composed patchwork object is printed immediately (for interactive use). If `FALSE`, the object is returned invisibly so that it can be assigned, modified, or saved. Kept for backward compatibility. - `engine` Character scalar selecting the internal plotting engine. Currently only `"cifplot"` is supported and used to construct each panel `cifplot_single()`. This argument is reserved for future extensions. - `...` Additional arguments forwarded to `cifplot` (e.g., `style`, `font.family`, `font.size`, etc.). Panel-wise overrides provided via explicit arguments take precedence over `...`. ## polyreg() - `nuisance.model` A `formula` describing the outcome and nuisance covariates, excluding the exposure of interest. The left-hand side must be `Event(time, status)` or `survival::Surv(time, status)`. - `exposure` A character string giving the name of the categorical exposure variable in `data`. - `strata` Optional character string with the name of the stratification variable used to adjust for dependent censoring (default `NULL`). - `data` A data frame containing the outcome, exposure and nuisance covariates referenced by `nuisance.model`. - `na.action` A function specifying the action to take on missing values (default `na.omit`). - `code.event1` Integer code of the event of interest (default `1`). - `code.event2` Integer code of the competing event (default `2`). - `code.censoring` Integer code of censoring (default `0`). - `code.exposure.ref` Integer code identifying the reference exposure category (default `0`). - `effect.measure1` Character string specifying the effect measure for the primary event. Supported values are `"RR"`, `"OR"` and `"SHR"`. - `effect.measure2` Character string specifying the effect measure for the competing event. Supported values are `"RR"`, `"OR"` and `"SHR"`. - `time.point` Numeric time point at which the exposure effect is evaluated. Required for survival and competing risk analyses. - `outcome.type` Character string selecting the outcome type. Valid values are `"competing-risk"`, `"survival"`, `"binomial"`, `"proportional-survival"` and `"proportional-competing-risk"`. Defaults to `"competing-risk"`. If `NULL` (default), the function automatically infers the outcome type from the data: if the event variable has more than two unique levels, `"competing-risk"` is assumed; otherwise, `"survival"` is used. You can also use abbreviations such as `"S"` or `"C"`. Mixed or ambiguous inputs (e.g., `c("S", "C")`) trigger automatic detection based on the event coding in `data`. - `conf.int` Numeric two-sided level of CIs (default `0.95`). - `report.nuisance.parameter` Logical if `TRUE`, the returned object includes estimates of the nuisance model parameters (default `FALSE`). - `report.optim.convergence` Logical if `TRUE`, optimization convergence summaries are returned (default `FALSE`). - `report.sandwich.conf` Logical or `NULL`. When `TRUE`, CIs based on sandwich variance are computed. When `FALSE`, they are omitted (default `TRUE`). This CI is default for time-point models (`"outcome.type=COMPETING-RISK"`, `"survival"` or `"binomial"`) and is not available otherwise. - `report.boot.conf` Logical or `NULL`. When `TRUE`, bootstrap CIs are computed. When `FALSE`, they are omitted. If `NULL`, the function chooses based on `outcome.type` (default `NULL`). This CI is default for proportional models (`outcome.type="proportional-competing-risk"` or `"proportional-survival"`). - `boot.bca` Logical indicating the bootstrap CI method. Use `TRUE` for bias-corrected and accelerated intervals or `FALSE` for the normal approximation (default to `FALSE`). - `boot.replications` Integer giving the number of bootstrap replications (default to `200`). - `boot.seed` Numeric seed used for resampling of bootstrap. - `nleqslv.method` Character string specifying the solver used in `nleqslv()`. Available choices are `"Broyden"` and `"Newton"`. - `optim.parameter1` Numeric tolerance for convergence of the outer loop (default `1e-6`). - `optim.parameter2` Numeric tolerance for convergence of the inner loop (default `1e-6`). - `optim.parameter3` Numeric constraint on the absolute value of parameters (default `100`). - `optim.parameter4` Integer maximum number of outer loop iterations (default `50`). - `optim.parameter5` Integer maximum number of `nleqslv()` iterations per outer iteration (default `50`). - `optim.parameter6` Integer maximum number of iterations for the Levenberg-Marquardt routine (default `50`). - `optim.parameter7` Numeric convergence tolerance for the Levenberg-Marquardt routine (default `1e-10`). - `optim.parameter8` Numeric tolerance for updating the Hessian in the Levenberg-Marquardt routine (default `1e-6`). - `optim.parameter9` Numeric starting value for the Levenberg-Marquardt damping parameter lambda (default `1e-6`). - `optim.parameter10` Numeric upper bound for lambda in the Levenberg-Marquardt routine (default `40`). - `optim.parameter11` Numeric lower bound for lambda in the Levenberg-Marquardt routine (default `0.025`). - `optim.parameter12` Numeric multiplicative increment applied to lambda when the Levenberg-Marquardt step is successful (default to `2`). - `optim.parameter13` Numeric multiplicative decrement applied to lambda when the Levenberg-Marquardt step is unsuccessful (default `0.5`). - `data.initial.values` Optional data frame providing starting values for the optimization (default `NULL`). - `normalize.covariate` Logical indicating whether covariates should be centered and scaled prior to optimization (default `TRUE`). - `terminate.time.point` Logical indicating whether time points that contribute estimation are terminated by min of max follow-up times of each exposure level (default `TRUE`). - `prob.bound` Numeric lower bound used to internally truncate probabilities away from 0 and 1 (default `1e-7`).