Package ‘cargo’

July 2, 2022
Title Develop R Packages using Rust
Version 0.2.15

Description A framework is provided to develop R packages using Rust' <https:
//www.rust-lang.org/> with
minimal overhead, and more wrappers are easily added. Help is provided to run 'Cargo’ <https:
//doc.rust-lang.org/cargo/> in a manner
consistent with CRAN policies. Rust code can also be embedded di-
rectly in an R script. The package is not official, affiliated with,
nor endorsed by the Rust project.

URL https://github.com/dbdahl/cargo-framework (repository),

https://raw.githubusercontent.com/dbdahl/cargo-framework/main/cargo/inst/doc/
Writing_R_Extensions_in_Rust.pdf
(paper)
BugReports https://github.com/dbdahl/cargo-framework/issues
License MIT + file LICENSE | Apache License 2.0
Depends R (>=4.0.0)
Suggests roxygen2 (>= 7.2.0), testthat (>=3.1.4)
SystemRequirements Cargo [Rust package manager]
Encoding UTF-8
RoxygenNote 7.2.0
Config/testthat/edition 3
NeedsCompilation no
Author David B. Dahl [aut, cre] (<https://orcid.org/0000-0002-8173-1547>)
Maintainer David B. Dahl <dahl@stat.byu.edu>
Repository CRAN
Date/Publication 2022-07-01 22:20:02 UTC

https://www.rust-lang.org/
https://www.rust-lang.org/
https://doc.rust-lang.org/cargo/
https://doc.rust-lang.org/cargo/
https://github.com/dbdahl/cargo-framework
https://raw.githubusercontent.com/dbdahl/cargo-framework/main/cargo/inst/doc/Writing_R_Extensions_in_Rust.pdf
https://raw.githubusercontent.com/dbdahl/cargo-framework/main/cargo/inst/doc/Writing_R_Extensions_in_Rust.pdf
https://github.com/dbdahl/cargo-framework/issues
https://orcid.org/0000-0002-8173-1547

2 install

R topics documented:

api_documentation Lo e e e 2
install e e e 2
new_package e e e e 3
prebuild L e e 3
TUIN . . ot e e e e e e e e e e e e e e e e 4
rust_fn . . . e s 5
shlib_get. e e e 6
shlib_set o e e 7

Index 9

api_documentation Browse API Documentation
Description

This function opens in a web browser the documentation of the API for the Cargo Framework.

Usage

api_documentation(pkgroot = ".")

Arguments

pkgroot The root directory of the package.

Value

NULL, invisibly.

install Install Rust Toolchain

Description

This function downloads the ‘rustup’ installer, run it, and adds targets to compile for all the CRAN
build machines.

Usage
install(force = FALSE)

Arguments

force If TRUE, installation proceeds without asking for user confirmation.

new_package 3

Value

Invisibly, TRUE if successful and FALSE otherwise.

new_package Make a Skeleton for a New Package

Description

A new Rust-based package using the cargo framework is created at the supplied path and the pack-
age is installed.

Usage
new_package(path, ...)
Arguments
path A path where the package is created. The name of the package is taken as the
last element in the file path.
Extra arguments that are currently ignored.
prebuild Prepare for Building the Package Source
Description

This function generates documentation and/or Rust registration code, depending on the value of
what.

Usage

prebuild(
pkgroot =
what = c("register_calls”, "documentation”, "vendor"”)[1:2]

)

non
L]

Arguments

pkgroot The root directory of the package.

what A character vector indicating the desired action. If it contains "register_calls”,
the function (re)generates Rust code. If it contains "documentation”, the func-
tion (re)generates documentation. If it contains "vendor", the Rust dependen-
cies are (re)vendored.

4 run

Details

If a package’s usage of base: : . Call() changes, rerun this function to update the src/rust/src/registration.rs
file.

Likewise, if a package’s documentation changes, run this function to generate documentation using
roxygen2: :roxygenise() and then automatically move it from man to man. When the source
package is installed, examples in the documentation are adjusted according based on whether the
Rust can be compiled at that time. Lines in the examples that start with #' # R_CARGO are deleted
if Rust can be compiled, otherwise, the line is preserved (with # R_CARGO itself removed).

Value

NULL, invisibly.

run Run Cargo
Description
This function runs Cargo (Rust’s package manager) with the ... arguments passed as command

line arguments.

Usage

run(

L
n o n

minimum_version = ".",

methods = c("envir"”, "path”, "cache"),
environment_variables = list(),
rustflags = NULL,
use_packageStartupMessage = FALSE,
must_be_silent = FALSE,

no_prompting = FALSE,

stdout = "",

stderr = ""

Arguments

Character vector of command line arguments passed to the cargo command.
minimum_version

A character string representing the minimum version of Rust that is needed. Or

a path to the root of a package (i.e., the directory containing the DESCRIPTION

file), in which case the value is found from the field: SystemRequirements:

Cargo (>= XXXX).

rust_fn 5

methods A character vector potentially containing values "envir”, "path"”, and "cache”.
This indicates the methods to use (and their order) when searching for a suitable
Cargo installation. "envir"” indicates to try to use the values of the CARGO_HOME
and RUSTUP_HOME environment variables. "path” indicates to try to use the di-
rectories . cargo and .rustup in the user’s home directory. "cache” indicates
to try to use the directories from the cargo package’s own installation as given
by the tools::R_user_dir('cargo', 'cache').

environment_variables
A named character vector providing environment variables which should be
temporarily set while running Cargo. Note that RUSTUP_HOME and CARGO_HOME
are automatically set by this function.

rustflags A character vector from which the CARGO_ENCODED_RUSTFLAGS environment
variables is constructed and then temporarily set. Or, if NULL, this environment
variable is left unchanged.

use_packageStartupMessage
Should essential messages be displayed using base: : packageStartupMessage()?

must_be_silent Should all messages be suppressed (regardless of the value of use_packageStartupMessage)?

no_prompting Prohibit prompting the user?

stdout See argument of the same name in base: : system2().
stderr See argument of the same name in base: : system2().
Value

The same value and behavior as the base: : system2() function, except a non-zero exit code will
be given in Cargo is not found.

Examples

if (run(”--version”, must_be_silent=TRUE) != 0) {
message("Cargo is not installed. Please run cargo::install() in an interactive session.”)

}

rust_fn Define an R Function Implemented in Rust

Description

This function takes Rust code as a string from the last unnamed argument, takes variable names for
all other unnamed arguments, compiles the Rust function, and wraps it as an R function.

6 shlib_get

Usage

rust_fn(
dependencies = character(9),
minimum_version = "1.31.0",
verbose = FALSE,
cached = TRUE,
longjmp = TRUE,
invisible = FALSE

)
Arguments
Rust code is taken as a string from the last unnamed argument, and variable
names come for all other unnamed arguments. See example.
dependencies A character vector of crate dependencies, e.g., c('rand = "0.8.5" "', 'rand_pcg

="0.3.1"").

minimum_version
A character string representing the minimum version of Rust that is needed. Or
a path to the root of a package (i.e., the directory containing the DESCRIPTION
file), in which case the value is found from the field: SystemRequirements:
Cargo (>= XXXX).

verbose If TRUE, Cargo prints compilation details. If FALSE, Cargo is run in quiet mode,
except for the first time this function is run. If "never”, Cargo is always run in
quiet mode. In any case, errors in code are always shown.

cached Should Cargo use previously compiled artifacts?
longjmp Should the compiled function use the faster (but experimental) longjmp func-
tionality when Rust code panics?
invisible Should the compiled function return values invisibly?
Value

An R function implemented with the supplied Rust code.

shlib_get Cache a Shared Library

Description

This function retrieves the path to a cached shared library developed with the Cargo framework.

Usage
shlib_get (pkgname)

shlib_set 7

Arguments

pkgname A string giving the name of the package.

Value

A string giving the path to the cached shared library, or NULL if the library is not cached.

See Also
shlib_set

Examples

shlib_get("my_package")

shlib_set Cache a Shared Library

Description

This function caches a shared library developed with the Cargo framework.

Usage

shlib_set(
pkgname,
path,
force = FALSE,
use_packageStartupMessage = FALSE,
no_prompting = FALSE

)
Arguments
pkgname A string giving the name of the package.
path A string giving the path to the shared library.
force If TRUE, installation proceeds without asking for user confirmation.

use_packageStartupMessage
Should essential messages be displayed using base: : packageStartupMessage()?

no_prompting Prohibit prompting the user?

Value

A logical indicating whether the library was successfully cached.

8 shlib_set

See Also
shlib_get

Examples

shlib_set("my_package","/some/path/to/a/shared_library.so")

Index

api_documentation, 2

base::.Call(), 4
base: :packageStartupMessage(), 5,7
base::system2(), 5

install, 2
new_package, 3
prebuild, 3

roxygen2: :roxygenise(), 4
run, 4
rust_fn, 5

shlib_get, 6
shlib_set, 7

	api_documentation
	install
	new_package
	prebuild
	run
	rust_fn
	shlib_get
	shlib_set
	Index

