| Type: | Package |
| Title: | Bayesian Model Selection Approach for Parsimonious Gaussian Mixture Models |
| Version: | 1.1.1 |
| Date: | 2025-10-30 |
| Depends: | R(≥ 3.1.0) |
| Imports: | methods (≥ 3.5.1), mcmcse (≥ 1.3-2), pgmm (≥ 1.2.3), mvtnorm (≥ 1.0-10), MASS (≥ 7.3-51.1), Rcpp (≥ 1.0.1), gtools (≥ 3.8.1), label.switching (≥ 1.8), fabMix (≥ 5.0), mclust (≥ 5.4.3) |
| Maintainer: | Yaoxiang Li <yl814@georgetown.edu> |
| Description: | Model-based clustering using Bayesian parsimonious Gaussian mixture models. MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. GREEN et al. (1995) <doi:10.1093/biomet/82.4.711>. |
| License: | GPL-3 |
| Encoding: | UTF-8 |
| RoxygenNote: | 7.3.2 |
| Suggests: | testthat |
| LinkingTo: | Rcpp, RcppArmadillo |
| NeedsCompilation: | yes |
| Packaged: | 2025-10-30 15:15:50 UTC; Bach |
| Author: | Yaoxiang Li [aut, cre], Xiang Lu [aut], Tanzy Love [aut] |
| Repository: | CRAN |
| Date/Publication: | 2025-10-30 15:40:02 UTC |
CalculateProposalLambda
Description
CalculateProposalLambda
Usage
CalculateProposalLambda(hparam, thetaYList, CxyList, constraint, m, p, qVec)
Arguments
hparam |
hparam |
thetaYList |
thetaYList |
CxyList |
CxyList |
constraint |
constraint |
m |
the number of clusters |
p |
the number of features |
qVec |
the vector of the number of factors in each clusters |
CalculateProposalPsy
Description
CalculateProposalPsy
Usage
CalculateProposalPsy(hparam, thetaYList, CxyList, constraint, m, p, qVec)
Arguments
hparam |
hparam |
thetaYList |
thetaYList |
CxyList |
CxyList |
constraint |
constraint |
m |
the number of clusters |
p |
the number of features |
qVec |
the vector of the number of factors in each clusters |
EvaluateProposalLambda
Description
EvaluateProposalLambda
Usage
EvaluateProposalLambda(
hparam,
thetaYList,
CxyList,
constraint,
newlambda,
m,
qVec,
p
)
Arguments
hparam |
hparam |
thetaYList |
thetaYList |
CxyList |
CxyList |
constraint |
constraint |
newlambda |
newlambda |
m |
the number of clusters |
qVec |
the vector of the number of factors in each clusters |
p |
the number of features |
An S4 class to represent a Hyper parameter.
Description
An S4 class to represent a Hyper parameter.
Slots
alpha1A numeric value
alpha2A numeric value
deltaA numeric value
ggammaA numeric value
bbetaA numeric value
ThetaYList-class
Description
Definiton of ThetaYList parameter sets
Slots
taoA numeric vector
psyA list value
MA list value
lambdaA list value
YA list value
generatePriorLambda
Description
evaluate prior value for parameter Lambda
Usage
generatePriorLambda(p, m, alpha2, qVec, psy, constraint)
Arguments
p |
the number of features |
m |
the number of clusters |
alpha2 |
hyper parameter |
qVec |
parameter |
psy |
parameter |
constraint |
parameter |
generatePriorPsi
Description
generate prior value for parameter Psi
Usage
generatePriorPsi(p, m, delta, bbeta, constraint)
Arguments
p |
the number of features |
m |
the number of clusters |
delta |
hyperparameters |
bbeta |
hyperparameters |
constraint |
the pgmm constraint, a vector of length three with binary entry. For example, c(1,1,1) means the fully constraint model |
PriorThetaY list
Description
generate prior value for parameter Theta and Y.
Usage
generatePriorThetaY(m, n, p, muBar, hparam, qVec, ZOneDim, constraint)
Arguments
m |
the number of cluster |
n |
sample size |
p |
number of covariates |
muBar |
parameter |
hparam |
hyperparameters |
qVec |
the vector of the number of factors in each clusters |
ZOneDim |
ZOneDim |
constraint |
constraint |
bpgmm Model-Based Clustering Using Baysian PGMM Carries out model-based clustering using parsimonious Gaussian mixture models. MCMC are used for parameter estimation. The RJMCMC is used for model selection.
Description
bpgmm Model-Based Clustering Using Baysian PGMM Carries out model-based clustering using parsimonious Gaussian mixture models. MCMC are used for parameter estimation. The RJMCMC is used for model selection.
Usage
pgmmRJMCMC(
X,
mInit,
mVec,
qnew,
delta = 2,
ggamma = 2,
burn = 20,
niter = 1000,
constraint = C(0, 0, 0),
dVec = c(1, 1, 1),
sVec = c(1, 1, 1),
Mstep = 0,
Vstep = 0,
SCind = 0
)
Arguments
X |
the observation matrix with size p * m |
mInit |
the number of initial clusters |
mVec |
the range of the number of clusters |
qnew |
the number of factor for a new cluster |
delta |
scaler hyperparameters |
ggamma |
scaler hyperparameters |
burn |
the number of burn in iterations |
niter |
the number of iterations |
constraint |
the pgmm initial constraint, a vector of length three with binary entry. For example, c(1,1,1) means the fully constraint model |
dVec |
a vector of hyperparameters with length three, shape parameters for alpha1, alpha2 and bbeta respectively |
sVec |
sVec a vector of hyperparameters with length three, rate parameters for alpha1, alpha2 and bbeta respectively |
Mstep |
the indicator of whether do model selection on the number of clusters |
Vstep |
the indicator of whether do model selection on variance structures |
SCind |
the indicator of whether use split/combine step in Mstep |
stayMCMCupdate
Description
stayMCMCupdate
Usage
stayMCMCupdate(
X,
thetaYList,
ZOneDim,
hparam,
qVec,
qnew,
dVec,
sVec,
constraint,
clusInd
)
Arguments
X |
X |
thetaYList |
thetaYList |
ZOneDim |
ZOneDim |
hparam |
hparam |
qVec |
qVec |
qnew |
qnew |
dVec |
dVec |
sVec |
sVec |
constraint |
constraint |
clusInd |
clusInd |
summerizePgmmRJMCMC
Description
summerizePgmmRJMCMC
Usage
summerizePgmmRJMCMC(pgmmResList, trueCluster = NULL)
Arguments
pgmmResList |
result list from pgmmRJMCMC |
trueCluster |
true cluster allocation |
Title
Description
Title
Usage
toEthetaYlist(NEthetaYList, NEZOneDim, qnew, clusInd)
Arguments
NEthetaYList |
NEthetaYList |
NEZOneDim |
NEZOneDim |
qnew |
qnew |
clusInd |
clusInd |