# boostingDEA

library(boostingDEA)
set.seed(1234)

## The production theory background

This vignette intends to explain the main functions of the boostingDEA package. In it, techniques from the field of machine learning are incorporated into solving problems in the production theory context. Specifically, two adaptations of the Gradient Boosting technique are introduced: EATBoost and MARSBoost. Gradient boosting is one of the variants of ensemble methods where multiple weak models are created and combined to get better performance as a whole. As a consequence, Gradient Boosting gives a prediction model in the form of an ensemble of weak prediction models. Specifically, at each step, a new weak model is trained to predict the “error” of the current strong model. In this package, whilst EATBoost uses an adaptation of regression trees known as Efficiency Analysis Trees as weak model, MARSBoost uses an adaptation of Multivariate Adaptive Regression Spline.

As previously said, we are dealing with a production theory context. Let us consider $$n$$ Decision Making Units (DMUs) to be evaluated. $$DMU_i$$ consumes $$\textbf{x}_i = (x_{1i}, ...,x_{mi}) \in R^{m}_{+}$$ amount of inputs for the production of $$\textbf{y}_i = (y_{1i}, ...,y_{si}) \in R^{s}_{+}$$ amount of outputs. The relative efficiency of each DMU in the sample is assessed regarding the so-called production possibility set or technology, which is the set of technically feasible combinations of $$(\textbf{x, y})$$. It is defined in general terms as:

$$$\Psi = \{(\textbf{x, y}) \in R^{m+s}_{+}: \textbf{x} \text{ can produce } \textbf{y}\}$$$

Monotonicity (free disposability) of inputs and outputs is assumed, meaning that if $$(\textbf{x, y}) \in \Psi$$, then $$(\textbf{x', y'}) \in \Psi$$, as soon as $$\textbf{x'} \geq \textbf{x}$$ and $$\textbf{y'} \leq \textbf{y}$$. Often convexity of $$\Psi$$ is also assumed. The efficient frontier of $$\Psi$$ may be defined as $$\partial(\boldsymbol{\Psi}) := \{(\boldsymbol{x,y}) \in \boldsymbol{\Psi}: \boldsymbol{\hat{x}} < \boldsymbol{x}, \boldsymbol{\hat{y}} > \boldsymbol{y} \Rightarrow (\boldsymbol{\hat{x},\hat{y}}) \notin \boldsymbol{\Psi} \}$$.

## The banks’ database

The banks database is included as a data object in the boostingDEA library and is employed to exemplify the package functions. The data corresponds to 31 Taiwanese banks for the year 2010. The dataset was first obtained by Juo et. al, 2015 from the “Condition and Performance of Domestic Banks” published by the Central Bank of China (Taiwan) and the Taiwan Economic Journal for the year 2010.

The following variables are collected for all banks:

• Inputs :

• Financial.funds: deposits and borrowed funds (in millions of TWD).
• Labor: number of employees.
• Physical.capital: net amount of fixed assets (in millions of TWD).
• Outputs :

• Financial.investments: financial assets, securities, and equity investments (in millions of TWD)
• Loans: loans and discounts (in millions of TWD)
• Revenue: interests from financial investments and loans

Revenue can be interpreted as a combination of the Financial.investments and Loans variables, and can be used as the target variable for a mono-output scenario, while Financial.investments and Loans for a multi-output scenario.

data(banks)
banks
#>                           Financial.funds Labor Physical.capital
#> Export-Import Bank                  25019   202              505
#> Bank of Taiwan                    3171493  7951            76576
#> Taipei Fubon Bank                 1222499  6434            12082
#> Bank of Kaohsiung                  189169   914             2237
#> Land Bank                         1846028  5732            22634
#> Cooperative Bank                  2220071  8835            33638
#> First Bank                        1602733  7048            22843
#> Hua Nan Bank                      1595039  7126            24907
#> Chang Hwa Bank                    1267731  6428            23778
#> Mega Bank                         1589474  5033            13568
#> Cathay United Bank                1349708  6062            25285
#> The Shanghai Bank                  577127  2265            10190
#> Union Bank                         295386  2975             8051
#> Far Eastern Bank                   344499  2378             2855
#> E. Sun Bank                        936612  4583            14195
#> Cosmos Bank                        109728  1685             6162
#> Taishin Bank                       741883  6236            17278
#> Ta Chong Bank                      322836  3215             3208
#> Jih Sun Bank                       182228  1529             4238
#> Entie Bank                         298330  1945             2114
#> China Trust Bank                  1335080  9538            32436
#> Sunny Bank                         213037  1790             9116
#> Bank of Panhsin                    143268  1270             7416
#> Taiwan Business Bank              1035800  5010            14185
#> Taichung Bank                      313451  1829             3243
#> China Development                   77242   567             1219
#> Hwatai Bank                        105657   856             1667
#> Cota Bank                          108685  1078             1113
#> Industrial Bank of Taiwan           76383   282             2605
#> Bank SinoPac                       936418  4670             8721
#> Shin Kong Bank                     428995  3146             7123
#>                           Finalcial.investments   Loans Revenue
#> Export-Import Bank                         3125   81996    1056
#> Bank of Taiwan                           904580 2091100   41007
#> Taipei Fubon Bank                        392491  866282   19402
#> Bank of Kaohsiung                         16740  163054    2957
#> Land Bank                                227086 1706964   31506
#> Cooperative Bank                         502569 1799753   35510
#> First Bank                               507630 1260072   27084
#> Hua Nan Bank                             393020 1256618   25668
#> Chang Hwa Bank                           257105 1060005   21638
#> Mega Bank                                344886 1332661   29489
#> Cathay United Bank                       162490  891448   21904
#> The Shanghai Bank                        229432  392894    9215
#> Union Bank                                13865  191209    8708
#> Far Eastern Bank                         290831  239958    6616
#> E. Sun Bank                              357497  602776   16911
#> Cosmos Bank                                1681   70222    5251
#> Taishin Bank                             203118  539549   16319
#> Ta Chong Bank                            109832  262868    7191
#> Jih Sun Bank                              26690  129907    3219
#> Entie Bank                                31500  197734    5410
#> China Trust Bank                         506711  949894   29185
#> Sunny Bank                                 5532  173909    4128
#> Bank of Panhsin                            2272  107411    2824
#> Taiwan Business Bank                     157870  935304   18056
#> Taichung Bank                             14528  247600    5770
#> China Development                        114442   72326    1873
#> Hwatai Bank                                3121   88922    2284
#> Cota Bank                                  3709   85595    2283
#> Industrial Bank of Taiwan                 32293   66947    1577
#> Bank SinoPac                             267021  700600   17922
#> Shin Kong Bank                            17372  328574    8226

## Efficiency models

### Standard techniques: DEA and FDH

Data envelopment analysis (DEA) is the standard nonparametric method for the estimation of production frontiers. In this context, the technology is calculated under assumptions of free disposability, convexity, deterministicness and minimal extrapolation.

The radial input DEA model can be computed using the DEA(data,x,y) function. Furthermore, in the case of the mono-output scenario, the ideal output value for the DMU in order to be efficient is also calculated.

x <- 1:3
y <- 6
DEA_model <- DEA(banks,x,y)
pred_DEA <- predict(DEA_model, banks, x, y)
pred_DEA
#>    Revenue_pred
#> 1      1056.000
#> 2     41007.000
#> 3     23610.840
#> 4      4267.654
#> 5     31506.000
#> 6     35510.000
#> 7     30296.522
#> 8     30266.830
#> 9     25833.058
#> 10    29489.000
#> 11    26756.522
#> 12    11868.767
#> 13     8708.000
#> 14     6741.728
#> 15    19558.692
#> 16     5251.000
#> 17    17265.890
#> 18     7191.000
#> 19     5284.268
#> 20     5410.000
#> 21    29185.000
#> 22     6663.290
#> 23     4733.154
#> 24    21162.123
#> 25     6669.596
#> 26     2194.405
#> 27     2868.251
#> 28     2557.894
#> 29     1577.000
#> 30    18187.708
#> 31    10258.301

Similarly, FDH introduced also estimates production frontiers, but it is based upon only two axioms: free disposability and deterministicness. Therefore, it can be considered as the skeleton of DEA, since the convex hull of the DEA coincides with the DEA’s frontier.

In the same fashion, the radial input FDH model can be computed in R using the FDH(data,x,y) function, where the ideal output in the case of the mono-output case is calculated as well.

x <- 1:3
y <- 6
FDH_model <- FDH(banks,x,y)
pred_FDH <- predict(FDH_model, banks, x, y)
pred_FDH
#>    Revenue_pred
#> 1          1056
#> 2         41007
#> 3         19402
#> 4          2957
#> 5         31506
#> 6         35510
#> 7         29489
#> 8         29489
#> 9         21638
#> 10        29489
#> 11        21904
#> 12         9215
#> 13         8708
#> 14         6616
#> 15        16911
#> 16         5251
#> 17        16319
#> 18         7191
#> 19         3219
#> 20         5410
#> 21        29185
#> 22         5251
#> 23         2824
#> 24        18056
#> 25         5770
#> 26         1873
#> 27         2284
#> 28         2283
#> 29         1577
#> 30        17922
#> 31         8226

### EATBoost

The EATBoost algorithm is an adaptation of the Gradient Tree Boosting algorithm to estimate production technologies. However, unlike the standard Gradient Tree Boosting algorithm which uses regression trees as base learners, the EATBoost technique uses EAT trees. Further modifications are also made to satisfy the required theoretical conditions. In particular, the algorithm was modified to deal with the axiom of free disposability in inputs and outputs and to provide estimates that envelop the data cloud from above. These two same postulates are also key in the definition of the standard FDH estimator of a technology. Therefore, this new approach shares similarities with the FDH methodology, but with the advantage that it avoids the typical problem of overfitting.

The EATBoost function receives as arguments the data (data) containing the study variables, the indexes of the predictor variables or inputs (x) and the indexes of the predicted variables or outputs (y). Moreover, the num.iterations, the learning.rate and num.leaves are hyperparameters for the model and are compulsory.

• num.iterations: The maximum number of iterations the algorithm will perform.

• learning.rate: Learning rate. It controls the overfitting of the algorithm. Value must be in $$(0,1]$$.

• num.leaves: The maximum number of terminal leaves in each tree at each iteration

The function returns an EATBoost object.

x <- 1:3
y <- 4:5
EATBoost_model <- EATBoost(banks, x, y,
num.iterations = 4,
num.leaves = 4,
learning.rate = 0.6)

To try to find the best hyperparameters, we can resort to a grid of parameters values tested through training and test samples in a user specified proportion. In the package, this can be done through the function bestEATBoost. This function instead of receiving as arguments a single value for each hyperparameter, receives a vector, and evaluates each possible combination in the grid through Mean Square Error (MSE) and Root Mean Square Error (RMSE). Finally, it returns a data.frame with each possible combination ordered by RMSE.

N <- nrow(banks)
x <- 1:3
y <- 4:5
selected <- sample(1:N, N * 0.8) # Training indexes
training <- banks[selected, ] # Training set
test <- banks[- selected, ] # Test set
grid_EATBoost <- bestEATBoost(training, test, x, y,
num.iterations = c(5,6,7),
learning.rate = c(0.4, 0.5, 0.6),
num.leaves = c(6,7,8),
verbose = FALSE)
#>   num.iterations learning.rate num.leaves     RMSE         MSE
#> 1              5           0.6          7 175893.4 30938480461
#> 2              5           0.6          6 176614.1 31192532114
#> 3              5           0.5          8 177724.9 31586138341
#> 4              5           0.5          6 177761.0 31598963379
#> 5              5           0.5          7 177897.8 31647611711
#> 6              6           0.6          7 179046.0 32057468193
EATboost_model_tuned <- EATBoost(banks, x, y,
num.iterations = grid_EATBoost[1, "num.iterations"],
learning.rate = grid_EATBoost[1, "learning.rate"],
num.leaves = grid_EATBoost[1, "num.leaves"])
pred_EATBoost <- predict(EATboost_model_tuned, banks, x)
pred_EATBoost
#>    Finalcial.investments_pred Loans_pred
#> 1                    12364.87   102624.5
#> 2                   904580.00  2091100.0
#> 3                   691348.93  1549138.7
#> 4                   122533.01   193094.5
#> 5                   822648.85  1882858.7
#> 6                   822648.85  1882858.7
#> 7                   691348.93  1549138.7
#> 8                   691348.93  1549138.7
#> 9                   691348.93  1549138.7
#> 10                  691348.93  1549138.7
#> 11                  691348.93  1549138.7
#> 12                  294033.05   539098.2
#> 13                  126639.74   223212.2
#> 14                  298139.78   534092.6
#> 15                  363099.13   714838.7
#> 16                  122533.01   109424.3
#> 17                  338139.38   649284.0
#> 18                  152306.78   281589.1
#> 19                  122533.01   152398.3
#> 20                  122533.01   218082.2
#> 21                  691348.93  1549138.7
#> 22                  122533.01   196109.7
#> 23                  122533.01   134015.3
#> 24                  691348.93  1549138.7
#> 25                  129866.45   267298.2
#> 26                  122533.01   109424.3
#> 27                  122533.01   109424.3
#> 28                   50061.72   106765.5
#> 29                   78804.67   104620.7
#> 30                  363099.13   714838.7
#> 31                  298139.78   544228.3

### MARSBoost

The MARSBoost algorithm is an adaptation of the LS-Boosting algorithm to estimate production technologies. In this case, the base learner used in the algorithm is an adaptation of the MARS model. MARS essentially builds flexible models by fitting piecewise linear regressions; that is, the non-linearity of a model is approximated through the use of separate regression slopes in distinct intervals of the predictor variable space. The combinations of these models, which do not have a continuous first derivative, led to sharp trends. For this reason, a smoothing procedure can be applied. Thus, the estimator obtained without the smoothing procedure presents similarities with the one obtained by DEA, while the estimate in the second stage resembles more well-known (smoothed) functional forms typical of production theory; like Cobb-Douglas, CES or Translog.

The MARSBoost function works similarly to the EATBoost one. It receives as arguments the data (data) containing the study variables, the indexes of the predictor variables or inputs (x), the indexes of the predicted variables or outputs (y) and a set of hyperparameters:

• num.iterations: The maximum number of iterations the algorithm will perform.

• learning.rate: Learning rate. It controls the overfitting of the algorithm. Value must be in $$(0,1]$$.

• num.terms: The maximum number of reflected pairs in each model at each iteration

The function returns an MARSBoost object and can be only used in mono-ouput scenarios.

x <- 1:3
y <- 6
MARSBoost_model <- MARSBoost(banks, x, y,
num.iterations = 4,
learning.rate = 0.6,
num.terms = 4)

In this case, to find the best hyperparameters, we can resort to the bestMARSBoost function. Here, we can create a grid of hyperparameters to find the optimal value for num.iterations, learning.rate and num.terms.

N <- nrow(banks)
x <- 1:3
y <- 6
selected <- sample(1:N, N * 0.8) # Training indexes
training <- banks[selected, ] # Training set
test <- banks[- selected, ] # Test set
grid_MARSBoost <- bestMARSBoost(training, test, x, y,
num.iterations = c(5,6,7),
learning.rate = c(0.4, 0.5, 0.6),
num.terms = c(6,7,8),
verbose = FALSE)
#>   num.iterations learning.rate num.terms     RMSE     MSE
#> 1              7           0.6         6 2115.814 4476669
#> 2              7           0.6         7 2115.814 4476669
#> 3              7           0.6         8 2115.814 4476669
#> 4              6           0.6         6 2162.278 4675447
#> 5              6           0.6         7 2162.278 4675447
#> 6              6           0.6         8 2162.278 4675447
MARSBoost_model_tuned <- MARSBoost(banks, x, y,
num.iterations = grid_MARSBoost[1, "num.iterations"],
learning.rate = grid_MARSBoost[1, "learning.rate"],
num.terms = grid_MARSBoost[1, "num.terms"])
pred_MARSBoost <- predict(MARSBoost_model_tuned, banks, x)
pred_MARSBoost
#>    Revenue_pred
#> 1      1121.456
#> 2     44258.838
#> 3     25826.754
#> 4      5023.932
#> 5     31877.200
#> 6     35519.006
#> 7     30324.119
#> 8     30377.385
#> 9     27174.489
#> 10    29507.871
#> 11    28484.046
#> 12    13802.012
#> 13     8845.106
#> 14     8594.639
#> 15    20638.981
#> 16     5309.583
#> 17    17591.556
#> 18     8431.431
#> 19     5922.635
#> 20     7511.006
#> 21    29204.369
#> 22     7280.988
#> 23     5654.287
#> 24    22442.894
#> 25     8082.041
#> 26     2510.994
#> 27     3350.320
#> 28     3408.779
#> 29     2681.269
#> 30    20388.933
#> 31    11175.128

## Measuring technical efficiency

Technical inefficiency is defined as the distance from a point that belongs to $$\Psi$$ to the production frontier $$\partial(\Psi)$$. For a point located inside $$\Psi$$, it is evident that there are many possible paths to the frontier, each associated with a different technical inefficiency measure.

The function efficiency calculates the efficiency score corresponding to the given model using the given measure. A dataset (data) and the corresponding indexes of input(s) (x) and output(s) (y) must be entered. It is recommended that the dataset with the DMUs whose efficiency is to be calculated coincide with those used to estimate the frontier. The possible argument of this function are:

• model: Model object for which efficiency score is computed. Valid objects are the ones returned from functions DEA, FDH, EATBoost and MARSBoost.

• measure: Efficiency measure used. Valid values are:

• rad.out: Banker Charnes and Cooper output-oriented radial model
• rad.in: Banker Charnes and Cooper input-oriented radial model
• Russell.out: output-oriented Russell model
• Russell.in: input-oriented Russell model
• DDF: Directional Distance Function model. The directional vector is specified in the argument direction.vector
• WAM: Weight Additive Models
• ERG: Slacks-Based Measure, which is mathematically equivalent to the Enhanced Russel Measure
• heuristic: Only used if the model is EATBoost. This indicates whether the heuristic or the exact approach is used. This heuristic approach might be needed due to the extreme complexity at a computational level of the EATBoot exact efficiency approach.

• direction.vector: Only used when the measure is DDF. Indicates the direction vector. The valid values are:

• dmu: $$(x_0, y_0)$$
• unit: unit vector
• mean: mean values of each variable
• A user-specific vector of the same length as (x,y)
• weights: Only used when the measure is WAM. Valid values are: MIP: Measure of Inefficiency Proportions RAM: Range Adjusted Measure BAM: Bounded Adjusted Measure normalized: normalized weighted additive model

• A user-specific vector of the same length as (x,y)

For this section, the previously created models are used.

Let’s first see an example using the standard DEA and FDH techniques. For both techniques, all measures can be calculated.

x <- 1:3
y <- 6
efficiency(DEA_model,
banks, x, y)
#> Export-Import Bank         1.0000000
#> Bank of Taiwan             1.0000000
#> Taipei Fubon Bank          0.8109065
#> Bank of Kaohsiung          0.6587345
#> Land Bank                  1.0000000
#> Cooperative Bank           1.0000000
#> First Bank                 0.8568164
#> Hua Nan Bank               0.8092421
#> Chang Hwa Bank             0.8212723
#> Mega Bank                  1.0000000
#> Cathay United Bank         0.8010874
#> The Shanghai Bank          0.7700111
#> Union Bank                 1.0000000
#> Far Eastern Bank           0.9807311
#> E. Sun Bank                0.8459681
#> Cosmos Bank                1.0000000
#> Taishin Bank               0.9350929
#> Ta Chong Bank              1.0000000
#> Jih Sun Bank               0.5748014
#> Entie Bank                 1.0000000
#> China Trust Bank           1.0000000
#> Sunny Bank                 0.5996823
#> Bank of Panhsin            0.5664026
#> Taichung Bank              0.8558921
#> China Development          0.8181399
#> Hwatai Bank                0.7606673
#> Cota Bank                  0.8866054
#> Industrial Bank of Taiwan  1.0000000
#> Bank SinoPac               0.9842813
#> Shin Kong Bank             0.7816094
efficiency(FDH_model,
measure = "WAM",
weights = "RAM",
banks, x, y)
#>                              FDH.WAM
#> Export-Import Bank        0.00000000
#> Bank of Taiwan            0.00000000
#> Taipei Fubon Bank         0.00000000
#> Bank of Kaohsiung         0.00000000
#> Land Bank                 0.00000000
#> Cooperative Bank          0.00000000
#> First Bank                0.10054236
#> Hua Nan Bank              0.11766372
#> Chang Hwa Bank            0.00000000
#> Mega Bank                 0.00000000
#> Cathay United Bank        0.00000000
#> The Shanghai Bank         0.00000000
#> Union Bank                0.00000000
#> Far Eastern Bank          0.00000000
#> E. Sun Bank               0.00000000
#> Cosmos Bank               0.00000000
#> Taishin Bank              0.00000000
#> Ta Chong Bank             0.00000000
#> Jih Sun Bank              0.00000000
#> Entie Bank                0.00000000
#> China Trust Bank          0.00000000
#> Sunny Bank                0.02775541
#> Bank of Panhsin           0.00000000
#> Taichung Bank             0.00000000
#> China Development         0.00000000
#> Hwatai Bank               0.00000000
#> Cota Bank                 0.00000000
#> Industrial Bank of Taiwan 0.00000000
#> Bank SinoPac              0.00000000
#> Shin Kong Bank            0.00000000

In the case of the EATBoost algorithm, all measures can be calculated as well.

x <- 1:3
y <- 4:5
efficiency(EATboost_model_tuned,
measure = "Russell.out",
heuristic = FALSE,
banks, x, y)
#> Calculating EATBoost Russell.out efficiency measure. This migth take a while...
#>
|
|                                                                      |   0%
|
|                                                                      |   1%
|
|=                                                                     |   1%
|
|=                                                                     |   2%
|
|==                                                                    |   2%
|
|==                                                                    |   3%
|
|==                                                                    |   4%
|
|===                                                                   |   4%
|
|===                                                                   |   5%
|
|====                                                                  |   5%
|
|====                                                                  |   6%
|
|=====                                                                 |   6%
|
|=====                                                                 |   7%
|
|=====                                                                 |   8%
|
|======                                                                |   8%
|
|======                                                                |   9%
|
|=======                                                               |   9%
|
|=======                                                               |  10%
|
|=======                                                               |  11%
|
|========                                                              |  11%
|
|========                                                              |  12%
|
|=========                                                             |  12%
|
|=========                                                             |  13%
|
|=========                                                             |  14%
|
|==========                                                            |  14%
|
|==========                                                            |  15%
|
|===========                                                           |  15%
|
|===========                                                           |  16%
|
|============                                                          |  16%
|
|============                                                          |  17%
|
|============                                                          |  18%
|
|=============                                                         |  18%
|
|=============                                                         |  19%
|
|==============                                                        |  19%
|
|==============                                                        |  20%
|
|==============                                                        |  21%
|
|===============                                                       |  21%
|
|===============                                                       |  22%
|
|================                                                      |  22%
|
|================                                                      |  23%
|
|================                                                      |  24%
|
|=================                                                     |  24%
|
|=================                                                     |  25%
|
|==================                                                    |  25%
|
|==================                                                    |  26%
|
|===================                                                   |  26%
|
|===================                                                   |  27%
|
|===================                                                   |  28%
|
|====================                                                  |  28%
|
|====================                                                  |  29%
|
|=====================                                                 |  29%
|
|=====================                                                 |  30%
|
|=====================                                                 |  31%
|
|======================                                                |  31%
|
|======================                                                |  32%
|
|=======================                                               |  32%
|
|=======================                                               |  33%
|
|=======================                                               |  34%
|
|========================                                              |  34%
|
|========================                                              |  35%
|
|=========================                                             |  35%
|
|=========================                                             |  36%
|
|==========================                                            |  36%
|
|==========================                                            |  37%
|
|==========================                                            |  38%
|
|===========================                                           |  38%
|
|===========================                                           |  39%
|
|============================                                          |  39%
|
|============================                                          |  40%
|
|============================                                          |  41%
|
|=============================                                         |  41%
|
|=============================                                         |  42%
|
|==============================                                        |  42%
|
|==============================                                        |  43%
|
|==============================                                        |  44%
|
|===============================                                       |  44%
|
|===============================                                       |  45%
|
|================================                                      |  45%
|
|================================                                      |  46%
|
|=================================                                     |  46%
|
|=================================                                     |  47%
|
|=================================                                     |  48%
|
|==================================                                    |  48%
|
|==================================                                    |  49%
|
|===================================                                   |  49%
|
|===================================                                   |  50%
|
|===================================                                   |  51%
|
|====================================                                  |  51%
|
|====================================                                  |  52%
|
|=====================================                                 |  52%
|
|=====================================                                 |  53%
|
|=====================================                                 |  54%
|
|======================================                                |  54%
|
|======================================                                |  55%
|
|=======================================                               |  55%
|
|=======================================                               |  56%
|
|========================================                              |  56%
|
|========================================                              |  57%
|
|========================================                              |  58%
|
|=========================================                             |  58%
|
|=========================================                             |  59%
|
|==========================================                            |  59%
|
|==========================================                            |  60%
|
|==========================================                            |  61%
|
|===========================================                           |  61%
|
|===========================================                           |  62%
|
|============================================                          |  62%
|
|============================================                          |  63%
|
|============================================                          |  64%
|
|=============================================                         |  64%
|
|=============================================                         |  65%
|
|==============================================                        |  65%
|
|==============================================                        |  66%
|
|===============================================                       |  66%
|
|===============================================                       |  67%
|
|===============================================                       |  68%
|
|================================================                      |  68%
|
|================================================                      |  69%
|
|=================================================                     |  69%
|
|=================================================                     |  70%
|
|=================================================                     |  71%
|
|==================================================                    |  71%
|
|==================================================                    |  72%
|
|===================================================                   |  72%
|
|===================================================                   |  73%
|
|===================================================                   |  74%
|
|====================================================                  |  74%
|
|====================================================                  |  75%
|
|=====================================================                 |  75%
|
|=====================================================                 |  76%
|
|======================================================                |  76%
|
|======================================================                |  77%
|
|======================================================                |  78%
|
|=======================================================               |  78%
|
|=======================================================               |  79%
|
|========================================================              |  79%
|
|========================================================              |  80%
|
|========================================================              |  81%
|
|=========================================================             |  81%
|
|=========================================================             |  82%
|
|==========================================================            |  82%
|
|==========================================================            |  83%
|
|==========================================================            |  84%
|
|===========================================================           |  84%
|
|===========================================================           |  85%
|
|============================================================          |  85%
|
|============================================================          |  86%
|
|=============================================================         |  86%
|
|=============================================================         |  87%
|
|=============================================================         |  88%
|
|==============================================================        |  88%
|
|==============================================================        |  89%
|
|===============================================================       |  89%
|
|===============================================================       |  90%
|
|===============================================================       |  91%
|
|================================================================      |  91%
|
|================================================================      |  92%
|
|=================================================================     |  92%
|
|=================================================================     |  93%
|
|=================================================================     |  94%
|
|==================================================================    |  94%
|
|==================================================================    |  95%
|
|===================================================================   |  95%
|
|===================================================================   |  96%
|
|====================================================================  |  96%
|
|====================================================================  |  97%
|
|====================================================================  |  98%
|
|===================================================================== |  98%
|
|===================================================================== |  99%
|
|======================================================================|  99%
|
|======================================================================| 100%
#>                           EATBoost.Russell.out
#> Export-Import Bank                    2.604169
#> Bank of Taiwan                        1.000000
#> Taipei Fubon Bank                     1.774850
#> Bank of Kaohsiung                     4.252005
#> Land Bank                             2.362838
#> Cooperative Bank                      1.341532
#> First Bank                            1.295660
#> Hua Nan Bank                          1.495926
#> Chang Hwa Bank                        2.075210
#> Mega Bank                             1.583506
#> Cathay United Bank                    2.996247
#> The Shanghai Bank                     1.326845
#> Union Bank                            5.150572
#> Far Eastern Bank                      1.625453
#> E. Sun Bank                           1.100791
#> Cosmos Bank                          37.225596
#> Taishin Bank                          1.434063
#> Ta Chong Bank                         1.228972
#> Jih Sun Bank                          2.882052
#> Entie Bank                            2.496422
#> China Trust Bank                      1.497620
#> Sunny Bank                           11.638757
#> Bank of Panhsin                      27.589735
#> Taichung Bank                         5.009301
#> China Development                     1.291816
#> Hwatai Bank                          20.245692
#> Cota Bank                             7.372348
#> Industrial Bank of Taiwan             2.001521
#> Bank SinoPac                          1.190069
#> Shin Kong Bank                        9.409211

However, due to the extreme complexity at a computational level of the exact efficiency approach, the heuristic hyperparameter can be specified to resort to the simpler less time-consuming heuristic approach. In fact, heuristic is the default mode for EATBoost.

efficiency(EATboost_model_tuned,
measure = "Russell.out",
banks, x, y,
heuristic = TRUE)
#>                           EATBoost.heu.Russell.out
#> Export-Import Bank                        2.604169
#> Bank of Taiwan                            1.000000
#> Taipei Fubon Bank                         1.774850
#> Bank of Kaohsiung                         4.252005
#> Land Bank                                 2.362838
#> Cooperative Bank                          1.341532
#> First Bank                                1.295660
#> Hua Nan Bank                              1.495926
#> Chang Hwa Bank                            2.075210
#> Mega Bank                                 1.583506
#> Cathay United Bank                        2.996247
#> The Shanghai Bank                         1.326845
#> Union Bank                                5.150572
#> Far Eastern Bank                          1.625453
#> E. Sun Bank                               1.100791
#> Cosmos Bank                              37.225596
#> Taishin Bank                              1.434063
#> Ta Chong Bank                             1.228972
#> Jih Sun Bank                              2.882052
#> Entie Bank                                2.496422
#> China Trust Bank                          1.497620
#> Sunny Bank                               11.638757
#> Bank of Panhsin                          27.589735
#> Taichung Bank                             5.009301
#> China Development                         1.291816
#> Hwatai Bank                              20.245692
#> Cota Bank                                 7.372348
#> Industrial Bank of Taiwan                 2.001521
#> Bank SinoPac                              1.190069
#> Shin Kong Bank                            9.409211

Finally, for the MARSBoost algorithm, only the radial output measure can be calculated.

efficiency(MARSBoost_model_tuned, "rad.out", banks, x, 6)
#> Export-Import Bank                 1.061985
#> Bank of Taiwan                     1.079300
#> Taipei Fubon Bank                  1.331139
#> Bank of Kaohsiung                  1.698996
#> Land Bank                          1.011782
#> Cooperative Bank                   1.000254
#> First Bank                         1.119632
#> Hua Nan Bank                       1.183473
#> Chang Hwa Bank                     1.255869
#> Mega Bank                          1.000640
#> Cathay United Bank                 1.300404
#> The Shanghai Bank                  1.497777
#> Union Bank                         1.015745
#> Far Eastern Bank                   1.299069
#> E. Sun Bank                        1.220447
#> Cosmos Bank                        1.011156
#> Taishin Bank                       1.077980
#> Ta Chong Bank                      1.172498
#> Jih Sun Bank                       1.839899
#> Entie Bank                         1.388356
#> China Trust Bank                   1.000664
#> Sunny Bank                         1.763805
#> Bank of Panhsin                    2.002226
#> Shin Kong Bank                     1.358513