--- title: "Beta-Select Demonstration: Regression by `lm()`" date: "2024-11-08" output: rmarkdown::html_vignette: number_sections: true vignette: > %\VignetteIndexEntry{Beta-Select Demonstration: Regression by `lm()`} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} bibliography: "references.bib" csl: apa.csl --- # Introduction This article demonstrates how to use `lm_betaselect()` from the package [`betaselectr`](https://sfcheung.github.io/betaselectr/) to standardize selected variables in a model fitted by `lm()` and forming confidence intervals for the parameters. # Data and Model The sample dataset from the package `betaselectr` will be used for this demonstration: ``` r library(betaselectr) head(data_test_mod_cat2) #> dv iv mod cov1 cat1 #> 1 15.53 13.95 50.75 25.33 gp2 #> 2 17.69 15.07 49.67 20.96 gp1 #> 3 28.56 14.43 53.42 19.22 gp3 #> 4 25.00 11.22 42.55 20.18 gp2 #> 5 19.33 14.93 52.12 22.82 gp2 #> 6 20.62 10.22 39.36 18.41 gp1 ``` This is the regression model, fitted by `lm()`: ``` r lm_out <- lm(dv ~ iv * mod + cov1 + cat1, data = data_test_mod_cat2) ``` The model has a moderator, `mod`, posited to moderate the effect from `iv` to `med`. The product term is `iv:mod`. The variable `cat1` is a categorical variable with three groups: `gp1`, `gp2`, `gp3`. These are the results: ``` r summary(lm_out) #> #> Call: #> lm(formula = dv ~ iv * mod + cov1 + cat1, data = data_test_mod_cat2) #> #> Residuals: #> Min 1Q Median 3Q Max #> -17.0892 -4.6312 0.0057 5.0186 18.7053 #> #> Coefficients: #> Estimate Std. Error t value Pr(>|t|) #> (Intercept) 90.87211 34.04462 2.669 0.00803 ** #> iv -6.06932 2.33701 -2.597 0.00988 ** #> mod -1.61636 0.68840 -2.348 0.01954 * #> cov1 0.09885 0.19433 0.509 0.61136 #> cat1gp2 1.71248 1.15064 1.488 0.13775 #> cat1gp3 2.47838 1.10562 2.242 0.02574 * #> iv:mod 0.13230 0.04656 2.841 0.00481 ** #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> Residual standard error: 6.743 on 293 degrees of freedom #> Multiple R-squared: 0.1149, Adjusted R-squared: 0.09676 #> F-statistic: 6.338 on 6 and 293 DF, p-value: 2.759e-06 ``` # Problems With Standardization One common type of standardized coefficients, called "betas" in some programs, is computed by standardizing *all* terms in the model. First, all variables in the model, including the product term and dummy variables, are computed: ``` r data_test_mod_cat2_z <- data_test_mod_cat2 data_test_mod_cat2_z$iv_x_mod <- data_test_mod_cat2_z$iv * data_test_mod_cat2_z$mod data_test_mod_cat2_z$cat_gp2 <- as.numeric(data_test_mod_cat2_z$cat1 == "gp2") data_test_mod_cat2_z$cat_gp3 <- as.numeric(data_test_mod_cat2_z$cat1 == "gp3") head(data_test_mod_cat2_z) #> dv iv mod cov1 cat1 iv_x_mod cat_gp2 cat_gp3 #> 1 15.53 13.95 50.75 25.33 gp2 707.9625 1 0 #> 2 17.69 15.07 49.67 20.96 gp1 748.5269 0 0 #> 3 28.56 14.43 53.42 19.22 gp3 770.8506 0 1 #> 4 25.00 11.22 42.55 20.18 gp2 477.4110 1 0 #> 5 19.33 14.93 52.12 22.82 gp2 778.1516 1 0 #> 6 20.62 10.22 39.36 18.41 gp1 402.2592 0 0 ``` All the variables are then standardized: ``` r data_test_mod_cat2_z <- data.frame(scale(data_test_mod_cat2_z[, -5])) head(data_test_mod_cat2_z) #> dv iv mod cov1 iv_x_mod cat_gp2 #> 1 -0.9458226 -0.44874323 0.23147783 2.553777460 -0.24816181 1.331109 #> 2 -0.6414005 0.13926755 -0.03378874 0.390649940 0.06187143 -0.748749 #> 3 0.8905756 -0.19673861 0.88727574 -0.470641109 0.23249121 -0.748749 #> 4 0.3888429 -1.88201951 -1.78258317 0.004553953 -2.01026427 1.331109 #> 5 -0.4102652 0.06576621 0.56797339 1.311340372 0.28829267 1.331109 #> 6 -0.2284575 -2.40702913 -2.56610202 -0.871586942 -2.58464861 -0.748749 #> cat_gp3 #> 1 -0.9401258 #> 2 -0.9401258 #> 3 1.0601418 #> 4 -0.9401258 #> 5 -0.9401258 #> 6 -0.9401258 ``` The regression model is then fitted to the standardized variables: ``` r lm_std_common <- lm(dv ~ iv + mod + cov1 + cat_gp2 + cat_gp3 + iv_x_mod, data = data_test_mod_cat2_z) ``` The "betas" commonly reported are the coefficients in this model: ``` r lm_std_common_summary <- summary(lm_std_common) printCoefmat(lm_std_common_summary$coefficients, digits = 5, zap.ind = 1, P.values = TRUE, has.Pvalue = TRUE, signif.stars = TRUE) #> Estimate Std. Error t value Pr(>|t|) #> (Intercept) 0.000000 0.054871 0.0000 1.000000 #> iv -1.629280 0.627360 -2.5970 0.009878 ** #> mod -0.927480 0.395006 -2.3480 0.019539 * #> cov1 0.028140 0.055329 0.5087 0.611359 #> cat_gp2 0.116040 0.077970 1.4883 0.137753 #> cat_gp3 0.174620 0.077901 2.2416 0.025735 * #> iv_x_mod 2.439510 0.858601 2.8413 0.004809 ** #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ``` However, for this model, there are several problems: - The product term is also standardized (`iv_x_mod`, computed using the standard deviations of `dv` and `iv:mod`). This is inappropriate [@hayes_introduction_2022]. One simple but underused solution is standardizing the variables *before* forming the product term [@friedrich_defense_1982]. - The confidence intervals are formed using ordinary least squares (OLS), which does not take into account the sampling variation of the standardizers (the sample standard deviations used in standardization) and so the standard errors may be biased [@yuan_biases_2011]. Although there are situations in which the OLS confidence and the nonparametric percentile bootstrap confidences can be similar (e.g., sample size is large and the population values are not extreme), it is recommended to use bootstrap confidence intervals when computation cost is low [@jones_computing_2013]. - There are cases in which some variabLes are measured by meaningful units and do not need to be standardized. For example, if `cov1` is age measured by year, then age is more meaningful than "standardized age". - In regression models, categorical variables are usually represented by dummy variables, each of them having only two possible values (0 or 1). It is not meaningful to standardize the dummy variables [@darlington_regression_2016]. # Beta-Select by `lm_betaselect()` The function `lm_betaselect()` can be used to solve these problems by: - standardizing variables before product terms are formed, - standardizing only variables for which standardization can facilitate interpretation, and - forming bootstrap confidence intervals that take into account selected standardization. We call the coefficients computed by this kind of standardization *beta*s-select ($\beta{s}_{Select}$, $\beta_{Select}$ in singular form), to differentiate them from coefficients computed by standardizing all variables, including product terms. ## Estimates Only Suppose we only need to solve the first problem, standardizing all numeric variables, with the product term computed after `iv`, `mod`, and `dv` are standardized. ``` r lm_beta_select <- lm_betaselect(dv ~ iv*mod + cov1 + cat1, data = data_test_mod_cat2, do_boot = FALSE) ``` The function `lm_betaselect()` can be used as `lm()`, with applicable arguments such as the model formula and `data` passed to `lm()`. By default, *all* numeric variables will be standardized before fitting the models. Terms such as product terms are created *after* standardization. Moreover, categorical variables (factors and string variables) will not be standardized. Bootstrapping is done by default. In this illustration, `do_boot = FALSE` is added to disable it because we only want to address the first problem. We will do bootstrapping when addressing the issue with confidence intervals. The `summary()` method can be used ont the output of `lm_betaselect()`: ``` r summary(lm_beta_select) #> Call to lm_betaselect(): #> betaselectr::lm_betaselect(formula = dv ~ iv * mod + cov1 + cat1, #> data = data_test_mod_cat2, do_boot = FALSE) #> #> Variable(s) standardized: dv, iv, mod, cov1 #> #> Call: #> stats::lm(formula = dv ~ iv * mod + cov1 + cat1, data = betaselectr::std_data(data = data_test_mod_cat2, #> to_standardize = c("dv", "iv", "mod", "cov1"))) #> #> Residuals: #> Min 1Q Median 3Q Max #> -2.4085 -0.6527 0.0008 0.7073 2.6363 #> #> Coefficients: #> Estimate CI.Lower CI.Upper Std. Error t value Pr(>|t|) #> (Intercept) -0.308 -0.576 -0.040 0.136 -2.259 0.02461 * #> iv 0.140 0.021 0.258 0.060 2.324 0.02082 * #> mod 0.196 0.078 0.315 0.060 3.264 0.00123 ** #> cov1 0.028 -0.081 0.137 0.055 0.509 0.61136 #> cat1gp2 0.241 -0.078 0.561 0.162 1.488 0.13775 #> cat1gp3 0.349 0.043 0.656 0.156 2.242 0.02574 * #> iv:mod 0.145 0.044 0.245 0.051 2.841 0.00481 ** #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> Residual standard error: 0.9504 on 293 degrees of freedom #> #> R-squared : 0.115 #> Adjusted R-squared : 0.097 #> ANOVA test of R-squared : F(6, 293) = 6.338, p < 0.001 #> #> Note: #> - Results *after* standardization are reported. #> - Standard errors are least-squares standard errors. #> - T values are computed by 'Estimate / Std. Error'. #> - P-values are usual t-test p-values. #> - Least squares standard errors, t values, p-values, and confidence #> intervals (if reported) should not be used for coefficients involved #> in standardization. #> - Least squares 95.0% confidence interval reported. ``` Compared to the solution with the product term standardized, the coefficient of `iv:mod` changed substantially from 2.440 to 0.145. As shown by @cheung_improving_2022, the coefficient of *standardized* product term (`iv:mod`) can be substantially different from the properly standardized product term (the product of standardized `iv` and standardized `mod`). ## Estimates and Bootstrap Confidence Interval Suppose we want to address both the first and the second problems, with - the product term computed after `iv`, `mod`, and `dv` are standardized, and - bootstrap confidence interval used. We can call `lm_betaselect()` again, with additional arguments set: ``` r lm_beta_select_boot <- lm_betaselect(dv ~ iv*mod + cov1 + cat1, data = data_test_mod_cat2, bootstrap = 5000, iseed = 4567) ``` These are the additional arguments: - `bootstrap`: The number of bootstrap samples to draw. Default is 100. It should be set to 5000 or even 10000. - `iseed`: The seed for the random number generator used in bootstrapping. Set this to an integer to make the results reproducible. This is the output of `summary()` ``` r summary(lm_beta_select_boot) #> Call to lm_betaselect(): #> betaselectr::lm_betaselect(formula = dv ~ iv * mod + cov1 + cat1, #> data = data_test_mod_cat2, bootstrap = 5000, iseed = 4567) #> #> Variable(s) standardized: dv, iv, mod, cov1 #> #> Call: #> stats::lm(formula = dv ~ iv * mod + cov1 + cat1, data = betaselectr::std_data(data = data_test_mod_cat2, #> to_standardize = c("dv", "iv", "mod", "cov1"))) #> #> Residuals: #> Min 1Q Median 3Q Max #> -2.4085 -0.6527 0.0008 0.7073 2.6363 #> #> Coefficients: #> Estimate CI.Lower CI.Upper Std. Error z value Pr(Boot) #> (Intercept) -0.308 -0.536 -0.080 0.117 -2.636 0.0056 ** #> iv 0.140 0.009 0.268 0.066 2.109 0.0384 * #> mod 0.196 0.075 0.317 0.061 3.208 0.0016 ** #> cov1 0.028 -0.075 0.131 0.052 0.537 0.5700 #> cat1gp2 0.241 -0.067 0.540 0.155 1.560 0.1276 #> cat1gp3 0.349 0.064 0.631 0.146 2.394 0.0152 * #> iv:mod 0.145 0.059 0.228 0.043 3.356 0.0020 ** #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> Residual standard error: 0.9504 on 293 degrees of freedom #> #> R-squared : 0.115 #> Adjusted R-squared : 0.097 #> ANOVA test of R-squared : F(6, 293) = 6.338, p < 0.001 #> #> Note: #> - Results *after* standardization are reported. #> - Nonparametric bootstrapping conducted. #> - The number of bootstrap samples is 5000. #> - Standard errors are bootstrap standard errors. #> - Z values are computed by 'Estimate / Std. Error'. #> - The bootstrap p-values are asymmetric p-values by Asparouhov and #> Muthén (2021). #> - Percentile bootstrap 95.0% confidence interval reported. ``` By default, 95% percentile bootstrap confidence intervals are printed (`CI.Lower` and `CI.Upper`). The *p*-values (`Pr(Boot)`) are asymmetric bootstrap *p*-values [@asparouhov_bootstrap_2021]. ## Estimates and Bootstrap Confidence Intervals, With Only Selected Variables Standardized Suppose we want to address also the the third issue, and standardize only some of the variables. This can be done using either `to_standardize` or `not_to_standardize`. - Use `to_standardize` when the number of variables to standardize is much fewer than number of the variables not to standardize. - Use `not_to_standardize` when the number of variables to standardize is much more than the number of variables not to standardize. For example, suppose we only need to standardize `dv` and `iv`, this is the call to do this, setting `to_standardize` to `c("iv", "dv")`: ``` r lm_beta_select_boot_1 <- lm_betaselect(dv ~ iv*mod + cov1 + cat1, data = data_test_mod_cat2, to_standardize = c("dv", "iv"), bootstrap = 5000, iseed = 4567) ``` If we want to standardize all variables except for `mod` and `cov1`, we can use this call, and set `not_to_standardize` to `c("mod", "cov1")`: ``` r lm_beta_select_boot_2 <- lm_betaselect(dv ~ iv*mod + cov1 + cat1, data = data_test_mod_cat2, not_to_standardize = c("mod", "cov1"), bootstrap = 5000, iseed = 4567) ``` The results of these calls are identical, and only those of the first version are printed: ``` r summary(lm_beta_select_boot_1) #> Call to lm_betaselect(): #> betaselectr::lm_betaselect(formula = dv ~ iv * mod + cov1 + cat1, #> data = data_test_mod_cat2, to_standardize = c("dv", "iv"), #> bootstrap = 5000, iseed = 4567) #> #> Variable(s) standardized: dv, iv #> #> Call: #> stats::lm(formula = dv ~ iv * mod + cov1 + cat1, data = betaselectr::std_data(data = data_test_mod_cat2, #> to_standardize = c("dv", "iv"))) #> #> Residuals: #> Min 1Q Median 3Q Max #> -2.4085 -0.6527 0.0008 0.7073 2.6363 #> #> Coefficients: #> Estimate CI.Lower CI.Upper Std. Error z value Pr(Boot) #> (Intercept) -2.991 -4.769 -1.196 0.899 -3.326 0.0024 ** #> iv -1.629 -2.667 -0.573 0.539 -3.021 0.0036 ** #> mod 0.048 0.019 0.078 0.015 3.199 0.0016 ** #> cov1 0.014 -0.037 0.066 0.026 0.533 0.5700 #> cat1gp2 0.241 -0.067 0.540 0.155 1.560 0.1276 #> cat1gp3 0.349 0.064 0.631 0.146 2.394 0.0152 * #> iv:mod 0.036 0.015 0.056 0.011 3.366 0.0020 ** #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 #> #> Residual standard error: 0.9504 on 293 degrees of freedom #> #> R-squared : 0.115 #> Adjusted R-squared : 0.097 #> ANOVA test of R-squared : F(6, 293) = 6.338, p < 0.001 #> #> Note: #> - Results *after* standardization are reported. #> - Nonparametric bootstrapping conducted. #> - The number of bootstrap samples is 5000. #> - Standard errors are bootstrap standard errors. #> - Z values are computed by 'Estimate / Std. Error'. #> - The bootstrap p-values are asymmetric p-values by Asparouhov and #> Muthén (2021). #> - Percentile bootstrap 95.0% confidence interval reported. ``` For *beta*s-*select*, researchers need to state which variables are standardized and which are not. This can be done in table notes. ## Categorical Variables When calling `lm_betaselect()`, categorical variables (factors and string variables) will never be standardized. In the example above, the coefficients of the two dummy variables when both the dummy variables and the outcome variables are standardized are 0.116 and 0.175: ``` r printCoefmat(lm_std_common_summary$coefficients[5:6, ], digits = 5, zap.ind = 1, P.values = TRUE, has.Pvalue = TRUE, signif.stars = TRUE) #> Estimate Std. Error t value Pr(>|t|) #> cat_gp2 0.116041 0.077970 1.4883 0.13775 #> cat_gp3 0.174623 0.077901 2.2416 0.02574 * #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ``` These two values are not interpretable because it does not make sense to talk about a "one-SD change" in the dummy variables. The *beta*s-*Select* of the dummy variables, with only the outcome variable standardized, are 0.241 and 0.349. ``` r lm_beta_select_boot_summary <- summary(lm_beta_select_boot) printCoefmat(lm_beta_select_boot_summary$coefficients[5:6, ], digits = 5, zap.ind = 1, P.values = TRUE, has.Pvalue = TRUE, signif.stars = TRUE) #> Estimate CI.Lower CI.Upper Std. Error z value Pr(Boot) #> cat1gp2 0.241350 -0.067312 0.540477 0.154668 1.5604 0.1276 #> cat1gp3 0.349290 0.064136 0.630539 0.145927 2.3936 0.0152 * #> --- #> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ``` They represent the difference between `gp2` and `gp3` from the reference group, `gp1`, on the *standardized* outcome variable. That is, their meanings are the same before and after standardization. The only difference is in the unit of the outcome variable. # Conclusion In regression analysis, there are situations in which standardizing all variables is not appropriate, or when standardization needs to be done before forming product terms. We are not aware of tools that can do appropriate standardization *and* form confidence intervals that takes into account the selective standardization. By promoting the use of *beta*s-*select* using `lm_betaselect()`, we hope to make it easier for researchers to do appropriate standardization when reporting regression results. # References