## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----echo = FALSE, include = FALSE-------------------------------------------- library(autoslider.core) library(dplyr) ## ----eval = TRUE, include = FALSE--------------------------------------------- # hidden setup # Install and load the necessary packages library(yaml) # Create the YAML content yaml_content <- ' ITT: title: Intent to Treat Population condition: ITTFL == "Y" target: adsl type: slref SAS: title: Secondary Analysis Set condition: SASFL == "Y" target: adsl type: slref SE: title: Safety Evaluable Population condition: SAFFL== "Y" target: adsl type: slref SER: title: Serious Adverse Events condition: AESER == "Y" target: adae type: anl LBCRP: title: CRP Values condition: PARAMCD == "CRP" target: adlb type: slref LBNOBAS: title: Only Visits After Baseline condition: ABLFL != "Y" & !(AVISIT %in% c("SCREENING", "BASELINE")) target: adlb type: slref ' # Create a temporary YAML file filters <- tempfile(fileext = ".yaml") # Write the YAML content to the temporary file write(yaml_content, file = filters) # Create the specs entry specs_entry <- ' - program: t_ds_slide titles: Patient Disposition ({filter_titles("adsl")}) footnotes: "t_ds footnotes" paper: L6 suffix: ITT - program: t_dm_slide titles: Patient Demographics and Baseline Characteristics footnotes: "t_dm_slide footnote" paper: L6 suffix: ITT args: arm: "TRT01A" vars: ["SEX", "AGE", "RACE", "ETHNIC", "COUNTRY"] - program: lbt06 titles: Patient Disposition ({filter_titles("adsl")}) footnotes: "t_ds footnotes" paper: L6 suffix: ITT_LBCRP_LBNOBAS ' # Create a temporary specs entry file spec_file <- tempfile(fileext = ".yaml") # Write the specs entry to the temporary file write(specs_entry, file = spec_file) # Clean up the temporary files # file.remove(filters) # file.remove(spec_file) ## ----eval = FALSE------------------------------------------------------------- # # define path to the yml files # spec_file <- "spec.yml" # filters <- "filters.yml" ## ----------------------------------------------------------------------------- library("dplyr") # load all filters filters::load_filters(filters, overwrite = TRUE) # read data data <- list( "adsl" = eg_adsl %>% mutate( FASFL = SAFFL, # add FASFL for illustrative purpose for t_pop_slide # DISTRTFL is needed for t_ds_slide but is missing in example data DISTRTFL = sample(c("Y", "N"), size = length(TRT01A), replace = TRUE, prob = c(.1, .9)) ) %>% preprocess_t_ds(), # this preproccessing is required by one of the autoslider.core functions "adae" = eg_adae, "adtte" = eg_adtte, "adrs" = eg_adrs, "adlb" = eg_adlb ) # create outputs based on the specs and the functions outputs <- spec_file %>% read_spec() %>% # we can also filter for specific programs, if we don't want to create them all filter_spec(., program %in% c( "t_ds_slide", "t_dm_slide" )) %>% # these filtered specs are now piped into the generate_outputs function. # this function also requires the data generate_outputs(datasets = data) %>% # now we decorate based on the specs, i.e. add footnotes and titles decorate_outputs( version_label = NULL ) ## ----------------------------------------------------------------------------- outputs$t_dm_slide_ITT ## ----eval = FALSE------------------------------------------------------------- # # Output to slides with template and color theme # outputs %>% # generate_slides( # outfile = tempfile(fileext = ".ppts"), # template = file.path(system.file(package = "autoslider.core"), "/theme/basic.pptx"), # table_format = autoslider_format # ) ## ----------------------------------------------------------------------------- lbt06 <- function(datasets) { # Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels. adsl <- datasets$adsl %>% tern::df_explicit_na() adlb <- datasets$adlb %>% tern::df_explicit_na() # Please note that df_explict_na has a na_level argument defaulting to "", # Please don't change the na_level to anything other than NA, empty string or the default "". adlb_f <- adlb %>% dplyr::filter(ABLFL != "Y") %>% dplyr::filter(!(AVISIT %in% c("SCREENING", "BASELINE"))) %>% dplyr::mutate(AVISIT = droplevels(AVISIT)) %>% formatters::var_relabel(AVISIT = "Visit") adlb_f_crp <- adlb_f %>% dplyr::filter(PARAMCD == "CRP") # Define the split function split_fun <- rtables::drop_split_levels lyt <- rtables::basic_table(show_colcounts = TRUE) %>% rtables::split_cols_by("ARM") %>% rtables::split_rows_by("AVISIT", split_fun = split_fun, label_pos = "topleft", split_label = formatters::obj_label(adlb_f_crp$AVISIT) ) %>% tern::count_abnormal_by_baseline( "ANRIND", abnormal = c(Low = "LOW", High = "HIGH"), .indent_mods = 4L ) %>% tern::append_varlabels(adlb_f_crp, "ANRIND", indent = 1L) %>% rtables::append_topleft(" Baseline Status") result <- rtables::build_table( lyt = lyt, df = adlb_f_crp, alt_counts_df = adsl ) %>% rtables::trim_rows() result } ## ----------------------------------------------------------------------------- lbt06(data) ## ----------------------------------------------------------------------------- adlb_f <- eg_adlb %>% dplyr::filter(ABLFL != "Y") %>% dplyr::filter(!(AVISIT %in% c("SCREENING", "BASELINE"))) %>% dplyr::mutate(AVISIT = droplevels(AVISIT)) %>% formatters::var_relabel(AVISIT = "Visit") adlb_f_crp <- adlb_f %>% dplyr::filter(PARAMCD == "CRP") ## ----------------------------------------------------------------------------- lbt06 <- function(datasets) { # Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels. adsl <- datasets$adsl %>% tern::df_explicit_na() adlb <- datasets$adlb %>% tern::df_explicit_na() # join adsl to adlb adlb <- adlb %>% semi_join(adsl, by = "USUBJID") # Please note that df_explict_na has a na_level argument defaulting to "", # Please don't change the na_level to anything other than NA, empty string or the default "". adlb_f <- adlb %>% dplyr::mutate(AVISIT = droplevels(AVISIT)) %>% formatters::var_relabel(AVISIT = "Visit") # Define the split function split_fun <- rtables::drop_split_levels lyt <- rtables::basic_table(show_colcounts = TRUE) %>% rtables::split_cols_by("ARM") %>% rtables::split_rows_by("AVISIT", split_fun = split_fun, label_pos = "topleft", split_label = formatters::obj_label(adlb_f_crp$AVISIT) ) %>% tern::count_abnormal_by_baseline( "ANRIND", abnormal = c(Low = "LOW", High = "HIGH"), .indent_mods = 4L ) %>% tern::append_varlabels(adlb_f, "ANRIND", indent = 1L) %>% rtables::append_topleft(" Baseline Status") result <- rtables::build_table( lyt = lyt, df = adlb_f, alt_counts_df = adsl ) %>% rtables::trim_rows() result } ## ----------------------------------------------------------------------------- # filter data | this step will be performed by the workflow later on adsl <- eg_adsl adlb <- eg_adlb adlb_f <- adlb %>% dplyr::filter(ABLFL != "Y") %>% dplyr::filter(!(AVISIT %in% c("SCREENING", "BASELINE"))) adlb_f_crp <- adlb_f %>% dplyr::filter(PARAMCD == "CRP") adsl_f <- adsl %>% filter(ITTFL == "Y") ## ----------------------------------------------------------------------------- lbt06(list(adsl = adsl_f, adlb = adlb_f_crp)) ## ----eval = FALSE------------------------------------------------------------- # source("programs/R/output_functions.R") ## ----eval = FALSE------------------------------------------------------------- # filters <- "filters.yml" # spec_file <- "specs.yml" ## ----------------------------------------------------------------------------- filters::load_filters(filters, overwrite = TRUE) outputs <- spec_file %>% read_spec() %>% generate_outputs(data) %>% decorate_outputs() outputs$lbt06_ITT_LBCRP_LBNOBAS ## ----------------------------------------------------------------------------- filepath <- tempfile(fileext = ".pptx") generate_slides(outputs, outfile = filepath)