## ---- echo = FALSE, message = FALSE------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=F------------------------------------------------------------------- # obj<-pwreg(ID, time, status, Z, strata, fixedL=TRUE) ## ----eval=F------------------------------------------------------------------- # ## compute the standardized score processes # score<-score.proc(obj) # ## plot the computed process for the kth covariate # plot(score, k) ## ----setup-------------------------------------------------------------------- library(WR) head(gbc) ## ----------------------------------------------------------------------------- grade_matrix <- model.matrix(~factor(grade),data=gbc) grade_df <- as.data.frame(grade_matrix[,-1]) names(grade_df) <- c("grade2 vs grade1", "grade3 vs grade1") gbc <- cbind.data.frame(gbc[,-8], grade_df) ## ----------------------------------------------------------------------------- ## extract the covariate matrix Z from the data ## leaving out menopause as the stratifying variable Z1 <- as.matrix(gbc[,c("hormone", "age", "size", "nodes", "prog_recp", "estrg_recp", "grade2 vs grade1", "grade3 vs grade1")]) ## fit a PW model stratified by the binary menopause status ## use type I variance estimator obj1<-pwreg(ID=gbc$id,time=gbc$time,status=gbc$status, Z=Z1,strata=gbc$menopause,fixedL=TRUE) ## print out the results print(obj1) ## ---- fig.height = 7.5, fig.width=7.5----------------------------------------- score1 <- score.proc(obj1) oldpar <- par(mfrow = par("mfrow")) par(mfrow = c(3,3)) for(i in c(1:8)){ plot(score1, k = i) abline(h = 0, col="blue",lty=2) abline(h = -2, col="blue",lty=2) abline(h = 2, col="blue",lty=2) } par(oldpar) ## ----------------------------------------------------------------------------- ## cut age into ~30 groups by quantiles cutpoints <- c(0,unique(quantile(gbc$age[gbc$status<2], seq(0.1,1,by=0.02))),Inf) cutpoints age_group <- cut(gbc$age, breaks = cutpoints, right = FALSE) ## ----------------------------------------------------------------------------- ## extract the covariate matrix Z from the data ## leaving out age as the stratifying variable Z2 <- as.matrix(gbc[,c("hormone", "menopause", "size", "nodes", "prog_recp", "estrg_recp", "grade2 vs grade1", "grade3 vs grade1")]) ## fit a PW model stratified by the binary menopause status ## use type II variance estimator because L is large obj2<-pwreg(ID=gbc$id,time=gbc$time,status=gbc$status, Z=Z2,strata=age_group,fixedL=TRUE) ## print out the results print(obj2)